Identifying Malicious
Code Through
Reverse Engineering

Advances in Information Security

Sushil Jajodia
Consulting Editor
Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: jajodia @ gmu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional titles in the series:

SECURE MULTI-PARTY NON-REPUDIATION PROTOCOLS AND APPLICATIONS
by José A. Onieva, Javier Lopez, Jianying Zhou; ISBN: 978-0-387-75629-5

GLOBAL INITIATIVES TO SECURE CYBERSPACE: An Emerging Langscape edited
by Michael Portnoy and Seymour Goodman; ISBN: 978-0-387-09763-3

SECURE KEY ESTABLISHMENTS by Kim-Kwang Raymond Choo; ISBN: 978-0-387-
87968-0

SECURITY FOR TELECOMMUNICATIONS NETWORKS by Patrick Traynor, Patrick
McDaniel and Thomas La Porta; ISBN: 978-0-387-72441-6

INSIDER ATTACK AND CYBER SECURITY: Beyond the Hacker edited by Salvatore
Stolfo, Steven M. Bellovin, Angelos D. Keromytis, Sara Sinclaire, Sean W. Smith; ISBN:
978-0-387-77321-6

INTRUSION DETECTION SYSTEMS edited by Robert Di Pietro and Luigi V. Mancini;
ISBN: 978-0-387-77265-3

VULNERABILITY ANALYSIS AND DEFENSE FOR THE INTERNET edited by
Abhishek Singh; ISBN: 978-0-387-74389-9

BOTNET DETECTION: Countering the Largest Security Threat edited by Wenke Lee,
Cliff Wang and David Dagon; ISBN: 978-0-387-68766-7

PRIVACY-RESPECTING INTRUSION DETECTION by Ulrich Flegel; ISBN: 978-0-387-
68254-9

SYNCHRONIZING INTERNET PROTOCOL SECURITY (SIPSec) by Charles A.
Shoniregun; ISBN: 978-0-387-32724-2

SECURE DATA MANAGEMENT IN DECENTRALIZED SYSTEMS edited by Ting Yu
and Sushil Jajodia; ISBN: 978-0-387-27694-6

For other titles published in this series, go to
WWWw.springer.com/series/5576

Identifying Malicious
Code Through
Reverse Engineering

edited by

Abhishek Singh
Microsoft Corporation
Redmond, WA, USA

with contributions by

Baibhav Singh

Honeywell Technology Solutions Laboratory
Bangalore, India

@ Springer

Editor:

Abhishek Singh

Microsoft Corporation

One Microsoft Way
Advanta-B/3099

Redmond, WA 98052-6399, USA
abhisheksingh243 @gmail.com

with contributions by:

Baibhav Singh

Honeywell Technology Solutions Laboratory
151/1, Doraisanipalya, Bannerghatta Road
Bangalore — 560 076, India

ISBN: 978-0-387-09824-1 e-ISBN: 978-0-387-89468-3

DOI: 10.1007/978-0-387-89468-3

Library of Congress Control Number: 2008942254

© Springer Science+Business Media, LLC 2009

All rights reserved. This work may not be translated or copied in whole or in part without the written
permission of the publisher (Springer Science+Business Media, LLC, 233 Spring Street, New York, NY
10013, USA), except for brief excerpts in connection with reviews or scholarly analysis. Use in connection
with any form of information storage and retrieval, electronic adaptation, computer software, or by similar
or dissimilar methodology now known or hereafter developed is forbidden.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if they are
not identified as such, is not to be taken as an expression of opinion as to whether or not they are subject

to proprietary rights.
Printed on acid-free paper

springer.com

Preface

Vulnerabilities have increased since 2007. Vulnerability researchers find it
difficult to get the source code of the software. Reverse engineering is one of
the effective methods to analyze binaries for identifying vulnerabilities.

The book first discusses the assembly language. The chapter not only
provides the fundamentals of assembly language. It also discusses about the
various calling conventions and data constructs.

Since the programs are tightly coupled with the operating system, the
second chapter discusses the fundamentals of operating system, about
concepts of processes, threads, segmentation, context switching and the
methods that can be used for synchronization between threads. Vista provides
various security features such as ASLR, and pointer encoding which provides
inherent protection against the vulnerabilities. The chapter also provides the
details of new cryptographic API’s in detail.

In chapter 3, PE file format, the executable and linking file format are
discussed.

Chapter 4 discusses various vulnerabilities such as buffer overflow, format
string vulnerability, SEH exception handler, Stack overflow, Off-by-One
vulnerability, and Integer Overflow. The chapter first discusses the details of
these vulnerabilities, using assembly code, The chapter also discusses the
analysis of exploits for these vulnerabilities.

The last chapter focuses on the fundamentals of reverse engineering. It
discusses the linear sweep disassembler, recursive disassembler, and various
evasion techniques which can be used by the disassembler. The detection of
hardware break point, software break point and the detection of virtual
machine are also presented. The chapter concludes with the methods, which
can be used to find the manual entry point of the executable and import table
reconstruction.

The concepts discussed in the book are of practical use and the exploits are
from the real world exploits. Although the book has been designed for those
who practice information security, it can also be used for advanced
information security level courses. The instructors can feel free to contact.

Abhishek Singh

Table of Contents

Assembly Language
1.0 INtrOAUCLION ...iiiiiiiiiie ettt ettt et e s e e 1
| B ST 4] £ ¢ SR U PSPPI 1
1.1.1 General Purpose RE@IStErcceoieviieriieiieiienieeie e 1
1.1.2 FLAGS REZISLET ...cuviviiiiiiiiiiiiierieeierie sttt 2
1.2 80x86 Instruction FOrmatcoooiiiiiiieiienieeeeeeeeeeeee e 3
1.2.1 InStruction PrefiXoccoooooiiiiiiiieeeee e 4
1.2.2 Lock and Repeat PrefiXescceeverierieiieniienieeie e 4
1.2.3 Segment Override PrefiXescocveveereinieiiieiieeeet e 4
1. 2.4 OPCOAC ..vviiiiieeieeiieeieece ettt ettt et ebe b e be e ste e tbesebesebeeaseesnes 5
1.3 INSITUCHIONS ..neieiiiiieiieieet ettt ettt sttt 7
1.3.1 Basic INSIUCHIONS ...cveeruiiiiiiiieeieeieeie ettt 7
1.3.2 Floating Point INStruCtioncccueevviieeiiiieniieciie e 10
1.4 StACK SELUP vvieiieiieciiiciecie ettt st re et stae s aaeerbeerbeenbeens 13
1.4.1. Passing Parameters in C to the Procedureccocooevvevieniennennen. 13
1.4.2 Local Data Space on the Stackccceevieviieeciiiiiieee e, 15
1.5 Calling CONVENTIONSvveerviieeiieeiieenieesiteeesireesteeeereesereeeseeensseessseeesseenes 16
1.5.1 cdecl calling CONVENtioNccoevueerieerieenieniiesieeie e 16
1.5.2 fastcall calling CONVENtIONc.eeveeerieerieeriieriienieeie e 17
1.5.3 stdcall calling CONVENtIoNccceeevuieeriiieriieeiee e 17
154 thiSCall ..o 17
1.6 Data CONSLIUCTS ..eoviieeiiieeiiieriiie ettt eeiite ettt st e et esibeeebeeesaeeesbeeesereeens 17
1.6.1 Global Variablesccociiiiiiiinieiieie e 18
1.6.2 Local Variablesccooieieieriinieieceeee e 18
1.6.3 REZISLEIS ..vivvieiieiieiieiiieeieeie et et e steestte e e sereenseense e saessnessnesnsesnaeens 19
1.6.4 Imported Variablescceoviieeiieeiieeiieeee e 19
1.6.5 Thread Local Storage (TLS)ccvvvvieviievieiiecieceeceecieere e 20
1.6.6 Executable Data SECtioncccceeevuerieienieniieierie e 20
1.7 Representation of Arithmetic Operations in Assemblycccccceeveenne 21
1.7.1 MUltiplicationcccoeeeeuiieriiieeiie ettt eevae e 22
1.7.2 DIVISION eitieiiiiieiieieeiceie ettt sttt 22
1.7.3 MOAUIO ..ottt e 24
1.8 Representation of Data Structure in ASsembly.........ccccevviiniiiiiiiiiiiieeienne 24
1.8.1 Representation of Array in ASSembIYc.ccceevvveviieviienieniesieeenene, 24
1.8.2 Representation of Linked List in Assemblycccccecereeoienineenene 25
1.9 Virtual Function Call in ASSEmMbIYcccoevieviiiiiiiiiiieceeceeeeeeee 26
1.9.1 Representation of classes in ASSEMDIYc..covevviviiiieeiiiieeieeien, 27

1.10 CONCIUSION eviiiiiieeiee et e e e e e e eeaereeee e 28

viil Table of Contents

Fundamental of Windows

2.0 INTrOAUCEION ..ottt ettt s as 29
2.1 Memory Managementccceecveerueereeeeeneeenieessieeesereesseesseneensseesseesnns 29
2.1.1 Virtual Memory Managementcccoecveereeenieeneeneeseeseesnennenns 29
2.1.1.1 Virtual Memory Management in Windows NT 32

2.1.1.2 Impact of HOOKINGccovvevvieiiiiiiiieiiccie e 33

2.1.2 Segmented Memory Managementcceecvereverveneennennesinesnenns 34
2.1.3 Paged Memory Managementcccecueerueenieenieenieneenee e eee e 36
2.2 Kernel Memory and USer MEMOTYccceevcvieeiieeeniieeniieeieeesiieesveeeveeenns 37
2.2.1 Kernel MemOry SPACEcccvevvevvieiieiieirienieesiesiresresreesseesseesseesenens 37
2.2.2 SeCtiON ODJECL....cccuiiiiieeieeitett ettt ettt ettt saee e e 38

2.3 Virtual Address DeSCIIPLOruiecvieeiiieiiiecieeeee et eve e 39
2.3.1 User Mode Address SPacecceeevvevvienieeniieiiesiesieeveeveeveeveesieens 39
2.3.2 Memory Management in Windowsccoeceevverienieneenineniennens 39
2.3.3 Objects and Handlesccooeevieniiiiiiiieiceeeeeeeeeee e 40
2.3.4 NaMEA ODJECLS ..ivvviiiiieiieiieiieieesiiereeste et ebeebeesreesreesreeseaessne e 40
2.4 Processes and Threadscocceoeviiieiineeieeeeee e 41
2.4.1 Context SWItChINGccevuiiiiriiiieiiiieee e 43
2.4.1.1 Context Switches and Mode Switches..........ccceeeeveniriennne. 43

2.4.2 Synchronization ODJECLSceccveevierieerieeriierieesiieseesresnesaeeneeneens 44
2.4.2.1 Critical SECtionccccevirieriirieienieiee e 44

2.4.2.2 IMIULEX .veieeiieeiieeiieecteeeieeesreesaeeestreesveeeaseessaeesnnaeesnsesensaeans 44

2.4.2.3 SEMAPNOTE ..cveevieiiiiiieeiieeiieieeieesteesiresresaeebeeseesseessaesaeens 45

2424 EVENT oottt 45

2.4.2.5 Metered SECtiONccceeiuieiiiiieiieeieeie et 45

2.5 Process Initialization SEQUENCEcceeevvieiiieeiiieeiie et eee e 46
2.5.1 Application Programming Interfaceccocceoeviniinininiencneenn, 47
2.6 Reversing Windows NTcociiiiiiiinieiee e 48
2.6.1 EXpEChOPOOICAILScceviiiiiieiiieiee e 49
2.6.2 ObpShOWAIIOCANAFTEEcccviveiieiiieiieiieie e 49
2.6.3 LpcpTraceMeESSaAZES ...vvveruvieriiieeiieeniieeeiieeieeeeiieesiee e esiee e 49
2.6.4 MMDEDUEeeeiiiiiiiee e 49
2.6.5 NtGIODAIFIAZoovviiiieiieiieciiecieeeee et 49
2.6.6 SepDUMPSDooiiiiiieie e e 50
2.6.7 CmLoglLevel and CmLOZSelectccoevveiiieiieiieieiiecie e 50
2.7 Security Features in VIStac..cecvveeviieiciieeeieeeiee et eiee e 50
2.7.1 Address Space Layout Randomization (ASLR)cccceeevevveriennnns 50
2.7.2 Stack Randomizationccceeeueeiieiiienieeniesie et 51
2.7.3 Heap DEefeNnSEScccveieeiiieciiieciie ettt e 52

B B D USSP 54
275 TGS e et 55
2.7.6 Pointer ENCOAING ...cc.eeviiiiiiiieiieiieseeee et 56

2.7.7 Cryptographic API in Windows Vistacccceeveviinriniriiieniiennens 58

Table of Contents X

2.77.8 Crypto-AQIIILY ...cccveviiiiieiieiieieeeesee et sieesreestae e snne e 59
2.7.9 CryptoAgility in CNG ...oociieiiiiieiieieeieeee et 60
2.7.10 Algorithm Providersccccceeeeiierciieiiiiieieeciee e 62
2.7.11 Random Number GeNeratorcccuereerveriieeieeieereereesieeseesenens 63
2.7.12 Hash FUNCLIONScc.eecvieiieiieiiecie ettt iae e 64
2.7.13 Symmetric ENCryptioncccceevieiienieniiiieeieeeeeee e 65
2.7.14 Asymmetric ENCIryptioncccoevveviiiiiiiiiiicieeieesreesree e sene e 67
2.7.15 Signatures and Verificationc.ccceveereerieesiescienreereeieesieeneeens 68
2.8 CONCIUSION ...viiiiiiieiiieeiie ettt ettt et e et e e e et e e s taeeeaeeesaseeeareaens 68

Portable Executable File Format

3.0 INtrOAUCTION ..eoeiieiiieiieiieieesee ettt ettt et e e s ens 69
3.1 PE fI1€ FOIMAt ...oooviiiiiiieieece et 69
3.2 Import Address Tableccvevieiiieiiieiiecie e 77
3.3 Executable and Linking FOrmatcccocveviiiiiinieieieneeeeee e 79

3.3.1 ELF HEAET .cevviiiiieeiieeeeee ettt e 79

3.3.2 The Program Header Table...........c.ccoeevvievieviiniiciicieceeeeee, 80
3.4 CONCIUSION ...viiiiieiieiiiieiiieie ettt rieesee et e st e ebeesbeeseessaessaessseesseenseenseenns 83

Reversing Binaries for Identifying Vulnerabilities

4.0 TNEOAUCLION ..ottt 85
4.1 Stack OVEITIOW ...ceiiiiiiiiiieiiiiieee e e e 85
4.1.1 CAN-2002-1123 Microsoft SQL Server 'Hello' Authentication
Buffer OVerflow" ..o 88
4.1.2 CAN -2004-0399 Exim Buffer Overflowccccccvevieviververeeninns 88
4.1.3 Stack ChecCKingceecvieiiieiiieiieriiecieee ettt 90
4.2 Off-Dy-0One OVEITIOW ..cvviiviiiiiieiiiciiiiieeeeesee et sve e 90
4.2.1 OpenBSD 2.7 FTP Daemon Off-by-Oneccceeevvrvriecreereereennnnns 93
4.2.3 Non-Executable MEMOTYccceviieieriieiieiieieeieesieesiee e see e 94
4.3 Heap OVEITIOWS ..cccuviieiiieeiieeiie ettt et ettt ettt eeeve e e eeaaeesebaeesnee e 94
4.3.1 Heap Based OVErflOWScccuevvieiiiiiiiieiieiieeeeceee e ere e eeens 96
4.4 Inte@er OVEITIOWS ...occviiiieiieiieieeeesie et eee e te e se e te e saessaeseneennes 106
4.4.1 Types Integer OVerflowccceceeeviiiiieiienieriereeee e 108
4.4.2 CAN-2004-0417 CVS Max dotdot Protocol Command
Integer OVETTIOWoccvieiiieiiieiieeie ettt 111
4.5 FOIMAt SEINE ..eooveiiieiiitieieitietee ettt st 112
4.5.1. Format String Vulnerabilitycccccoeviieviiiiniieiiecie e 113
4.5.2 Format String Denial of Service Attackcccceevvverveniercvennnnnen. 115
4.5.3 Format String Vulnerability Reading Attackcccooevervennnnne. 115
4.6 SEH Structure Exception Handlercccoooiiiiiiiiniiinienieeeee, 116
4.6.1 Exploiting the SEHc.ccoieviiiiiiiiieiece e 119
4.7 Writing Exploits General CONCePtS........ccvvvvrevrrrieerieerieenieeneerreseesnenenes 122

4.7.1 Stack Overflow EXPlOitscceeveeriiriiiiiiieeieeieeeeeee e 122

X Table of Contents

4.7.2 Injection TEChNIQUESccceeruieriienierieiie e 123
4.7.3 Optimizing the Injection VECtOrcccccvvevvierciieiriirenieeeree e 123
4.8 The Location of the Payloadcccceevivriiniiiniiiieeeeeeeeee e 123
4.8.1 Direct Jump (Guessing OffSets).......cccevuereiereeneenieniesieeie e, 124
4.8.2 Blind RETUIN ..ouiiiiiiiiiiiieieeee e 124
4.8.3 POP REIUIMN ..ttt 124
4.8.4 No Operation SIedcceevievierienieiieeie e 125
4.8.5 Call REGISTET ..eeuvvieeeiieeiiieeiie ettt ettt eetveeseveeenes 125
4.8.6 Push RetUINoo.oiiiiiiiiicee e 126
4.8.7 Calculating OffSetccvevvierierierieiiecie e 126
4.9 CONCIUSION ...utiiiiieiieiiie ettt ettt 126

Fundamental of Reverse Engineering

5.0 INtrOAUCTION ..ottt et e e e 127
5.1 Anti-Reversing Methodccoocvieiciiiiiiiiiiiice e 127
5.2.1 Anti DiSassembIYcccvevvieiiiiriieniieriesie et eie et sra e 128
5.2.1.1 Linear Sweep Disassembler...........cccccevevevciiniieeciinieeieenenn 128

5.2.1.2 Recursive Traversal Disassembler...........ccceevverieniennnnnee. 130

5.2.1.3 Evasion of Disassembleccccoeveerinieneninieneeeeeee 131

5.2.2 Self Modifying Codeccoceeviiiiiiiiieiieieeeeeeee e 135
5.2.3 Virtual Machine Obfuscationcccceveeeeiiieiiieeiiieecie e, 139

5.3 Anti Debugging TeChniqUES.........cc.eevvieriieriieriiiie et 140
5.3.1 BreakPoints........couiiieiiiieieicee e 142
5.3.1.1 Software Breakpoint.........ccoeeveveenienienieriesiecie e 142

5.3.1.2 Hardware Breakpoint...........ccccceeeevieeniieeiieciie e eciee e 143

5.3.1.3 Detecting Hardware BreakPoint............cccovevveviveciienneennen. 144

5.4 Virtual Maching DeteCtioncceevueerieeriieniieniieniesie e 145
5.4.1 Checking Fingerprint Inside Memory, File System and Registry .. 145
5.4.2 Checking System Tablesccceevvieviieiiienieiiecieciecieeee e 145
5.4.3 Checking Processor Instruction Setcccoccvvevvevieriieneeneenieenen. 146

5.5 UNPACKING ..ottt 147
5.5.1 Manual Unpacking of Software...........cccceeevieviieiiiieeieeeiee e, 148
5.5.1.1 Finding an Original Entry Point of an Executable.............. 148

5.5.1.2 Taking Memory DUmMpccceeveverieniieniieiieniesieeee e 154

5.5.1.3 Import Table Reconstructionccceeeeveeecieeenieencreeennen, 156

5.5.1.4 Import Redirection and Code emulationc.cccveeeneee. 162

5.6 CONCIUSION ...ttt ettt sttt et e ee e 166
Appendix 168

Index 187

Assembly Language

1.0 Introduction

Assembly language implements a symbolic representation of the numeric
machine codes and other constants needed to program a particular CPU
architecture. Ollydbg (available at http://www.ollydbg.de/) or IDA pro
(available at http://www.hex-rays.com/idapro/) are the two most commonly
used tools used to disassemble binary to extract assembly instructions from
machine level language. Operations of software are visible in the assembly
language. Understanding of assembly language is required to get a better
understanding of the low level software binaries. This chapter focuses on
assembly for 32- bit Intel Architecture (IA-32)

1.1 Registers

IA-32 has various registers. We can categories them according to their usage
as general purpose register, segment register, index register, instruction
pointer register and status registers. In addition, there are seven other registers
used for debugging any application. Beak points can be applied through these
registers. The letter “E” in the name of registers indicates that these registers
have been extended from the 16 bit Intel Architecture.

1.1.1 General Purpose Register

Segment registers are part of the x86 Segment Memory Model. The length of
these registers is 16 bit. These registers point to the memory segment. In X86
there are following segment registers.

CS (Code Segment registers) - points to the code segment of an
application.

DS (Data segment Registers) - points to the data segment of the
application.

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering, 1
Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3 1,
© Springer Science + Business Media, LLC 2009

http://en.wikipedia.org/wiki/Machine_code
http://en.wikipedia.org/wiki/CPU
http://www.hex-rays.com/idapro/

2 Assembly Language
FE/FS/GS (Auxiliary segment registers) - These are extra segment
registers used for pointing address

SS (Stack Segment Register) - points to the stack segment of an
application. Its value is same as that of DS sometimes.

AN
/ 32 Bit \

| E'X |

/4 16 Bit

A A
|[8 Bit \|[$ Bit \|

*H *L

1.1.2 FLAGS register

The FLAGS registers are the status register that stores the information about
the status of the processor. Different bits denote different status of the
registers

?|NT| 10 |OF |DF |IF | TP |SF|ZF |? |AF |?|PF|?|CF

1514 13 12 11 10 < 0

Some common flags bits their description is given below.
CF - Carry Flag gets sets if the last operation has generated a carry.
? = Reserved by Intel for future use.

PF - Parity Flag indicates if the number of set bits is odd or even in the
binary representation of the result of the last operation

ZF = Zero Flag gets set to 1 if the result of last instruction is zero
SF -> Sign flag gets sets if the result of the last operation was negative.

TP = This Flag is set when instruction is debugged set by step.

1.2 80x86 Instruction Format 3

IF = If interrupt flag is set, it denotes CPU will handle hardware interrupts.
DF - This flag is used by string processing instruction.

OF - Overflow Flag gets set if overflow is triggered by the last arithmetic
operation

IO > Two bits 12 and 13 in the FLAGS register denotes IO flag. This shows
the 1/O privilege level of the current program or task.

Register Usage of Register
EAX, EBX, They are used for integer, Boolean, logical or
EDX memory operations.
ESI/EDI Used as counter by repetitive instruction that
requires counting
EBP Used as generic register. It is also used as a stack

based pointer. Stack based pointer is used to create
stack frame. Local and the parameters passed to the
function are accessed by stack frame. The base
pointer EBP points to the stack position. This
address is right after the return address for the
current function.

ESP ESP is a CPU’s stack pointer. Current position in
stack is stored in ESP register. This register gets
updated when anything is pushed to the stack.
Anything which is pushed to the stack is stored in
address in ESP.

Figure 1.0 showing various registers and their usage.

Besides the registers mentioned in figurel.0, [A-32 has a special
register called EFLAGS. This register comprises status and system flags.
Status flags which are updated by logical and integer instructions contain the
current logical state.

1.2 80x86 Instruction Format

The figure 1.1 shows the general instruction format. The instruction of 1A-32
is a subset of general instruction format. From the figure 1.1 it can be
concluded that the length of the instruction can be upto 16 bytes, but 80x86
doesn’t allow instruction greater than 15 bytes.

4 Assembly Language

Instructio | Opcode | MOD SIR Displac | Immedi
n Prefix R e-ment ate

\Upb:- 4 bytes JkUpb 2 bytes 1Byt (oplional]U.E or 4bvtesvl.2 or 4 bytes }

Inde | Bage

MO | Reg | RM

Figure 1.1 Showing the General Instruction Format

1.2.1 Instruction prefix

Instruction prefix can be upto 4 bytes that define the behavior of the
instruction. These instruction prefixes can be divided into following four
groups. The behavior of various prefix bytes are mutually exclusive and
results are undefined if these mutually exclusive prefixes are added in front of
an instruction.

1.2.2 Lock and repeat prefixes:

Lock prefix (0xF0) forces the operations to be atomic that can be used to
access exclusive shared memory in multiprocessor environment. The repeat
prefixes (0xF2 — REPNE/REPNZ and OxF3 — REPE/REPZ) makes an
instruction to be repeated for each element of string. This prefix can only be
used with the string operations.

1.2.3 Segment override prefixes

Operand-size override prefixes (0x66) denote the size of the operand which
allows the a program to switch between 16 to 32 bit operand. If the instruction

1.2 80x86 Instruction Format 5

doesn’t contain this prefix then operand size will be of default size; else this
prefix will select non default size.

Address-size override prefixes (0x67) denote the addressing mode, which
allows the program to switch between 16 to 32 bit addressing. If the
instruction doesn’t contain this prefix, then address size will be of default size,
else this prefix will select non default address size.

1.2.4 Opcode

80x86 supports two Opcode size :one byte standard opcode and two- byte
opcode. The two-byte opcode instruction is prefixed with 0xOF opcode
expansion byte. The second byte in the two-byte opcode specifies the actual
instruction. Sometimes an additional 3-byte op code field is encoded in
ModR/M byte.

Various instruction classes use few bits of the opcode as a sign and direction
flag. The Zero th bit of the opcode specifies the size of the operand. If this
bit contains one then the operands are either 16-bits or 32-bits. Under 32-bit
operating systems, the default is 32-bit operands if this field contains a one.
Bit number one is the direction bit which identifies the direction of the
transfer. If this bit is zero, then the destination operand is a memory location.
If this bit is one, then the destination operand is a register.

For example: -

MODR/M AND SIB BYTES

REG specifies any of the eight register of the 80x86. This register can be
either source or destination. This can be determined with the help of d flag
present in the opcode field. The operand is the source if d ==0 and it is
destination id d==1. But for various single operand instruction the REG field
may contain an opcode extension rather than a register value.

The MOD and R/M fields specify the other operand in a two-operand
instruction. The following table specifies how the MOD and reg fields
together specify the addressing modes

There are two displacing modes -- 8 bit and 32 bit. 8 bit addressing mode
displacement exists for a displacement in between the range of -128 to 127.
As these displacements can be mentioned through one byte the instruction

6 Assembly Language

will be shorter as compared to 32 bit instruction. At most of the places these
shorter instructions are found to save lot of space.

In addition, there is one more addressing mode called scaled indexed
addressing mode. This represents addressing mode of the form [ebx + edx *
4]. The table show in figure 1.3 explains the mode of addressing.

Index Register
%000 EAX
%001 ECX
%010 EDX
%011 EBX
%100 [llegal
%101 EBP
%110 ESI
%111 EDI
Index * Scale value Scale value
Index * 1 % 00
Index * 2 %01
Index * 4 % 10
Index * 8 % 11
Base Register
% 000 EAX
% 001 ECX
% 010 EDX
% 011 EBX
%100 ESP
%101 Displacement if MOD=
%00, EBP if MOD = %01
or %10
%110 ESI
%111 EDI

Figure 1.3 showing modes of addressing

1.3 Instructions 7

1.3 Instructions

In TA-32, instructions comprise op code which will be followed by operand.
Op codes are the assembly instructions where as operands are the parameters
to the instructions. Operands work in three ways by using registers, immediate
or by using the memory address. When registers are used to access data, they
are stored in general purpose registers. In the immediate method, the constant
value is embedded in the code. This also indicates that a hard coded value is
used in the original program. When data resides in RAM then a memory
address is used to access them. Memory addresses are enclosed in brackets
denoting value at address. These addresses can either be hardcoded or the
address can be stored in registers. Registers can also be used to store the base
address along with a constant which represents an offset into that object.

1.3.1 Basic Instructions

Some of the most commonly used instructions are discussed below.

o testargl, arg? : Test instruction is used to perform bit-wise AND
on the two operands. however it has to be noted that it does not
store the result.

The flags that the test instruction modifies are as follows:

Carry flag

Overflow flag

Piraty Flag

Sign Flag

Zero flag

YVVVYY

e cmp argl, arg? : cmp instruction performs subtraction between the
two operands. however it does not store the result. If the result of
comparison is zero, the Zero Flag (ZF) is set.

The flags that test the cmp instruction modifies are as follows:

Carry flag

Auxiliary flag

Overflow flag

Piraty Flag

Sign Flag

Zero flag

YVVVYVYYVY

e jmp loc: The instruction will load the EIP with the specified
address.

Assembly Language

je loc: The instruction will load EIP with the specified address if
the operands of previous cmp instructions are equal.

The jump condition: jump if Zero Flag ==
jne loc : This instruction will load EIP with the specified address.
This will happen when the operands of previous CMP instructions
are not equal.

The jump condition: jump if Zero Flag ==
jg loc: If the first operand of the previous CMP instruction is
greater than the second then the EIP is loaded with the specified
address.

The jump condition: jump if ZF=0 and SF=OF
jge loc: 1If the first operand of the previous CMP instruction is
greater than or equal to the second then the EIP is loaded with the
specified address.

SF=OF
ja loc: The instruction will load the EIP with the specified address.
This will happen when the first operand of the previous CMP is
greater than the second.

CF=0 and ZF=0
jae loc: This will load the EIP with the specified address if the first
operand of the previous CMP is greater than or equal to the second
jae, is the same as jge.

CF=0
jl loc: The instruction “j1” represents jump if less than, this gets
executed or EIP is loaded with the specified address when the first
operand of the previous CMP is less then the second operand

SF |= OF
jle loc: : The instruction “jle” represents jump if less than or equal
to , this gets executed or the EIP is loaded with the specified
address when the first operand of the previous CMP is less than or
equal to then the second operand.

ZF=1 or SF != OF
jo loc: This instruction loads the EIP with the specified instruction
if the overflow bit is set on a previous arithmetic expression.

OF=1
jnz loc: This will load the EIP with the specified address. This will
happen then the zero bit is set from a previous arithmetic
expression.

ZF=1
jz loc: This operation will load the EIP with the specified address.
This will happen if the zero bit is set from a previous arithmetic
expression. This expression is identical to the je.

1.3 Instructions 9

ZF=0

e call proc : This operation is mostly used when subroutines are
called and will push EIP +4 onto the top of stack. After this the
instruction will jump to the specified location.

e ret /val] : This instruction will load the next value on the stack into
the EIP and then it will pop the stack the specified number of
times. The instruction will not pop any values off the stack if the
field “val” is not specified.

e loop arg : This instruction decrements ECX. It will jump to the
address specified by arg. Besides loop other instructions which
decrement the ECX counter are loope, loopne, loopnz, loopx.

e enter arg : This instruction allocates space on the stack and creates
a stack frame.

e leave: The instruction will destroy the current stack frame and
restore the previous frame.

e hlt: This instruction will halt the processor.

e nop: This instruction does nothing and wastes an instruction cycle.
It is converted into XCHG operation with the operands EAX and EAX.

e wait: This instruction waits for the CPU to finish its last
calculation.

e mov argl arg2: The “mov” instruction takes in two operands. The
destination operand which can be a memory address or the register
and source operands which can be an immediate, register or a
memory address. It moves the date from arg2 to argl (from source
to destination operand.)

e ADD argl arg2: The add instruction adds unsigned or signed
integers storing the result in argl.

The flag that tests the cmp instruction modifies are as follows:

Carry flag

Auxiliary flag

Overflow flag

Piraty Flag

Sign Flag

Zero flag

VVVYVYY

e SUB argl arg2: The sub instruction subtracts the value of arg2
from argl and stores the value in argl. The instruction is again
valid for both signed and unsigned integers.

The flags that test the cmp instruction modifies are as follows:
» Carry flag
» Auxiliary flag
» Overflow flag

10 Assembly Language

» Piraty Flag
» Sign Flag
» Zero flag

e MUL arg: The instruction will multiply the unsigned operand by
EAX. The result of the multiplication is stored in a 64-bit
EDX:EAX. The low 32 bits are stored in EAX and the high 32 bits
are stored in EDX.

e DIV arg : The instruction divides the 64 bit unsigned value stored
in EDX:EAX by the unsigned arg. The quotient is stored in EAX
and the remainder is stored in EDX.

e IMUL arg: By using the instruction, the signed operand is
multiplied by the EAX and the result is stored in EDX:EAX.

e IDIV arg: The instruction divides the 64-bit value stored in
EDX:EAX by the signed operand storing the quotient in EAX and

the remainder in EDX.

e SHR Op arg : It shifts the number stored in Op to the arg number of
the bit to the right.

e SHL Op arg : It shifts the number stored in Op to the arg number of
the bits to the left.

e CDQ : The instruction zero and extends the value. The instruction
sign extends an eight bit value to 32 or 64 bits.

e movsx : It copies the content of source to destination. Sign extends
the value. The extended value is dependent upon the operand-size
attributed. .

1.3.2 Floating point instruction

These floating point instructions are executed by the x87 coprocessor. On
encountering any floating point instruction, the x86 processor communicates
the instruction to x87. At the same time x86 instructions keep on executing
other instructions until and unless it encounters another floating point
instruction or next instruction require the result of executing floating point
instruction. In that case WAIT instruction is executed to halt the execution of
x86 processor. There are various compilers that emulate the x87 instruction.
This emulation is done through interrupt. Linker replaces the original floating
point instruction with the interrupt instruction. On the occurrence of these
interrupt, the interrupt handler function is executed that interprets and
emulate these instructions.

1.3 Instructions 11

There are 8 floating point registers; the name of these instructions are from
ST(0) to ST(7) . These are not real registers, but stack is used for this purpose.
Each register occupies 10 bytes. In addition to these 8 registers, there is a
register of 14 bytes for status and control information.

The floating point instruction can be classified into various categories -- data
movement instruction, conversion, arithmetic instruction, comparison
constant instructions, transcendental instructions, and miscellaneous
instructions.

The data movement instructions transfer data between the internal FPU
registers and memory. The instructions in this category are fld, fst, fstp, and
fxch. The fld converts 32 and 64 bit operand to an 80 bit extended precision
value and pushes it onto the floating point stack. The FLD instruction first
decrements the top of stack pointer that is denoted by bits 11-13 of the status
register and then stores the 80 bit value in the physical register specified by
the new TOS pointer. Just opposite to it is FSTP instruction that always pops
the top of stack. The FST and FSTP instructions copy the value on the top of
the floating point register stack to another floating point register or to a 32, 64,
or 80 bit memory variable. The floating point rounding control bit is referred
to the 80 bit extended precision value on the top of stack is rounded to the
smaller format (32, 64, or 80 bit memory variable). The FXCH instruction
exchanges the value on the top of stack with one of the other FPU registers.
There are two variants of FXCH instruction, one with a single FPU register as
an operand and the other with without any operands. If operand is mentioned
then this instruction exchanges the top of stack (tos) with the specified
register. If no operand case FXCH instruction swaps the value at top of stack
with ST1.

Various floating point instructions are available to compare real values. The
instructions such as FCOM, FCOMP and FCOMPP compare the two values
that are present on top of the stack. In case of floating point instruction, there
are no conditional jump instructions. To test the condition, the FSTSW and
SAHF instructions can be used. The FSTSW instruction copies the floating
point status register to the AX register and SAHF instruction copies the AH
register into the 80x86's condition code bits. After that normal x86
conditional jump instructions can be used to test condition. The FCOM,
FCOMP, and FCOMPP instructions either compare STO to the specified
operand. or compare STO against ST1 if no operand is specified and set the
processor flags accordingly. If the operand is 32 or 64 bit memory variable
then it is first converted into 80-bit extended precision value and then
compare STO against this value. FCOMP pops the STO after the comparison.

12 Assembly Language

As most of the floating point instruction requires with 32 or 64 bit memory
variable to convert the value into 80 bit extended precision value before
performing any operation and then it perform the require operation on these
variable. There are few FPU instructions that convert to or from integer or
binary coded decimal (BCD) format. For example, FILD instruction converts
a 16, 32, or 64 bit two's complement integer to the 80 bit extended precision
format and pushes the result onto the stack. Then, the floating point operation
can be done on this value.

Floating point instruction also supports arithmetic instruction set to perform
arithmetic operations. Few of the common instructions include FADD,
FSUBB ,FMUL, FDIV etc. These are lot of variant instructions available in
each category for example Add arithmetic instruction has following variants

fadd

faddp

Pop the two values from the stack, addition is performed on them and the
result is pushed back to the stack

fadd st(i), st(0)

fadd st(0), st(i)

It is same as that of x86 ADD instruction, the value in the second register
operand gets added to the value in the first register operand. Here either of the
two register operands must be st(0)

faddp st(i), st(0) here st(0) must always be the second operand and its value is
added to the second register operand and then st(0) is popped.

fadd mem

Here the operand is a 32 or 64 bit memory operand. This instruction will
convert the 32 or 64 bit operands to an 80 bit extended precision value and
then will add the value in st(0).

These above instructions contain various types of operands, these are

1. Floating point stack that can be denoted as ST(i) where i can be 0 to 7

2. 10-byte memory operand containing a full precision floating point value.
3. 8-byte memory operand containing a double precision floating

4. 4-byte memory operand containing a single precision floating point

5. 10-byte operand containing a special Binary Coded Decimal format

6. 4-byte operand representing a signed integer in two's-complement notation.

http://webster.cs.ucr.edu/AoA/DOS/ch14/CH14-4.html#FOOTNOTE-8

1.4 Stack Setup 13

7. 2-byte operand representing a signed integer in two's-complement notation.

1.4 Stack Setup

Setting up of a Stack frame is required before entering a procedure. This stack
frame will be required to pass the parameters. The stack set up can be
identified by the following assembly code in binary.

push ebp
mov ebp, esp

The first instruction push ebp saves the value of register EBP into the stack.
Here EBP contains the address of the last stack frame created. Here the value
of Epb is saved as this value will be required after the completion of the
execution of the routine as the control will be returned to the called function
and its stack form is needed in order to access local variables and parameter.
The second instruction is moving the current stack pointer value to EBP
register. The current stack pointer value is moved to the EBP as further the
local and the parameter will be referred with EBP register.

EBP allows the use of a pointer as an index into the stack. It should not be
altered throughout the procedure. Each parameter passed to the procedure can
be accessed as an offset from EBP. This is known as a "standard stack frame."

FUSH_EBP
MOU EBP,ESP
SUB ESP,8C
Moy ECX.3

5 55
[. 83EC_aC

. B9 93000000
Figure 2.0 Showing setting up of a Stack Frame

The procedure should preserve the content of the register ESI, EDI, EBP and
all the segment registers. An error will be generated if these registers are
corrupted. As shown in figure 2.0 these instructions are used for stack setup.

1.4.1 Passing Parameters in C to the Procedure

C passes arguments to procedures on the stack. For example, consider
the following statements from a C main program:

14

Assembly Language

¥include<stdio.h>
#include<string. h>

int add_int(int al, int a2){

int &

c= al + a2;

return c;

¥

vold main(){
add_int(10,20);

}

Figure 3.0 showing C code for adding two integers

When C executes the function call to add int, it pushes the input
arguments onto the stack in reverse order, then executes a call to
add int. Upon entering add_int, the stack would contain the following:

ESP 9| EIP

al

a2

Return address to C code

Values of al and a2

The method of passing parameters shown in figure 3.0 is called
passing by value. The variables al and a2 are declared as int variables, each
takes up one word on the stack. The code for Sum, which outputs the sum of
the input arguments via register EAX, looks similar to that shown in figure 4.0

)
“ s s s e s s M s s ow o oe s ow oo

VT

s 55

89ES |

51

Eg 818660086
C¥@43C SASAFA
75 F&

57

SB7D 82
8370 ac
8970 FC
8B45 FC

SF

co

c3

&A BA
ES_DIFFFFFF
83c4 08

cs

PUSH EBP
MOY EBP, ESF
PUSH ECX
NDU EDX 1

NUU DwORD PTR 55: [ESF+ECX*4] FFFRASASA
JNZ SHORT testchar.88481200
PUSH EDI

MOV EDI,DWORD PTR SS5:[EBP+21]
ADD EDI,DWORD PTR SS:[EBP+C]
MOU DWORD PTR S5S:[EBP-41,EDI
MOV ERX,DWORD PTR 5S:[EBP-41]
POP EDI

LERVE

RETN

PUSH EEBP

MOY EEP,ESP

PUSH 14

PUSH B8R

CALL testchar._mul

ADD ESP, 2

LERVE

RETN

Figure 4.0 Assembly instructions for code shown in figure 3.0

1.4 Stack Setup 15

As shown in figure 4.0, the instructions push EBP, Mov EBP; ESP denotes
the initialization of a stack frame. The value is returned to the C code by using
EAX implicitly. RETN is used for returning from a procedure. This is due to
the fact that C takes care of removing the passed parameters from the stack.
As it can be seen in the above example, only one output value is returned.

It might also happen that the value is passed by reference. For example the
function

add int(b1,&b2);

The first argument is still passed by value (i.e., only its value is placed on the
stack), but the second argument is passed by reference (its address is placed
on the stack).

EIP
b
&e

In this case, it has to be noted that the &c is pushed on the stack, not its value.
EAX is the only register which can be used by the assembly to return values
to the C calling program. In case the return value is less than 4 bytes, the
result is returned in the EAX register. If the return value is larger than 4
bytes, then the pointer is returned in EAX.

A short table of the C variable types and how they are returned by the
assembly code:

Register Containing Data Type
Return Value

AL Char

AX Shirt

EAX int long pointer(*)

Figure 5.0 C variables returned by assembly code.

1.4.2 Local Data Space on the Stack

As shown in figure 3.0, the variable C is a local variable. By
subtracting the value form ESP that is current stack point, temporary storage
space is allocated in the stack for local variables. The space on the stack is
below the return address and the base pointer. Since in stack frame EBP
points to that, the assembly code which requires access to the variable can use

16 Assembly Language

EBP and subtract offset from it. As shown in figure 6.0, the variable C shown
in the figure is represented by the highlighted part. As shown in figure 6.0, for
the instruction

MOV DWORD PTR SS:[EBP-4],EDI

since the local variable is accessed using a fixed hardcoded offset, so it can be
assumed that the local variable is of the fixed size. Once the procedure is
executed it is also important to restore the stack space. This is done by adding
the value that is subtracted from the register ESP in the start of the function
and by restring the register value that has been restored in the stack.

FUSH EBP

MoV EBP,ESP

PUSH ECX

MOV ECX, 1

DEC ECX

Al MOV DWORD PTR S5S:[ESP+ECK#4]1, FFFASASA
JNZ SHORT testchar.88481200

PUSH ESI

PUSH EDI

MoV EDI,DWORD PTR SS5:[EBP+8]
MOV ESI,DWORD PTR SS:L[EEP+C]
ADD EDI,DWORD PTR DS:(CESI]
MOY DWORD PTR SS:CEBP-41,EDI
ggU Eg?.DNDRD PTR SS: (EEP-41

Figure 6.0 Assembly code for C code show in figure 3.0

1.5 Calling Conventions

Calling conventions define how the functions are called in a program. They
decide the arrangement of data in a stack when a function call is made. In the
below mentioned sections some of the common calling convention are
discussed.

