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Preface 

It seemed like a good idea at the time. In 2003,1 started teaching a course 
on computer viruses and malicious software to senior undergraduate and grad­
uate students at the University of Calgary. It's been an interesting few years. 
Computer viruses are a controversial and taboo topic, despite having such a 
huge impact on our society; needless to say, there was some backlash about this 
course from outside the University. 

One of my initial practical concerns was whether or not I could find enough 
detailed material to teach a 13-week course at this level. There were some 
books on the topic, but (with all due respect to the authors of those books) there 
were none that were suitable for use as a textbook. 

I was more surprised to find out that there was a lot of information about 
viruses and doing "bad" things, but there was very little information about anti­
virus software. A few quality minutes with your favorite web search engine will 
yield virus writing tutorials, virus source code, and virus creation toolkits. In 
contrast, although it's comprised of some extremely nice people, the anti-virus 
community tends to be very industry-driven and insular, and isn't in the habit 
of giving out its secrets. Unless you know where to look. 

Several years, a shelf full of books, and a foot-high stack of printouts later, 
I've ferreted out a lot of detailed material which I've assembled in this book. 
It's a strange type of research for a computer scientist, and I'm sure that my 
academic colleagues would cringe at some of the sources that I've had to use. 
Virus writers don't tend to publish in peer-reviewed academic journals, and 
anti-virus companies don't want to tip their hand. I would tend to characterize 
this detective work more like historical research than standard computer science 
research: your sources are limited, so you try and authenticate them; you piece 
a sentence in one document together with a sentence in another document, and 
you're able to make a useful connection. It's painstaking and often frustrating. 

Technical information goes out of date very quickly, and in writing this book 
I've tried to focus on the concepts more than details. My hope is that the 
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concepts will still be useful years from now, long after the minute details of 
operating systems and programming languages have changed. Having said that, 
I've included detail where it's absolutely necessary to explain what's going on, 
and used specific examples of viruses and malicious software where it's useful to 
establish precedents for certain techniques. Depending on why you're reading 
this, a book with more concrete details might be a good complement to this 
material. 

Similarly, if you're using this as a textbook, I would suggest supplement­
ing it with details of the latest and greatest malicious software that's making 
the rounds. Unfortunately there will be plenty of examples to choose from. 
In my virus course, I also have a large segment devoted to the law and ethics 
surrounding malicious software, which I haven't incorporated here - law is con­
stantly changing and being reinterpreted, and there are already many excellent 
sources on ethics. Law and ethics are very important topics for any computer 
professional, but they are especially critical for creating a secure environment 
in which to work with malicious software. 

I should point out that I've only used information from public sources to 
write this book. I've deliberately excluded any information that's been told to 
me in private conversations, and I'm not revealing anyone's trade secrets that 
they haven't already given away themselves. 

I'd like to thank the students I've taught in my virus course, who pushed me 
with their excellent questions, and showed much patience as I was organizing 
all this material into some semi-coherent form. Thanks too to those in the anti­
virus community who kept an open mind. I'd also like to thank the people who 
read drafts of this book: Jorg Denzinger, Richard Ford, Sarah Gordon, Shannon 
Jaeger, Cliff Marcellus, Jim Uhl, James Wolfe, and Mike Zastre. Their sugges­
tions and comments helped improve the book as well as encourage me. Finally, 
Alan Aycock suggested some references for Chapter 10, Stefania Bertazzon 
answered my questions about rational economics, Moustafa Hammad provided 
an Arabic translation, and Maryam Mehri Dehnavi translated some Persian text 
for me. Of course, any errors that remain are my own. 

JOHN AYCOCK 



Chapter 1 

WE'VE GOT PROBLEMS 

In ancient times, people's needs were simple: food, water, shelter, and the 
occasional chance to propagate the species. Our basic needs haven't changed, 
but the way we fulfill them has. Food is bought in stores which are fed by 
supply chains with computerized inventory systems; water is dispensed through 
computer-controlled water systems; parts for new shelters come from suppliers 
with computer-ridden supply chains, and old shelters are bought and sold by 
computer-wielding realtors. The production and transmission of energy to run 
all of these systems is controlled by computer, and computers manage financial 
transactions to pay for it all. 

It's no secret that our society's infrastructure relies on computers now. Un­
fortunately, this means that a threat to computers is a threat to society. But how 
do we protect our critical infrastructure? What are the problems it faces? 

