
Joanna Rutkowska
Invisible Things Lab

 Invisible Things Lab’s founder/CEO
 ITL focuses on OS security research:

 kernel infections, advanced malware, effectiveness of OS’s
anti-malware mechanisms, virtualization security issues

 Right now working with Phoenix Technologies,
researching security of effective thin hypervisor
implementations

 ITL also does trainings and consultations:

 “Understanding Stealth Malware” class (BH Vegas)

 Founded in April 2007; currently 2 people and growing :)

2(c) Invisible Things Lab, 2007

 Virtualization-based rootkits
 What is so special about them?

 Facts & myths about virtualization rootkits

 How real is this threat today?
 VMs as Security Boundaries
 Isolation provided by VMMs?

 VMMs vs. Microkernel-based OSes
 Nested Virtualization
 What are the security implications?

 What are the positive applications?

3(c) Invisible Things Lab, 2007

4(c) Invisible Things Lab, 2007

S/W based (x86)
 Requires ‘emulation’ of guest’s

privileged code

 can be implemented very
efficiently: Binary Translation

 Does not allow full virtualization

 sensitive unprivileged
instructions (SxDT)

 Widely used today
 VMWare Workstation 6

H/W virtualization
 VT-x (Intel x86/x64)
 SVM/Pacifica (AMD x64)
 Does not require guest’s priv

code emulation
 Should allow for full

virtualization of x86/x64 guests
 Still not very popular in

commercial VMMs
 XEN3, Virtual PC 2007

5(c) Invisible Things Lab, 2007

Full VMMs
 Create full system abstraction

and isolation for guest,
 Emulation of I/O devices

 Disks, network cards,
graphics cards, BIOS…

 Trivial to detect,
 Usage:

 server virtualization,

 malware analysis,

 Development systems

“Thin hypervisors”
 Transparently control the target

machine
 Based on hardware virtualization

(SVM, VT-x)
 Isolation might not be a goal!

 native I/O access

 Shared address space with
guest (sometimes)

 Very hard to detect
 Usage:

 stealth malware

 Anti-DRM

6(c) Invisible Things Lab, 2007

 Originally developed for COSEINC by yours truly,
 Presented at Black Hat 2006 in Las Vegas,

 Also Dino Dai Zovi presented his Vitriol, which was
similar, but worked for Intel VT-x

 COSEINC owns the original Blue Pill code,
 May 2007 – we designed and wrote from scratch the

New Blue Pill (NBP)

 Alex Tereshkin wrote most of the code

7(c) Invisible Things Lab, 2007

 Exploit AMD64 SVM
extensions to move the
operating system into the
virtual machine (do it ‘on-
the-fly’)

 Provide thin hypervisor to
control the OS

 Hypervisor is responsible
for controlling
“interesting” events inside
guest OS

(c) Invisible Things Lab, 2007 8

 BP installs itself on the fly
 Thus, no modifications to BIOS, boot sector or

system files are necessary,
 BP does not survive system reboot

 Techniques for “restart surviving” are orthogonal to
“BP technology” – e.g. BIOS infection

 BP, like any other malware, can be made persistent,
but this is out of the scope of this presentation

 In many cases this is not needed, BTW

9(c) Invisible Things Lab, 2007

 BP and New BP are thin VMMs,
 They do not virtualize I/O devices!

 If your 3D graphics card worked before BP
installation, it will still work with the same
performance!

 Bluepilled systems see the very same hardware as
they saw before BP installation – h/w fingerprinting
can not be used to detect BP

10(c) Invisible Things Lab, 2007

 Original Blue Pill didn’t virtualize memory!
 The assumption was that the opponent (e.g. an A/V

company) doesn’t have access to Blue Pill code,
because BP is used in targeted attacks:

 e.g. we generate a polymorphic version of “blue pill”
malware separately for each infection

 also – we do not publish polymorphic generator, so
that it’s not possible to analyze it

 plus we make sure to encrypt the VMRUN instruction
after resuming the guest.

11(c) Invisible Things Lab, 2007

 Without having a code sample one could find BP in
memory only using heuristics, e.g.:

 Code emulation (i.e. emulate code on each physical
page and find out whether it “looks like” a hypervisor.

 Better: whether it looks like malicious hypervisor?

 It’s trivial to defeat those detection methods by
using “classic” code obfuscation techniques…

12(c) Invisible Things Lab, 2007

 If we could use “classic code obfuscation” to avoid
detection, why bother with virtualization?

 Why not use classic kernel rootkits?

13(c) Invisible Things Lab, 2007

 So what so special about Blue Pill?
 That it doesn’t hook even a single byte!
 Other rootkits need to hook something in the

system code or at least in OS data sections...

 thus we can always detect them (although this is very
hard to do in a generic way)

 BP is an example of type III malware...