1.5.1 cdecl calling convention

The cdecl calling convention permits functions to receive a dynamic number
of parameters. The calling convention receives the parameters in a reverse
order with the first parameter pushed on to the top of the stack first and the
last parameter pushed last. In this calling convention, it is the responsibility
of the caller to restore the stack pointer after the execution of the called
function. As this category of function might have variable number of
argument and so stack pointer can only be restored by callee function. A

1.6 Data Constructs 17

function which takes one or more parameters and ends with a simple RET
with no operands is the cdecl function.

1.5.2 fastcall calling convention

This calling convention makes use of registers for passing the first
two parameters passed to a function. It makes use of registers ECX and EDX
to store the first and second parameters respectively. The remaining
parameters are passed through stack. Fastcall calling convention increases the
execution speed on the procedure as application accesses register rather than
stack value

1.5.3 stdcall calling convention

This is mostly used in windows. The argument passing method and the order
are opposite to the cdecl calling convention. In stdcall calle function is
responsible for clearing its own stack. However in cdecl functions, it is the
responsibility of the caller to clear the function stack. The stdcall function
uses the RET instruction for clearing the stack. It can receive operands which
specify the number of bytes to be cleared from the stack after jumping from
the stack. The operand passed to RET exposes the number of bytes passed as
a parameter. The operand has to be divided by four to get the number of
parameters.

1.5.4 thiscall

This is used by the C++ function call with a fixed number of parameters. For
this function call, a valid pointer is loaded in ECX, and the parameters are
pushed onto stack without using EDX as a valid C++ method function call. If
there are a dynamic number of parameters then the compiler will use cdel and
pass this pointer as the first parameter.

1.6 Data Constructs

This section presents the representation of data constructs by compiler in low
level assembly language. During reversing, this knowledge can help to
identify the data constructs in an assembly language.

18 Assembly Language

1.6.1 Global Variables

Global variables are initialized by the system when they are defined. They
reside in a fixed memory address in an executable. As shown in figure 7.0,
variable d is a global variable.

Finclude<stdio. h>
Finclude<string . h>

int d= 10;

int mul_int{int al, int a2){
inE c;
c = al * (a2) * d;
return c:

vold main(){
int b = 10:
int ¢ = 20:

mul_inti{b.c):

¥

Figure 7.0 Showing C code with a global variable.

When they are accessed, hardcoded addresses are used. This makes it easier
to spot the global variables in binary. As shown in figure 8.0, hard coded
address “FFFASAS5A” is being used to access the global variable. The
hardcoded address is mostly used by compilers for global variables.

ruUon cwn

PUSH EAX
MOY ECK,2
DEC ECX
HOU DWORD PTR SS: [ESP+ECX*41 FFFASASA
SHORT testchar.B8@48

NUU DWORD PTR SS:[EBP-41, Bﬂ

MOY DWORD PTR SS: [EEP-21, 14

PUSH DWORD PTR $5:[EEP-8]

PUSH DNDRD PTR SS [EBP-4J

Figure 8. 0 showmg the Assembly for global variable in figure 7.0

1.6.2 Local Variable

They are used by functions to store immediate values. These values can either
be stored in a stack or they can be stored in a register. For example, as shown
in figure 7.0 for the function mul int, ¢ is a local variable. Storing local
variables in stack has been discussed in detail in the section Stack Setup.

1.6 Data Constructs 19

When the parameter area of the stack is written by the function, then it can
be inferred that the space is being used to hold some extra variables. A
function rarely returns value to the caller by writing parameters back to the
parameter area of the stack. Call by reference is used when parameters passed
by the called function is modified and again used by the calling function.

1.6.3 Registers

Registers are generally used to store the immediate value. They generate the
fastest code. Many compilers have various optimization techniques which aid
in generating optimized code. The variables which are used most extensively
are placed in registers. The “volatile” key word indicates that the variable will
be read and written asynchronously by the software and the hardware. So the
local variables which are declared as “volatile” are always accessed by using
the memory address. The “register” keyword indicates to the compiler that it
is a heavily used variable and should be placed in registers. However, it may
happen that the compiler will follow its own optimization algorithm and can
ignore the keyword “register”. Hence, for the keyword “register” there is no
distinguishable mark in the assembly code.

1.6.4 Imported Variables

They are global variables which are stored and maintained in another binary
module. For being able to successfully export a module, the exporting and the
importing module must both refer to the same variable name. It might happen
that the variable is exported by ordinals, so the variable is not named. Since
an imported variable involves an additional level of redirection, identifying
them is a simple process. The assembly for identifying the imported variable
is similar to that shown in figure 9.0

mov eax, DWORD PTR [Import Address Table Address]
mov ebx, DWORD PTR [eax]

The above mention code reads data from a pointer which in itself points to
another pointer. Here it has to be noted that the value is the value of the
Import Address Table Address. Hence any double pointer redirection, where
the first pointer is addressed to the Import Address Table is the reference to
the import variable.

A constant variable can be defined by using the #define directive. When a
#define directive is used, then the value is replaced in the preprocessing stage.

20 Assembly Language

Another method to define a constant variable it to define a global variable and
add the const keyword to the definition. This generates the code as if it is a
regular global variable. The enforcement of the const keyword is done by the
compiler. Some compilers can arrange the global variables in two sections,
one which is read only and another which is both readable and writeable. The
constants will be placed in the read only section.

1.6.5 Thread Local Storage (TLS)

TLS are generally used for managing thread specific data structures. One of
the methods to implement thread local storage programs is to use the TLS
API. The TLS API includes various functions TlsAlloc, TIsGetValue and
TlsSetValue. These API’s provide programs with the ability to manage a
small pool of thread local 32 bit value. Another approach can be to define a
global variable with the decspec(thread) attribute which places the variable in
a thread- local section of the image executable. For such cases the variable
can be identified as a thread local since the variable points to a different image
section than the rest of the global variables in the executables.

1.6.6 Executable Data Section

The executable data section is used to store the application data. This area is
generally used to store either the preinitialized data or global variables.

#¥include<stdio.h>
#include<string . h>

int d= 10;
char#® testglobalstring ="Executable's preinitialized data section
will be used to store the global string":

int mul_int(int al, int a2){
int o
char* testlocalstring =" Executable's preinitialized data
zection will be uszed to store the local string”:
c = al * (a2) * d;
printf{"%s\n", testglobalstring):
printf {"%s\b",k testlocalstring);
réturin o

volid main(){
int b = 10;
int .o = 20;

mnul_inti{b.c):

Figure 9.0 Showing C code having preinitialized data in local and global
variables.

1.7 Representation of Arithmetic Operations in Assembly 21

Preinitialized data comprises hard-coded values or constant data inside the
program. As shown in figure 9.0, festlocalstring and testglobalstring contain
preinitialized data. Some preinitialized data can be stored inside the code;
however when the size of data is too large, the compiler stores them inside
special areas in the program executable and generates code that references it
by address.

o
BA 60 B0 80 61 Al 40 B0 25 73 62 88 25 73 6A 9880(6.%<0.%s..
28 45 78 65 63 75 V4 61 62 6C €5 27 V3 28 70 72| Executable’'s pr
65 69 6E €3 74 €9 61 6C €3 7A 65 64 20 64 €1 74| einitialized dat
61 28 V3 65 63 74 69 6F 6E 28 77 69 6C 6C 20 62| a section will b

75 73 65 64 20 74 6F 20 73 74 6F 72 65 28| e used to store
74 62 65 28 6C 6F 62 61 6C 28 73 74 72 69 6E 67| the local string
B8 45 V8 65 63 75 74 61 62 6C 65 27 V3 20 v0 72| .Executable’'s pr
65 €69 6E 69 74 €9 61 6C €9 7H €5 64 20 64 €1 74| einitialized dat
61 28 73 65 63 74 69 6F 6E 28 77 69 6C &6C 208 62| a section will b
65 28 VS V2 65 64 20 74 6F 28 73 74 6F 72 €5 20| e used to store
74 62 65 28 67 €C 6F 62 61 6C 20 73 74 72 €9 6E|the global strin
67 B@ 8@ B0 69 6E 66 0B 6E 61 6E 6@ 8@ 20 20 20| 9...inf.nan..
20 20 20 20 20 20 68 28 28 28 28 20 20 28 28 28 hi{((

testchar| .
testchar
8 testchar
ARRA1 ARA| testrhar

Ba4826000
88489000

8648608 @
AALARARA

nmmmmm

idata

Figure 10.0 showing the executable data section containing preinitialized
data in the executable data section.
As shown in the figure 10.0, the testlocalvariable is a local variable; however
it is still stored inside the preinitialized data section. As shown in figure 10.0,
the testglobalstring which is a global string is also stored inside the executable
data section. For global variables the value of the variables is retained
through out the program which can be accessed any where from the program.
With the preiniatialized data, a hardcoded memory address is used to access
the global variables. Hence besides an overlong value, another case where the
data is stored inside the executable data section is for the global variables.

1.7 Representation of Arithmetic Operations in Assembly

The section discusses basic arithmetic operations and their
implementation by various compilers. Even though the IA-32 processor
provides instructions for multiplication and division, they can be slow. Hence
it might be implemented in different ways in a compiler. The SHL instruction
can be used to shift the values to the left which is the same as multiplying by
the power of 2. Similarly the SHR can be used to shift the value to the right
which is equivalent to dividing by the power of two. Multiplication and
division compilers can use SHL, SHR instructions and then use addition and
subtraction to compensate for the result.

22 Assembly Language

1.7.1 Multiplication

Generally when a variable is multiplied by another variable MUL/IMUL is
used. As shown for the code in 9.0, the multiplication instruction is shown in
figure 11.0

LEA EDI,DWORD PTR DS:[48RBEA]

: [EBP+2]
IHUL EDI,DWORD PTR $5:[EBP+CI
IMUL EDI,DWORD PTR DS:([dl
MOU DWORD PTR S5: (EBP-41,EDI

Figure 11.0 showing the multiplication of variables in figure 9.0 for the
function mul_int.

However, instead of using IMUL or MUL, other instructions can be used as
well. For example, multiplying a number by three, is usually implemented by
shifting a number by 1 bit and adding the original value to the result. This is
done by using SHL and ADD or it can be done by using LEA.

lea eax, DWORD PTR [eax+teax*2]

1.7.2 Division

The instructions DIV and IDIV are being used for division. They have latency
of around 50 clock cycles.

int div_int{int al, int a2){
int o
= al~s3;
return c:

wold main(){
int b = 10;
int ¢ = 20;

div_int(b.c);

By

Figure 12.0 C code showing division by 3.
As shown in figure 13.0 the division is identified by the IDIV operation. Even
though the operation is slow, it can easily be identified by reversing.

1.7 Representation of Arithmetic Operations in Assembly 23

MOV DWORD PTR SS: [ESP+ECX#4], FFFASHSH
JNZ SHORT testchar.B8@481200

MOV ERX,DWORD PTR SS:[EBP+21]

MOV ECX, 3

coe

IDIV ECX

MOV DWORD PTR SS:[EBP-41,ERX
HDUUERK-DMURD PTR $S: [EBP-4]

LEA
RFTN

Figure 13.0 showing the assembly for the division shown in code mentioned
in figure 12.0

It might happen that the compiler can use an efficient division technique. One
of the methods is reciprocal multiplication which is an optimized division
technique. Reciprocal multiplication is based upon the concept of using
multiplication instead of division to implement division. It has to be noted that
multiplication is four to six times faster on the IA-32 processor. The basic
concept in reciprocal multiplication is to multiply the dividend by a fraction
which is the reciprocal of the divisor. For example, to divide x/y, compute 1/y
and multiply it with x. As the data type is represented only in integer the fixed
point arithmetic is used. It provides representation of fraction and real
numbers without a decimal point.

Figure 14.0 shows some of the 32-bit reciprocals used by the compilers. These
reciprocals are used along with the divisor which is the power of two.

Divisor Reciprocal 32-bit representation of Divisor in source
value reciprocal Code
2 2/3 0xAAAAAAB 3
2 4/5 0xCCCCCCCD 5
4 2/3 0xAAAAAAAB 6

Figure 14.0 showing the some of the cases for reciprocal multiplication.

For a divisor with a power of two only right shifts are required. These
instructions help in achieving greater accuracy. In assembly instructions,
reciprocal multiplication is easy to identify.

mov ecx, cax

mov eax, Oxcccccced

mul ecx

shredx, 4

move eax, edx
Figure 14.1 Assembly code showing division by 5
The above shown code multiples the value in ecx with 0OXCCCCCCCD, then it
shifts the value by four. The combination of division and multiplication is
equivalent to the divisor by five.

24 Assembly Language

1.7.3 Modulo

To calculate modulo, division has to be performed; however a different part of
the result is required.

mov eax, DWORD PTR [Divisor]

cdq

mov edi, 10

div edi

Figure 14.2 Assembly code for Modulo

The code shown in the figure divided the divisor by 10, then it places the
result in EDX. The instruction idiv is used to perform a signed division
instruction. It places the result of the division in EAX and the remainder in
EDX. The instruction cdq, converts 64 bit dividend in EDX:EAX.

1.8 Representation of Data Structure in Assembly

Data structure is represented by a chunk of memory which represents a
collection of different type of fields. The arrangement which is of static size is
defined during compile time. It is also possible to create data structures in
which the last member is a variable size array and the code for the structure is
allocated dynamically at run time. Since the stack is of fixed size, for such
type of structure, the stack is not allocated. Compilers usually align the
structure to the processor’s word size. This alignment to the processor’s size
will happen even if the structure is not of the word size. For example, even
though Boolean uses one bit of storage, the compiler will allocate 32 bits of
storage space.

1.8.1 Representation of Array in Assembly

An array is defined as a list of data structures stored sequentially in the
memory. In assembly, the array access can be identified as the compiler in
the assembly instruction will use some variable, to the object’s base address.
As shown in figure 15.0, the function array int initializes an array of size
integers. For the initialization of the array, the equivalent instructions in
assembly is shown in figure 16.0. The highlighted instruction, “DWORD PTR
SS:[EBP+EDI*4-2C]” is an access to array by using the base pointer.

1.8 Representation of Data Structure in Assembly 25

finclude<stdio. h>
finclude<string.h>

int array_int{int al, int a2){
int c[10]
int i=0;
for (i=0;1<10:i4+)
c[i]=al + a2;
return c[0];

void main(){
int b = 10;
int o = 20;
arrav_int{(b.c):

Figure 15.0 showing the array of integers.

It might happen that the array contains some hard coded addresses in the high
level language. In such cases it will be difficult to identify the assembly
instruction of array from the assembly instruction of any other data structure.

10y DWORD PTR SS:(EEP-41,8

10U DWORD PTR $S:[EBP-41,8

40U EDI,DWORD PTR SS:[EBP-41

100 ESI,DWORD PTR S5:[EBP+2]

DD ESI,DWORD PTR S5:[EBP+C]

40U DWORD PTR $S: CEBP+EDI#4—2C1,ESI

INC DWORD PTR SS:[EBP-41]

MP DWORD PTR S5: [EBP- 4] an
JL SHORT testchar.B@4812
10U EAX, DWORD PTR SS: [EBP 2c]

Figure 16.0 showing the assembly for array of integers.

Arrays are often accessed sequentially and like other data structures they are
not aligned by the compilers. Array of pointers, integers or single word sized
items consist of generic data structure. For the generic data type array, the
index is simply multiplied by the machines word size. For a 32- bit processor,
it resolves to multiply by four. To access the desired memory address, the
desired memory index is multiplied by four and the result should be added to
the array’s starting address. As shown in figure 16.0 DWORD PITR
SS:[EBP+EDI*4-2C]”, is used to access the memory address in the array.
EDI stores the index of the memory and /[EBP-2C] is the array’s starting
address. The data structure array is similar to the conventional array with the
difference being that the item size can be of any value.

1.8.2 Representation of Linked List in Assembly

Linked lists are used when the items are generally added or removed
from different parts of the list. Unlike arrays the items stored in the link list
cannot be directly accessed through their index. In the linked list, the items

26 Assembly Language

are scattered in the memory, and each item contains a pointer to the next item.
In case of a double list it will contain a pointer to the previous item as well. In
the case of an array, the items are stored sequentially. In the case of a single
link list the data structure contains a combination of payload and pointer to
the next. The pointer next points to the next item.

PUSH EBP
MOU EBP,ESP
SUB ESP,8C
MOU ECX, 3
DEC ECX
[HUU DWORD PTR SS:[ESP+ECK#4], FFFASASA
JNE SHDRT linklist.B884812DF
PUSH
PUSH [i2e = G [12.)
CALL <JHP &CRTOLL.mal loc> alloc
ADD ESP, 4
MOU DWORD PTR SS: [EBP-C1,ERX
PUSH BC = € 12
PUSH @ = B8
PUSH DWORD PTR SS5:[EBP-C]
CALL <JMP.&CRTDLL.memset > mem:et
ADD ESP, BC
MOU DWORD PTR SS:[EBP-21,8
CHP DWORD PTR DS:Cll_servl, 8
JNZ SHORT linklist.B88481342
PUSH a8cC size = C (12.)
CELL <dHP &CRTDLL.mal loc> mal loc
Moy DWDRD PTR DS:CLll_serv],ERX
PUSH @ rn = C (12.)
PUSH l C=

1.9 Virtual Function Call in Assembly

Assembly code in Figure 19.0 shows the implementation of virtual
function call. It has to be noted that the CALL does not use a hard coded
address but is accessing data structure to get function’s call. ECX register is
used here for the address. This indicates that the function pointer resides
inside the object instances, which are an indicator of the virtual function call.
For the code shown in Figure 19.0, it also can be inferred that the function
takes in no parameter.

mov eax, DWORD PTR [edi]
mov ecx, edi
call DWORD PTR [eax+4]

In assembly, for INTEL and Microsoft compiler, any function call,
which loads a valid pointer into ECX, and indirectly calls a function whose
address is obtained via the same pointer, is a C++ virtual member function
call. For other compilers it might be tough because they do not use ECX for
passing this pointer. Constructors perform the initialization of virtual function
table pointers for inherited objects. For two constructors--one for base class

1.9 Virtual Function Call in Assembly 27

and another for its inherited class--both of them initialize the object’s virtual
function table. The base class sets the virtual function pointer to its own copy.
This gets replaced, by the inherited class constructor, upon return of the
function call.

1.9.1 Representation of classes in Assembly

Classes in C++ contain a combination of data and code which operates on
them. This section discusses analyzing binary to analyze the classes in C++. A
class with no inheritance is similar to the data structure with associated
function. “this” pointer, which is used as an instance of class, is typically
passed via ECX register. The assembly code of accessing plain data structure
will be identical to the assembly code when plain data structure is accessed.
Figure 18.0 shows the inherited class memory layout.

Class base
{ »| Base Class Lowest Memory
int basemember 1 instantiation Address
} >| base Member
Class Child: Base { Child class instance
int childmemeber —— > Base member | Highest Memory
} > Child member Address

Figure 18.0 Memory address layout for the class methods.

A non-virtual function call can be considered as a direct function call. For
this function call, this pointer is passed as the first argument. Some compilers
such as G++ push this pointer on to the stack where as other compilers such as
Intel’s and Microsoft compiler use ECX register to access the this pointer.

Virtual functions are implemented by the use of virtual function table.
Virtual function table is placed in the .rdata, the read-only data section of
executable. They contain hard-coded pointer to all the function
implementations in a class. This pointer in turn aid in finding the correct
function when call to these methods is made. Virtual function table are
created at compile time for the classes that define virtual function and for the
classes that are descendents and provide overload implementation of virtual
function defined in the other class. VFTABLE pointer is added by the
compiler during the runtime. During object instantiation, the VFTABLE
pointer is initialized to the correct virtual function table.

28 Assembly Language

1.10 Conclusion

This chapter presented the concepts of assembly language and
description of the commonly used assembly language instructions. It
discussed the stack setup and arrangement of local and global variables inside
the stack. Cdecl, fastcall , stdcall, this call are some of the ways by which
functions are called in a program. The chapter covered the local, global and
imported variables and their identification in assembly. Multiplication,
Division and modulo are some of the arithmetic operations. The chapter
discussed methods of identifying these arithmetic operations. The chapter
concluded by discussing various data structures and their implementation in
assembly. The chapter has covered low level topics that are required for
reverse engineering process.

Fundamental of Windows

2.0 Introduction

Programs are tightly coupled with the operating system. So for
reversing of binaries it becomes important to understand the principles and
features of operating system. Some of the features which are discussed in this
chapter are, virtual memory, portability, multithread, multiprocessor
capability, security and compatibility. Windows NT is a 32-bit computing
environment however, the current operating system also support 64-bit
versions. Windows NT was a combination of C and C++, so it can be
recompiled to run on different processors. It is also a fully pre-emptive
multithreaded system. Windows NT also provides support for multiprocessor
capability. This makes Windows NT suited for high performance computing.
In Windows NT every object has an access control list, which determines
which users are allowed to manipulate the objects. In terms of security, Vista
provides Address Space layout randomization (ASLR). ASLR involves
randomly arranging the positions of key data areas. This includes the base of
the executable and position of libraries, heap, and stack, in a process's address
space. ASLR is effective in prevention against the buffer overflow exploits.
Access Control List is provided for each file for windows NT. It supports
encryption for each file. Windows NT is compatible with the older version of
applications executing on a 16-bit platform. The chapter discusses these
points in detail.

2.1 Memory Management

One of the most important parts of operating system is memory
management. Virtual memory is one of the solutions used for limited
memory. It increases the memory of computer system by sharing the memory
with the process.

2.1.1 Virtual Memory Management

Whenever CPU needs data or executable program, it brings them into
memory. This is quite similar to the instructions and data when they are
brought into the cache. One of the ways to control the memory management is

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering, 29
Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3 2,
© Springer Science + Business Media, LLC 2009

30 Fundamental of Windows

by using combination of hardware memory controller along with the operating
system. Memory management is implemented using virtual memory. By using
virtual memory, each process appears to have available the full memory
resources of the system. Even though processes occupy the same virtual
memory, they will be mapped into completely different physical memory
area.

The part of program and data which are being executed lie in the main
memory. Virtual address translation is used for translation from physical
memory address to the data in the virtual memory address. Figure 1.0 shows
the relationship between the name variable and physical location.

Name Space Logical
Name

Y

Virtual Logical Address Space
Address

—\—> Physical
Address

Figure 1.0 The name space to physical address mapping

The method to achieve the mapping is quite similar to the mapping main
memory to cache memory. It has to be noted that in the case of virtual address
mapping the relative speed of main memory to disk memory is high. This is
approximately 10,000 to 100,000. Therefore, cost of miss in main memory is
very high. In many processors direct mapping scheme is supported. Under this
scheme, a page map is maintained in physical memory. Each physical
memory reference requires both an access to page table and an operand. Most
of the memory references are indirect. Virtual to physical address mapping is
shown in Figure 2.0

Direct mapping from virtual to physical address will result in a considerable
performance penalty. This is avoided in most of the systems by using
translation lookaside buffer (TLB). TLB contains last few addresses and their
physical addresses. Hence, in most of the cases, virtual to physical memory
address does not require additional memory address. A typical virtual-to-

2.1 Memory Management 31

physical address mapping in a system containing a TLB is shown in Figure
3.0

Virtual Address

Virtual Page Number Offset
Page Map
v
Physical Page Number Offset

Base Address of Page

Figure 2.0 A direct mapped virtual to physical address translation

If the addresses are 32 bits in size then the size of virtual address space is 2 *°
bytes or 4 GB. Disk contains the sections of program and data which are not
executed normally. It might happen that the virtual memory refers to a
location which is not in physical memory. In such a case the execution of that
instruction is aborted. It can be restored when the required information is
placed in the main memory from the disk controller. The processor can be
executing another program in the meantime. The time to find the program is
not wasted by the processor. The time required to place the information in
memory can affect the time a user must wait for the result. A processor might
have to wait if many disk-seeks are required. Segmentation and Paging are
two of the size methods that can be used for memory management. In
Segmentation memory management the memory is in segments and in the
case of Paging memory management, the memory is in pages.

32 Fundamental of Windows

Virtual address

Virtual page number offset

Page hit

Y

TLB
in TLB

Page miss in TLB

Y

Page
Map

YY Y
Physical page
number

offset

Base address of Page
(physical memeory)

Figure 3.0 virtual to physical address translation mechanism with a TLB

2.1.1.1 Virtual Memory Management in Windows NT

First-in first-out replacement policy is used by windows. The
oldest data is thrown out whenever there is a space crunch. In
Windows NT, address space is broken down into 4KB pages and it
maintains the information in the page table entry (PTE). The structure
of PTE is processor dependent. The page is marked as invalid if the
page is not mapped to the physical RAM. When the page contains DLL
code or executable module code, the page is brought in from the Swap
file. Windows NT keeps a track of free physical RAM in Page Frame
Data Base (PFD).This ensures the allocation of space in case of page
fault. Before discarding a page, Windows NT ensures that the page is
not dirty. If the page is dirty, the page is written to the secondary
storage before it can be written to the secondary storage. If the page is
not shared, the PFD contains the pointer to PTE. In the case the page is
shared, the PFD contains pointer to the corresponding PROTOPTE
entry. In this case the PFD also contains a reference count for the page.

2.1 Memory Management 33

If the reference count for a page is 0, then it is discarded. PDF is an
array of 24-byte entry, one for each physical page. Hence, the size of
page is equal to the number of physical pages stored in the kernel
variable MmNumberOfPhysicalPages. The kernel variable
MmpfnDatabase contains pointer to the array. There can be different states to
a physical page. For example, the physical page can be free, in use, free but
dirty. PFD entry is linked in a double-linked list depending on the physical
page represented by it. Depending upon the state of physical page, PFD entry
is linked in a double-linked list, that is, if the PFD entry is representing use
pages, it is linked to the use pages list. In sum, there are six kinds of list. The
heads of these list are stored in the MmStandbyPageListHead,
MmStandbyPageListHead, MmModifiedNoWritePageListHead,
MmModifiedPageListHead, MmFreePagelistHead, MmBadPageListHead,
MmZeroedPageListHead kernel variables. These heads are 16 bytes each. The
definition of the head is defined as follows.

typedef struct PagelListHead {
DWORD NumberOfPagesInList,
DWORD TypeOfList,
DWORD FirstPage,
DWORD LastPage

} PagelistHead_t;

The FirstPage field can be used as an index into the PFD which contains
pointer to the next page. PFD entry has the following structure definition.

typedef struct PfdEntry {

DWORD NextPage,

void *PteEntry/*PpteEntry,
DWORD PrevPage,

DWORD PteReferenceCount,
void *OriginalPte,

DWORD Flags;

} PfdEntry_t

2.1.1.2 Impact of Hooking

DLL codes are shared by all process and is write-protected. Hence, a process
cannot alter the code of a DLL. However, it is possible to hook to a DLL in
Windows NT. The first few bytes of a function need to be changed for
hooking in the function call. Hence, for hooking the attribute of a page
containing DLL code to read-write then the code bytes are altered. However,
when the page is altered, a separate copy of the page is made and the write
went to that page. This ensures that all the original pages use the unaltered
page. Windows NT uses one of the available PTE bits for distinguishing
pages which are marked as read-write and read-only.

34 Fundamental of Windows

Copy-on-write mechanism is used by Windows NT for various purposes. The
DLL data pages are shared with the copy-on-write purposes which ensure that
whenever a process writes to a data page, it makes a copy of the page. Other
processes use the original copy of the pages. Location of DLL can be at
different linear address for different processes. Depending upon the linear
address where DLL is loaded, DLL need to be adjusted. The process is called
as relocating the process. Windows NT marks the DLL code pages which are
relocating as copy-on-write. This ensures that the pages requiring page
relocation are copied per processes. Pages that do not have memory
references in them are shared by all processes. Hence it is recommended that
DLL has a preferred base address and loaded at the address. By specifying a
base address, it can be ensured that the DLL need not be relocated. Hence if
all processes load the DLL at preferred base address, they share the same copy
of DLL code.

Copy-on-write mechanism in the Windows NT is used by the POSIX
subsystem for implementing the fork system call. The fork system call is
being used to create a child process of calling process. The child process
shares the same state of code and data pages as the parent process. Since these
are two different processes, the data pages should not be shared by them. The
child process-invoked exec system call, which discards the current memory
image of the processes, loads a new executable module and starts executing
the new module. The fork-system call, marks the data pages as copy-on-write
to prevent the copying of data pages. Data pages are copied only if the parent
or the child writes to it. Copy-on-write is used to attain the efficiency in
Windows NT memory management.

2.1.2 Segmented memory management

The blocks in a segmented memory management system that are to be
replaced in main memory are potentially of unequal length and correspond to
program and data “segments." The former segment could be, for example, a
subroutine or a procedure, whereas the latter segment could be either a data
structure or an array. In both cases, segments correspond to logical blocks of
code or data. Therefore, segments are “atomic," because either the whole
segment or none of the segments should be present in main memory.
Although the segments may be placed anywhere in main memory, it is
imperative that the instructions or data in one segment be contiguous, as
shown in Figure 4.0

2.1 Memory Management 35

Segment 1
Segment 4
Segment 5
Segment 7
Segment 8

Figure 4.0 A segmented memory organization

Using segmented memory management, the memory controller needs to know
the location of the start and the end of each segment in physical memory. .
When segments are replaced, a single segment can only be replaced by a
segment of the same size, or by a smaller segment. After a time this results in
a "'memory fragmentation", with many small segments residing in memory,
having small gaps between them. Because the probability that two adjacent
segments can be replaced simultaneously is quite low, large segments may not
get a chance to be placed in memory very often. In systems with segmented
memory management, segments are often *‘pushed together" occasionally to
limit the amount of fragmentation and allow large segments to be loaded.

While using segmented memory management, it is mandatory that the
memory controller knows the location of the start and the end of each segment
in physical memory. In the case when segments are to be replaced, a single
segment can be replaced only by another segment that is of either the same
size or a smaller size. After a while, such segment replacements can lead to
“memory fragmentation,” where many small segments reside in memory
separated by small gaps. Given the low probability for two adjacent segments
to be replaced at the same time, it is often not possible for large segments to
be placed in memory. To limit the amount of fragmentation and allow large
segments to be loaded, the segments in segmented memory management are
often “pushed together” occasionally.

This is an efficient organization since not only an entire block of code is
available to the processor but also it is also easy for two processes to share the
same code in a segmented memory system. Hence there needs to be a single
copy of the code. Majority of the current processors support a hybrid of paged
memory management and segmented memory management, in which the
segments consist of multiples of fixed-size blocks.

36 Fundamental of Windows

2.1.3 Paged memory management

In paged memory management, all of the segments are exactly the same size
(typically 256 bytes to 16 K bytes). Virtual ““pages" in auxiliary storage (disk)
are mapped into fixed page-sized blocks of main memory with predetermined
page boundaries. The pages do not necessarily correspond to complete
functional blocks or data elements, as is the case with segmented memory
management. The physical address of the new page in memory has to be
determined, since the pages are not stored in contiguous memory location.
Page Translation table is used to determine the address of new page. Page
Translation uses associative memory to determine the physical address of the
new page in the main memory. If the page is not found in the main memory
then the CPU is interrupted then the page is requested from disk controller
and the execution starts on another process.

Many other attributes are also usually included in a PTT. This is done by
adding extra fields to the table. Pages or segments may be characterized as
read-only, read-write. Moreover, it is common to include information about
access privileges to help ensure that one program does not inadvertently
corrupt the data of another program. The “dirty” bit indicates whether a page
has been written to, so that the page will be written back onto the disk if a
memory write has occurred onto that page. It is unusual to map all of main
memory using associative memory because the latter is very expensive;
therefore, only the physical addresses of recently accessed pages are
maintained in a small amount of associative memory and the remaining pages
in physical memory are maintained as a “virtual address translation table” in
main memory. If the virtual address is contained in the associative memory
then translation from virtual to physical address can be done in one memory
cycle. If the physical address must be recovered from the “virtual address
translation table” in main memory, at least one more memory cycle is needed.
Trade-off exists between the page size for a system and the size of the PTT
since if a processor has a small page size, the PTT must be large enough to
map all of the virtual memory space. The paged memory management system
provides inherent advantage over the segmented one is that the memory
controller, which is required to implement a paged memory management
system, is considerably simpler. In addition, the paged memory management
does not suffer from fragmentation as does segmented memory management,
although another kind of fragmentation does occur. A whole page is swapped
in or out of memory, even if it is not full of data or instructions.
Fragmentation is within a page in a paged memory management. It does not
persist in the main memory when new pages are swapped in. when a large
number of processes are executed '“simultaneously”" similar to a multiuser

2.2 Kernel Memory and User Memory 37

system, the main memory may contain only a few pages for each process, and
all processes may have only enough code and data in main memory to execute
for a very short time before a page fault occurs. This situation, often called
“thrashing,” degrades the throughput of the processor severely because it
actually must spend time waiting for information to be read from or written to
the disk.

2.2 Kernel Memory and User Memory

Memory management requires distinction between the kernel and the user
memory space. Differentiation between the user and the kernel space prevents
the bugs from user memory to be overwritten to the kernel space. It also
prevents malicious software in the user space from taking control of the
operating system.

Windows uses 4 GB of address space. Out of these 4 GB, 2 GB is used by
the application memory space and the remaining 2 GB by the kernel address
space. The upper 2GB of kernel space is protected from being used by the
program.

2.2.1. Kernel Memory Space

The 2 GB of the kernel code contains various components such as device
divers and the like. Figure 5.0 shows the layout for the widows kernel space.
Physical memory and various user configurable registry keys determine the
size of components which are allocated during the run time. Paged and in
paged pool in the kernel space comprises all the kernel mode components.
They are stored in the entire kernel mode. Caching is implemented in
windows by mapping files into memory and allowing system cache is the
place where windows cache manager stores all the currently cached file.
When a program later access file, using ReadFile or WriteFile API, the system
file internally access the mapped copy of the file cache manager API such as
CcCopyRead and CcCopyWrite. Terminal Services Session Space component
of the kernel mode component is used in WIN32K.SYS permits for multiple,
remote GUI sessions on a single windows system. This memory space is
made, “session private”. This enables to load the multiple instances of the
win32 subsystem. As shown in the Figure 5.0 page table and the hyper space
comprises the process-specific data which defines the current processes’
address space. System working set, comprises the system global data
structure which manages the system’s physical memory.

38 Fundamental of Windows

Kernel Code (0x80000000)

Non paged Pool 12Mb
(0x80DA6000)

(0x819A6000)
Additional System PTEs

(0XBE000000)
Terminal Services Session
Space 32Mb

(0xC0000000)
Page Table (Process -Private)

(0xC0400000)
Hyper Space (process -
Private)

(0xC0800000)
(0xCOC00000)
System working Set 4Mb

(0xC1000000)
System Cache Space 512Mb

(0XE1000000)
Paged pcol 192 Mb

(0OxED000000)
System PTEs 200 Mb

(OXF96A2000)
Extra Non Paged Pool

Figure 5.0 Showing Windows Kernel Space.

System-page Table Entries is a large virtual memory space which can be used
by the kernel and the drivers. A system page table entry which comprises of
virtual memory space is used for kernel allocation which is used by the kernel
and drivers. Device drivers make use of MmAllocateMappingAddress kernel
API for the allocation of System-Page Table entries.

2.2.2 Section Object

They are managed by the operating system. Mapping of the section object is
required before it can be accessed. Before the content of a section object can
be accessed they should be mapped. When the virtual address range is
allocated for the object and is accessible through address range, then the
object is mapped.

Section object can be mapped to more than one place. It is one of the
convenient tools to share the memory between them. Section objects are also
called as memory mapped files. Section object can be classified into two parts

2.3 Virtual Address Descriptor 39

-- Page Backed file and File Backed. Page-backed section object is used for
the temporary storage of data between two processes. The section is initially
created empty then it can be mapped to any address space. File Backed object
is attached to a file in the physical space. It will contain the contents of the file
to which it is attached. Any changes or the modification which is made in the
object will be reflected in the file. It provides more convenience to access a
file using the object since, instead of using a cumbersome API, such as
ReadFile and WriteFile, object can directly access the file in memory using a
pointer. They are generally used for loading the executable image.

2.3 Virtual Address Descriptor

Virtual Address Descriptor (VAD) is used for managing the individual
process allocation. It is a binary tree which contains every address range in
use. There are two kinds of address ranges. Mapped allocation and private
allocations. A mapped allocation comprises the memory mapped files such as
executables and other files in the address space. Private allocation which are
generally used for heap and stacks.

2.3.1 User Mode Address Space

In user mode allocations there can be different types of memory. These types
include private allocations, Heaps, Stacks, Executables, and mapped view
sections. In private allocation, application requests a block of memory using
VirtualAlloc Win32 APIL It has to be noted that it can allocate the whole
pages. They are mainly used for allocating stacks and heaps. The functions
such as malloc or system heap API such as HeapAlloc are being used for the
allocation of the heap memory. Heap manages the memory such that the block
of memory can be allocated and freed as required. VirtualAlloc API, can be
used by an application to implement its own heap by directly allocating
private block. A stack is allocated for each thread while it is being created.
User mode thread is private allocations. System allocates a stack for every
thread while it is being created. Executable code is loaded in memory as a
memory mapped file.

2.3.2 Memory Management in windows

Set of widows32 API can be used to access the virtual memory manager. It
can be used to directly allocate and free the memory in the user mode address
space.

40 Fundamental of Windows

VirtualAlloc is used to allocate a private memory block in a user mode
address space. The size of the block must be page aligned. The block of
memory must not be variable. Block of memory can either be reserved or it
can be committed. A reserved block differs from the committed block in the
sense that it only reserves address space. Virtual protect is used for to enforce
protection settings. It defines if the memory block is readable, writeable or
executable. VirtualQuery function provides the details such as type of block
like (private, section or an image) and if the block is reserved, committed or
unused. VirtualFree function frees the private allocation block.
ReadProcessMemory and WriteProcessMemory are the two windows APIs
that can be used to access another processes’ memory space.

2.3.3 Objects and Handles

The various types of kernel objects are section, files, and device
objects, synchronization objects, processes and threads. Centralized object
manager component is used by the Windows kernel manager. Objects such as
windows, menus and device context are managed by separate object manager
which are implemented inside WIN32K.SYS. Kernel directly accesses the
object using direct pointer to object data structure; however, applications uses
handles for accessing individual objects. Each entry in the handle table
comprises pointer to the underlying object. Besides the object pointer handle
entry also contains access mask which determines the type of operations to be
performed using the specific handle. Object access mask is a 32-bit integer,
the upper 16 bits comprises the generic access flag such as GENERIC READ
and GENERIC WRITE. The lower bit comprises object-specific flags such as
PROCESS TERMINATE. This allows terminating a process using its handle.
KEY _ENUMERATE SUB KEYS this allows to enumerate subkey of an
open registry key.

2.3.4 Named Objects

They are arranged in the hierarchical directory. Conventional Win32 named
objects such as mutexes are stored in BaseNamedObject directory. The entire
named object Win32 APIs uses this directory. All the device objects are under
the Devices directory. The directory contains the entry for each device driver.
It also comprises devices which are not connected to the system. It comprises
logical devices such as TCP, and physical devices like HarddiskO.
GLOBAL?? is the symbolic link directory. They are old-style name for kernel
objects. Unnamed kernel objects are identified by their handles or kernel
object pointer.

2.4 Processes and Threads 41

2.4 Processes and Threads

Process has its own memory space or basically it comprises of private set
of basic run-time resources. For communication between the processes, IPC
or inter process communication like pipes, and sockets are used. Threads are
light-weight processes and exist within the process; however, like processes
they require few resources. A process is an execution stream in the context of
a particular process state. A thread is a single sequence stream within in a
process. Execution stream is a sequence of instructions whereas process state
comprises registers, stack, memory, open file tables and signal information.
There is one process at a time in the case of uni programming. In the case of
multiprogramming, there are multiple processes at a time. In multi
programming, resources need to be shared between the processes. One of the
critical resources is CPU, OS executes on one process, and then takes away
CPU from the process and let another process executes it. It should ensure all
the processes get their fair share of CPU. Process abstraction is performed by
context switching to switch from one process to another. Details of context
switching are discussed in the section 2.4.1. A thread is an execution stream in
the context of a thread state. Multiple threads share the same address space.
Multiple threads read and write to same memory. However, each thread has
its own register and stack. Operating System will have its own thread for each
distinct activity and the thread will perform operating system activity on the
thread. A thread has or consists of a program counter (PC), a register set, and
a stack space. Threads are not independent of one other like processes as a
result threads shares with other threads their code section, data section, OS
resources also known as task, such as open files and signals. Threads like
processes share CPU and there is only one active thread at a time. Threads
within a process execute sequentially and can create children. If one thread is
blocked then other thread can execute. However threads differ from the
process in the respect that unlike processes threads are not independent of one
another. Unlike process all threads can access every address in the task.
Threads are designed to assist each other; however, processes might or might
not assist one another since process may originate from a different user. Since
thread can share common data, they do not need to use inter-process
communication. Threads can take advantage of the multiprocessors. Threads
only need stack and storage for registers hence they are cheap to create.
Thread makes use of little resources of an operating system. They do not need
new address space, global address space, program code or operating system
resources. Since in the case of thread, only PC, SP and registers are stored,
context switching is fast when working with the thread. User level threads are
implemented in the user-level libraries and are implemented as if they are
single-threaded processes. User level thread does not require modification to

42 Fundamental of Windows

operating system. Each thread is represented by a PC, register and a small
control block which is stored in the user process address space. In the case of
user level thread, switching between the threads and synchronization between
the threads can be done without the intervention of the kernel. Switching of a
thread is cheap as compared to the procedure call. Because of the lack of
coordination between the thread and the operating system kernel, process as a
whole gets only one time slice which is irrespective of whether process has
one thread or 1000 threads. User-level threads require non-blocking system
call, that is, a multithreaded kernel, otherwise entire process will blocked in
the kernel. If one thread causes a page fault, the process blocks. In this
method the kernel knows about and manages the threads. Instead of thread
table in each process, the kernel has thread table for all the threads in the
system. Kernel makes use of process table to keep track of processes. Since
the kernel has knowledge of the threads, it might happen that the scheduler
may decide to give more time to one process having a large number of threads
than process having a small number of threads. The main drawback of kernel
level threads is they are slow and can be inefficient. Since kernel must
manage and schedule threads as well as processes, it requires thread control
block (TCB) for each thread to maintain information about threads. Hence
there is significant overhead and increased in kernel complexity. Threads do
not require space to share memory information, open file of I/O device in use
hence they are mush faster to switch between the threads. It is relatively easier
for a context switch between the threads. Moreover, unlike processes threads
allow sharing of information which cannot be shared in processes. This
includes sharing of code section, data section and operating system resources
such as open file, etc. If the kernel is single threaded, system call of one
thread will block the whole process and the CPU may be idle during the
blocking period. Multiprocesses have disadvantage over the threads since in
thread it might happen that one thread might overwrite the stack of another
thread. However, it also has to be noted that threads are meant to cooperate on
a single task. Threads are useful for satisfying the requests for a number of
computers on a LAN. Threads are suitable for applications which have more
than one task at a time. Any sequential process which cannot be divided into
parallel task will not benefit from thread. Code section, data section and
operating system resources such as open file are shared with other resources.
However, it is allocated its own stack, register set and a program counter. The
creation of a new process, is different from the thread. All the shared
resources of a thread are needed explicitly for each process. Hence the two
processes will have a different copy of code in the main memory to be able to
execute. This makes creation of new process costly as compared to new
thread.

