
 

Malicious Document Analysis: Example 1 
 

by Alexandre Borges (@ale_sp_brazil) 
date: NOV/02/2021 

revision: A 
 

1. Introduction 

While the first article of MAS (Malware Analysis Series) is not ready, I’m leaving here a very simple case of 
malicious document analysis for helping my Twitter followers and any professional interested in learning how 
to analyze this kind of artifact.  

Before starting the analysis, I’m going to use the following environment and tools: 

▪ REMnux: https://docs.remnux.org/install-distro/get-virtual-appliance  

▪ Didier Stevens Suite: https://blog.didierstevens.com/didier-stevens-suite/ 

▪ Malwoverview: https://github.com/alexandreborges/malwoverview  

 

Furthermore, it’s always recommended to install Oletools (from Decalage -- @decalage2): 

#  python -m pip install -U oletools 

All three tools above are usually installed on REMnux by default. However, if you are using Ubuntu or any 
other Linux distribution, so you can install them through links and command above.  

Like any common binary, we can analyze any maldoc using static or dynamic analysis, but as my preferred 
approach is always the former one, so let’s take it. 

We’ll be analyzing the following sample: 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc 

 

2. Downloading sample and gathering information 

The first step is getting general information about this hash by using any well-known endpoint such as Virus 
Total, Hybrid Analysis, Triage, Malware Bazaar and so on. Therefore, let’s use Malwoverview to do it on the 
command line and collect information from Malware Bazaar that, fortunately, also brings information from 
excellent Triage:  

remnux@remnux:~/articles$ malwoverview.py -b 1 -B 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc 
 

https://docs.remnux.org/install-distro/get-virtual-appliance
https://blog.didierstevens.com/didier-stevens-suite/
https://github.com/alexandreborges/malwoverview


 

 
 
 
3. Analyzing the malicious document 

Given the output above (Figure 1), we could try to make an assumption that the dropped executable comes 
from the own maldoc because Microsoft Office “loads VBA resource, possible macro or embedded object 
present”. Furthermore, the maldoc seems to elevate privilege (AdjustPrivilege( )), hook (intercept events) by 
installing a hook procedure into a hook chain (SetWindowsHookEx( )),  maybe it makes code injection 
(WriteProcessMemory( )), so we it’s reasonable to assume these Triage signatures are associate to the an 
embedded executable. Therefore it’s time to download the malicious document from Triage (you can do it 
from https://tria.ge/dashboard website, if you wish):  
 
# malwoverview.py -b 5 -B 59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc 
 
Uncompress it by executing the following command (password is “infected”) and collect information using 
olevba tool: 

remnux@remnux:~/articles$ 7z e 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.zip 

Figure 1 

https://tria.ge/dashboard


 

Using olevba and oleid (from oletools) to collect further information we have the following outputs: 

remnux@remnux:~/articles$ olevba -a 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx 

 

 

remnux@remnux:~/articles$  oleid 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx 

 

Figure 2 

Figure 3 



 

From both previous outputs (Figure 2 and Figure 3), important facts come up:  

▪ Some code is executed when the MS Word is executed. 
▪ A file seems to be written to the file system.  
▪ The maldoc seems to open a file (probably the same written above). 
▪ VBA macros are responsible for the entire activity. 

The next step is to analyze the maldoc, which is a OLE document, we are going use oledump.py (from Didier 
Steven’s suite -- @DidierStevens) to check the OLE’s internals and try to understand what’s happening:  

 

 

 

According to the Figure 4 above we have: 

a. three macros in 16, 17 and 18. 
b. a big “content” in 11, which could be one of “VBA resources” mentioned Triage’s output.  

Once again, we can decide to use dynamic analysis (a debugger) or static analysis to expose the real threat 
hidden inside this malicious document, but let’s proceed with static analysis because it will bring more details 
while addressing the problem. 

In the next step we need to check the macros’ content by uncompressing their contents (-v option) using 
oledump.py (Figure 5): 

remnux@remnux:~/articles$ oledump.py -s 16 -v 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx | more 

Figure 4 



 

 

 

 

 

There’re few details that can be observed from output above (Figure 5): 

▪ Obviously the code is obfuscated. 
▪ The Split function, which returns a zero-based and one-dimensional array containing substrings, 

manipulates the content from UserForm1 (object 11) and, apparently, this content is divided in four 
parts (TextBox1, TextBox2, TextBox3 and TextBox4). In addition, the UserForm1 content seems to be 
separated by “!” character.  

▪ The UserForm2 is also being (TextBox1 and TextBox2) in a MoveFile operation. 
▪ The Winmgmt service, which is a WMI service operating inside the svchost process under LocalSystem 

account, is being used to execute an operation given by UserForm2.TextBox5. 
▪ The UserForm2.Text 6 is used to create a reference to an object provided by ActiveX.  
▪ The UserForm2.Text7 is being used to save some content as a binary file.  

