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Abstract

The Portable Executable (PE) format is an architectural independent file format

for 32 and 64-bit Windows operating systems. PE format related properties

that violate conventions or the specification are called PE malformations. They

can cause problems to any program that parses PE files, among others, crashes,

refusal to read the file, extracting and displaying wrong information, and inability

to parse certain structures. Malware authors use PE malformations to avoid or

prolong malware analysis and evade detection by antivirus scanners.

This master thesis analyses PE malformations and presents robust PE parsing

algorithms. A static analysis library for PE files named PortEx serves as example.

The library is hardened successfully against 103 275 PE malware samples and a

collection of 269 malformed proof-of-concept files. PortEx is also used to extract

statistical information about malicious and clean files, including anomalies in

the PE format. The author identifies 31 file properties for heuristic analysis of

PE files.
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Chapter 1

Introduction

Malware analysis and detection tools are vulnerable to malformations. Malware

uses, among others, malformed Portable Executable (PE) structures to break

or deceive them. The present chapter discusses how defence mechanisms by

malware arose and how robust parsing of PE files can be achieved.

1.1 Purpose of Malware Analysis

The primary task of employees of the first antivirus companies was manual

analysis of every malware to find out detection and disinfection mechanisms for

the antivirus software they produced. With the rise of newly created malware to

over 200 000 pieces per day in 20141, the extraction of new detection signatures

is mainly automated today. General detection methods, which cover a broad

range of malware at once, have been added as well.

Cohen has proven that the detection of viruses is an undecidable problem (see

[Coh84]). So it comes of no surprise that there are cases where automatic

malware analysis and general detection methods fail. Employees in antivirus

companies perform manual or semi-automated analysis for these cases and they

help to understand new attacks, malware defence techniques, and trends. Other

malware analysts are hired to prevent and respond to malware related incidents

within a company. They figure out the damage that was done and perform

disinfection and recovery if possible.

1.2 PE Format-Related Malware Defence

Malware authors have developed techniques to deceive or break malware analysis

and detection tools. One group of these anti-analysis techniques involves the

1AV-Test, May 2014, http://www.av-test.org/en/statistics/malware/

http://www.av-test.org/en/statistics/malware/
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modification of PE format properties or structures to malformed ones. The PE

format describes the buildup of EXE and dynamic-link library (DLL) files on

Windows operating systems.

The main problem is the gap of knowledge around the behaviour of the Windows

operating system while it loads and executes a PE file. The developers of analysis

tools rely on the documentation of the PE format, which does not reflect reality.

As a result, malware authors are able to apply modifications to PE files, that the

Windows operating system treats differently than it is expected by the developers

of PE analysis tools. The tools break, refuse to load the file, or show incorrect

information.

1.3 Robust PE Malware Analysis

The present thesis focalises on malware analysis based on information that is

extracted from the PE format. It covers the implementation of a PE format

parser that is robust against malformed files and additional analysis techniques

that build upon the format parser. These techniques include the recognition

of PE file anomalies, PE file visualisation, entropy and hash value calculation,

string extraction, packer identification, and detection of embedded files.

The algorithms for the aforementioned analysis techniques are collected in a

library—called PortEx—and provided via a programming interface for software

developers. The implementation solely relies on the information of the file on

disk. The analysed malware is not executed, which means there is no risk of

infection.

The robustness of the parser is achieved by the following steps:

• research about PE format malformations

• implementation of anomaly detection

• robustness tests with 103 275 malicious files and 269 malformed proof-of-

concept files

• searching the file samples for formerly unknown or undocumented malfor-

mations

• compiling a collection of file samples with malformations

• adjusting the näıve implementation to a robust one, among others, by

partial simulation of the PE loading process that the operating system

applies

The visualisation of a PE file’s structure provides a quick overview as people

can process images more easily than a logfile consisting of addresses, names, and
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values. The visualisation is not sufficient on its own, but helps to find where to

put the focus for further analysis.

String extraction, entropy and hash value calculation, packer identification, and

embedded file detection are not new, but the author considers them as basic

tools for malware analysis.

PortEx is also used to collect statistical information about PE files. The present

thesis compares PE malware with clean PE files based on the statistical results

and proposes how to use the findings for further analysis or detection of PE

malware.

The author’s intention is that tools building upon the library will not suffer from

malformed PE files, and that documentation and compilation of malformed files

enables other developers to write more robust software. The anomaly detection

may also help malware analysts to correct properties of PE files that formerly

broke other analysis tools.

1.4 Limitations

The software arsenal for malware analysis includes various tools for different

tasks. The choice of tools depends on the malware type, the affected operating

systems and file types, and the malware’s behaviour. There is no single tool that

suffices for every task and stage of malware analysis. Likewise, it is not the goal

of the library PortEx to cover all steps that are involved in analysing malware.

PortEx is limited to the information the PE format provides and to analysis

techniques that do not require the malware to be executed.

The present thesis does not implement instruction-based analysis techniques or

analysis techniques that run the malware. These are only of interest if they lead

to a defence response of malware that affects the implementation of basic static

analysis tools.

1.5 Roadmap

Chapters 2 and 3 set the theoretical basis for the present thesis. Chapter 2

introduces malware types, file infection strategies by viruses, malware analysis,

antivirus detection, and the countermeasures to malware analysis and detection

techniques. Chapter 3 presents the PE format and malformations of PE files.

This includes already known malformations, as well as malformations that are

discovered during the implementation of PortEx .

Requirements of PortEx , technologies, API design, robust parsing, and imple-

mentation of other features of PortEx are covered in chapter 4.
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Chapter 5 compares the features of PortEx to similar tools and libraries for

basic static analysis, evaluates their robustness, and concludes with statistical

information extracted by PortEx and possible uses in malware detection and

analysis algorithms.



Chapter 2

Malware

Malware—the short term for malicious software—is every program that ‘causes

harm to a user, computer, or network’ [SH12, p. xxviii].

The present chapter lays the theoretical foundations for malware analysis, includ-

ing the malware’s mechanisms to avoid detection by antivirus programs since

they also affect analysis tools.

The following section provides an overview of the different types of malware

with regard to their behaviour. An overview of file infection strategies is given

in section 2.2. Section 2.3 introduces common techniques of malware analysis,

which explains the role of the library PortEx in the analysis process. Section 2.4

describes how antivirus programs detect malware. Countermeasures to malware

detection and analysis are the topic of section 2.5.

2.1 Malware Types

Malware analysis is the focus of the present thesis. As such, it is important to

know typical behaviours of malware, how it intrudes and infects a system, how it

hides and how it harms. Malware analysts and antivirus companies differentiate

and name malware, among others, by its behaviour (see [Mic14]). The following

behavioural types are not mutually exclusive, malware can combine the features

of several types.

Definition 1 (Hijacker) A hijacker modifies browser settings without the user’s

consent.

Typical hijackers replace the default search engine, the browser’s home page,

error pages, and new tab page with their own content. They also make it difficult

to revert the changes and may cause problems if the user tries to uninstall them.

Examples are Conduit Search Protect and Babylon Toolbar.
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Definition 2 (Trojan) A trojan horse, or short trojan, is a malicious program

that tricks the user into running it by providing useful functionality or making

the user believe that it is useful and benign. (cf. [Szo05, p. 37])

Trojan horses are combined with features of, e. g., downloader, dropper, backdoor,

information stealer. Trojans make up the majority of malware. In the first quarter

of 2014 PandaLabs has detected ‘15 million new malware strains’ of which 71.85

per cent where trojans (see [Pan14]).

Definition 3 (Downloader) A downloader is a piece of software that down-

loads other malicious content, e. g., from a website, and installs or executes it.

(cf. [SH12, p. 3] and [Szo05, p. 39])

Definition 4 (Dropper) A dropper is a program that writes other malware to

the file system. The dropper may perform installation routines and execute the

malware. (see [Sym14] and cf. [SH12, pp. 39, 40])

The difference to a downloader is that the dropper already contains the malicious

code in itself (see [Mic14]).

Definition 5 (Rootkit) A rootkit is a software that has the purpose of hiding

the presence of other malicious programs or activities. (cf. [SH12, p. 4])

A rootkit may conceal login activities, log files and processes. Rootkits are often

coupled with backdoor functionality (see definition 6).

Definition 6 (Backdoor) A backdoor allows access to the system by circum-

venting the usual access protection mechanisms. (cf. [SH12, p. 3])

The backdoor is used to get access to the system later on. A special kind of

backdoor is the remote administration tool (RAT) (see [Ayc06, p. 13]). It allows

to monitor and access a computer far off, and is used for both malicious and

non-malicious purposes. A RAT enables help desk staff to fix computer problems

remotely; and employees can work from home by accessing the company’s

computer. RATs are used maliciously, e. g., for fun and voyeurism. Such RAT

users play pranks, spy on people via webcam, and try to scare their victims by

controlling their machine. The ArsTechnica article Meet the men who spy on

women through their webcams1 describes the aforementioned activities by users

of hackforums.net.

Definition 7 (Spammer) Spam-sending malware, or short spammers, use the

victim’s machine to send unsolicited messages—so called spam. (cf. [SH12, p. 4]

and [Szo05, pp. 40, 41])

Spammers may send their messages, e. g., as email, SMS, or postings and

comments in online communities.

Definition 8 (Stealer) An information stealer, or short stealer, is a malicous

program that reads confidential data from the victim’s computer and sends it to

the attacker. (cf. [SH12, p. 4])

1http://arstechnica.com/tech-policy/2013/03/rat-breeders-meet-the-men-
who-spy-on-women-through-their-webcams/ (last access Thursday 16th October,
2014)

hackforums.net
http://arstechnica.com/tech-policy/2013/03/rat-breeders-meet-the-men-who-spy-on-women-through-their-webcams/
http://arstechnica.com/tech-policy/2013/03/rat-breeders-meet-the-men-who-spy-on-women-through-their-webcams/
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Figure 2.1: The scareware Malware Protection pretends it has found infections on

the system to trick the user into buying a license

Examples for information stealers are: keyloggers, sniffers, password hash grab-

bers (see [SH12, p. 3]), and also certain kinds of trojans. A trojan stealer

convinces the users that it is benign to make them input confidential data. An

example is a program that claims to add more money to the user’s PayPal

account; actually it sends the PayPal credentials the user puts into the program

to the attacker’s email address.

Definition 9 (Botnet) A botnet is a group of backdoors installed on different

machines that recieve and execute instructions from a single server. (cf. [SH12,

p. 3])

Botnets are installed without consent of the computer’s owners and may be used

to perform distributed denial of service (DDoS) attacks or to send spam (see

definition 7).

Definition 10 (Scareware) Scareware tries to trick users into buying some-

thing by frightening them. (cf. [SH12, p. 4])

A typical scareware example is a program that looks like an antivirus scanner and

shows the user fake warnings about malicious code that was found on the system.

It tells the user to buy a certain software in order to remove the malicious code.

Figure 2.1 shows the scareware Malware Protection, which pretends to be an

antivirus software.
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Figure 2.2: Malware construction kit example

Definition 11 (Malware construction kit) A malware construction kit is

a program that generates malware or malware sources based on user-defined

settings. (cf. [Szo05, p. 261])

Malware construction kits enable people without any programming knowledge

to create their custom malware. Simpler kits just change small settings, like

email addresses or FTP accounts that are the recipients for information that the

malware found on the victim’s computer. More sophisticated kits employ anti-

analysis and anti-detection techniques and may generate a wide range of different

malware binaries. Figure 2.2 shows an example of a malware construction kit

with anti-analysis features.

Definition 12 (Virus) A virus recursively replicates itself by infecting or re-

placing other programs or modifying references to these programs to point to the

virus code instead. A virus possibly mutates itself with new generations. (cf.

[Szo05, p. 27, 36])

A typical virus will be executed if the user executes an infected file. Such an

infected file is called host file referring to the terminology that is used for biological

parasites. Viruses traditionally spread to other computers via transported media

like floppy disk, USB flash drive, CD, or DVD.

A virus is called germ if it is in its original form, prior to any infection (see

[Szo05, p. 39]). The initial installation of the germ code is done by a dropper,

afterwards the virus can ‘replicate on its own’ (see [Szo05, p. 40]).

An intended virus failed to replicate due to a bug or an incompatible environment,

e. g., an operating system that it was not written for (see [Ayc06, p. 14]).
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Dormant viruses are in a passive state, they reside on the machine without

infecting anything, either waiting for a trigger or a compatible system to spread

to (cf. [Ayc06, p. 14]). The opposite to dormant is active.

Definition 13 (Worm) ‘Worms are network viruses, primarily replicating on

networks.’ [Szo05, p. 36]

Typically, worms do not need a host file and execute themselves without the

need of user interaction (see [Szo05, p. 36]). There are exceptions from that, e. g.,

worms that spread by mailing themselves need user interaction. A worm is a

subclass of a virus by definition 13.

A report by PandaLabs about the newly created malware strains in the first

quarter of 2014 reveals: 10.45 per cent have been viruses and 12.25 per cent have

been worms (see [Pan14]). Note that PandaLabs does not see worms as a subclass

of viruses, but as mutually exclusive groups in contrast to definition 12. That

means 22.70 per cent of newly created malware strains detected at PandaLabs

have been viruses by definition 12.

2.2 File Infection Strategies

The PE file format is one host format of file infecting viruses. File infections can

introduce malformations because most infection types require modifications of

the host file. Therefore, it is useful to know file infection strategies of viruses to

understand how certain malformations occur, but also for the identification of

infection types during analysis.

Depending on the file infection strategy it is sometimes possible to remove or

disable the malicious code from an infected file. This process is called disinfection

and performed by antivirus software. Disinfection does not necessarily restore

the file to its original form.

The following infection strategies work for most executable file formats, including

the PE format.

Overwriting

Overwriting viruses employ the simplest strategy. They search for other files on

disk and copy their own body in place of them (see [Szo05, p. 115]). Infections

by overwriting viruses can cause severe damage to the system because they

destroy the files they are overwriting and render disinfection impossible. Users

can recognise the side effects of the damage soon, which is why this infection

strategy is usually not very successful (see [Szo05, p. 115]).

A variant of the overwriting virus only replaces the beginning of the host file

with its own body (see [Szo05, p. 116]). The infected file keeps the original size

of the host file. The overwritten part of the host file is destroyed.
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Figure 2.3: File infection strategies

Appending

Appending viruses write their own body after the end of the host file (see

figure 2.3) and modify a jump instruction at the beginning of the host file to

point to the virus code (see [Szo05, p. 117]). The appending virus typically passes

control to the host file again after it has done its tasks, so the user does not get

aware of the infection (see [Szo05, p. 118]).

Some file formats, like the PE format, define an entry point, which is an address

that points to the start of code execution. Viruses appending to these file formats

may change the address of the entry point to point to the virus code, or add a

jump instruction right after the entry point to jump to the virus code.

Files that were infected by appending viruses usually can be disinfected.

Prepending

Infection by prepending is done by writing the virus code to the front of the file

(see [Szo05, pp. 118–120]). The original file stays intact, which makes disinfection

possible.

To hide the infection from the user, the prepending virus executes the host file,

e. g., by copying the host file as temporary file to disk and using a function call

like system() to run the host file (see [Szo05, p. 120]).
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A subtype of infection by prepending is the classic parasitic infection (see

Prepending B in figure 2.3). A virus that employs this strategy replaces the

beginning of the host file with its own body and appends the overwritten part

to the host file (see [Szo05, pp. 120, 121]).

Cavity Infection

Cavity viruses overwrite parts of the host file that are not necessarily used by

the host file (see [Szo05, p. 121]). These are usually parts that contain only

zeroes—so called caves of the file (see [Szo05, p. 121]). An example is the cave

between the file header and the actual start of the file. If a virus infects this

cave, it is called header infection (see Cavity A in figure 2.3). Viruses that infect

a single cave must be small enough to fit into them.

The cavity virus may save the original entry point of the host file and pass

control to the host file after it is done.

A subtype of the cavity infection is the fractionated cavity infection (see Cavity

B in figure 2.3), where the virus splits itself and writes the code fractions into

several caves. The first fraction contains the loader code, which is responsible to

put the virus’ fractions back together in memory (see [Szo05, pp. 122, 123]).

Disinfection of a host file with cavity infection can be complicated and is some-

times impossible if the overwritten parts cannot be restored (see [Szo05, p. 123]).

Amoeba Infection

This infection strategy is rare according to Szor [Szo05, p. 124]. The virus splits

itself into two parts. The head is prepended to the host file and the tail is

appended. If the file is executed the head will load the tail of the virus to execute

it.

The amoeba virus may reconstruct the host file, write it to disk as temporary

file and execute it.

Companion Infection

Companion viruses do not modify the host file. They take advantage of the order

the operating system executes files, so they are executed instead of the host file.

There are three types of companion viruses:

1. The regular companion places itself in the same directory as the host file,

having the same filename, but a different file extension. If the user only

gives the filename without the extension, the regular companion will be

executed instead of the host file (see [Bon94, section 2.2.1]). For example
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files with the extension .COM are searched before files with the extension

.EXE on MS-DOS. A companion virus can infect files with .EXE extension

by placing itself in the same directory and the same filename with a .COM

extension (see [Bon94, section 2.2.1]).

2. The PATH companion takes advantage of the order of directories that the

operating system uses to search for files. Operating systems usually have

a variable called PATH that determines the search order for executable

files. The PATH companion has the same name as its host file and places

itself in a directory that takes precedence over the directory of the host file.

(see [Bon94, section 2.2.2]). An example are viruses that mimic common

DLL files. Applications that import functions of a DLL can be tricked into

loading the functions of the virus instead of the actual DLL file.

3. The alias companion uses user-defined command-line macros, aka aliases,

to get executed (see [Bon94, section 2.2.2]). Aliases are used as a shortcut

for long command sequences. A virus can create an alias that replaces

a common command with execution of the companion (see [Bon94, sec-

tion 2.2.3]).

The companion virus exists beside its host file. Deletion of the companion file or

the alias in case of an alias companion will remove the infection.

2.3 Malware Analysis

Definition 14 ‘Malware analysis is the art of dissecting malware to understand

how it works, how to identify it, and how to defeat or eliminate it.’ [SH12,

p. xxviii]

Malware analysis is not only performed by employees of antivirus companies,

but also respondents to computer security incidents of other companies. These

may be security specialists, system engineers, or network adminstrators. They

perform malware analysis to find out which machines and programs are affected,

how the malware can be removed, what vulnerabilities of the system it used,

which data has been destroyed or sent to the attacker, and how to prevent

another intrusion.

There are two kinds of malware analysis—static and dynamic. Malware analysts

usually apply both, starting with basic static analysis to get an overview of the

file. The two kinds of malware analysis, their techniques, and tools are explained

in the present section.

2.3.1 Static Analysis

Definition 15 Static analysis is the examination of a program without running

it (see [SH12, p. 2]).
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Static analysis includes, e. g., viewing file format information, finding strings or

patterns of byte sequences, disassembling the program and subsequent examina-

tion of the intructions.

Static analysis is limited: The malware may be encrypted, compressed or other-

wise obfuscated. If instructions are examined, static analysis can be extensive

because all possible paths of execution have to be considered. But static anal-

ysis is preferred for the first examination because it is safe: The code is never

executed, thus, the malware cannot cause any harm.

Basic Static Analysis

A malware analyst uses basic static analysis to get an overview and make first

assumptions about the malware’s function or behavioural type (cf. [SH12, p. 9]).

Sikorski and Honig compare basic static analysis to ‘looking at the outside of a

body during an autopsy’ [SH12, p. 65]. This analogy illustrates two facts about

basic static analysis: first, the malware is a dead body (it is not run); second,

the malware’s inner workings, its instructions and paths of execution, are not

part of basic static analysis as it is only looked at from the outside.

Basic static analysis employs the following techniques (see [SH12, p. 9]):

1. ‘Using antivirus tools to confirm maliciousness’ [SH12, p. 9]

2. ‘Using hashes to identify malware’ [SH12, p. 9]

3. Getting information from ‘strings, functions, and headers’ of a file (see

[SH12, p. 9])

Sikorski and Honig recommend VirusTotal2 (see [SH12, p. 10]), which is a website

that generates antivirus reports about uploaded files. The reports tell how many

and which antivirus engines detect the file as malicious and may include additional

information for certain file types using automated static analysis.

MD5 and SHA-256 hashes are commonly used to label, identify, and find malware

that was already analysed (see [SH12, p. 10]). VirusTotal allows to search for

reports by hash values, which are either computed from the whole file or sections

of it. Malware sharing sites like Open Malware3 allow search by hash as well.

Binary files may contain strings, like error messages, dialog text, sometimes also

names of functions, imports, exports, URLs, or email addresses. Programs like

strings.exe4 filter character sequences from binary files and display them (cf.

[SH12, pp. 11, 12]).

2https://www.virustotal.com/ (last access Thursday 16th October, 2014)
3http://www.offensivecomputing.net/ (last access Thursday 16th October, 2014)
4http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx (last access

Thursday 16th October, 2014)

https://www.virustotal.com/
http://www.offensivecomputing.net/
http://technet.microsoft.com/en-us/sysinternals/bb897439.aspx
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Packer identifiers (packed malware is part of subsection 2.5.2) and parsers for

certain file formats are also tools of basic static analysis.

Advanced Static Analysis

Advanced static analysis is the examination of a program’s instructions (cf.

[SH12, pp. 65–85]).

These instructions may be present in different levels of abstraction. A low

abstraction level is machine code, which consists of machine instructions, so

called opcodes. The lowest human-readable abstraction level is assembly language.

Assembly language assigns mnemonics to machine instructions and operations

and allows the usage of symbolic addresses and labels, thus avoids manual address

calculations by the programmer. High-level code is, e. g., C source code.

Assembly and high-level languages have to be translated to machine code to be

executed. The translation from a higher to a lower abstraction level is called

compilation. The process of translating assembly language to machine code is

also called assembly or assembling.

Compiled malware is usually translated back into a human-readable form before

examination. This translation is done via one of the following:

1. decompilation: translation from a lower-level code to high-level language

code

2. disassembly: translation from machine code to assembly [SH12, p. 66]

Figure 2.4 illustrates relations of (de-)compilation and (dis-)assembly and the

different abstraction levels of code.

Figure 2.4: Compilation, assembly, and reversing processes; referring to [SH12, p. 67]

Decompilation is the reverse process to compilation. It translates the program’s

code from a lower abstraction level into a high-level language code, e. g., from
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Java bytecode (.class files) into Java source code (.java files). Decompilation

is usually not able to reconstruct the original source code because there is an

information loss in the compilation process (cf. [SH12, p. 67]).