1.1 Dramatis Personae 
There are four key threats to consider. These are the four horsemen of the 

electronic apocalypse: spam, bugs, denials of service, and malicious software. 

Spam The term commonly used to describe the abundance of unsolicited bulk 
email which plagues the mailboxes of Internet users worldwide. The statis­
tics vary over time, but suggest that over 70% of email traffic currently falls 
into this category.^ 

Bugs These are software errors which, when they crop up, can kill off your soft­
ware immediately, if you're lucky. They can also result in data corruption, 
security weaknesses, and spurious, hard-to-find problems. 

Denials of service Denial-of-service attacks, or DoS attacks,^ starve legiti­
mate usage of resources or services. For example, a DoS attack could use 
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up all available disk space on a system, so that other users couldn't make use 
of it; generating reams of network traffic so that real traffic can't get through 
would also be a denial of service. Simple DoS attacks are relatively easy 
to mount by simply overwhelming a machine with requests, as a toddler 
might overwhelm their parents with questions. Sophisticated DoS attacks 
can involve more finesse, and may trick a machine into shutting a service 
down instead of flooding it. 

Malicious softM âre The real war is waged with malicious software, or mal-
ware. This is software whose intent is malicious, or whose effect is mali­
cious. The spectrum of malware covers a wide variety of specific threats, 
including viruses, worms, Trojan horses, and spyware. 

The focus of this book is malware, and the techniques which can be used to 
detect, detain, and destroy it. This is not accidental. Of the four threats listed 
above, malware has the deepest connection to the other three. Malware may be 
propagated using spam, and may also be used to send spam; malware may take 
advantage of bugs; malware may be used to mount DoS attacks. Addressing 
the problem of malware is vital for improving computer security. Computer 
security is vital to our society's critical infrastructure. 

1.2 The Myth of Absolute Security 
Obviously we want our computers to be secure against threats. Unfortu­

nately, there is no such thing as absolute security, where a computer is either 
secure or it's not. You may take a great deal of technical precautions to safe­
guard your computers, but your protection is unlikely to be effective against 
a determined attacker with sufficient resources. A government-funded spy 
agency could likely penetrate your security, should they be motivated to do 
so. Someone could drive a truck through the wall of your building and steal 
your computers. Old-fashioned ways are effective, too: there are many ways 
of coercing people into divulging information.^ 

Even though there is no absolute computer security, relative computer secu­
rity can be considered based on six factors: 

• What is the importance of the information or resource being protected? 

• What is the potential impact, if the security is breached? 

• Who is the attacker likely to be? 

• What are the skills and resources available to an attacker? 

• What constraints are imposed by legitimate usage? 

• What resources are available to implement security? 
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Breaking down security in this way changes the problem. Security is no 
longer a binary matter of secure or not-secure; it becomes a problem of risk 
management,"^ and implementing security can be seen as making tradeoffs be­
tween the level of protection, the usability of the resulting system, and the cost 
of implementation. 

When you assess risks for risk management, you must consider the risks 
posed to you by others, and consider the risks posed to others by you. Everybody 
is your neighbor on the Internet, and it isn't farfetched to think that you could be 
found negligent if you had insufficient computer security, and your computers 
were used to attack another site.̂ ^^ 

1.3 TheCostofMalware 
Malware unquestionably has a negative financial impact, but how big an 

impact does it really have?^^^ It's important to know, because if computer 
security is to be treated as risk management, then you have to accurately assess 
how much damage a lapse in security could cause. 

At first glance, gauging the cost of malware incidents would seem to be easy. 
After all, there are any number of figures reported on this, figures attributed to 
experts. They can vary from one another by an order of magnitude, so if you 
disagree with one number, you can locate another more to your liking. I use 
the gross domestic product of Austria, myself - it's a fairly large number, and 
it's as accurate an estimate as any other. 

In all fairness, estimating malware cost is a very hard problem. There are 
two types of costs to consider: real costs and hidden costs. 

Real costs These are costs which are apparent, and which are relatively easy 
to calculate. If a computer virus reduced your computer to a bubbling 
puddle of molten slag,^ the cost to replace it would be straightforward to 
assess. Similarly, if an employee can't work because their computer is 
having malware removed from it, then the employee's lost productivity can 
be computed. The time that technical support staff spend tracking down 
and fixing affected computers can also be computed. Not all costs are so 
obvious, however. 

