Process Dump Analyses

Forensical acquisition and analyses of volatile data

Tobias Klein
tk@trapkit.de

Version 1.0, 2006/07/22.

Process Dump Analyses 2

1 Overview

There is a general lack of techniques and tools today which can be used to assist the acquisition as well
as the analyses of volatile data of a live system. This paper discusses some new techniques and tools that
can be used to acquire and analyse process dumps of Microsoft Windows and Linux operating systems
in a forensical manner. As an example the introduced tools are used to analyse and reconstruct (remote)
code injection attacks that are using anti forensic techniques in order to circumvent classical post-
mortem analyses.

1.1 Advanced (Remote) Code Injection Attacks

To clarify the term “advanced (remote) code injection attack” I will give a short example: A remote
attacker knows about a Memory Corruption Vulnerability (Buffer Overflow, Format String
Vulnerabilities, etc.) within an offered service (e.g. Apache, IIS, etc.). He exploits this vulnerability in
order to inject and execute malicious code in the context of that vulnerable service. The injected code
first ensures that protective measures (such as Firewalls, Reverse Proxies, etc.) are successfully
circumvented using techniques like “connection reusing” and “protocol encapsulation”. Subsequently,
the code offers different possibilities to the attacker for further control of the compromised system. All
these steps are performed in the process memory of the exploited service. There is no interaction with the
filesystem or the harddisk at all (anti forensic technique).

1.2 How does Computer Forensic work today?

If an incident is identified the system is usually switched off. Then the data media (normally the
harddisk) is duplicated and secured for later analyses (computer forensic).

This procedure has several weak points especially if the incident involved a (remote) code injection
attack. The first problem is that it’s very difficult to identify such an attack as an incident. In addition,
even if the incident is identified it cannot be reconstructed by analysing the data media, since all hints
and traces are only contained in the memory of the exploited process.

In the following paragraphs a partial discipline of computer forensic called live analysis will be
described. This technique can be used to identify and analyse advanced attack techniques like (remote)
code injection.

2 Process Dump Analyses

Before we can start with the actual analysis it is necessary to dump the memory of running processes in a
forensical manner. There are some freely available tools which are able to take such a snapshot of a
running process (see [1] and [2]). However, these tools have some disadvantages. On the one hand, the
tools usually write the dumps to the harddisk so the content of the data medium gets corrupted. On the
other hand the process memory gets dumped as a non-coherent data blob, which makes a meaningful
analysis practically impossible. To solve these issues I developed a new tool called Process Dumper (pd)
(see [3)]. Process Dumper doesn’t touch the harddisk at all and can be combined with other tools such as
Netcat [4], in order to transmit the collected data over the network. Beyond that Process Dumper
preserves not only the data of the process memory, but also the associated metadata to support the later
analysis. To analyse the process dumps I’ve developed a second tool called Memory Parser (MMP) (see

[5]).

Process Dump Analyses

2.1 Process Memory Layout

The process memory is usually divided into several different sections or mappings. There are two kinds
of mappings: data and code mappings. Figure 1 shows a meta view of a process memory layout.

Stack
I

l

Shared Librarv (BSS)
Shared Librarv (Data)
Shared Librarv (Code)

I

Heap

Uninitialized Data

Initialized Data (Data)
Code

Figure 1: Process Memory Layout

2.2 Process Dumper

This tool can be used to take a snapshot of the memory of a running process. The tool is currently
available for Linux and Microsoft Windows.

Features of version 1.1:

Dumps the whole process space (all data and code mappings)

Uses meta information to describe the different mappings (needed for advanced analysis)
Saves the process environment and state

Outputs to stdout, so it’s possible to combine it with other tools (netcat etc.)

Doesn't touch the harddisk at all

Usage

C:\>pd
pd, version 1.1 tk 2006, www.trapkit.de

Usage: pd [-v] -p pid

Options:
-v - be verbose

Examples:
pd -p pid > pid.dump
pd -p pid | nc 10.0.0.1 7000

Example

This example shows how to dump the Tsass process on a Windows XP SP2 system.

First it is needed to get the process ID (PID) of 1sass:

Process Dump Analyses

C:\>tasklist /FI "IMAGENAME eq 1sass.exe"

1sass.exe

The output of tasklist shows that the PID of Tsass is 1008. The next command will dump the process

memory of Tsass to the harddisk:

C:\>pd -

p 1008 > Tsass.dump

1008 Console 0 1.368 K

pd, version 1.1 tk 2006, www.trapkit.de

Dump finished.