2.4 Processes and Threads 43

2.4.1 Context Switching

Context switch, also known as process switch, involves switching of the
CPU from one process or thread to another. Process is an executing instance
of a program. Threads are light weight process containing program counter
and a stack. Contents of the CPU’s registers and program counter at any point
of time define the context. Contents of a CPU’s register and program counter
at any point in time define the context. Context switching involves suspending
the progression of one process and storing the CPU’s state for that process
somewhere in memory. It then involves retrieving the context of next process
from memory and restoring it in the CPU’s register and returning to the
location inside the program counter. It can be described as the kernel
suspending the execution of one process on the CPU and resuming the
execution of another process which has been suspended.

2.4.1.1 Context Switches and Mode Switches

Kernel mode is a privileged mode of the CPU on which kernel
executes and it provides access to all the memory locations and other system
resources. Context switches can happen only in the kernel mode. Other
applications can execute in user mode however they can execute portions of
the kernel code via system calls. System call comprises request in a operating
system by an active process for a task performed by the kernel. The task can
be input/output, that is, any movement of information is to or from the
combination of the CPU and main memory. Context switching is an essential
feature for multitasking operating system. As discussed in context switching,
multiple process execute on a single CPU without interfering each other.
Thus, context switching also provides illusion of concurrency. Context
switching of a process happens as a result of the scheduler making the switch
when a process has used up its CPU time slice or it can be as a result of
hardware interrupt. Hardware interrupt is a signal from the hardware such as
keyboard, mouse, modem, or system clock to the kernel, than an event such as
key press, mouse movement has occurred. Context switching can be done by
using hardware or by software. Hardware context switching is supported in
platforms like Intel 80386 and higher CPU. Software context switching can be
done on any CPU rather than hardware context switching so as to obtain
improved performance. In the case of hardware context switching all the CPU
states are saved. In the case of software context switching only the required
states are stored. Whereas in the case of hardware context switch all the CPU
states are saved. Software context switching allows for the possibility of
improving the switching code, thereby further enhancing efficiency, and that
it permits better control over the validity of the data that is being loaded.

44 Fundamental of Windows

Cost of context switching can be from order of nanoseconds for each of the
tens or hundred of switches per second. It can be one of the costly operations
on an operating system.

To explaining this with an example, the GetMessage function retrieves a
message from the calling thread's message queue. The function dispatches
incoming sent messages until a posted message is available for retrieval.
GetMessage extracts the next event however there are many times there is no
message. In such a scenario, GetMessage enters inside the waiting mode. It
stays in the mode until the new input is available.

2.4.2 Synchronization Objects

Even though threads though provide flexibility, however synchronization of
multiple threads is a challenging task. Threads will have to share the same
data objects between them. So multithreaded applications require the proper
design of a data structure and efficient locking mechanism. In a multithreaded
environment, if two or more threads can be blocked or put in a special wait
state by the kernel. They remain in the state until the wait condition is
satisfied. Hence the synchronization objects are supported by the kernel.
Scheduler has to be aware of the existence in order to determine when the
state has been satisfied. Critical Section, mutex, Semaphore, Event and the
metered sections are commonly used synchronization objects.

2.4.2.1 Critical Section

They are one of the most primitive synchronization objects in Win32. They
are used for exclusive access to shared data between threads within a single
process. The critical section code executed entirely in the user mode makes it
very fast. There is no penalty on transition between user and kernel mode. It
has to be noted that the events are kernel objects. So in the case of contention,
the transition to kernel mode must be made. The transition time is not
significant compared to the time the thread is blocked. Since the critical
section does not have a named kernel object associated with it, its main
disadvantage is it cannot synchronize access between processes.

2.4.2.2 Mutex

Mutex is a kernel object. It is implemented as a kernel object. It can
synchronize between processes/threads; however, this ability comes at the
stake of speed. Whenever process calls wait function such as

2.4 Processes and Threads 45

WaitForSingleobject, the transition between user mode and kernel mode is
made. Mutexes can be used to synchronize the exclusive access. Only one
thread can acquire mutex at a time. A thread can acquire mutex only on two
conditions, either it has to wait till the thread having the mutex is released or
until the thread holding the mutex terminates. In case of multi threading, it
might happen that two or more threads are waiting for the mutex. In such a
scenario, threads will receive the ownership of the mutex in the order in which
it was received.

2.4.2.3 Semaphore

They are similar to mutexes and are implemented as kernel objects. Hence
they can work across the processes and are relatively slow. Semaphore,
besides providing exclusive access to the shared object can be used for
resource counting. Where mutexes and critical sections allow only one thread
to gain access to a shared resource at a time, semaphores allow a set number
of threads to gain access to a shared resource. It may happen that the
maximum number is exceeded. In such a scenario, thread which requests the
ownership of the semaphore will either enter a wait state or until another
thread releases semaphore.

2.4.2.4 Event

Events are primitive kernel synchronization objects on which other
synchronization objects can be built. By themselves they are relatively slow,
but they can synchronize access between processes by using named events.
Depending on how they are used, events are capable of providing resource
counting, but do not keep track of the count by themselves, Standard Win32
API WaitForSingleObject or WaitForMultipleObject is being
used for waiting an event.

2.4.2.5 Metered Section

Metered sections are an extension of critical sections. They provide ability to
synchronize the thread across processes and they provide resource counting
semantic similar to the semaphore kernel object. Metered section was to
develop to achieve synchronization with the speed of a critical section and the
cross-process resource counting of a semaphore. It was also designed to make
then compatible with all Win32 platforms.

46 Fundamental of Windows

2.5 Process Initialization Sequence

The first step in the process initialization sequence is the creation of new
process object and new address space. A new API is created for a process
object and memory allocation is done when the Win32API
createprocesses is called. Createprocess maps NTDLL.DLL and
the program executable into the newly created address space.
CreateProcess not only creates process thread but also allocates address
space. The first threads executes inside the LdrpInitialization
function inside NTDLL.DLL. Primary executable import table is recursively
traversed by the LdrpInitialization. It then performs the mapping of
every executable which is required for executing the primary executable. The
control is then passed to LdrRunInitializeRoutines which is
internal NTDLL.DLL routine responsible for initialization all statically linked
DLL which is presently loaded in the NTDLL.DLL. The initialization process
consists ~ of calling each DLL’s entry point with the
DLL PROCESS ATTACH constant. Once all the DLL are initialized,
LdrpInitialize calls the thread initialization routine. This routine is
BaseProcessStart function from kernel32.DLL. This function in
turn calls the executable WinMain entry point. Once the call the WinMain
entry point is made, the initialization routine is complete.

Application
Kernel32.DII Modules
NTDLL.DLL USER32.DLL GDI32.DLL
NTOSKRNL.EXE ~— WIN32K.SYS

Figure 6.0 showing Win32 interface DLLs and their relation to the kernel
components.

2.5 Process Initialization Sequence 47

2.5.1 Application Programming Interface

An application programming interface (API) is set of functions which are
used for interaction between the application and the operating system. The
core Win32 API comprises 2000 APIs which can be divided into three parts.
Kernel, USER and GDI. Figure 6.0 shows the relationship between the APIs.
KERNEL32.DLL contains the Kernel API’s. They include non-GUI related
API which includes file I/O, memory management, object management,
process and thread management. KERNEL32.DLL calls low level API from
NTDLL.DLL GDI32.DLL implements all the GDI APIs. They are
implemented in the WIN32 kernel. Actual interface to the Windows kernel is
Native APIL It does not include any graphic related API. Set of functions
exported from NTDLL.DLL and from NTOSKRNL.EXE comprises native
APL It has to be noted that the Native API starts with Nt or Zw. In the user
mode implementation both the APIs point to the same piece of code; however,
it has to be noted that in the Kernel mode they are different. Nt version
comprises the actual implementation of API whereas Zw are stubs that gets
called through the system-call mechanism. Calling from system call
mechanism, from kernel mode, ensures that the call is from kernel mode.
Otherwise the call will be inferred to as a call from user mode. For user mode
calls, it will be verified that the parameters will contain user mode address.
Zw APIs simplify the process of calling function since in this case regular
kernel mode pointers can be passed.

When user mode applications make a call to the kernel function system call
mechanism takes place. The validation of parameter takes place at the
usermode side of API, after which the parameters are passed to the kernel
mode to execute the requested operation. The validation of parameters ensure
that the invalid address is not called. Invalid address may result in kernel
crash or it may result in taking control of the system. User mode code invokes
CPU instructions. The CPU instructions instruct the processor to switch to
privileged mode and make a call to dispatch routine. The dispatch routine
makes calls the specific system function requested from the user.

In Windows 2000 and earlier system would invoke call to interrupt 2E for
making a call to kernel. In a typical sequence of instruction first the EAX
register is loaded with the service number followed by EDX register pointing
to the first parameter to the kernel mode function. The instruction int 2e is
invoked; processor uses IDT Interrupt Descriptor Table, to determine which
interrupt handler to call. The IDT tells which routine to call whenever an
interrupt or exception takes place. The interrupt 2E points to an internal
NTOSKRNL function called as KiSystemService.
KiSystemService is a kernel service dispatcher which verifies that the

48 Fundamental of Windows

service number and stack pointer are valid. KiServiceTable array
comprises pointers to various kernel supported services. The request number
loaded in the EAX, is used by the KiSystemService for indexing into
the KiServiceTable. The int 2e stores the current value of EIP and
EFALGS.

Current version of operating system uses different mechanism for
performing this. Instead of invoking an interrupt to perform the operation,
SYSENTER instruction is used to perform the operation. SYSENTER is a
kernel mode switch instruction that calls predetermined function whose
address is stored at special model specific register MSR called as
SYSENTER_EIP MSR. The contents of MSR can be accessed from kernel
mode. SYSENTER does not store state information so by making a call to the
SystemCallStub operating system records the state of current user mode
stub in stack. This recorded user mode stub is used, when the kernel
completes the call and needs to go back to the user mode.

2.6 Reversing Windows NT

The section discusses some of the basic techniques for reversing Windows
NT. The KERNEL32.DBG, NTDLL.DBG, NTOSKRNL.DBG files will be
required to debug kernel component. USER32.DBG, GDI32.DBG,
CSRSS.DBG, CSRSRV.DBG, WIN32K.DBG are the DBG files that are
required to explore USER and GDI component. Using symbolic loader these
DBG files are converted into the .NMS files stdcall and fastcall are the two
compiler calling conventions. Most of the functions in Windows NT follow
either of these calling conventions. The file NTPSKRNL.EXE comprises
many functions which follow fastcall calling convention. The parameters are
pushed from right to left by the caller and the parameters pop off the stack by
the called function. The stdcall calling convention provides the inherent
advantage that the code is compact. This is because of the fact that the
parameters reside in one place. It has to be noted that since fixed number of
parameters pop off, this calling convention cannot support variable number of
arguments. cdecl calling convention can be used to support this. The fastcall
calling convention is similar to stdcall, with the difference being the first two
parameters are passed in registers instead of being passed to a stack. Kernel
data variables can be used to control the output of debug messages. These bits
can be used to get more debug information from the operating system.

2.6 Reversing Windows NT 49

2.6.1 ExpEchoPoolCalls

When the value of the variable is set to 1, information about each
memory allocation/deallocation which is performed can be obtained by using
the function.ExAllocatePoolWithTag and ExFreePool. The function provides
the information including size of the region allocated, if the pool which is
used is allocated or deallocated and the type of memory.

2.6.2 ObpShowAllocAndFree

When the value of variable ObpShowAllocAndFree is set to 1, information
about creation and destruction of each executive object can be obtained. The
information also provides the type of object. Like if the object is Key,
Semaphore and so on.

2.6.3 LpcpTraceMessages

When the value of the variable LpcpTraceMessages is set to 1, information
about local procedure call (LCP) function can be obtained.

2.6.4 MmDebug

Different bits in the variable indicate different message generated by the
memory management system.

2.6.5 NtGlobalFlag

One bit of this variable enables the debug messages. Other bits control the
validations performed by the operating system and general operation of the
operating system. GFLAGS utility provides detailed description of individual
bits of NtGlobalFlag. The value of this variable is inherited by a variable in
NTDLL.DLL during the process startup. NTDLL.DLL uses the second bit of
this variable to show the loading of a process. During process startup, NTDLL
gets the value of this flag and sets its internal variable ShowSnap to 1 if the
second bit is set. Once this bit is set, the behavior of the PE executable/DLL
loader.c an be monitored. Windows NT will show names of all the imported

50 Fundamental of Windows

DLLs, plus it will show a real set of DLLs required to start an application. It
will also show you the address of initialization functions of each of these
DLLs as well as a lot of other information.

2.6.6 SepDumpSD

When the value of the variable is set to 1, the security descriptor is dumped in
the security handling related code.

2.6.7 CmLogLevel and CmLogSelect

The variables provide control over the debug messages given by the registry
handling code. The maximum value of CmLogLevel is 7. The volume of
message generated by the operating system can be controlled by setting the
individual bit in the CmLogSelect.

2.7 Security Features in Vista

Vista provides various security features. The following section discusses the
details of these security features.

2.7.1 Address Space Layout Randomization (ASLR)

ASLR involves randomization of starting point of memory in stack and heap.
It makes it difficult for an exploit to locate the address of system API. Since it
becomes tough to locate the address of API, it becomes tough to run an
arbitrary code. In the case of other operating system, such as Windows XP,
the starting address of system API is known to attacker. Even though the
starting address may differ depending on the service pack level of the system,
however it can easily be calculated. ALSR includes randomization of address
of images and DLL, starting address of each stack and starting address of each
heap allocation.

One of the common attacks is to force an application to load the DLL. An
attacker can write a path into buffer with known location and redirect
execution to place where eliminating the precondition needed by the attacker.
The attacker has to know the address where it should be jumped. ASLR is

2.7 Security Features in Vista 51

done once per reboot. DLL will be loaded once per reboot. If all the processes
using a particular DLL unload ASLR, it would be loaded in the random place
in the next load. Some network service restarts itself on failure. This gives
attacker a chance to find where to call system API. Hence it is recommended
that the services be configured to restart automatically a small number of
times. ASLR provides protection against the attacks of worms. However, if
an application has format string vulnerability or information disclosure
vulnerability, it might be possible for an attacker to learn the memory
locations needed to over come this mitigation.

The randomization is in the second most significant byte of the address. To
reduce virtual address space fragmentation, the library is relocated across 256
different possible addresses.

When the two DLLs are loaded in the overlapping ranges, then the
last DLL which has to be loaded is relocated to a different address. The
relocation process can be time consuming since it will involve changing every
fixed address in the entire DLL to reflect the new starting point. Since
relocation is an expensive process, hence relocation should be prevented.
ASLR implementation deals with the performance concerns. It delays fixups
until that page of the DLL is loaded into memory. Generally, console
applications will use only a dozen or so functions exported by Kernel32.dll
and hence would require fixing up the pages required to load those functions.

DLLs do not set their own address space, Vista packs them in with as little
slack space between DLLs as possible. Since all the DLLs are loaded in the
contiguous space, there is effectively more space for other applications. It
also increases the cache performance.

2.7.2 Stack Randomization

Under the protection mechanism enforced by stack randomization, the base
address for every thread is changed. This makes it difficult for an attacker to
find a place to jump to within an application. /dynamicbase in the linker
options has to be used to get stack randomization. Even though the starting
address of the executable command is randomized, the offset between the
various code elements remains constant. Address of global variables is
randomized as well in the case of stack randomization. Generally it is not
recommended to store function pointer in global variables, stack
randomization makes it difficult to attack Encoded pointers. In a
multithreaded application, address of the stack buffer has been unpredictable
in multithreaded application. Even though the stack buffer is unpredictable in

52 Fundamental of Windows

multithreaeded application, the location of stack for the main thread is
randomized. The offset between the stack and the main module code isn’t
fixed from one instance of the application to the next. Offset between the
stack and the main module’s code is altered from one instance of the
application to the next. There is no effect of stack randomization on
performance or compatibility issues.

2.7.3 Heap Defenses

The option /GS has made stack overflow difficult to exploit, however heap
overflow is simpler to exploit. As adversary can make execution flow to jump
into some spot in heap, it cannot control the precise address location. One of
attacks can be to put a series of NOP sleds followed by the shell code. This
will result in execution of NOP followed by the shell code. It might not be
possible to put a large amount of data in the heap so an alternative technique,
Heap Spraying can be used. The technique involves large copies of shell code
in the heap. The execution will jump to shell code, since a large amount of
allocation would end up in another location.

In a double free vulnerability, a pointer is accidently freed twice.
When the chunk is freed, it is added to the free list for future use. It can be
later allocated and used, before getting freed again. Attacker can arbitrary set
the forward/backward links in a heap chunk. On the same free list, a free
chunk is added to a doubly linked list of other chunk. These forward and
backward pointers are stored within the chunk data itself, that is, at offset 0
and 4 of the chunk data. An attacker has control over the FreeList.Flink and
FreeList.Blink in the double freed chunk, making 4-byte overwrite trivial.

char* ptr 1 = new char[16];

// New allocation of some more memory

char* ptr 2 = new char[16];

// Note that ptr 1 has the same length as ptr 2
delete[] ptr 1;

// This will free ptr 2!

// Further memory allocation

char* ptr 3 = new char[16];

// ptr 3 will now be used to write memory that

// the code dealing with ptr 2 thinks is validated

Figure 7.0 C code showing double free pointer vulnerability

2.7 Security Features in Vista 53

As shown in the code in figure 7.0, it can be seen for a double free
pointer vulnerability, there is a pattern of alloc(1), free(1), alloc(2), free(l),
alloc(3). The pointers 1,2 & 3 all point to the same address. The efficient
heap behavior reallocates recently freed memory which is of the same size.
The function which requested alloc(2), has a pointer to memory controlled by
the function that called alloc(3). To exploit, attacker has to control the
memory written in to alloc(3). Another attack pattern will have the alloc(1),
free(l), alloc(2), use(1), free(1) sequence of instructions.

char* ptr 1 = new CFoo;

// code comes here ...

delete[] ptr 1;

// Another allocation the same size follows it

// Note that ptr 1 and ptr 2 point to the same memory
char* ptr 2 = new CFoo;

// Copy some data into ptr 2

// code will change data at ptr 1. It will not knowing
// that ptr 2 has changed things

// If ptr 1 is a class, destructor will be called.
delete[] ptr 1;

Figure 8.0 C code showing double free pointer Vulnerability

As shown in the Figure 8.0, in this case, the code using ptr 2 is changing the
contents of the buffer pointed to by p#r /. It has to be noted that the ptr [
contains a valid data. There is some potential for the usage of ptr 2 to attack
ptr_1 and in this case, the converse is true as well-the usage of p#r I could
very easily cause the data kept in ptr_2 to become invalid.

To prevent such a kind of exploit, pointers are set to null, when they are freed.
However, the method of setting pointer to null will not be of much use if there
are multiple copies of the same pointer. If the pointers are set to null then the
use(1) will result in null deference crash. By setting pointer to null, the
pattern alloc(1), free(1), alloc(2), free(l), alloc(3), will be non exploitable.

This is because functions 2 and 3 will have allocation in different space.

These conditions can be located by the debugging assert which will help to
locate and fix these conditions. At run time the second delete will be begin.
Smart pointer classes are the other technique which can be used to fix all the
double-free bugs.

The effect of heap overrun is dependent upon the heap manager which is
being used. In the case of Windows, heap places control data before and after
allocation, hence attacker can target both the control and the heap data which

54 Fundamental of Windows

is kept on the heap in adjacent memory location. In Windows Vista there have
been several improvements in the heap.

Vista performs a check for the validity of forward and backward links.
Free block has the address of previous and next free block. These addresses
are stored immediately after the block header. The value of the forward link
is the value to write and value of the backward link is where to write the
forward link value. This will result in arbitrary 4 bytes being written
anywhere in memory. Modification ensures that the structure at those
locations properly point to where it started. This was delivered in Windows
XP SP.

The block header is XORs with a random number. This makes
determining the value which needs to be overwritten very difficult. The
performance impact is small; however the benefits are very large. The
previous 8-bit cookie has been repurposed to validate a large part of header.
As discussed earlier, the heap base is randomized and the function pointers
which are used by heap are encoded. Vista provides termination on heap
corruption in an application. However, it might happen that the exploit
happens before the heap manager notices corruption. In the earlier version,
the default behavior when the application heap became corrupted was to leak
the corrupted memory and keep on executing.

Low fragmentation heap (LFH) is generally used when program allocates
large amount of memory in various allocation sizes. LFH allocates blocks of
memory which are as long as 16 kilobytes (kb). For memory block which are
larger than 16KB, the LFH uses the standard heap. Fragmentation is
minimized by the LFP algorithm and improves Win32 heap allocation
performance. In comparison to Windows heap, the LFH are more resistant to
attacks. Vista makes use of LFH.

2.7.4 NX

NX, stands for short for “No eXecute”. As per the NX, if a page of memory,
whether it is on stack or heap is writeable, should not execute code from that
page. When a DLL is loaded after process initialization, the operating system
has to allocate pages and write instructions into process memory which a
system should be able to execute. If a shell code could first cause
VirtualProtect to be called with correct parameters, NX is then defeated.
NtSetInformationProcess disables NX for an entire process, unless the
application has been compiled with /NXCOMPAT. This functionality allows

2.7 Security Features in Vista 55

for backward compatibility and allows an application to continue to work if it
happens to load a DLL that isn’t compatible with NX protection. Combination
of NX and ASLR can stop most of the attacks. In many of the system the
default BIOS option sets the NX to off.

Similar to ASLR and the heap settings, NXCOMPAT flag is set process wide.
NXCOMPACT flag is set in the linker option then the application will be
running NX irrespective of the option set in Windows. If NXCOMPAT:NO is
set, then NX will not apply to the application. NX option does not pose any
performance penalty or raises any performance impact. However, there can be
compatibility problem when there is an exception. If requirement of assembler
can be predicted, then it is advisable to write to memory and disable write at
the same time when execute is enabled on the page. In case applications
permit plugins, the plugins must be removed out of the processes.

2.7.5/GS

/GS option places a randomly generated cookie placed between the return
address and the local variable on the stack. The cookie will guard the EBP
register which was pushed on to the stack. /GS is effective in preventing off-
by-one overflow attacks.

There will be several structured exception handlers SEH in windows. The _try
keyword declares a block that has an exception handler. The _except keyword
declares a block which behaves similar to a block declared with catch in C++.
When exception is raised, the exception handler is raised, exception record is
searched to determine if the exception needs to be handled. The program
might continue execution after the handler, fixes the problem and resumes the
execution after the handler fixes the problem and resumes execution. A
_finally block is a method for a C program to behave very similarly to how a
C++ application would use a destructor. The block of code inside finally is
guaranteed to gets executed

_ try
{
// Code come here
}
__except (EXCEPTION EXECUTE HANDLER)
{
// Code gets executed when there is some error.

}

56 Fundamental of Windows

EXCEPTION REGISTRATION structure is pushed onto the stack whenever
an exception handler is registered. The structure
EXCEPTION REGISTRATION contains a pointer to the next
EXCEPTION REGISTRATION structure along with the pointer to the next
EXCEPTION REGISTRATION structure and the address of the current
exception handler. It has to be noted that there is a function pointer on the
stack which can be overwritten. To exploit this, buffer has to be overwritten
with the address of the attacker choice. This attack will work, regardless of
the code internal function. However, the overwrite should extend far enough
to hit the exception handler or an arbitrary DWORD overwrite and condition
for an exception should be caused prior to the function exiting normally. The
Visual Studio 2005 compiler treats calling an exception as if the function has
exited normally and checks the security cookie prior to executing the handle.

For a 64-bit code, the exception records are compiled into the binary. They
are not kept onto the stack. Hence 64-bit executables are much safer at least
from the SHE attacks.

2.7.6 Pointer Encoding

Windows Vista supports pointer encoding, which provides developers
with an ability which makes it harder for an attacker to overwrite a pointer
with a valid value. This enables them to prevent them from buffer overrun. C
and C++ provide pointer which points to arbitrary memory locations. Code
can read from and write to arbitrary memory locations.

class foo {

public:
foo() |
dest = new char[64];

’
’

data = new char([10]
}
~foo () {
delete [] dest;
delete [] data;

}
const char *Write Data(const char *src, *srcl) {
if (dest) strcpy(dest,src);
if (data) strcpy(data,srcl);
return src;
}
private:
char *dest, *data;

i

2.7 Security Features in Vista 57

Figure 9.0 sample C code without pointer encoding

In the code shown in Figure 9.0, adversary has control over the src. When the
function Write Data is called, overlong value is passed to the src, it will
overwrite data pointer. The pointer data will be few bytes higher in the
memory. The code shown in figure 10.0 the copies the srcl to data pointer
and effectively can write in memory This is heap overrun vulnerability. .

class foo {

public:
foo() |
dest = (char*)EncodePointer (new char[64]);
data = (char*)EncodePointer (new char[10]);
}
~foo () {
delete [] DecodePointer (dest);
delete [] DecodePointer (data);

data = dest = NULL;
}

const char *Write Data(const char *src, char srcl) {

char *dec dest = (char*)DecodePointer (dest);
if (dec dest) strcpy(dec dest,src);
char *dec _data = (char*)DecodePointer (data);

if (dec data) strcpy(dec data,src);
return src;

}

private:
char *dec dest, *dec data;

}i

Figure 10.0 shows the similar contrived C++ class code using pointer
encoding

The code shown in Figure 10 is similar to the original code shown in Figure 9,
except that the pointers are deemed long-lived and are encoded as soon as
they are created and then decoded prior to use. The class destructor sets the
pointers to NULL after the memory is deleted.

Hence, the following steps need to be followed for pointer encoding.
First, memory is allocated or initialized and assigned the pointer to the
address. Then the pointer is encoded. When the pointer is used, it is decoded
to a temporary variable. When the pointer is not required, it is decoded and is
set to free and NULL. If the pointer is overwritten, DecodePointer it will just
give back a bad pointer.

58 Fundamental of Windows

2.7.7 Cryptographic API in Windows Vista

Windows Vista provides a new cryptography API called CNG:API
(Cryptography Next Generation) which serves as a replacement for the old
Cryptographic APIs. Figure 12.0 shows the design architecture of CNG. Not
only CNG provides support for all algorithm for Cryptographic API, it also
includes new algorithms. CNG provide two set of functions NCrypt*
BCrypt*.

Win32 Applications

|
I

Secret Random Symmetric Asymmetric
Agreement Hash Number Eﬁcr tion Erzlc tion Signature

9 + Generator yp P

SHA MD5 \/
I I RSA
\
DH ECDH RNG
\/

+ i ¢ i DH | [ECDH

RC4 DES 3DES AES

Figure 11.0 Figure showing Algorithms for CNG

NCrypt* function: The function is a subset of CNG, which deals with key
management, key persistence and key isolation and public key operations.
NCrypt are available only to the user mode applications. NCrypt is the name
of the DLL and the header file, which provides high-level key storage facility.

BCrypt* function: The function is a subset of CNG, which provides low-level
cryptographic primitives, which run in process with the applications. The
keys are not stored, they are ephemeral. The keys are available in the kernel
mode and provide cryptographic framework for both the user mode and the

2.7 Security Features in Vista 59

kernel mode applications. BCrypt is the name of the DLL and the header file,
which provides base services for CNG.

Application
NCrypt
Key Storage
BCrypt
Cryptographic Primitives

*

Kernel Mode Driver

Figure 12.0 Showing CNG Architecture

The CNG API is built on logical cryptographic interfaces. It takes interface-
centric approach which is different from algorithm-centric approach followed
by most of the cryptographic algorithms. It provides inherent advantage in
terms of flexibility for an application developer to replace an algorithm use by
an application which is found to be flawed.

BCRYPT HANDLE is used for identifying the CNG objects which are
defined by the BCrypt. Algorithm is loaded by the
BCryptOpenAlgorithmProvider function, which loads an algorithm provider
based upon the choice of an algorithm and returns a handle for use in
subsequent calls to a CNG function.

2.7.8 Crypto-Agility

Increase in processor speed and developments in algorithms make
cryptographic algorithms agile. Increase in speed of processor makes it
feasible for an algorithm to be cracked in a reasonable time. Some of the hash
functions such as MD4, MD5, SHA-1 are considered to be insecure.

60 Fundamental of Windows

2.7.9 Crypto-Agility in CNG

Cryptographic constants are strings rather than numeric constants in
CNG. All the cryptographic algorithms are predefined in wincrypt.h which
makes it difficult to extend the cryptographic functionality as per the
application needs. In CNG, adding an algorithm is possible. String constant
can be defined for an algorithm. When an application uses the algorithm,
CNG will load the crypto-provider which is registered to the name. Custom
cipher-suites for SSL and TLS can be plugged in.
BCryptAddContextFunctionProvider: can be used to add new plugins.

CNG does not require Microsoft to sign the implementation.
Cryptographic provider can be created by the cryptographer. Also it is
possible for an application to query CNG for supported algorithms. Figure
13.0 shows the algorithms supported by the default CNG provider in
Windows Vista.

Algorithm #define Standard

RC2 BCRYPT_RC2_ALGORITHM RF(C2288

RC4 BCRYPT RC4 ALGORITHM

AES BCRYPT_AES_ALGORITHM FIPS 197

DES BCRYPT _DES ALGORITHM FIPS 46-3, FIPS 81

DESX BCRYPT_3DES_ALGORITHM

3DES BCRYPT_DESX ALGORITHM FIPS 46-3, FIPS 81,
SP800-38A

3DES-112 BCRYPT_3DES 112 ALGORITHM [FIPS 46-3, FIPS 81,
SP800-38A

2.7 Security Features in Vista

Algorithm

Elliptic Curve
Digital
Signature

Algorithm with
Prime-256
curve

Elliptic Curve
Digital
Signature

Algorithm with
Prime-384
curve

[Elliptic Curve
Digital
Signature

Algorithm with
Prime-521
curve

Elliptic Curve
Diffie-Hellman

Algorithm with
Prime-256
curve.

Elliptic Curve
Diffie-Hellman

Algorithm with
Prime-384
curve.

#define Standard

BCRYPT ECDSA P256 ALGORITHM [FIPS 186-
2,X9.62

BCRYPT ECDSA P384 ALGORITHM [FIPS 186-
2, X9.62

BCRYPT ECDSA P521 ALGORITHM [FIPS 186-
2,X9.62

BCRYPT ECDH P256 ALGORITHM |SP800-
56A

BCRYPT ECDH P384 ALGORITHM |SP800-
56A

61

62 Fundamental of Windows

Algorithm i#deﬁne Standard

RC2 BCRYPT RC2 ALGORITHM RFC2288

RC4 BCRYPT RC4 ALGORITHM

AES 'BCRYPT_AES_ALGORITHR-I FIPS 197

DES ~ BCRYPT DES ALGORITHM FIPS 46-3, FIPS 81

DESX [BCRYPT 3DES ALGORITHM

3DES 'BCRYPT_DESX_ALGORHHI\[FIPS 46-3, FIPS 81, SP800-

38A
3DES- .BCRYPTJDESJlZﬁALGORlTHZ\I FIPS 46-3, FIPS 81, SP800-
112 38A

Figure 13.0 Algorithm supported by the default CNG.

CNG also supports two kinds of random number generators (RNG), and both
are allowed under SDL: BCRYPT RNG _ALGORITHM and

BCRYPT RNG FIPS186 _DSA ALGORITHM are the two random number
generators which are supported by CNG. However, it has to be noted that the
CNG password-based key derivation function is missing from CNG.

2.7.10 Algorithm Providers

All CNG objects defined by BCrypt are identified by a
BCRYPT HANDLE, and used to identify the CNG objects defined by the
BCrypt. Initially the algorithm provider is loaded based upon the choice of
algorithm and optional implementation. The function

BCryptOpenAlgorithmProvider is used to achieve the objective and the
functions then return a handle. The handle is used in subsequent calls to CNG
function. Error is indicated by the NTSTATUS type from the Windows
Driver Kit. This is used both for user mode and kernel mode programs.

2.7 Security Features in Vista 63

BCRYPT HANDLE algoProvider = 0;

NTSTATUS status = ::BCryptOpenAlgorithmProvider (
&algoProvider, algoName,
implementation, flag);

if (NT SUCCESS(status))
{

// Code for algorithm provider comes here
1
J

Figure 14.0 showing the sample implementation of BCryptOpenAlgorithm

Generally value 0 is passed both for the implementation and flag
parameters. The value 0 indicates that the default algorithm provider should
be loaded for the particular algorithm identified by the algorithm name
parameter. The NT_SUCCESS macro shown in Figure 14.0 indicates if the
value represents success or failure. It has to be noted that the loading of the
algorithm can be an expensive operation. Hence once the algorithm is loaded,
it should be re-used as much as possible. As shown in the Figure 15.0
algorithm provided can be unloaded by passing the handle returned by
BCryptOpenAlgorithmProvider to the BCryptoCloseAlgorithmProvider
function. Zero must be passed for the flags parameters.

status = ::BCryptCloseAlgorithmProvider (
algoProvider, flags);

Figure 15.0 showing the closing of the algorithm

2.7.11 Random Number Generation

BCryptGenRandom function is used for to generate random number. It fills
in buffer with random generated value. BCRYPT RNG ALGORITHM
algorithm identifier denotes the default random number identifier. The
BCRYPT RNG FIPS186 DSA ALGORITHM algorithm identifier is used
to meet the Federal Information Processing Standards (FIPS). It can be seen
that the function BCryptRandom function expects a pointer to UCHAR which
identifies the buffer. The function BCryptGenRandom provides an optional
flag which allows to provide entropy for random number generation
algorithm.

64 Fundamental of Windows

BCRYPT HANDLE algoProvider = 0;
NT VERIFY(::BCryptOpenAlgorithmProvider (&
algoprovider, BCRYPT RNG_ALGORITHM,0,0));
Int n=20;
for(int a=0; a< n; ++a)
{UINT rand =0;

NT_VERIFY(::BCRYPTGenRandom(
algorithmprovider,
reinterpret_cast<PUCHAR>(&rand), sizeof(UINT), 0));
Count <<rand << end];

}

Figure 16.0 showing code for random number generator

When the flag BCRYPT RNG USE ENTROPY IN BUFFER is used
then the value passed in the buffer is used as an additional entropy in
calculating the random number and is returned in the same buffer.

2.7.12 Hash Functions

The algorithm provider and the hash functions are represented by objects in
CNG. The functions BCryptSetProperty can be used to set the named
properties in the named objects and the function BCryptGetProperty is being
used to query the function name. Similar function is provided for handling
object property with NCrypt. A new hash object is created by using the
BCryptCreateHash function, which needs a buffer that is required for
processing. In kernel mode, care has to be taken while allocating memory.
Kernel mode also requires, managing the handle and hash table resources for
the hash object.

First parameter of the function BCryptGetProperty’s indicates the object to
query whereas the second parameter indicates the name of the property. Third
and Fourth parameters indicate the destination buffer where the property value
is stored and the size of the buffer. The noofbyteCopied parameter is useful
in the case where the size of buffer is unknown. Chunk of memory is
committed to the buffer for the hash object. Only in the kernel mode it matters
where the memory is stored. The hash object can be created by the
bCryptCreateHash function

2.7 Security Features in Vista 65

BCRYPT_HANDIE algoProvider = 0;

NT VERIFY (::BCryptOpenAlgorithmProvider(
&algoProvider,
BCRYPT_ SHA256_ ALGORITHM,
0,
0)):

ULONG hashBufSize = 0;
ULONG noofbytesCopied = 0;

NT_VERIFY (::BCryptGetProperty (
algoProvider,
BCRYPT_OBJECT_LENGTH,
reinterpret_cast<PUCHAR>(&hashBufferSize),
sizeof (ULONG) ,
&noofbytesCopied, 0));

Figure 17.0 showing code for hash function

. The first parameter to the hash function indicates the algorithm provider
which implements the hash interface. The second parameter indicates the
handle to the hash object. The last two parameters indicate the hash buffer and
its size. The hash object is destroyed by using BCryptDestroyHash function
and then the function frees the hash object buffer. For flags parameters, zero
is passed.

It is also possible to duplicate the hash object which is useful in the
case when two or more hash values need to be produced based on some
common data. The function BCryptDuplicateHash is being used to duplicate
the hash function. The function will require a handle to the hash object for
duplication along with the new buffer which it will use for processing. For
duplicating a hash function first a single has object needs to be defined then it
has to be duplicated one or more times. After the duplication has been
achieved, the two hash objects contain the same state; however, they have no
connection to one another. Unique data can be added to each one producing a
hash value. If one hash object is destroyed it will not affect the other.

2.7.13 Symmetric Encryption

The function BCryptGenerateSymmetricKey function is used to generate
symmetric key. It involves first creating an algorithm provider followed by
determining the size of the object buffer. Once the size of buffer is
determined, then the buffer of that size is allocated.

66 Fundamental of Windows

Algorithm

Provider Buffer Key

Open algorithm

Y

Obtain Size of Object

Y

Allocate <size>

\/

Generate <algorithm, buffer, secret >

\/

Figure 18.0. Creation of a Symmetric Key Object

The first parameter to the function BCryptGenerateSymmetricKey denotes
that the algorithm provider implements a symmetric encryption algorithm.
Implementation of symmetric key algorithm is denoted by the second
parameter. Key buffer and its size are denoted by the second parameter. The
buffer containing the secret key shared by the sender and receiver is denoted
by the next two parameters. It can be any byte array or can be empty.
Generally it is a hash of a password. Since the flags for this function are not
defined, zero is passed as the parameter for the flag. BCryptDestroyKey
function is used to destroy the key object. After the key object is destroyed, it
is freed. The function BCryptEncrypt and BCryptDecrypt are being used for
the encryption and decryption of data. The function is used both for the
symmetric key and asymmetric key. The sender and the receiver share
common properties. They require a key created with the same secret and with
the matching properties values. They also require initialization vector which
are equal. For symmetric encryption algorithm, size of data block for the
algorithm needs to be determined. The size of block indicates the size of
initialization vector. Block cipher encrypts a fixed sized block of plaintext
into a block of cipher text of same size. Once the message to encrypt along
with the initialization vector is prepared, BCryptEncrypt function can be used
to encrypt the plain text message. BCryptEncrypt function is used for
encryption. The first parameter for the function denotes the key to use for
encryption. The next two parameters indicate the message which has to be
encrypted. The fourth parameter provides additional padding information for
asymmetric key algorithm. The flag BCRYPT BLOCK PADDING is used
with symmetric algorithms. The function BCryptEncrypt is called again which
contains buffer to receive the cipher text. The BCryptDecrypt function works
in the similar manner. First the size of cipher text is determined, followed by

2.7 Security Features in Vista 67

which the BCryptDecrypt function is called with the initialization vector and
the plaintext buffer to obtain the resulting decrypted message.

2.7.14 Asymmetric Encryption

The advantage of Asymmetric algorithm is that the public key can be
shared with anyone; however, the computational cost of the algorithm is
higher than the symmetric key algorithm. Figure 18.0 shows the process for
the establishment of the asymmetric key.

Algorithm
Provider

Key

Open <algorithm>
—_—>

Generate <algorithm,|Key Size>

Y

Set Properties

Yy

Finaize

Figure 18.0 showing the creation of asymmetric key

The function BCryptGenerateKeyPair s used to create the public and
private key. The first parameter to the function provides the details of the
algorithm provider which has implemented the asymmetric key algorithm.
Handle to the key object is received in the second object. Key size is indicated
in the third parameter. The size of key is indicated in bits. The size of key
affects the performance of the algorithm. Key size can also be used to
determine the block size. The block size can be determined by dividing the
key size by 8. BCryptSetProperty function is used to set the algorithm
specific key properties. The properties are set after the key pair is generated.
The BCryptFinalizeKeyPair function is being used to finalize the creation of
key object. This is done before the key pair can be used. BCryptEncrypt and
the BCryptDecrypt function can be used to encrypt and decrypt the block of
data. It might happen that the message to be encrypted is provided in a buffer
which is a multiple of the block size. The flag BCRYPT PAD NONE is used
to denote that there is no padding. The flag BCRYPT PAD PKCSI flag tells
the algorithm provider to pad the input buffer to a multiple of block size. This
is done by using a random number which is based on the PKCS-1 standard.
The functions BCryptExportKey and BCryptlmportKeyPair are used to export
and import keys. To import symmetric keys BCryptExport function can be
used to export symmetric key as well.

68 Fundamental of Windows

2.7.15 Signatures and Verification

Asymmetric key algorithms are used to create digital signatures. Public
keys are used to generate signatures and private keys to verify the signatures.
BCryptSignHash function is used to calculate the signature. The calculation of
signature makes use of both the hash values as well as the private key for a
digital signature algorithm. The generation of signature comprises two parts.
The first part involves the calculation of the size of the resulting signature.
The second part involves computation of signature. Additional padding
information may also be required. The hash is computed independently and
then the hash value, publick key of the signature and the signature received to
the BCryptVerifySignature function for verification. The function
BCryptVerifySlgnature, returns STATUS SUCESS in case of match between
the signature and the hash value. STATUS INVALD SIGNATURE is
returned if there is a mismatch in signature.

2.8 Conclusion

The chapter provides basics of the operating system, which is important for
reverse engineering. Understanding the basic API offered by the operating
system is useful in deciphering the programs. Virtual memory provides
solution for memory management. Light-weight processes are called as
threads. Threads perform context switching which is also termed as process
switch. It involves switching of the CPU from one process or thread to
another. Even though threads provide flexibility, synchronization of multiple
threads is a challenging task. Critical Section, Mutex , Semaphore, Events,
and Metered Sections can be used for synchronization of threads. In Windows
NT KERNEL32.DBG, NTDLL.DBG, NTOSKRNL.DBG files will be
required to debug kernel component. USER32.DBG, GDI32.DBG,
CSRSS.DBG, CSRSRV.DBG, WIN32K.DBG are the DBG files that are
required to explore USER and GDI component. Vista is the latest operating
system. It provides address space layout randomization which makes it
difficult to execute on a local address space. The code should be compiled
with the /GS option and link with the /NXCOMPACT, /SAFESEH and
/DYNAMICBASE option. Pointer encoding is supported in Vista, it makes it
difficult for an attacker to overwrite a pointer with a valid value. Vista
provides, CNG (Cryptographic =~ Next Generation) which provides
replacement for the old cryptographic API. NCrypt and BCrypt are the
subsets of CNG, which provide low-level cryptographic primitives.