Hidden costs Hidden costs are costs whose impact can't be measured accu­
rately, and may not even be known. Some businesses, like banks and com­
puter security companies, could suffer damage to their reputation from a 
publicized malware incident. Regardless of the business, a leak of pro­
prietary information or customer data caused by malware could result in 
enormous damage to a company, no different than industrial espionage. 
Any downtime could drive existing customers to a competitor, or turn away 
new, potential customers. 
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This has been cast in terms of business, but malware presents a cost to 
individuals, too. Personal information stolen by malware from a computer, 
such as passwords, credit card numbers, and banking information, can give 
thieves enough for that tropical vacation they've always dreamed of, or provide 
a good foundation for identity theft. 

lA The Number of Threats 
Even the exact number of threats is open to debate. A quick survey of 

competing anti-virus products shows that the number of threats they claim to 
detect can vary by as much as a factor of two. Curiously, the level of protection 
each affords is about the same, meaning that more is not necessarily better. 

Why? There is no industry-wide agreement on what constitutes a "threat," 
to begin with. It's not surprising, given that fact alone, that different anti-virus 
products would have different numbers - they aren't all counting the same thing. 
For example, there is some dispute as to whether or not automatically-generated 
viruses produced by the same tool should be treated as individual threats, or 
as only one threat. This came to the fore in 1998, when approximately 15,000 
new automatically-generated viruses appeared overnight. ̂ ^̂  It is also difficult 
to amass and correctly maintain a malware collection, ̂ ^̂  and inadvertent du­
plication or misclassification of malware samples is always a possibility. There 
is no single clearinghouse for malware. 

Another consideration is that the reported numbers are only for threats that 
are known about. Ideally, computers should be protected from both known and 
unknown threats. It's impossible to know about unknown threats, of course, 
which means that it's impossible to precisely assess how well-protected your 
computers are against threats. 

Different anti-virus products may employ different detection techniques, too. 
Not all methods of detection rely on exhaustive compilations of known threats, 
and generic detection techniques routinely find both known and unknown threats 
without knowing the exact nature of what they're detecting. 

Even for known threats, not all may endanger your computers. The majority 
of malware is targeted to some specific combination of computer architecture 
and operating system, and sometimes even to a particular application. Effec­
tively these act as preconditions for a piece of malware to run; if any of these 
conditions aren't true - for instance, you use a different operating system -
then that malware poses no direct threat to you. It is inert with respect to your 
computers. 

Even if it can't run, malware may carry an indirect liability risk if it passes 
through your computers from one target to another. For example, one unaffected 
computer could provide a shared directory; someone else's compromised com­
puter could deposit malware in that shared directory for later propagation. It is 
prudent to look for threats to all computers, not just to your own. 
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Figure LI. Worm propagation curve 

1.5 Speed of Propagation 
Once upon a time, the speed of malware propagation was measured in terms 

of weeks or even months. This is no longer the case. 
A typical worm propagation curve is shown in Figure 1.1. (For simplicity, 

the effects on the curve from defensive measures aren't shown.) At first, the 
worm spreads slowly to vulnerable machines, but eventually begins a period 
of exponential growth when it spreads extremely rapidly. Finally, once the 
majority of vulnerable machines have been compromised, the worm reaches a 
saturation point; any further growth beyond this point is minimal. 

For a worm to spread more quickly, the propagation curve needs to be moved 
to the left. In other words, the worm author wants the period of exponential 
growth to occur earlier, preferably before any defenses have been deployed. 
This is shown in Figure 1.2a. 

^ compromised 
maciiines 
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w 1 
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Figure 1.2. Ideal propagation curves for attackers and defenders 
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On the other hand, a defender wants to do one of two things. First, the 
propagation curve could be pushed to the right, buying time to construct a 
defense before the worm's exponential growth period. Second, the curve could 
be compressed downwards, meaning that not all vulnerable machines become 
compromised by the worm. These scenarios are shown in Figure 1.2b. 

The time axis on these figures has been deliberately left unlabeled, because 
the exact propagation rate will depend on the techniques that a particular worm 
uses. However, the theoretical maximum speed of a carefully-designed worm 
from initial release until saturation is startling: 510 milliseconds to 1.3 seconds.^ 
In less than two seconds, it's over. No defense that relies on any form of human 
intervention will be fast enough to cope with threats like this. 

1,6 People 

Humans are the weak link on several other fronts too, all of which are taken 
advantage of by malware. 

By their nature, humans are trusting, social creatures. These are excellent 
qualities for your friends to have, and also for your victims to possess: an entire 
class of attacks, called social engineering attacks, are quick to exploit these 
desirable human qualities. 