To transfer the process memory to a remote computer without touching the local harddisk(s) it is

possible to pipe the output of Process Dumper to a tool like netcat.

The following command can be used to transfer the dump to a remote computer:

C:\>pd -p 1008 | nc 192.168.0.100 7000
pd, version 1.1 tk 2006, www.trapkit.de

Dump finished.

The command line option “-v” enables verbose output:

C:\>pd -v -p 1008 > 1sass.dump
pd, version 1.1 tk 2006, www.trapkit.de

Mapping:
Mapping:
Mapping:
Mapping:
Mapping:

[..]

0x00010000-0x00011000 Size:
0x00011000-0x00020000 Size:
0x00020000-0x00021000 Size:
0x00021000-0x00030000 Size:
0x00030000-0x00031000 Size:

2.3 Memory Parser

4096
61440 -> not dumped!
4096
61440 -> not dumped!
4096

The tool Memory Parser (MMP) can be used to analyse the process dumps.

Features of version 0.2:

2.3.1

Parsing of process dumps made with Process Dumper v1.1

Interpreting the meta data of process dumps made with Process Dumper v1.1
Hash checking of the code sections of the mapped executables (DLLs etc.)
Concatenate all data mappings to one reference data mapping

RSA certificate and key finder (see [6])

Flexible configuration via XML

Memory Parser: Overview

To open a process dump press the “Open Process Dump” button (see Figure 2).

L= Memory Parser

File Tools Options Info
Open Process Dump

M appiry
Marme Type

Mapping Statt MappihgEnd Mapping Size Mapped fram

Figure 2: Open a process dump

Process Dump Analyses 5

To parse the process dump press the “Parse Process Dump” button (see Figure 3).

rﬁﬂ Wemory Parser

File Tools ©Options Info

‘ Open Process Dump J[Farze Process Dump]

M appings:
Mame Type tapping Start ping End Mapping Size Mapped from

Figure 3: Parse a process dump

2.3.1.1 The Mappings

After Memory Parser has finished parsing you can find the different mappings listed in the upper list
view (see Figure 4).

[Eﬁ Memory Parser g =) 1

File Tools ©Options Info

[CIeanupWorkspace][Concat D ata mappings][Check Hashes][Key/Cert Finder]

Mappings:

Marne Tupe Mapping Start MappingEnd Mapping Size Mapped from Image Baze Image Size Image Start Image End E:":
mem-052.dmp Data 0x00410000 0<00412000 8192
mem-053.dmp Data 000420000 0«00dc1000 B59456

mem-054.dmp Data Ox00e45000 00050000 24576 S:
mem-055.dmp Data Ox00e8a000 000230000 24576 5
mem-056.dmp Data Ox00eca000 0=00ed0000 24576 5
map-057.dmp Code 0x01000000 0<01007000 4096 CvwIMDOW S haystern32hzass.ene 0x01000000 Ox00006000 0=01000000 O=01008000
map-058.dmp Code 0x01007000 0<07003000 8192 CvwIMDOW S haystern32hzass.ene 0x01000000 Ox00006000 0=01000000 O=01008000
map-059.dmp Code 001003000 0<01004000 4096 CvwIMDOW S haystern32hzass.ene 0x01000000 Ox00006000 0=01000000 O=01008000
map-060.dmp Code 001004000 0x01008000 8192 CvwIMDOW S haystern32hzass.ene 0x01000000 Ox00006000 0=01000000 O=01008000
map-061.dmp Code O:OffdO000 0=0ffd1000 4096 CwIMDOW Shsystern32irsaenh.dl 0s0FFDO000 0x00028000 Ow=0ffd0000 O=0ffF2000
map-062.dmp Code OwOffd1000 O=0fff2000 135168 CwIMDOWShsystern32irsaenh.dl 0«0FFDO000 O0x00028000 Ow=0ffd0000 O=0ffF2000
map-063.dmp Code O=Offf2000 O=0ffr4000 2152 CwIMDOWShsystern32irsaenh.dl 0«0FFDO000 O0x00028000 Ow=0ffd0000 O=0ffF2000
(154 drin [L=2MIEFFANIN [l h ' aeth o [l (MO0 Dl CUEFACIONIT Dl CFEFRONN i
Figure 4: Process dump mappings

The information about every mapping is displayed in the following rows:

Row name Information

Name The name of the mapping. All mappings that contain executable code are
prefixed by the string “map-* while data mappings start with “mem-“. The
individual mappings can be found as separate files in the same directory as the
process dump itself.