Portable Executable File Format

3.0 Introduction

PE stands for ‘portable executable’ file format. As the name suggests, the
format can be portable across all the 32-bit operating system and can be
executed on any version of windows. The format is also being used by 32-bit
dlls and Windows NT device derivers. The WINNT.H header file defines the
structure definition representation for the PE file format.

Understanding of PE file format is not only required for reverse engineering,
but it is also required for understanding the concepts of operating system.

3.1 PE file format

PE stands for Portable Executable file format. It is generated using the
Microsoft linker that has a .text section containing the code bytes
concatenated from all the object files.

73090000 | 08661666| CRTDLL PE header Imag|R RWE
730291000 | 00010066 CRTDLL .text code, import: Imag R RUWE
73DAEDBA | 92026888 CRTOLL .data data Imag|R RWE
72DE4000| 08881066 CRTOLL «TSrC resources Imag R RWE
73DESO0a | 9E0Bz008| CRTOLL reloc relocations Imag|R RUWE
vrDDa06a | 6e6a1e68 ADVAPI32 PE header Imag R RUE
77001666 | 98075008 ADUAPI3Z| . text code, importi Imaa R RWE
Y7E46008 | 00005988 ADVAPI3Z| .data data Imag|R RWE
77E4BB00 | 8861EB66 ADVAPI32| .rsrc resources Imag R RUWE
F7EE606G 9600 ADUARI3Z2| .reloc relocations| Imag R RWE

rEro0oa| 066010868 RPCRT4 PE header Imag|R RWE
77E710006| 600282000 RPCRT4 -text code, import: Imag R RUWE
77EF4000 | 08087000 RPCRT4 . Orpc code Imag|R RWE

7EFBG0G| 30661006 RPCRT4 .data data Imag R RWE
F7EFCH0G| 06061060 RPCRT4 | .rsrc resources Imag R RUWE
7TrEFDBB0E | 08085688 RPCRT4 .reloc relocations| Imag R RWE
77F 10008 | 08001068 GDI32 PE header Imag|R RWE
rrE11068| 60042000 GDI3Z «TEHT code, import: Imag| R RWE
FrF53000| 00621080 GDI32 .data data Imag R RWE
77FS4808| gapalnaa GDI32 .rErc resources Imag R RUE
7YrFSSh0a | oapozoan GDIS2 reloc relocations Imag|R RUWE
77FEGBDRE| 90081086 Secur32 PE header Imag|R RWE
7r7FE18B80| 9800DB08| Secur3z |.text code, import] Imag| R RWE
V7FEEGQDS | 08016608 Secur32 | .data data Imag| R RUWE
77FEFBD0| 000010008| Secur32 |.rsrc resources Imag| R RUWE
7rFFOa0a| 00021088| Secur32 |.reloc relocations| Imag|R RUWE
7C800000 | 900010008 kernel32 PE header Imag|R RWE
rCE01860| 08083008 kerne 32| . text code, import Imag| R RWE
7CE834000| 00B05000| kerne l32| . data data Imag|R RWE
7CE29000| 00066000 | kernel32| .rsrc resources Imaa R RUWE

Figure 1.0 Showing .text, .data, .rsrc. .reloc
As shown in the figure 1.0 the .data contains all the initialized global and
static data which can be classified into different categories. Initialized global
and static data are classified under the .data section while .bss section contains

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering, 69
Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_3,
© Springer Science + Business Media, LLC 2009

70 Portable Executable File Format

the uninitialized data. The .rdata section contains read only data such as string
literals and constants, debug directory, thread local storage directory. The
.edata section contains information about the functions exported from a DLL,
while the .idata contains information about the functions imported by an
executable or a DLL. Menu and dialog boxes are stored in the .rsrc section
and .reloc section stores the details for relocating the image while loading.

40 SA HSCII "HZ " DO0S EXE Sianature

Q8684 Il a9 DOS_PartPag = 98 (144.)
B398 Dw BEa3 D0S_PageCnt =

falulnl] Dl 2688 DOS_RelaCnt = @

a468a D Baa4 DOS_HdrSize = 4

fa]55]%) DWW Boaa DOS_MinMem =

FFFF DW FFFF DOS_MaxMem = FFFF (65535.1)
Ba6aa D Baaa DOS_ReloSS = 6

BS0@ Dl BBES DOS_ExeSP = BS

a5]%) DWW Bo6a DOS_ChkSum = @

fulnlale] Dl 8688 DOS_ExelP = @

Baaa Dy Baaa pDosS_ ReloCS =8

4@0a ow aa4e DOS_TablOff = 46

fulaial] D 8688 DOS_Overlay = B

GR Nk GG

Figure 2.0 Showing PE Dos Header comes here.

As shown in figure 2.0 the PE file format starts with a DOS stub with
a header. The PE header is located at the offset 0x3C from the beginning of
the file. The DOS header file is identified with the magic bytes “MZ”
indicating that it is DOS header file. At the address 0x3C from the image base
(or the address of the DOS header) is offset to the PE signature.

g4 DB @9

56 45 @@ 08 ASCII "PE" FPE signature (PE)

4ca1 DW @14C Mach ine = IMAGE_FILE_MACHINE_I386
B506 Dl 9065 NumberOfSections = 5

D4CEE548 DD 4855CSD4 TimeDateStamp = 4855C5D4

32100008 DD 68881632 PnlnterToSgnbolTable = 1832
35618008 DD 98888135 NumberOfSymbols = 135 (3@9.]

EBB6 DW @BES Size0fOpt ionalHeader = EB (224.)
8281 Dw @12 Characteristics = EXECUTGBLE_INHGE 32B
BEB1 oW @108 MagicNumber = PE32

a2 DB B2 MajorLinkerUersion =

a7 DB 37 MinorL inkerUersion = 37 (55.)
[alafal=tal2l]a] DD 606886600 Size0fCode = 680 (1536.)

[alalal= e lal]e] DD 00088600 SizeDfInitializedData = 688 (1536.)
0aa20008 DD 98086208 SizeOfUninitializedData = 208 (512.)
25120000 DD 90081225 AddressOfEntryPoint = 1225
00100000 DD 90001000 Base0QfCode = 1000

BR200000 DD 90062000 BaszeDfData = 2000

oaaa4008 DD 684868608 ImageBase = 400008

8016060008 DD 6060168608 SectionAlignment = 1868

BRa2e00a DD @0888200 FileAlignment = 208

a16a Dw @eal MajorOSVersion = 1

aaaa DW Gaea Minor0SUersion = B

jalalale] DW Goaa MajorImagelersion = 8

2008 D @6ea MinorImageVersion = @

2404 D aaaq MajorSubsystemlUersion = 4

5]5051%] DW @008 MinorSubsystemUersion = 8

99999999 | DD 29999000 Reserved T

Figure 3.0 showing the PE header

3.1 PE file format 71

As shown in figure 3.0, the field begins with the field PE\O\O or | 50 45 00
00]. This header is followed by the COFF file header. The first field in the
format is the machine type field indicated by the field Machine in figure 3.0.
Its size is two bytes long. Value 0x8664 stands for AMD64, 0x14c¢ stands for
IA32 or less often 0x200 for IA64 Itanium processors. This field is followed
by a two byte field which indicates the number of sections in the file. Its
maximum value can be 96. Followed by this is the TimeDateStamp after
which is the COFF symbol table. After this field, there is 4 byte field which
indicates the number of symbols which are present. The last two fields stands
for COFF fields of the size of two bytes, which indicate the size of the
optional header and a field called the characteristics which defines the specific
attributes to file. Its value determines if the file is a DLL, or a part of the
system file or if it uses 32- bit words and so on. The optional header can be
divided into three parts. The first eight fields are generic to the COFF.
Following this is the 21 windows-specific fields, following which are data
directories. The magic field represented as MagicNumber as shown in figure
3.0 can also be used to identify the PE version. The value of the field can be
PE32 or PE32+. The size field represented by SizeOfCode as shown in the
figure 3.0 displays the size of .text/code, .data and .bss section of the file.
Following this is the field AddressofEntryPoint, Address of the entry point or
the address where the code will start executing. After this as shown in figure
3.0 is the base address of code and data. These addresses are specified by the
field BaseOfCode and BaseOfData

ULl ¥yuULEuY SL2eUt IMage = LYYy 199152,)

DD 986808408 Size0fHeaders = 4808 (1624.)

DD 98066000 CheckSum = @

Dy 8863 Subsystem = IMAGE_SUBSYSTEM_WINDOWS_CUI
D osaa DLLCharacteristics = @

DD 98186600 SizeDfStackReserve = 100608 (1043576.)
DD 88081086 SizeQfStackCommit = 1086 (4896.)
DD 688166686 SizelfHeapReserve = 100066 (1648576.)
DD 986616866 SizeOfHeapCommit = 1806 (4836.)
DD 98808608 LoaderFlags = 8

DD 88068010 NumberOfRuwaAndSizes = 18 (16.)
DD o8aooaan Export Table address = @

DD 98000808 Export Table size = 8

DD oaooBoos Import Table address = EBbag

DO 98686316 Import Table size = 318 (¥84.)
DD 98666606 Resource Table address = @

DD 98006300 Resource Table size = 6

DD 98800886 Exuception Table address =08

DD 8agoBaon Exception Table size = 8

DD Saoaaaos Certificate File pointer = @

DD 2800008 Certificate_Table size = 8

DD 98080686 Relocat ion Table address =

DD 986866806 Relocation Table size = 6

DD 98683808 Debug Data address = 9869

DD 98806652 Debug Data size = 58 (88.)

DD 880800 Architecture Data address = @
DD Booasoas Architecture Data size = @

DD ooo0000a Global Ptr address = @

DD osoooo0a Must be

DD 98086668 TLS Tahle address =8

DD 986666866 TLS Table size = B

DD 9868063808 Load Conth Table address =8
mr et Te e T Ty = -

Figure 4.0 Size of PE header continued.

72 Portable Executable File Format

The image base identified by the field /mageBase as shown in figure 3.0
specifies the address at which the image is loaded. The Microsoft document
specifies this value to be a multiple of 64 K. The field “Sizeof Image” as
shiwn in figure 4.0 specifies the total size of the file including size of file and
all the headers. The field “SizeofHeader” specifies the size of the headers.
The field “DLLCharacteristics” as shown in figure 4.0 is used for DLL and is
used when the DLL is loaded. 0x0040 denotes the base address, 0x0080
indicates that the code integrity checks have been made, 0x0100 indicates
that the image is no-execute compatible and 0x0400 denotes that the SHE
(structured exception handling) is not used by the file.

Figure 5.0 shows the data directories. Other types of data are defined in the
data directory.

NumberOfRvaAndSizes = 18 (16.)
Export Table address = 8
Export Table size = @

Import Table address = BoBdg
Import Table size = 318 (734.)
Resource Table address = @
Resource Table size = @
Exception Table address = 8
Exception Table size = @
Certificate File pointer = 8
Certificate Table size = 8
Relocation Table address = @
Relocation Table size = @
Debug Data address = 98088
Debug Data size = 58 (88.)
Architecture Data address = @
Architecture Data size = @
Global Ptr address = 8

Must be @

TLS Table address = @

Figure 5.0 Showing Export, Import and Resource Table

The export table as shown in figure 5.0 specifies the function exported by
the file. Similarly the import table specifies the functions imported by the file.
Resource table show in figure 5.0 specifies the resources like icons used by
the files where as exception table indicates the registered exception used by
the file. Base relocation in the file is specified in the base relocation table.
Compiler generated debugging information is stored in the Debug data
directory. Architecture is a reserved data directory and its value is set to zero.
Global pointer data directory stores the RVA of the value to be stored in the
global pointer register.

3.1 PE file format

73

Nate

Description

Associated Data Structure

Export Table

The table contains the
name and RVAs of all the
exported function in the
current module

IMAGE EXPORT DIRECTORY

Import Table

It comprises of the list
of module and function
vhich is currently
Imported

IMAGE_IMPORT DESCRIPTOR

Resource Table

The table comprises of
static definition or
various user interface
like strings, dialoque
box and menus

IMAGE RESOURCE_DIRECTORY

Base Relocation Table

It comprises of list of
addresses which requires
recalculation if the
module gets relocated in
any other address

IMAGE BASE RELOCATION

Debugging Information

Debugging Information for
is contained in this
table

IMAGE DEBUG DIRECTORY

Thread Storage Table

It contains the thread
local variables. It is
managed by the loader

when the executable is
loaded

IMAGE TLS_DIRECTORY

74

Portable Executable File Format

structure. They also
contain information for
special security
feature which contains
legitimate exception
handler in the module

Name Description Associated Data Structure
Load Configuration This contains variety IMAGE_LOAD CONFIG_DIRECTORY
Table of the image
configuration

Bound Import Table

They contain additional
import related table
which contains
information on the
bound import entries.

IMAGE_BOUND IMPORT DESCRIPTOR

Import Address Table

This comprises of list
of functions imported
from the current module
They are initialized in
the load time to the
actual address of the
import functions.

This comprises of list of32
bit pointers

Delay Import Descriptor

They contain
information which can
be used for
implementing a delayed
load importing
mechanism. This is
resolved when it is
called. It is not
supported by the
operating system.

ImgDelayDesc

Figure showing Optional Directory in the Portable Executable File Format

3.1 PE file format 75

1ysv ue

L=
TLS Table address = @
TLS Table size = 8
Load Config Table address = @
Load Config Table size = 8
Bound Import Table address = 8
Bound Import Table size = @
Import Address Table address = @
Import Address Table size = B8
Delay Import Descriptor address = @
Delay Import Descriptor size = @
COM+ Runtime Header address = @
Import Address Table size = 8
Reserved
Reserved

" ArATTAN

Figure 6.0 showing TLS and and Import table

Thread local Storage (TLS) show in figure 6.0 data directory indicates the
information used in the thread specific data storage. The local configuration
table has different uses in different windows versions. XP is used to register
the safeSEH function. The import address table (IAT) as shown in figure 6.0
is used to resolve the symbol address at run time. The reserved field must be
set to 0.

The export table as mentioned above specifies the function exported by the
file. The export table is specified in the .edata section. The export directory
table describes the entirety of the export information. It comprises information
which can be used to resolve imports to the exported functions within the
image. The export address table comprises the address of the exported entry
points data and absolutes. The name pointer table consists of the arrays of
RVAs into the export name table. An ordinal number is used to index the
export address table. The Ordinal Base must be subtracted from the ordinal
number to index into the table. The ordinal table as shown in the figure
comprises an array of 16-bit ordinals into the export address table. The Export
Name Table Pointers and the Export Ordinal Table form two parallel arrays.
The exported address table ordinal numbers corresponding to the named
export referenced by corresponding export name table pointer is in the export
ordinal table array. The export name table comprises the null terminated
variable length string names of exported functions/data/etc. It comprises the
ASCII names for exported entries in the image. The Export Name Table
Pointers and the array of Export Ordinals along with the Export Name table
are used to translate a procedure name string into ordinal number. This is
performed by searching for a matching name string. Entry point information
in the export address table is located by the ordinal number.

76 Portable Executable File Format

Offset Size Field Name

0 4 Export Flags

4 4 Time/ Date Stamp

8 12 | Major Version

10 2 Minor Version

12 4 Name RVA

16 4 Ordinal Base

20 4 Address Table Entries

24 4 Number of Name
Il | Pointers

28 4 Export Address Table
| RVA

32 4 Name Pointer RVA

36 4 Ordinal Table RVA

Figure 7.0 Showing Export Directory Table

As shown in the figure 7.0, the export directory table contains the
Export Flags, Time/Data Stamp, Major version/ Minor Version, Name RVA,
Ordinal base, Address Table RVA, Name PTR table RVA, Ordinal table
RVA. Name RVA is the relative virtual address of the DLL ASCII Name.
This is the address relative to the Image Base. Ordinal base is typically set to
1. This field specifies the starting ordinal number for the export address table
for the image. The field addresses table entries and the number of name
pointers denotes the number of entries in the address table and name table.
Address Table RVA denotes the relative virtual address of the export address
table. This is relative to the Image base. Name Table RVA contains the
virtual address of the export name table pointers relative to the beginning of
the Image base. Ordinal table RVA contains the relative virtual address of
export ordinal table entry relative to the beginning of the Image base. It is an
array of 16 bit indexes biased by the ordinal base into EAT. A symbol can be
resolved by using the following steps.
1. VA or the export directory table in the optional header has to be
obtained.
2. This VA is then used to locate the ordinal base, export directory
table and the ordinal RVAs.
3. Obtain the RVA of the name pointer RVA.
4. It has to be determined if the function is exported by name. This
is done by searching the export name table pointer.
5. Ordinal is then retrieved. This is done by using the index into the
name pointer table as an index into the ordinal table to retrieve
the ordinal.

3.2 Import Address Table 77

6. Ordinal is taken and subtracted from the ordinal base and the
result is used as an index into the EAT. Data at this index is the
RVA for the exported function.

The import data table is the same as the export data table. It uses import
table or .idata section similar to the export table. “Import Directory Table”,
“Import Lookup Table” and the “hint/name table” are the three structures used
for importing symbols

3.2. Import Address Table

Windows loader is responsible for reading in PE file structure and loading
the executable image in memory. Windows loader also loads all the .dll files
that an application uses and is responsible for mapping them into the address
space. The executable will require functions whose addresses are not static.
Import table, comprising function pointer, is used to get the addresses of the
functions when the dlls are loaded. It can be accessed either by the call
[pointer address] or by “Import Lookup Table” and the “hint/name table,”
which are the three structures used for importing symbol. Import directory
table uses import table or .idata section.

Offset Size Field Name

0 4 Import Lookup
Table RVA

4 4 Time/Date Stamp

8 4 Forward Chain

12 4 Name RVA

16 4 Import Address
Table RVA

Figure 8.0 Showing Import Table

The Import Directory Table (shown in figure 8) comprises array of Import
Directory Entries, one entry of each DLL. The last directory entry is
identified by the NULL specifies the date and time when the import data was
presnapped or zero if not pre snapped, which denotes the end of the directory
table. Import flags are set to 0. Major and minor version field represents the
major and minor version of the dll being referenced. Name RVA field
specifies the relative virtual address relative to the Image base. Import
Lookup Table RVA contains the address relative to the beginning of the
image base, of the start of the import lookup for the image. Import Lookup
Table is an array of 32-bit integer, comprising bit field entry of ordinal or
hint/name RVA’s for each DLL. Last entry is indicated by the NULL.

78 Portable Executable File Format

Whether the import is done by name or by ordinal is indicated by the high
order bit. The set value of the bit indicates that it is imported by ordinal and
the bits 0 to 15 indicate the ordinals to import. When imported by name, the
bits 0 to 30 represent a 31- bit RVA into the hints/ name table for the name of
the imports.

Bits Size Field Name

1 1 Ordinal/'Name

15-0 16 Ordinal Number

30-0 31 Hint/Name Table RVA

Figure 9.0 Showing the Import Look up table

As shown in figure 9.0 in the Hint-Name Table, the PAD field is optional.
HINT is the DW hint into the export name table pointer. The value is used to
index the export name table pointer array, allowing faster ‘by name’ imports.
The field ASCII string as shown in the figure is terminated by NULL bytes.

Offset Size Field Name

0 4 Characteristics

4 4 TimeDateStamp

8 2 MajorVersion

10 2 MinorVersion

12 4 GlobalFlagsClear

16 4 GlobalFlagsSet

20 4 CriticalSectionDefault Timeut
24 3 DeCommitFreeBlockThreshold
32 3 DeCommit TotalFreeThreshold
40 3 LockPreixTable

48 8 MaximumAllocateSize

56 8 VirtualMemorvThreshold

64 8 Process Affinity Mask

72 4 Process Heap Flag

76 2 CSD Version

78 2 Reserved

80 3 Edit list

38 4 Security Cookie

96 4 SEHandlerTable

104 4 SEHandlerCount

Figure 10.0 showing the load configuration structure

Figure 10.0 shows the load configuration structure. Valid exception
handler is registered by the system. This prevents attackers from overwriting
an SHE entry and causing an exception to be raised and their code executed.

3.3 Executable and Linking Format 79

The “SE handler count” field in the “load configuration structure” denotes the
count of total number of handlers. The field “SE handler table” is a sorted
table of RVA, which corresponds to valid SHE handler for that image. The
security cookie is a pointer to a cookie. In Microsoft compiler, when the GS
flags are set the cookie, the stack bases cookie is used to prevent the
stackbased overflow. The value of the field
“IMAGE_DLLCHARACTERISTICS NO _SEH” in the DLL characteristics
field of optional header specifies if the exception handler is in the list. If the
value is set then it denotes that the exception handler is in this list.

3.3 Executable and Linking Format

ELF (executable and linking format) is the default binary format on operating
systems such as Linux, Solaris and SVR4. It provides the capability of
dynamic linking, dynamic loading, imposing run time control on the program
and improved method of creating shared libraries. ELF file format enables
identification and parsing of object files on different platforms. Executable,
relocatable and shared objects are the different type of ELF files. They store
code, data and information about the program, which aids operating system in
performing actions on these files. An executable file contains the information
which is required for the operating system to create a process image. The
process image is required for accessing the data and executing the code.
Linking with other object files to create and executable file is done by the
relocatable file. Information required for static and dynamic linking is stored
in shared object file. ELF file format includes five sections. (1) ELF header
(2) The program header (3) The section header table (4) The ELF sections (5)
The ELF segments.

3.3.1 ELF Header

It is first section and at fixed position in the object file. The other headers may
or may not be present in the file. The header aids in identifying if the object
file is relocatable, executable, shared or core file. The header also provides
information about the program header table, Section header table and String
table. It also provides the associated numbers and the size entries for each
table. Location of first executable instruction is also located in the ELF
header. Figure 11.0 shows the ELF header

80

Portable Executable File Format

typedet struct

EIf32
Elf32°
EIf32°
Elt32°
Elf32°
EIf32°
El32°
Elf32°
Elf32°
EIf32°
Elf32°
Elf32°
Elf32°
Elf32°

Half
Half
Word
Addr
Off
Off
Word
Half
Half
Half
Half
Halt
Half

Ehdr:

unsigned char e ident[EI'NIDENT:;

e'type:
e machine;
e’version:
e’ eéntrv;
¢” phoft;
¢ shoff}
e’flags:
¢ ehsize;
¢ phentsize;
e’ phnum;
e’shentsize;
e shunm;
e shstrndx:

Figure 11.0 Showing the ELF Header.

typedef struct

EIf32' Word
EIf32' Off

EIf32" Addr
Elf32' Addr
EIf32' Word
EIf32' Word
EIf32' Word
EIf32' Word

P type; // type of Segment
p' Offset; // File offset to Segment
p' vaddr ; // Virtual Address of First Byte

P' paddr; // Segment physical Address
p' filesz; // Size of File Image Segment
p' memsz; //Size of Memory Segment
p' flags; // Segment- Specific Flag

p' align; // Alignment requirement

EIf32' Phdr ;

Program Header

Figure 12.0 Showing Program Header

3.3.2 The Program Header Table

Program headers comprise a series of array where each entry is a structure.
The structure describes the segment in the object file or other information
required to create an executable process image. ELF header consists of the
size and number of entries in the table. Type, file offset, physical address,
virtual address, file size, memory image size, and alignment are contained in
each entry in the program header table. Process image for the object file is
created by the program header. The p_#ype field is shown in 12.0. If the value
of p_type is PT_LOAD, the operating system copies the segment into memory
according to the location and size information. If p_memsz is greater than

3.3 Executable and Linking Format 81

these p filesz then these bytes are mapped into the segment. PT LOAD
segment is succeeded by the PT INTERP segment. PT_DYNAMIC segment
is related with the dynamic linking. PT INTERP segment denotes the path
name of the program interpreter. PT DYNAMIC segment is related to
dynamic linking. If a file contains segment PT SHLIB, then it does not
confirm to ABIL It is defined but reserved. Segment of type PT PHDR
indicates the size and location of the program header table. This is applicable
both in physical and in the memory image. It can appear only once and it
should occur before PT_LOAD segment. PT_LPROC and PT_HIPROC are
reserved for processor-specific functionality.

The member p_offset specifies the offset of the segment from the beginning of
the file and the member p vaddr denotes the preferred virtual address of the
segment. The member p_filesz indicates the size of segment in the physical
file and the member p _memsz denotes the size of segment in memory. P_flags
denote the attributes of the segment. To load an executable, address for each
segment specified in the p_vaddr is used. Images have absolute references. If
the address is changed it will break. In the case of ASLR images and shared
library, make use of position-independent code. In case of PIC, instead of
using absolute references, relative references are used. When shared library is
used to access commonly used functions, series of intermediaries are used in
the case of ELF. They are global offset table (GOT or .got), the dynamic
segment/section (DYNAMIC or .dynamic) and the procedure linkage table
(PLT or .plt). Every executable image which performs dynamic linking
contains segment .dynamic.

Offset Size Field Name
0 4 d tag
4 4 d tag
4 4 D ptr

Figure 13.0 Showing Dynamic Structures

It contains two values, a tag followed by a union. The tag determines
the interpretation of union. The member d_val comprises integer with various
interpretations. The member d pfr contains a VA. The figure 14.0 shows
different types of d_tag types, and whether they are optional or mandatory.

_DNAMIC array is ended by DT _NULL. DT_PLTRELSZ element holds the
total size of the relocation entries associated with the PLT. DT_PLTESZ entry

82 Portable Executable File Format

Name Value d valord ptr? | executable Shared Object
DT NULL 0 ignored mandatory mandatory
DT PLTRELSZ 2 d val optional optional
DT PLTGOT 3 d ptr optional optional
DT FINI 13 d ptr optional optional
DT PLTREL 20 d val optional optional
DT JMPREL 23 d ptr optional optional

Figure 14.0 showing defined d_tag Types

is present when DT _JMPREL is present. A DT _PLTGOT entry contains the
address corresponding with either the GOT or PLT. The DT _JMPREL entry
comprises a pointer to relocation entries associated only with the PLT. During
image initialization, these relocations are ignored and it uses a form of linking
known as lazy binding. As per the lazy binding, the relocation is ignored until
the actual use of symbols. There is increase in speed and efficiency and
dynamic module can be easily loaded.

_GLOBAL OFFSET TABLE comprises array of addresses, which are
absolute references and allow the position-independent code to have relative
address. Negative and positive indexes are both valid since, the symbol
_GLOBAL_OFFSET TABLE does not need to refer to the beginning of the
.got segment. Dynamic linker processes the GOT by using the first entry
which is first element which contains the address of the DYNAMIC
structure. Position-independent addresses are redirected to absolute locations
by the GOT, PLT performs for the same for functions. It determines the
absolute address of the function and updates GOT as necessary. The second
and the third entries in the GOT, upon the creation of image are defined as
follows.

The address of the GOT must reside in the ebx, if the PLT is PIC. The calling
function places the address into this register. The application is trying to call
fun which is located in the label PLT1. The first instruction under that label is
a jump into the GOT, which contains the address of the push and jmp
instructions. Variable name offset will specify the GOT entry used in the prior
jump along with a symbol table index fun in this instance. The application
then jumps to PLTO and pushes the address of the second element of the GT
onto the stack. This provides dynamic linker a word to reference for
identification purposes. It then transfers control to the third GOT entry which
transfers control to the dynamic linker. The stack is then un-winded and it
then retrieves the identifying information and finds the absolute address for
the symbol. The absolute address is stored in the related GOT entry and the

3.4 Conclusion 83

control is handed over to the requested function. Dynamic linking is
accomplished by indirection and abstraction because, any further calls to this
function will jump directly to PLTO since the GOT entry is modified.
Application makes a call to PLT when it does not know before hand what
address it is calling. If the address has not been resolved then the it calls
PLT, then jumps to the GOT, if the address has not already been resolved,
control is handed back into the PLT if the address has not been resolved.
The relocation entry is then pushed followed by jump to the first entry in
the PLT, which then hands control to the dynamic linker.

3.4 Conclusion

This chapter presents the details of PE file format. The file format
comprises file headers, data directory, section table and various other sections.
It provides the details of import and export tables, Export directory, import
directory, relocation table and debug directory and the thread local storage.
Symbols imported in the file are loaded in the import table while the export
table lists all the symbols imported by the PE file. Further details of PE
specification can be obtained from Microsoft’s website at
www.microsoft.com/whdc/system/platform/firmware/

PECOFF.mspx.

Though PE file format is one of the important file formats, Appendix
lists some of the other file formats along with their hex signature which can be
used by IDS/IPS rules to identify the file. The appendix provides the
extension of the other file formats.

Reversing Binaries for Identifying Vulnerabilities

4.0 Introduction

Vulnerability is defined as a bug or flaw in an application which allows
malicious intruders to compromise the system. In the case of remote code
execution vulnerability, the application takes the user input which can be a
command line parameter that a program receives, a file loaded into the
program, or a packet sent over the network. The input is then used to make a
program stray from its normal execution path. One of the simplest methods to
exploit vulnerability is to make the program crash. However shell codes
injected by the user input can be used to take control of a program.

This chapter discusses various vulnerabilities in an application. By using
case studies of real exploits it discusses the exploitation of vulnerabilities. The
chapter also discusses the identification of these vulnerabilities by analyzing
assembly code.

4.1 Stack Overflow

Buffer can be defined as a contiguous chunk of memory, which consists of
as array or pointer in C. In C code if no bound checking takes place, then a
user can write past the buffer.

#include<stdio.h>

vold main(){
int buffer[5]:

buffer[10] = 5;
b

Figure 1.0 showing the C code attempting to write past the buffer

Even though the code shown in figure 1.0 is valid code, it can be seen that the
program attempts to write past the allocated buffer, which will trigger
unexpected behavior. A stack is generally used whenever a function call is
made. A stack is a contiguous block of memory containing data. Stack pointer

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering, 85
Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_4,
© Springer Science + Business Media, LLC 2009

86 Reversing Binaries for Identifying Vulnerabilities

point to the top of the data. As shown in figure 3.0, function parameters are
pushed from right to left and are followed by pushing the return address
(return address is the address which needs to be executed when a function
returns.), and frame pointer (FP) on to the stack. A frame pointer is used as a
reference to the local variables and to the function parameters. Local
automatic variables are pushed after the FP

finclude<stdio.h>

void foo(int a, int b) {
char bufferl[10]:
char buffer2[10]:
strcpy{bufferl. "I am overflowing Buffer~n"):
void maind){

foo(l0, 20)
¥

Figure 2.0 Showing the C code using Buffers

Function Return Address

bufferz hufferil

Bottom of Memory
Top of Memory
Figure 3.0 showing the stack function for C code in 11.0

The program shown in figure 2.0 is guaranteed to cause unexpected
behavior as a string of length greater than 10 has been copied to a buffer that
has been allocated 10 bytes.

4.1 Stack Overflow 87

f. 55 PUSH
. B9ES MOV EBP,ESP

» S3EC 8c S
. B9 03000008 | MOV ECX,3

> 49 DEC
. C7@48C SASAFAI MOV DWORD PTR S5: [ESP+ECK#4], FFFASASA
75 FB gEgHSEg?T bo. B848120F

. 67
. 63_A3RO4008 |PUSH bo.B@4BRBAS RSCII "1 am going to Overflow Buffer@”
. 8070 F& LER EOI,DWORD PTR SS:[EBP-A]

. 57 PUSH EDI
. gg 152E68808 | CALL bo.BB484180

. 83C4 B3 ADD ESP,8
. 8070 F LER EOI,DWORD PTR SS:[EBP-A] o
. 57 PUSH EDI Araz
. 62 ABRB46EG | PUSH bo.BO48RBAG Aral = @B4BRBAB ASCII "i4s"
. ES D35EG@RG | CALL bo.podariEl bo. BB4871E1
. 83C4 B2 ADD ESP,3
POP EOI
. 9 LERVE
.. C3 ETN
§ 55 PUSH EBP
. 9ES MOV EBP,ESP
. 09 LERVE
. C3 RETN
] PUSH_EBX

Figure 4.0 showing the assembly for the C code shown in figure 2.0

These extra bytes will run past the buffer, and will overwrite the space,
which has been allocated for FP, return address and so on. The extra bytes
corrupt the process stack and overwrite the functions’ return address. The
code, which must be executed, should be placed in the buffer’s overflowing
area, and hence by overwriting the function’s return address; the intended
code can be executed. Figure 4.0 shows the assembly instruction for the
function foo of the C code shown in figure 2.0. While analyzing the assembly
for stack overflow vulnerability several patterns need to be searched. Stack
size has to be monitored first. This can be identified by instruction SUB ESP
at the beginning of program. As shown in figure 4.0 a SUB ESP, 0C exists.
Functions will have a large local variable space in stack, as they take in a
large buffer and put it on the stack. Once the size of buffer is determined, the
next step will be to identify the pointer to the beginning of that space. This
generally can be identified by searching for a LEA instruction. For example
for the instruction LEA, if the operand is [ESP - 0x15] or [EBP - 0x20], then
the constant should be equivalent to the space being allocated. As shown in
figure 4.0, the string “I am overflowing buffer” gets which is more than 10
bytes gets copied in the allocated space. (as shown in figure 2.0) Mostly
overflow attacks make use of string manipulation routines. For example,
strepy stops copying when the NULL terminator character is encountered. It
might happen that the caller will supply a string which is long resulting in an
overflow.

88 Reversing Binaries for Identifying Vulnerabilities

4.1.1 CAN-2002-1123 Microsoft SQL Server 'Hello' Authentication
Buffer Overflow".

For this vulnerability, the vulnerability exists in the SSnetlib.dll library. The
assembly code is from memory on a Windows 2000 machine with Microsoft
SQL server 2000 SP2. Figure 5.0 shows the malicious assembly code.

JE SHCORT SSNETLIB .xXxXXXX¥XK

JMP SSNETLIB.VVVVVYVYY
MOV EAX,DWORD PTR S3: [EBP+C]

LDD EAX,DWCRD PTR S3: [EBRP-218]
PUSH EARX

LEA ECX,DWORD PTR S55: [EBP-214]
PUSH ECX

CALL <JMP.&MSVCRT.strcpy>

LDD ESP, 8

PUSH SSNETLIB.zzzzzzZzZ

LEA EDX,DWCORD PTR SS: [EBP-214]
PUSH EDX

CALL <JMP.&MSVCRT.strcmp>

Figure 5.0 showing the assembly instruction for the Ssnetlib.dll.

The assembly instruction CALL <JMP.&MSVCRT.strcpy> has two
parameters. The first parameter contains the destination address to which the
data at the address has to be copied; the second parameter refers to the
memory location which contains the TDS payload. The payload is copied into
the memory on stack which is referenced by the first parameter. As seen from
the assembly instruction, the size of the destination buffer is 512 bytes. If the
size of buffer is greater than 512 bytes, an access violation interrupt will be
raised. Also, if the size of the buffer is specified to be small, 0 or NULL bytes,
a large payload will overwrite the return address.

4.1.2 CAN -2004-0399 Exim Buffer Overflow

For CAN-2004-0399, vulnerability existed in processing the sender’s address
when it is supplied to exit by an SMTP command “MAIL FROM:
sender_address”. From the source code analysis shown in 6.0, if the sender’s
email address exceeds 256 bytes, it will result in overflow of fixed size stack
buffer “buffer”. The function sprintf() will result in buffer overflow.

4.1 Stack Overflow 89

Exim version: 3.36, fle: versfy.e, tunction: BOOL versfy _sender(int Ferreode, chai
*Herrmess):

BOOL verify sender(int *errcode, char **errmess) {
char buffer[256];

sprintf (buffer, "%s:%.200s", sender_address,
{sender host name != NULL)? sender host name

{sender host address != NULL}? sender host address : "");

Figure 6.0 showing the vulnerable code

“Exim Header Syntax Checking Remote Stack Buffer Overrun
Vulnerability”, happens when the vulnerable process copies a malicious string
to a fixed size buffer of 64. The code for the function which can overflow is
shown in figure 6.0. The length of the string is not checked. Headers which
can trigger the vulnerability are “from”, “sender”, “reply-to”, “to”, “cc” and
“bee” followed by enough spaces to overflow the 64 byte buffer.

Exim versiom: 3.36, file accept.c, functuon: BOOL accept mso(FILE *fin,
BOOL extract recip)
BOOL accept msg(FILE *fin, BOOL extract recip)

if (headers_ check_ syntax)

{

if (recipient == NULL && strcmp(errmess, "empty address") != 0)

{ char hname [64] ;

char *t = h->text;

char *tt = hname;

char *verb = "is'";

int len;

while (*t !'= ':') *tt++ = *t++;
*tt = O;

Exim version: 4.32, file verify.c, funcuon: BOOL verifi: check headers()

int

verify check headers (uschar **msgptr)
{

header_ line *h;

uschar *colon, *s;

for (h = header_ list; h != NULL; h = h->next)
{

if (h->type != htype_from &&

h->type != htype_reply to &&

h->type != htype_sender &&

h->type != htype_to &&

h->type != htype_ cc &&

h->type != htype_ bcc)

continue;

if (recipient == NULL && Ustrcmp(errmess, "empty address") != 0)

{ uschar hname[64]

uschar *t = h->text;

uschar *tt = hname;

uschar *verb = US"is";

int len;

while (*t != ':') *tt++ = *t++;
*tt = 0;

Figure 7.0 showing the vulnerable code for Exim Header Syntax Checking
Buffer Overflow.

90 Reversing Binaries for Identifying Vulnerabilities

4.1.3 Stack Checking

The latest version of the MS compiler provides protection against stack
overflow attacks. They achieve stack overflow protection by placing a cookie
between the last local variable and the function’s return value. This cookie
should be validated before the function’s return address. In case of buffer
overflow the value of the cookie will be modified and the execution of the
program will stop. The cookie for the Windows operating system is placed in
a protected module (_security cookie). The module is initialized by the
_security_init_cookie when the module is loaded and is randomized. The
randomization is based on the current process and the thread ID’s along with
the current time.

4.2 Off-by-One Overflow

In Off-by-One overflows, the operation is performed on a buffer which is
allocated by that size. The string in order to terminate must include a null
byte terminator. It might happen that the string is not terminated by a null
terminator. This will result in a string to edge with another buffer on the stack.
In such a scenario, there will be no separation, between the strings hence
causing an overflow. For example, as shown in figure 8.0, the size of the
buffer is 300. In the function foo three hundred and one ‘A’ are copied in the
buffer. This results in overwriting the null character and hence results in an
Off-by-One Overflow.

finclude <stdlib.h>
tinclude <stdio.h>
finclude <string.h>
volid foo{char *name){

char buffer[300];

int a;
for{a=0;a<=300;a++)
buffer[a] = namel[a]:

void main() {
char name[400]:
int 1i=0;
for{(i=0:1<400;i++)
nane[1]="4A":
foo(nane) ;

Figure 8.0 C code showing Off-by-one error

4.2 Off-by-One Overflow 91

The assembly instruction for the function foo in the code in figure 8.0 is
shown in figure 9.0. In the assembly code it can be seen that memory is first
allocated then it is filled with FFFASASA. Figure 10.0 shows the memory
map. The address 0012FE2C holds the value of the counter. As it can be seen
from the assembly instructions in figure 10.0, the instructions

INC DWORD PTR SS:[EBP+EDI-130],BL
CMP DWORD PTR SS:[EBP-4],12C

increments the value at the counter at address 0012FE2C , and compares it
with hexa 12C equivalent to decimal 300. If the value of the counter is less

than 300, the A is copied by using the instruction

MOV BYTE PTR SS:[EBP+EDI-130], BL

PUSH EBP
MO EBP,ESP
SUB ESP, 138
MOU _ECK, 4C
DEC ECX
MOU DWORD PTR SS:[ESP+ECK#4], FFFASASH
JNZ SHORT testur.B84812E2
PUSH EBX
PUSH ESI
PUSH EDI
MOU DWORD PTR SS:[EBP-4]1,8
MOV EDI,DWORD PTR SS:[EBP-41
MOU ESI,DWORD PTR SS:[EBP+8]
MOU BL, BYTE PTR DS:[ESI+EDI]
1MOU BYTE PTR SS: €E8P+EDI 1381,BL
INC DWORD PTR S5:[EB
DWORD PTR S5S: [EBF 4] 12c
JLE EB?RT testur.BB4012F6

)
=
5

RE
olicu coo

Figure 9.0 Showing the assembly language for the C code shown in the figure
8.0

rrrHAHoHoA
FFFASASA
FFFASASA
FFFASASA
FFFASASA
BaBERACS
BAa12FF7a
884081361 | RETURN to testur._main+4A from testur._fo
Pa12FE4@| ASCII "RRRHRHRRRHRHRHRRHHRRRHHHQHRHRHHHQRRHF
7C918738 ntdll.7C216738

41414141
41414141

Figure 10.0 Memory map showing the FFFASASA in the allocated space and
counter at address 0012FE2C.

92 Reversing Binaries for Identifying Vulnerabilities

The figure 11.0 shows the memory map, for the function foo shown in figure
8.0, when the value of counter a reaches 300. As per the memory map, the
allocated buffer of size 300 is filled with A.

41414141

41414141

BEPaa12Cc

BAa12FF7a

FES4|| 0481361 | RETURN to testur._main+48 from testur.

5 FEZS| | BB12FE48 ASCII "RRRRRRRRRHRRRRRRRHRHRHRRHHRRRHRRRHRRF
oo12FESC|| 70918738 ntdl 1. 7091673

GE1ZFE4a]]| 41414141

Figurel11.0 Memory map showing the FFFA5ASA in the allocated space and
counter holding value of 12C at address 0012FE2C.

However, as in the function foo shown in figure 12.0 the loop gets executed
301 times. The last execution of the loop results in rewriting at the address
space 0012FDCS8. As shown in the figure, the value 12C is overwritten with
141. This is due to the Off-by-One error. The value at the address is
overwritten, and as the value 141 is less than 12C, the loop terminates.
However, by carefully crafting exploits, it might be possible to rewrite other
sections of memory.

WOLErULD| L1l

'Fﬁtg 41414141

C3 BeBeE141
BB12FF7a
88481361 | RETURN to testur, n+d4l from testur
Ba12F0DC| ASCII "nnnnnnnnnnnannnnnnnnnnnnnnnnnnnnnnnc
:?2%2??? ntdll.7C218738

In figure 12.0 ,Memory map showing the 41 in the allocated space and
counter at address 0012FE2C is overwritten due to the off by one error.

Sometimes it might happen that the buffers are allocated on the stack,
however, it might not copy enough data to cause an overflow. It might not be
possible to rewrite via the ret. In such a scenario, it is possible to rewrite the
other important data like EBP which might be used later. In Off by One
overflow, overflows comprise overflowing the buffers adjacent to stored EBP
on the stack in a called function. This creates a fake frame for the caller
function. Hence, when the caller function exits, it is forced to use the return
address supplied by an attacker in an overflowed buffer or somewhere else in
memory.