Decompilation works well if the program consists of code that preserves most

information. Examples are the decompilation of Java bytecode to Java source

code and decompilation of Common Intermediate Language (CIL) code to C#.

Disassembly is the translation of machine code into assembly language (cf. [SH12,

p. 67]). Sikorski and Honig state: ‘Assembly is the highest level language that

can be reliably and consistently recovered from machine code when high-level

language source code is not available.’ [SH12, p. 67] Therefore, disassembly is

preferred over decompilation if only machine code is available.

2.3.2 Dynamic Analysis

Definition 16 Dynamic analysis is the examination of a program while running

it (see [SH12, p. 2]).

Dynamic analysis includes, e. g., observing the program’s behaviour in a virtual

machine (VM) or a dedicated testing machine, or examining the program in a

debugger. It is usually performed ‘after basic static analysis has reached a dead

end’ [SH12, p. 39].

Dynamic analysis is able to circumvent anti-static analysis tricks like packing

and obfuscation. It only registers the execution path that the malware takes

during observation. This saves time compared to examining all paths with static

analysis techniques, provided that the actual malicious behaviour is observed.

However, malware is able to trick dynamic analysis by testing the presence of

a virtual environment or dynamic analysis tools and behaving differently. The

malware might not show any malicious activity or just terminate. There is also

the chance for the malware to exploit bugs in the sandbox environment and infect

or harm the host computer or other computers on the network. So dynamic

analysis comes with a risk (cf. [SH12, p. 40]).

Basic Dynamic Analysis

Basic dynamic analysis is a fast way to examine the malware’s behaviour. The

malware is executed and observed with monitoring programs.

Techniques of basic dynamic analysis include:

1. automatic analysis using sandboxes (see [SH12, pp. 40–42])

2. monitoring processes (see [SH12, pp. 43–50])

3. monitoring file changes (see [Szo05, pp. 586–588])
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4. comparing registry snapshots (see [SH12, p. 50])

5. faking a network and monitoring transmissions (see [SH12, pp. 51–56])

6. infection tests with goat files (see [Szo05, pp. 588–590])

7. tracing system calls (see [Szo05, pp. 596, 597])

Dynamic analysis needs a safe environment that can be restored to a clean state.

That is either a dedicated physical machine or a VM. Tools like Norton Ghost5

allow to backup and restore the state of a physical machine. VMs have the

ability to take snapshots, which are also backups of the current state.

Some companies provide sandboxes for malware analysis. These sandboxes are

VMs or emulators that automatically generate a report about the tested file.

The reports may contain information about network activitiy, registry changes,

file operations, and also static analysis results of the malware (cf. [SH12, p. 41]).

An example for such a sandbox is cuckoo6.

Typical tools for malware observation are process and file monitoring tools

like Process Monitor7 and Process Explorer8. They track registry changes, file

activities (e. g. modification, creation), spawning of child processes, and more.

The Windows registry stores configurations for the operating system. Malware

changes Windows registry entries, e. g., to become persistent by making the

system execute the malware after boot. Malware analysts take registry snapshots

before and after execution of the malware. Afterwards they compare both

snapshots with a tool that filters the differences. The resulting report shows all

changes done to the Windows registry.

Certain malware types, like downloaders and stealers, will only show their

malicious behaviour if there is a working Internet connection. Having a working

Internet connection during dynamic analysis is risky because the malware might

spread via the network. That is why there are tools to simulate network services.

Examples are INetSim9, which simulates the Internet, and ApateDNS10, which

redirects DNS requests.

These network programs work together with packet capture and analyser tools like

Wireshark11. They intercept and log any outcoming and incoming network traffic,

thus, make the traffic visible for the malware analyst. They, e. g., recognise the

5http://www.symantec.com/themes/theme.jsp?themeid=ghost (last access Thursday
16th October, 2014)

6http://www.cuckoosandbox.org/ (last access Thursday 16th October, 2014)
7http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx (last access

Thursday 16th October, 2014)
8http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx (last access

Thursday 16th October, 2014)
9http://www.inetsim.org/ (last access Thursday 16th October, 2014)
10https://www.mandiant.com/resources/download/research-tool-mandiant-

apatedns (last access Thursday 16th October, 2014)
11https://www.wireshark.org/ (last access Thursday 16th October, 2014)

http://www.symantec.com/themes/theme.jsp?themeid=ghost
http://www.cuckoosandbox.org/
http://technet.microsoft.com/en-us/sysinternals/bb896645.aspx
http://technet.microsoft.com/en-us/sysinternals/bb896653.aspx
http://www.inetsim.org/
https://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
https://www.mandiant.com/resources/download/research-tool-mandiant-apatedns
https://www.wireshark.org/
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attempt of a downloader to access files on the Internet, or see what information

a stealer sends and where to.

Goat files are created by malware researchers to analyse file infection strategies

of viruses (see [Szo05, p. 588]). Typical goat files contain only do-nothing (NOP)

instructions (see [Szo05, p. 221]). If a virus infects such a file, the infected

parts are readily distinguishable from the non-infected parts (see [Szo05, p. 588]).

Thus, goat files ease the extraction of the virus body and help to understand the

infection technique.

Advanced Dynamic Analysis

The main tool for advanced dynamic analysis is a debugger (see [SH12, p. 167]).

Debuggers are used to examine a software while it is running. A debugger

can show and change contents of variables, registers, parameters, and memory-

locations, modify instructions, step through the execution path one instruction

at a time (single-step), and pause the execution at predefined points called

breakpoints.

Source-level debuggers are mostly used by software developers to test their

products. They operate on high-level language code. Assembly-debuggers are

more relevant for malware analysts and reverse engineers because they work if

high-level language code is not available (see [SH12, p. 168]).

Debugging is either done in user mode or in kernel mode. These are processor

privilege levels of Windows (see [SH12, p. 158]). Programs usually run in user

mode. Exceptions are operating system code and hardware drivers (see [SH12,

p. 158]). Processes that run in kernel mode share memory addresses and resources,

whereas processes in user mode have their own memory, resources, and more

restrictions regarding available instructions, registers, and hardware access (see

[SH12, p. 158]). There are some malicious programs that run in kernel mode.

Malware analysts, who want to perform advanced dynamic analysis on such

malware, need a debugger that supports kernel-debugging, e. g., WinDbg12.

2.4 Malware Detection by Antivirus Software

The detection techniques of antivirus products influence how malware defends

itself. Thus, it is necessary to know about detection techniques to understand

malware defence.

Antivirus scanners—despite their name—detect not only viruses, but malware of

any kind. There are two types of scanners. On-demand scanners are executed by

the user if he or she wants to analyse a certain file (see [Szo05, p. 391]). On-access

12http://msdn.microsoft.com/en-us/windows/hardware/hh852365.aspx (last ac-
cess Thursday 16th October, 2014)

http://msdn.microsoft.com/en-us/windows/hardware/hh852365.aspx
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scanners reside in memory and scan files on certain events, e. g., when files are

‘opened, created or closed’ [Szo05, p. 392].

Detection techniques are also divided into static and dynamic ones. Static detec-

tion does not run the code, whereas dynamic detection observes the malware’s

behaviour live or uses an emulator. The following sections describe malware

detection techniques that are used by antivirus scanners.

2.4.1 String Scanning

String scanning is a static detection method. It compares byte sequences in

a database with the actual byte sequences of a file (see [Szo05, p. 393]). If a

subsequence in the file matches one of the sequences in the database, the file

is declared malicious (see [Szo05, p. 393]). Such a byte sequence to identify a

malware is also called signature or string. The signature needs to be unique

enough, so that it is unlikely to exist in clean programs (see [Szo05, p. 393]).

This technique is only able to recognise known malware. Therefore, string

scanners need regular updates of the signature database to be able to detect

newly created malware.

Extensions of this method include the use of wildcards in the signature, the use

of regular expressions that represent a group of byte sequences, or the allowance

for a certain number of byte mismatches (see [Szo05, pp. 395–397]).

Example 1 The following listing demonstrates the string scanning extensions

wildcards and mismatches with matching and mismatching byte sequences for a

sample signature.

1 Wildcards
2 ---------
3 signature: 0E 1F 0E 07 E8 ?? ?? E8 ?? ?? 3A C6 73
4 byte sequence found: 0E 1F 0E 07 E8 31 C4 E8 00 FF 3A C6 73
5 --> match
6 byte sequence found: 0E 00 0E 07 E8 A5 C4 E8 22 CF 3A C6 73
7 --> mismatch --
8
9 Mismatches allowed: 2

10 ---------------------
11 signature: 73 72 63 64 6F 63 69 64 3A 20
12 byte sequence found: 73 72 63 02 6F 63 69 64 00 20
13 --> match -- --
14 byte sequence found: C6 A2 63 64 6F 63 69 64 3A 00
15 --> mismatch -- -- --

One signature usually represents one piece of malware, but there are also signa-

tures that represent a group. Malicious programs that have common roots and

characteristics are grouped into a family. These family members or variants of a

malware emerge, when malware writers modify existing malicious code, or use

construction kits to build a personalized version of a certain kind of malware.

Signatures that cover several members of a malware family at once are called

generic detection signatures.
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Definition 17 (Generic Detection) ‘Generic detection scans for several or

all known variants of a family of computer viruses using a simple string’ or ‘an

algorithmic detection’. [Szo05, p. 397]

Generic detection is also able to detect new variants of a known malware family,

as long as the part containing the signature was not modified.

2.4.2 Speed and Accuracy Improvements for String Scan-
ning

A näıve string scanning algorithm looks up every subsequence of bytes in a file

with the signature database that belongs to the antivirus scanner. Antivirus

companies strive to create antivirus software that does not noticeably slow down

the clients’ computers. The following methods are used to improve speed and

detection accuracy of string scanning techniques. Their effect on size and location

of the scanned area is demonstrated in Figure 2.5.

Hashing

Hashing does not affect the scanned area of the file, but it improves the speed

to look up signatures in the database. A hash value is created from the first 16

to 32 bytes of a scanned byte sequence (see [Szo05, p. 397]). The hash value is

used as index for the hash table that contains the corresponding signatures. The

signatures must not contain any wildcards because the hashes would not match

if a single byte was changed (see [Szo05, p. 397]). Some scanners, therefore, do

not allow any wildcards; others only hash a prefix of the signature and allow the

rest of the signature to contain wildcards (see [Szo05, p. 397]). Hashing can be

combined with any of the other string scanning improvement techniques below.

Figure 2.5: The scanned area (green) of an infected file with different string scanning

strategies applied. The red rectangle marks the entry point. The virus example is an

appending file infector that modifies the entry point of the host file to point to the

virus body.
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Top-and-Tail Scanning

Instead of scanning the entire file for a signature match, only the top and tail of

the file are used. A top-and-tail scanner takes, e. g., only the first and the last

2 kb of the file into account (see [Szo05, p. 398]). This is especially useful to detect

prepending, appending, or overwriting viruses (see [Szo05, p. 398]). Top-and-tail

scanning improves the speed, but may fail to recognise cavity infections.

Entry Point Scanning

The entry point of a file marks the offset where the execution starts. The entry

point is often defined in headers of the file format. Viruses commonly target the

entry point, e. g., they modify it to point to the virus code. Because of that it is

possible to improve scanning speed and accuracy by scanning for a signature at

the entry point (see [Szo05, p. 399]). Entry point scanning can only be applied

for signatures that are located at the entry point. Entry point signatures are

marked as such in the signature database.

Bookmarks

Bookmarks are saved alongside the malware signature (see [Szo05, p. 397]). They

represent the distance from the start of the malware body to the detection string

(see [Szo05, p. 397]). Bookmarks increase detection accuracy and speed (see

[Szo05, p. 397]).

Bookmarks are also useful to save information necessary for disinfection. Szor

states ‘it is a good practice to choose bookmarks that point to an offset to the

stored original host program header bytes. Additionally, the size of the virus

body stored in the virus is also a very useful bookmark.’ [Szo05, p. 398]

2.4.3 Algorithmic Scanning

The standard detection algorithm of an antivirus scanner cannot cover every

malware (see [Szo05, p. 405]). Malware-specific detection algorithms are neces-

sary for such threats. While early implementations were actually hardcoded

procedures in the scanner, the products today use portable code that is part of

the malware detection database (see [Szo05, p. 405]).

These additional detection algorithms worsen the performance, which is why

algorithmic scanning applies filtering techniques to avoid unnecessary scanning

(see [Szo05, p. 406]). A malware-specific filter defines, e. g., the affected file type,

certain values or flags in the header, or file characteristics that are typical for

the malware (see [Szo05, p. 406]). The detection routine is only executed for a

specific file if the file passes the filter.
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2.4.4 Integrity Checking

All file infecting viruses that are not companion viruses rely on file modifications.

Integrity checkers detect file modifications to determine suspicious changes (see

[Ayc06, p. 70]). Integrity checking is a static detection technique.

An integrity checker has a database of checksums for all files that shall be

watched (see [Ayc06, p. 70]). These checksums must be initially computed from

a clean system (see [Ayc06, p. 70]). The integrity checker uses the checksums to

determine if modifications have been performed on a file (see [Ayc06, p. 70]).

There are three types of integrity checkers depending on their implementation:

• An offline integrity checker compares the checksums periodically, e. g.,

every week (see [Ayc06, p. 70]).

• Self-checking programs perform the integrity check on themselves upon

execution (see [Ayc06, p. 70]). This is a typical defence mechanism for

antivirus software (see [Ayc06, p. 71]).

• Integrity shells perform the checksum comparison immediately before

execution of a program (see [Ayc06, p. 71]).

Alternative terms for the three types are described in [Rad94, p. 8].

While integrity checkers are able to detect known and unknown threats, they

can only alarm the user after the infection occured (see [Ayc06, p. 80]). They

cannot distinguish between legitimate file modifications and unauthorised ones

(see [Ayc06, p. 80]). This decision is passed to the user (see [Ayc06, p. 80]).

2.4.5 Code Emulation

Code emulation is a dynamic detection technique. An emulator simulates the

operating system, the memory management, the central processing unit, and

other hardware of the system (see [Ayc06, pp. 75, 76]). The emulator imitates

the execution of a suspicious program (see [Szo05, p. 413]). The data that was

gathered via emulation is analysed using dynamic heuristic analysis (see [Ayc06,

p. 74], subsection 2.4.6).

Code emulation is also used to apply generic decryption to encrypted malware.

The emulator simulates the malware’s decryption routine (see [Ayc06, p. 74]).

It determines heuristically when the malware has finished decrypting itself (see

[Ayc06, p. 75]). The antivirus scanner subsequently identifies the plain body of

the malware using string scanning or other static detection methods (see [Szo05,

p. 415]).
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2.4.6 Heuristic Analysis

Heuristic methods find a solution for a problem using incomplete knowledge.

Heuristic analysis describes all malware detection methods that use ‘a rule-based

approach to diagnosing a potentially-offending file’ [HL, p. 6]. These detection

methods are not optimal, they create false positives and false negatives; but they

are able to recognise unknown threats and detect variants of known malware.

Heuristic analysis is done in two steps: data gathering and data analysis.

Step 1: Data Gathering

The heuristic scanner collects patterns of the file. The collected patterns are

grouped into one of two types: boosters or stoppers.

Definition 18 (booster) Boosters are patterns in heuristic analysis that indi-

cate malware-like behaviour or appearance (see [Ayc06, p. 69]). They increase

the likelyhood for the file to be identified as malicious (see [Ayc06, p. 69]).

Definition 19 (stopper) Stoppers are patterns in heuristic analysis that indi-

cate behaviour or appearance that is untypical for malware. Stoppers decrease

the likelyhood for the file to be indentified as malicious (see [Ayc06, p. 69]).

Static heuristic analysis collects information about the file format and the file’s

instructions (see [Szo05, p. 211]). Typical boosters for static heuristic analysis

are blacklisted strings found in the file (e. g. obscene words or the term virus),

use of undocumented functions, presence of unusual instructions, no existing

caves (indicator of cavity-infection), or self-modifying code (see [Szo05, p. 211]

and [Ayc06, p. 69]).

Example 2 Some file-infecting viruses add jump instructions right after the

entry point to pass execution to the virus body. Therefore, jump instructions

right after the entry point are an indicator for a file infection and classified as

booster by heuristic scanners.

Dynamic heuristic analysis collects data of a program by emulating its execution

(see subsection 2.4.5) or observing its behaviour live on the system. Boosters are

suspicious behavioural patterns. These include registry changes, file modifications,

replication, and hiding techniques.

Step 2: Data Analysis

The analysis of the data collected in step 1 may involve artificial neural networks

or other machine learning techniques. It can also be done by assigning weights to

the boosters and stoppers and calculating the sum; the analysed file is identified

as malicious if the sum is larger than a predefined threshold (see [Ayc06, p. 70]).
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2.4.7 Comparison of Malware Detection Methods

String scanning is able to identify malware precisely if non-generic methods are

used (see [Ayc06, p. 79]). Thus, it enables malware-specific disinfection of the

system. String scanning cannot cope with unknown threats, unless the threat is

a variant of a known malware and covered by a generic detection signature.

Algorithmic scanning is the last resort if signature extraction for a malicious file is

not possible. The algorithms are part of the signature database of string scanners;

as such they rely on database updates. It takes time for malware analysts

to examine the malware and create a malware-specific detection algorithm.

Algorithmic scanning is able to identify known malware, and can only detect

unknown threats if they are covered by a generic detection algorithm.

Integrity checkers ‘boast high operating speeds and low resource requirements’

[Ayc06, p. 80]. They are only effective against file infecting viruses. They detect

known and unknown threats and create false positives. Integrity checkers cannot

identify malware.

Code emulation is able to detect known and unknown threats using dynamic

heuristic analysis, with the possibility of false positives. Emulators are also able

to decrypt most encrypted malware, which is the first step for further analysis,

e. g., by string scanning. Emulators are slow and their presence can be detected

by malware. Code emulation is safe compared to observation of programs that

already run on the system.

Heuristic analysis can be static or dynamic. It detects known and unknown mal-

ware. False positives are possible, exact identification is impossible, disinfection

can only be done with generic methods.

There is no single superior detection method that suffices for every case. While

known threats are handled well with signature scanning and algorithmic scanning,

the detection of unknown threats always imposes the risk of false positives. It

is necessary to apply several detection methods to get the best results. Their

implementation is a tradeoff between detection rate, accuracy, and performance.

2.5 Anti-Detection and Anti-Reversing

The previous section dealt with malware detection methods. Malware authors

react to these methods by applying defence mechanisms to malware. Such

malware employs techniques to evade detection and hamper malware analysis.

Malware defence increases the skill level that is necessary to reverse-engineer

the malware, thus, can delay or prevent analysis. The present section gives an

overview to anti-detection and -reversing techniques and discusses the place and

impact of file-format related defence.
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2.5.1 Obfuscation

Definition 20 (Obfuscation) Obfuscation is the deliberate act of making ma-

chine code or higher level code difficult to understand by humans.

Some obfuscation techniques are:

1. substitution of variable names or subroutine names with deceiving or

non-descriptive strings.

2. encoding or encryption of strings in a binary file

3. encoding or encryption of byte sequences

4. adding superfluous code, structures, or functions that do nothing useful,

or are never executed; e. g., conditional jumps that always yield false

5. breaking conventions; e. g., coding conventions for certain programming

languages or conventions for the structure of a file format

6. replacing code or data structures with more complex, but equivalent code

or structures

In section 2.3.1, string extraction is described as a basic analysis technique to

get passwords, email addresses, messages, or similar information from a file. A

countermeasure by malware is to store only encrypted strings and to decrypt

them if they are needed.

Malware may not only encrypt plain strings, but also the code of its body,

leaving only the decrypter’s code plain. This is a countermeasure to string-based

detection of antivirus software (see subsection 2.4.1) and malware analysis with

disassemblers (see section 2.3.1). As long as the code of the decrypter is long

and unique enough, the extraction of signatures is still possible (see [Szo05,

p. 234]). But some viruses use a different decrypter for every new generation,

which makes signature extraction difficult or impossible. Viruses that have a

predefined set of different decrypters are called oligomorphic; viruses that mutate

their decrypters—thus, are able to create millions of different forms—are called

polymorphic (see [Szo05, pp. 234, 236]).

Malware authors create obfuscated programs manually or with obfuscation

tools. Polymorphic viruses are an example of manually crafted obfuscation

by encryption. One commonly used obfuscation tool is the packer, which is

explained in the next subsection. Code obfuscation can be partially removed

with deobfuscators. Encrypted malware can often be decrypted, either manually

or automated.
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Figure 2.6: Functionality of packers

2.5.2 Packed Malware

Definition 21 (Packer) A packer is an application that takes an executable

file, possibly modifies it, and puts it into a ‘software envelope’—the stub. The

resulting file is called packed file. If the packed file is executed, the stub recovers

the original file and runs it in memory. (cf. [MMF10, p. 1])

Definition 22 (Target) The target is an executable file ‘in its natural form

prior to being operated on by a packer.’ [MMF10, p. 1]

The modifications that a packer applies to a target are compression, encryp-

tion, anti-unpacking tricks, or other obfuscation methods. Depending on these

modifications, packers are categorised into three types (cf. [Sec08, p. 73]):

1. compressor: applies compression to the target

2. crypter: applies encryption to the target

3. protector: applies encryption and compression to the target

Another subtype of a packer is the bundler, which puts several targets into a

single software envelope (cf. [Sec08, p. 73]). Upon execution, all executable files

packed into the software envelope are run in memory. A bundler may as well fall

into one of the aforementioned subcategories: compressor, crypter, or protector.

The modifications are applied to all targets. The principle functionality of

packers is illustrated in Figure 2.6.

Packers have legitimate purposes, like shrinking the file size and protection of

the software against illicit reverse engineering. Bundlers ease the distribution of

a product because it can be provided as one file compared to having several files.

The same features are used by malware authors. They pack malware with

compressors, crypters, or protectors to avoid detection by antivirus software and

to exacerbate malware analysis. They use bundlers to bind malicious programs
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with legitimate ones. The result is a trojan—the legitimate application serves as

a decoy and the malicious code is carried out silently besides the decoy.

Antivirus scanners handle packed malware either with a generic signature that

detects the software envelope, or by employing automated unpacking techniques

(see subsection 2.4.5). Generic detection of packed files only makes sense if the

packer was specifically written for malicious use, otherwise legitimate programs

are detected as well. Some malware packers generate a unique stub for every

packing process, which makes generic detection difficult.