Type Data or Code

Mapping Start The start address of the mapping within the virtual address space of the dumped
process.

Mapping End The end address of the mapping within the virtual address space of the dumped
process.

Mapping Size The size of the mapping.

Mapped From If it is a code mapping this row contains the path of the mapped binary image. If
it is a data mapping this row remains empty.

Image Base If it is a code mapping this row contains the start address of the mapped binary
image within the virtual address space of the dumped process. If it is a data
mapping this row remains empty.

Image Size If it is a code mapping this row contains the size of the mapped binary image. If it
is a data mapping this row remains empty.

Image Start If it is a code mapping this row contains the start address of the mapped binary

Process Dump Analyses

image within the virtual address space of the dumped process. If it is a data
mapping this row remains empty.

Image End If it is a code mapping this row contains the end address of the mapped binary
image within the virtual address space of the dumped process. If it is a data
mapping this row remains empty.

Comment This row is used for further descriptions of the mapping.

Table 1: Mapping information

To analyse a specific mapping right-click the appropriate row and choose one of the analyse tools (Hint:
In the default configuration only the notepad utility will show up. See Section 2.3.1.3 Configuration for
an example of how to configure Memory Parser).

kd appings:

M ame Type bapping Start Mapping End Mapping Size Mapped from

mem-051.dmp Data EI:-:EIEI::EEIEIEIEI EI:-:EIEI::E'I Qoo 4096

mem-052.dmp | D A1 : I
mern-053.drip Data Llnpan:k E5945E

mem-054.dmp Data - 24576

mem-055.dmp Data Analyze in IDA S 24576
mer-056.drp - Data Analyze in DA 4 24576
map-057.dmp Code 4096 CAwWAR DWW S vapstem3dhlzazs. exe
map-053.dmp Code Strings 3192 CAWAR DWW S vapstem 32z azs. exe
map-059.dmp Code LE 4096 A IH DD Shapstem 32N s azs. ene
map-060.dmp Code 2192 CAwIHD DWW Shapstem 324z azs. ene
map-061.dmp Code O=0ffd00an O=0ffd1000 4096 AR DWW S vepstem32hrzaent. dil
map-062.dmp Code O=0ffd1000 O=0ffF2000 135168 AR DWW S apstem32hrzaent, dil

Figure 5: Working with mappings

2.3.1.2 Information Tabs

In the lower pane of Memory Parsers main view are several tabs that provide additional information
about the process dump. These tabs will be described in the following.

Process Dump Information (Linux/Windows)

This tab shows general information about the dumped process.

Pracess Dump Infarmation | Mapped Executables | Threads

Infa W alue

Process 1D: 1008

Mame: lsazs. exe

Path: C:WwWINDODW S heystem32\eass exe
Creation Tirme: 021727 UTC 24.06.2006

Femnel Time: 00: 0001512

Jwaner; YORDEFIMIER T “Administrataren
[Debugged: falze

Image Base Address: 007000000

Crndline: CoWWINDODW Sheystem32 sass exe
0S5 Type: Windaws

of mappinags: 339

of mapped executables: a7

Local Dump Path; Chlsass.dump

Figure 6: Process Dump Information (Windows process)

Process Dump Analyses

Frocess Dump Information | Mapped Executables

Environment and Status || Map || Reaisters | File Descriptors

Info Yalue

Process ID: 749

Crondline: Auzrdzbindhttpd -DHAVE_ACCESS -DHAVE_PROY -DHAVE _AUTH_AMOM -DHAVE_ACTIONS -D...
05 Type: Lirwx

of mappings: 96

of mapped executables: 43

Local Durnp Path: C:ADokumente und Einstellungen'tk\DesktophProcessDumpst\Linus\linue_apache_zecke. dump

M arne: httpd

PRI 1

State: 5 [Sleeping)

Figure 7: Process Dump Information (Linux process)

Mapped Executables (Linux/Windows)

This tab shows all the mapped executables of the process.