14(c) Invisible Things Lab, 2007

Hooking
places

15(c) Invisible Things Lab, 2007

Hooking places (only
data sections are
hooked this time)

16(c) Invisible Things Lab, 2007

No Hooks!

17(c) Invisible Things Lab, 2007

18

 Imagine a complete kernel
integrity scanner,

 Something like Patch Guard
or SVV, but complete!

 Such scanner would be able to
detect any type I and type II
kernel infections…

 We also assume a reliable
memory acquisition used

 In other words – the Holy Grail of
rootkit hunters!

 But it still will not be able to
detect Type III infections!

(c) Invisible Things Lab, 2007

 Now let’s consider using BP for “massive attacks” (in
contrast to targeted attacks)

 For targeted attacks we don’t need memory hiding!

 We could use the several strategies for hiding its
code in memory…

(c) Invisible Things Lab, 2007 19

 Private page tables
 Shadow Page Tables (SPT)
 Nested Paging(AMD)/ (“Hardware SPT”)

20(c) Invisible Things Lab, 2007

 Private page tables (private CR3)
 Quite easily bypassable (via use custom PTEs)

 Could be made harder to bypass (page permutations)
 Shadow Page Tables
 popular method for memory virtualization (all current

VMMs use this method)

 SPT can be detected via performance impact
 Nested Paging (AMD)/Extended Page Tables (Intel)
 negligible performance impact

 requires new hardware (not available in shops now)

 challenge: cheat about the amount of available mem

21(c) Invisible Things Lab, 2007

 Many people claimed they can detect Blue Pill…
 …however they only presented so far methods to

detect virtualization, not the specific malware!
 BTW, All the presented methods were based on tricks

and hacks that were highly implementation specific
(e.g. processor model specific)

 Wrong assumption was made:

 If OS is executing inside (h/w) VM we detected
virtualization based malware

 It’s like assuming that each program that uses
networking is a botnet agent!

(c) Invisible Things Lab, 2007 22

 But we know whether we run inside VM or not,
right? So we still can detect BP in a situation when
we detect an unexpected virtualization, right?

 No! Because we should assume that in the coming
years “everything” will run inside VM!

 Most of the servers will be virtualized

 Desktop users will run various virtualization
applications, e.g.:

▪ Web Browsers in VM (for security)

▪ A/V programs that run in hypervisor

(c) Invisible Things Lab, 2007 23

 One might argue that if we run a VMM already then
it’s not possible to install virtualization based
malware anymore…

 This is not true! – see the next two sections for more
details on this.

(c) Invisible Things Lab, 2007 24

 Today we cannot effectively fight even with
relatively simple kernel malware

 Not even mentioning some more advanced kernel
malware (e.g. Type II SbD malware)

 No motivation to switch to more complex malware

 The amount of machines that support hardware
virtualization (SVM or VT-x) is still relatively small

25(c) Invisible Things Lab, 2007

26(c) Invisible Things Lab, 2007

 Server consolidation

 Business argument, not related to security (although
has some security implications)

 Software isolation, e.g.:

 Trusted Computing

 running a browser in a VM to allow “safe” browsing

 malware/suspicious software analysis

 Development/testing

 Not related to security

27(c) Invisible Things Lab, 2007

 Originally software isolation was supposed to be
provided by Operating Systems

 separate address space for each process

 user accounts & ACLs

 Can’t current OSes, like Windows or Linux, provide
effective isolation?

(c) Invisible Things Lab, 2007 28

 Bad design/wrong user habits: (XP & Vista)
 (Almost) Everybody and everything runs as administrator

on Windows – this negates all the local OS-security
mechanisms!

 UAC in Vista was announced “not a security boundary” by
Microsoft at the beginning of this year!

 Vista assumes that every installer/setup program should
be run as Administrator!

 Implementation flaws
 Bugs in OS core components (rare)

 Bugs in 3rd party drivers and kernel modules (very
common!)

(c) Invisible Things Lab, 2007 29

 Vista shows a trend towards limiting privileges of
user’s programs (UAC, Protected Mode IE)

 Even though those mechanisms are not prefect, it’s a
step towards the right direction

 MacOSX Tiger also has something similar to UAC

 However…

(c) Invisible Things Lab, 2007 30

 Still there is a problem of buggy drivers
 All current OS use monolithic kernel architecture

 Vista, Linux, even MacOSX (even though it uses Mach
microkernel as a core, still all the drivers share one address
space with the rest of the kernel)

 Monolithic kernel architecture has a big security
implication: compromise of a single driver allows to
compromise the whole OS!