4.2 Off-by-One Overflow 93

4.2.1 OpenBSD 2.7 FTP Daemon Off-by-One

A buffer overflow was discovered in OpenBSD distribution in a piece
of code handling directory names. The vulnerable piece of code is shown in
figure 13.0

MAXPATHLEN is defined in <sys/param.h>,and is of size 1024
bytes. The for() loop correctly bounds variable i to < /023, such that when the
loop has ended, no byte past npath/1023] should be written with \0. However,
since i is also incremented in the nested statements as ++i it becomes equal to
1024, and npath[1024] is past the end of the allocated buffer space and a null
byte is written into npath[1024], overwriting the least significant byte of EBP.

replydirnane(name, message)
const char *name, *message;

char npath[MAXPATHLEN];

int 1i;

for (1 = 0; *name != '“0' && 1 < sizeof(npath) - 1; i++, namet++) {
npath[1] = *nane;

if (*name == '"')

npath[++1] = 3

npath[1] = :
reply(257, "N\N'4s\" “s", npath, message);

Figure 13.0 Vulnerable code in OpenBSD FTP Daemon

This can be exploited as an off-by-one overflow. The vulnerability was fixed
using the code shown in figure 14.0 .

replydirname(name, mnessage) {
const char *name, *nessage.
char *p, %*ep
char npath[HAXPATHLEN]
p = npath:
ep = &npath[sizeof(npath) - 1]:
while (*name) {
if (*name == '"' && ep — p »>= 2) {
*p++ = *¥name++;
*p++ = "M
} else if (ep - p >»>= 1)
*¥p++ = name++
else
break:

*p = '\0':
replv (257, "\"%s\" %=", npath., message):
H

Figure 14.0 Modified Code with no Off-by-One Vulnerability

94 Reversing Binaries for Identifying Vulnerabilities

The pointers p and ep guarantee that the closing quotation mark is inserted
only if the end of the buffer npath/1023] has not been achieved yet. Pointer p
is also always less than ep , and is not greater than &npath/sizeof(npath)]-1.
Hence when the code *p="\0'; is executed, the null byte is never written past
the allocated space.

4.2.3 Non-Executable Memory

Non-executable memory can also be used to prevent buffer overflow. There
are certain memory pages which are defined to be non-executable by the
processor. Non-executable memory pages can be used to store data. The
processor will not execute code stored in these memory pages. The operating
system can label stack and data pages as non-executable which will prevent an
attacker from running code on them using buffer overflow. Recent versions
of Intel, AMD processors, [A-64 processors provide support for non-
executable memory. Windows XP service pack 2 and above, Solaris 2,6 and
above and Linux provide support for non-executable memory.

It might be possible to exploit the system having non-executable
memory. One of technique used is return-to-libc. By using this technique, the
function’s return address is pointed to a well known, function, (runtime
library function or a system API) which will enable access to the process. This
technique defeats non-executable stacks. However it requires complicated
exploits.

4.3 Heap Overflows

Heap is used from dynamic allocation of data. Address space is allocated in
the same segment as stack; however, it grows towards a stack from a higher
address to a lower address.

Data (Higher Address)
Stack

Heap

_bss static initialized data
.data global

uninitialized data

text Code (Lower Address)

Figure 15.0 Showing the memory arrangement.

4.3 Heap Overflows 95

Memory is allocated by the malloc functions like malloc(), HeapAlloc(),
new(). As shown in figure 16.0, the buffers buffer overflow, buffer normal
are allocated to size 15. The function strcpy is used to copy the string “normal
buffer” to buffer buffer normal. In the next instruction, an overlong string is
copied in the buffer buffer overflow. As shown in figure 17.0, copying overly
long strings in the buffer buffer overflow results in them overflowing the
allocated heap buffer normal, and they are copied with the aaaaa. The heap
overflow does not necessarily result in crashing of an executable. Similar
kinds of overflow can be executed on the stack variables, which are located in
the BSS segment.

#include<stdio. h»
#include<string h»
#include¢stdlib h»

void main(){

char *buffer overflow = malloc(15);
char *buffer normal = malloc(15);

strcpy(buffer normal, "normal buffer");
strcpy(buffer_overflow, "asaasaasaaasssassaasssasasasasssasaasasssaasasa’),

printf("The normal buffer at %p is %= n", buffer normal,buffer normal);
printf("The overflow buffer at %p is %s", buffer overflow, buffer_overflow):;

}
Figure 16.0 showing C code of heap Overflow

Heaps are arranged as a linked list. In heaps, the pointers to the next and
previous heap are placed before and after the actual block of data. Heap
Overflow or the malloc exploit belongs to the other class of exploits which
can be used to take control of the program. In heap-based overflow, the
program receives data of unexpected lengths which are copied into a small
size buffer.

he normal huffer at BxBB146120 is aaaaaaaaaaaaaaaat

he overflow huffer at BxPP146108 is aaaaaaaaaaaaaaaaaaaaaaaadaaaaaaaaaaaaaaat
"C:\lce\lce8\testheap.exe"

eturn code 78

Execution time B.832 seconds

ress any key to continue...

Figure 17.0 Output of the C code shown in figure

96 Reversing Binaries for Identifying Vulnerabilities

This will result in rewriting the address of the block following the heap block
in memory. When the heap manager traverses the modified linked list it will
result in the program crashing. It has to be noted in heap-based overflow that
the Heap grows upwards or the new variable which is created in the heap is
located at the higher memory address. Hence the buffer which overflowed is
located lower on the heap. As shown in figurel8.0, heap allocation consists
of a minimum of eight block size. Besides this there is an additional overhead
of eight block. This is known as a heap control block.

Size of this Block /8 2 Bytes
Size of previous Block /8 2 Bytes
Flags (8 Bit) 4 Bytes

DATA if in use else previous free block pointer 4 Bytes (EAX)
DATA if in use, else next block pointer 4 Bytes (ECX)

Figure 18.0 showing the layout of Heap.
Besides crashing a program as each block has pointer to “next” and “prev”
it might be possible to overwrite memory in address space. To prevent heap
based overflow the canary value has to be placed between all the variables, on

the heap space. This canary value must not be altered through out the
execution of a program.

4.3.1 Heap Based Overflows

Linux OS makes use of dimalloc. The heap memory is organized into chunks.
The chunks contain the information which is used by dlmalloc to allocate free
memory efficiently.

Prev_Size

Size

Data

Figure 32.0 Heap Memory from dimalloc’s view.

4.3 Heap Overflows 97

The value of the prev size element contains the size of the chunk of the
previous to the current one. The value exists only when the chunk before it is
unallocated. Under this scenario, when the chunk of the previous to current
one is allocated, the prev_size is not used and is used by the data element to
save four bytes. The size of the currently allocated chunk is stored in the size
element. It has to be noted that four is added to the length argument and it is
then rounded to the next double word boundary when the function call malloc
is called. It might happen that some of the bits are set to zero due to rounding,
in such a case, dmalloc uses them as flags for attributes on the current chunk.
For exploitation of a heap, the lowest most bit is important. This bit holds the
value of PREV INUSE flag, which indicates whether the previous chunk is
allocated or not. The element data denotes the space allocated by the malloc()
returned as a pointer. In this space, data used by the application is copied.
When the free function call is made, the dimalloc first checks if the
neighboring blocks are free. If the neighboring blocks are free, then the
neighboring chunk is merged with the current chunk providing a large block
of free memory.

Prev_size

Size

fd

bk

Unused Memory

Figure 33.0 showing freed dlmalloc block.

The fd and bk pointers which stand for forward and backward replace the first
eight bytes of the previously used memory. Whenever free is called, a check
is made to ensure if there are any unallocated chunks. The unused memory is
the old memory which was in the chunk. It has to be noted that in dlmalloc,
management information for the memory chunks is stored in-band with the
data. When a chunk of memory is unallocated using fr-ee(), then the chunk is
checked to ensure that it borders the top-most chunk. It might happen that the
chunk which is being freed is set to “not-in-use”. In such a scenario, the
precious chunk is taken from the linked list. It is then merged with the chunk
which is currently free.

98 Reversing Binaries for Identifying Vulnerabilities

#include<stdio.h>
#include<string. h>
#include<stdlib.h>

vold main(int argc. char**argv){

char *buffer overflow = malloc(200);
char *buffer normal = malloc(150):;

strepyi{buffer _overflow, argv[l]):

free(buffer_overflow):
free{(buffer_normal);

¥

Figure 33.0 showing a vulnerable program using malloc.

In figure 33.0, strcpy is performed without bounds checking into the
buffer _overflow buffer. The pointer *buffer overflow points to 200 bytes of
memory. If the input is more than 200 bytes, then it will overflow *buffer
normal as the two chunks are adjacent in memory. The prev size, size and
data of the buffer normal will be overwritten. This vulnerability can be
exploited by crafting a malicious chunk of fd and bk pointers which control
the order of the linked list. The fd and bk pointers will have to be changed for
the address to be overwritten with the address of the exploit code. It might
happen that the overflowed chunk can be at the border of the top-most chunk.
In such a scenario, a macro unlink can be used.

#define P (next)
#define unlink(P)|

{

*(next—>bk + 8) = P->bk; N

*(next—>fd + 12) = P->fd; ~

*(next—>fd + 12)->bk = *(next->bk + 8); ~
*(next—>bk + 8)->fd = *(next—>fd + 12); ~
}

Figure 34.0 showing psuedo code for unlink macro.

As the value of the bk and the fd pointer can be manipulated, a fake chunk can
be crafted. For the fake chunk, the size value has the least significant bit set to
0 (PREV _INUSE off). The prev_size and size value has to be small enough.
Large values may return an in memory access error. It also has to be noted
that 12 has to be subtracted from the address which we are trying to overwrite.

4.3 Heap Overflows 99

prev_size = Oxfffifffc
size = Oxfffffffc

fd = return location — 12
bk = return address

Figure 35.0 showing fake chunk

The address of the return location -12 will overwrite bk +8. A jump
instruction has to be inserted at the return address. This will get past the
malicious instruction at the return address + 8. Figure 36.0 shows the two
chunks, after the overflow occurs with the chunk. The overwritten chunk is
unlinked when the second free in vulnerable program is called. For the exploit
code to get executed, the pointer bk should point to it.

prev_size = unknown
size = 1024

data(p1) = padding
prev_size = Oxfffffifc

size = Oxfffffffc
fd = return location -
12

bk = return address

Figure 36.0 showing over written chunk

The vulnerability exists in MJPEG codec routine. The reason of the
vulnerability is inappropriate validity that results in the mismatch between the
buffer allocation size and the number of bytes to be read.

AVI File format:

Figure 36.1 is the structure diagram describing the RIFF from of the MPEG
AVI format.

100 Reversing Binaries for Identifying Vulnerabilities

RIFF AVI Chunk

LIST hdrl LIST movi
LIST strl 00dc 00dc 00dc
h m
A avih H I |-rame IHrame
¥l t | strhids |[strtMPEG DIB | PR
1 |r v
I I’ i

Figure 36.1 showing the RIFF diagram from MPEG AVI format.
Brief Technical Details

When MJPEG AVI format file is encountered in DirectX software, AVI filter
communicates with the MJIPEG decoder filter. At the time of establishing the
communication with MJIPEG decoder, information about the dimension of the
image is sent. This dimension information is required at the initialization
because output sample buffer is allocated accordingly. As AVI filter should
know the information about the dimension of the image the dimension
information is indicated in a BITMAPINFOHEADER structure. This
BITMAPINFOHEADER structure is found at the stream format chunk. Seo
the memory allocation for streaming is based on the dimension information
present in the BITMAPINFOHEADER structure.

MIJPEG data format has internal header that indicates the dimension
information about the image. MJPEG decoder parsers the dimension
information stored in the header and accordingly determines the number of
bytes to be read in the allocated buffer. Its mandate to ensure image
dimensions information stored in BITMAPINFOHEADER and MJPEG
internal header should match.

Manipulating AVI file

To exploit this vulnerability, the malicious AVI file should indicate the
dimension (size) information of image stored in the BITMAPINFOHEADER
less than the dimension information indicated by the header of MJEPEG file.
This will make number of byte to read greater than allocation size which in
turn results in heap overflow.

This can be achieved either by decreasing the dimension indicated in
the image size tag in BITMAPINFOHEADER structure or by increasing the
size indicated in the MJEPEG structure.

4.3 Heap Overflows

Approach 1:

Decreasing the

number

indicated

n

the

image

size

tag

101

in

BITMAPINFOHEADER structure Use “010” editor to manipulate the value
BITMAPINFOHEADER as indicated below

0010h: 94 FC 00 00 &5 64 72 6C 61
0020h: 57 82 00 00 B4 1F 04 00 O1
0030h: 95 04 00 00 0O OO0 00 00 o2
0040h: OO0 00 00 00 78 00 00 00 00
0050h: 00 00 00 00 00 00 00 00 4C
00e0h: 73 74 72 BC 73 74 72 68 36
0070h: 4D 44 S0 47 00 00 00 00 00
00g0h: 66 17 05 00 50 96 96 00 00
0090h: EO 1z 00 00 00 0O 00 00 00
0O0AOh: E4 00 78 00 73 74 72 66 40
00BOh: B4 00 00 00 78 00 00 00 01
00COR: 00 00 DO DO DO
00DOh: 00 00 00 00 18 00 00 00 00
0O0EOh: 0O& 00 00 00 02 00 00 00 0z
Template Results - AvITemplate. bt
Name

DWORD xxdwQualit:
DWORD xdwSannph

¥
leSize

[=) struct strfHEADER _BIH strf

char id[4]
uink3z2 datalen

[= struck EITMAPINFOHEADER briHeader

uint3z bisize
uint32 biwidth
uint32 biHeight
uint16 biPlanes
uint16 bikitCount
uint32 biCampressi
- v 0e
uint3z2 bixPelsPert
uint3z bivPelsPert
uint32 bickUsed

ian

leter
leter

uint32 biClImpartant

char exDatal24]
struct striHEADER. strn
struct LISTHEADER list[2]

Figure 36.2 Snapshot of file using 010 editor using original value

Approach 2:

76
oo

oo
43
oo
oo
oo
[ls}
oo
oo
oo
oo
oo

oo oo oo “id..hdrlavihd...
08 oo oo W, ’
12 0o oo .
oo oo oo
7D 0o oo
69 64 73
oo oo oo
04 0o oo
oo oo oo
o0 oo oo
4L 50 47
o0 oo oo
o0 oo oo
6E 64 T8
Value Start Size
0 ach 4h
7864500 Ath 4h
Adh 48h
strf Adh 4h
04 Agh 4h
ACh 28h
04 ACh 4h
Eth 4h
120 Bdh 4h
1 Bsh zh
24 BAh 2h
2 BCh 4h
o
0 C4h 4h
) Cah 4h
0 CCh 4h
) Doh 4h
a D4h 18h
ECh 7Dzoh
7EOCh 70h

Increasing the size indicated in the following MJEPEG header structure.
This header structure is preceded with each I-frame(in steaming sub chuck).

Header code (4 bytes)

width (4 bytes, integer, MSB)
height (4 bytes, integer, MSB)
aspectRatioCode (4 bytes, integer, MSB)
frameRateCode (4 bytes, integer, MSB)
bitRate (4 bytes, integer, MSB)
vbvBufferSize (4 bytes, integer, MSB)
constrainedParamFlag (4 bytes, integer, MSB)

By increasing the dimension of the image in the above data structure will
result into the heap overflow.

102 Reversing Binaries for Identifying Vulnerabilities

Note: - we cannot write exploit by only using approach 1

Startup new.avi* (5

0010h: 594 FC 00 00 68 64 72 6C 61 76 £9 68 36 00 00 00 ~i..hdrlavih8...
0020h: 57 82 00 00 B4 1F 04 00 01 00 00 00 10 08 00 00 | Weew eevwnannnns

0030h:
0040h:
O050h:
O060h:
0070h:
O080h:
00S0h:
O0ADL:
O0EOL:
00COh:
00D0Oh:
O0EQh:
Template Results - AW1Template. bt
Name Value Start Size Color
DWORD sdwiuality [1} 9ich 4h Fg Byg
DWORD xdwSampleSize 7864500 Alh 4h Fa: Ba:
(=) struct strfHEADER_BIH strf Adh 45h Fa: Bg:
i [
nk32 datalen 64 Ash 4h Fa: Ba:
(=) struck BITMAPINFOHEADER. briHeader ach zgh Fg: Ba:
uink3Z hiSize 64 ACh 4h Fg: B
Link32 bividth BOh h Fo: Bg:
uink32 biHeight 120 B4h 4h Fg: Ba:
uint16 biflanes i BEh zh Fg: B
uink16 biBitCount 24 Bah zh Fa: Ba:
uink32 biCompression 1196444237 Bich 4h Fg: Ba
Lint32 biSizelmage Coh 4h Fg: Ba:
uink32 bixPelsPerMeter 0 C4h 4h Fa: Bg:
uink3Z2 bivPelsPerteter [1} Ch 4h Fg Bg
uink32 biClrUsed 0 CCh 4h Fa: Ba:
uink32 biClkImportant 0 Doh 4h Fa. Ba:
char exData[24] [m] Didh 15h Fg Byg
struck skrnHEADER, strn ECh 70z0h Fa: Ba:

Figure 36.3 showing manipulated value

Reversing to analyze Vulnerability

The fix for this vulnerability is available with the patch “KB951698”. The
name of the vulnerable binary is quartz.dll Apply bindiff on vulnerable
binary with the patched binary (quarts.dll) Figure 36.4 is the output of the
bindiff showing the list of the functions that are changed

4.3 Heap Overflows

wulnerable binary
ras TAB293TE sub_7F48293F5
Fes e -Ex=1=1s] sub_74838903
res 7484 baeh sub_F434E5EE
Fes 7487284648 sub_7F487EBGS5
res 74883c0f sub_F4383C0OF
Fes F4E8442C sub_7488442C
Fes F48844C2 sub_748844C2
Fes 7488458 sub_748845F8
Fes Fa88547F sub_7488547FF
Fes F4880242 sub_74886242
Fes Fa8864d7 sub_74888407
Fes F4B809227 sub_74886927
Fes F4B88783a sub_7488783A
res 74887 CO sub_F4BBFFCO
Fes 7483884486 sub_74888446
res F4B8BEas0 sub_F48BBAEQ
res F4B88B33da sub_F4858933DA
res 748Badoe sub_F488AD0E
res F4BBR37C sub_F48BE3FC
Fes 74 B83cC398 sub_7488C396
res F48Bchse sub_F48BCESE
Fes Fagadofz sub_748800F2
Fes T4B882228 sub_7488E228
res 74882923 sub_F48BESDES
res F45az207a sub_F4342074
res F4Sac8e0 sub_F43AC8EQ
res 7a4shoFla sub_7F438BCTF1ld
res F4S5Cl96a sub_7F43C1964a
res F4SClool sub_F43C1lCol
res F4Gcleas sub_7F43C1lEES
res T4 BC3053 sub_748C3053
res T4 BC3300L sub_748C3300
res F45c532d sub_F43C532D
res T4 Bc5449 sub_748C5449
res 745cs5hda sub_F43C5B8DA
res 74 sceddf sub_F43CEDDF
res 745cefas sub_F48CEF4S
res 74 sdsddo sub_7F43D500D0
res F45dcoas sub_F48DCoad
res 745Tbsd7 sub_F48FBSDT
Fes Fasffa1o sub_748FF410
Fes F490le3a sub_74901EZ6
res F4o90adef sub_7490841EF
res FAo0e3C6 sub_7490E3CE
res 748d8adz sub_748D8AD2

FPatched binary

F489bf5a sub_VA4B9EFS5A

F48584638 sub_74838630
FA484b5am sub_7484B64A59
748F7esSee sub_F4B7ESEE
74883dof sub_74883D9F
748843hbe sub_74 884 3BE
74884447 sub_74884447
7488457a sub_7488457A
748875089 sub_7F4887569
74884acd sub_74884EC4
FagaF2cd sub_748872CD

F48BcClad sub
Fa88771ld sub

FA488CL3D
FA887 71D

Fa882T1LY sub_74889F1l9
748a0lan sub_74 840140
T4 888933 sub_74 888953
F4B88926a sub_74 3859264
7a88abas sub_74 88AB68
7488677 sub_7488677FE
74882100 sub_7488EL100
74B838c926 sub_7F4B8B8CD26
F48Bcehb0O sub_F4B8CEBD
7agafoaf sub_74 B8F0AF
748828a5 sub_7488EBAS
T4 8955ad sub_748965E4
FABFFASL sub_74 877054
7a4shcscf sub_7F43BCECFE
T48cla9az sub_748C1lasz
FA4BcldEs sub_748C1DS85
FA48cATd7 sub_748C1lFDT
T4 8c315cC sub_748C315C
748339 sub_74B8C3I3F9
T4 8c54ch sub_748C54C5
F48c550d9 sub_748C5509
745c5d3a sub_F48C503A
T4 B8c6240 sub_74B8CEE4 D
745cEfae sub_7F48CEFAE
748dadls sub_74 808013
F48dc85c sub_F48DCE5C
4904177 sub_749041 77
7487830b6 sub_748730E6
748bT7as sub_748BF795
FT4S0a3a3 sub_74504343
F490eldc sub_7490E1DC

748dshob sub

Figure 36.4 showing the output of bindiff function. .

F4EBDEESE

There are approximately 50 functions that have been changed for the

binary.

Yulnerable binary

74846k
7483844 20
FA3844c2
FAB8A5E8
FABB6242
742386447
TA488TE3a
F488adle
F488L37c
FABBc396

sub_74B84B6ER
sub_74388442C
sub_748844C2
sub_FA48845F8
sub_ 74886242
sub_ 74886407
sub_74B8BTEEA
sub_F48EADOE
sub_7488E37C
sub_7A8BC356

Patched Binary I
F484b6a? sub_T4B4B654A9
F48843be sub_T4E843EE
FABBA44T sub_TA4BE4447
FABBA5Ta sub_TA48B457A
F4884ecd sub_J4BB4EC4
F48872cd sub_F43872CD
FA4B87F71d sub_T4BET71D
F488ab68 subk_T488LABEE
FA88677e sub_TF48867T7E
F482e100 sub_T4EEE100

Figure 36.5 showing functions which have been modified.

T R R N

103

patch

Carefully analyzing the function sub 7488 AB68 (ID 8) will take close to
the routine where the fixed code has been added. The address of the routine
in which validation has be added 74882EBA and its equivalent subroutine in
vulnerable dll is at 74882EFC

Vulnerability 1: -

104

The assembly code shown in figure 36.6 is vulnerable because the size of
image (number of bytes to be read) is calculated using the parameter present
in JEPEG header and the JEPEG header parameters are not validated against
the parameters stored in the BITMAPINFOHEADER that is used for

Reversing Binaries for Identifying Vulnerabilities

calculating the size for allocating memory.

push
call
nov
test
inz
noy
nov
inul
add
and
nov
noy
dec

Loc_T4882FDC:
inul
add

Loc_THB2FE2:
nov

jmp short loc_74883662

[>78

sub_748844C2

al, [edi+380h]

al, al

short loc_74882FER

eax, [ebx+dch]

esi, [eaxtd] ; Reading binidth data member from structure BITHAPIHFOHEADER
esi, [edi*224n] ; Accessing JPEG header information to calculate the number bytes For each scan line
esi, 3

esi, OFFFFFFFCH

[ebp+var_2024], esi

eax, [eax+8] ; Reading biMeight data member From structure BITHAPINFOHEADER
eax

; CODE XREF: sub_TUSB2EFC+120)]
pax, esi ; Calculating the IHAGE SIZE
eax, [ebx+16h] ; Adding the calculated size to the allocated strean buffer

3 CODE NREF: sub_T4882EFC+195}]
[ebpevar_2020], eax ; Filling of the stream buffer will be done From the end

Figure 36.6 showing the assembly

Vulnerability 2: -

Figure 36.7 shows the code for data into the streaming buffer. The filling of
buffer is done in reverse order. If the pointers into the allocated buffer
decrement below the beginning of the allocated streaming buffer the rest of
the scan lines are read into a stack buffer of size 0x2000. The code shown in
figure 36.7 is vulnerable as the scan line can be of any size and the size of the

buffer is 0x2000. This can result into buffer overflow.

4.3 Heap Overflows

«LEXL. 400020

.text:74883056 loc_7uB83056:

JLext 74883056
Jtext 74883050

nov

LLext:7488305C loc_7u8e30sc:

Jtext 74883050
Jtext:74883062

nov

LLext:74883062 loc_Tuee3062:

Jtext 74883062
Jtext: 74883062
Ltext:74883068
Jtext:7488306E
Ltext 74883070
Jtext 74883072
text 74883075
Ltext 74883077
Ltext 74883070
Ltext:7488307E
Ltext:74883084
Ltext:74883089
Jtext:7488308F
Ltext 74883091
Ltext:74883096 ;
Jtext:74883096

g

Jtext: 74883096
Jtext:7488309C
Ltext:7488309D
Jtext:74B83003
Jtext:74883008
LLext 74883008 ;
tagt=T4RAAAA

push

LLext:74883096 loc_7H883006:

; CODE XREF: sub_7ABS2EFC+241
esi, [ebpvar_2024]

; CODE SREF: sub_TUB82EFC+1ACY]
pax, [ebp+var_2620]

; DODE REF: sub_TABSIEFC+ECT

; sub_TGB2EFC+1581
ecx, [edi+296h] ; Hunber of tine loop executed
ec, [edi+2781] ; Accessing JPEG header to get height of the inage
short loc_748836AA ; Exit if loop count is greater then image size
1
eax, [ebx+16h] ; Compare if the offset pointer has gone down
short loc_74883696 ; If the offset pointer gone down plz copy it in buffer
eax, [ebpHuar_2620]
eax
[ebp+var_2028] ; Storing in Heap
sub_74884593
eax, [ebprar_2620)
pax, esi
loc_T4882FE2

; CODE HREF: sub_74B82EFC+179%
eax, [ebptvar_2034]
[ZH]
[ebpsvar 2628] ; storing in buffer
sub_74884593
short loc_T4883056

Figure 36.7 shows the assembly code

Writing Exploit:-

The binary can be exploited in various ways.

techniques that can be used to write an exploit

Technique 1

1. Change the width value stored in the JPEG header such that it

becomes greater than the “biwidth” value stored in
BITMAPINFOHEADER structure.
2. This will result in heap overflow.
Following is the reason
The following two lines of the “vulnerable code 1 snippet”
calculates the number of bytes for each scan line
.text:74882FC2 mov esi, [eax+4] ;
.text:74882FC5 imul esi, [edi+224h] ;
Here the first line access “biwidth” value stored in
BITMAPINFOHEADER structure and the second statement is
access the JPEG header information to calculate the number
bytes for each scan line. if we increase this value in the JPEG
header heap overflow can very easily be triggered. That can

105

Following are the two

106 Reversing Binaries for Identifying Vulnerabilities

result in overwriting the next pointer value of the heap data
structure.
Technique 2:-

1. Change the value of “biheight” member of
BITMAPINFOHEADER structure such that the image height
stored in the JPEG header should be greater then the
BITMAPINFOHEADER biheight. This will force the binary to fill
scan lines in the buffer which is of size 2000.

Following is the reason for it

Reading size is calculated by referring the
BITMAPINFOHEADER Dbiheight. Please refer following line
from the “vulnerable code 1 snippet”

.text:74882FD8 mov eax, [eax+8]
.text:74882FDB dec eax
.text:74882FDC imul eax, esi

Here the first line access “biheight” wvalue stored in
BITMAPINFOHEADER structure.

Number of time loop need to be executed is determined by the
value stored as a height field in the JPEG header.

Please refer following line from the ‘““vulnerable code 2

snippet”
.text:74883068 cmp ecx, [edi+278h]
.text:7488306E jnb short loc_748830AA

So buffer overflow can be triggered if we change the JPEG header
accordingly and rest of the scan lines will be stored in the buffer of limited
size.

4.4 Integer Overflows

Integer overflow happens because of the values held in a numeric data
types are limited by the data type’s size in bytes. In ANSCI C, the character’s
size is 1 Byte, short takes 2 bytes, integer takes 2 bytes and long is 4 bytes in
size. The range of data types depends upon whether they are signed or
unsigned. A signed 2 bytes short will take values from -32767 and 32767 ,
whereas an unsigned short will take values between 0 and 65535. This is
important to note because if an attempt is made to put a value in a data type
which is too small to hold for unsigned data types, the higher order bits will
be dropped. Modulo arithmetic is performed on the value before they are
stored.

4.4 Integer Overflows 107

Stored = value % (limit +1)

This ensures that high unsigned values fit the data type. Explaining it with an
example, if the maximum value which an unsigned data type can hold is
65535 and if a value of 65536 is entered, then 0 will be stored. This can be
computed by 65536 % (62535 +1)=0

include <string.h>
include <stdio.h>

nt maind) {

unsigned int a
uns=igned int b
int c 100;
int d 200;

wn

if(a>b)
printf{"Un=igned Integer Comparison~n"):

if{c>d)
printf{"Signed Comparison>~n"):

Figure 19.0 C code showing signed and unsigned comparison

For signed data types, the first half of the range (0 thru 0111 1111 1111 1111)
are used for positive numbers. This is done in order of least to greatest. The
second half of the range is used for negative numbers in order of least to
greatest. So if the maximum limit for the signed type is 32767, and if 32768 is
being stored in the data type, it will be represented as 1000 0000 0000 0000
and the value -32768 will be stored.

MOV DWORD PTR S5:[EBP-41,6A
MOY DWORD PTR SS:[EBP-81,14
MOV DWORD PTR S95:[EBP-C],54
MOV DWORD PTR $S5:[EBP-18],8C3
MOV EDI,DWORD PTR $S: [EBP-2]
CHP DWORD PTR SS:[EBP-41,EDI
| JBE SHORT Linklist,08401558

[PUSH Linklist.20408R007 Aral = BB48AB07 ASCII "Unsigned Integer G
\EEELEélnklist.BB4B?245 link list.BB407245
|

P, 4
}HUU EDI,OWORD PTR $5:[EBP-18]
CHP DWORD PTR 5S: [EBP-C],EDI
| JLE SHORT Linklist.B8481378

[PUSH Llinklist.0040R0C4 Aral = BB48ABC4 ASCII "Sianed Comparisonl
}ESBLEégnslist.Ba4ﬁ?245 linklist.B08407245
| ’

Figure 20.0 showing the assembly instruction for signed and unsigned
comparison in C code shown in figure 19.0

108 Reversing Binaries for Identifying Vulnerabilities

Conditional and unconditional codes are the two different conditional codes
in [A-32 assembly language. The conditional code used in a conditional jump
exposes the exact data type, used in comparison, in the original source code.
As shown in figure 20.0, if the instruction JG /JLE/JGE is used then it denotes
that the buffer length/length is treated as a signed integer by the compiler. If
the instruction JA/JBE/JAE/JNB is used, then the compiler is treating buffer
length/length as the unsigned integer.

4.4.1 Types Integer Overflow

Signed overflow bugs happen generally when
e Signed integers are used for comparison
e Signed integers are used for arithmetic
e Unsigned integers are compared with the signed integer.

#include <stdlib. h>
#include <stdio.h>
#include <string.h>

int main() <

int b = 0Ox7fffffff:
char buffer[20]:

printf("The wvalue of b + 1 is %d ~n"., b+l1l):
if{ (b +1) < 20) {
strcpy(buffer. "Il am overflowing buffer"):
¥
ki

Figure 21.0 ¢ code for signed integer comparison leading to overflow.

Signed integer overflow is explained with the example shown in
figure 21.0. As shown in figure 21.0, the signed integer b has value Ox7fffffft.
Character buffer of size 20 is allocated. As shown in figure 22.0, in the
assembly, this value is loaded in the DWORD PTR SS:[EBP-4]. This value is
then moved to EDI, which is incremented by 1. This is then compared with
20. Since the instruction JGE is used in comparison, from assembly it can be
inferred that the value Ox7fffffff stored in ESI, has been declared as signed.
So the instruction EDI +1, will result in -2147483648. This is less than 0x14
so the comparison will be false, resulting in a buffer overflow. Here, it can be

4.4 Integer Overflows 109

seen that signed integer comparison can result in passing the checks. In many
of the applications, these types of checks are present to ensure that the value
passed inside the buffer is less than the size of the buffer. Buffer length should
always be an unsigned value as there cannot be negative or zero buffer length.
Hence signed buffer checks which can be identified by instructions
JG/JGE/JLE can result in an overflow.

. C745 FC FFFFFI MOV DWORD PTR SS5: [EBP-41, 7FFFFFFF

. 8B7D FC MOU EDI,DWORD PTR $5:[EBP-4]

. 83C7 81 ADD EDI,1

. 57 PUSH EDI Arg

. £3 BPAB4608 |PUSH testabh.dB40RGBT Ar :1 = BE48ABBI ASCII "The value of b +1

. E2 F7SEGB08 |CALL testabh.@@4871F9 tettal:h Ba4a71F2

. 83C4 @8 AODD ESP, 8

. 8B7D FC MOY EDI,DWORD PTR S5:[EBP-4]

. 83C7 81 ADD EDI, 1

. B3FF 14 CHP EDI, 14

~7D 11 JGE SHORT testabh.08401321

. 63_ROAB4608 |FUSH testabh.BB840RBA0 ASCII "I am overflowing buffer@”
807D ES LEA EDI,DWORD PTR SS: [EEP-181

« 67 FUSH EDI

. E8 O72E@008 |CALL testabh.0B4@84125

. 83C4 @8 AODD ESP, 2

3 B ooeeesee | MOU EAX, O

= SF POP EDI

Figure 22.0 showing the assembly code for the C code shown in figure 7.0

For signed integer overflow, movsx is the other instruction which should be
monitored in assembly code for overflow.

movsx esi, DWORD PTR SS:[EBP-4]
Figure 23.0 copying using movsx instructions

The code shows in Figure 23.0 copies the parameters from stack to esi
register. It treats the length stored in SS:[EBP-4] as signed short and hence the
sign extends it. In case, the parameter (which could be buffer length) has its
most significant bit set, it will be converted into a negative 32- bit number.
For example, if the length is 0x9600 (equivalent to 38400 in decimal), it will
become 0xffff9600 (equivalent to 4294940160). If the esi holds the length of
data which can be copied in the buffer, the instruction shown in figure 23.0
will result in buffer overflow. If the length is defined as an unsigned short, the
instruction MOVZX will be used. MOVZX makes the extended integer zero
during conversion. The most significant word in the target 32-bit integer is set
to zero. Hence the numeric value remains the same.

110 Reversing Binaries for Identifying Vulnerabilities

#¥include <stdlib.h>
¥include <stdio.h>
¥include <string.h>

int main() {

unsigned int b = O=xffffffff;
char *buffer;

printf{"The value of b + 1 is %d “~n", b+l);
if((b +1) < 20) {

buffer = {(char*)malloci{b+1l);
strcpy(buffer., " I am overflowing buffer"):

¥

)
Figure 24.0 C code for the Unsigned Integer overflow.

Like the signed integer overflow, unsigned integers can also be used
to perform overflow. As discussed earlier for an unsigned integer, if an
attempt is made to store the value which is greater than the data type, the
integer will be truncated. As shown in figure 24.0 for the C code, the value of
the unsigned int b is Oxffffffff. The operation b+1, will result in 0, hence the
buffer will be allocated and will be overflowed by strcmp instruction. As
shown in figure 25.0, in the assembly, the instruction JNB is used. JNB
denotes that the value stored in EDI is an unsigned integer.

MOU DWORD PTR 55:[ESP+ECK#41, FFFASASA
JNZ SHORT testur.B@40120E

PUSH EDI

1MOY DWORD PTR SS5:(EBP-41,-1

MOV EDI,OWORD PTR SS:[EBP-4]

ROD EDI, 1

PUSH EDI [ﬁpq&

PUSH testvr.B@40A0R0 Aral = BB40ABAB ASCII "The value of b + 1 is #d E
CALL testur.B8@4@71F2 testur.Ba4a71F9

ADD ESF, 2
MOV EDI,DWORD PTR SS:[EBP-41

CHMP EDI, 14

JNB SHORT testur.B@401321
MOU EDI,DWORD PTR $S:[EBP-41
ADD EDI, 1

PUSH EDI size
CALL <JMP.&CRTOLL.mal loc> mal loc
AOD ESF,4

MOU DWORD PTR SS:[EBP-81,ERX
MOV ERX, @

POP EDI

LERVE

RETH

Figure 25.0 Assembly code for the C code shown in figure 9.0 showing
unsigned Integer Overflow.

4.4 Integer Overflows 111

In an application code, the integer overflow can be exploited, when
calculation is made, about how large a buffer must be allocated. Application
code generally makes use of calloc or malloc routines. These routines aid the
reservation of space by multiplying the number of elements by the size of an
object. Signed/unsigned checks can lead to error conditions. If there are some
comparison checks signed bufferlen <= Max buffer size, or if the signed
buffer length is less than zero, it will satisfy the condition that the signed
buffer length should be less than the maximum buffer size. It also has to be
noted that the buffer lengths which are entered as inputs cannot be negative
values. A negative value is treated as a very large number. If the memory
allocation has been done based on an unsigned integer data type or if the value
is wrapped around then there will be very less memory. If the comparison is
done based on the signed integer value, and some other number, or the
condition signed integer value is less than the other number value, and if the
other number value has overflowed into a negative value, the comparison will
pass.

4.4.2 CAN-2004-0417 CVS Max dotdot Protocol Command Integer
Overflow

A new memory buffer is allocated when the CVS server gets a Max-
dotdot command and converts it into a numeric string. This numeric string is
passed by the CVS client to an integer value. For storing the path names, the
CVS server allocates the memory which is two times larger than the supplied
number in the Max-dotdot command along with the length of original
temporary path names. The C code shown in figure 26.0 shows the vulnerable
function in the server.c file which performs the calculation.

serve_max_dotdot (arg)
char *arg;
int lin = atoi {(arg):
[544]
(lim < 0)
return;
p = =malloc (strlen (server_ temp dir) + 2 * lim + 10):

Figure 26.0 Vulnerable C code in Server.c

It can be seen that the lim is defined as a signed integer. 2147483634 is the
minimum value for a 32 bit platform which will result in integer overflow.
The code that fills the new buffer is shown in figure 27.0

112 Reversing Binaries for Identifying Vulnerabilities

strcpy (p, server_temp_dir):
for (1 = 0; 1 < lim; ++1)

strcat (p, "/d");

Figure 27.0 C code filling the buffer

%d It converts an integer to a signed decimal string
%u This converts an integer to an unsigned decimal string
%l This converts an integer to a signed decimal string. An integer may
be in decimal or octal format.
%0 This converts the integer to unsigned octal strings
%X This converts an integer to unsigned hexadecimal string
%c This converts an integer to the Unicode characters it represents
%s This inserts the string
%f This converts the floating point number to a signed decimal string
%e or %E This converts the floating point to a scientific notation in the form
x.yyye+-zz. If the precision is 0, then no decimal point is displayed in
the output.
%g or %G Uses exponential format if exponent is greater than -4 or less than
precision, decimal format otherwise.
%n Records the number of characters so far.
Yor String (converts any python object using repr ()).
Y%p The void * pointer argument is printed in hexadecimal

Figure 28.0 Format Specifiers in C function

In case of integer overflow, the memory buffer will be too small to store all
the data copied to it, hence a heap overflow will be triggered.

4.5 Format String

Various functions like printf(), fprintf(), vprintf() and sprintf () use
formats strings. The format gives the programmer a degree of control over

4.5 Format String 113

how the text should be printed, therefore allowing the programmer to control
the output. Figure 28.0 shows the list of format specifiers in the C function.
These format functions take the format strings as the first argument and an
equal number of variables for the format strings. Therefore, if four format
specifiers exist in a function there will be four arguments in the function. The
format string controls the behavior of the format function. The function
retrieves the parameters requested by the format string from the stack. For
example for the C instruction

printf (“ The value of %d : %08x\n", a, &a);

from within the printf function the stack looks like:

ESP — Return Address

ESP+4 — Offset of string “The value of %d : %08x\n”
ESP+8 —Value of a

ESP+12 — Address of a

The format function now parses the format string ‘a’, by reading a single
character at a time. If it is not "%/, the character is copied to the output. If the
character is %, the character behind the %' specifies the type of parameter
that should be evaluated. The string \%%" has a special meaning;: it is used to
print the escape character "%'. Every other parameter relates to data, which is
located on the stack. The format specifiers direct the function to read from the
corresponding arguments. If the address is not in the valid range it might
result in a read violation

4.5.1 Format String Vulnerability

The behavior of the function can be controlled by using format strings. Poorly
written C programs use printf(string1) (lets call it a first function), instead of
printf(“%s”,string1) (Lets call it a second function). Functionally, the first
function works well. The format function is passed to the address of the
string, as compared to the address of a format string and it iterates the printing
of each character.

114 Reversing Binaries for Identifying Vulnerabilities

#include<stdio.h>
#include<string.h>

void maind){
char buffer[100];
strcpy(buffer, "Abhishek"):
printf{buffer);
printf{"%=s" buffer):

i

Figure 29.0 showing C code with and without format specifiers.

However, if String stringl = “%08x.%08x.%08x.%08x” in the function
printf(string) and is passed as a parameter then, the printf function will print
the address of memory locations instead of the value of the string. This is
exploited for format string vulnerability. The functions that are prone to
format string vulnerabilities are printf, fprintf, sprintf, snprintf, vfprintf,
vprintf, vsprintf, vsnprintf.

call strcpy

add esp, 8

lea ecx, [ebp+var_o64]

push ecx

call printf

add esp, 4

lea edx, [ebp+var_o64]

push edx

push offset asc_42061C ; "%"
call printf

Figure 30.0 showing the assembly code by IDA pro for the C code in figure

The figure 29.0 shows the C code with and without format specifiers. The first
printf() does not makes use of format specifiers and is prone to format string
vulnerability. In the case of the second printf(), a format specifier is specified.
Figure 30.0 shows the assembly instructions by using IDA pro disassembler
of the C code shown in figure 29.0. For the printf without format specifiers, as
seen in assembly, only the variable is pushed on to the stack., where as for the
second printf, format specifiers along with the variable are pushed onto the

4.5 Format String 115

stack. While analyzing binaries which are not prone to format string
vulnerability, if n number of arguments is pushed on to the stack before
making a call to the printf family of functions, an n number of format
specifiers should be pushed onto the stack. If the number of format specifiers
is less than number of arguments, then the assembly code is prone to format
string vulnerability.

The attack due to the format string vulnerability can be divided into
three parts: format string vulnerability denial of service attack; format string
vulnerability reading attack and format string vulnerability writing attack. The
format specifier “%n”, directs the function to store the number of characters
that have been output so far to an integer indicated by a pointer to an
argument. This conversion specifier gives the attacker a capability to write to
the random memory address and perform format string write attacks.