Frocess Dump Information Threads
M ame Base Address tappings # of Mappings Calculated text section SHA-T Hash ~
[cotwindowshspstem3sass exe 07 000000 57. 58,59, 60 4 480rEE4fAEE0lETIFdIBbT 2641 287 B4RKT
[ehwindows\spstem32ysaenh.di 0«0FFD 0000 B1, B2, E3, B4, ER a3 88f61 a0cf1e00ee3ethefaSchdeF83aEES
[ehwindowshspstern32imsprive.dil Cw20000000 5153 1 Mapping dossn't contain a text section.
[ctwindowshsystern32inetapia2. di 059700000 67, 68,69, 70. 71 5 1b25954bde 71191 fhed50d1 cbP 02657
[ehwindowshapstem32sustheme. di 0=5B0F0000 Va. 73T TR 4 eb?3108e365F31 774245567 2781097 3
[cotwindowshspstem32shimeng.di O=5CFO0000 VE.FV.7R.73 4 b47773bB3abiBEEbEIbalbl 2830F36 3754
[ehwindowshspstem32hcometi22.dI 0«50450000 a0, 81,82, 83,84 5 cB2086Ec29e 30378208 3d054941431
[chvwindowshsystem32shnetcfg.dil O«EE710000 85, 96, 87, 88 4 arebfdc97e3606fed6f1 492002652173
[ctwindowshspstem32dssenh,dl 0£8100000 23, 90,91, 92 4 N I7EebdB8242b38dcedB0c8di 7R
[eMwindowshapppatchtacgenral il O«6F 030000 93.94.95,96.57.93 6 37 c4dfFel32931 coeed ¥ 4ebe 7 3b2bl
[ehwindowshsypstem32smewsock.di 071380000 93,100, 101,102 4 4503tb592ebadbel?ea7 a3 02 3fad3rs
[ehwindowshspster32wshtepip.dil 071 9F0000 103,104, 105, 106 4 eb7c990chbd5 0557980931 348 dbeak
[ctwindowshspstem32yws2help.di 071400000 107,108,109, 110 4 Jedf73e89554 FR00F2 0659503 79555,
[ctwindowshsystern32yes2_32.dl 071410000 1. M2, 113114 4 cedbddbE234d0209bd1 c891115a64 45
[ehwindowshaypstem32impr.di Ox71.480000 15 116,117,118 4 bbel5fa45405591 cal2a3dc380ebIbaT1
[cwindowshspstern3yeamib.dl Ow71B 70000 119, 120,121,122 4 Br2Bebod 300b2f0d821 abbBERaZ 30|+

Figure 8: Mapped Executables

The information of every mapped executable is displayed in the following rows:

Row name Information

Name The path of the mapped executable image.

Base Address The base address of the executable.

Mappings A list of the individual mappings (code, data) of the

executable.

of Mappings

The number of mappings (code, data) of the mapped
executable.

Calculated .text section SHA-1 Hash

If it is a dump of a Windows process, Memory Parser is able to
compute a SHA-1 hash of the .text section of the mapped
executable. This hash is shown in this row. The hash can be
used to identify manipulations of mapped DLLs or to identify
injected DLLs.

DB .text section SHA-1 Hash

If it is a dump of a Windows process and the “Check Hashes”
feature was used, this row contains the SHA-1 hash from the
reference database.

Hash Match If it is a dump of a Windows process and the “Check Hashes”
feature was used, this row shows whether the hashes of the
“Calculated .text section SHA-1 Hash” and the “DB .text
section SHA-1 Hash” rows are matching.

DB Name If it is a dump of a Windows process and the “Check Hashes”

feature was used, this row contains the executable name from
the reference database.

Process Dump Analyses 8

DB Description If it is a dump of a Windows process and the “Check Hashes”
feature was used, this row contains the executable description
from the reference database.

Table 2: Mapped executables information

Threads (Windows)

This tab contains a list of all threads of the dumped process. Furthermore the priority, the status as well
as the register values of each thread are shown.

-

5 Memory Parser E@E

File Tools Options Info

[Eleanuanlkspace] [Concat Data mappings] [Check Hazhes] [F.ey/Cert Fi

tappings:

Hame Type tapping Stat - MappingEnd Mapping Size M. L L L L. Comment i
mem-000.dmp Data 0x00010000 O«00011000 4096

mem-001.dmp Data 0x00020000 0«00021000 4096

mem-002.dmp Data 0x00030000 0«00031000 4096

mem-003.dmp Data Ox0007a000 0«00030000 24576 Stack of Thread (D 1308 [0x0000051¢)
mem-004.dmp Data x00080000 D«00033000 12288

mem-005.dmp Data 0=00090000 Dx000fF000 421888

mem-006.dmp Data 0x00190000 0«00156000 24576 . |
mem-007.dmp Data 000780000 0«001a3000 12288 el