Static malware analysis of packed files is only possible after unpacking. Generic

unpacking can be done by emulation of the stub’s unpacking algorithm (see

subsection 2.4.5); but there is also the possibilitiy to use packer-specific unpackers

or to perform unpacking manually.

2.5.3 Anti-Virtual Machine

Malware uses anti-virtual machine (anti-VM) techniques to avoid its analysis

in a VM (see [SH12, p. 369]). If such malware detects that it is run in a VM, it

may not show any malicious behaviour, terminate execution, or try to escape

the virtual environment to infect the host system (see [SH12, pp. 369,380]).

VM systems leave traces, so called artefacts, which malware uses to detect the

VM (see [SH12, p. 370]). These artefacts are, e. g., typical processes, registry

entries, or files and folders.

Example 3 To determine if a file is run using VMWare13, the processes and the

registry can be searched for the string VMWare. Processes like VMwareTray.exe

are likely to be found. A registry search might yield the following results (registry

example by [SH12, p. 371]):

1 [HKEY_LOCAL_MACHINE\HARDWARE\DEVICEMAP\Scsi\Scsi Port 0\Scsi Bus 0\Target Id 0\
Logical Unit Id 0]

2 "Identifier"="VMware Virtual IDE Hard Drive"
3 "Type"="DiskPeripheral"
4
5 [HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\Windows\CurrentVersion\Reinstall\0000]
6 "DeviceDesc"="VMware Accelerated AMD PCNet Adapter"
7 "DisplayName"="VMware Accelerated AMD PCNet Adapter"
8 "Mfg"="VMware, Inc."
9 "ProviderName"="VMware, Inc."

10
11 [HKEY_LOCAL_MACHINE\SYSTEM\ControlSet001\Control\Class\{4D36E96F-E325-11CE-BFC1

-08002BE10318}\0000]
12 "LocationInformationOverride"="plugged into PS/2 mouse port"
13 "InfPath"="oem13.inf"
14 "InfSection"="VMMouse"
15 "ProviderName"="VMware, Inc."

A malware analyst has to find and patch detection mechanisms of such malware,

or remove artefacts from the VM if possible. To avoid detection of the process

VMwareTray.exe in example 3, the analyst can uninstall VMWare Tools to get

13http://www.vmware.com/ (last access Thursday 16th October, 2014)

http://www.vmware.com/
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rid of the VMwareTray.exe process, or modify the string VMwareTray.exe in the

malware using a hex editor (see [SH12, p. 373]). Malware analysts can also use

a different VM that might not be detected by the piece of malware they want

to analyse. To reduce the chance that the host system gets infected, malware

analysts commonly use a different operating system for the host system than for

the VM.

2.5.4 Anti-Emulation

Anti-emulation techniques hinder or prevent analysis by a code emulator. There

are three categories of anti-emulation techniques: Malware outlasts, outsmarts,

or overextends the emulator (see [Ayc06, p. 99]).

Outlast

Emulation needs more time than static detection techniques; but the time an

antivirus program can spend on emulation without loosing the patience of the user

is limited. Some malicious programs take time before they show any malicious

behaviour. If the emulator cannot spend that much time, the malware outlasts

the emulator (see [Ayc06, p. 99]).

Outlasting malware might wait for a certain event that triggers the malicious

behaviour. If that event is not part of the emulation, the malware will not

be detected. Malware also outlasts emulators by delaying execution with do-

nothing instructions, garbage instructions, or sleep calls (see [Ayc06, p. 99]).

Self-replicating malware might choose to infect only at random. In this case an

emulator needs luck to observe self-replication (see [Ayc06, p. 99]).

Emulators countermeasure outlasting by skipping sleep-calls, do-nothing instruc-

tions, and repetitive code. The emulator controller may also decide to re-run

the emulation, e. g., it can save the branches of execution that have not been

taken and emulate them in the next run (see [Ayc06, p. 78]). This enables the

detection of malware that runs only sporadically.

Outsmart

Outsmarting is done by restructuring the code or the file format, so it appears

harmless (see [Ayc06, p. 100]). This includes avoidance of detection by heuristic

analysis (see [Ayc06, p. 100]) and file format malformations. The latter are

explained in subsection 2.5.7.

Antivirus companies can only countermeasure outsmarting by improving the

emulator or the component that does the heuristic analysis (see [Ayc06, p. 99]).
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Overextend

Similar to the anti-VM techniques in subsection 2.5.3 overextending malware

tries to detect or even attack the emulator (see [Ayc06, p. 100]).

Emulators do not perfectly imitate a system. They use optimisations to reduce

complexity and improve performance (see [Ayc06, p. 78]). This includes the

reduction of supported instructions and libraries, and returning fixed values for

certain system calls. Malware detects these discrepancies, e. g., by asking the

current system time twice (see [Ayc06, p. 100]). If the returned values are the

same, the malware concludes that it is emulated (see [Ayc06, p. 100]).

Checks for proper execution of undocumented instructions, or for the availability

of rarely used standard libraries and external resources—like websites—can also

overextend an emulator (see [Ayc06, p. 100]). The countermeasures for outlasting

can also be detected, e. g., an emulator that skips sleep calls is detected by

comparison of the system time before and after a sleep instruction.

Countermeasures against overextending malware are improvements to the sim-

ulation quality, effectively rising the complexity of the emulator (see [Ayc06,

p. 99]).

2.5.5 Anti-Debugging

Malware employs anti-debugging techniques to slow down or prevent its analysis

by a debugger. These techniques include the use of debugging detection to

behave differently if executed in a debugger.

One debugging detection method uses certain functions of the Windows API,

like IsDebuggerPresent, or OutputDebugString (see [SH12, pp. 352, 353]). Their

return values indicate if a debugger is attached to the malware. Other malicious

programs re-implement these Windows API functions to achieve the same, and

read process information that indicates the use of a debugger (see [SH12, p. 353]).

A malware analyst can modify the malware and force it to take the execution

path that it would take without a debugger, or change the process information

that indicates a present debugger (see [SH12, p. 354]). Debuggers like OllyDbg

have plugins to hide the presence of the debugger (see [SH12, p. 354]).

Another detection technique checks the system for residue of debugging tools

(see [SH12, p. 356]). These may be certain registry entries, running processes, or

files and folders on the system (see [SH12, p. 356]). A malware analyst handles

these techniques similar to the VM artefact detection that was explained in

subsection 2.5.3.

Malware also detects debuggers by looking for typical debugger behaviour during

execution (see [SH12, p. 356]). As explained in section 2.3.2 debugging involves

breakpoints and single-step execution of the file. These actions modify the
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code of the process (see [SH12, p. 356]). The modifications can be detected by,

e. g., code checksum comparisons. Timing checks are also performed (see [SH12,

p. 357]): Process execution is slowed down during examination in a debugger

because the debugger halts execution at breakpoints (see [SH12, p. 358]). That

means the comparison of timestamps may reveal the presence of a debugger.

Some anti-debugging techniques do not rely on detecting the presence of a

debugger, but interfere with its functionality (see [SH12, pp. 359–363]). An

example are thread local storage (TLS) callbacks. Debuggers usually pause

program execution at the entry point of the executable, which is defined in the

file’s headers; but the instructions at the entry point are not the first ones that

are executed (see [SH12, p. 359]). TLS callbacks are used to execute code before

the entry point, and this code might not be visible in a debugger (see [SH12,

p. 359]). TLS callbacks can be recognised by basic static analysis (see [SH12,

p. 360]). Debuggers like OllyDbg allow to change the settings to pause execution

before the entry point (see [SH12, p. 361]).

Debuggers also have vulnerabilities that enables malware to cause debuggers to

crash (see [SH12, p. 361]). These are file format malformations that the debugger

cannot handle. They are discussed in section 3.5.

2.5.6 Anti-Disassembly

The goal of anti-disassembly is to prevent automated disassembly of machine

code and make any code unavailable before it is run (see [Ayc06, p. 103]).

Encrypted and polymorphic viruses (subsection 2.5.1), and packed files (subsec-

tion 2.5.2) are examples of anti-disassembly techniques. Other techniques are

(cf. [Ayc06, p. 104]):

• dynamically generated code

• code that modifies itself while it is run

• code that was encrypted several times with different keys or encryption

algorithms

• encrypted code that is only decrypted and executed in chunks in memory;

chunks that are not needed any more, are encrypted again

• encrypted code, whose key was generated from system information, e. g., a

hardware ID

• mixing data and code in a way that makes precise separation of them

impossible

Anti-disassembly techniques also affect other static analysis methods:
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• Decompilation will not be possible if disassembly already fails.

• File format information cannot be extracted if the most part of it is

encrypted.

• String extraction of encrypted parts does not yield any readable results.

• Self-modifying code changes the hash values of the file each time it is run,

which renders the hash values useless for malware labelling.

• Any analysis that builds upon the disassembled code does not work if

disassembly fails.

Encrypted malware sometimes saves the encryption key within the decrypter or

uses a vulnerable encryption algorithm. Antivirus scanners identify encrypted

malware by using these passwords or vulnerabilities to decrypt them (see [Szo05,

p. 409]). The decrypted parts are compared to the signatures in the database

for identification of the malware. This is called X-RAY scanning and applied to

certain areas of the file, e. g., at the entry point (see [Szo05, p. 409]).

Sometimes, the malware analyst or antivirus scanner must resort to dynamic

analysis and heuristics. If static decryption is not possible, dynamic decryption

by code emulation may work. Decrypters can be detected dynamically by

heuristic analysis of the instructions that are executed during emulation (see

[Szo05, p. 419]). Self-modifying malware can be detected by geometric detection,

which is a dynamic heuristic analysis based on the alterations that the malware

does to the file structure (see [Szo05, p. 421]).

2.5.7 File Format Malformations

Antivirus scanners and malware analysis tools use file format parsers to extract

information from a file. Antivirus scanners also rely on file format detectors to

apply filtering (see subsection 2.4.3) and to determine the appropriate file format

parser for further analysis.

File format malformations are unusual structures or properties in a file, which

cause malfunctions in file format detectors or parsers. If the file format detector

misidentifies the format of a file, the antivirus scanner will not apply the correct

steps for further analysis. File format parsers are part of basic-static-analysis

tools, disassemblers, debuggers, heuristic scanners, and emulators. As such, file

format malformations are anti-disassembly, anti-debugging, anti-static-analysis,

anti-heuristics, and anti-emulation techniques.

Jana and Shmatikov demonstrate the vulnerability of file format detectors and

parsers (see [JS12]). They prove that malware can evade all of the 36 tested

antivirus scanners by using only file format malformations; and they conclude

‘that file processing has become the weakest link of malware defense [by antivirus

software]’ [JS12, p. 1].
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2.6 Summary

The defence mechanisms of malware are a direct reponse to the detection and

analysis techniques by antivirus scanners and malware analysts. Antivirus

companies and authors of malware analysis tools react in the same manner by

adjusting their products to cope with the updated malware’s defence mechanisms.

This arms race is ongoing. The commercialisation of malware construction kits

and tools for undetection and protection make the creation of sophisticatedly

armoured malware possible for everyone. Because these techniques continuously

evolve, it is impossible for antivirus companies to provide complete protection

for their customers. It is all the more important that malware analysts and

antivirus companies keep up with the new threats.

The present chapter presented file format malformations as ‘the weakest link’ of

defence against malware (see [JS12, p. 1]). The PE format is so complex that it

opens opportunities for such malformations. The following chapter introduces

the PE format and explains the technical details of PE malformations.
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Chapter 3

Portable Executable Format

The library PortEx extracts information from the PE format to assist in analysing

malware. Knowledge about the PE format is neccessary to understand why the

extracted information is useful for malware analysis, how PE malformations

work and affect parsers, and how this knowledge can be applied to build robust

analysis tools.

Microsoft introduced the PE format in 1993 with the release of Windows NT 3.1.

It is the successor of the New Executable (NE) file format for 16-bit systems.

The PE format has been incrementally changed since then. It supports not only

32-bit, but also 64-bit system architectures today. The PE format is described in

the Microsoft Portable Executable and Common Object File Format Specification

(PE/COFF specification) [Mic13].

This chapter defines frequently used terms in section 3.1, presents the PE file

structure in section 3.2, and winds up with PE malformations in section 3.5.

3.1 General Concepts

This section explains general concepts and frequent terms that are also used by

the PE/COFF specification and necessary to understand the descriptions of the

PE format.

PE File Types

The two PE file types are DLL and EXE files. The differentiation between these

file types is solely a semantic one.

DLL files are meant to export functions or data that other programs can use.

Therefore, they usually only run within the context of other programs. They
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can have various file extensions, including .sys, .dll, ocx, .cpl, .fon, and .drv (cf.

[Mic07]).

EXE files run in their own process instead of being loaded into an existing

process of another program. They usually have the file extension .exe and do

not export any symbols.

Both file types share the same format and hybrids are possible, e. g., an EXE

file that exports symbols.

Special Terms

The following definitions are special terms that are necessary to understand the

PE format. These special terms are also used in the PE/COFF specification.

The first three definitions are related to creation and usage of EXE and DLL

files.

Definition 23 (linker) ‘Linking is the process of collecting and combining

various pieces of code and data into a single file that can be loaded (copied)

into memory and executed. [...] On modern systems, linking is performed

automatically by programs called linkers.’ [BO11, p. 654] The output of a linker

is called image file.

Definition 24 (loader) A loader is a program that loads a file into main mem-

ory.

Definition 25 (image file) Image files have been processed by a linker and are

used as input for the loader of the operating system (cf. [Mic13, p. 8]).

EXE and DLL files are considered as image files by the PE/COFF specification

(cf. [Mic13, p. 8]). The relationship of the terms linker, loader, and image file is

illustrated in figure Figure 3.1.

Figure 3.1: The linker combines object files and libraries to an image file, which is

used as input by the loader

The following five definitions are related to addresses in the PE format. Addresses

are either physical or virtual (in-memory), and either relative or absolute.
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Definition 26 (physical address) A physical address is the offset of a certain

byte in a file as it is written on disk.

Physical addresses are necessary to access parts of the PE file that must be read

from disk.

Definition 27 (base address) The base address is the address of the first byte

where the image file is loaded in memory (see ‘ImageBase’ [Mic13, p. 18]).

PE files specify a preferred base address in a field called ImageBase. If the

image file cannot be loaded at the preferred address into process space, another

base address is applied, which is known as rebasing.

Definition 28 (RVA) Relative virtual addresses (RVA) are used while an image

file is loaded in memory. They are relative to the base address of the image file

or to another RVA (cf. [Mic13, p. 9]).

RVAs are a way to specify addresses in memory independently from the base

address. This makes it possible to rebase the file without having to re-calculate

all in-memory addresses in the file. Because of that they are commonly used in

the PE format.

Definition 29 (VA) Virtual addresses (VA) are absolute in-memory addresses

(see [Mic13, p. 9]).

Although the PE/COFF specification defines a VA this way, it uses the term

also for addresses that are actually relative to the image base (e. g., the VA for a

data directory entry, see [Mic13, p. 22]).

Definition 30 (entry point) The entry point is a RVA to the starting address

for EXE files, or to the initialisation function for device drivers for DLL files

(see AddressOfEntryPoint [Mic13, p. 17]).

The entry point was already mentioned in chapter 2 as a common working point

for file infecting viruses and antivirus scanners.

Example 4 An EXE file is loaded to the base address 0x 40 00 00 and the entry

point is 0x 31 2E (a RVA). The effective start of execution is then 0x 40 31 2E,

which is the VA for the entry point.

Definition 31 (section) A ‘basic unit of code or data within a PE or COFF

file’ [Mic13, p. 9] is called a section. Sections are defined by their section header

in the Section Table (cf. [Mic13, pp. 24–29]).

3.2 Standard Structure

This section describes the PE format as it is intended by the PE/COFF specifi-

cation. It differs from the possible structures of PE files in reality, but is used to

differentiate between normal and anormal (aka malformed) structures.
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Figure 3.2: Structure of a PE file

Figure 3.2 illustrates the normal structure of a PE file. It consists of the MS-

DOS Stub, the PE File Header, and the sections. The overlay is optional data

appended to the file. The different parts of the PE are explained hereafter.

A PE file starts with the MS-DOS Stub. This is an application that is able to

run in MS-DOS. The standard MS-DOS Stub prints the message ‘This program

cannot be run in DOS mode’.

The PE File Header is placed after the MS-DOS Stub. Different resources use

the term PE File Header with variable meanings (cf. [Mic13, p. 11], [Rev11] and

‘NT Headers’ in [Alb13]), so the following definition is used in the present thesis.

Definition 32 (PE File Header) The PE File Header consists of the PE

signature, the COFF File Header, the Optional Header, and the Section Table.

The operating system determines the file format by looking for specific signatures.

File format signatures are usually at the very beginning of the file. The PE

signature (‘PE\0\0’) is placed after the MS-DOS-Stub because the MS-DOS

Stub has a file format signature (‘MZ’) itself. The offset to the PE signature is

defined in the e_lfanew field of the MS-DOS Stub, thus enables Windows to

properly execute the PE file.
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All substructures of the PE File Header are consecutively arranged, thus located

at a fixed offset from the beginning of the PE signature. The offset of the Section

Table depends on the SizeOfOptionalHeaders field, which is located in the

COFF File Header. The remainder of the PE file contains data at addresses,

which are defined in the PE File Header.

The sections of the PE file may contain any data, only some sections have a

special meaning and are explained in Special Sections.

Table 3.1 shows the contents of the MS-DOS Stub and the PE File Header. The

MagicNumber field of the Optional Header determines whether the image file

allows a 64-bit address space (PE32+) or is limited to a 32-bit address space

(PE32). Some field sizes vary depending on the MagicNumber, and one field

has been removed in PE32+ files (BaseOfData, see [Mic13, 18]).

Table 3.1: MS-DOS Stub and PE File Header Contents

Name Contents Size in Bytes

PE32/PE32+

MS-DOS Stub among others, the ‘MZ’ signature

and the pointer to the PE Signature

e_lfanew

variable

PE Signature the string ‘PE\0\0’ 4/4

COFF File Header among others, type of target machine,

number of sections, time date stamp

(when the file was created), size of

Optional Header, file characteristics

20/20

Optional Header Standard Fields, Windows Specific

Fields, Data Directory

variable

Standard Fields among others, magic number, size of

code, linker versions, entry point

28/24

Windows Specific

Fields

among others, operating system

the file can run on, ImageBase,

SizeOfHeaders, SizeOfImage,

file alignment, section alignment,

DLL characteristics, number of data

directory entries

68/88

Data Directory each entry consists of address and size

for a table or string that the system

uses, e. g., import table, export table,

resource table

variable

Continued on next page
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Table 3.1 – Continued from previous page

Name Contents Size in Bytes

PE32/PE32+

Section Table each entry is a section header; a sec-

tion header describes, among others,

characteristics, size, name, and loca-

tion of a section

variable

Definition 33 (overlay) Data that is appended to a PE file and not mapped

into memory, is called overlay.

The overlay is used by some applications as a way to store data without having

to deal with the PE format or to prevent the operating system from loading the

data to memory.

3.3 Special Sections

Sections may contain data that is only relevant for certain applications or not

relevant at all; but some sections have special meaning. Their format is described

in the PE/COFF specification [Mic13, pp. 65–91].

PE parsers and the Windows loader determine special sections by entries in

the Data Directory of the Optional Header or certain flags in the Section Table

(cf. [Mic13, p. 65]). Special sections have typical section names, which are also

used in the PE/COFF specification to refer to the sections. These names are

not mandatory, but a convention. That is why they are not reliable for finding

certain sections in a PE. Not only malware writers misuse the section names

to obscure their purpose, but also legitimate compilers and packers violate the

convention (e. g. the packer UPX [OMR]). A subset of these special sections is

described below.

Resource Section

Resources of a PE can be icons, text, windows or copyright information, among

others. They are saved as an entry in the Resource Section, which also has the

name .rsrc Section. The Resource Section is build up as a tree. Each path from

the root node to a leaf represents one resource. While 231 tree levels can be used

according to the PE/COFF specification, Windows only uses three levels with

the first level node being the type, the second being the name, and the third

being the language information (see [Mic13, p. 89]).

Figure 3.3 illustrates the structure of a resource tree. This example tree has two

resources. The first level node is the Type Directory. It specifies the type of a
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resource by an ID in the Resource Type field. The second level nodes are the

Name Directories. Name Directory entries have an address to the name entry of

the resource. The name entry consists of the name length and the actual string

in Unicode. The third level nodes are the Language Directories. They define

the language ID for the resource and have a pointer to a Data Entry. The Data

Entry defines the location of the actual resource bytes.

Figure 3.3: Resource tree with two resources, referring to [Kat13]

Export Section

The .edata Section or Export Section is generally found in DLLs. It is responsible

to make data or code available for other PE files. Exported functions or variables

are hereby called symbols.

Every export has an ordinal number, which is used to obtain the address to

the symbol. A programmer, who wants to use an exported symbol from a DLL,

must import it. The programmer has two ways to do so: The straightforward

way is an import by ordinal ; but it is also possible to import symbols by a public

name, which most symbols have. In the latter case the system has to look up

the ordinal first. The possibility to import by name exists for convenience (cf.

[Pie02b]).

The Export Section begins with the Export Directory Table, which contains

general information and addresses to resolve imports from this section. The

Export Directory Table points to the Export Address Table (see [Mic13, 82]).

The Export Address Table is an array that contains the addresses to the exported

symbols. These addresses either point to code or data within the image file,

or forward to the exported symbols of other DLLs (called forwarder address).

That means a PE file can export symbols that are located in other PE files (cf.

[Mic13, p. 75]). The ordinal of a symbol is the index to its address in the Export
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Address Table (see [Mic13, p. 73]). The ordinal base defines the starting ordinal

number for exports (see [Mic13, p. 74]).

Addresses to public names of symbols are in the Export Name Pointer Table.

These names are null-terminated ASCII strings. An Ordinal Table is used to

map the public names to the corresponding ordinals. Every symbol that has

a public name has an entry at the same position in the Ordinal Table and the

Export Name Pointer Table (see [Mic13, p. 76]).

Listing 3.1 shows example contents for a DLL with two exported symbols:

DLL2Print and DLL2ReturnJ.