4.5.2 Format String Denial of Service Attack

The format strings vulnerabilities can be used to make a process crash. In
UNIX, illegal pointer access is caught by a kernel and it sends a SIGSEGV
signal. The process is terminated and dumps core. Supplying format strings
can easily trigger invalid pointer accesses and hence perform a denial of
service attack.

printf { "“n“n“n’nn“n¥nZnxn") ;

Figure 31.0 printf functions with format specifiers
In figure 31.0, %d will display memory from an address that is supplied on
the stack, which stores other data also. If a large number of %d are specified,
then an instruction might read from illegal addresses, which are not mapped.
This in turn will result in a denial of service attack. Similarly, %s can also be

used to read the data from the stack. Again, a large number of %s will try to
read the data from illegal addresses, which again will result in a crash.

4.5.3 Format String Vulnerability Reading Attack

Format strings can be used to perform reading attacks where the content of
stacks can be viewed. For example, C instructions like

printf(*“%08x.%08x.%08x.%08x\n”"); will give the following output:

0012£fc0.0040212bc.00000001.00144d28.00144440

116 Reversing Binaries for Identifying Vulnerabilities

This is a partial dump of the stack memory. Based on the size of the format
string and the size of the output buffer, a large part of stack memory can be
reconstructed. It is also possible to retrieve the entire stack memory. The %s
format parameter can be used to read from the memory address. The %s can
retrieve the address and print the desired value. If, in the C instruction the
fourth parameter is %os,

printf("%08x.%08x.%08x.%s\n");

the value located at the address 0x00144440 will be printed. If the value at the
address is a string or the address is of a legal value, then the value will be
printed. This information can in turn be used to find out the flow of program,
local variables and can be used for successful exploitation. If the value of
address is not a legal value, as seen earlier, it will result in a segmentation
fault. %zx, %d and %c are the format specifiers which can be used to view the
content of stacks. %x and %d retrieve the double word from the stack and
display them in hexadecimal or decimal format. The format specifier %x
displays only one double word, which is located on the top of the stack.
Format specifier %c, retrieves the paired double word from the stack. It then
converts it into the single byte of type character and displays it as a character,
discarding the three most significant bytes. Hence, N specifiers display 4*N
bytes. The maximum depth is equal to 2*Y, where Y is the maximum allowed
size of user input in bytes.

4.6 SEH (Structure Exception Handler)

SEH (Structure Exception Handler) is one of the most reliable ways to gain
the code execution flow to execute shell code through stack-based overflow.
SEH structure exception handler mechanism can be used to handle both
hardware as well as software exceptions. Through SEH, the application can
dynamically register and unregister exception handler function in SEH chain.
And at the time of exception, this SEH chain is accessed and each of the
exception handlers in the chain is given the opportunity to either handle the
exception or pass it on to the next exception handler. The way the chain is
maintained and accessed is discussed below. The sample asm program shown
in figure 38.1 explains it in detail.

4.6 SEH (Structure Exception Handler) 117

#include <windows.h>

vold main{(int argc, char* argv([])

int 1 = 6;

1HE. §%
__try
1
i =1+ 3:
i= 1% 9;
i=1i - 3;
¥

__except (EXCEPTION_EXECUTE_HANDLER)

printf { "Exception Zexro"):;

Figure 38.1 C code having exception

The list of registered exception handler functions is maintained through linked
list data structure. This list is called SEH chain. The nodes of these lists are
created on the stack.
The structure of each node of this link list is as follows:-
_EXCEPTION_REGISTRATION {
struc prev dd ?
handler dd ?
} EXCEPTION_REGISTRATION ends

The operating system maintains this list for each and every thread.

The disassembled code shown in figure 38.2 of application in figure 38.1
will explain in great detail about the internals how SEH blocks are registered
and maintained in the chain. The instruction in figure 38.2 registers the new
exception handler in the SEH chain.

118 Reversing Binaries for Identifying Vulnerabilities

| mou ebp, esp

b push BFFFFFFFFh

; push offset unk_4050A8

I push offset unknown_libname_1

b mouv eax, large fs:@
push eax

[mou large fs:8, esp

] sub esp, 16h

i push ebx

| push | esi

. push edi

b mouv [ebp+uvar_ 18], esp

[zor eax, eax

b mou [ebp+uar_4], eax

b mouv [ebp+var_1C], 9

: mou [ebp+var_26], eax
mou eax, 9

| cdq

b Xovr ecx, ecx

) idiv ecx

: mou [ebp+var_1C], eax

’ jmp short loc_48185A

PR e . IO AL = S

b mou eax, 1

! retn

Figure 38.2 showing the disassembled code of C

The first instruction PUSH XXXX. Push is the address of the exception
handler function. This is the function that needs to be called when an
exception occurs while executing instruction the current thread contest. After
pushing the exception handler function a next instruction is to Push the fs[0]
value. Fs registers can be used to access the thread environment block of
currently executing thread. And the very first four byte of the thread
environment block points to the head of the SEH chain. The instruction push
fs[0] pushes the start of the SEH chain address in Stack. Pushing these two
values creates a complete exception node in the stack. And the current value
of ESP points to this newly created node. The next instruction mov fs[0] , esp
moves the address of the newly created node into the TEB of currently
executing thread. This implies three instructions are creating a node and
adding an exception handler node in the SEH chain in which the first two
instruction is creating a node in the stack and the last instruction adds the
newly created node at the top of the list. When an exception occurs in any
thread this chain in accessed and exception handlers listed in the top of the
node is invoked first.

The SHE chain can be viewed in olly dbg though the option view >> SEH
chain. As shown in figure 38.3

4.6 SEH (Structure Exception Handler)

OllyDbg - test.exe
File BUEEN Debug Plugins Options Window Help

= Lo Alb+HL
= Executable modules Alt+E
Memory Alb+H

Heap
Threads
‘Windows
Handles test.Be4B1505
cPU Alt+C | ‘E@ kernel32.7G839ACE
Patches Chrl+P
Call stack AlEHE
Breakpoints Alt+B
‘Wakches agan
References TR 55: [EBF-<1,EBX
RO FTR Fo:[13]
Run trace RO PTR DS: [CEAR+4]
TR 551 [EBP-TCT,EBX

Source: T . BA4E33TE
Source files

RO PTR DS:[<EKERNELSZ, Interlocks kernel32, Inte
File test, 08401093
Text file T test.nRdaLASE
. S wevES T

R0 FTR SS: [EBP-1C1,EST

RT test. Badalage X v

e PRRSETTS

Figure 38.3 showing SEH chain

4.6.1 Exploiting the SEH

119

As shown in figure 38.3, each exception register node is created on the stack
and hence SHE vulnerability can be exploited. As already discussed each
structure record contains the address of the handler function and pointer to the
next record. The handler function address is referred and it is called when any
exception occurs while executing any instruction. By overwriting the
exception handler routine function address that is stored in the stack and flow
of the application can be changed and further it can result in execution of
malicious code. The code in figure 38.4 is of sample vulnerable application

with SEH implementation

120 Reversing Binaries for Identifying Vulnerabilities

Finclude <windows. h>

woid main{(int argc. char* argv[])

int i = 8:3:
char buffexr[1l0] = {0}:
—__try
i
strecpyv(buffer. argv[1]):
i =1 + 3:
3 = i % 9:
i=1i -~ 5:l

except (EXCEPTION_EXECUTE_HANDLER)

printf{ "Exception Zerao"):

el mlv

Figure 38.4 showing sample SEH application

The figure 38.5 shows the status of the stack after creating and registering the
exception handler node in SEH chain. As shown in the figure 38.5 the node is
created in the stack. Here the wvulnerability is application is coping the
command line parameter passed to an application in a stack buffer without
verifying the length of the buffer which can lead to buffer overflow. The
figure 38.5 also shows where the passed command line parameter is getting
stored in the buffer.

Figure 38.6 shows how this vulnerability is exploited in such a way that it
overwrites the function address of exception handler routine that can further
lead in changing the execution flow of an application. Here by providing very
long string of “AAAA..... “ overwite the stack location that stores the value
of the exception hander functions address with the value 0x41414141. Now if
this application raises any exception then rather than executing the original
exception handler location 0x41414141 will get invoked. Instead of writing
“AAA...” exploit code can be written which can lead to the execution of the
code.

4.6 SEH (Structure Exception Handler) 121

B IDA View ESP

00481018 var_ 16= dword ptr -10h B012FFO8 unk 12FFB8 dd 1B1CDCh

88481818 var_4= duword ptr -4 * 8812FFBC dd a

004081018 arg 4= dword ptr OCh * @O12FF18 dd 7FFDEQAGH

28481818 B812FF14 ; [BEGIN OF STACK FRAHE _main_#@. PRESS KE

. OO12FF4 var 6C db OCCh

86481011 mov ebp, esp * 8812FF15 db BCCh ,BCCh ,B8CCh ; 1!

86481012 push BFFFFFFFFh * B8812FF18 dd 8CCCCCCCCh o

004810815 push offset unk_ 420030 * B812FF1C dd BCCCCCCECh

88481814 push offset unknown_libname_1 ; Hicros) * 8812FF28 dd BCCCCCCCCh Buffer lpcation whete strepy

0048101F mou eax, large fs:8 * 0012FF24 dd 8CCCCCCCCh copiss the buffer

88481825 push eax * @812FF28 dd BCCCCCCCCh ;

00401026 mou large fs:8, esp * 8012FF2C dd BCCCCCCCCh

88481820 add esp, BFFFFFFA4h * 8812FF38 dd BCCLCCCCCCh

804810638 push ebx * B812FF3% dd BCCCCCCCGCh

88481831 push esi * @812FF38 dd BCCCCCCL) E

80481032 push edi * 8812FF3C dd BCCCCGE ~ Registered sxception

884810833 mou [ebp+uar_18], esp * BB12FF48 dd BCC o handler node

804081036 1lea edi, [ebp+uar_6C] T 0012FF4l dd GBCCCCCCCh

280491839 mou ecx, 15h * @812FF48 dd-8CCCCCCCCh |

8848183E mou eax, BCCCCCCCCh * 8812FFACAd BCCCCCCCCh

00401043 rep stosd B8012FEE® dd BCCCCCCCCh ;

00481045 mou [ebp+uar_1iC], & WETZFITH alest db "Test™, 0 —

0040104C mov [ebp+Dest], B B812FF57 var_: dd o

884810858 xor eax, eax * @B12FF5D var_23 db 8

00481052 mou [ebp+uar 2B], eax * 8012FF5E dw BCCCCh ; ||

88481855 mov [ebp+uar_27], eax * B812FF68 var_2@8 dd BCCCCCCCCh

00401058 mou [ebp+uar 23], al T DO12FFA4 var_1C dd 6

00481058 mou [ebptuar 4], @ * BO12FFAE war_18 dd offset unk_12FFB88

88481862 mou ecx, [ebprarg_a] * BB12FF6C dd 83h ; &

00481065 mov edx, [ecx+i] * PE12FF78 var_10 dd offset off 12FFBA

868481868 push edx ; Source < dd 481298h ; unknoun_libname 1

00401062 lea eax, [ebp+Dest] I 12T

8848186C push eax ; Dest * BB12FF7C var_4 dd 8

80481060 call strepy * 0012FF80 saved fp dd 12FFCBh ; Stack[00001220]:
* 8812FF84 retaddr dd 4B14590h ; start+E9

004010675 mou ecx, [ebp+var_ 1C] * OOB12FF88 dd 2

8p4p1p18 var_18= dword ptr -18h B812FF B8 dd ack[88BB13A4] :Dest

88481018 var . dword ptr -4 8812FF B4 dd 43BES5h =]
88481618 arg 4= dword ptr 6Ch * BE12FFO8 dd 4B1GDCh ; _
80401018 * BB12FFBC dd]
* BB12FF18 dd 7FFDYBBEBh
80481611 mov ebp, esp 8812FF14 ; [BEGIN OF STACK FRAME _main_ 0. PRESS KE

B812FF14 var_6C db 8CCh
8812FF15 db BCCh ,BCCh ,BCCh

80401013 push BFFFFFFFFh
pO4O1015 push offset unk 420830

00481818 push offset unknown libname_1 ; Micros BB12FF18 dd BCCCCCCECh
8040161F mov eax, large fs:@ B812FF1C dd BCCCCCCCCh
804081025 push eax 8812FF28 dd BCCCCCCCCh
00401026 mou large fs:@, esp G012FF24 dd BCCCCCCCCh
80401020 add esp, BFFFFFFA4h B812FF28 dd BCCCCCCCCh

BB12FF2C dd BCCCCCCCCh
B8812FF30 dd BCCCCCCCCh
B812FF34 dd BCCCCCCCCh

80481038 push ebx
80481831 push esi
804081032 push edi

DR S T T R S S S A

004010232 mou [ebp+uar_18], esp BO12FF38 dd BCCCCELLCh
080401036 lea edi, [ebp+uvar_6C] B0812FF3C dd BCCCCCCCCh
88401039 mov ecx, 15h 80812FF4@ dd @CCCCCCCCh ; Owerwritten the exception
0040103E mou eax, BCCCGGLCGGH B012FF44 dd BCCCCCCCCh handler address
00401043 rep stosd B812FF48 dd BCCCCCCCCh ;
88481845 mou [ebp+var_1C], 6 8012FF4C dd BCCCCCCCEh :
00401 084C mou [ebp+Dest], 8 8812FF50 dd OCCCCCCCCh ;|
88481858 xor eax, eax BO12FF54 Dest db Shkh
AE4A10852 mou [ebp+uar_2B], eax BO12FF55 war_2B dd B1747365h
808481855 mov [ebp+uar_27], eax B012FF59 war_27 dd 3181414%1h
80840810858 mov [ebp+var_23], al 0012FF5D war_23 db 41h
80401058 mov [ebp+var_ 4], @ B812FF5E dw 4141h ; A
86461862 mou ecx, [ebp+arg 4] BB12FF60 var_28 dd 41515141
284610865 mou edx, [ecx+4] BE12FF64 war 16 dd ¥1414141h
88481868 push edx ; Source BO12FF68 war_18 dd B1418141h
apLB1069 1ea eax, [ebp+Dest] BB12FF6C dd 41414181h AAaAn
8848186C push eax ; Dest B012FF70 var_18 dd 18144410
80481860 call strc BO12FF74 dd
BO812FF78 dd 42pp36h ; .rdatazunk_42p0838
608481075 mov ecx, [ebp+var_ 1C] BB12FF7C var_4 dd 8
B84B1878 add BCck, 3 BB12FF88 saved_fp dd 12FFCBh ; Stack[B888813A4]:
06401087 mov [ebp+var 1G], ecx = -
D040107E mou eax, [ebp+uar_1C] - |
ARLA1 AR ecrn URKNOWN | D012FFO0; Stack[000013A4]:0012FF00

Figure 38.6 Showing the exploitation of the vulnerability

122 Reversing Binaries for Identifying Vulnerabilities

4.7 Writing Exploits General Concepts

Writing exploits involve understanding vulnerabilities in an application. This
section discusses the stack overflow and heap overflow which is important in
writing exploits.

4.7.1 Stack Overflow Exploits

Figure 37.0 shows the stack organization of [A-32 Intel 32 Bit x86
architecture. The stack on 1A-32 grows downwards. This is unlike SPARC
architecture where the stack grows upwards. LIFO (Last in First Out) is used
to push variables in the stack. The stack stores parameters, buffers and return
address for the function.

Local variables, buffers ., etc.

Frame Pointer EBP
Instruction Pointer
EIP

Figure 37.0 Stack organization of 1A-32.

Figure 38.0 shows two buffers, bufferl [] and buffer2 [] pushed on the stack.
As can be seen, bufferl [] was the first buffer pushed on to the stack and
buffer2 [] was the second buffer pushed on to the stack.

If buffer1[] as shown in figure 38.0 has more elements than its size, it
will end up writing in the buffer buffer2[]. EIP stores the return address.
Overflowing bufferl[] will rewrite EIP as well and the attacker can control the
memory address that is returned to the calling function.

Buffer1[]
Buffer2[]

Frame Pointer EBP
Instruction Pointer
EIP

Figure 38.0 showing the buffer stored in the Stack for [A-32.

4.8 The Location of the Payload 123

Once the control to process is reached, the next step involves diverting the
control. This is accomplished by pointing the EIP to the payload. For
successful exploitation, the payload has to be first injected in the buffer. Then
the controlled EIP is directed to the payload to be executed.

4.7.2 Injection Techniques

To execute an exploit, it is mandatory that the large buffer is inserted
in the overflowable buffer which can be accomplished by automating buffer
filling over the network or crafting a malicious file which is accessed by the
vulnerable process.

4.7.3 Optimizing the Injection Vector

The custom operational code (opcode) which is required to control the
instruction pointer on the remote machine is called as injection vector. The
objective of the injection vector is to ready the payload to be executed.

4.8 The Location of the Payload

The payload and the injection vector can be located at different
places. However a stack can be used for both. When a stack is used for the
both the payload and the injection vector then if the size of the payload starts
before the injection vector, it has to be ensured that no collision occurs
between them. In case of collision, a jump has to be included in the payload
such that the payload can jump over the injection code and can continue on
the other side of the injection vector. The other option would be to place the
payload at a location which is different from the injection vector. A possible
candidate for storing the payload is the buffer where the program stores its
information. Files on disk, environment variables controlled by a local user,
environment variables which are passed within a web request and the user
controlled fields within a network protocol are some of the places which can
be used to store the payload. After injecting the payload, the instruction
pointer will have to be loaded with the address of the payload. Storing the
payload somewhere other than the stack provides the inherent advantage that
the payload can be of a large size.

Once the payload has been injected, the task is to get the instruction
pointer to load the address of the payload. The beauty of storing the payload
somewhere other than the stack is that amazingly tight and difficult-to-exploit

124 Reversing Binaries for Identifying Vulnerabilities

buffer overflows suddenly become possible (e.g., we are free from constraints
on the size of the payload). A single “off-by-one” error can still be used to
take control of a computer.

After loading the payload, the next step involves executing the
payload. The saved EIP, on the stack has to be modified so that it points to the
modified payload. The next section discusses the techniques for jumping to
the payload.

4.8.1 Direct Jump (Guessing Offsets)

By using this method, the overflow code is jumped directly to the memory
location. The direct jump means that the overflow code was told to jump
directly to a specific location in memory. In this case, it might happen that
the address of the stack may contain null characters so the payload has to be
placed before the injector. This limits the available space for the payload. The
address of the payload might not always be the same. Hence, a reasonable
guess has to be made about the address. Generally, this method is preferred in
UNIX as in UNIX the null character does not contain the address of the stack
in UNIX. The direct jump is generally preferred when the payload is placed
some where other than on the stack.

4.8.2 Blind Return

The ret instruction causes the EIP to be loaded with the value in ESP, which
points to the current stack location. When the rer is executed, the topmost
value in the stack is loaded into the EIP resulting in the EIP pointing to the
new code address. If the EIP is injected with a value which points to the ret
instruction, then the value stored at the ESP is loaded in the ESL

4.8.3 pop Return

It might happen that the top of the stack does not point to the address of the
buffer storing the exploit code. In such a scenario, the injected EIP can be set
to point to a series of pop instructions which is followed by ret. Before a value
can be used for the EIP register, a series of pop operations will result in
popping the stack a number of times. Adding a series of pop techniques will
work, if the address which is near the top of the stack points to within the
attacker’s buffer. Before the useful address is reached, the attacker points to a
series of pop instructions.

4.8 The Location of the Payload 125

- pop EBX 5B
- pop ECX 59
- pop EAX 58
-pop ESI 5E
- pop EDI 5F
- pop EBP 5D
- ret C3

4.8.4 No Operation Sled

Injection of the direct address of payload requires guessing the exact location
of payload in memory. It is quite possible that the payload is not always at the
same address. It commonly occurs that the software package is recompiled on
different systems with different compilers having different optimization
techniques. To overcome the limitations of precise addresses of exploit code,
NOP sleds are used. An NOP instruction does nothing, however it takes one
byte of address space. These NOPs are added before the exploit code. Since
the buffer now comprises NOPs followed by the exploit code, any address
containing NOPs can be used. If the return address contains an address of any
of the NOP instructions then firstly the NOP instructions are executed
followed by the exploit code. It has to be noted that the larger the size of NOP
sleds, the less precision is required in guessing the address of the payload.

4.8.5 Call Register

This method is used when the register is loaded with the address which points
to the exploit code. The EIP will have to be loaded with the instruction which
enables the call to register. This method is commonly used in Windows based
exploits as there are many commands at fixed addresses in the kernel32.dll.
This method can be used at any process.

- call EAX FF DO
- call EBX FF D3
- call ECX FF D1
- call EDX FF D2
- call ESI FF Do
- call EDI FF D7
- call ESP FF D4

126 Reversing Binaries for Identifying Vulnerabilities

4.8.6 Push Return

The push return method is used when the register is loaded with the address of
the exploit code and the call instruction cannot be located. The other option
will be to locate the push <register> which is followed by ret.

4.8.7 Calculating Offset

If the attacker has access to a computer, exploit code can be compiled directly
onto the computer. The injection code can calculate its base and assumed that
the program which is being attacked has the same base. To execute exploit
code, the attacker in such a scenario will have to specify the offset from this
address for a direct jump, i.e., the base+offset value of the attacking code is
similar to the victim code.

4.9 Conclusion

Poorly written code can lead to vulnerable software. The most commonly
found vulnerabilities are buffer overflow, heap overflow, integer overflow and
format string vulnerability. In most cases, the source code of the software
may not be available so binary analysis is required. Format string
vulnerability in software can be identified by monitoring the printf family of
functions in IDA pro. The number of arguments passed to the function should
be equivalent to the format specifiers. For stack overflow, the stack size has to
be monitored first. This can be identified by monitoring SUB ESP instructions
in the assembly code of stack. The SUB ESP instruction will give the size of
stack. After the stack size is determined to check for buffer overflow,
generally the LEA instruction can be monitored. The operand to the LEA
instruction will identify the usage of the allocated space. Off-by-one overflow
happens when the string is not terminated by a null character. It might lead to
other important data like EBP, which might be used later. Integer overflow
happens because the values held in a numeric data type are limited by the data
type’s size in bytes. For identifying integer overflows, it has to be first
identified in the assembly if the buffer length is signed or unsigned. If the
instruction JG /JLE/JGE is used, then it denotes that the buffer length/length
is treated as a signed integer by the compiler, if the instruction
JA/JIBE/JAE/INB is used then the compiler is treating buffer length/length as
the unsigned integer. Heaps are stored in memory as a linked list with each
pointer having a pointer to the next one. Heap overflow results in rewriting
the pointer to the next block. Heap overflow may not result in a crash.

Fundamental of Reverse Engineering

5.0 Introduction

Reverse engineering is a technique to find the design of a software from its
binary. Vulnerability researchers, academics, and security professionals use
this technique to learn design of software for various proposes such as writing
an anti privacy wrapper softwares. Reverse engineering is also used in
malware analysis, copyright and patent litigation, discovery of undocumented
APS, malware creation, recovery of data from the proprietary file formats. If
the aim of reverse engineering is to copy or duplicate programs, it may result
in a copyright violation. However in most of the cases, the licensed use of
software prohibits reverse engineering.

This chapter discusses the anti-reversing techniques, which include concept of
disassembly, anti debugging, and virtual machine detection. This is followed
by a discussion on the packers and their protection mechanism. Packers,
which disassemble the binaries, also prevent reverse engineering of software.
The chapter concludes with the unpacking mechanisms. Some of these
sections also appeared in the book titled “Vulnerability Analysis and Defense
for the Internet”.

5.1 Anti-Reversing Method

Anti-reversing methods are applied in malicious software, licenses copy
protections and digital rights management. Anti-reversing methods are
included in binary to increase the complexity of reversing the binary file.
Anti-reversing methods evade the tools that are used by the reverse engineers
by exploiting its design, implementation, functionalities or vulnerabilities.
Although anti-reversing methods reduce the efficiency of an application,
increasing its code size and sometimes affects the robustness of an
application; however anti reversing is required to prevent from binary
analysis. Anti-reversing methods are commonly used for performing anti-
disassembly, self-modifying codes, anti debugging, and for virtual machine
detection.

A. Singh (ed.), Identifying Malicious Code Through Reverse Engineering, 127
Advances in Information Security 44, DOI: 10.1007/978-0-387-89468-3_5,
© Springer Science + Business Media, LLC 2009

128 Fundamental of Reverse Engineering

5.2.1 Anti Disassembly

Anti Disassembly is an anti-reversing methods used to evade
disassemblers. This enables the disassemblers to generate incorrect
disassembled code. The knowledge of anti disassembly will help to better
understand the working of disassembler. There are basically two types of
dissemblers. They are Linear Sweep Disassembler and Recursive Traversal
Disassembler.

5.2.1.1 Linear Sweep Disassembler

Linear Sweep Disassembler as shown in figure 1 starts it’s processing from
the beginning of the software binary and decodes the instructions in sequence
until it reaches the end of the binary.

Read information
stored from
PEheader

Set variables start, size & count
Start = File offset of the code
Section;
size = size of the code section;
Count = 0;

A

Disassemble the CPU
instructions located
at file offset (
start + count)

v

Increment count =
count +
disassembled
instruction length

If count Yes

< size

Figure 1: Working Logic of Liner Sweep Disassembler

5.1 Anti-Reversing Method 129

Although the method is quite fast, it cannot be used to detect and handle
data/code mix-up regions in the executable. Data code mix-up region is a
location in the executable binary, where certain data bytes are present within
the instruction byte. One of the very common examples of data code as shown
in figure 2 mix-up is a switch table generated by the compiler, while using
switch statements

poL4 010086 C745 FC 00000 MOV DWORD PTR SS:[EBP-4],9
poL4B8168D 8B4S MOU EAXN,DWORD PTR SS:[EBP+8]
8945 MOU DWORD PTR SS:[EBP-8],EAX
poL 61613 8B4D MOV ECX,DWORD PTR SS:[EBP-8]
poLB1616 83E9 ¢ SUB ECX,1
894D MOU DWORD PTR SS:[EBP-8],ECX
837D CHMP DWORD PTR SS:[EBP-8],3
A7 2E JA SHORT license_.088481858
poL 61622 8B55 F8 MOU EDX,DWORD PTR SS:[EBP-8]
poLB1625 FF2495 5410408(JHP DWORD PTR DS:[EDX»*4+481654]
8B45 MOU EAX,DWORD PTR SS:[EBP+8]
83CH ADD EANX,1
P4 81632 8945 FC MOU DWORD PTR SS:[EBP-4],EAX
P4 61635 8B4D MOU ECX,DWORD PTR SS:[EBP+8]
poL 01638 83C1 ¢ ADD ECX,1
894D MOU DWORD PTR SS:[EBP-4],ECX
8B55 MOU EDX,DWORD PTR SS:[EBP+8]
pO4 081641 83C2 ADD EDX,1
8955 MOU DWORD PTR SS:[EBP-4],EDX
pOL 010647 8BuS MOV EAX,DWORD PTR SS:[EBP+8]
83CHO ¢ ADD EAX,1
8945 MOU DWORD PTR SS:[EBP-4],EAX
8BES MOV ESP,EBP
poL 81652 5D POP EBP
poL 61653 c3 RETH
2C164000 DD license_.004061082C
35164000 DD license_.00401035
JE164000 DD license_.0040103E
47184000 DD license_.008481847
55 PUSH EBP
pOL 01065 8BEC MOU EBP,ESP

Figure 2: Data Code Mix-up

As shown in figure 2, the address values from 00401054 to 00401064 are non-
executable data bytes, which are present before and after the executable
instruction bytes. In order to optimize the performance of the application,
some compliers add data within the code block, making it difficult for Linear
Sweep Disassembler to disassemble the code. The Linear Sweep
Disassembler assumes every byte as an executable instruction byte, failing to
determine whether the byte has to be treated as data or instruction. This results
in generation of incorrect assembly instructions. A Linear Sweep disassembler

130 Fundamental of Reverse Engineering

will generate assembly code (as shown in figure 3) in the place of switch
table, as the Linear Sweep disassembler will treat jump table as an instruction
byte and not as a data byte.

sub al, 10h

inc eax

add ds:3E004010h, dh
adc [eax+0], al

inc edi

adc [eax+0], al

Figure 3: Disassembled Jump Table

5.2.1.2 Recursive Traversal Disassembler

Recursive Traversal Disassemblers are smart disassemblers compared to the
Linear Sweep disassemblers. Similar to Linear Sweep Disassemblers,
Recursive Traversal Disassemblers start processing the binary from the
beginning of a file. In contrast to the Linear Sweep Disassembler, the order of
processing of bytes in the software binary file is not sequential. The
disassembling flow depends on the control flow of the program. The next byte
to be processed depends on the last processed instruction. If the last processed
instruction is jump/call then jump/call instruction will be processed else the
next consecutive instruction will be processed. The flow chart shown in
Figure 5 shows the working of Recursive Traversal Disassembler

Due to its complex logic, recursive traversal disassemblers are not as fast as
Linear Sweep disassemblers. The disassembled output generated by recursive
traversal disassemblers is more accurate compared to the results generated by
a Linear Sweep disassembler. The control flow processing strategy helps
recursive disassembler in easily identifying data code mix-up.

5.1 Anti-Reversing Method 131

Read PEheader
Information

Set Variables next, path
and branch
next = entry point;

path = 0;
branch [MAX] = {0};

B |
Disassemble Next = im
CPU instruction =Imp
offset
at offset next
Yes If End of No
subroutine
A
Path = if opcode is
path-1; uncondition
’ al jmp
<>
Yes
If opcode is
v conditional
jmp/call
Next =
A branch [path] v \
branch [path] = next + last next = next +
instruction length; last disassembled
path = path + 1; instruction length

next = offset of
conditional jmp/call;

!

Figure 5 Working Logic of Recursive Traversal Disassembler

5.2.1.3 Evasion of Disassemble

In order to evade any disassembler (Linear Sweep or recursive) data-code
mix-up blocks has to be added in such a way that the code disassembler gets
confused in identifying the correct data byte, at the time of disassembling.
However, it should be ensured that it does not affect the execution or behavior
of the program.

The Linear Sweep disassembler can be successfully evaded by using the code
shown in figure 6.0. Linear Sweep disassemblers are easier to evade.

132 Fundamental of Reverse Engineering

_asm {
emit OxEB;
_emit O0x01;
emit 0xO0f;

¥

Figure 6:0 Showing the Linear Sweep Disassembler.

The equivalent assembly code for the figure shown in 6.0 is shown in figure
7.0

HKxxx1l IJmp XxXxx4
0OxO0F
KXXXDG .coneenn

Figure 7.0 Showing the resulting assembly of the code in shown in figure
6.0

The code shown in figure 7.0 will insert short jumps of one byte within an
application code. The figure 8.0 shows how the assembly block incorporates
the short jump instruction.

.text:00401024 mov [ebp+var_5C4], 0
{text:0040102E jmp short loc_401031
text:0040102E db OFh

Lext:00401031 cmp [ebp+argc], 4
.text:00401035 jge short loc_401056

Figure 8.0 Assembly block incorporating the short jump instruction

If the code shown in figure 8.0 is opened in any Linear Sweep Disassembler,
it will generate disassembled output as shown in figure 9.0.

.text:00401024 mov [ebp+var 5C4], O
text:0040102E jmp short near ptr loc 40103041
.text:00401030 jnb near ptr 7D4418B3h

.text: 00401036 pop ds

Figure 9.0 Assembly block generated by Linear Sweep Disassembler

It can be inferred that the Linear Sweep Disassembler is not able to
disassemble last two instructions correctly. As shown in figure 9.0 rather than
interpreting byte at address 0040102E as data byte and next two instructions
as cmp and jge, it is interpreting the next two instructions as jnb and pop. So
these kind of short jumps are well enough to evade Linear Sweep
Disassembler. These short jumps are basically inserting a data byte in between
the application code. The Linear Sweep Disassembler works on an
assumption that every byte in code section belongs to executable instruction.
Hence, it is interpreting the byte at address 0040102E as a part of CPU
instruction. However, as it is a non-executable data byte at the time of
execution, the control never comes to the instruction 0040102E, resulting in a

5.1 Anti-Reversing Method 133

wrong disassembly. However, the disassembled output generated by any
Recursive Traversal Disassembler (like IDA pxro or ollydbg) easily detects
this short jump technique and generates the following correct sequence of
instruction.

.text:00401024 mov [ebp+var_5C4], 0

.text:0040102E jmp short loc_ 401031

LEXTI00A0T0ZE § momrrmenmormscmn e s m s e s e e e e e e S e i e
.text:00401030 db OFh

SEEMERDTAN LD ST 1 swmvemsieiotstmoim et o 3 B O O e B i s
.text:00401031

.text:00401031 loc 401031: ; CODE XREF: main+16j
.text:00401031 cmp dword ptr [ebp+8], 4
.text:00401035 jge short loc_ 401056

Figure 10.0 Assembly code generated by the Recursive Traversal
Disassembler.

As the processing of Recursive Traversal Disassembler depends on the control
flow of the application, it can easily identify the non-executable data bytes.
Evading Recursive Traversal Disassembler can be slight challenging. It can be
done using opaque predicate. Opaque predicates are false condition
statements, which appear to be conditional but in reality it is unconditional.
The conditional branch splits the flow into two paths. The opaque predicates,
inserts condition in such a way that one path leads to the real code and the
other path to the junk code. The junk code never gets executed.

asmd{

mov eax, 4
cmp eax, 6
je Junk
jne real_code
Junk:

emit Oxf
real code

>
Figure 11.0 Showing Opaque Predicate

As shown in figure 11.0 the first instruction in this block assigns value 4 to
eax register. The next instruction compares the value stored in eax (which is
4) with the constant value 6. The comparison will never be equal. Hence,
every time the comparison fails, the control will be passed to the code under
the label real code. This is an ideal example of opaque predicate. Although
the above code looks like a conditional jump, in reality, the code will only
have a fixed flow.

134 Fundamental of Reverse Engineering

text:0040102E mov eax, 4
.text: 00401030 cmp eax, 6
-text: 00401032 je 00401036
.text:00401034 jne 00401037

.text: 00401036 db OxO0OF
.text: 00401037 mov ebx,ecx
.text:00401039 cmp eax,ebx
.text: 00401048 NOP

Figure 12.0 Code with opaque predicate block.

Code in figure 12.0 shows the assembly code of a sample application
containing opaque predicate block. This code when opened in any recursive
traversal disassembler will give the output as shown in figure shown in figure
13.0

.text:0040102E mov eax, 4
.text: 00401030 cmp eax, 6
text: 00401032 je 00401036
text:00401034 jne 00401037
.text: 00401036 JPO 91034C15

Figure 13.0 Code showing the output by recursive traversal disassembler.

As shown in figure 13 the recursive traversal disassembler is not able to
disassemble the last two instructions correctly. Rather than interpreting the
byte at address 00401036 as data and next instructions as mov and cmp,
recursive traversal disassemblers interprets the instructions as je, jne and jpo.
Opening the code in linear sweep disassembler also gives incorrect
disassembled output. Hence, opaque instruction can be used to evade both the
Linear Sweep and the Recursive Traversal dissasembler. The value of eax and
flag register might change, which may lead to the execution of junk code or
some other code. Execution of junk code may affect the control flow and the
data flow of the program. Hence, to design an opaque instruction, it is
required that the flow of instructions should be as desired and value of
registers should ensure the correctness of control flow and the data flow.

_asm{
jno conditionl
jo condition2
condition1
jo Junk1l
jno Real code
Junk1
db OFh
condition2
jno Junk2
jo Real code
Junk2
db OFh
Real code

Figure 14.0 Flag based opaque predicate.

The figure 14.0 shows one of the opaque instructions in which the value of
register is not getting altered. As shown in figure 14.0 the first two

5.1 Anti-Reversing Method 135

instructions are checking overflow flags of the flag register and if it is set then
the control will jump to condition 2 or it will jump to condition 1. The
instruction present here is again checking for overflow. However, it is ensured
that the control is passed to the Real code.

3 15 DoBo4BBe
. GA 64
. 68 90C44000

. FF15 DoBBuBEa|C

. BBSS 68

PUSH EDI
PUSH 64
JNB SHORT 4license.@8481812
JB SHORT 4license.@f481617
JHMP SHORT 4license.88481811
%7 Unknown command
ADD DH,BYTE PTR DS:[EBX+6]
%7 Unknown command
T 8272 ADD DH,BYTE PTR D3:[EDX+1]
. BFG8FL4 PUNPCKHBY HHG6 , HHY
. Chho 80 LES EAX,.FWORD PTR DS:[EAX] Hodification of segment regist
JNB SHORT 4license.@04081028
JB SHORT 4license.B8648102D
JHMP SHORT 4license.88481827
77 Unknown command
ADD DH,BYTE PTR DS:[EBX+6]
%7 Unknown command

? 8272 @1 ADD DH,BYTE PTR DS:[EDX+1]
. BFGAGF 73 PUNPCKHDOQ M4, QWORD PTR D3:[EDI+73]
. B85 72BBEBBO ADD EAX,BEBBB72
BF72 777 Unknown command

7 8273 86 ADD DH,BYTE PTR DS:[EBX+6]

BF73 %7 Unknown command
T 8272 ADD DH,BYTE PTR D3:[EDX+1]

BFSE 45887305 |.JP0 B5B318BBF
..72 @88 JB SHORT A4license.B0401054
..EB @88 JHP SHORT 4license.fB48184E

BF72 %7 Unknown command
T 8273 86 ADD DH,BYTE PTR DS:[EBX+6]

BF73 2% Unknown command

Figure 16.0 showing the code using anti disassembly macro.
The figure 15.0 shows the sample code of an application that does not uses

any anti-disassembly method. Figure 16.0 shows the equivalent code using
anti-disassembly macro to evade the disassembler like OllyDbg.

5.2.2 Self-modifying code

Self-modifying code (SMC) is one of the methods to prevent application from
reverse engineering. This method can further be extended to some advanced

136 Fundamental of Reverse Engineering

method like polymorphism and metamorphism to prevent disassembly from
generating the original code of an application. SMC is the method in which
the application itself modifies its instruction at the time of execution. By
incorporating SMC application developers hide their protected code from
disassembler.

The use of SMC in protecting the application from getting reverse engineered
is explained with the help of the following case study. The figure 17.0 shows
a sample function called Check Number, which checks whether the integer is
odd or even.

void chceknumber(unsigned int number)
£
asm push eax;
asm mov eax,[ebp+8];
asm and eax,1;
asm cmp eax,1;
_asm je odd;
printf("Even number");
_asm pap eax;
return;
odd:
printf("odd number");
_asm pop eax;
return;

Figure 17.0 showing a sample function which checks if integer is odd or
even.

The figure 18.0 shows the sample code, which can be used to prevent the
disassembler from the disassembling the highlighted code shown in 17.0

The code shown in the figure 18.0 when opened in any disassembler will not
show the instructions, which are highlighted in figure 17.0. The application
does not store the instruction set but it is XORing the bytes with the key
0xBADB. At the time of execution the code show in 19.0 block decodes the
instructions and revives it back to its original state so that it can be executed
correctly. Hence, it becomes tough for a disassembler to disassemble the code.

5.1 Anti-Reversing Method 137

void CheckNumber(unsigned int i)

unsigned int size = SIZE_OF_BLOCK_IN_ BYTES_NEED_TO_BE_PROTECTED_;
unsigned int = STARTING_VIRTUAL_ADDRESS_OF_BLOCK;
asm push ecx;
asm push ebx;
asm push eax;
asm mov eax,[ebp-8];
_asm mov ecx,[ebp-4];
Loop1l:
_asm mov ebx,[eax];
_asm xor ebx,0xBADB;
asm mov [eax],ebx;
asm sub ecx,4;
_asm add eax,4;
_asm cmp ecx,0;
_asm je Startl;
_asm jne Loopl;

Startl:// STARTING VIRTUAL ADDRESS OF BLOCK
asm _emit Ox50;
_asm _emit OxFF;
_asm _emit 0x08;
_asm _emit O0x83;
_asm _emit Ox3B;
_asm _emit OxBB;
_asm _emit O0x83;

asm _emit OxF8;

asm _emit OxDA;

asm _emit Ox2A;
_asm _emit 0x90;
_asm _emit 0x90;

End1:

_asm je odd;
printf("Even number");
_asm pop eax;

asm pop ebx;
_asm pop ecx;
return;

odd:

printf("odd number™);
_asm pop eax;
_asm pop ebx;

asm pop ecx;

Figure 18.0 Sample function with SCM implementation.

_asm mov ebx,[eax];
_asm xor ebx,0xBADB;
_asm moyv [eax],ebx;
_asm sub ecx,4;

_asm add eax,4;

_asm cmp ecx,0;
_asm je Startl;

_asm jne Loopl;

Figure 19.0 Decoding routines.

The processing unit block (decryption block length) of the decryption routine
is DWORD (four bytes). So three more nops are added to make the size a
multiple of four.

138 Fundamental of Reverse Engineering

Dynamic/Runtime decryption and encryption is another method,
which works similar to that of SMC. This is used for anti-reversing.
Application developer needs to add certain predefined macros in their
application code, which they want to protect from getting reversed.

CRYPT_BEGINE
; application developers code

CRYPT_END

Figure 20.0 showing template of Dynamic Encryption\Decryption

As show in figure 20.0 CRYPT BEGINE and CRYPT_END are the macros
used to select a block of code, which has to be protected from getting
reversed. At the time of packing or protecting, binary packer will encrypt the
selected block of code and insert certain bytes, to transfer control to the
routine that is responsible for decrypting and encrypting the byte instruction
before and after its execution. As the instruction bytes are encrypted, the
executable in disassembler will result in some junk instructions at the time of
opening. However, to analyze the code protected by dynamic encryption and
decryption, a hardware break point needs to be applied to the protected
instruction without breaking the encryption algorithm.

As the decryption routine is called first, it that decrypts the protected
instruction and passes the control to the decrypted instruction byte, thereby
applying the hardware break point to the protected code, resulting in
termination of the execution. This retrieves the original code.

Polymorphism is another technique, which can be used by the virus writers to
evade virus-detecting software. Polymorphism is the technique in which the
virus code in each infected machine is represented differently/in a unique
way. Signature based antivirus, searches for unique pattern. Changing the
pattern of bytes for each infection makes the job more complicated. The
concept being for every new victim a new key is generated and the body of
the virus is encrypted with the help of the new key. For each infection, this
makes byte pattern completely different. More advanced polymorphic engines
not only change the key for protecting the sensitive code - they also change
the algorithm of encryption and decryption, so that they don’t get detected on
the basis of encryption or decryption routine. Apart from this a good
polymorphic engine will have the ability to generate different set of
instructions, which do same work. For a code, it is possible to have n number
of equivalent codes, which will perform the same operation but will look
different.