Process Dump Information | kMapped Exscutables | Threads

Thread 1D: 916 [0x00000334) ||
Thiead 1D: 908 [1:0000038c) b |
Thread 1D: 3336 [0=00000f9c)
Thread 1D: 2272 [0x000008e0])
Thread 1D; 2548 [0x00000974)
Thread 1D:; 1308 [0x0000051c)
Baze Prionty: 9
Delta Prionty: 0
Status; Wait U zerR equest
= Registers
EIP: Omvc91ebd [Mapping: map-303.dmp, Offzet; Dxwdb34]
Eax: Dy rebBbel [Mapping: map-283.dmp, Offzet; 0x5bed]
EB; 0=00007530
ECx: 04752d3318 [Mapping: map-164.dmp, Offzet; 0-2313]
EDi<: 0x00000002
EDI: 000000000
ESI: O0x000b1 a0 [Mapping: mem-005. dmp, Ofset: 0221 ab0]
ESP: Dx0007Feac [Mapping: men-003. dmp, Ofzet: Osbeac]
EBP: 0x0007feds [Mapping: mem-003 dmp, Offzet; Oxbeds]

[0]]

Figure 9: Thread information

If a register value points into one of the code or data mappings of the process the appropriate
information is shown.

Example: ESP: 0x0007feac (Mapping: mem-003.dmp, Offset: Ox5eac)

In the example shown in Figure 9 the ESP register points with an offset of 0x5eac into the data mapping
mem-003.dmp of the process. Therefore it is very likely that this mapping is the stack of the thread with ID
1308. This information is also shown in the “Comment” row of mem-003.dmp in the upper mapping list
view (Stack of Thread ID: 1308 (0x0000051c)).

Process Dump Analyses

Environment and Status (Linux)

This tab contains information about the environment as well as the status of the process that was

dumped.
Process Dump Information | Mapped Executables | Environment and Statuz | bap Registers || File Descriptaors
Puwh=/ Mame: hitpd
COMSOLE=/dev/conzole State: 5 [sleeping]
FREYLEVEL=M Taid: 749
COMFIRM= Pid: 749
rurlevel=3 FPPid: 1
LAMG=en_|15.120885915 TracerPid: 1]
SHLVL=2 id: 43 43 43 43
prevviouz=M Gid: 43 43 43 43
HOME=/ FOSize: 32
TERM=lirws Groups: 48
FATH=/zbir: Auzrd sbin: Abin: Ausndbing Ausni<1 TREbin WmSize: B032 kB
RUMLEWEL=3 Wralck: 0kB
IMIT _VERSION=zyzvinit-2.84 WmR55: 4764 kB
_=/sbinfinitlog WD ata: VB3 kB
WStk 28 kB
Wik we: 216 kB
"WraLib: 632 kB
SigPnd: 0000000000000000
SigBlk: 00000000S0000000
Siglgr: 8000000000001 200
SigCgh: 0000000380406460
Caplnh: 0000000000000000
CapPrm: 0000000000000000
CapEff: 0000000000000000
Figure 10: Process environment and status
Map (Linux)

This tab contains the same information as the /proc/PID/maps file of the process.

Registers (Linux)

This tab contains the register values of the dumped process.

E nvironment and Status
Reqister “alue

Ea DFrfff00
EB+ Q00000000
ECH Qx080chEas
ED Q00000001
ESI Q00000001
EDI Qx080chEas
ESF Dxbffffa1 e
EBF D=bfEff5de
EIF Q4011304

b ap

ki apping

mem-002. dmp

mem-002. dmp
mem-018.dmp
mem-018.dmp
rap-010.drmp

Registers

File Descriptars | |41

ki apping Offeet

Ouc33cd

’ 4

Figure 11: Register values

If a register value points into one of the code or data mappings of the process the appropriate

information is shown.

Process Dump Analyses 10

File Descriptors (Linux)

This tab contains the file descriptors that were used by the dumped process.

Process Dump Information | Mapped Executables | Environment and Status | Map | Registers |; File Descri

File Descriptar Link. Type

Aproc/2090/fd/0 Sdevdnul

Aproc/2090/d A Adevdnul

Aproc/2090/fd/2 Sdevdnul

Sproc/2090/1d/3 socket[3931] TCP+E 00000000:00000000:00000000:0.0.0.0:22 -» 00000000:00000000:00000000:0.0.0.0:0

Figure 12: File descriptors

2.3.1.3 Configuration

Memory Parser can be configured using the XML file mmp.cfg that can be found in the same directory as
the Memory Parser binary. Within this file it is possible to configure the analysis tools which show up
when right-clicking a mapping for further analyses.