Listing 3.1: Example for Export Section contents, output by PortEx

1 Export Directory Table
2 ......................
3
4 Minor Version: 0 (0x0)
5 Address Table Entries: 2 (0x2)
6 Ordinal Base: 1 (0x1)
7 Name Pointer RVA: 31664 (0x7bb0)
8 Export Flags: 0 (0x0)
9 Ordinal Table RVA: 31672 (0x7bb8)

10 Number of Name Pointers: 2 (0x2)
11 Major Version: 0 (0x0)
12 Time/Date Stamp: 1317493556 (0x4e875b34)
13 Name RVA: 31676 (0x7bbc)
14 Export Address Table RVA: 31656 (0x7ba8)
15
16 Export Address Table
17 ....................
18
19 0x1030, 0x1050
20
21 Name Pointer Table
22 ...................
23
24 RVA -> Name
25 ****************
26 (0x7bc5,DLL2Print)
27 (0x7bcf,DLL2ReturnJ)
28
29 Ordinal Table
30 ..............
31
32 1, 2
33
34 Export Entries Summary
35 ----------------------
36
37 Name, Ordinal, RVA
38 ...................
39 DLL2Print, 1, 0x1030
40 DLL2ReturnJ, 2, 0x1050

Example 5 If i is the position of a public name in the Export Name Pointer

Table, the address of the symbol will be determined by the following algorithm

(see [Mic13, p. 76]).

1 ordinal = ExportOrdinalTable[i]
2 symbolRVA = ExportAddressTable[ordinal - OrdinalBase]

Thus, the symbol addresses of Listing 3.1 were calculated as follows:
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1 publicName = "DLL2ReturnJ"
2 i = SearchExportNamePointerTable(publicName) // i == 1
3 ordinal = ExportOrdinalTable[i] //ordinal == 2
4 //ordinal base == 1 as defined in Export Directory Table
5 exportAddrTableIndex = ordinal - OrdinalBase // == 1
6 symbolRVA = ExportAddressTable[exportAddrTableIndex] //symbolRVA == 0x1050

Import Section

Every image file that imports symbols has an Import Section, also called .idata

Section. Figure 3.4 provides a general view of its structure. The PE/COFF

specification defines the structure of the Import Section at [Mic13, pp. 77–79].

Figure 3.4: Typical Import Section layout

The main structure is the Import Directory Table. Every entry of the Import

Directory Table represents the imports from a single DLL. Each entry points

to its DLL name and an Import Lookup Table, which represents the imported

symbols from that DLL. As explained in section Export Section there are two

ways to import symbols: by name or by ordinal. Therefore, the structures in the

Import Lookup Table either contain the address to a public name or an ordinal.

The example in figure 3.4 imports two symbols from kernel32.dll, one by ordinal

and one by the name GetMessageA.

Import Lookup Table entries that import by name (e.g. Import 2 in figure 3.4),

have a pointer to an entry in the Hint-Name Table. Hint-Name Table entries

have two fields: a hint and an ASCII name for the import. Each hint is an index

to the Export Name Pointer Table (see section 3.3) of the DLL, from which the

current file is importing (see [Mic13, p. 79]). Hinting is used to speed up the

lookup of imports by name (see [Pie02b]).

Null entries mark the end of the Import Directory Table and the Import Lookup

Table (see [Mic13, pp. 77, 78]).
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Alongside the Import Lookup Table, there is also an almost identical table,

called Import Address Table (IAT). The IAT has the same buildup as the

Import Lookup Table. Its is used to bind imports. Binding is the process of

precomputing and writing actual in-memory addresses of the imported symbols

into the IAT before runtime (see [Pie02b]). This way the Windows loader doesn’t

have to look up the addresses each time they are needed, which speeds up the

loading process (see [Pie02b]).

3.4 Mapping in Memory

A PE file is mapped into memory as part of the loading process. This section

describes the mapping process in a simplified manner. See figure 3.5 for a visual

description.

Figure 3.5: Mapping a PE file from disk (left side) to memory (right side) by [Alb13].

The loader allocates the necessary memory space as defined by the SizeOfImage
in the Optional Header. Then it maps certain ranges of physical addresses to

their virtual counterparts. These ranges represent the location of headers and

sections.

The ImageBase defines the preferred base address (see definition 27 page 35).

The default base address is 0x 40 00 00. The SizeOfHeaders defines the

number of bytes that are necessary to load the headers up to and including the
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Section Table into memory starting at the base address (cf. [Mic13, p. 19]). The

SizeOfHeaders is 0x 2 00 in figure 3.5.

The sections are mapped after the headers using fields from the Section Table.

The virtual address ranges of the sections are defined by the VirtualAddress
(relative start of the section in memory) and VirtualSize (size of the sec-

tion in memory, cf. [Mic13, pp. 24,25]). Their physical counterparts are the

PointerToRawData (start of the section on disk) and SizeOfRawData (size

of the section on disk).

Example 6 The second section in figure 3.5 has the physical starting address

0x 4 00 and the physical size 0x 2 00. Thus, the physical end of the section is

at offset 0x 6 00. The same section has its relative virtual starting address at

0x 20 00. The absolute address in memory is obtained by adding the base address

of 0x 40 00 00, the resulting virtual start address is 0x 40 20 00. The virtual size

of the second section is 0x 10 00, therefore, the virtual end address is 0x 40 30 00.

The virtual size of this section is 0x 8 00 bytes larger than its physical size, this

overhead is filled with zeroes.

3.5 PE Malformations

There is a gap between the PE/COFF specification and the actual behaviour

of the Windows loader. Windows has to maintain backward compatibility with

obsolete compilers and files (see [VP11, slide 8]) and behaves fault tolerant while

facing invalid structures or fields. That is why the PE/COFF specification does

not reflect the reality. The structure of a PE file according to the PE/COFF

specification is hereby defined as the normal or intended structure.

Vuksan and Pericin define file format malformations as ‘special case conditions

that are introduced to the file layout and specific fields in order to achieve

undesired behavior by the programs that are parsing it’ [Rev11, p. 4]. However,

whether certain special case conditions in files are accidental or intended usually

cannot be determined. So the author decided to leave out the intention of the

person, who introduced the malformation, for definition 34.

Definition 34 (PE malformation) A PE malformation is data or layout of

a PE file that violates conventions or the PE/COFF specification.

Accidental malformations occur, e. g., if the malware writer does not know the

PE/COFF specification well enough to perform file modifications in compliance

with it. It might also be more convenient to modify files without adjusting all

values that the PE/COFF specification actually requires. An example is a virus

that enlarges the last section of the host file and copies itself into it. The adjusted

section size might violate alignment restrictions by the PE/COFF specification

due to bugs in the code or out of convenience. Some malformations are also

done to hide information in a PE file, e. g., marking a host file as infected in a

reserved field to prevent a virus from infecting the host twice.
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Table 3.2: Field Malformations

Field Malformation Examples

non-zero fields or flags that should

be zero

usually reserved or deprecated fields,

e. g. Win32VersionValue

mandatory fields or flags that are

not set

zero ImageBase, zero VirtualSize
for a section

fields that violate maximum or min-

imum value restrictions

FileAlignment lower than 512

fields that violate alignment restric-

tions

unaligned section sizes

fields or flags that violate other con-

straints

FileAlignment that is not a power

of two

contradictory characteristics IMAGE_FILE_DLL not set for a DLL,

IMAGE_FILE_32BIT_MACHINE set

for a PE32+

addresses or sizes that are too large

or too small for the given file

section size too large, virtual entry

point

Whether it is intentional or not, violation of the format specification is unexpected

and potentially breaks or deceives parsers in any of these cases.

Sheehan et al state that 68 per cent of all image files have malformations (see

[SHRS07, slide 7]). Because PortEx specializes in PE malware, one goal of

PortEx is to parse malformed PE files correctly and to recognise malformations.

3.5.1 Field Malformations

Definition 35 (field malformation) A field malformation is a field in the

PE File Header or in a special section that has an invalid value according to the

PE/COFF specification, or a value that is treated differently by the Windows

loader than the PE/COFF specification suggests.

Field malformations and examples are listed in Table 3.2. The following sections

describe some examples for field malformations.

Too Large SizeOfRawData

The PE/COFF specification specifies the SizeOfRawData field in the section

headers as the size of the section on disk rounded up to the file alignment (see
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[Mic13, p. 25], [Pie02a]). According to Albertini [Alb13] the loader replaces

the SizeOfRawData with the VirtualSize if the SizeOfRawData is larger

than the VirtualSize. That means setting the SizeOfRawData to a larger

value than the VirtualSize has the potential to confuse analysis tools. Some

tools are not able to determine the physical section size correctly, and break

if reading the section based on SizeOfRawData exceeds the file size. One

example is pype32 1.

Zero Entry Point

The AddressOfEntryPoint in the Optional Header determines the RVA for

the entry point of a PE file. The PE/COFF specification states that the entry

point is optional for DLLs [Mic13, p. 17]. It doesn’t say anything about EXE

files, but since EXE files are applications, which run on their own, the entry

point is necessary and conventional to define the start of execution.

If the AddressOfEntryPoint of an EXE file is zero, the execution of the file

will start at the image base, executing the MS-DOS signature ‘MZ’ as ‘dec
ebp/pop edx’ (see [Alb13]). Parsers might classify an EXE with zero entry

point as corrupt.

Zero or Too Large Image Base

The ImageBase field defines the preferred loading address. Windows XP allows

the field to be zero and locates the file to 0x 1 00 00 (see [Alb13]). If the sum of

ImageBase and SizeOfImage is larger than or equal to 0x 80 00 00 00, the file

is also rebased to 0x 1 00 00 (see [Alb13]).

Both behaviours are not described in the PE/COFF specification. Emulators

might declare a file as corrupt and refuse to load it if its image base is zero or

above 0x 80 00 00 00.

Trailing Dots in Imports

Windows XP ignores trailing dots in DLL names in the import section (see

[Alb12, slide 76]).

Example 7 If the name ‘kernel32.dll. . . ’ is given as DLL name in the Import

Section, the name ‘kernel32.dll’ is used instead by the Windows loader.

Detection heuristics, which use, among others, the import names to determine

suspicious patterns, may fail to recognise imports with trailing dots.

1https://github.com/crackinglandia/pype32 (last access Wednesday 22nd October,
2014)

https://github.com/crackinglandia/pype32
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Win32VersionValue

Windows operating systems use a datastructure to hold internal process infor-

mation. This data structure is called process environment block (PEB)2.

The Win32VersionValue is a field in the Optional Header. The PE/COFF

specification declares it as reserved and states it ‘must be zero’ [Mic13, p. 19].

If the field is set anyway, the loader overwrites version information in the

PEB after loading the PE file (see [Alb12, slide 82]). Malware writers use this

behaviour to break emulators that rely on the version information given in the

PE File Header.

ImageFileDLL

The file characterics, which are defined in the COFF File Header, have a flag

called IMAGE_FILE_DLL. The PE/COFF specification describes this flag as

follows:

‘The image file is a dynamic-link library (DLL). Such files are considered ex-

ecutable files for almost all purposes, although they cannot be directly run.’

[Mic13, p. 15]

In contrast to the PE/COFF specification the IMAGE_FILE_DLL flag is not

necessary for a DLL to work (see [Alb12, p. 85] and [Alb13]). The DLL will

still be able to export symbols if the flag is not set. Tools that rely on the

flag to determine whether a file is a DLL or EXE will handle the file as EXE.

Subsequently they might fail to work because the entry point might be invalid

for an EXE.

3.5.2 Structural Malformations

Definition 36 (structural malformation) Structural malformations are PE

structures—i. e. headers, sections, data structures of special sections, and tables—

at unusual locations, with unusual odering, recursive calls; or PE structures that

occur in an unusual amount.

Table 3.3 lists possible structural malformations of a PE file and their examples.

Some examples are explained in the following sections.

Too Many Sections

According to the PE/COFF specification the number of sections is limited to 96

[Mic13, p. 12]. While Windows XP refuses to execute a PE with more sections,

2http://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.
85).aspx (last access Monday 20th October, 2014)

http://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa813706(v=vs.85).aspx
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Table 3.3: Structural Malformations

Structural Malformation Examples

structures at unusual locations Section Table or PE File Header in

overlay

unusual ordering of structures shuffled sections, Section Table after

the sections

truncated structures Section Table truncated by the end of

the file

unusual number of structures no sections, no Data Directory, too

many imports

fractionated structures fractionated imports

duplicated structures dual headers, duplicated sections

collapsed structures collapsed MS-DOS Header, collapsed

Optional Header

structural loops resource loop

dummy structures dummy import entry

Windows Vista, 7, and 8 run it regardlessly (see [Lis10, slide 11] and [Alb13]).

The number of sections is defined in the COFF File Header as a 16-bit value. So

the maximum number of sections is 0x FF FF (65 535) sections. Some tools fail to

allocate enough memory upon loading that many sections and crash subsequently.

An example is IDA v5.33.

Fractionated Data

The PE/COFF specification gives the impression that the structures that belong

to one special section are always entirely contained in one PE section as defined

by the Section Table. That is because they are labeled special sections [Mic13,

p. 65] and always called by their conventional section names as given in the

Section Table, e. g., the Import Directory Table and all the structures the table

points to, are referred to as .idata Section (see [Mic13, p. 77]).

The author found malicious PE files that spread the special section contents over

several PE sections, e. g., a sample of the file infecting virus W32.Sality4 places

two imports in a different section than the other imports. Another example is

illustrated in Figure 3.6, where imports and resource structures are fractionated.

3https://www.hex-rays.com/products/ida/ (last access Wednesday 12th November,
2014)

4malware sample #05e261d74d06dd8d35583614def3f22e

https://www.hex-rays.com/products/ida/
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Figure 3.6: Fractionated imports (yellow) and resources (green), output by PortEx,

malware sample #7dfcbb865a4a5637efd97a2d021eb4b3

Figure 3.7: Anywhere PE Viewer fails to parse PE files with fractionated data.
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Static PE parsers are not able to read fractionated data properly if they load

only one section to parse a special section or fail to calculate the correct file

offset for the fractionated parts. An example is Anywhere PE Viewer 0.1.7 as

demonstrated in figure 3.7.

Although malware authors may intentionally use this malformation to hide data

and evade static heuristic analysis, they may also introduce the malformation

unwittingly. A virus like W32.Sality might just add its own imports right in the

section where it also places its own body out of convenience.

Writeable PE File Header

The PE File Header usually has only execute and read attributes enabled. There

are two possibilities to make it writeable.

The first possibility is setting the file into low-alignment mode (see [Rev11,

p. 6]). The purpose of low-alignment mode is to reduce the memory footprint

of drivers. It causes the physical addresses to match their virtual counterparts

and no padding is applied in memory, thus, the memory-mapped file will be

smaller. Low-alignment mode is triggered by setting the FileAlignment and

the SectionAlignment to the same value, which must be greater than zero

and smaller or equal to 0x 2 00 (see [Rev11, p. 6]). Low-alignment mode makes

the PE File Header writeable (see [Rev11, p. 6]) and forces the whole file to be

loaded into memory.

The second possibility is placing the PE File Header in a section and enabling the

write attribute in the section header (see [Rev11, p. 6]). The PointerToRawData
in a section header defines the physical start of a section. If this field is set to

zero, the section will be invalid (see [Alb13]). But if the PointerToRawData
is non-zero and smaller than 0x 2 00, which is the standard value for the file

alignment, the loader will round down the physical section start to zero (see

[Alb13]). This behaviour makes it possible to put the PE File Header into a

section.

This malformation is the basis for some other malformations, e. g., a sectionless

PE file.

No Sections

Executable code of a PE file is usually placed in one or several sections. A

sectionless PE file is able to execute code by placing instructions within the PE

File Header. This is demonstrated by Sotirov in his Tiny PE project (see [Sot]).

To make this work, the file needs to be in low-alignment mode as described in

Writeable PE File Header. More detailed instructions are in [Rev11, p. 12, 13].

A PE file without sections may be partly unreadable by reverse engineering tools

or break tools that expect the file to have at least one section. One example is
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Figure 3.8: The PE File Header (grey) and the Section Table can be placed in overlay

(referring to [VP11, slides 13, 14])

the hex editor Hiew v8.03 5, which does not recognise a sectionless file as PE file.

The commercial tool PE Explorer v1.99 6 refuses to open a sectionless file.

PE File Header in Overlay

After the MS-DOS Stub usually follows the PE File Header. The first component

of the PE File Header is the PE signature. As explained in section 3.2 the

address to the beginning of the PE signature is located in the e_lfanew field

within the MS-DOS Stub. The address marks the beginning of the PE File

Header. It is a 32-bit value. Given that the file is small enough, the e_lfanew
value can be changed to point to the overlay of the file as illustrated in Figure 3.8

(cf. [VP11, slide 13]). As a result the PE File Header will be read from overlay.

The overlay is never mapped into memory, so the PE File Header will not be

present in memory if it resides in overlay. The Windows loader reads most fields

of the PE File Header from disk and executes the file anyway. Tools that read

the PE File Header from memory will not be able to find it (see [VP11, slide 13]).

Section Table in Overlay

The previous malformation is modified by moving only the Section Table to over-

lay. The Optional Header has a variable size. The offset from the beginning of the

Optional Header and its size determine the beginning of the Section Table. The

size of the Optional Header is defined in the field SizeOfOptionalHeaders

5http://www.hiew.ru/ (last access Wednesday 12th November, 2014)
6http://www.heaventools.com/overview.htm (last access Wednesday 12th November,

2014)

http://www.hiew.ru/
http://www.heaventools.com/overview.htm


3.5. PE MALFORMATIONS 51

of the COFF File Header. It is a 16-bit value, so the maximum value for the size

is 65 535 bytes. If the end of the file is smaller than the offset of the Optional

Header plus its size, the Section Table can be moved to the very end of the

file. The rightmost picture in figure 3.8 illustrates the malformation. This

malformation is described in [VP11, slide 14].

As a result of this modification the Section Table will not be mapped to memory.

A tool that parses the memory content will not be able to find the Section Table

and might classify the file as corrupt. Pericin demonstrates this in his talk at

the BlackHat Conference with the debugger OllyDbg (see [VP11, min. 14:45,

slide 14]).

Resource Loop

Figure 3.9: Resource tree with a loop

If a node of the resource tree has a back-pointing child-reference, the tree will

contain a loop as illustrated in Figure 3.9. PE parsers run into an endless loop

and eventually run out of memory if they do not have a limit on the parsed nodes,

depth of the tree, or loop detection. PE parsers might also declare the resource

section as corrupt and fail to show any resources. An example is Resource Hacker

in version 3.6.0.92, which fails to read any resources of a PE file with a resource

loop.

Collapsed Optional Header

The SizeOfOptionalHeader cannot only be enlarged as done for the previous

malformation, but also be shrinked, e. g., to four bytes. A PE file example with

this malformation is tinype [Sot]. Windows reads the contents of the Optional

Header beyond the given size, which is the reason that such a file is still able to

run properly.
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Figure 3.10: Dual PE File Header (referring to [VP11, slides 13, 14])

As a result of the shrinked size the Section Table overlaps with the Optional

Header because the SizeOfOptionalHeader determines the relative offset of

the Section Table (see Section Table in Overlay).

Some tools do not parse the contents of the Optional Header beyond the given

size, including the data directory. Consequently they are not able to parse

imports, exports or other special sections that might be part of the file.

Dual PE File Header

The SizeOfHeaders field in the Optional Header defines the ‘combined size

of an MS-DOS Stub, PE File Header, and section headers’ [Mic13, p. 19]. The

PE/COFF specification withholds that the SizeOfHeaders also determines

the VA of the first section implicitly (see [VP11, slide 15]). The first section is

located right after the PE File Header in memory based on the SizeOfHeaders
fields.

If the SizeOfHeaders value is reduced, only a part of the original PE File

Header will be loaded, and the contents of the first section make up the remaining

PE File Header in memory (see [Rev11, p. 5]). That means there are two different

PE File Header continuations: The PE File Header on disk is read during the

loading process, whereas the PE File Header in memory is read by the loader

afterwards upon request (see [Rev11, p. 5]).

One part of the PE File Header is the Data Directory that defines where imports,

exports, resources, and other special section contents are located (see section 3.3).

These contents are read after the file was loaded into memory. That means the
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header continuation in the first section is relevant for loading these contents.

Reverse engineering tools that read the contents on disk, will show other imports,

exports, or resources than the ones that are actually used while the file is run.

Figure 3.10 illustrates the Dual PE File Header malformation. The malformation

is described in [Rev11, p. 5].

3.6 Summary

There is a gap between the PE format that the PE/COFF specification describes

and the PE files that are actually allowed to run. The PE/COFF specification

uses misleading field names and descriptions (e. g., ‘SizeOfOptionalHeader’ and

‘special section’), is more restrictive than the loader, and does not state how

corner cases are handled and which corrections the loader performs (see Too

Large SizeOfRawData, page 44). Furthermore, the behaviour of the loader varies

in different Windows versions (see Too Many Sections, page 46). Every new

version of Windows possibly introduces formerly unknown malformations. This

gap and the complexity of the PE format make it considerably hard for developers

of PE format parsing tools to handle corner cases properly. The result are tools

and antivirus products that are vulnerable to PE malformations.

The author attempts to implement a PE analysis library that is robust against

known malformations. The following chapter introduces the requirements, tech-

nical details, design, and implementation details of the library PortEx . This

includes malformation detection and robustness—the solution for the problems

that the malformations create.
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Chapter 4

Static Analysis Library

This chapter defines the target audience and requirements for the static analysis

library PortEx , and describes the technology and design decisions based on these

requirements. The last section explains the implementation and functionality of

PortEx ’ features.

4.1 Target Audience and Requirements

The target audience of PortEx includes the following groups:

1. developers of reverse engineering and malware analysis tools

2. malware analysts

Software developers can use the library to build robust tools for malware analysts

and reverse engineers. Malware analysts can use the library to automate tasks

that are not yet covered by available tools.

The requirements of PortEx are based on the goals described in section 1.3.

The following enumeration is ordered by importance, starting with the most

important requirement:

1. PE format parsing

2. PE malformation robustness

3. PE format anomaly detection

4. maximised potential target audience

5. ease of use
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6. platform independence

7. backward compatibility of future versions

8. PE file visualisation

9. overlay detection

10. entropy calculation

11. hash value calculation

12. string extraction

13. packer detection and identification

14. recognition of embedded files

PE format parsing is the main feature of PortEx ; malformation robustness and

anomaly detection are the main motivation for its implementation. Both are

part of section 4.4.