 

Figure 5 



 

Therefore we must investigate the content of object 15 (Macros/UserForm2/o): 

remnux@remnux:~/articles$ oledump.py 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx -s 15 -d | strings 

 

 

We can infer from Figure 6 that: 

▪ UserForm2.Text1: C:\Users\Public\Pictures\winword.con 
▪ UserForm2.Text2: C:\Users\Public\Pictures\winword.exe 
▪ We are moving winword.com to winword.exe within C:\Users\Public\Pictures\ directory. 
▪ UserForm2.Text3: Scripting.FileSystemObject 
▪ UserForm2.Text4: winmgmts:{impersonationLevel=impersonate}!\\" & strComputer & "\root\cimv2} 
▪ UserForm2.Text5: Win32_ProcessStartup 
▪ UserForm2.Text6: winmgmts:root\cimv2:Win32_Process 
▪ UserForm2.Text7: ADODB.Stream 

The remaining macros don’t hold nothing really critical for our analysis this time: 

remnux@remnux:~/articles$ oledump.py 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx -s 17 -v | strings | tail +9 

remnux@remnux:~/articles$ oledump.py 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx -s 18 -v | strings | tail +9 

 

Figure 6 

Figure 7 



 

Analyzing  Figure 5 (check “SaveBinaryData” function) and Figure 6, it’s reasonable to assume that an 
executable, which we don’t know yet, will be saved as “winword.com” and later it will be renamed to 
“winword.exe” within C:\Users\Public\Pictures\ directory. Finally, the binary will be executed by calling 
objProcess.create( ) function.   

At this point, we should verify the content of object 11 ( check “Macros/UserForm1/o” on Figure 4) because it 
likely contain our “hidden” executable. Thus, run the following command: 

remnux@remnux:~/articles$ oledump.py 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx -s 11 -d | more 

, 

 

 

As we expected and mentioned previously, these decimal numbers are separated by “!” character.  

Additionally, there’s a catch: according to Figure  5, this object has 4 parts (UserForm1.Text1, 
UserForm1.Text2, UserForm1.Text3 and UserForm1.Text4), so we should dump it into a file (dump1), edit and 
“join” all parts. 

To dump the “object 11” into a file (named dump1) execute the following command: : 

remnux@remnux:~/articles$ oledump.py 
59ed41388826fed419cc3b18d28707491a4fa51309935c4fa016e53c6f2f94bc.docx -s 11 -d  > dump1 

We need to “clean up” dump1 file:  

▪ Editing the file using “vi” command or any other editor. 
▪ Using “$” to go to the end of each line. 
▪ Removing occurrences of “Tahoma” word and any garbage (easily identified) from the text.  

Figure 8 



 

▪ Join this line with the next one (“J” command on “vi”) 

After editing the dump1 file, we have two replace all “!” characters by commas, and transform all decimal 
numbers into hex bytes. First, replace all “!” characters by comma using a simple “sed” command: 

remnux@remnux:~/articles$ sed -e 's/!/,/g' dump1 > dump3 
 
remnux@remnux:~/articles$ cat dump3 | more 
 

 
 
 
 
From this point we have to process and transform this file (dump3) to something useful end we have two clear 
options: 
 

a. We can use the amazing CyberChef (https://gchq.github.io/CyberChef/).  
 

b. We can write a Python 3 code to statically decode the dump3 file into a possible executable.  
 
I’m going to show you both methods, though I always prefer programming a small script. Please, pay attention 
to the fact that all decimal numbers are separated by comma, so it will demand an extra concern during the 
decoding operation. 
 
To decode this file on CyberChef you have to: 
 

a. Load it onto CyberChef’s input pane.  There’s an button on top-right to do it.  
b. Pick up “From Decimal” operation and configure the delimiter to “Comma”.  

 
 
Afterwards, you’ll see an executable in the Output pane, which can be saved onto file system.  

Figure 9 

https://gchq.github.io/CyberChef/


 

 

 
 
 
Saving the file from Output pane, save the file and check its type: 
 
remnux@remnux:~/Downloads$ file download.dat  
download.dat: PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS Windows 
 
It’s excellent! Let’s now write a simple Python code named python_convert.py to perform the same operation 
and get the same result: 
 

 
 
 

Figure 10 

Figure 11 



 

remnux@remnux:~/articles$ python3.8 ./python_convert_1.py 
remnux@remnux:~/articles$ file final_file.bin  
final_file.bin: PE32 executable (GUI) Intel 80386 Mono/.Net assembly, for MS Windows 
 
As we expected, it’s worked! Finally, let’s check the final binary on Virus Total and Triage to learn a bit further  
about the extracted binary (Figure 12, 13 and 15): 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure 12 



 

 
 
 
 

 
 
 
 
It would be super easy to extract the same malware from the maldoc by using dynamic analysis (Figure 15). 
You’ll find out that a password is protecting the VBA Project, but this quite trivial to remove this kind of 
protection: 

Figure 14 

Figure 13 



 

 
 
 
 
That’s it! I hope you have learned something new from this article and see you at the next one. 
    

A.B. 

Figure 15 