<?xml version="1.0" ?>
<!-- mmp settings -->

<settings>

<!-- currently only six external tools are supported -->
<l-- -—>
<!-- XML nodes: tooll, tool2, tool3, tool4, tool5 and toolb6 -->
<l-- ——
<!l-- Values: -->
<l-- name - name of the external program -->
<l-- path - path of the external program -->
<!-- menu - name of the external program in the context menu -->

<tooll name="Notepad" path="c:\Windows\notepad.exe" menu="Notepad" />

<tool2 name="empty" path="empty" menu="empty" />

<too13 name="empty" path="empty" menu="empty" />

<tool4 name="empty" path="empty" menu="empty" />

<tool5 name="empty" path="empty" menu="empty" />

<tool6 name="empty" path="empty" menu="empty" />
</settings>

The above example shows the default configuration of Memory Parser. Only the notepad utility is
specified in the default configuration. To add a new tool, just exchange the “empty” placeholders with
the appropriate information. In the current version of Memory Parser six external analyses tools are
supported.

2.4 Example Analyses

In order to describe the features of Process Dumper and Memory Parser, two exemplary process memory
dumps will be analysed in the following.

2.4.1 Example Analysis 1: Remote Code Injection - Apache /Linux

In this example a dump of an Apache process will be analysed. The Apache process was compromised by
a remote code injection attack.

After opening the dump in Memory Parser we first take a look at the register values. What’s very
suspicious is that the instruction pointer (EIP register) points into the data mapping mem-002.dmp with an
offset of 0x60191 (see Figure 13). This is a very suspicious behavior, since the instruction pointer should
normally refer to a code mapping. The data mapping the instruction pointer points to is the heap of the
process. It’s very likely that some malicious code was placed onto the heap and executed afterwards.

Process Dump Analyses

11

(Eﬂ Memory Parser

File Tools Options Info
Mappings:

M ame Type
map-000.dmp Code
map-001.dmp Code
mem-002.dmp Data
map-003.dmp Code
map-004.dmp Code
mem-005.dmp Data
map-J0E.dmp Code
map-007.dmp Code
map-003.dmp Code
<]

Frocess Dump Information

Register
Eai
EBx
ECH
EDn
ESI

EDI
ESF
EBF

Yalue

DFrftfe00
Q00000000
DxbfEfFde
Qx00000048
D=bfEfFa3e
DxbfEffE2e
DxbfEfFde
Dxbffffgz24
[=020=5191

mifr -5

(]

]
=
[Cleanup \Workspace] [Concat D ata mappings]

kapping Start Mapping End Mapping Size Mapped from

0«08043000 0«0807e000 0R0003R000 Ausrizhindkttpd

0«0807=000 0«08086000 0=00008000 Ausidzbindkttpd

008026000 0=0871710000 O<00022000

0«40000000 0«400013000 0<000713000 AibAd-2.2.5:0

040013000 0«400014000 0<00007000 AibAd-2.2.5.20

0«40014000 0e400715000 0=00007000

040016000 Q40017000 Om00001000 Ausc/libdapachedmod_erny.zo
040017000 Ow40018000 000001000 Ausc/libdapachesmod_ery.zo
0«40018000 0<40025000 0=20000d4000 JibABSE/libpthread-0.9.20

[2]

tapped Executables | Environment and Statuz | Map | Redisters | File Descriptors

b apping b apping Offset

mem-097. dmp

mem-097. dmp

mem-097. drmp

mem-097. dmp

mem-097. dmp

mem-002. dmp

[=E0191

Figure 13: Register values

Memory Parser offers the possibility to have a closer look at each individual mapping of the dump. In
order to accomplish a deeper analysis of the indicated offset within the referred data mapping mem-
002.dmp right-click the mapping and choose the appropriate external tool. In this example the mapping
will be further examined using the Disassembler IDA Pro [7].