 At Black Hat Vegas in August we presented several bugs in
3rd party drivers that could be used to compromise Vista
kernel, bypassing Vista kernel protection

(c) Invisible Things Lab, 2007 31

 The idea is to have a very minimal kernel that provide
only very basic services (e.g. communication and
scheduling)

 All other services and drivers are kept in separate
address spaces
 Thus even if one driver gets compromised, the rest of the

system is still protected
 Microkernel architecture is known for years, but nothing

suggests that mainstream vendors will ever adopt this
model
 The main reason is the difficulty for creating efficient

drivers for microkernel based OSes

(c) Invisible Things Lab, 2007 32

 Instead of changing the architecture of the whole
OS…

 which would e.g. require to rewrite all the drivers

 …we can use virtualization to obtain similar level of
isolation of components that are exposed to attacks

(c) Invisible Things Lab, 2007 33

 Each VM must contain a full OS

 e.g. a virtual appliance for web browsing must contain
not only Browser but also the full OS (e.g. Linux)

 There is a trend to build some OS-like services (e.g.
drivers) into the VMMs which would allow for thin
VMs – e.g. only the application…

 In my opinion this is a wrong way – VMMs
(hypervisors) should be kept as simple as possible

 otherwise there would be no security benefit of using
a VMM for isolation

(c) Invisible Things Lab, 2007 34

 One might want to use VMMs to protect the
integrity of the A/V programs

 We should avoid building the A/V into the hypervisor -
- instead it could be run in a special VM, executing in
parallel:

(c) Invisible Things Lab, 2007 35

(c) Invisible Things Lab, 2007

 Is it possible to install BP from within a VM?
 Is it possible to “escape” from the guest?
 This should not be possible!

 At least this is what VMM-vendors would like us to
believe ;)

 However…

36

(c) Invisible Things Lab, 2007

 Reported by Tim Shelton in 2005
 CVE-2005-4459
 Description:
 A vulnerability was identified in VMware Workstation

(And others) vmnat.exe, which could be exploited by
remote attackers to execute arbitrary commands.
This vulnerability allows the escape from a VMware
Virtual Machine into userland space and
compromising the host. 'Vmnat' is unable to process
specially crafted 'EPRT' and 'PORT' FTP Requests.

 Confirmed and patched by VMWare.

37

 Reported by Rafal Wojtczuk , McAfee, in September
2007

 CVE-2007-4496
 Description:

 Vulnerability that could allow a guest operating
system user with administrative privileges to cause
memory corruption in a host process, and thus
potentially execute arbitrary code on the host.

 Confirmed and patched by VMWare.

(c) Invisible Things Lab, 2007 38

 Reported by Rafal Wojtczuk, McAfee, in August 2007
 CVE-2007-0948
 Description:

 The vulnerability is caused due to an error within certain
components that communicate with the host OS and can
be exploited to cause a heap-based buffer overflow.

 Successful exploitation allows an administrative user on a
guest OS to e.g. execute arbitrary code on the host OS or
other guest OS's.

 Confirmed and patched by Microsoft.

(c) Invisible Things Lab, 2007 39

 Reported by Joris van Rantwijk in September 2007
 CVE-2007-4993
 Description:

 When booting a guest domain, pygrub uses Python exec()
statements to process untrusted data from grub.conf. By
crafting a grub.conf file, the root user in a guest domain
can trigger execution of arbitrary Python code in dom0.

 Reboot of the guest domain required

 Patch doesn’t seem to be available

 XEN Bugzilla says: “Fixed on 25th September by xen-
unstable 15953:70bb28b.”

(c) Invisible Things Lab, 2007 40

 A paper by Tavis Ormandy, Google:

An Empirical Study into the Security Exposure to Hosts of
Hostile Virtualized Environments, April 2007, CanSecWest

 Presents methodology used to find multiple bugs in
several various VMMs:

 VMWare, XEN, Bochs, MS Virtual PC, Parallels

 mostly fuzzing-based methods used to test

▪ Instruction parsing

▪ I/O Device emulation

 Most of the bugs found classified as DoS

(c) Invisible Things Lab, 2007 41

 Complexity is the enemy of security thus VMMs
should be kept as simple as possible (just like micro-
kernels)

 Small VMMs/hypervisors make the code review
process relatively easy

 Sometimes we might even use the formal verification
methods

(c) Invisible Things Lab, 2007 42

 Currently we work with Phoenix doing research on
thin hypervisors

 Phoenix works on a product called “HyperCore”

 Phoenix is also interested in further research on Blue
Pill, which is being used as a test bed for trying various
ideas – e.g. nested virtualization

 Phoenix also supports The Blue Pill Project, which
means that some parts of our research will be
publically available (including code!)

(c) Invisible Things Lab, 2007 43

 Very thin hypervisor
 Use latest hardware mechanisms (e.g. NP/EMT)

instead of software based virtualization (e.g. SPT)
 Goal: reduce complexity of the VMM

 Direct I/O access for guests
 but protect e.g. against DMA attacks

 No device emulation!
 Initially 2 guest OS:
 “Normal” Windows OS (e.g. Vista)

 Custom small-footprint OS

(c) Invisible Things Lab, 2007 44

 Usability:
 The “other” OS will have some features that would be

attractive for a user (This is beyond the scope of this
presentation)

 Security:
 The “other” OS will be protected from the “Windows OS”.