An easy-to-use API and platform independence will attract more people to

deploy PortEx for tool development. Both are actually subgoals of maximised

potential target audience. Platform independence is also important because

malware analysts often use a different operating system for the host system

than for the VM as it makes an infection of the host system more unlikely

(see subsection 2.5.3). Static malware analysis can be performed without a

VM because the malware is not executed; as such it is more convenient to

have platform independent tools for static analysis. Backward compatibility of

future versions makes transition to an updated version of PortEx easier. The

sections 4.2 and 4.3 describe how these requirements are met.

The remaining requirements are features for further investigation of PE files.

Their implementation is covered in section 4.4.

4.2 Technologies

This section lists and justifies the technologies that are used for the implemen-

tation of PortEx . This includes the involved programming languages, project

management tools, and technologies that help to avoid bugs and maintain high

code quality.

4.2.1 Programming Languages and Target Platform

Two requirements for PortEx are platform independence and maximisation of

the potential target audience (see section 4.1). That means the target platform
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should be independent from the operating system, and the more popular and

widely used the target language is, the more people will probably use the library.

The TIOBE Index is ‘an indicator of the popularity of programming languages.

The index is updated once a month. The ratings are based on the number of

skilled engineers world-wide, courses and third party vendors’1. The ratings

from 2002 to 2014 show Java and C variantly having the first and second highest

rating (see figure 4.1).

PYPL—the PopularitY of Programming Language Index—shows similar results

with Java being the most popular language from 2004 to 2014. PYPL ‘is created

by analyzing how often language tutorials are searched on Google : the more a

specific language tutorial is searched, the more popular the language is assumed

to be.’2

The author decided to use Java for the implementation of PortEx based on the

popularity ratings and the platform independence of the Java Virtual Machine

(JVM), which is the default runtime environment for Java. So both goals are

met.

At the time of writing, the author was not able to find any actively maintained

Java library for PE file analysis. Libraries like PECOFF4J and jpexe have not

been updated for the last four years or longer. The commercial library Anywhere

PE Viewer has been discontinued. This makes the choice for developing a Java

library even more relevant because there are no alternatives for Java developers.

Figure 4.1: TIOBE Index 2002–2014

1http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html (last ac-
cess Thursday 23rd October, 2014)

2https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-
Programming-Language (last access Thursday 23rd October, 2014)

http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language
https://sites.google.com/site/pydatalog/pypl/PyPL-PopularitY-of-Programming-Language
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PortEx uses Scala in addition to Java. Scala is a functional-imperative hybrid.

It compiles to Java bytecode and was designed for seamless interoperability with

Java3. Scala simplifies programming of tasks in PortEx that are better suited to

be solved by functional programming. PortEx users need at least Java 1.7.

4.2.2 Build Tools and Code Quality Checks

During development, PortEx and its HTML documentation are build with Simple

Build Tool (SBT)4, which is a build tool for Scala projects.

Maven is a project management software and build tool for Java projects. Since

the target programming language is Java, as defined in the previous section,

PortEx provides support for Maven5 (see ‘README.md ’6). This includes the

possibility to integrate PortEx into Maven projects as well as the option to build

PortEx itself with Maven instead of SBT.

Metrics, static codestyle and bug analysis, precondition checks, and unit testing

ensure the quality of PortEx ’ code. Findbugs7 performs static code analysis for

bad practices and actual bugs in the code. It analyses Java bytecode of any

version from 1.0 to 1.8. The Eclipse Checkstyle8 plugin is a static analysis tool

that checks the code for compliance with a self-set coding standard. PortEx has

TestNG unit tests for all public classes and methods. The EclEmma9 plugin for

Eclipse checks the code coverage.

4.3 API Design

The API design influences two goals of PortEx (see Target Audience and Re-

quirements, section 4.1):

• ease of use

• backward compatibility of future versions

A good API design is hereby defined as a design that meets the two aforementioned

goals. Bloch, who designed features of the Java language, defines principles for

good API design (see [Blo09]).

This section gives an overview on the main structure of PortEx . It lays the

foundation of understanding the details about PortEx ’ API design decisions. The

3http://www.scala-lang.org/ (last access Wednesday 12th November, 2014)
4http://www.scala-sbt.org/ (last access Wednesday 12th November, 2014)
5https://maven.apache.org/ (last access Wednesday 12th November, 2014)
6https://github.com/katjahahn/PortEx (last access Wednesday 12th November, 2014)
7http://findbugs.sourceforge.net/ (last access Wednesday 12th November, 2014)
8http://eclipse-cs.sourceforge.net/ (last access Wednesday 12th November, 2014)
9http://eclemma.org/ (last access Wednesday 12th November, 2014)

http://www.scala-lang.org/
http://www.scala-sbt.org/
https://maven.apache.org/
https://github.com/katjahahn/PortEx
http://findbugs.sourceforge.net/
http://eclipse-cs.sourceforge.net/
http://eclemma.org/
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Figure 4.2: Main structure of PortEx and dependencies of the modules

section continues with explanations about Bloch’s API design principles, how

PortEx employs them, and how the design principles are checked—if checking is

possible.

4.3.1 Main Structure

PortEx consists of two main parts: The first is the PE format parser; the second

is the tools package, whose parts build upon the parser. Figure 4.2 illustrates

the two parts and their main modules.

PE Format Parser

The PE format parser is responsible for parsing the contents of a PE file and pro-

viding the extracted header and section data to the API user in programmatical

form.

The PE format parser has two loader classes: the PELoader for the header

data—i. e. MSDOS Header, COFF File Header, Optional Header, and Section

Table—, and the SectionLoader for the sections and special sections. The

header data is loaded at once because its size is small enough (large sizes due to

malformations are cut down). The sections, however, may be several gigabytes

in size, thus, they are only loaded on behalf of the library user.

The PELoader collects all header data in a PEData object and returns it to

the library user. This data object is the basis for loading sections and special

sections with the SectionLoader. Special sections are, e. g., Import Section,

Export Section, and Resource Section.

Example 8 The following sample codes show how a user loads the header data

and sections with PortEx. They are basic steps to get any parsed information

about a PE file.

1 File file = new File("WinRar.exe");
2 PEData headerData = PELoader.loadPE(file);
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The header data is necessary to load the sections.

1 SectionLoader loader = new SectionLoader(headerData);
2 //load import section
3 ImportSection idata = loader.loadImportSection();
4 //load general purpose section by section number
5 final int sectionNumber = 1;
6 PESection section = loader.loadSection(sectionNumber);

Some special sections provide their collected data in two different abstraction

levels. These are the Import Section, Export Section, and Resource Section. The

lower abstraction level offers access to the underlying data structures, e. g., the

addresses of each element in the structure. The higher abstraction level allows

the user to get special section information, e. g., imported symbols from the

Import Section, without knowledge of the underlying data structure.

Example 9 This example demonstrates the two abstraction levels for the Re-

source Section. The Resource Section is build up as a tree. Each path from

the root node to a leaf represents one resource (see section 3.3). PortEx allows

the user to retrieve a list of Resource objects. PortEx traverses the tree and

collects the information in these objects. This information includes language,

name, and type ID, and the location of the actual resource bytes.

1 // load the Resource Section
2 ResourceSection rsrc = new SectionLoader(headerData).loadResourceSection();
3 // retrieve a list of Resource objects
4 List<Resource> resources = rsrc.getResources();
5 // print resource information
6 for (Resource resource : resources) {
7 System.out.println(resource.getInfo());
8 }

A typical output of the previous code is in the following listing. It shows the start

address of the resource bytes, language ID, name ID, and the type ID.

1 address: 0x1f4a0, size: 0x2dc, language -> ID: 1033, name -> ID: 1, type -> ID:
RT_VERSION

2 address: 0x1f77c, size: 0x15a, language -> ID: 1033, name -> ID: 1, type -> ID:
RT_MANIFEST

On the lower abstraction level more detailed information about the resource tree

is accessible by retrieving a resource tree object.

1 // get the root of the resource tree
2 ResourceDirectory tree = rsrc.getResourceTree();
3 // access the header information, in this example MAJOR_VERSION
4 ResourceDirectory tree = rsrc.getResourceTree();
5 Map<ResourceDirectoryKey, StandardField> header = tree.getHeader();
6 long majorVersion = header.get(ResourceDirectoryKey.MAJOR_VERSION).getValue();
7 // get a list of directory entries
8 List<ResourceDirectoryEntry> entries = tree.getEntries();

A more detailed illustration of the architecture of the PE format parser is in

figure 4.3.
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Figure 4.3: Structure of PortEx’ PE format parser

Tools Package

The tools package is the second part of PortEx . It contains various tools that

are useful for malware analysis. These tools rely on the PE format parser to

perform their tasks.

The purpose of the tools is extraction of strings, signature scanning, anomaly

detection, overlay detection, entropy calculation, hash value calculation of files

and sections, PE visualisation, and report creation. Some of these tools are

dependend on other tools:

• the AnomalyScanner uses overlay detection to determine overlay-related

anomalies

• the ReportCreator collects section entropies, hashes, anomalies, overlay

information, and string scanning results to return formatted reports about

a file

• the PEVisualizer uses entropy calculation, and overlay detection to

visualise PE files

The ReportCreator and PEVisualizer operate as information collectors

and presenters. The library user does not need to know about these dependencies

because they do not affect the usage of the tools. All tools are presented in detail

in section Features starting from subsection 4.4.2.

4.3.2 General Design Principles

General design principles are not specific to classes or methods.
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Figure 4.4: PE parser interfaces of PortEx

As Small as Possible

Once a library is in use, elements of its API cannot be removed any more without

breaking backwards compatibility. Therefore, any class, method, or parameter

should only become part of the public API if necessary. PortEx uses the @Beta
annotation to denote public methods or classes that are subject to change.

Bloch states that ‘the conceptual weight [is] more important than bulk’ [Blo09,

slide 14]. In his talk he explains that the conceptual weight is the number of

concepts a person has to learn in order to use the API; and the bulk is the

number of methods, classes, and parameters (see [Blo09, slide 14]).

According to Bloch, the most important way to minimise the number of concepts

is re-use of interfaces (see [Blo09, slide 14]). That way the user only has to learn

how to interact with the interface instead of learning how to interact with every

implementation of that interface.

Widely implemented interfaces of the PortEx API are illustrated in figure 4.4.

Every structure of a PE file is a PEModule, and can return a description and

an offset. Such structures are sections, special sections, headers, and tables.

The Header interface covers all headers of a PE File, including PE Headers

and Headers in special sections. Each header consists of HeaderKey and

StandardField pairs. Characteristics are part of several headers, e. g.,

the SectionCharacteristics are defined by flags in each SectionHeader.

These five interfaces in figure 4.4 are implemented by 32 classes and provide

access to all header data and file offsets.
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Minimise Accessibility

Classes and their members have to be ‘as private as possible’ [Blo09, slide 16].

This adheres to the principle of information hiding. It protects parts of the

program from modification and exposes only the classes and members that are

important for the API user. It also minimises coupling, which makes modules

independly understandable, buildable, and testable (see [Blo09, slide 16]). PortEx

has 484 private members and 373 public members in version 1.0-beta1.1.

Bloch also states that ‘[p]ublic classes should have no public fields (with the

exception of constants)’ [Blo09, slide 16]. This requirement is fully met by

PortEx .

Names Matter

Bloch says the names of methods, variables and classes should be consistent, and

self-explanatory. Consistency means that throughout the API the same name

should always mean the same thing and the same thing should always have the

same name.

Example 10 It would be a bad idea according to Bloch to have delete and

remove in the API. If delete and remove are different, it is not clear what the

difference is; if both refer to the same, only one name should be used to avoid

confusion (see [Blo09, slide 17])

Self-explanatory code avoids abbreviations and should ‘read like prose’ [Blo09,

slide 17]. PortEx uses the exact terms that the PE/COFF specification uses. In

addition, the following rules are applied:

• PortEx adheres to the naming conventions defined by Sun Microsystems

[Sun99].

• Every method that returns an Optional starts with ‘maybe’.

• Every subclass of Header ends with ‘Header’.

• Every subclass of SpecialSection ends with ‘Section’.

• The interfaces Header, PEModule, and SpecialSection ensure the

same method names for the same tasks in headers and sections.

• Abbreviations are only used if they are common (e. g. ‘PE’).

• newInstance always indicates a static factory method that creates and

returns a new object every time it is called. getInstance on the other

hand may return the same object on different calls (e. g. singleton pattern).

• The prefix ‘load’ for method names is used if the file on disk has to be read

to perform the action.
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Documentation

The documentation of an API is the user’s resource to install, learn, and use the

API. It includes:

1. information about packages, classes, interfaces, and class members

2. instructions for installation, compilation, building

3. tutorials

4. example codes

5. license information

Without code documentation the user of the API either has to guess the purpose

of a class, method, or parameter; or has to read the implementation. In the

latter case the implementation will become the specification, thus, must not

be changed any more (cf. [Blo09, slide 19]). For this reason it is necessary to

document everything. The code documentation of PortEx is publicly available10.

Installation and build instructions are part of the README.md11 and the

PortEx project page12.

The GitHub Wiki of PortEx13 provides tutorials and usage examples. There is

a general wiki page for the PE File Headers, and there is a wiki page for every

special section and tool.

License information is part of the README.md , of the PortEx project page,

and of the LICENSE14 file in the root folder of the project.

4.3.3 Class Design

The following design principles are related to classes and inheritance.

Minimise Mutability

Immutable objects are simple, thread-safe, and reusable, therefore, should be

preferred over mutable objects (see [Blo09, slide 24]). If there is a reason to

10http://katjahahn.github.io/PortEx/javadocs/ (last access Thursday 23rd October,
2014)

11https://github.com/katjahahn/PortEx/blob/master/README.md
12http://katjahahn.github.io/PortEx/ (last access Thursday 23rd October, 2014)
13https://github.com/katjahahn/PortEx/wiki (last access Thursday 23rd October,

2014)
14https://github.com/katjahahn/PortEx/blob/master/LICENSE (last access Thurs-

day 23rd October, 2014)

http://katjahahn.github.io/PortEx/javadocs/
https://github.com/katjahahn/PortEx/blob/master/README.md
http://katjahahn.github.io/PortEx/
https://github.com/katjahahn/PortEx/wiki
https://github.com/katjahahn/PortEx/blob/master/LICENSE
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use mutable objects, their state-space must be kept small and well-defined (see

[Blo09, slide 24]).

Scala provides and encourages the use of immutable collections and constants.

Mutable Scala collections are only used locally and not passed or returned. As

the target audience are Java programmers, the Scala collections are not used

as return type for the API methods. They are converted into Java collections

instead and returned as such.

Java has no built-in keyword to force immutability. It only has the final
modifier for variables, which makes it impossible to assign a new instance to the

variable. However, the contents of final objects or arrays can still be changed.

PortEx employs the following strategies to minimise mutability in the Java part

of the code:

• PortEx uses immutable collections by Google Guava.

• PortEx only passes or returns copies of mutable collections and objects.

This avoids the problem that the caller might be able to change the state of

the class by modifying the collection or object. This is verified by Findbugs.

• PortEx uses no public fields with the exception of constants. This is verified

by Checkstyle.

Subclasses Only Where it Makes Sense

Every public subclass must have an is-a relationship to its superclass. Public

classes that inherit other classes just for the ease of implementation are prohibited

(see [Blo09, slide 25]).

Example 11 A bad example according to Bloch is ‘Properties extends Hashtable’

(see [Blo09, slide 25]) because semantically it is not the case that every Properties

object is a Hashtable. A good example for subclassing is ‘Set extends Collection’

(see [Blo09, slide 25]).

The public classes in PortEx adhere to this principle. The following subclasses

are part of the public API of PortEx and all of them have an is-a relationship:

• FileFormatException extends IOException

• VirtualLocation, and PhysicalLocation extend Location

• COFFFileHeader, OptionalHeader, MSDOSHeader, and

SectionHeader extend Header

• SpecialSection extends PEModule
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4.3.4 Method Design

Method design refers to design principles that are related to method definitions,

method parameters and semantics.

Reduce Boilerplate Code for the Client

Boilerplate code is code that is found in several places of a program with no or

slight variations. An API can force a user to write boilerplate code if it leaves

actions to the client that the library should actually do. Boilerplate code is

error-prone, hard to read, and annoying (cf. [Blo09, slide 28]).

Basic functions of PortEx are listed in the requirements section. They include

PE file parsing and getting information from the modules of the tools package.

The following examples demonstrate that the basic functions of PortEx are

accessible with two to three lines of code, of which no step is superfluous. More

code samples are in section 4.4.

Example 12 The following code uses the report creator to print all available

information about a PE file to standard output.

1 File file = new File("sample.exe");
2 ReportCreator.newInstance(file).printReport();

The PortEx tools take a file object and call the parser themselves, thus, they

do not force the client to load the header and section data. Every tool has

predefined settings if possible, so they are operable with a minimum of parameters.

One example is the PE visualiser, which has seven settings that affect the

appearance of the image, but can operate after passing the file object as minimum

requirement.

Example 13 The following listing shows the minimum code to create a visuali-

sation of a PE file with PortEx.

1 File file = new File("sample.exe");
2 Visualizer visualizer = new VisualizerBuilder().build();
3 BufferedImage image = visualizer.createImage(file);

Access to all Data Available in String Form

Every information that is available as description string must also be available in

programmatic form (see [Blo09, slide 31]). The API user must not be forced to

parse strings to get information. This is not only cumbersome for the user, the

string format will also become part of the API and cannot be modified without

potentially breaking the clients’ code.

PortEx ensures the programmatic accessibility for all data in string form.

Anomaly instances in PortEx , e. g., have not only a description string, but
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also a type, subtype, and the structure or field they are related to. PortEx users

might decide to put their own description for the anomaly and they are able to

do so without parsing the predefined description string. See also example 14,

which shows the same principle for the imports of a file.

Example 14 The imports of a PE file are be printed with the following code.

1 PEData data = PELoader.loadPE(file);
2 ReportCreator reporter = new ReportCreator(data);
3 System.out.println(reporter.importsReport());

The ReportCreator constructs and returns a string based on the import infor-

mation. This string is printed to standard output. An excerpt of the resulting

output looks like this:

1 ADVAPI32.DLL
2 rva: 90292 (0x160b4), name: RegCloseKey, hint: 0
3 rva: 90296 (0x160b8), name: RegCreateKeyExA, hint: 0
4 rva: 90300 (0x160bc), name: RegOpenKeyExA, hint: 0
5 rva: 90304 (0x160c0), name: RegQueryValueExA, hint: 0
6 rva: 90308 (0x160c4), name: RegSetValueExA, hint: 0

The following code reconstructs the import description string above by accessing

every unit of data programmatically:

1 PEData data = PELoader.loadPE(file);
2 // Loading the import section
3 SectionLoader loader = new SectionLoader(data);
4 ImportSection idata = loader.loadImportSection();
5 // List of imports
6 List<ImportDLL> imports = idata.getImports();
7 for (ImportDLL dll : imports) {
8 System.out.println(dll.getName());
9 for (NameImport nameImport : dll.getNameImports()) {

10 System.out.print("rva: " + nameImport.getRVA());
11 System.out.print(", name: " + nameImport.getName());
12 System.out.println(", hint: " + nameImport.getHint());
13 }
14 for (OrdinalImport ordImport : dll.getOrdinalImports()) {
15 System.out.println("ordinal: " + ordImport.getOrdinal());
16 }
17 System.out.println();
18 }

Avoid Long Parameter Lists

Bloch suggests not to have more than three parameters in a parameter list (see

[Blo09, slide 35]). Otherwise the usage of the API becomes difficult and error-

prone (see [Blo09, slide 35]). If several parameters of the same type are involved

and the API user confounds the arguments, the program will still compile. The

argument transposition will only be noticeable at runtime.

Long parameter lists are avoided by breaking up the method or introducing helper

classes that hold parameters. A prominent example for a helper class in PortEx

is the PEData class, which holds all headers of a PE file. Another example is
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the builder pattern, which prevents long parameter lists in constructors. PortEx

uses the builder pattern for the visualiser (see subsection 4.4.6).

Long parameter lists are not part of the public interface of PortEx . Checkstyle

enforces a maximum of three parameters.

Avoid Return Values That Demand Exceptional Processing

Return values that demand exceptional processing must be avoided. An example

for a problematic return value is the null reference. It has no actual type,

its semantics are not clear, the client is not forced to check for null, which

might result in a NullPointerException, whereas null-checks make the code

cumbersome. Another example for possibly problematic return values are magic

numbers, e. g., a -1 to indicate a missing value.

Example 15 The following code returns the header of the resource tree:

1 header = loader.loadResourceSection().getResourceTree().getHeader();

If any of the methods above returns a null reference, the code will throw a

NullPointerException at runtime. The only way to avoid this from the

client’s perspective is to check for null references as in the following listing.

1 ResourceSection rsrc = loader.loadResourceSection();
2 if(rsrc != null) {
3 ResourceDirectory tree = rsrc.getResourceTree();
4 if(tree != null) {
5 header = tree.getHeader();
6 }
7 }

PortEx avoids null as return value, so this chain of null-checking if-statements

is not necessary. The methods in this example throw exceptions for wrong usage

and return empty objects for missing data.

The following list provides alternatives to exceptional return values:

• Methods with potentially missing return values may use the Optional
class by Java 8 or Google Guava. The client is forced to check for the

missing value, making the code less error-prone. The method’s type already

indicates the possibility of a missing value.

• The method may return an empty object. An empty object is, e. g., an

empty string or an empty list. It may also be a special subclass that

indicates emptyness, e. g., a NullEntry to indicate the last lookup table

entry in the Import Section. Methods of empty objects can still be called

without provoking a NullPointerException.

• Methods can throw an exception if something went wrong. The client’s

code will fail as soon as the error occurs and the client has the chance to

handle the exception where it is appropriate. Subsequent operations that

require the missing value are not performed if an exception is thrown.
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No public method of PortEx returns null. This is verified by FindBugs. PortEx

makes use of exceptions, empty objects, and Google Guava’s Optional if a

return value might be missing (PortEx uses Java 7, thus, Java 8 Optional is

not available). Java assertions check for the absence of returned null values

during development and testing. In version 1.0-beta1.1 there are 77 assertions in

PortEx , 17 public methods return Optional, no methods return null.

4.4 Features

The requirements of PortEx that have not been addressed so far are the ones

related to features of the API:

• PE format parsing

• PE malformation robustness

• PE format anomaly detection

• PE file visualisation

• overlay detection

• entropy calculation

• hash value calculation

• string extraction

• packer detection and identification

• recognition of embedded files

This section describes how these features are implemented, mentions the buildup

of the underlying classes and their usage.