map-007.dmp
mem-002. dmp

Code

0x0807 =000

0x02086000

11213710000

map-003.dmp Unpack, (07 3000

map-004.dmp . (0714000

mem-005. dmp Analyze in IDA 5 0015000

ITIEID'DDE.dITID F'.I'IEI";.-'ZE in IDA 4 (107 7000

map-007.dmp 018000

rnap-003. drmp Strings 0025000
<] Ultra Edit L

0=00002000

(=0007 3000
0=00001000
0=00001000
0=00001000
0=00001000
0=00004000

P e T T Tt Fa Tl

Suzrdshinhttpd

Aibdld-2.2.5. 50
AibAd-2.2.5. 50

Auzr/libdapache/mod_env.zo
Ausrdliblapache/mod_enwv.zo

AibAB2EANibpthread-0.9.20

T et T (R AT |

RRx]

(2]

(]

Figure 14: Analyse individual mappings

The disassembly of the data mapping shows (see Figure 15) that there is indeed executable assembler
code found at the indicated offset (0x60191). The functionality of that code can now be analysed.

Process Dump Analyses

12

seq000: 00B6B187
seqO00: 00866187
seq00A: BOAs 6189
seq00A: BOAs 6188
Seqf0A: BAAEB18D
seq00A: BAAG6618F
seqA0A: AAA60191
seq000: 00866193
seq000: 00866195
seq000: 00866197
seq0BA: BAA6B19A
seq00A: BOA6 6198
seqA0A: BAAGB19D
SeqA0A: ARG B19D
** spg@BA:BABG6610D
seq000: 0086 619F
seq@0R:088601A1
seq000: 00866103

PEPPERPR |

r

loc_68187:
mou
mou
Xor
mou
int
add
<ub
jnz
add
pop
sub

loc_ 6819D:
b1l g
mov
mnov
int

; CODE NREF: seqgOO0:08868195]]
al, 3
ECX, Bs5p
edx, edx
dl, ; 'HY
B0h ;
ecx, eax
edx, eax
short loc_68187
esp, 4ih
edx
esp,

LINUX -

edx

; CODE RREF: seq@@@:888681A9L]
eax, eax
al, 3
ecx, esp

88h ; LINUX - sys_read

Figure 15: Disassembly of the data mapping

Another suspicious behaviour of the dumped process can be found while evaluating the file descriptors
used by the process (see Figure 16). The first three file descriptors (stdin, stdout, stderr) are identical
with a likewise opened TCP socket (socket:[1004]). This is a usual procedure with remote code injection.
In order to be able to communicate with the hijacked process an attacker normally duplicates the
network socket to the stdin, stdout and stderr file descriptors of the process.

Proceszs Dump Information

File Descriptor

Sproc/749/4d/0
Aproc/ 749444
Sproc/743/fd/2
Aproc/749/d/3
Sproc/743/d44
fproc/749/(dA15
fproc/749/fdA16
Aproc/743/5dA 7
fproc/749/(d418
Aproc/743/fd/A19
Aproc/749/8d420
Aproc/743/fd421
fproc/749/04/22
fproc/749/(d/23

tMapped E xecutablez
Link,
socket:[1004]
zocket:[1004]
zocket:[1004]
dear/runhittpd. mm 596 zem
zocket:[1004]
Aearflogihttpddenon_log
socket:[367)
socket:[368)
Avarflogihttpdidzsl_engine_log
Seardlogfhttpds 2 mukes. 536
fvarflogihttpdfacoess_log
Seardlogfhttpdsaccess_log
fvarflogfhttpddss_request_log
Avarflogihttpddesl_mutex. 596

Erwironment and Status

Map | Registers

Type
TCPwd 192 168.119.200: 443 > 192.168.119.128: 32839

TCP+4192168.113.200:443 -» 192.168.119.128: 32533
TCP+4 132.168.119.200:443 -» 132.165.113.128: 32533

TCP+4 132.168.119.200: 443 -» 132.165.113.128: 32533

TCP+40.0.0.0:443 > 0.0.0.0:0
TCP+4 0.0.0.0:80 - 0.0.0.2:0

Figure 16: Process file descriptors

Apart from these described examples there are many other possibilities to analyse a process dump. For
example it is possible to scan all data mappings of the process dump for signs for executable code. As
previously mentioned, no executable code should be found in such areas of a process. For this purpose I
developed two plugins for the IDA Pro Disassembler (Malicious Code Profiler and NOP Sled Detector).

24.2

In this second example a dump of an IIS Web server is analysed. The server process was compromised
using the Meterpreter functionality of the Metasploit Framework (see [8]). With the help of Meterpreter
it is possible to inject a DLL into the vulnerable process. The DLL is only present in memory and will
thereby never be copied to the harddisk of the target system. This kind of attack cannot be reconstructed
with the help of post-mortem analysis of the systems harddisk(s).