5.1 Anti-Reversing Method 139

Mov ebx,10;
Cmp ebx,ecx;

Figure 21.0 showing instructions

For example, the code shown in figure 21.0 is equivalent to the code shown in
figure 22.0

cmp ecx,10;
Mov ebx,10;

Figure 22.0 showing instructions equivalent to 20.0

A good polymorphic engine also generates calls to dummy routines,
conditional jumps and junk instructions. For hiding the control flow and the
data flow of the program, various polymorphic engine generators insert calls
to dummy routine, which tries to evade reverse engineering. Anti-debugging
instructions are basically used to detect the presence of debugger and if a
debugger is found then the program tries to evade it. Some of the most
common anti-debugging techniques are discussed in the anti-debugging
section. A combination of these techniques can make reversing of the
decryption routine a complex task.

5.2.3 Virtual Machine Obfuscation

One of the most effective and powerful ways to achieve obfuscation is by
implementing virtual machine. Basically in this technique the protected
instruction sets are translated into P-codes, which are interpreted and executed
at the runtime environment of virtual machine. Complete virtual machine
implementation is required to reverse the protected code. The virtual machine
provides the inherent advantage of modifying the standard CPU instruction
present in executable into some customized form, which can be interpreted
and executed only at the run time. Since the protected instruction does not
have standard CPU instruction in the executable,, the debugger will not
recognize and disassemble these instructions. At the time of execution, these
customized instructions are executed by customized runtime environment.
Hence, it does not require decoding these protected instructions back to the
original form.

140 Fundamental of Reverse Engineering

Protected x86 T et P-code(Bytec
Instructions Leltls ehos ode) Interpetor

Figure 23.0 showing virtual machine implementation.

Virtual
Machine
Runtime

Environme

nt

5.3 Anti Debugging Techniques

This section discusses about some of the debugger checks. Debugger Checks
present in the executable helps to detect the availability of debugger in order
to prevent the application from getting debugged IsdebuggerPresent window
API is one of the API that can be used to find whether the application is
getting debugged or not. The return type of this function is Boolean, true in
case the application is debugged else false. So the simplest method is to call
this API and check for the return value. The code shown in the figure 23.0
shows the details of the API.

MOV EAX,DWORD PTR FS:[18]

MOV EAX,DWORD PTR DS:[EAX+30]
MOVZX EAX,BYTE PTR DS:[EAX+2]
RETN

Figure 24.0 code showing the details of Iddebugger API

The First statement MOV EAX, DWORD PTR FS:[18] is moving the value
of current executing thread environment block into EAX register. The
instruction EAX, DWORD PTR DS:[EAX+30] is storing the value of
Process Environment Block in the register EAX . It then returns the value
stored in “BeingDebugged”. “Being Debugged” is a structure member of
PEB, which stores the status of the process. If the status value is 0, the process
is not debugged. If the status value is non zero, the process is debugged.

Instead of calling the API, for detecting debugger program, the
application detects the presence of debugger by embedding the code as shown
in the figure 25.0 as the API calls can be easily recognized and patched.

5.3 Anti Debugging Techniques 141

MOV EAX, FS:[0X18]
MOV EAX,[EAX+0X30]
MOV EAX,[EAX+0X68.
TEST EAX,0X70

JZ nodebugger

Figure 25.0 code showing embedding of Instructions

NtGlobalFlag present inside PEB, can also be used to detect debugger. The
figure shown in figure 26.0 displays the code which can be used to detect
debugger using NtGlobalFlag.

MOV EAX, FS:[0X18]
MOV EAX,[EAX+0X30]
MOV EAX,[EAX+0X68.
TEST EAX,0X70

JZ nodebugger

Figure 26.0 Code using NtGlobalFlag.

As shown in the figure 26.0, anti global present at offset 0x68 in process
environment block is accessed, checked and compared with the value 0x70. If
the value is equal to 0x70, then debugger is present else the program is
executing directly. LdrlnitializeThunk is the loader initialization routine that
is executed first on the execution of the process. The function checks for
GlobalFlag settings and then sets PEB— NtGlobal field accordingly. The
function LdrlnitializeThunk present in ntdll needs to be examined. If there is
no defined values for "GlobalFlag" under the registry Image File Execution
Options (HKM\software\Microsoft\WindowsNT\CurrentVersion\IMAGE File
Execution option) and if the flag PEB—BeingDebugged is set, then
PEB—NtGlobalFlag will be filled with the flag value 0x70. The flag value
0x70 is OR of

#define FLG_HEAP ENABLE _TAIL CHECK 0x00000010
#define FLG_HEAP ENABLE FREE CHECK 0x00000020
#define FLG_HEAP VALIDATE PARAMETERS 0x00000040

The presence of debugger can also be checked by CPU cycles. Several CPU
cycles are spent by the debugger event handling. Hence, a check on CPU
cycle can be used to find out the presence of debugger. If the number of CPU
cycles is more than the normal execution then it means that the application
has began to debug. In order to find out the CPU cycles, x86 instruction
RTDSC can be used. RTDC stands for Read Time Stamp Counter. The output
of the instruction is a 64-bit value in registers EDX:EAX represents the count
of ticks from the processor reset. The code shown in the figure 26.0 can be
used to detect debugger.

142 Fundamental of Reverse Engineering

Rdtsc
Push eax
Push edx

; application code

rdtsc

pop ebx

pop ecx

cmp edx,ebx,

ja debugger deteced

sub eax,ecx
cmp eax,0x250 ; Ox250 is the delta value
ja debugger deteced

Figure 27.0 Code used to detect debugger

In the code shown in the figure 26.0, it is assumed that the normal CPU cycle
spent for the execution between the two consecutive RTDC instructions will
be less then 0x250. The presence of debugger can also be checked by
verifying the access token privilege. For any process “setdebugprivilege” is
disabled. However, if any debugger loads the application then it gets enabled.
When the debugger has this privilege enabled in its security token, it inherits
the security token of the debugger at the time of loading any process into
debugger. This enables the “setdebugprivilege” for the application.

The access token privilege check can be done by the application by
performing successful operation with the help of debug privilege flags. One of
the operations is to open a process like CSRSS.EXE, which permits access
only to the system process . If the application is able to open these processes
correctly then it can be inferred that the debug privilege in the application is
enabled.

5.3.1 Breakpoints

For debugging purposes break ponts are used. Break points causes intentional
pausing of program. Break point can be classified into two parts.

5.3.1.1. Software breakpoint

In order to apply software break point the byte present at a particular location
is modified and replaced with OxCC. This will result in the generation of
interrupt 3 i.e. breakpoint interrupt. Debugger debugging the program catches
this exception and replaces the original byte at the location (where 0xCC is
inserted) before passing the control back to the application.

5.3 Anti Debugging Techniques 143

5.3.1.2 Hardware breakpoint

Debugger uses CPU debug register in order to apply hardware break points.
There are 8 debug registers present in the system ranging from DRO-DR7.
The processor uses only 6 debug resisters in order to control the debug
feature. These registers can be accessed by the variable of MOV instruction;
however, these instruction have to be executed at privilege zero.

These registers store the linear address of the breakpoint. The stored linear
address can be the same as the physical addresses or it needs to be translated
to the physical addresses. The translation is required when the paging is
enabled.

The break point conditions is further determined with the help of
debug register DR7. It also determines selective enabling and disabling of
these conditions. For each debug address register DRO-DR3 there is a
corresponding R/WO0 to R/W4 field. These fields are of two-bit size. These
two bits determine the type of action, which will result in termination of the
execution. The description of these bits is as follows.

00 = Break on Execution

01 - Break on write

10 = Not Defined.

11 = Break on data read or write

Similarly, Len0 to Len4 fields of size two bits is associated with the
corresponding debug address register DR0O-DR3.
Its meaning can be interpreted as follows.

00 = one byte length

01 = two-byte length

10 = undefined

11> four-byte lengths
If the break point condition is set as break on execution and the length bits
contains value other than 00, then it will be interpreted as invalid condition.
As shown in the figure, bits LO to L3 and GO to G3 indicate selective
enabling of the corresponding four debug addresses at D0-D3. If local
enabling is set it means that the
breakpoint is applicable for a particular task. However, if global enabling is
set then it signifies that the condition is enabled for all the tasks. The local
enable bits get reset after every task switching, in order to avoid unwanted
break point condition for other tasks. In order to apply breakpoint condition to
all tasks, global enabling flag is used. The significance of LE and GE bits are
used to control “exact data breakpoint match” feature of the processor. If any
of these bits are set then processor slows down the execution so that data

144 Fundamental of Reverse Engineering

breakpoint is reported on the instruction that causes them. DR6 is the debug
status register which is accessed by the debugger to determine the debug
condition that has occurred. When the processor detects an enabled debug
exception, it sets the low-order bits of this register (0,1,2,3) before entering
the debug exception handler.

The software break point can be detected as follows. To rehash, the software
break point is applied by replacing the byte with 0xCC (interrupt 3). So, the
software break point can be detected by searching for the presence of 0xCC at
the start of instruction.

Calculating the check sum of the protected block and comparing it with the
original checksum can also detect software break point. After applying
software break point, the bytes are replaced with 0xCC. Hence, the new
checksum will be different from the old one.

5.3.1.3 Detecting Hardware Breakpoint

Detection of hardware breakpoint requires the debug register to check the
values stored inside them. The debug registers cannot be accessed in ring3. In
order to access the value of Debug register, structure exception handler can be
used;

it reads the value stored inside the debug register. Using the Context structure,
which is passed as a parameter to the exception handler, can check the value
of debug register. The code shown in the figure 27.0 shows the detection of
hardware break point.

Push exception handler // Inserting handler in SEH chain

Push dword [fs:0]
Mowv [fs:0],esp

And eax, O // Instruction causing exception
mov [eax],0

pop dword [fs:0] // Removing hander from SEH chain
add esp,4

;5 Application code

exception_handler
mov eax,[esp+0x0C] ; accessing third parameter which pointer to CONTEXT
structure

cmp dword [eax+0x04],0
jne breakpoint found
imp Coutinue__execution

Breakpoint_found
; Perform the desired operation after detection of break point

Continue excution
Add [eax+0xb8],9 ;; Handing exception by incrementing eip by 9
retn

Figure 28.0 showing the detection of hardware breakpoint.

5.4 Virtual Machine Detection 145

5.4 Virtual Machine Detection

Use of VmWare for the malware analysis is discussed in the chapter of
Malware. The use of Virtual machine provides the following functionality.
e Multiple Operating system
e Snap shot of the machine state
e Easy To Monitor

Since security researcher use Virtual Machine for the analysis of malwares,
the malware writer generally adds some checks to detect the presence of
virtual machine environment. In the next subsection, detection of VM is
discussed.

5.4.1 Checking fingerprint inside memory, file system and registry

The run time environment of the virtual machine contains signatures like
VMware, vmx. in the process/services, filename and registry entry. This can
be searched to detect the presence of virtual machine. This technique can be
evaded through hooking the system calls and manipulating its input and
output.

5.4.2 Checking system tables

Vmwares can be detected by putting checks on the pointers, which point to
the kernel data structure like Interrupt Descriptor Table (IDT), Global
Descriptor Table (GDT) and Local Descriptor Table (LDT). This technique
provides the inherent advantage to almost all kind of Virtual machines,
Windows and Linux operating system. It might be difficult to evade, as this
technique is an integral part of the virtual machine environment.

One of the common examples for the implementation of the system table
check (for the detection of virtual machine) is redpill, developed by Joanna
Rutkowska. Redpill uses an instruction called SIDT (Store Interrupt
Descriptor Table).SIDT stores the address of interrupt Descriptor table pointer
in the memory through the register Interrupt Descriptor Table Register
(IDTR). The logic inside this tool is based on the fact that the location of IDT
in the host machine is far lesser than the location of IDT in the guest machine.
The code compares the location of IDT with the constant 0xD0000000 and if
the value is found to be less than 0xD0000000 then the tool will assume that it

146 Fundamental of Reverse Engineering

is running on the host machine else it will give a message that it is running on
the Virtual machine. This tool is found to be very acute in Linux as well as
Windows Operating System. The code shown in figure 29.0 demonstrate the
approach.

int swallow_redpill() {

unsigned char m{2+4],

rpill[]="\x0Ax01\x0d\x00'\x00\x00\x00\xc3";
((unsigned)&rpill[3]) = (unsigned)m,;
((void(*)())8rpill)();
return (m[5]>0xd0) ? 1 : 0;

}

Figure 29.0 showing the code of redpill.

Extending the logic of Red Pill, Tobias Klein has written a new tool Scoopy
Suite, which apart from checking IDT also checks the location of GDT, LDT
using SIDT, SGDT, and SLDT processor instructions. The logic inside the
tool is same as that of the red pill. Rather than depending only on IDT, this
tool counts on other structures as well.

In Windows Operating System, it checks the starting byte of the pointer to
IDT structure; if the starting byte starts with 0x80 then it will assume that it is
running in the host system. In Linux, it checks the value with 0xc0. Then the
code checks for the logic, to compare the pointer in GDT’s location with
0xcOXXXXXX. If the pointer of LDT is located at 0x0000, then it means that
it is running in the real system else it is running in the Virtual PC.

5.4.3 Checking processor instruction set

Processor instructions can be used to detect virtual machine. There are few
non-standard x86 instructions that are used by Virtual PC for guest-to-host
communication. However, execution of these non-standard instructions in
host PC would result in processor exception or error. Operating system will
search for the exception handler to handle the exception or will terminate the
program. These instructions can be used by the application to determine if the
application is running in Virtual PC or in the host system. The tool like
VMdetect uses the process instruction set check, to detect Virtual PC.

The code shown in the figure 30.0 can be used to detect VMWare. The
IsInsideVMWare() will return True if it is a Virtual Machine else it will return
False.

5.5 Unpacking 147

bool IsInsideVMWare()
bool rc = true;

__try
{

asm

{

push edx
push ecx
push ebx

mov eax, 'VMXh'

mov ebx, 0 // any value but not the MAGIC VALUE
mov ecx, 10 // get VMWare version

mov edx, 'VX' // port number

in eax, dx // read port
/{ on return EAX returns the VERSION
cmp ebx, 'VMXh' // is it a reply from VMWare?

setz [rc] // set return value

0]

pop ebx
pop ecx
pop edx
b

b
__except(EXCEPTION EXECUTE HANDLER)

rc = false;

¥
F

return rc;

Figure 30.0 Code for detection of VmWare.

The magic number 0x564D5868 (in ASCII *VMXh’) is loaded in the EAX
register. The parameter of the command that has to be sent is loaded in EBX
register. The command is loaded in the ECX register. For example, in the
figure 29.0, the command 0x0A, is loaded. This command returns the version
number of VMWare through the port ‘VX’. After the execution, if "VMXh’
is present in the EBX register, then it can be inferred that VMWare is being
used.

5.5 Unpacking

Executable packing is carried out to compress and/or encode the original code
and data present in the executable. At the time of execution, the original
data/code is decoded back and the execution control is passed to it, Packing
process does not affect the functional behavior of any application. Hence it is
difficult for the normal user to identify it. One of the main usage of packing
an executable is to prevent reverse engineering or to obfuscate the content of

148 Fundamental of Reverse Engineering

the executable. Although it cannot prevent reverse engineering, it can make
reverse engineering more tedious. Loading the packed executable in any
disassembler will generate invalid set of instructions. Hence it is required to
unpack the executable for a better and effective analysis of a packed
executable. The following section discusses the process of unpacking of any
window binary

5.5.1 Manual Unpacking of Software

The process of manual unpacking can be classified into 3 steps. The first step
involves finding the original entry point of an executable, second step
involves taking process dump and the third involves fixing entries in import
address table. After performing the first two steps, static analysis on the code
can be performed. After performing the third step, dynamic analysis can be
performed.

5.5.1.1 Finding an Original Entry Point of an Executable

Before explaining the intricacies to find original entry point, few of the
basic concepts about packing process, will be discussed. To protect
application from getting reverse, packer encodes/encrypts the original
application so that when opened in any disassembler / debugger, it will not
show the correct or the original sequence of instructions. However, at the time
of execution the encrypted code has to be decoded or decrypted back to
interpret the original executable properly. So to achieve the objective of
decoding the binary correctly, packers add some instructions in the packed
executable, in order to unpack the encoded/encrypted executable. The
instructions added by the packer perform decoding/decryption process. The
process of decryption is performed in memory at the time of execution,
restoring the state of the application. Packer works on any standard and
precompiled executable. Hence, the unpacking module has to be independent
of the original application. Packer works on any standard and precompiled
executable. Hence, the unpacking module has to be independent of the
original application.

5.5 Unpacking 149

Unpacking routing
Code and data added
by packers

assin

Resource Segment g con

Data Segraent

Encoded
Lpplication instruction

Figure 31.0 showing the instruction for Unpacking code module.

Packers can add independent instructions (unpacking module) in the encoded
executable. These instructions perform the task of decrypting the encoded
executables. It can either be added after encode/encrypted executable image
or before encode/encrypted executable image. Almost all the packers, add
instruction after encode/encrypted executable image (means at higher virtual
offset). The second approach of adding instructions is to decoded or decrypt
executable before the executable image that is not feasible. In a 32 bit
windows all executable get mapped/loaded at base address 0x00400000. At
the time of linking (after compilation) the linker links an application by
assuming that application will get loaded at a base address of 0x00400000. If
the instruction to decode is added before the executable, then the virtual
address of the original image base of an application is no longer 0x00400000,
as the original resolved virtual address by the linker will be different from the
currently loaded executable. This will result in an abnormal behavior of an
executable.

150 Fundamental of Reverse Engineering

-TEXT B4 uZ2Z mov eax, epp+var_8

-text:oe48102C

-text: 004681026 loc_4B102C: ; DATA XREF: _text:off_L4B1854]0
' .text:9040182C nov eax, [ebp+arg_8]
' .text:Be4B8182F add eax, 1
' .text:00481832 nov [ebptuar_4], eax
-text 904081835
-text: 804681835 loc_4B1835: ; CODE XREF: sub_X481088+25Tj
-text 88481835 ; DATA XREF: .text:8B481858)0
' .text: 80481835 nov ecx, [ebp+arg_H0]
' .text:pe4B81838 add ecx, 1
' .text:0040103B nov [ebp+uar_4], ecx
-text:8848183E
-text:00468103E loc_4B1B3E: ; CODE XREF: sub_h@1080+25Tj
-text:9848183E ; DATA XREF: .text:0848165Clo
' .text:88481683E nov edx, [ebp+arg_H0]
C .text:88481841 add edx, 1
C_text:00401044 nou [ebp+var_u], edx
-text: 008481847
-text: 884081847 loc_4@1847: ; CODE XREF: sub_s@1888+25Tj
-text: 90401047 ; DATA XREF: .text:00481068)0
' .text: 80481647 nov eax, [ebp+arg_60]
© .text:8048184A add eax, 1
' .text:8048164D nov [ebp+var_h], eax
-text: 6046810858
-text:984816580 loc_481050: ; CODE XREF: sub_s@1008+20Tj
' .text:B88481858 nov esp, ebp
' _text:pa4B1652 pop ebp
T .text:e0481853 retn
text: 8084810853 sub_L4B16868 endp

-text: 0084081053
-text: 00481853

' -text:80401058 dd offset loc_481835
‘l.text:8840105C dd offset loc_40163E
'

Figure 32.0 Figure for unpacking instructions.
As shown in the figure 32.0 the instruction
.text:00401025 jmp ds:off 401054[edx*4]

at address 00401025 is referring to a memory location 00401054. The linker
has resolved these address references with references to image base, which is
0x00400000. If a packet adds any bytes before the image of original
application, then the original code of an application will get mapped to the
base address greater than 0x040000 (>= x0040000 + size of the byte added).
At the time of execution, address resolved by the linker will result in an
abnormal crash. Hence, all the address references should be done with
reference to the new image base. This in turn will add to the complexity of
address references. So, the packets prefer to load the unpacking instructions
after the image of original applications, which will be used to find the
Original Entry Point (OEP).

The unpacking instructions are present after the encoded executable image.

However, it gets the control to decode the encoded bytes, post which, it
transfers the control to decode the original instruction

To find the original entry point, first load the application in any debugger

and turn on the tracing options. This will log all executed instructions with their

corresponding address. When the program is executed the debugger will log all

executed instructions and will update the trace log accordingly. Terminate the

5.5 Unpacking 151

process, when the original application gets executed. During the analysis of
trace logs, it can be inferred that the higher address instructions will get
executed first. To find the instruction, which transfers control from higher
address to lower address, locate two consecutive instructions such that the
address of first instruction is high with reference to second instruction. As
discussed above, the unpacking module located at higher address passes control
to the decode application at lower address, where the lower address is the OEP.

Another approach for finding OEP is by using Ollydbg plugin in
OllyBone developed by Joe Stewart. Details of this plugin are available at
http://www .joestewart.org/ollybone. The plugin uses the concept of split TLB.
The Intel processor to protect memory pages from execution while allowing
read/write access uses TLB. TLB is a cache buffer used for virtual — physical
address translation. It is used to enhance the performance of the system by
providing information without performing an expensive page table walk
operation for memory access. Whenever the CPU wants to access the given
virtual address, it will first check if the TLB has a cached translation. If the
address is found on the TLB it will take the physical address from TLB,
otherwise it will perform a page table look up for the required address
translation.

Intel from Pentium architecture has started providing split TLB
architecture. In split TLB architecture, virtual/physical translations are cached
into two independent TLBs depending on the access type. Virtual / physical
translations are cached into two independent TLB’s. This depends upon the
access type. Instruction fetch related memory access will load the ITLB and
update the DTLB for data access. OllyBone comprises of a windows kernel
driver that implements the page protection for arbitrary memory page access.
It also consists of an OllyDb plugin that can be used to communicate with the
driver. If a protected page is accessed by the CPU for execution, it will result
in calling of INT1 handler, which in turn will return the control to OllyDbg.
The following steps have to be followed to use this plug-in for finding out
OEP.

e [Load the packed program.

e Find out which section in the memory map will be executing when
the unpacking is finished. Most probably, this section will be the first
section seen through PE Editor.

e Set break-on-execute flag for the section, which will load the kernel
driver into memory and protect the desired physical memory pages
from being executed.

e Run the program.

e OllyDbg will break when CPU tries to execute the first instruction in
the selected section. The instruction at which OllyDbg breaks will be
the original entry point (OEP).

http://www.joestewart.org/ollybone

152 Fundamental of Reverse Engineering

Some packers not only add unpacking code in the higher address of the newly
created segment but also make use of free space of the section in original
application, where OEP resides. To explain it further, the figure 32.0 shows
the original application before packing.

o
Section VntualSuza Raw [Jllset Characleuszics
3 000 umuﬂl
1data UUEDJDB?E 00005000 DDUU‘IUGO UUUDSUUG dUUGUDAU
data 00002148 00006000 00001000 00008000 CO000040

IDu a right mouse click on a sectionname for more options...
Figure 33.0 showing the original application before unpacking

|
Section ‘Vittual Size Wirtual Offset | Raw Size Raw Offset Characteristics

3vIJ 00001000 00005000 00000000 00000400 EGEIUBDEEI

.data 00002000 00008000 00000000 00000400 C0000040
2bfigstd 00001000 00008000 00000000 00000400 C0000040
276xcbny 00000000 (0003000 (0000000 00000400 E0000020
#s.al3yc 00013000 00016000 00012318 00000400 E00000B0

vmG2wk7| 00001000 00023000 00001000 00012800 40000080

[Do afight mouse click on a sectionname for more oplions...

Figure 34.0 shows the original application after unpacking

The last four segments are added by the packer after encoding the
original executable image. Before packing, the virtual size of the .text
segment was 0x3d33 and after packing , the packing routines has increased to
a size of 0x4000. 0x4000 is the maximum value that a packer can specify.
The virtual size of the section is 0x4000 and the virtual offset is 0x1000. If the
virtual size is more than 0x4000, then it will result in overlapping with the
next section. (The next section starts from 0xt5000).

5.5 Unpacking 153

Unpacking routine
Code and data added
by packers

ssing
contro

Resource Segment

Data Segment

Instructions added
by packers

Original
Application Code
Segment

Figure 35.0 showing the working of packers

As shown in the figure 35.0 the packers add some code in the void space
available in the first section. These unpacking modules are located at
different segments and transfers control to the OEP. If the packing modules
are located in the void space, then it will be difficult to find the OEP by using
the methods, which makes use of plugins like OllyBonE.

Besides the above-mentioned methods there are some other methods, which
can be used to find out the original entry point. This technique drives its
strength from the fact that at the time of linking, the executable linker prep
ends a start module at the entry point of an application This module is
executed first before executing the main program and it sets the environment
ready for execution. Since the linker adds similar code to all the application,
one of the techniques for finding the OEP is to locate for the signature of
startup module. Few plugins like generic OEP finder of Peid, stores the
signature of various startup modules of different linkers. Using the plugins
like generic OEP finder can use these signatures to find OEP.

. In order to locate OEP manually, break points can be applied on the
following API’s

e GetVersion
GetVersionExA
GetEnvironmentVariable
LoadLibrary
Getproc address
IniHeap

154 Fundamental of Reverse Engineering

These APIs are called by the startup routines in order to set up the execution
environment. By applying break point, API’s will become closer to OEP. As
the startup module calls these API’s, and the address of the startup module is
OEP, the start of the function needs to be determined. The start of the function
can be recognized by the following code.

Push ebp
Mov ebp,esp

These two instructions are used to create a stack frame; local variables can be
accessed through ebp register. However, some compilers that perform
optimization might not use ebp register for creating stack frame instead use a
ebp as a general purpose register. So these instructions may not be at the start
of the program.

5.5.1.2 Taking Memory Dump

After locating the original entry point the next step is to get the memory dump
of a process. Memory dump of the process, which will result in the original
executable, is done after the completion of unpacking process. To get the
memory dump the application will have to be looped at the OEP. Following
steps can be used to get the memory dump.

IDA - Et'license_check'\Release\license_check.exne
File: Edit Jump Search ‘iew | Debugger Options ‘Windows Hslp

I SN | ‘ e o & [# Generalregisters i I ‘ = if | o

Segment registers
® Gerersl leglstersl @ Threac & FPL st ESF‘I
registers

&b er: Breakpoint rea @ Thread list
Debugger: Breakpaint reached: Ox0 Bh Module list {Detach thie debugger from the debugged process
= IDA Yiew-EIP) Continue process Fo PN

.text:884813CE p ; hblg
* _text:pB4B813CF
* .text:0e4013p5 m Frocessaptions,,,
* .text:884813DA j M Fzuse process
-text:00468130C : W Terminate process Ctrl+F2
.text:0684613DC i
.text:@e4613DC 1 ; CODE XREF: DialogFunc+1CTj
.text:peue13DC Take memary snapshat ; DialogFunc+3FTj
—** _text:084813DC x5
text-084013DE 49 SteR it

Atbachito process,,

Datach fram

F7¥

text:DO4E13DE 1 S Step over F8 ; CODE XREF: DialogFunc+23Tj
.text:084813DE I%)Rununti\return Chrl+F7 ; DialogFunc+591j

* .text:8684813DE
* .text:@846813E0

™ I'i) R ko cursor F4
e
* .text:BB4813E1 ¥ Eeeslpoints s

_text:BB4E13ET D
_text:B84813E1 watdes <
text:0B4g13E1 ; 1130ng 4

g -TERTIBBMBIIEL & =y o T

Esl 9 k6 ; ROERORHRREL PSED FUNCTION _strlen. PRESS KEYPAD “+" T0 EXPAND]

text:oo461468
.text:ppaB146B
.text:B6401468 public start
.text:00481468 start:

- 3
-text:08481468
* .text:@8848146D db BECh ; B
_text-QAMATLMAE - —— S

Figure 36.0 showmg the 1 memory dump

5.5 Unpacking 155

e Apply hardware break point at the OEP.

In case of software break point, debugger puts byte 0xCC at the
location where the breakpoint is applied. This results in interrupt 3, post
which, the debugger takes the control and replaces Oxcc with original bytes.
Since the unpacking module gets control first (before control reaches to OEP)
the unpacking instruction will treat Oxcc as an encode byte and will try to
decode it, which will result in generation of junk code and the application will
crash. In case of hardware beak point, the information is stored in the debug
register and no code change is required.

e Executing the Application. The Application will stop at OEP.
e Change the instruction and make it loop back to itself and then detach it
from debugger.
e Next step will be to take the memory dump. Proc dump (available at) can
be used to take the dump of process.

VT ProcDump32 (C) 1998, 1999, 2000 G-RoM, Lorian & Stone | =izl

Ix

| Task [PD_ [Addess [Gke 4] wok |
f:\booksldatalmydataitoolsicracking|peditorl 7\peditor.exe 000007D0 00400000 O0ZLEC |
ci\program Files\cyanus free edtion\cyanus.eve 0000CE 00400000 00O7IC Reebut PE

e:lidalidag.exe 00000A18 00400000 00295(|

e:ljdalidag.exe 00000034 00400000 00295C H PE Edtor
F1edius|edis, exg 0ODODDFSC 00400000 003SD
P *| || Brvamaserver||

£ nrmramlimirrr ANOANANC 3NN ANAT3L

l* Durp (Partial) —1 4

Module Killtask Address | Size n]
filediusledius.exe Process Infos FB0 00400000 DO3SDOO0

NS

[fE[ele

ci\windowsisyster —————————————— 1% 7C900000 000BO00O

c:lwindowstsyster Refresh list FAE 7000000 OOOFS000
cilwindowslsysteMaZMIer IO 7LZsDC3F 7C250000 00102000
ciwindowslsystem3Zimsver7dl 7361914 7C360000 00056000 About
ci\windovislsysteni2\adiaz.dl FIFL6597 77F10000 00047000 =
ciwindowstsystem32iuser3z.di 7E42E966 7E410000 00090000 Li

Figure 37.0 showing proc dump

e Proc dump reads the information stored in the PE header to find out
segment information like virtual size and virtual address. It then dumps
the segments and file as it is in the hard disk. Now the size in file address
and RVA size has to be the same. But the section information in the
original application contains different virtual and raw address. So the
dump needs to be fixed

156 Fundamental of Reverse Engineering

Section Table Yiewer E=|
Vlr!ua! Slze Vlﬂual leiset m Haw Blfset Characterssllcs

edlt sel:l:ion

00000410 0000;

CO000040

add 5 section
delete the section

copy the section to HD
move the section to HD
copy a section from HD ko EOF

?Dn a right mouse click on a sectionname

set the characteristics to EODDOD20 tasks
Enty Paint: [00001138

truncate at the start of this section 1
Image Base: I1UDUDDUU custom truncate

Time Date Stamp: [44ETCESA split
—Optional Header ————————— . 00000000 break'n'enter
Bassof Cods: 00001000 Pointer to Symbol T able: e
e [oonozonn | | Mumber of Symbols: [oooo0000
= v O0ED checksum
; ; 00003000 Size of Optional Header:
Size of Image: IT rebuailder
tahes 10|
Size ofFlaadars: IEEEFDZ_UU_ Characteristics:
Section Aignment. 00001000 apply changes
- Tables
File Alignment: |’3|:":":"32|:'EI about
Subsystemn: IODUZ A hoty, exit
Hold your mouse on a edit box for more infos. ..

Figure 38.0 Showing Information from PE header

e The next step involves the changing of the entry point of the PE
header to the original entry point using PE editor.

e Open the application in a hex editor like “cygus hex editor” (available
for download). Go to the entry point of the application and restore the
original byte, which was present before replacing it with jmp loop
back bytes.

The memory dump from original application, which can be obtained from
the above-mentioned steps, can be loaded in IDA pro for static analysis.

5.5.1.3 Import Table Reconstruction

Dynamic analysis requires reconstruction of import symbols and import
data structures. Imported functions, are certain functions in the caller module,
which doesn’t have the code in the executable. The executable stores only
certain information about these functions; loader use this information at load
time and stores the addresses of the functions in the executable enabling the
caller modules to call the functions using these addresses.

For storing these imports information and address, certain well-defined data
structures should be known in order to reconstruct them. The following code
represents the NTHeader present inside the PEheader.

Struct IMAGE_NT_HEADERS STRUCTURE {
Signature dd ?
IMAGE_FILE HEADER FileHeader

5.5 Unpacking 157

IMAGE OPTIONAL HEADER optionalHeader
i

Data directory is the last member of IMAGE OPTIONAL HEADER. Data
directory is an array 16 IMAGE DATA DIRECTORY structure. Following
figure will explain about these structures as discussed above.

Each member of the data directory is a structure called
IMAGE _DATA DIRECTORY, which has the following definition: -

Struct IMAGE_DATA_DIRECTORY STRUCT {
VirtualAddress dd ?
ISize dd ?

}

Second entry comprises of Import Symbols. So the virtual Address field
will contain the address of IMAGE IMPORT DESCRIPTOR array and isize
will contains the size in byte of the data structure pointed by virtual address.

DOS HEADER [t

NT HEADER

Data Directory1l

Data Directory2 =

IMAGE IMP

Data Directory3 ORT_DESCR
IPTOR

Data Directory4

Figure 39.0 showing the import table structure

IMAGE _IMPORT _DESCRIPTOR is a data structure, which stores
information about import symbols. There is one
IMAGE_IMPORT_DESCRIPTOR for each imported executable. The end of
the IMAGE IMPORT DESCRIPTOR array is indicated by an entry with
fields all set to 0.

The structure of IMAGE IMPORT DESCRIPTOR is as follows: -
Struct IMAGE IMPORT DESCRIPTOR STRUCT {
OriginalFirstThunk dd ?

TimeDateStamp dd ?

ForwarderChain dd ?

158 Fundamental of Reverse Engineering

Namel dd ?
FirstThunk dd ?
& license_check.exe RVA Data | Deserition | Yalue
- IMAGE_DOS_HEADER 00018454 00018524 Import Name Table RYA
ME-DOS Stub Program 00018458 0OOOOOOO Time Date Stamp
@ IMAGE_NT_HEADERS 0001845C (0000000 Forwarder Chain
IMAGE_SECTION_HEADER .text 00018460 000168602 Name RVA USER3Z.dI

~IMAGE_SECTION_HEADER .Bad B | 00018484 DO018034 Import Address Table RVA
- IMAGE_SECTION_HEADER .rdata (00018468 00018490 Import Name Table RVA
IMAGE_SECTION_HEADER data 0001846C 00OOOO0 Time Diate Stamp

- IMAGE_SECTION_HEADER .1src 00016470 00000000 Forwarder Chain

- BECTION text 00018474 OOO1B4E Mame RVA KERNELZ2.dIl
SECTION .Bad_B 00018476 00018000 Import Address Table RAVA
= BECTION rdata ooo1e47¢ 00000000
IMPORT Address Table 00018480 00ODOOOD
IMPORT Directory Table 00018484 000DOOOO
IMPORT Narne Table 00018468 00000000
IMPORT HintsMlames & DLL Nares | 0001848C 00000000

SECTION data
- SECTION .rsrc

Figure 40.0 Shows the organization of IMAGE IMPORT DESCRIPTOR
using PEView.

IMAGE _IMPORT_DESCRIPTOR comprises of many structures, which
are discussed below.

e OriginalFirstThunk: - This member contains the RVA (pointer)
of an array of IMAGE TUNK DATA structures.
IMAGE_TUNK DATA structures, is a union of dword size. This
can be considered as a pointer to IMAGE IMPORT BY NAME
structure. The structure of IMAGE IMPORT BY NAME
structure is as follows: -

IMAGE_IMPORT BY NAME STRUCT
Hint
Namel
IMAGE IMPORT BY NAME ENDS
It contains the index of the export table of the DLL. The
loader uses this field so that it can look up for the function
in the DLL's export table quickly. This value is not
mandatory and in some cases you will find that the linker
will set its value to 0.

5.5 Unpacking

Original First Thunk

Time Stamp

Forward Chain

Namel

First Thunk

00000000

00000000

00000000

Q00000000

00000000

Figure 41.0 Showing the organization of import data structure.

IMAGE_TUNK_DATAL

IMAGE_TUNK_DATAZ

IMAGE_TUNK_DATA3

IMAGE_TUNK_DATA4

IMAGE TUNK DATAS

00000000

IMAGE IMPORT BY NAMElI

IMAGE IMPORT BY NAMEZ

IMAGE _IMPORT_BY_NAME

IMAGE IMPORT BY NAMES

DLLNAME I

A

TM-&?HH-HK—W—IJ IMAGE _TUNK_DATAZ2

} IMAGE TUN

DATAS3

IMAGE TUNK DATA4

IMAGE _TUNK DATAS

00000000

£ P

—

€

| J

\i

Y

Function1()

¥
Function2()
Function3()
¥
Function-()
£
>

Functions()

159

i. Time/Date Stamp: - After the image is bound, this field is set
to the time/data stamp of the DLL. This field is not
mandatory; it can be zero.

ii. Forwarder Chain: - The index of the first forwarder
reference. This field is not mandatory; it can be zero.
iii. Name: - This member contains the RVA (pointer) of an

ASCII string that contains the name of the DLL.

iv. FirstThunk:- As the name suggests the FirstThunk is very

similar to that of OriginalFirstThunk . Similar to FirstThunk it
also contains pointer (RVA) to array of

IMAGE _THUNK DATA structures. Although both the
arrays contain same value, they are at different locations in

the executable.

To reconstruct the import, table name of the entire imported API is
required. One of the ways is to search for the name of the imported APIs in
the dump executable. However, the unpacking module may distort the name
of few or all API after using / loading the address, so the method of getting
the list is not reliable. Another method of knowing the name of the API is by

160 Fundamental of Reverse Engineering

using tools like Re-Virgin (available at) or Imp-REC(available at). These
tools require the address and the length of the IAT (Import Address Table as
discussed earlier array of IMAGE THUNK DATA structures, it is a location
where loader loads addresses of the imported functions). Hence the location
and the length of IAT is required. To rehash, IAT stores the address of the
API. In order to call the API, the application must refer IAT and the call will
be redirected to [AT.

In order to find out the address of the import table, analysis of the code of
unpacking application is required. This will give the indirect call referring
memory location, which stores the address of the function. This resolves to
determine the instruction template CALL DWORD PTR [XXXXX]. Here
XXXX can be the address or name of the API, as few disassemblers resolved
the name of the API. As shown in figure 41.0 the highlighted instruction,
which is calling the function indirectly by referring the memory location
needs to be determined.

6A FF PUSH -1

68 FOoBO4100 PUSH license_ .004180F0

68 AOG1F4000 PUSH license_.00401FA0

64:A1 00000060 |MOU EAX,DWORD PTR FS:[0]

58 PUSH EAX

64:8925 0000000(HOU DWORD PTR FS:[8],ESP

83EC 58 SUB ESP,58

53 PUSH EBX

56 PUSH ESI

57 PUSH EDI

8965 E8 MOU DWORD PTR SS:[EBP-18],ESP
FF15 608084100 |[CALL DWORD PTR DS:[<Z&KERNEL32.GetUersion>]
33D2 XOR EDX,EDX

8ADY MOU DL,AH

8915 809541060 MOU DWORD PTR DS:[419580],EDX
8BC8 MOU ECX,EAX

. ngure 42.0 shows the function

Once the instruction template CALL DWORD PTR [XXXXX] is located ,
the next step involves reading the address [XXXXX], or 0x40801C and
jumping to that address. This address will be in the IAT.

5.5 Unpacking 161

Address |Hex dump ASCII

Figure 43. O shws the memory location by using rnernory view of
Olydbg.

The figure 43.0 figure shows the memory organization at the 0x40801C
desired location. Since the last byte in every DWORD entry ends with 7C,
indicating the address of function of Kernel32.dll, it can be concluded that this
memory is residing inside IAT. Generally the byte in the import tables will be
in an ordered way.

The reason is that, it stores the addresses of API for a dll. The first byte of the
address will be similar. For example, in the enclosed figure, the first byte of
the instruction is 7C. So it can be concluded that the import table will start
from the address xxxx and end at the address xxxxx

By providing the inputs (start address of IAT and the length of IAT) to Re-
Virgin, the name of the API used by the original program can be listed. The
figure 44.0 shows the output of the Re-Virgin tool after providing it with the
address range of IAT.

162 Fundamental of Reverse Engineering

ll-ir.‘ense_check_lonp_exe.Exe 00000378 00022000 00400000 =1

ISeIect Maodule to Attach EI
Module Ordinal MName Address IATRva ;I
KERNEL32.dll | 00000174 | GetModuleFileNames 7CE80B4ACE | 0001 BGE}_‘J___‘
KERNEL32.dll | 000001B2 | GetStingTypew/ 7C804430 | 00012004
KERNEL32.dll |00000TB0 | GetStingTypes, 7Ce3gA0C | 000718008
KERNEL32.dll |00000235 | LCMapSting's’ 7CB0CCAS | 0001800C
KERMEL32.dll |00000234 | LCMapStings 7C838DES& | 00018010
KERMNEL32.dll | 00000265 | MultiByteT c'wideChar 7C80SBFE | 00018014
KERNEL32.dIl 00000242 | LoadlLibrams, 7C801D77 00012012
KERNEL32.dll |000D0198 | GetProcaddress 7Ce04ADA0 | 0001801C
KEBRNEL32.dll |0000020D | HespRealloc 7CI917SFD | 00018020
KERMNEL32.dll | 00000368 Virtualdlloc 7C809451 | 00018024
KERMNEL32.dll | 00000203 | Heap#lloc 7C910504 | 00018028
KERNEL32.dll | 00000188 | GetOEMCP 7C8127A7 | 0001802C
KERMEL32. dll |000000F7 | GetACP 7C809915 | 00018030
KERNEL3Z2.dll | ODOODOFE | GetCPinfo 7C812E7E | 00018034
KERMELZ22.dlIl | 00000328C ‘WiiteFile 7C2810D87 | 000180328
KERMNEL32.dil |000002C5 | RtUnwind FC937440 | 00071803C
KERNEL32 dil 00000203 |HeapFree 7C910430 | 00018040
KERNEL32 dll | 0D00036E | VirtualFree 7CB094E4 | 00018044
N | _>l_l

[Stoj
- IAT Critical Values

IAT Resolver | [1T Values +generater ———————
OEP IDD41 Ca49

[oovB000° [Resolve sgsin| | AVA |
RVA 0001 8000 Fetch IAT | generate! l

Length |00DOODES Load iesolved| | | ength [0000003C
Save resolved|
¥ Show IAT referers IDUUUGEMD Tracer | [Show Al =~

¥ Autofiz sections + IT paste

Figure 44.0 showing the output of Re-Virgin Tool.

Although the name of API can be determined with the help of above
mentioned procedure, the techniques like, import redirection, code emulation
the unpacking process can be made a challenging task.

5.5.1.4 Import redirection and Code emulation

ImpREC functionality can be extended and customized for a particular packer
through plugins that help to find out the name of the API’s. The following
link will explain how to write plugins for Import REC.After determining the
name of all the API’s used by the application, the next step will be to structure
the import name table such that the loader is able to load the executable.

Manual Import Name Table Reconstruction

There can be two approaches to construct import address. The first approach
can be termed as
e Top to bottom approach. For this
IMPORT_DESCRIPTOR structure entry then
IMAGE_TUNK DATA structure and then following it
IMAGE IMPORT BY NAME structure is constructed.

e Bottom to Top Approach.
IMAGE IMPORT BY NAME then
IMAGE _TRUNK DATA and then IMPORT DESCRIPTOR

5.5 Unpacking

Here, the import table reconstruction will be done by using the second

approach.