This OS will be small and secure (hardened), users will not
be installing any 3rd party software

 A user might want to use it to do banking transactions or
other sensitive operations

 We might run an A/V scanner that would check the
integrity of the other OS
▪ think: rootkit detector that is not prone to implementation-

specific attacks!

(c) Invisible Things Lab, 2007 45

(c) Invisible Things Lab, 2007 46

47(c) Invisible Things Lab, 2007

 If Blue Pill didn’t support creation of nested VMMs,
 ... then it would be trivial to detect it by trying to

create a test virtual machine...
 Our New Blue Pill supports nested hypervisors
 In other words you can install a hypervisor as a Blue

Pill’s guest!

 Think: Blue Pill inside Blue Pill :)

48(c) Invisible Things Lab, 2007

 Also, nested virtualization could be used by BP to
install itself on top of other, already existing, VMMs!

 Can we implement support for nested
virtualization?

(c) Invisible Things Lab, 2007 49

source: J. Rutkowska, Black Hat USA 2006, © COSEINC

50(c) Invisible Things Lab, 2007

Note that EFER.SVME=1 is set globally for the host

51(c) Invisible Things Lab, 2007

52(c) Invisible Things Lab, 2007

 When VS 2005 R2 is installed, SVME is always set! :)
 This means that we can install Blue Pill and do not

care about intercepting EFER accesses anymore!
 All the detection methods discussed before (that

focus on generic VMM detection), do not work now!

 Even if we build “virtualization detector” into VPC
hypervisor!

 This is because one doesn’t need to intercept
anything besides VMRUN instruction on SVM

▪ On Intel we need to intercept CPUID, on AMD we don’t!

53(c) Invisible Things Lab, 2007

 Imagine a future BP that would be able to run any 3rd party
hypervisor as its own guest
 Currently we can run other BP as a guest, but still have

problems with e.g. Virtual PC 2007
 We would be able to install it on top of other, existing

hypervisors
 using bugs similar to those that were presented in the previous

chapter)
 Any “detection” method based on detecting virtualization

will be useless by definition
 Unless we decided to build “virtualization detectors” into each

commercial hypervisor (but not always – see previous slide)
 This however is a very unwise decision, as we should try to

minimize the footprint of a hypervisor

(c) Invisible Things Lab, 2007 54

 Why would anybody be interested in nested
virtualization? (besides malware authors)?

 Consider e.g. the HyperCore product:

(c) Invisible Things Lab, 2007 55

Imagine a user
would like to use
some product that
uses hardware
virtualization? E.g.
Virtual PC?

 Imagine an A/V solution that uses a VMM to create
another VM where the A/V module is located (like
presented before)

 If the A/V’s VMMs didn’t support nested
virtualization, then the user will not be able to use
any other virtualization solution – e.g. Virtual PC

(c) Invisible Things Lab, 2007 56

 Obviously a more elegant solution would be to
always have only one VMM in the system and to
make sure that it supports all the possible
Virtualization based products…

(c) Invisible Things Lab, 2007 57

 One standardized interface (VM-VMM and VM-VM)
needed

 Standardized set of services provided by a VMM needed
 VMM from one provider (MS?) or many different from

various vendors?
 Who will verify whether they work with each other?

 The interface and services will become more and more
complicated VMM will get complex  difficult to
verify  bugs
 We will return to the point where we’re right now, but this

time with a conclusion that VMMs can’t provide effective
isolation

(c) Invisible Things Lab, 2007 58

(c) Invisible Things Lab, 2007 59

 Today we can’t effectively prevent nor detect
virtualization based rootkits

 Several presented methods allowed only for detection of
virtualization but not for detection of virtualization based
malware

 Current VMMs do not offer perfect isolation

 Many bugs have been found in all popular VMMs that
allow to escape from VM!

 More research needed on VMM security

 Nested virtualization is an exciting subject for research –
it has both negative and positive implications

(c) Invisible Things Lab, 2007 60

 Virtualization is a great technology but we need
more research to make sure it’s secure itself and
also to effectively exploit all the benefits it offers to
make our systems more secure!

(c) Invisible Things Lab, 2007 61

 J. Rutkowska, A. Tereshkin: IsGameOver()?, Black
Hat USA, August 2007

 T. Ormandy, An Empirical Study into the Security
Exposure to Hosts of Hostile Virtualized
Environments, CanSecWest, April 2007

 http://bluepillproject.org

(c) Invisible Things Lab, 2007 62

joanna at invisiblethingslab.com
http://invisiblethingslab.com

(c) Invisible Things Lab, 2007 63