4.4.1 Robust Parsing

The robustness of a PE format parser is measured by the ability to parse

malformed PE files correctly. A file is parsed correctly if the information extracted

by the parser matches the information that the operating system uses upon

execution of the file. That means if there is, e. g., a duplicated PE File Header,

the header information that the Windows loader will use is the correct one.

PortEx is a static analysis tool, thus, it parses the file’s content from disk. Some

malformations are targeted at tools that parse the file from memory, e. g., a

Section Table in overlay will not be present in memory. These malformations

are not taken into account because they do not affect static analysis tools.
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Malformations that possibly distort static parsers are relevant for the robustness

of PortEx .

This section explains how the PE parser of PortEx deals with malformations.

The term näıve parser hereby refers to a PE parser that is vulnerable to all

static-parser-affecting malformations.

Physical Section Range

One important task of a PE format parser is to calculate the actual physical

start and physical size of sections as they are read on disk. These values differ

from the start and the size of sections in memory (i. e. virtual address and virtual

size). The physical size of a section is herewith called readsize.

Several malformations are related to the readsize and physical start of sections and

cause malfunctions in tools with wrong readsize calculation. These malformations

are:

• zero VirtualSize, zero SizeOfRawData

• violation of file alignment constraints for SizeOfRawData,

VirtualSize, or PointerToRawData

• the physical end of the section is outside the file

• non-default FileAlignment used

Listing 4.1 provides an algorithm to calculate the readsize of a section. The

listing is in pseudocode.

Listing 4.1: Calculating the physical size of a section (based on 15)

1 // calculates and returns the readsize of a section
2 method getReadSize():
3 alignedPointerToRawData = rounded down PointerToRawData to multiple of 512
4 alignedVirtualSize = rounded up VirtualSize to multiple of 4 KB
5 alignedSizeOfRawData = rounded up SizeOfRawData to multiple of 4 KB
6 readsize = fileAligned(PointerToRawData + SizeOfRawData)
7 - alignedPointerToRawData
8 readsize = min(readsize, alignedSizeOfRawData)
9 if VirtualSize != 0 then

10 readsize = min(readsize, alignedVirtualSize)
11 // section end outside the file
12 if readsize + alignedPointerToRawData > filesize then
13 readsize = filesize - alignedPointerToRawData
14 // section start outside the file --> nothing is read
15 if alignedPointerToRawData > filesize then
16 readsize = 0
17 return readsize
18
19 //rounds up to multiple of FileAlignment
20 method fileAligned(value):
21 rest = value % FileAlignment
22 result = value
23 if rest != 0 then
24 result = value - rest + FileAlignment
25 return result
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The algorithm displays the corrections that are done by the Windows loader if

certain fields violate alignment restrictions.

The physical start of the section is the aligned PointerToRawData. The value

512 to align the PointerToRawData is hardcoded and independent of the

actual FileAlignment value in the header.

The VirtualSize and SizeOfRawData are rounded up to a multiple of 4

KB, which is the default SectionAlignment value.

If the SizeOfRawData exceeds the VirtualSize, only the VirtualSize is

used to calculate the readsize of the section (see ‘SizeOfRawData’ in [Alb13]).

Simulation of the Loading Process

The location of special sections like the Import Section is defined in the data

directory of the Optional Header (see section 3.3). Each entry of the data

directory consists of a size field and an address field that defines the virtual start

of the special section. The näıve parser reads special sections by loading exactly

the bytes given by the data directory. Special sections, whose data is outside this

range, cause an error or are only partially parsed. An example is the fractionated

data malformation, where connected structures are placed in different sections

(see section 3.5.2). Static PE parsers additionally face the problem that they

have to convert the in-memory addresses and offsets to physical ones. If two

structures are placed in different sections and one structure has a relative offset

to the other structure, the in-memory offset will not necessarily match the one on

disk. As demonstrated in section 3.4, the sections may have different locations

and sizes in memory than they have on disk, and their order might also differ

(shuffled sections). Robust parsing has to take these cases into account.

PortEx ’ solution to this problem is to simulate the behaviour of the Windows

loader while the loader maps the PE file into memory. The object that represents

the memory mapped PE loads the content on request. Thus, it is possible to

map and parse large PE files without causing memory problems. Listing 4.2

provides an algorithm in pseudocode to create the section mappings of a PE file.

A mapping in this code is a pair of one physical address range and one virtual

address range. All mappings of one file make up the memory-mapped PE file.

Listing 4.2: Algorithm to create section mappings for a PE file (in pseudocode)

1 method getSectionMappings():
2 mappings = new List()
3 foreach sectionHeader in sectionTable do
4 if isValidSection(sectionHeader) then
5 readsize = sectionLoader.getReadSize(sectionHeader)
6 // calculate the physical range
7 physStart = sectionHeader.getAlignedPointerToRawData()
8 physEnd = physStart + readsize
9 physRange = new PhysicalRange(physStart, physEnd)

15http://reverseengineering.stackexchange.com/questions/4324/reliable-
algorithm-to-extract-overlay-of-a-pe (last access Thursday 23rd October,
2014)

http://reverseengineering.stackexchange.com/questions/4324/reliable-algorithm-to-extract-overlay-of-a-pe
http://reverseengineering.stackexchange.com/questions/4324/reliable-algorithm-to-extract-overlay-of-a-pe
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10 // calculate the virtual counterparts for the physical range
11 virtStart = sectionHeader.getAlignedVirtualAddress()
12 virtEnd = virtStart + readsize
13 virtRange = new VirtualRange(virtStart, virtEnd)
14 // add mapping to list
15 mappings.add(new Mapping(virtRange, physRange))
16 return mappings

The aligned PointerToRawData is the PointerToRawData value rounded

down to a multiple of 512. The aligned VirtualAddress of a section is the

VirtualAddress value rounded up to a multiple of 4 KB.

Reading a byte from such a memory-mapped PE file requires to find the mapping

that contains byte’s virtual address. The mapping translates the virtual address

to a physical one. The virtual space is initially filled with zeroes, so if there is

no mapping that contains a given virtual address, a zero byte is returned (see

listing 4.3). This provides robustness for malformations that place structures or

fields (partially) outside the range of the file. The näıve parser crashes if it faces

these malformations because it attempts to read after the end of the file.

Listing 4.3: Reading a byte from the simulated memory mapping of a PE file (in

pseudocode)

1 class MemoryMappedPE:
2
3 method getByte(virtualAddress):
4 foreach mapping in mappings do
5 if mapping.virtRange.contains(virtualAddress) then
6 // mapping found, return byte
7 return mapping.getByte(virtualAddress)
8 // there is no mapping
9 // return initial value for virtual space

10 return 0
11
12 class Mapping:
13
14 field virtRange
15 field physRange
16
17 method getByte(virtualAddress):
18 // relative offset from the start of the virtual range
19 relativeOffset = virtualAddress - virtRange.start
20 // absolute file offset to start reading from
21 fileOffset = physRange.start + relativeOffset
22 // read byte from file
23 file.readByte(fileOffset)

Simulating the mapping process of headers and sections provides robustness for

the following malformations:

• fractionated data

• shuffled sections

• shuffled data, e. g., shuffled resource tree nodes

• dual PE File Header; the header is read as it would be read from memory

• virtually overlapping sections
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• virtual fields and structures, e. g., a virtual section table

• truncated fields and structures, i. e. fields or structures that are truncated

by the end of the file

Resource Loop Detection

Figure 4.5: A loop in a resource tree is cut by the PortEx parser

PortEx has a loop detection to avoid problems with loops in the resource tree.

PortEx saves the physical addresses of the nodes that have already been parsed.

If the parser recognises that it is about to parse the same node again, it will

cut the tree at this point (the cut is done internally, the file is not modified).

Figure 4.5 shows were the cut is done in a sample tree.

Dealing With Oversized and Overmuch Structures

The näıve parser reads all bytes of one section, special section, or one resource

at once. Malware authors exploit this, e. g., by setting a very large size value

in a data directory entry, so that the näıve parser runs out of memory. Such

structures are oversized.

Malware authors set large values for the number of structures, e. g., relocations,

to exhaust the näıve parser while it attempts to read all of them. Such structures

are overmuch. Related malformations to oversized and overmuch structures are

listed below.

• too large size given in a data directory entry

• too long strings, e. g., export names

• too large sections, resources, or SizeOfOptionalHeader



74 CHAPTER 4. STATIC ANALYSIS LIBRARY

• too many sections, imports, exports, relocations, or resources

To deal with overmuch structures PortEx has upper limits for the number of

imports, exports, relocations, and resources. The section limit by the PE/COFF

specification is ignored because the loader of Windows Vista and above also

ignores it. PortEx is still able to read the maximum number of sections.

PortEx deals with oversized structures by reading only small chunks of bytes as

they are requested. PortEx ’ objects for, e. g., resources and sections do not save

any bytes, but their address range.

Sizes in the data directory must be ignored, except for the security directory

(see [Alb13]). The NumberOfRvaAndSizes value denotes the number of data

directory entries. It must be rounded down to 16 if it is bigger (see [Alb13]).

The name SizeOfOptionalHeader and its definition in the PE/COFF speci-

fication (see [Mic13, p. 12]) are misleading because the field does not determine

the number of bytes that are necessary to parse the Optional Header. It only

defines the start of the Section Table relative to the start of the Optional

Header. The näıve parser loads all bytes of the Optional Header based on the

SizeOfOptionalHeader, as such, it runs out of memory if the value is too

large. PortEx sets the number of bytes to parse the Optional Header as follows:

1 // MAX_SIZE == 240
2 int size = OptionalHeader.MAX_SIZE;
3 // if offset and size exceed the end of the file, cut size
4 if (size + offset > file.length()) {
5 size = (int) (file.length() - offset);
6 }

The MAX_SIZE is the size in bytes that the Optional Header has for a PE32+

with the maximum of 16 data directory entries.

Dealing With Collapsed and Missing Structures

Collapsed and missing structures include, among others, the following malforma-

tions:

• collapsed MSDOS Header, Optional Header, or Import Table

• no Section Table and no sections

• no data directory entries

Collapsed or missing structures cause the näıve parser to ignore information

because it is unable to parse these structures or classifies them as corrupt. In

case of the collapsed Optional Header the malformation is based on misleading

information about the SizeOfOptionalHeader by the PE/COFF specifica-

tion (see section 3.5.2). The loader for .NET PE files ignores the number of data
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directory entries as given by the NumberOfRvaAndSizes. Thus, the number

must also be ignored by PE parsers.

Missing and collapsed structures also cause problems because there is a gap of

knowledge about the actual behaviour of the loader. The näıve parser sets artifi-

cial limits for parsing PE files based on the PE/COFF specification. The solution

is to ignore the restrictions that are imposed by the PE/COFF specification and

allow structures to be absent or to overlap each other.

4.4.2 Entropy Calculation

Shannon defines the entropy H of a set of probabilities p1, . . . , pn as follows (see

[Sha48, p. 19]):

H = −
∑n

i=1 pi log pi

Billouin explains the meaning of Shannon’s entropy as ‘a measure of the lack

of detailed information [. . . ]. The greater is the information, the smaller will

be the entropy’ [Bri04, p. 193]. That means the entropy of randomly generated,

encrypted, or compressed files is higher than of other files. Since malware packers

use encryption and compression, the entropy of sections or overlay is an indicator

for packer usage and a possible feature for packer heuristics. In an infected file

the entropy also indicates the location of an encrypted virus body.

PortEx calculates the entropy of PE sections using the following algorithm

(representation in pseudocode).

Listing 4.4: Entropy calculation of a byte sequence

1 P = set of probabilities for each byte to occur in the byte stream
2 H = 0.0
3 base = 256
4 foreach p in P do
5 if (p != 0)
6 H = H - p * (log(p) / log(base))
7 return H

PortEx calculates P by counting the occurrences of every byte value in the byte

stream. The relative frequency of the bytes is used as probability estimate.

The base of the logarithm in Shannon’s formula is here the number of possible

values a byte can have, which is 256. This way the resulting entropy H is a

number in the interval I = [0, 1]. Excluding the case (p = 0) is necessary because

(log 0) is undefined.

Some analysis software like VirusTotal use base 2 for the logarithm instead of

base 256. The resulting entropy is in the interval J = [0, 8] instead of I = [0, 1].

Figure 4.6 illustrates the structure and dependencies of PortEx ’ entropy tool.

The ShannonEntropy class calculates the entropy of byte arrays, file entropy,
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Figure 4.6: Entropy tool and dependencies

and section entropies. It uses the parser package to obtain the physical location

of the sections.

Example 16 A typical usage of the tool is shown in the following listing. The

code prints the entropy for every section.

1 PEData data = PELoader.loadPE(file);
2 int nrOfSections = data.getCOFFFileHeader().getNumberOfSections();
3 ShannonEntropy entropy = new ShannonEntropy(data);
4 for(int i = 1; i < nrOfSections; i++) {
5 double sectionEntropy = entropy.forSection(i);
6 System.out.println("Entropy for Section " + i + ": " + sectionEntropy);
7 }

An example output of the code above indicates that the content of the first section

is compressed or encrypted.

1 Entropy for Section 1: 0.8860567048281903
2 Entropy for Section 2: 0.4341001902327080
3 Entropy for Section 3: 0.4696436282541145

4.4.3 Signature Scanning

The signature scanning module of PortEx is used to detect packers, compilers,

and embedded files. Their detection is useful to determine the next steps for

analysing the malware. If a packer was found, the malware analysts needs to

unpack the file. Identification of the packer enables the malware analyst to

use packer-specific unpacking tools if they are available. Knowledge about the

compiler helps to determine suitable decompilers. The malware analyst may also

want to extract embedded files for further analysis.

PortEx scans for signatures that have the PEiD signature format. PEiD16 is

a compiler and packer identifier for Windows. It has a graphical user interface

16http://woodmann.com/BobSoft/Pages/Programs/PEiD (last access Thursday 23rd Oc-
tober, 2014)

http://woodmann.com/BobSoft/Pages/Programs/PEiD
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Figure 4.7: Signature scanning package structure and dependencies

and an external signature database that contains 1832 entries. User-customised

signature databases with more entries are available on the Internet.

A PEiD database entry consists of three parts: the name, the signature, and

the ep-only flag. The signature is saved as a sequence of hexadecimal values and

allows the use of wildcards (see subsection 2.4.1) denoted with a ‘?’ sign. If the ep-

only flag is set, PEiD and PortEx employ entry-point scanning (see section 2.4.2),

otherwise the whole file is searched for the signature. The following listing shows

a sample database entry for a PEiD signature with the name AcidCrypt :

1 [AcidCrypt]
2 signature = BE ?? ?? ?? ?? 02 38 40 4E 75 FA 8B C2 8A 18 32 DF C0 CB
3 ep_only = true

The advantage of using PEiD signatures is the availability of databases on the

Internet and the possibility to reuse the own customised signature database for

PortEx .

The main class of PortEx ’ signature detection package is the SignatureScanner.

The SignatureScanner uses a prefix tree to search for the signatures in a

file. The prefix tree is the SignatureTree in figure 4.7. A byte sequence of

a file is matched against all signatures that are saved in the prefix tree. The

worst case runtime-complexity to lookup one signature in a prefix tree is O(n),

where n is the length of the signature. PortEx returns the matched signatures as

ScanResult, which consists of a Signature and the file offset where it was

found at.

The same signature scanning module is used to search for embedded files and jar-

to-exe wrapper signatures. The author created a customised signature database

for both tasks. The FileTypeScanner uses a customised signature list with

468 different signatures to scan for embedded files in the PE file. It is still

in development and as such marked as beta-feature in PortEx . The author
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reverse-engineered packed files by Launch4j, Jar2Exe, JSmooth, and Exe4J to

extract signatures for the database of Jar2ExeScanner. The database also

has packer independent signatures that indicate embedded JAR files or Java

bytecode files (file extension .class), or calls to java.exe or javaw.exe.

Example 17 A sample output of the jar-to-exe wrapper detection is given in

the next listing. The scanned file was created with the tool Launch4j. PortEx

shows matching signatures and the file offset for an embedded JAR.

1 Signatures found:
2 * Jar manifest (strong indication for embedded jar)
3 * Launch4j signature
4 * PZIP Magic Number (weak indication for embedded zip)
5 * Call to java.exe (strong indication for java wrapper)
6 * Call to javaw.exe (strong indication for java wrapper)
7
8 ZIP/Jar offsets: 0x5c00

The following code was used to create the output:

1 Jar2ExeScanner scanner = new Jar2ExeScanner(file);
2 System.out.println(scanner.createReport());

PortEx can dump the embedded JAR file for further investigation:

1 Jar2ExeScanner scanner = new Jar2ExeScanner(file); ;
2 for(Long address : scanner.getZipAddresses()) {
3 scanner.dumpAt(address, new File("dump.out"));
4 }

4.4.4 Anomaly Detection

Not only malformations are relevant for malware analysis, but any unusual

properties of a file, even if they are permitted by the specification. These

properties set the file apart from others, as such they might be used as part of a

malware signature or as input for heuristic analysis (cf. [SHRS07, slides 32,35]

and see [Szo05, pp. 426–430]). They can also be indicators for malware defence

techniques that are not malformation-related. Because of that, PortEx collects

all kinds of unusual file format properties—so called anomalies.

Definition 37 (PE anomaly) PE anomalies include PE malformations and

any unusual or non-default properties of PE files.

Figure 4.8 illustrates the anomaly package structure of PortEx . There is an

AnomalyScanner realisation for every header and special section that is respon-

sible to find anomalies concerning these structures. The PEAnomalyScanner
implements all of these scanners as Scala traits, it collects their output and acts

as interface for the library user. An Anomaly is composed of a description, key,

type, and subtype. The key defines the structure or field that is affected by the

anomaly. Types and subtypes are explained hereafter.

PortEx differentiates five anomaly types, which are programmatically defined by

the enum AnomalyType:
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Figure 4.8: Anomaly detection package structure

1. Non-default anomalies describe valid properties (according to the PE/-

COFF specification) that do not match the default setting or are unusual

in their nature. Non-default anomalies are no malformations.

2. The deprecated-value malformation is a field malformation that concerns

the usage of out-dated fields or flags.

3. The reserved-value malformation is a field malformation. It relates to fields

and flags, whose usage is prohibited, but might be valid in future versions

of the PE/COFF specification.

4. Wrong-value malformations are field malformations. The concerned fields

or flags are invalid for other reasons than being deprecated or reserved,

e. g., violation of file alignment restrictions.

5. The structural malformation is the last anomaly type. It has been defined

in subsection 3.5.2.

In addition to these five anomaly types, there are 77 subtypes that PortEx uses.

Each subtype specifies a concrete anomaly. An overview of the anomalies that

are recognised by PortEx is in appendix D. A full list of anomaly subtypes and

their corresponding anomaly type can be printed with the following code:

1 for(AnomalySubType subtype : AnomalySubType.values()) {
2 System.out.println(subtype + ": " + subtype.getSuperType());
3 }

Example 18 demonstrates the usage of PortEx ’ anomaly detection tool.

Example 18 An anomaly list can be retrieved by PortEx using the following

code.

1 File file = new File("filepath");
2 PEAnomalyScanner scanner = PEAnomalyScanner.newInstance(file);
3 List<Anomaly> anomalies = scanner.getAnomalies();



80 CHAPTER 4. STATIC ANALYSIS LIBRARY

The following listing shows a sample output:

1 Scanned File: VirusShare_8e28f3f765c013eb9eec29c28189a00d
2 * Optional Header: Size of Headers should be 512, but is 4096
3 * Section Header 1 with name UPX0: POINTER_TO_RAW_DATA must be 0 for sections with

only uninitialised data, but is: 1024
4 * Section Header 1 with name UPX0: SIZE_OF_RAW_DATA is 0
5 * Section name is unusual: UPX0
6 * Section name is unusual: UPX1
7 * Section 1 with name UPX0 (range: 1024--1024) physically overlaps with section

UPX1 with number 2 (range: 1024--223232)
8 * Entry point is in writeable section 2 with name UPX1
9 * Section Header 3 with name .rsrc has unusual characteristics, that should not be

there: Write
10 * Resources are fractionated!

4.4.5 Overlay Detection

The overlay is used to save data and files, e. g., some packers append the target

to the stub, thus, write it to the overlay of the stub. Some compilers and EXE

converters use the overlay to save additional information such as code. An

example is the Jar-to-EXE wrapper Launch4J17. Accurate overlay detection

helps to identify embedded files or other information written to the file, and is

also necessary to detect certain anomalies.

Calculating the correct readsize of a section is crucial to detect overlay (see

listing 4.1). Unless there is a sectionless PE file, the offset to the overlay is

equal to the largest physical endpoint of the sections. The section headers are

ordered by the section’s virtual location (see [Mic13, p. 24]). The virtual order

of sections does not necessarily equal the physical order (see [Alb13]), so the

physical endpoint has to be calculated for every section to determine the largest

one. Sectionless PE files must be in low-alignment mode, thus, do not have any

overlay because the whole file is part of the image (see section 3.5.2). This case

is handled in line 13.

Figure 4.9: Overlay tool structure and dependencies

17http://launch4j.sourceforge.net/ (last access Thursday 23rd October, 2014)

http://launch4j.sourceforge.net/
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Listing 4.5 shows an algorithm in pseudocode to determine the overlay’s offset

and size. Albertini states ‘if a section starts at [unaligned] offset 0, it’s invalid’

[Alb13]. These sections are ignored (line 8). Sections with zero readsize are

never read from disk, so they are also ignored (line 8).

Listing 4.5: Calculating the overlay

1 def getOverlayOffset():
2 offset = 0
3 foreach sectionHeader in sectiontable do
4 sectionStart = sectionHeader.getAlignedPointerToRawData()
5 readsize = sectionHeader.getReadSize()
6 sectionEnd = readsize + sectionStart
7 // ignore invalid and zero-sized sections
8 if readsize == 0 or sectionHeader.getPointerToRawData() == 0 then
9 continue

10 // save largest section end as overlay offset
11 if offset < sectionEnd then
12 offset = sectionEnd
13 if offset == 0 then
14 offset = filesize
15 return offset
16
17
18 def getOverlaySize():
19 return filesize - getOverlayOffset()
20
21 def overlayExists():
22 return getOverlaySize() != 0

The dependencies of the overlay tool are illustrated in figure 4.9. The Overlay
instance uses the Section Table to retrieve the section headers and their physical

start addresses. The section loader calculates the readsize of each section, which

is used to determine the physical end address.