Example Analysis 2: Remote Library Injection - 1IS/Windows

Memory Parser allows to compute SHA-1 hashes of the code areas of the mapped DLLs. Furthermore it
is possible to compare these hashes against arbitrary hash databases. So it’s possible to create a reference
hash database of the code section of every DLL on a Windows system and then compare the DLLs of a
process dump against this baseline database. The tool MMPHash (see [9]) can be used to create such a

Process Dump Analyses

13

hash database. Figure 17 shows the output of a comparison of the mapped DLLs and a reference hash
database of known Windows DLLs.

Narme:

[etwirmtspstem32sdnzapi dil

O etwinntspstem32exstace.di
[etwinrthspstemI2t et 508744 dl
[ciwinntisysterm32hext527577.dll
O etwinrthspstemd2texE13769.dl
[etwinrthspstemI2t et 762868 di
[etwinntspstem32sfcachdl di
O etwinethspstema2hgdizz.di

Process Dump Information | Mapped Executables | Thieads

Base Address
0x77360000
Ox70120000
(001 ECO000
(0071 EE0000
(0071 EB0000
(0x01 EADOOD
OxEFF20000
Qw7 7F40000

Mappings

468, 463, 470, 471,
267, 268, 269, 270, ...
122,123,124.125,
104,105, 106,107, ...
TN 12113,
116,117, 118. 119,

263, 264, 265, 266
520, 621, 522, 523

of Mappings | Calculated text section SHA-T Hash
1757£1853b74877541115305he 1 dBeBEI5I27 6
abef3961 caBlidE0adec(37b3deal? 246906345
B593c1 208240241 0202941 bdRdf4d5i5cdb3d58
2d9f372e3bbbelic73dbe 1 c795fdbEeedab i
4d535aad0chafbectBf410d279e98c7 2 70balbf
5292f9c0d5819d2bBeal367d 1553903 c 2 ThEe
55(25a030903038%bcac2i5b b 2ab492ed2bdb
fr4a06ee100ac81 89981 eBbf424b044dechidbd

= = mmnm @

DB text section SHA-1 Hash
1757e18530f74877541F15305be 1 86615327 6
20260961 caBlfdE0adec f37b3dea2r 246906345
No match

No match

No match

No match

55f25a030309b383bcac2fab3ib1 2abd32ed2bdb
fr4a06ee109ac01 8996821 ebbi424b044dccB4bd

Hash Match |#
True
True
False
False
False
False
True
Trug

Figure 17: Hash check

It turns out that four DLLs are not found in the reference database which is very suspicious (see the
“Hash Match” row in Figure 17).

This method can be used to identify DLL injection and other manipulation techniques where DLLs are
modified in memory (e.g. DLL/API Hooking, see [10]).

3 References

[1] pmdump, hetp://ntsecurity.nu/toolbox/pmdump/

[2] pcat, bitp:/fwww.porcupine.org/forensics/ict.html

[3] Process Dumper (pd), http://www.trapkit.de/research/forensic/pd/

[4] netcat, bitp:/www.vulnwatch.org/netcat/

[5] Memory Parser (MMP), hitp://www.trapkit.delresearch/forensic/mmp/

[6] Klein, T.: “All your private keys are belong to us - Extracting RSA private keys and certificates from
process memory”, bitp:/lwww.trapkit.delresearch/sslkeyfinder/

[7] IDA Pro, http://www.datarescue.com

[8] Metasploit, hitp://www.metasploit.com

[9] MMPHash, htip:/fwww.trapkit.delresearch/forensiclmmp/

[10] Hoglund, G.; Butler, J.: ,Rootkits: Subverting the Windows Kernel“, Addison-Wesley, 2006.

	1 Overview
	1.1 Advanced (Remote) Code Injection Attacks
	1.2 How does Computer Forensic work today?

	2 Process Dump Analyses
	2.1 Process Memory Layout
	2.2 Process Dumper
	2.3 Memory Parser
	2.3.1 Memory Parser: Overview
	2.3.1.1 The Mappings
	2.3.1.2 Information Tabs
	2.3.1.3 Configuration

	2.4 Example Analyses
	2.4.1 Example Analysis 1: Remote Code Injection - Apache /Linux
	2.4.2 Example Analysis 2: Remote Library Injection – IIS/Windows

	3 References