START

Con

IMAGE_IMPO |«
RT_BY_NAME

struct

Construct
IMAGE_TUNK
DATA

Constructed
for all API

Constructed for
all
IMAGE_IMPORT

Construct

IMAGE_IMPORT
_DESCRIPTOR

_BY_NAME

No

Constructe
d for all dll

Figure 45.0 Shows import table reconstruction.

The first step requires the construction of IMPORT DESCRIPTOR. The

structure of IMPORT DESCRIPTOR will be as follows

IMAGE IMPORT BY NAME STRUCT

Hint dw ?
Namel db ?

IMAGE IMPORT BY NAME ENDS

163

Since the “hint” field is not essential, its value can be set to 0. Since the name
of all API’s used by the steps mentioned in previous section know the
application, the free space is needed in the exe to construct the import name
table. The free space should be long enough such that all the API entries can

be adjusted.

164 Fundamental of Reverse Engineering

100460C0 00 00 00 00 OO0 00 OO 00-00 OO 00 0O OO OO 0O 0O
10046000 00 00 0O 00 00 00 0O 00-00 0O 00 00 OO 0O 0O 0O
I00460E0 00 00 00 00 00 00 OO0 00-00 0O OO OO 0O 00 00 00 ... Huol

I00460F0 00 00 00 00 OO0 00 00 00-00 00 OO 00 OO 00 OO DO-—700.. ...,
10046100 00 00 00 00 00 00 00 00-00 00 00 000000 00 Uﬁd_dqffName
10046110 00 00 00 00 00 00 00 00-00-88-00 00 QO-B8—HOT0

10046120 00 00 00 00 00 0080 un- SR T[T (1 A —
10046130 00000000 | 00 000000
10046140 <00 00 2765 61 74 65-46 63 6C 65 41 0 00 . .CreateFiled. ..
10046150 00 00 4C 6F = 00 00 00 00 . .IoadIcond.....

10046160 00 00 47 65 74 55 73 65-72 4E 61 6D 65 41 00 00 . GetUserNanmeh.

10046170 00 00 44 6C 6C 52 65 67-69 73 74 65 72 53 65 72 .DllReglsterSer
10046180 76 65 72 00 00 00 00 00-00 0O 00 0O OO0 00 00 00 wer.............
10046190 00 00 77 73 63 61 6E 66-00 00 00 00 00 00 00 00 ..wscanf........
10046140 00 00 62 69 6E 64 00 00-00 00 00 00 00 00 00 00 . .bind..........
00461B0 00 00 77 63 74 6F 62 00-00 00 OO 00 00 00 00 00 . .wetob.........
100461C0 00 00 00 00 00 00 00 00-00 00 00 0O 00 00 00D OO
10046100 00 00 00 00 00 0O OO 00-00 0O 00 0O OO OO OO OO
I00461E0 00 00 00 00 00 00 0O 00-00 00 00 00 00 0O 00 OO

Figure 46.0 shows the import table reconstruction

Figure 46.0 shows the reconstructed IMAGE IMPORT BY NAME for
the all API’s referring to the list of API names. The above-mentioned figure
shows the entry of IMAGE IMPORT BY NAME for each API containing
the value in Hint as 0, and the name of the API. The next step requires the

reconstruction of IMAGE _TUNK DATA structure. The
IMAGE _TRUNK DATA is a structure which contains DWORD (pointer to
IMAGE _IMPORT BY NAME entry). Construction of

IMAGE TUNK DATA data structure pointing to each
IMAGE_IMPORT BY NAME entry will be required. For this, the free
space inside the executable will be required. The free space should be greater
than or equal to (Total number of API +1) * size of (DWORD), so that the
entry for all the API calls will be available. The last entry will contain the
value Zero indicating the end of the entry of IMAGE TUNK DATA
structure.

5.5 Unpacking 165

UUU4blUU UU UU UU UU UU UU UU UU—UU UU UU UU UU UU UU UL L
00046110 00 00 00O 00 OO 00 OO0 0QO—0O0 OO0 OO 0O OO OO 0O OO
00046120 00 00 00 0O OO 00 OO OO-00 OO0 OO OO OO0 OO OO OO
00046130 OO0 00 00O OO OO0 OO 00 0OO0O-00 OO OO OO OO OO OO OO

00046140 0O 00 43 72 65 61 74 65-—-46 69 6C 65 41 00 00 OO0 o

00046150 %g 00 4C 6F 61 64 49 63—-6F 6E 41 00 00 00 00 00 . LoadIcond.....
00046160 00 47 65 74 55 73 65-72 4E 61 6D 65 41 00 00 . GetUserNamed..
00046170 PO 00 44 6C 6C 52 65 67—-69 73 74 65 72 53 65 72 . . DllRegisterSer
00046180 (|76 &5 72 00 00 00 00 0QO—0O0 OO0 OO0 OO0 OO0 OO0 00 OO0 wexr.............
00046190 |00 00 77 73 63 61 6E 66—00 00 00 00 00 00 00 00 . .wscanf........
00046140 |00 00 62 69 6E 64 00 00-00 OO0 OO0 00 OO0 00 00 00 . .bind..........

000461BO0 JOO 00 77 63 74 6F 62 00-00 00 OO OO OO OO OO OO0 .wctobo oL
0oD461CO |00 OO 0O 0O OO 0D 0O O0-00 DO OO OO OO OO OO DO R e
000461D0 fO0 0O 0O 00 OO0 0O 0O O0-00 0O OO0 00 0O OO OO0 QO
000461E0 |00 0O 00 OO0 OO0 0O OO0 0O0-00 00 OO0 00 QO OO OO0 QO
000461F0 (00 00 00 00 OO0 00 OO0 O0-00 0O OO0 OO0 OO OO OO0 QO
00046200 OO 0O 0O 0O OO 0O OO O0-00 0O OO OO OO OO OO OO e
00046210 (00 00 0O OO0 00 OO OO O0-00 OO OO0 OO0 OO OO 00 OO R
00046220 |00 00 OO0 OO OO OO OO0 OO-00 OO OO OO OO OO OO OO “End of th .
00046230 (00 00 00 00 00 OO0 OO0 00-00 OO0 00 00 00 00 0O QO °ne @b tae dst
00046240 | 00 0O 0O 00O OO OO OO O0-00 0O OO 0O OO OO 0D O . .
00046250 | OO0 00 0O 00 OO0 0O OO0 O0-0QO0 OO0 OO 0O OO OO O [T T
00046260 J) 4B 45 52 4E 45 4C 33 32-2E 44 4C 4C 00 O 0 00 EKERNEL32.DIL....
D0D46270 | S5 53 45 52 33 32 2E 44-4C 4C 00 00 O 0 00 00 USER32.DLL......
00046280 1 41 44 S6 41 S50 49 33 32-2E 44 4C 4 0 00 00 00 ADVAPIZ2.DLL....
00046290 | 4D 46 43 34 32 2E 44 4C-4C 00 00-00 OO0 00 OO0 00 MHFC42 DLL.......
00046240 ! 4D 53 56 43 52 54 2E 44-4C 4C.-00 00 00 00 00 0O MSVCRT.DLL... ...
000462B0 44 4C 00 00 00 00 OO0 0D WS2_32.DLL......
000462C0 00 00 00 OO0 00 0O 00 @a........
000462D0 4 00 00 00 00 00 OO0 00 00 00 @a..............
DOD462E0 S0 €1 04 00 OO0 0O OO0 O0-00 OO0 OO0 0O 0O OO0 OO 0O Pa..............

Figure 47.0 showing the reconstruction of IMAGE TRUNK DATA

Reconstruction of IMAGE TUNK DATA is explained in the figure 47.0.
As shown in the figure, the IMAGE IMPORT BY_ NAME entry for the API,
Dispatch MessageA is at the address 0x0000497E. The final entry will contain
value zero, indicating the termination of the array of this structure. In the
figure 47.0, it can be seen that the value 7E 49 00 00 stored at address
0x00004700 is denoting the address 0x0000497E.

The similar steps will have to be followed for all the API’s. After which the
final step requires the construction of IMPORT DESCRIPTOR. The structure
of IMPORT_DESCRIPTOR is as follows.

IMAGE IMPORT DESCRIPTOR STRUCT
OriginalFirstThunk dd ?

TimeDateStamp dd ?

ForwarderChain dd ?

Namel dd ?

FirstThunk dd ?
IMAGE IMPORT DESCRIPTOR ENDS

OriginalFirstThynk: It is a dword, which will point to an array of newly,
reconstructed IMAGE TUN DATA structure. For example as shown in the
figure, 46.0 it will contain the value 0x00004700 at the starting RVA of the
array of IMAGE TUNK DATA

TimeDateStamp, not a mandatory field so it can be set to zero.
ForwordChain not a mandatory field so it can be set to zero

166 Fundamental of Reverse Engineering

Namel is a pointer to the name of the DLL for which reconstruction of the
IMAGE_IMPORT BY NAME has been done. In the case shown in the
figure, the RVA of ASCII string of. “Kernel32.dll” is stored.

FirstThunk is a pointer to an array IMAGE TUNK DATA structure where
loader will store the address of imported functions for that particular DLL, so
that applications can call these functions. Its address is used throughout the
exe so it remains fixed. Hence, it cannot be changed and it will point to the
array of IMAGE TUNK DATA structure, which is already discovered for
finding out the name of the APIL.

To summarize, the reconstruction of single DLL has been done. The step has
to be repeated for each DLL.

5.6 Conclusion

Software reverse engineering is a very handy mechanism on the binary to
reveal the design of the software. In order to protect the binary from getting
reversed, binary code is added with various anti reversing techniques. Anti
Disassembly technique is used to confuse the disassembler. This forces the
disassemblers to generate incorrect disassembled code by exploiting the
implementation design of the disassemblers. Anti-disassembly techniques can
successfully confuse linear and Recursive Traversal Disassemblers as well.

Apart from exploiting the implementation design there are also some
other techniques like, Self code modification, dynamic encryption, decryption
which encodes the instruction bytes so that the disassembler does not
disassemble the instruction properly and decode it only at the time of
execution. There is one more technique called as virtual machine runtime
environment, which changes the standard x86 instruction byte into p-codes
that can only be understood and executed by the customized runtime
environment of virtual machine. Anti debugging techniques basically detect
the presence of debugger environment. If the application has already started
debugging, anti debugger does something really bad and exits the program.
Debugging can also be detected through break points. There are two type of
break points namely, software and hardware break point. Software break
points can be detected by checking the integrity of the code and hardware
breakpoints are detected through debug register. Virtual machine (like VM
ware) provides the feature of multiple OS in a machine. There are certain
techniques that detect the presence of virtual machine environment and exeunt
the program. Nearly, all-malicious software is protected with a packer.
Packing is done to protect software from reverse engineering. Packers encode

5.6 Conclusion 167

the original bytes of an application and add unpacking subroutine into the
packed executable so that at the time of execution, it decodes these
instructions back to its original form and then transfer the control to the
original application. For analysis, packed application needs to be unpacked.
Unpacking process can be divided into three steps.
1. Finding Original Entry Point OEP is the instruction address to which
unpacking module transfers the control after unpacking/decoding the original
application.
2. Taking memory dump and updating PE header: - The application has to be
in decoded state at the time of execution so taking memory dump can retrieve
the original application. Few information stored in PE header like entry point
and section size need to be updated accordingly.
3. Import table reconstruction: - As packers destroy the import information
after loading the module, reconstruction is needed to import the table.

After performing these steps the application is unpacked and can be
further analyzed.

APPENDIX

Hex Signature ASCII File Description File
Signature Extension
11 byte offset] Palmpilot PDB
8 8 gé) 00 00 00 00 Database/Document File
00 00 00 00 00 00
00 00
00 00 00 00 00 00
00 00
00 00 01 00 Windows icon file 1ICO
00 00 01 Bx MPEG video file MPEG
, MPG
00 00 02 00 Windows cursor file CUR
QuattroPro for
Windows Spreadsheet WB2
file
00 00 02 00 06 Lotus 1-2-3 WK1
04 06 00 spreadsheet (v1) file
08 00 00 00 00 0O
00 00 1A 00 00 Lotus 123 WK3
10 04 00 spreadsheet (v3) file
00 00 00 00
00 00 1A 00 02 Lotus 1-2-3 WK4
10 04 00 spreadsheet (v4) file
00 00 00 00
00 00 49 49 58 .. IIXP Quark Express QXD
50 52 or R document
00 00 4D 4D 58 . .MMXP
50 52 R
[7 byte offset] [7 Windows Help file HLP
00 00 FF FF FF FF byte
offset]
00 01 00 00 4D 53MS Microsoft Money file MNY
49 53 IS
41 4D 20 44 61 74 | AM Datab
61 62 ase
61 73 65
00 1E 84 90 00 00 Netscape SNM
00 00 Communicator (v4)
mail folder
00 5C 41 Bl FF At Mujahideen Secrets 2 ENC
encrypted file
[512 byte offset] [512 PowerPoint PPT
00 6E 1E FO byte presentation subheader
offset]

Appendix 169
n.d (MS Office)
01 00 00 00 Extended (Enhanced) EMF
Windows Metafile
Format, printer spool
file
01 00 00 00 01 Unknown type PIC
picture file
01 10 Novell LANalyzer TR1
capture file
01 DA 01 01 00 03 .0. Silicon Graphics RGB
RGB Bitmap
01 FF 02 04 03 02 -y Micrografx vector DRW
graphic file
02 64 73 73 .dss Digital Speech
Standard (Olympus,
Grundig, & Phillips)
03 Maplnfo Native Data DAT
Format
dBASE III file DB3
03 00 00 00 41 50AP Approach index file ADX
50 52 PR
04 dBASE 1V data file DB4
00 01 01 OpenFlight 3D file FLT
00 06 15 61 00 0O Netscape Navigator DB
00 02 (v4) database file
00 00 04 D2 00 00
10 00
00 11 AF FLIC Animation file FLI
07 A common DRW
signature and file
extension for many
drawing
programs
07 64 74 32 o4 .dt2ddt DesignTools 2D DTD
64 74 64 d Design file
08 dBASE IV or DB
dBFast configuration
file
512 byte offset] Excel spreadsheet XLS
82 808 10 00 00 06 subheader (MS Office)
OA nn 01 01 ZSOFT Paintbrush PCX
file
0C ED i Monochrome MP

Picture TIFF bitmap
file (unconfirmed)

170 Appendix
0D 44 4F 43 .DOC DeskMate DOC
Document file
OE 57 4B 53 .WKS DeskMate WKS
Worksheet
[512 byte [512 PowerPoint PPT
offset] byte presentation subheader
OF 00 E8 03 of\fset} (MS Offlce)
.e.
11 00 00 00 53SCC Windows prefetch PF
43 43 41 A file
1A 00 00 Lotus Notes NTF
database template
1A 00 00 04 00 Lotus Notes NSF
00 database
1A 0x LH archive file, old ARC
version
(where x = 0x2, 0x3,
0x4, 0x8 or 0x9
for types 1-5,
respectively)
1A 0B Compressed archive PAK
file
(often associated with
Quake Engine games)
1A 35 01 00 .5. GN Nettest ETH
WinPharoah capture
file
1F 8B 08 GZIP archive file GZ
1F 9D 90 Compressed tape TAR.Z
archive file
21 12 ! AIN Compressed AIN
Archive
21 3C 61 72 63 !<arch>. Unix archiver (ar) LIB
68 3E OA files and Microsoft
Program Library
Common Object File
Format (COFF)
21 42 44 4E Microsoft Outlook PST
Personal Folder file
23 20 Cerius?2 file MSI
23 20 4D 69 63 # Micros Microsoft DSP
72 6F 73 oft Deve Developer Studio
gz 6656 74 20 44 65 lllggir St project file
6C 6F 70 65 72 20
53 74
75 64 69 6F
23 21 41 4D 52 # ! AMR Adaptive Multi- AMR

Appendix 171
Rate ACELP
(Algebraic Code
Excited Linear
Prediction)
Codec, commonly
audio format with
GSM cell phones
24 46 4C 32 40 SFL2Q (#) SPSS Data file SAV
28 23 29 SPSS DA
20 53 50 53 53 20| TA FILE
44 41
54 41 20 46 49 4C
45
25 21 50 53 2D % !PS—-Ado Adobe EPS
41 64 6F be-3.0 E encapsulated
62 65 2D 33 2E 30 | PSF-3.0 PostScript file
50 53 46 20 33 20 (If this signature is
30 not at the immediate
beginning of the file,
it will occur early
in the file, commonly
at byte offset 30)
25 50 44 46 %PDF Adobe Portable
Trailers: Document Format
OA 25 25 45 | and Forms Document
4F 46 0A file
(.%%EOF.)
0D 0A 25 25
45 4F 46 0D
0A
(..%%EOF..)
0D 25 25 45
4F 46 0D
(.%%EOF.)
28 54 68 69 73 Macintosh BinHex HQX
6 65 20 60 75 73 Ay omPressed
22 20 Archive
62 65 20 63 6F O6E
76 65
72 74 65 64 20 77
69 74
68 20 42 69 6E 48
65 78
20
2A 2A 2A 20 20 *** Ins Symantec ~ Wise LOG
49 6E 73 tallatio Installer log file
74 61 6C 6C 61 74 | n Starte
69 6F d
6E 20 53 74 61 72

172 Appendix
64 20
[2 byte offset] [2 byte Compressed LHA,
2D 6C 68 Oiiset] archive file LZH
2E 52 45 43 .REC RealPlayer video IVR
file (V11 and later)
1A 52 54 53 20 .RTS COM Runtime Software DAT
43 4F 4D PRESSED disk image
50 52 45 53 53 45 | IMAGE V1
44 20 .0.
49 4D 41 47 45 20
56 31
2E 30 1A
1D 7D .} WordStar Version WS
5.0/6.0 document
2E 72 61 FD 00 .ra.. RealMedia streaming RA
media file
2E 73 ©E 64 .snd Sun Microsystems AU
audio file format
30 0 Microsoft security CAT
catalog file
30 00 00 00 4cC Windows Event EVT
66 4C 65 Viewer file
30 26 B2 75 8E O&2u.fI Microsoft Windows ASF,
66 CF 11 - R Media Audio/Video File WMA,
A6 D3 00 aAa 00| iU.®.bll (Advanced Streaming WMV
62 CE 6C
Format)
30 31 4F 52 44 010RDNA National Transfer NTF
4E 41 4E N Format Map File
43 45 20 53 55 | CE SURVE
52 56 45 Y
59 20 20 20 20
20 20 20
31 BEor 1% Microsoft Write file WRI
32 BE 2%
34 CD B2 Al 412 Extended tcpdump
(libpcap) capture file
(Linux/Unix)
37 7A BC AF 27 Tz 7-Zip compressed file 77
1C
38 42 50 53 8BPS Photoshop image file PSD
3C < Advanced Stream ASX
redirector file. XDR
BizTalk XML-Data
Reduced Schema file
3C 21 64 o6F 63 <!docty AOL HTML mail file DCI
74 79 70 o)
3C 3F 78 6D 6C <?xml Windows Visual | MANIFEST
20 76 65 ve Stylesheet XML file
72 73 69 6F 6E | rsion=

Appendix 173
3D
3C 3F 78 6D 6C <?xml XML User Interface XUL
20 76 65 ve Language file
72 73 69 6F 6E | rsion="1
3D 22 31 0>
2E 30 22 3F 3E
3C 3F 78 6D 6C <?xml Microsoft MSC
%g 7763 6 56 o er cx ve. - Management ~ Console
rsion= ;
3D 25 31 ey < Snap-in Control file
2E 30 22 3F 3E | MMC_Cons
0D 0A 3C oleFile
4D 4D 43 O5F 43 | ConsoleV
6F 6E 73 ersion="
6F 6C 65 46 69
6C 65 20
43 6F 6E 73 6F
6C 65 56
65 72 73 69 6F
6E 3D 22
(24 byte [24 Quatro Pro for WB3
offset] byte Windows 7.0 Notebook
3 00 03 00 FE | offset] file
FE 09 00 >...pby..
06
3F 5F 03 00 Windows Help index GID
file HLP
Windows Help file
[32 byte [32 EndNote Library File ENL
offset] byte
40 40 40 20 00 | offset]
00 40 40 @ree ..e@
40 40 Qe
41 43 53 44 ACSD Miscellaneous AOL
parameter and
information files
41 4D 59 4F AMYO Harvard Graphics SYW
symbol graphic
41 4F 4C 44 42 AOLDB AOL and AIM buddy ABY, IDX
list file
41 4F 4C 49 44 AOLIDX AOL client IND
58 preferences/settings file
(MAIN.IND)
41 4F 4C 49 4E AOLINDE AOL address book ABI
44 45 58 X index file
41 4F 4C 56 4D AOLVMI10 AOL personal file n/a
31 30 30 0 cabinet (PFC) file
41 72 43 01 ArC. FreeArc compressed ARC
file
42 45 47 49 4E BEGIN:V vCard file VCF
3A 56 43 C

174 Appendix
41 52 44 0D 0OA ARD. .
42 4C 49 32 32 BLI2230Q Thomson Speedtouch BIN
33 51 seriess WLAN router
firmware
42 4D BM Windows (or BMP,
device-independent) DIB
bitmap image
42 5A 68 Bzh bzip2 compressed BZ72,
archive TAR.BZ2,
TBZ2, TB2
43 42 46 49 4C CBFILE WordPerfect CBD
45 dictionary file
(unconfirmed)
43 44 30 30 31 CD001 1SO-9660 CD Disc ISO
Image
(This signature usually
occurs at byte 8001,
8801, or 9001.)
43 4F 4D 2B COM+ COM+ Catalog file CLB
43 52 45 47 CREG Windows 9x DAT
registry hive
43 52 55 53 48 CRUSH v Crush compressed CRU
20 76 archive
43 57 53 CWS Shockwave Flash SWF
file (v5+)
43 61 74 61 6C Catalog Wherelslt Catalog CTF
6F 67 20 3.00. file
33 2E 30 30 00
43 6C 69 65 6E Client U IE History DAT file DAT
74 20 55 rlCache
72 6C 43 61 63 68 | MMF Ver
65 20
4D 4D 46 20 56 65
72 20
44 42 46 48 DBFH Palm Zire photo DB
database
44 4D 53 21 DMS ! Amiga DiskMasher DMS
compressed archive
44 4F 53 DOS Amiga disk file ADF
45 52 46 53 53 ERFSSAVE Kroll EasyRecovery DAT
41 56 45 DATAFILE Saved Recovery State
44 41 54 41 46 49 file
4C 45
45 56 46 EVF EnCase evidence Enn
file (where nn

are numbers

Appendix 175
46 41 58 43 4F FAXCOVER Microsoft Fax CPE
56 45 52 —VER Cover Sheet
2D 56 45 52
46 45 44 46 FEDF (Unknown file type) SBV
46 4C 56 FLV Flash video file SWF
46 4F 52 4D 00 FORM. Audio Interchange AIFF
File
46 57 53 FWS Shockwave Flash SWF
file
46 72 6F 6D 20 FHom A commmon file ELM
20 20 or FHom 777 | extension for e-mail
46 72 oF 6D 20 FHom: files. Signatures shown
3F 3F 3F or here
46 72 6F 6D 3A are for Netscape,
20 :
Eudora, and a generic
signature, respectively.
EML is also used by
Outlook Express and
QuickMail
47 46 31 50 41 GF1PATCH Advanced Gravis PAT
54 43 48 Ultrasound patch file
47 49 46 38 37 GIF87a Graphics GIF
61 or GIF89a interchange format file
6147 49 46 38 39 Trailer: 00 3B (.;)
47 50 41 54 GPAT GIMP (GNU Image PAT
Manipulation Program)
pattern file
47 58 32 GX2 Show Partner GX2
graphics file (not
confirmed)
48 48 47 42 31 HHGB1 Harvard Graphics SH3
presentation file
49 20 49 I1I Tagged Image File TIF, TIFF
Format file
49 44 33 ID3 MPEG-1 Audio MP3
Layer 3 (MP3) audio
file
49 49 2A 00 II~*. Tagged Image File TIF, TIFF
Format file (little
endian, i.e., LSB first
in the byte; Intel)
49 53 63 28 ISc(Install Shield v5.x CAB
or 6.x compressed file
49 54 53 46 ITSF Microsoft HTML CHM

Help Compiled Help

176 Appendix
Hex Signature ASCII File Description File
Signature Extension
49 6E 6E 6F 20 Inno Set Inno Setup Uninstall DAT
53 65 74 up Unins Log file
75 70 20 55 6E 69 | tall Log
6E 73 (b)
74 61 6C 6C 20 4cC
6F 67
20 28 62 29
4a 41 52 43 53 JARCS JARCS compressed JAR
00 archive
4A 47 03 OE 00 JG..... AOL ART file ART
00 00 or JG.....
4A 47 04 OE 00
00 00
4C 00 00 00 01 Lo Windows shortcut LNK
14 02 00 file
4C 01 L. Microsoft Common OBJ
Object File Format
(COFF) relocatable
object code file for an
Intel 386 or
later/compatible
processors
4C 4E 02 00 LN.. Windows Help file HLP
4D 49 4C 45 53 MILES Milestones v1.0 MLS
project management
and scheduling
software
(Also see "MV2C" and
"MV214" signatures)
4D 4D 00 2A MM. * Tagged Image File TIF, TIFF
Format file (big
endian, i.e., LSB last in
the byte; Motorola)
4D 4D 00 2B MM. + BigTIFF files; TIF, TIFF
Tagged Image File
Format files >4 GB
AD 4D 4D 44 MMMD . . Yamaha Corp. MMF
00 00 Synthetic music
Mobile Application
Format (SMAF)
for multimedia files
that can be played on
hand-held devices.
4D 53 43 46 MSCF Microsoft cabinet CAB
file PPZ
Powerpoint SNP

Appendix 177
Packaged Presentation
Microsoft ~ Access
Snapshot Viewer file
4D 53 46 54 02 MSFT.... OLE, SPSS, or TLB
00 01 00 Visual C++ type
library file
4D 53 5F 56 A4F MS_VOICE Sony Compressed CDR,
49 43 45 Voice File DVF
Sony Memory Stick MSV
Compressed Voice file
4D 54 68 64 MThd Musical Instrument MID,
Digital Interface | MIDI
(MIDI) sound file
4D 56 MV CD Stomper Pro DSN
label file
4D 56 32 43 Mv2C Milestones ~ v2.la MLS
project management
and scheduling
software
(Also see "MILES"
and "MV214"
signatures)
4D 56 32 31 34 MV214 Milestones ~ v2.1b MLS
project management
and scheduling
software
(Also see "MILES"
and "MV2C" signature
4D 5A MZ Windows/DOS COM,
executable file. DLL, DRV,
EXE, PIF,
QTS, QTX,
SYS
MS audio ACM
compression manager
driver.
AX
Library cache file. CPL
Control panel
application. FON
Font file. 0CX
ActiveX or OLE
Custom Control.
OLE object library. OLB
Screen saver. SCR

VBX

178 Appendix
VisualBASIC
application. VXD,
Windows virtual | 386
device drivers
4D 5A 90 00 03 MZ...... Acrobat plug-in API
00 00 00 DirectShow filter AX
Audition graphic FLT
filter file (Adobe)
4D 5A 90 00 03 MZ...... ZoneAlam data file ZAP
00 00 00 YAV
04 00 00 00 FF FF
4D 69 63 72 6F Microsof Visual Studio .NET SLN
73 6F 66 t Visual Solution file
74 20 56 69 73 75 Studio
61 6C Solution
20 53 74 75 64 69 File
6F 20
53 6F 6C 75 74 69
6F 6E
20 46 69 6C 65
[84 byte [84 byte Windows Media WPL
offset] offset] Player playlist
4D 69 63 72 6F 73 | Microsof
6F 66 t Window
74 20 57 69 6E 64 | s Media
oF 77 Player -
73 20 4D 65 64 69 | -
61 20
50 6C 61 79 65 72
20 2D
2D 20
4F 41 56 54 52 NAVTRAFF TomTom traffic DAT
49 43
4E 45 53 4D 1A NESM. . NES Sound file NSF
01
4E 49 54 46 30 NITFO National ~ Imagery NTF
Transmission Format
(NITF) file
4E 61 6D 65 3A Name : Agent newsreader COD
20 character map file
4F 50 4C 44 o1 OPLDatab Psion Series 3 DBF
74 61 62 aseFile Database ﬁle
61 73 65 46 69 6C
65
4F 67 67 53 00 0ggs Ogg Vorbis Codec OGA,
02 00 00 | compressed OGG, 0OGV,
00 00 00 00 00 00 Multimedia file 0GX
4F 7B (oF Visio/DisplayWrite DW4

4 text file

Appendix 179
(unconfirmed)
50 00 00 00 20 0O P. Quicken IDX
00 00 QuickFinder
Information File
50 35 0A P5. Portable ~ Graymap PGM
Graphic
50 41 43 4B PACK Quake archive file PAK
50 45 53 54 PEST PestPatrol data/scan DAT
strings
50 49 43 54 00 PICT.. ADEX Corp. IMG
08 ChromaGraph
Graphics Card Bitmap
Graphic file
[92 byte 92 Dbyte Quicken data file QEL
offset] offset]
51 45 4C 20 QEL
51 46 49 FB QFI. QEMU Qcow Disk IMG
Image
51 57 20 56 65 QW Ver. Quicken data file ABD,
72 2E 20 QSD
52 45 47 45 44 RAZATDB1 Shareaza (Windows DAT
49 54 P2P client) thumbnail
52 45 47 45 44 REGEDIT Windows NT REG,
49 54 Registry and Registry | SUD
Undo files
52 45 56 4E 55 REVNUM:, Antenna data file ADF
4D 3A 2C
52 49 46 46 xx RIFF... Windows Audio AVI
XX XX XX AVI LIST | Video Interleave file
41 56 49 20 4C 49
53 54
52 49 46 46 =xx RIFF.... Compact Disc QCP
XX XX XX QLCMfmt Digital Audio (CD-
51 4C 43 4D 66 6D DA) file
74 20
52 49 46 46 xx RIFF.... Windows Musical RMI
XX XX XX RMIDdata Instrument Digital
52 4D 49 44 64 ol Interface File
74 61
52 49 46 46 xx RIFF.... Audio for windows WAV
XX XX XX WAVEfmt file
57 41 56 45 66 6D
74 20
52 54 53 53 RTSS Windows NT CAP
Netmon capture file
52 61 72 21 1A Rar!... WinRAR RAR
07 00 compressed archive
file
53 43 48 6C SCH1 Need for Speed: AST

180 Appendix
Underground Audio
file
53 43 4D 49 SCMI Img Software Set IMG
Bitmap
53 48 4F 57 SHOW Harvard Graphics SHW
DOS Ver. 2/x
Presentation file
53 49 45 54 52 SIETRONI Sietronics CPI XRD CPI
4F 4E 49 CS XRD S document
43 53 20 58 52 44 | CAN
20 53
43 41 4E
53 49 54 21 00 SIT!. Stufflt compressed SIT
archive
53 4D 41 52 54 SMARTDRW SmartDraw SDR
44 52 57 Drawing file
53 51 4C 4F 43 SQLOCONV DB2 conversion file CNV
4F 4E 56 HD..1.0.
48 44 00 00 31 2E
30 00
53 6D 62 6C Smb1l (Unconfirmed file SYM
type. Likely type is
Harvard Graphics
Version 2.x graphic
symbol or Windows
SDK graphic symbol)
53 74 75 66 66 Stufflt Stufflt compressed SIT
49 74 20 (c)1997- archive
28 63 29 31 39 39
37 2D
55 43 45 58 UCEX Unicode extensions UCE
55 46 41 C6 D2 UFAEOA UFA compressed UFA
Cl archive
55 46 4F 4F 72 UFOOrbit UFO Capture v2 DAT
56 43 50 43 48 VCPCHO Visual C PCH
30 PreCompiled header
file
56 45 52 53 49 VERSION Visual Basic User- CTL
4F 4E 20 defined Control file
57 4D 4D 50 WMMP Walkman MP3 DAT
container file
57 53 32 30 30 Ws2000 WordStar for WS2
30 Windows Ver. 2
document
[29,152 byte [29,152 WinZip compressed ZIP
offset] byte archive

57 69 6E 5A 69 70

offset]

Appendix 181
WinZip
58 43 50 00 XCP Cinco NetXRay, CAP
Network General
Sniffer, and
Network Associates
Sniffer capture file
58 50 43 4F 4D XPCOM. Ty XPCOM type XPT
0A 54 79 pelib libraries for the XPIDL
70 65 4C 69 62 compiler
58 54 XT.. MS Publisher BDR
border
5A 4F 4F 20 Z00 ZOO compressed 700
archive
5B 47 65 6E 65 [General MS Exchange 2007 ECF
72 61 6C]..Displ extended configuartion
5D 0D OA 44 69 73 | ay Name= file
70 6C <Display
61 79 20 4E 61 6D | Name
65 3D
3C 44 69 73 70 6C
61 79
4F 61 6D 65
5B 4D 53 56 43 [MSVC Microsoft Visual VCW
C++ Workbench
Information File
5B 50 68 6F 6E Dial-up networking DUN
65 5D file (unconfirmed)
5B 56 45 52 5D [VER] AMU Pro document SAM
0D OA 09 or [ver]
5B 76 65 72 5D
0D OA 09 or
5B 57 69 6E 64 [Windows Microsoft Code CPX
6F 77 73 Latin Page Translation file
20 4C 61 74 69 6E
20
5B 66 6C 74 73 [fltsim. Flight Simulator CFG
69 6D 2E 0] Aircraft Configuration
30 5D file
5F 43 41 53 45 _CASE__ EnCase case file CAS,
SF (and backup) CBK
60 EA é Compressed archive ARJ
file
63 75 73 68 00 cush.... Photoshop Custom CSH
00 00 00
64 00 00 00 d.. Intel P10
PROset/Wireless
Profile
64 73 77 66 69 dswfile Microsoft Visual DSW

182 Appendix
6C 65 Studio workspace file
66 4C 61 43 00 fLaC..." Free Lossless Audio FLAC
00 00 22 Codec file
6C 33 33 6C 1331 Skype user data file DBB
(profile and contacts)
[4 byte offset] [4 Dbyte QuickTime movie MOV
6D 6F 6F 76 offset] file
moov
0x66-72-65-65 Free
0x6D-64-61-74 mdat
0x77-69-64-65 wide
0x70-6E-6F-74 pnot
0x73-6B-69-70 skip
72 65 67 66 regf Windows registry DAT
hive file
72 74 73 70 3A rtsp:// RealMedia metafile RAM
2F 2F
73 6C 68 21 or slh! Allegro Generic DAT
73 6C 68 2E slh. Packfile Data file
(0x21 = compressed,
0x2E = uncompressed)
73 72 63 64 6F srcdocid CALS raster bitmap CAL
63 69 64 file
3A
73 7TA 65 TA szez PowerBASIC PDB
Debugger Symbols file
75 73 74 61 72 ustar Tape Archive file TAR
76 32 30 30 33 v2003.10 Qimage filter FLT
2E 31 30 .0..
0D 0A 30 0D 0A
78 x Mac OS X Disk DMG
Copy Disk Image file
7B 0D OA 6F 20 {..0 Windows LGC,
application log LGD
7B 5C 72 74 66 {\rtfl Rich text format RTF
31 word processing file
Trailer:
5C 70 61
72 20 7D
7D (\par
1)
7E 42 4B 00 ~BK. Corel Paint Shop PSP
Pro image file
7F 45 4C 46 .ELF Executable and n/a
linking format in
Linux/unix
80 Relocatable object OBJ

Appendix 183
code
80 00 00 20 03 Dreamcast audio ADX
12 04 file
89 50 4E 47 0D Portable ~ Network PNG
OA 1A 0OA Graphic File
8A 01 09 00 00| a. MS Answer Wizard AW
00 E1 08 file
00 00 99 19
91 33 48 46 ' 3HF Hamarsoft HAP 3.x HAP
compressed archive
95 00 or PGP secret keying PKR
95 01 . file
9C CB CB 8D 13 EE..UO Outlook address file WAB
75 D2 11 .X.AOyVx
91 58 00 CO 4r 79
56 A4
[512 byte [512 PowerPoint PPT
offset] byte presentation subheader
A0 46 1D FO offget] (MS Office
F.
Al B2 C3 D4 i 2A0 tcpdump (libpcap)
capture file
(Linux/Unix)
Al B2 CD 34 214 Extended tcpdump
(libpcap) capture file
(Linux/Unix)
A9 0D 00 00 00 ©....... Access Data FTK DAT
00 00 00 evidence file
AC 9E BD 8F 00 oL %, Quicken data file QDF
00
Bl 68 DE 3A +hp Graphics Multipage DCX
PCX bitmap file
B5 A2 BO B3 B3 nee33oyp (Unknown file CAL
BO A5 B5 type...)
BE 00 00 00 AB 7R MS Write file WRI
00 00 00
00 00 00 00 00
C3 AB CD AB AT« MS Agent Character ACS
file
C5 DO D3 C6 ADOE Adobe encapsulated EPS
PostScript file
CA FE BA BE Ep°¥% Java bytecode file CLASS
CD 20 AA AA 02 I 22, Norton Anti-Virus n/a
00 00 00 quarantined virus file
CF 11 EO Al Bl T.3;+.4. Perfect Office DOC
1a E1 00 document

[Note similarity to MS
Office header, below]

184 Appendix
CF AD 12 FE I.p Outlook Express e- DBX
mail folder
D2 0A 00 00 0. GN Nettest FTR
WinPharoah filter file
D4 2A O* AOL history (ARL) ARL,
and typed URL (AUT) | AUT
files
D7 CD C6 9A x1E. Windows graphics WMF
metafile
DC DC [S19] Corel color palette CPL
file
DC FE Up eFax file format EFX
E3 82 85 96 a... Windows password PWL
file
EB 3C 90 2A e<.* GEM Raster file IMG
[512 byte [512 Word document DOC
offset] byte subheader (MS Office)
EC A5 C1 00 offset]
1¥A.
ED AB EE DB iviQ RedHat Package RPM
Manager file
[512 byte Excel spreadsheet XLS
offset] subheader (MS Office)
FD FF FF FF nn 02 (where nn = 0x10,
0x22, 0x23, 0x28, or
0x29)
[512 byte [512 Developer Studio OPT
offset] byte File Workspace
FD FF FF FF 20 00 fo;et] Options subheader
00 00 yyyy (MS Office).
XLS
Excel spreadsheet
subheader (MS Office)
512 byte [512 Thumbs.db DB
offset] byte subheader (MS Office)
FD FF FF FF xx xx | offset]
XX XX vYyy.
XX xx xx xx 04 00|
00 00
FF ¥ Windows SYS
executable (SYS) file
FF 00 02 00 04 Voo Works for Windows WKS
04 05 54 .T spreadsheet file
02 00
FF 46 4F 4E 54 VEFONT Windows CPI

international code page

Appendix 185
FF 4B 45 59 42 YKEYB Keyboard driver file SYS
20 20 20
FF 57 50 43 YWPC WordPerfect text
and graphics file
FF Ex ¥ . MPEG audio file MPEG,
FF Fx ¥. frame MPG, MP3
FF FF FF FF NAYAY%AY% DOS system driver SYS
FF FE 23 00 6C 00 Vp#.1.1. Windows MSinfo MOF
69 00 n.e. .1. file

6E 00 65 00 20 00
31 00

Index

ADD 9
AES 58

Assembly 1
ASLR 51

Application Programming Interface 47

Asymmetric Encryption 67
Algorithm Provider 63

Arithmetic Operation in Assembly 21

Auxiliary Segment Register 2
Array in Assembly 24

Anti Debugging 140

Anti Disassembly 128

Anti — Reversing technique 127
AVI99

Base Relocation Table 73
BCrypt 59

Bound Import Table 74
Blind Return 124

Break Points 144

Call Register 125
Calling Convention 16
Calculating Offset 126
Carry Flag 2

Cdecl calling convention 17
Code Segment Register 1
Code Emulation 162
Context Switching 43
CmLogLevel 50
CmLoglevelSet 50
CNG 58

Critical section 45
Cryptographic Agility 59

Data Segment Register 1
Data Constructs 17

Dos Header 70

DES 58

Debugging Information 73

Detecting hardware Breakpoint 144

Division 23
Direct Jump 126
DImalloc 96

ELF Header 79

Executable Format 79
Executable Data Section 20
ExpEchoPoolCalls 49
Exploiting SEH 119
Evasion of Disassembl
Events 45

Flag Register 2

Fast call calling convention 17
Format String 112

Floating point instructions 11

Global Descriptor Table 145
Global Variables 18
GS 55

Hardware breakpoint 143
Heap Overflow 94
Hash Functions 64
Heap Defenses 53

Imported Variables 19
Import Redirection 162
Import Table 73

Import Table Reconstruction 158

Integer Overflows 106
Interrupt Flag 3

Interrupt Descriptor Table 145
Injection Techniques 123

10 Flag 3

Jmp 7

Kernel Memory Management 37

188

Linking File Format 79

Linked List 26

Linear Sweep Disassemble 130
Local Variable 19

Lock and Repeat Prefix 4
LpcpTraceMessage 50

Memory Management 29
Metered Section 46
MmDebug 49

Modulo 24

Mode Switches 43
Multiplication 22
Mutexes 45

Named Object 41
NtGlobalFlag 49

NOP 9

No Operation Sled 125
Non executable Memory 94
NX 54

Objects and Handles 40
ObpShowAllocAndFree 50
Off-by-One Overflow 90
Opcode

Original First Thunk 158
Overflow Flag 3

Paged Memory Management 36
Parity Flag 2

Pointer Encoding 57

Pop Return 126

PE file format 69

Processes 41

Process Initialization Sequence 46

Random Number Generator 64

RSA 58

Recursive Traversal Disassembler 132
Register 1,19

Representation of class in

assembly 27

Reversing Windows NT 48

Index

Section Object 39

Security in Vista 50
SepDumpSD 50

Semaphore 46

Segment Override Prefixes 5
Segmented Memory Management 34
Self-modifying code 137

Sign Flag 2

Structure Exception Handler 116
Signature and Verification 68
Software Breakpoint 142

Stack Segment Register 2
Stdcall calling convention 17
Stack Checking 90

Stack Overflow 85

Stack Setup 13

Stack Randomization 52

Sub 9

Symmetric Encryption 65
Synchronization Objects 44

Thiscall calling convention 18
Threads 41

Thread Storage Table 73
Threaded Local Storage 20

Unpacking 147
User Memory Management 37
User Mode Address Space 39

Virtual Address Descriptor 39
Vista 50

Virtual Function 26

Virtual Machine De 6

Virtual Memory Management 29
Virtual Machine Obfuscation 139

Windows NT 49
Zero Flag 2

80x86 Instruction Format 3