4.4.6 Visualisation of PE files

Figure 4.10: Visualiser package structure and dependencies
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The visualiser of PortEx creates an image that represents the structure of a PE

file. It is customiseable, e. g., by the dimensions of the image and the number of

bytes a square represents. The visualiser is suitable for getting a quick overview

of the currently analysed file

Every object that represents a structure of a PE file in PortEx carries its file

offset and size. Structures that are composed of several smaller structures collect

their physical locations on request. That enables the PE visualiser to draft an

image of the file’s structure.

The visualiser uses the builder pattern. There are six customisation settings and

an additional option to set each color separately. The builder pattern avoids the

need for visualiser constructors that have all parameter combinations. Sample

usage of the builder and the visualiser is in Listing 4.6.

Listing 4.6: PE Visualiser usage example

1 // use the builder to create a visualiser instance
2 Visualizer visualizer = new VisualizerBuilder()
3 .setPixelated(true)
4 .setHeight(800)
5 .setColor(ColorableItem.SECTION_TABLE, Color.BLUE)
6 .build();
7 // create an image that shows the structure of sample.exe
8 File peFile = new File("sample.dll");
9 File outputFile = new File("visualized.png");

10 visualizer.writeImage(peFile, outputFile);

The structure and dependencies of the visualiser package are displayed in fig-

ure 4.10.

In addition to the file’s structure, the visualiser is able to create an image of the

local entropies. Figure 4.11 shows an example output with a representation of

the local entropy on the left side and the PE file structure on the right side for a

W32.Sality infected file18.

Figure 4.11: PE visualiser, example output for a PE file infected with W32.Sality;

the left side shows the local entropy, the right side the structure of the file.

W32.Sality is a polymorphic, entry-point obscuring file infector. The encrypted

body of the virus inserts itself into the last section, which is the .gdata section

18malware sample #191b28bb42ad40340e48926f53359ff5
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for the sample file. The virus body appears bright on the entropy image because

the encrypted part has a higher entropy than the rest of the file.

4.4.7 Report Creation

The report creator is a convenience tool to get a formatted textual description

about a PE file. The report creator collects information from the PE parser,

entropy calculator, hash calculator, overlay detector, and anomaly scanner and

returns a report string. Example code for report creation is in the following

listing. A complete example output is in appendix C.

Listing 4.7: ReportCreator usage example

1 // instantiate report creator
2 File file = new File("sample.exe");
3 ReportCreator reporter = ReportCreator.newInstance(file);
4 // print all available information
5 reporter.printReport();
6 // alternatively get a report string for certain contents
7 String coffHeaderReport = reporter.coffHeaderReport();
8 String peidReport = reporter.peidReport();
9 String anomalyReport = reporter.anomalyReport();

The report creator can be used to generate the output of command line tools,

for testing purposes, or to write text file reports to disk.

4.4.8 Hash Calculation

Malware analysts use hashes to identify and search for malware (see section 2.3.1).

PortEx calculates hash values for files, sections, and byte arrays. The Hasher
object takes a MessageDigest, which defines the algorithm to calculate the

hash values. That means all available MessageDigest instances in Java can

be used, including MD5 and SHA-256, but also implementations by the library

user. The following listing shows how to create hash values for files and sections

using PortEx .

Listing 4.8: Hash calculator example

1 // load PE header data
2 Hasher hasher = Hasher.newInstance(new File("sample.exe"));
3
4 // prepare message digest
5 MessageDigest md5 = MessageDigest.getInstance("MD5");
6
7 // create and print MD5 hash for the file
8 byte[] hash = hasher.fileHash(md5);
9 System.out.println("file hash: " + ByteArrayUtil.byteToHex(hash, ""));

10
11 // create and print SHA-256 hash for the first section
12 int sectionNumber = 1;
13 hash = hasher.sectionHash(sectionNumber, md5);
14 System.out.println("section hash: " + ByteArrayUtil.byteToHex(hash, ""))
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4.4.9 String Extraction

String extraction can reveal information like email addresses, passwords, file

names, embedded code, dialog strings, and process names. PortEx has a class

called StringExtractor that extracts ASCII and Unicode strings from files.

A code example is in the following listing.

Listing 4.9: String extractor example

1 int minLength = 4;
2 List<String> strings = StringExtractor.readStrings(file, minLength);

An excerpt of the output for malware #baf3492d31705048e62d6f282a1ede8d

shows an absolute file path that includes the user name of the malware author:

1 C:\Users\Jontes station\Desktop\Hack Stuff\Minecraft Force Op Hack (2013)
2 \Minecraft Force Op Hack (2013)\obj\x86\Debug\Minecraft Force Op Hack (2013).pdb

4.5 Summary

The static PE analysis library PortEx is a platform independent solution for

malware analysts and software developers of reverse-engineering tools. Its buildup

considers the API design principles by Bloch to provide easy usage and backward

compatibility. It supports integration to Maven and SBT projects.

The feature section described usage, structure, and implementation of eight

malware analysis features and provided parsing robustness solutions for at least

30 different PE malformations. It is yet left to evaluate the malformation

robustness of PortEx and how it competes with similar products. This is part of

chapter 5.



Chapter 5

Evaluation

The Evaluation chapter analyses the quality of the library PortEx . Section 5.1

compares PortEx ’ features with the features of three other PE analysis tools

and libraries. Robustness tests for PortEx and the other PE analysis products

are performed in section 5.2. The last section presents statistics about PE

malware, clean PE files, and their anomalies. It suggests boosters and stoppers

for heuristic analysis based on the statistical results.

The following two sections have been removed for the public version. They

compare features and robustness of PortEx and three other libaries. The reasons

for removal are:

• The comparison is already out-of-date, because all of the libraries have

been updated in the meantime.

• I reported the bugs that I found by the robustness tests to the authors, a

lot of them have already been fixed. It would be of no use for anyone to

see a list of old bugs.

• A robustness comparison is not valid if done by one of the authors (me).

Robustness is based on knowledge about malformations. I can only test,

what I know, thus, I am in no position to perform a valid comparison.

• I am biased.

To sum it up: I do not see any use of an outdated and biased comparison. It will

not help anyone to pick the right library, nor will it help the authors, because

they already know everything they have to know.

5.1 Feature Comparison

Removed for public version.
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5.2 Malformation Robustness Tests

Removed for public version.

5.3 Statistics by PortEx

This section presents an analysis of malicious and clean PE files. It provides

general statistical information and determines the suitability of PE anomalies as

heuristic boosters or stoppers.

5.3.1 Test Files

Statistical information is gathered from two categories of test sets: malicious

files and clean files.

Malicious Test Files: the BAD and the WORSE set

The malicious test files are 131 072 files that where uploaded to VirusShare1

on April 2014 as torrent 128. VirusShare is a private malware repository that

grants access to malware researchers via an invitation. The files are of any file

format. The set containing all files from torrent 128 is hereby called WORSE.

The author used PortEx to extract the subset of PE files from the WORSE test

set. The subset has 103 275 samples and is herewith called BAD.

Clean Test Files: the GOOD set

The set of clean test files consists of 49 814 PE samples. The files are taken from

fresh installs of Windows 7 64-bit, Windows XP 64-bit, Windows Vista 64-bit,

and Windows 8 using the tool CleanPECollector2, which is based on PortEx .

The author makes the assumption that a fresh operating system installation only

contains clean files. The set of clean PE test files is herewith called GOOD.

Control Sets: the GOODCS and the BADCS set

The GOOD and the BAD set have a corresponding control set each. The control

sets do not contain any files from GOOD or BAD, they are used to test the

transferability of certain results. The BADCS set is the control set for BAD. It

consists of 111 043 malicious PE files from torrent 131 of VirusShare (uploaded

on May 2014). The GOODCS set is the control set for GOOD. It consists of

1http://virusshare.com/
2https://github.com/katjahahn/CleanPECollector

http://virusshare.com/
https://github.com/katjahahn/CleanPECollector
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12 305 clean PE files, which where collected the same way as the files from the

GOOD set from a Windows XP 32-bit and a Windows 7 32-bit machine.

5.3.2 Booster Score

The statistical data collected from the test sets includes file properties to deter-

mine which of them are suitable for heuristic analysis. The author calculates a

score for each property that represents the applicability as booster or stopper

for heuristic analysis. This score of a file property p is called booster score of

p, short BScore(p). The booster score is in the interval I = [−10, 10], with

10 representing the best suitability of a property as booster and -10 the best

suitability as stopper. A booster score of 0 means the property cannot be used

as booster or stopper because the property is equally frequent in clean and

malicious files. The booster score of property p is defined as follows.

BScore(p) = pbad

pbad+pgood
∗ 20− 10

pbad is the relative frequency of files in the BAD set that have file property p.

pgood is the relative frequency of files in the GOOD set that have file property p.

The following definitions set a threshold for the booster score to define a file

property as suitable booster or suitable stopper.

Definition 38 (suitable booster) A file property p is a suitable booster for

heuristic analysis iff BScore(p) ≥ 5.0.

Definition 39 (suitable stopper) A file property p is a suitable stopper for

heuristic analysis iff BScore(p) ≤ −5.0.

5.3.3 Conditional Probabilities

The author calculates conditional probabilities as a second measure to determine

how well properties can be used as boosters or stoppers. The conditional

probability P(B|C) is defined as follows:

B is the event of a file being in the BAD set. C is the event of a file having

property p. G is the event of a file being in the GOOD set. If a file has property p,

P(B|C) is the probability of this file being malicious and P(G|C) is the probability

of this file being clean. Let G, B and C be events and G be the complementary

event of B. The conditional probability P(B|C) is calcuated by the following

formula (see [SK06, p. 2]):

P (B|C) = P (C|B)P (B)
P (C) = P (C|B)P (B)

P (C|B)P (B)+P (C|G)P (G)
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The probabilities P(B) and P(G) are non-informative priors because the base rate

of malicious and clean files is unknown. The overall test set BAD ∪ GOOD does

not reflect the base rates in reality because the sets were collected independently.

The events B and G are mutually exclusive and collectively exhaustive, so the

priors P(B) and P(G) are set to 0.5 based on the principle of indifference (see

[Key21, pp. 44–70]). That means if there is no information about a file, we define

the events G and B for this file as equally probable. A probability P(B|C) of 0.5

is equivalent to a booster score of 0.0.

5.3.4 Malware File Types

Table 5.1 shows the percentage and number of PE files and non-PE files in the

WORSE set.

Table 5.1: Malware filetypes of the WORSE set

Filetype Absolute Number Percentage

PE 103275 78.79 %

No PE 27797 21.21 %

The statistical data of the filetypes confirms that the majority of malware has the

PE format because 78.79 per cent of the WORSE set are PE files (see Table 5.1).

Table 5.2: PE malware filetypes of the BAD set

Filetype Absolute Number Percentage

PE32 103253 99.98 %

PE32+ 22 0.02 %

Table 5.2 shows the number of PE32 and PE32+ files in the BAD set. The

target platform of PE32+ files is restricted to 64-bit platforms, whereas PE32

files can run on 32 and 64-bit systems. That means a file that uses the PE32+

format is not able to run on as many systems as the same file that uses the PE32

format. Malware authors, who try to infect as many systems as possible, will

also strive for compatibility with most systems. So it comes of no surprise that

malicious PE32+ files are rare.

5.3.5 Anomaly Prevalence

The author collected information about the prevalence of anomalies in the BAD

set and the GOOD set. The booster score and the conditional probability P(B|C)

for each anomaly type are calculated. The results are shown in table 5.3.
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Table 5.3: Anomaly prevalence

GOOD BAD BScore P(B|C)

Percentage of files with at least one anomaly of type

structural 1.90 % 30.88 % 8.84 94.20 %

non-default value 97.08 % 65.22 % -1.96 40.18 %

deprecated value 17.33 % 56.60 % 5.31 76.55 %

reserved value 0.17 % 1.52 % 7.99 89.94 %

wrong value 65.05 % 51.12 % -1.20 44.00 %

Average number of anomalies per file

total anomalies 3.3903 6.1922

total malformations 1.2770 3.0800

structural 0.1226 0.6030

non-default value 2.1133 3.1122

deprecated value 0.3800 1.4662

reserved value 0.0031 0.0172

wrong value 0.7713 0.9936

Structural malformations are indicative for malware. If a file has at least one

structural malformation, there is a probability of 94.20 per cent that the file is

malicious. Usage of reserved values is rare for BAD and GOOD files, but the

percentage of BAD files using them is higher. Deprecated values are also more

prevalent in malware than in clean files. Both deprecated and reserved values are

a possibility to store infection markers, which might explain why these anomalies

are more common in malware than in clean files. Deprecated and reserved values

are suitable boosters with booster scores of 5.31 and 7.99.

There is only one anomaly type that exists in more GOOD files than BAD

files, which is the non-default value anomaly. 97.08 per cent of all GOOD files

have at least one non-default value compared to 65.22 per cent of all BAD files.

However, the non-default value anomaly is still more frequent in BAD if counted

per file: BAD files have on average 3.1122 non-default anomalies, GOOD files

have 2.1133.

Malformations are all anomaly types except for the non-default anomaly. Ta-

ble 5.4 and figure 5.2 show that there is a higher percentage of GOOD files with

at least one malformation (74.92 per cent) than BAD files (64.73 per cent) with

at least one malformation.
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Table 5.4: Percentage of files with at least X malformations

X GOOD BAD BScore P(B|C)

1 74.93 % 64.73 % -0.7303 46.35 %

2 28.48 % 61.57 % 3.6746 68.37 %

3 9.19 % 51.22 % 6.9574 84.87 %

4 3.25 % 34.37 % 8.2722 91.36 %

5 1.59 % 25.54 % 8.8279 94.14 %

6 1.56 % 21.96 % 8.6735 93.37 %

7 1.36 % 15.79 % 8.4140 92.07 %

8 1.18 % 13.78 % 8.4225 92.11 %

9 0.90 % 10.03 % 8.3532 91.77 %

10 0.78 % 1.90 % 4.1791 70.90 %

This result seems counterintuitive as malware writers include malformations

to deceive or break analysis tools. However, we can derive from table 5.4 that

46.45 per cent of all GOOD files have exactly one malformation. BAD files with

malformations have usually more of them than GOOD files, e. g., 51.22 per cent

of all BAD files have more than two malformations, but only 9.19 per cent of all

GOOD files.

The results in table 5.3 support this: BAD files have 3.0800 malformations on

average, GOOD files have 1.2770. The occurrence of more than two malformations

in a file is a suitable booster (see table 5.4).

The author determined for every anomaly subtype the number of files in GOOD

and BAD that have an anomaly of this subtype. Results with less than 500

involved files are ignored. Table 5.5 shows percentages, booster score, and

conditional probabilities for every anomaly subtype. The rows are sorted by the

booster score, so the first and last entries are the most relevant boosters and

stoppers for heuristic analysis. The results are rounded to two decimal figures.

Table 5.5: Prevalence of anomaly subtypes

Anomaly subtype GOOD BAD BScore P(B|C)

Percentage of files with at least one anomaly of subtype

collapsed MS-DOS Header 0.00 % 0.81 % 10.00 100.00 %

SizeOfImage not aligned 0.00 % 2.34 % 9.98 99.91 %

Continued on next page
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Table 5.5 – Continued from previous page

Anomaly GOOD BAD BScore P(B|C)

too large SizeOfRawData 0.01 % 2.04 % 9.90 99.51 %

uninit. data constraints violation 0.14 % 12.91 % 9.79 98.95 %

entry point in last section 0.06 % 5.06 % 9.75 98.75 %

invalid data directory 0.03 % 1.46 % 9.65 98.25 %

reserved data directory 0.03 % 1.31 % 9.49 97.46 %

fractionated data 0.47 % 14.46 % 9.37 96.83 %

SizeOfRawData not aligned 0.09 % 2.62 % 9.32 96.59 %

PtrOfLineNr set (deprectated) 0.13 % 3.67 % 9.30 96.51 %

NrOfLineNr set (deprecated) 0.12 % 2.89 % 9.19 95.93 %

writeable only section 0.52 % 11.38 % 9.13 95.63 %

sections phys. overlapping 1.30 % 26.95 % 9.08 95.38 %

PtrToReloc set (deprecated) 0.06 % 1.09 % 8.98 94.91 %

phys. duplicated section 0.03 % 0.47 % 8.64 93.21 %

entry point in writeable section 3.12 % 26.12 % 7.86 89.32 %

SizeOfRawData zero 5.76 % 46.62 % 7.80 89.01 %

SizeOfHeaders non-default 2.52 % 15.91 % 7.26 86.32 %

SizeOfHeaders not aligned 0.20 % 1.13 % 6.95 84.75 %

writeable and executeable section 6.63 % 26.27 % 5.97 79.85 %

unusual section name 14.23 % 51.07 % 5.64 78.21 %

deprecated file characteristics 17.24 % 55.10 % 5.23 76.17 %

unusual section characteristics 21.11 % 42.72 % 3.39 66.93 %

control symb. in section name 1.57 % 3.15 % 3.35 66.76 %

non-default file alignment 8.37 % 8.10 % -0.16 49.19 %

NrOfSymbols set (deprecated) 1.12 % 0.79 % -1.73 41.33 %

section virtually overlapping 0.69 % 0.38 % -2.89 35.54 %

low-alignment mode 0.84 % 0.45 % -3.00 35.01 %

PtrToSymbTable set (deprecated) 1.73 % 0.91 % -3.14 34.32 %

file alignment too small 0.84 % 0.29 % -4.94 25.31 %

Continued on next page
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Table 5.5 – Continued from previous page

Anomaly GOOD BAD BScore P(B|C)

section virtually duplicated 0.82 % 0.23 % -5.57 22.13 %

non-default ImageBase 93.87 % 7.45 % -8.53 7.35 %

virtual entry point 27.63 % 0.15 % -9.89 0.54 %

too large ImageBase 41.94 % 0.02 % -9.99 0.05 %

Table 5.5 has 22 suitable boosters and four suitable stoppers by definitions 38

and 39. At least five of them are already known as malware indicators.

1. The entry point in the last section is an indicator for a virus infection (see

[Szo05, p. 427]).

2. Sections with zero SizeOfRawData are often a result of packer usage

[DN12, p. 478].

3. A non-aligned SizeOfImage value is described as virus indicator (see

[Szo05, p. 427]).

4. Sections containing virus code are often marked as writeable and executable,

or as writeable only (see [Szo05, p. 427]). This is suspicious because code

sections usually do not need a writeable attribute (see [Szo05, p. 427]).

5. Unusual section names are flagged as suspicious by PEStudio.

The other suitable boosters and stoppers in table 5.5 might provide new properties

for heuristic analysis. Usage of reserved fields, reserved data directory entries,

deprectated fields, or deprecated flags can be an infection marker for viruses or

used as part of a decryption key by packed files or encrypted viruses. Violation

of constraints for unitialized data may occur if the author of a packer or file

infecting virus does not update these values properly. Fractionated data can be

a result of a virus infection (see section 3.5.2). Non-aligned SizeOfRawData
fields might stem from file infecting viruses that enlarge a section or add a section

to copy themselves into it, but fail to align the field properly.

5.3.6 File Scoring Based on Booster Scores

Heuristic analysis is done in two steps as described in subsection 2.4.6. The

first step is data gathering: The file is parsed to find properties, which are

boosters or stoppers. The second step is data analysis, e. g., by assigning weights

to boosters and stoppers and calculating the sum; if the sum is larger than

a certain treshold, the file is labelled as malicious. This section evaluates the
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Figure 5.3: Percentage of files whose file score is greater than or equal to a given

threshold using the unselective scanner

suitability of the booster score as a property’s weight for the data analysis step.

All anomaly-based booster scores of table 5.5 are used.

Let p be the set of all properties pi of file f where 1 ≤ i ≤ |p| and i ∈ N . The

file score of f is calculated by the following formula:

FileScore(p) =
∑|p|

i=1 BScore(pi)

By using file anomalies as properties we determine the file score for all files in

the control sets GOODCS and BADCS. The control sets are used because they

are not the basis for the statistical data about anomaly prevalence. Figure 5.3

shows the percentage of files that have a larger file score than a certain threshold.

The treshold is used to determine heuristically if a file is malicious. The graph

in figure 5.3 shows the percentage of detected files for different thresholds. A

heuristic scanner that has a threshold of 15 detects 51.73 per cent of all malicious

files and has a false positive rate of 0.55 per cent (see table 5.6).

Such a heuristic scanner is not sufficient on its own. For actual antivirus products

it is crucial to have false positive rates that are near zero. These products combine

several methods to achieve these results, including white lists of clean files. Such

optimisations are ignored for the purpose of this test.

Antivirus scanners also need better detection rates than the heuristic scanner

in figure 5.3. This scanner classifies all files into malicious or clean regardless

if enough data was available for the given file. The scanner is unselective. An
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Figure 5.4: Percentage of files whose file score is greater than or equal to a given

threshold using the selective scanner

actual antivirus scanner uses several detection techniques in combination. If a

file cannot be classified by one detection technique, the antivirus scanner will

resort to other techniques. That means it is of interest to filter files that are

suitable for anomaly-based heuristic analysis, and evaluate the detection rate for

the filtered files.

Let C be the set of files that have an absolute file score greater than or equal

to 5.0 and let set U be the complement of set C, i. e. U = C. The heuristic

scanner that accepts only files from set C is herewith called selective scanner.

The heuristic scanner that classifies all files is herewith called unselective scanner.

The detection rates and false positive rates for GOODCS \U and BADCS \U are

illustrated in figure 5.4. The results for the selective and the unselective scanner

are in table 5.6. There is an improvement of the detection rate for the selective

scanner compared to the unselective scanner, e. g., the detection rate based on

threshold 15 increased from 51.63 per cent to 76.26 per cent (see table 5.6).

The costs for the improved detection rate is the percentage of files that cannot

be classified by the selective scanner. The selective scanner rejects 27.29 per cent

of the GOODCS and 32.30 per cent of the BADCS set. The implementation of

more anomaly subtypes and other file properties might decrease the rejection

rate.
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Table 5.6: Percentage of files labelled as malicious based on file scoring thresholds

Treshold GOODCS BADCS GOODCS \U BADCS \U

0 11.06 % 95.66 % 8.81 % 98.47 %

1 8.87 % 67.14 % 8.81 % 98.47 %

2 8.57 % 67.07 % 8.81 % 98.47 %

3 7.42 % 66.84 % 8.81 % 98.47 %

4 7.05 % 66.71 % 8.81 % 98.47 %

5 6.36 % 66.66 % 8.81 % 98.47 %

6 5.05 % 61.91 % 6.95 % 91.45 %

7 4.69 % 61.65 % 6.49 % 91.08 %

8 4.50 % 60.95 % 6.25 % 90.04 %

9 1.02 % 60.29 % 1.42 % 89.06 %

10 0.92 % 60.10 % 1.27 % 88.78 %

11 0.83 % 59.46 % 1.13 % 87.83 %

12 0.67 % 59.28 % 0.91 % 87.57 %

13 0.63 % 56.85 % 0.85 % 83.98 %

14 0.57 % 52.04 % 0.79 % 76.87 %

15 0.55 % 51.63 % 0.76 % 76.26 %

16 0.51 % 49.93 % 0.69 % 73.76 %

17 0.42 % 49.01 % 0.58 % 72.40 %

18 0.41 % 48.60 % 0.57 % 71.79 %

19 0.36 % 43.20 % 0.48 % 63.82 %

20 0.36 % 43.04 % 0.48 % 63.57 %

21 0.35 % 42.79 % 0.47 % 63.22 %

22 0.34 % 42.37 % 0.45 % 62.59 %

23 0.25 % 36.81 % 0.30 % 54.38 %

24 0.24 % 36.64 % 0.30 % 54.12 %

25 0.24 % 36.30 % 0.30 % 53.62 %

26 0.24 % 35.95 % 0.30 % 53.11 %

Continued on next page
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Table 5.6 – Continued from previous page

Treshold GOODCS BADCS GOODCS \U BADCS \U

27 0.24 % 35.41 % 0.30 % 52.31 %

28 0.24 % 35.29 % 0.30 % 52.12 %

29 0.24 % 34.85 % 0.30 % 51.49 %

30 0.24 % 34.00 % 0.30 % 50.23 %

31 0.24 % 33.90 % 0.30 % 50.08 %

32 0.15 % 26.87 % 0.17 % 39.68 %

33 0.15 % 26.12 % 0.17 % 38.59 %

34 0.15 % 25.82 % 0.17 % 38.14 %

35 0.15 % 25.59 % 0.17 % 37.80 %

The implementation of the heuristic scanners in this test is simple. It does not

have any optimisations, e. g. the booster scores of all anomaly subtypes in a file

are summed up regardless if some anomaly subtypes are just special cases of

others (e. g., a duplicated section is a special case of an overlapping section). The

purpose of this test is to show the booster score as an appropriate measurement

for the usefulness of file properties in heuristic analysis. The test is successful in

this regard, and no optimisations of the scanners are required to achieve this.

The test uses the control file sets, that means the booster score is applicable to

other file sets than GOOD and BAD.

The file scoring module of PortEx does not have a threshold for detection. The

module is meant as indicator of a file’s maliciousness, but not for malware

detection.

5.3.7 Entropy Statistics

From each test set, BAD and GOOD, 10 000 test files are used to collect statistics

about the section entropies. The entire test sets are too large to read all file

entropies in a reasonable time. The files are chosen arbitrarily. Table 5.7 shows

the results.

Section entropies above 0.75 is an indicator for encryption or compression, which

is, among others, applied by viruses and packers. Entropies below 0.25 indicate

repetitive values and presence of code caves. The results in table 5.7 confirm

that the existence of at least one section with a very high entropy is a suitable

booster. BAD files have on average approximately one more section with a high

entropy than GOOD files, whereas GOOD files have approximately one more

section with neutral entropy. Based on the booster score and the conditional
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Table 5.7: Section entropy statistics

Entropy GOOD BAD BScore P(B|C)

Percentage of files with at least one section with specified entropy H

H > 0.90 (very high) 2.31 % 47.21 % 9.0670 95.34 %

H > 0.75 (high) 45.74 % 94.60 % 3.4815 67.41 %

0.25 ≤ H ≤ 0.75 (neutral) 98.61 % 88.14 % -0.5378 47.20 %

H < 0.25 (low) 56.07 % 55.21 % -0.7728 49.61 %

H < 0.10 (very low) 39.19 % 52.50 % 1.4516 57.26 %

Average number of sections per file with specified entropy H

H > 0.90 (very high) 0.0238 0.5998

H > 0.75 (high) 0.6194 1.6288

0.25 ≤ H ≤ 0.75 (neutral) 3.0998 2.1871

H < 0.25 (low) 1.0066 1.0352

H < 0.10 (very low) 0.5933 1.0520

probability it is adviceable to use a section entropy greater than 0.9 as heuristic

booster.

5.3.8 Summary

The collected statistical information confirms the high relevance of PE malware

analysis because 79 per cent of the WORSE set have the PE format. Malicious

PE32+ files are rare, they make up only 0.02 per cent of the BAD set. Malfor-

mation statistics show that malicious files have on average more malformations

than clean files; but more GOOD than BAD files have at least one malformation.

The latter is surprising and needs further investigation to find the reasons.

The booster scores for anomalies depend on the statistical information of the sets

BAD and GOOD, but were successfully used as weights for heuristic analysis for

the control sets. That means the statistical results are applicable for other file

sets and the booster score is a useful measure for file properties. Conditional

probabilites are an alternative measure.

Although malformations impose problems for PE parsers, they are advantageous

for heuristic analysis. The number of malformations, their type, and their

subtype can be suitable properties.
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Conclusion

This master thesis is set out to find and implement solutions for PE format-

related malware defence. Malformations affect tools that parse the PE format,

making it possible for malware to evade detection by antivirus scanners and to

prolong its analysis. That offers the malware more time to spread and harm.

The following section addresses the findings of the present thesis. Implications

are stated in section 6.2. Section 6.3 lists the limitations imposed by the scope

of the present thesis and regarding the methodology of robustness tests and

statistical evaluation. Future plans for the PE library PortEx and prospects for

software developers and malware researchers are covered in section 6.4.

6.1 Findings

The PE/COFF specification is a misleading document that does not state

corner cases, presents fields as mandatory, which are never used by the loader,

uses confusing names, and contains descriptions that do not match the actual

purpose of certain structures or fields. Proper parsing of the PE format is not

possible based on the PE/COFF specification alone. It requires knowledge about

malformations, knowledge about the behaviour of the Windows loader for all

available Windows versions, and access to malformed files for testing.

The static analysis library PortEx is a product of the present thesis. It is proven

to be robust against known PE malformations. PortEx is hardened against 269

malformed proof-of-concept files by Ange Albertini and a malware collection of

103 275 files from VirusShare.

The hardening process reveals common problems that occur when malformed

files are parsed, and a malformation that is not listed by Ange Albertini [Alb13]

nor Pericin and Vuksan [Rev11]: fractionated data. Test files that contain this

malformation are listed in appendix B. The present thesis describes robustness
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solutions for static parsers for these cases. The library PortEx serves as example

implementation and basis to build robust PE analysis tools.

The comparison of PortEx with three other PE analysis products shows that

PortEx is equally feature-rich and can keep up with the available software.

Robustness tests reveal problems in three popular PE analysis libraries and tools.

All of them are vulnerable to PE malformations. The issues have been reported

to the respective authors.

Statistical data extracted by PortEx reveals the most common PE anomalies in

malicious and clean PE files. Their usefulness for heuristic analysis is estimated

by conditional probabilities and a self-created booster score. 26 anomalies and

five additional properties have been identified as suitable heuristic boosters and

stoppers this way. Additional tests demonstrate the booster score as a useful

weight for heuristic analysis.

6.2 Implications

The present thesis introduces a new classification for PE malformations and

anomalies, and proposes a distinction for both terms that sees PE malformations

as a subset of PE anomalies. Vuksan’s and Pericin’s definition for the term

malformation only accepts deliberate PE file modifications. The present thesis

expands this definition to include also accidental modifications because their

effect on PE parsers is the same and the intention might be unknown.

PortEx is at present (November 2014) the only up-to-date Java based PE library

known to the author. It serves as a robust and platform independent back-end for

PE analysis tools, but hopefully also as a role model and sample implementation

for other authors of static PE parsers.

The list of test files in appendix B supplements the proof-of-concept files by Ange

Albertini with more malformed samples from VirusShare. Software developers

are free to use these additional samples to harden their PE parsers.

The anomaly detection module of PortEx serves malware analysts as an additional

detection tool for malformation-related problems during analysis. PEStudio

already covers a wide range of anomalies, but they are different from the anomalies

detected by PortEx .

Statistical results about anomaly prevalence in malicious and clean files enrich

the antivirus community with PE format-based patterns for heuristic analysis.

The present thesis proposes an additional measure for the usefulness of file

properties for heuristic analysis.
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6.3 Limitations

The present thesis focalises on basic static analysis. Any anomalies or algorithms

that are instruction-based or require the file to be executed are left out.

The GOOD set that is used to extract statistical information about clean files

only contains files that are pre-installed on Windows operating systems. The

extraction of files from fresh Windows installations makes it likely that the

files are not malicious. But the GOOD set does not contain any files that are

downloaded by the user after the operating system installation. The statistical

findings might differ if files other than those provided by Microsoft are included

in the test set.

The robustness tests for PE parsers in section 5.2 are biased because they are

only based on malformations known to the author. This problem cannot be

avoided unless a third party performs such tests.

6.4 Prospects

It is planned to extend PortEx with more parser features: thread local storage

(TLS) parsing, certificate parsing, and load config parsing. The number of

detectable anomalies shall be increased in future versions. An option to edit PE

files may enable users to remove malformations with PortEx so they will not

affect other analysis tools.s

Malware analysis tools often have their own PE parsers implemented. Since

PE malformations can cause crashes, buffer overflows, and other problems, and

because malformation robustness is difficult to achieve (see section 3.6), it is

adviceable to use PE libraries that have been hardened against PE malformations.

The robustness tests in section 5.2 reveal pefile and PortEx to be robust for all

or most tested malformations.

The author suggests to put further research into anomalies of other file formats

which are commonly used by malware, e. g., PDF. As the present thesis focalises

on static PE parsing, solutions for dynamic PE parsing robustness have yet to

be found.

Further statistical analysis may include section names, certain strings in the file,

overlay prevalence and size, the entropy of headers and overlay, prevalence of

caves, import names, frequent anomaly or import combinations, section sizes,

physical or virtual gaps between sections.

Antivirus companies have repositories of clean files, which they use to evaluate

the quality of their detection software and to ensure that the false positive rate

is near zero. These repositories contain more than the pre-installed files from

the operating system. It is suggested to repeat statistical analysis of anomalies

with these test sets and adjust the booster scores accordingly.
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6.5 Summary

The PE format is complex and robust PE parsing must consider the behaviour

of all 32- and 64-bit Windows operating systems. It is unpredictable how many

malformations are still unknown, which malformations will be possible with

new Windows releases, and how they will affect analysis and antivirus software.

Research in finding and documenting malformations must proceed as long as PE

files are used. The present thesis contributes by raising awareness on possible

consequences, describing solutions for robust parsing, providing a free and robust

analysis library for public use, and turning anomalies from a disadvantage into an

advantage for malware detection by using them as heuristic boosters or stoppers.
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Appendix A

Anomaly Detection Test

Files and Results

These are the test files used for anomaly tests in ??.

Test Files for Anomaly Tests

Name Testfile

TinyPE tiny.import.133/tiny.exe [Sot]

Corkamix corkami/corkamix.exe [Alb13]

max secW7.exe corkami/max secW7.exe [Alb13]

imagebase null.exe corkami/imagebase null.exe [Alb13]

Win32.Sality #c0405fc5e28278bfeb23610fd8e3e671

Trojan.Spy.Zeus #b448b67aef297c16af6964d14950d61e

W32.Simile #ed1d33ce9ed4be9a8c2f8077b95b9c30

W32.IrcBot #86be9017e24a8fa3a21bf8f5a073afde

W32.Hybris.Worm #f37aba2360cb62551ceb7bad098b83a1

W32.FavilageJ #8da90f9255f575036ece38d90cac4e6a
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Table A.1: Anomaly detection comparison

Testfile PortEx pefile PEStudio pev

Number of detected anomalies

TinyPE 15 1 25 error

Corkamix 10 3 14 0

max secW7.exe 204 0 29 3

imagebase null.exe 13 0 15 7

W32.Sality 12 3 19 6

Zeus Trojan 5 1 16 4

Simile 6 0 19 2

W32.IrcBot 16 2 10 error
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Test Files for Robustness

Comparison

These are the test files used for the robustness comparison in section 5.2. Filename

and reference are given for clean files. Malicous test files are from VirusShare1

and defined by their hash value.

Test Files for Robustness Tests

Malformation Testfile

No data directory tiny.168/tiny.exe [Sot]

Collapsed Optional Header tiny.128/tiny.exe [Sot]

196 sections corkami/max secW7.exe [Alb13]

65535 sections corkami/65535sects.exe [Alb13]

Virtual Section Table corkami/virtsectblXP.exe [Alb13]

Fractionated imports #05e261d74d06dd8d35583614def3f22e

Collapsed IAT tiny.import.133/tiny.exe [Sot]

Virtual first import descriptor corkami/imports virtdesc.exe [Alb13]

Resource loop corkami/resource loop.exe [Alb13]

Resources shuffled corkami/resource shuffled.exe [Alb13]

Fractionated resources #7dfcbb865a4a5637efd97a2d021eb4b3

Nothing DLL corkami/nothing.dll [Alb13]

Continued on next page
1http://virusshare.com/

http://virusshare.com/
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Table B.1 – Continued from previous page

Malformation Testfile

Exports shuffled corkami/exports order.exe [Alb13]

Virtual relocations corkami/virtrelocXP.exe [Alb13]

Sectionless PE corkami/sectionless.exe [Alb13]

All sections invalid #d4a3a413257e49d81962e3d7ec0944eb
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Report Example

Listing C.1: Text report by PortEx

1 Report For whole_pe_section.exe
2 *******************************
3
4 file size 0x2000
5 full path /home/deque/portextestfiles/unusualfiles/corkami/whole_pe_section.exe
6
7
8 MSDOS Header
9 ************

10
11 description value file offset
12 ---------------------------------------------------------------------
13 signature word 0x5a4d 0x0
14 last page size 0x90 0x2
15 file pages 0x3 0x4
16 relocation items 0x0 0x6
17 header paragraphs 0x4 0x8
18 minimum number of paragraphs allocated 0x0 0xa
19 maximum number of paragraphs allocated 0xffff 0xc
20 initial SS value 0x0 0xe
21 initial SP value 0xb8 0x10
22 complemented checksum 0x0 0x12
23 initial IP value 0x0 0x14
24 pre-relocated initial CS value 0x0 0x16
25 relocation table offset 0x40 0x18
26 overlay number 0x0 0x1a
27 Reserved word 0x1c 0x0 0x1c
28 Reserved word 0x1e 0x0 0x1e
29 Reserved word 0x20 0x0 0x20
30 Reserved word 0x22 0x0 0x22
31 OEM identifier 0x0 0x24
32 OEM information 0x0 0x26
33 Reserved word 0x28 0x0 0x28
34 Reserved word 0x2a 0x0 0x2a
35 Reserved word 0x2c 0x0 0x2c
36 Reserved word 0x2f 0x0 0x2e
37 Reserved word 0x30 0x0 0x30
38 Reserved word 0x32 0x0 0x32
39 Reserved word 0x34 0x0 0x34
40 Reserved word 0x36 0x0 0x36
41 Reserved word 0x38 0x0 0x38
42 Reserved word 0x3a 0x0 0x3a
43 PE signature offset 0x80 0x3c
44
45
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46 COFF File Header
47 ****************
48
49 time date stamp Jan 1, 1970 1:00:00 AM
50 machine type Intel 386 or later processors and compatible processors
51 characteristics * Image only, Windows CE, and Windows NT and later.
52 * Machine is based on a 32-bit-word architecture.
53 * Image only.
54 * COFF line numbers have been removed. DEPRECATED
55 * COFF symbol table entries for local symbols have been removed.

DEPRECATED
56
57 description value file offset
58 -------------------------------------------------------------------
59 machine type 0x14c 0x84
60 number of sections 0x2 0x86
61 time date stamp 0x0 0x88
62 pointer to symbol table (deprecated) 0x0 0x8c
63 number of symbols (deprecated) 0x0 0x90
64 size of optional header 0xe0 0x94
65 characteristics 0x10f 0x96
66
67
68 Optional Header
69 ***************
70
71 standard field value file offset
72 -----------------------------------------------------------------------
73 magic number 0x10b 0x98
74 major linker version 0x0 0x9a
75 minor linker version 0x0 0x9b
76 size of code 0x3b 0x9c
77 size of initialized data 0x3ff04e 0xa0
78 size of unitialized data 0x0 0xa4
79 address of entry point 0x1000 0xa8
80 address of base of code 0x1000 0xac
81 address of base of data 0x2000 0xb0
82
83 windows field value file offset
84 -----------------------------------------------------------------------
85 image base 0x400000 0xb4
86 section alignment in bytes 0x1000 0xb8
87 file alignment in bytes 0x1000 0xbc
88 major operating system version 0x4 0xc0
89 minor operating system version 0x0 0xc2
90 major image version 0x0 0xc4
91 minor image version 0x0 0xc6
92 major subsystem version 0x4 0xc8
93 minor subsystem version 0x0 0xca
94 win32 version value (reserved) 0x0 0xcc
95 size of image in bytes 0x4000 0xd0
96 size of headers 0x1000 0xd4
97 checksum 0x0 0xd8
98 subsystem 0x2 0xdc
99 dll characteristics 0x0 0xde

100 size of stack reserve 0x100000 0xe0
101 size of stack commit 0x1000 0xe4
102 size of heap reserve 0x100000 0xe8
103 size of heap commit 0x1000 0xec
104 loader flags (reserved) 0x0 0xf0
105 number of rva and sizes 0x10 0xf4
106
107 data directory virtual address size file offset
108 -----------------------------------------------------------------------
109 import table 0x105e 0x80 0x100
110
111
112
113
114
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115 Section Table
116 *************
117 1. .text 2. whole
118 ---------------------------------------------------------
119 Entropy 0.04 0.05
120 Pointer To Raw Data 0x1000 0x1
121 -> aligned (act. start) 0x0
122 Size Of Raw Data 0x1000 0x1fff
123 -> actual read size 0x2000
124 Physical End 0x2000 0x2000
125 Virtual Address 0x1000 0x2000
126 Virtual Size 0x1000 0x2000
127 Pointer To Relocations 0x0 0x0
128 Number Of Relocations 0x0 0x0
129 Pointer To Line Numbers 0x0 0x0
130 Number Of Line Numbers 0x0 0x0
131 Code x x
132 Initialized Data x x
133 Uninitialized Data x
134 Execute x x
135 Write x x
136
137
138 Imports
139 *******
140
141 kernel32.dll
142 rva: 4250 (0x109a), name: ExitProcess, hint: 0
143
144 user32.dll
145 rva: 4258 (0x10a2), name: MessageBoxA, hint: 0
146
147
148 Anomalies
149 *********
150
151 * Deprecated Characteristic in COFF File Header: IMAGE_FILE_LINE_NUMS_STRIPPED
152 * Deprecated Characteristic in COFF File Header: IMAGE_FILE_LOCAL_SYMS_STRIPPED
153 * Optional Header: Default File Alignment is 512, but actual value is 4096
154 * Section Header 2 with name whole: SIZE_OF_RAW_DATA (8191) must be a multiple of

File Alignment (4096)
155 * Section Header 2 with name whole: POINTER_TO_RAW_DATA (1) must be a multiple of

File Alignment (4096)
156 * Section name is unusual: whole
157 * Physically shuffled sections: section 1 has range 4096--8192, section 2 has

range 0--8192
158 * Section 1 with name .text (range: 4096--8192) physically overlaps with section

whole with number 2 (range: 0--8192)
159 * Entry point is in writeable section 1 with name .text
160 * Section Header 1 with name .text has unusual characteristics, that shouldn’t be

there: Initialized Data, Uninitialized Data, Write
161
162
163 Hashes
164 ******
165
166 MD5: e2cd26e0c4296ab7ff11a5c0df4a41a4
167 SHA256: cd124ee7648ac00fdd5f82e015146c79075591cf8d6f810134de77bc5dc3d1c3
168
169 Section Type Hash Value
170 ---------------------------------------------------------------------------------
171 1. .text MD5 94cde06f47a710774c075900e290caf6
172 SHA256
173 8740f0b568752f308d193206c9016c7549c6fccc0fae5c1b3fb3c4445ff6c729
174 2. whole MD5 e2cd26e0c4296ab7ff11a5c0df4a41a4
175 SHA256
176 cd124ee7648ac00fdd5f82e015146c79075591cf8d6f810134de77bc5dc3d1c3
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Appendix D

Anomalies Recognised by

PortEx

Anomalies Recognised by PortEx

Structure Anomalies

MSDOS Stub • collapsed MSDOS Header

COFF File Header • PE File Header in overlay (see page 50)

• SizeOfOptionalHeader: too large, too small, collapsed

Optional Header

• NumberOfSections: too many (see page 46), sectionless

(see page 49)

• deprecated: NumberOfSymbols,

PointerToSymbolTable, file characteristics

• reserved file characteristics

Optional Header • ImageBase: check for too large, zero or non-default, must

be multiple of 64 K

• SizeOfImage: must be multiple of SectionAlignment

• unusual number of data directory entries or no data directory

• reserved or invalid data directory entry

• SizeOfHeaders: min value (see Dual PE File Header,

page 52), exact value, must be multiple of FileAlignment

Continued on next page
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Table D.1 – Continued from previous page

Structure Anomalies

• reserved or deprecated: DLL characteristics,

Win32Version (see page 46), loader flags

• FileAlignment: must be power of two, between 512 and

65 536; check for non-default value

• SectionAlignment: must be greater than

FileAlignment

• low alignment mode (see [Alb13])

• AddressOfEntryPoint: must be greater than or equal

to SizeOfHeaders, must be non-zero in EXE file (see

page 45), virtual entry point detection, entry point in last

section suspicious

Section Table • unusual section names, control characters in section names

• Section Table in overlay (see page 50)

• SizeOfRawData larger than file size permits (see page 44)

• section characteristics: extended reloc, reserved, deprecated,

unusual for purpose of section

• entry point in writeable section

• physically or virtually overlapping, duplicated, and shuffled

sections

• ascending VirtualAddress values of sections

• deprecated fields: PointerOfLineNumbers,

NumberOfLineNumbers

• zero values: VirtualSize, SizeOfRawData, object only

characteristics, PointerToReloc, NumberOfReloc

• uninitialised data constraints

• FileAlignment constraints for: SizeOfRawData,

PointerToRawData
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