Social engineering aside, many people simply aren't aware of the security 
consequences of their actions. For example, several informal surveys of people 
on the street have found them more than willing to provide enough information 
for identity theft (even offering up their passwords) in exchange for chocolate, 
theater tickets, and coffee vouchers. ̂ ^̂  

Another problem is that humans - users - don't demand enough of software 
vendors in terms of secure software. Even for security-savvy users who want 
secure software, the security of any given piece of software is nearly impossible 
to assess. 

Secure software is software which can't be exploited by an attacker. Just 
because some software hasn't been compromised is no indication that it's secure 
- like the stock market, past performance is no guarantee of future results. 
Unfortunately, that's really the only guideline users have to judge security: the 
absence of an attack. Software security is thus an anti-feature for vendors, 
because it's intangible. It's no wonder that vendors opt to add features rather 
than improve security. Features are easier to sell. 

Features are also easier to buy. Humans are naturally wooed by new fea­
tures, which forms a vicious cycle that gives software vendors little incentive 
to improve software security. 



Wfe \e Got Problems 7 

1.7 About this Book 

Malware poses an enormous problem in the context of faulty humans and 
faulty software security. It could be that malware is the natural consequence of 
the presence of these faults, like vermin slipping through building cracks in the 
real world. Indeed, names like "computer virus" and "computer worm" bring 
to mind their biological real-world counterparts. 

Whatever the root cause, malware is a problem that needs to be solved. This 
book looks at malware, primarily viruses and worms, and its countermeasures. 
The next chapter lays the groundwork with some basic definitions and a timeline 
of malware. Then, on to viruses: Chapters 3, 4, and 5 cover viruses, anti-virus 
techniques, and anti-anti-virus techniques, in that order. Chapter 6 explains the 
weaknesses that are exploited by malware, both technical and social - this is 
necessary background for the worms in Chapter 7. Defenses against worms are 
considered in Chapter 8. Some of the possible manifestations of malware are 
looked at in Chapter 9, followed by a look at the people who create malware 
and defend against it in Chapter 10. Some final thoughts on defense are in 
Chapter 11. 

The convention used for chapter endnotes is somewhat unusual. The notes 
tend to fall into two categories. First, there are notes with additional content 
related to the text. These have endnote numbers from 1-99 within a chapter. 
Second, there are endnotes that provide citations and pointers to related material. 
This kind of endnote is numbered 100 or above. The intent is to make the two 
categories of endnote easily distinguishable in the text. 

A lot of statements in this book are qualified with "can" and "could" and 
"may" and "might." Software is infinitely malleable and can be made to do 
almost anything; it is hubris to make bold statements about what malware can 
and can't do. 

Finally, this is not a programming book, and some knowledge of program­
ming (in both high- and low-level languages) is assumed, although pseudocode 
is used where possible. A reasonable understanding of operating systems and 
networks is also beneficial. 

1.8 Some Words of Warning 

Self-replicating software like viruses and worms has proven itself to be 
very difficult to control, even from the very earliest experiments.^ While self-
replicating code may not intentionally be malicious, it can have similar effects 
regardless. Of course, the risks of overtly malicious software should be obvi­
ous. Any experiments with malware, or analysis of malware, should be done in 
a secure environment designed specifically for that purpose. While it's outside 
the scope of this book to describe such a secure environment - the details would 
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be quickly out of date anyway - there are a number of sources of information 
available. ̂ ^̂  

Another thing to consider is that creation and/or distribution of malware may 
violate local laws. Many countries have computer crime legislation now,̂  and 
even if the law was violated in a different jurisdiction from where the perpetrator 
is physically located, extradition agreements may apply. ̂ ^̂  Civil remedies for 
victims of malware are possible as well. 

Ironically, some dangers lurk in defensive techniques too. Some of the ma­
terial in this book is derived from patent documents; the intent is to provide a 
wide range of information, and is not in any way meant to suggest that these 
patents should be infringed. While every effort has been made to cite relevant 
patents, it is possible that some have been inadvertently overlooked. Further­
more, patents may be interpreted very broadly, and the applicability of a patent 
may depend greatly on the skill and financial resources of the patent holder's 
legal team. Seek legal advice before rushing off to implement any of the tech­
niques described in this book. 



We \e Got Problems 9 

Notes for Chapter 1 
1 Based on MessageLabs' sample size of 12.6 billion email messages [203]. 

This has a higher statistical significance than 99% of statistics you would 
normally find. 

2 Note the capitalization - "DOS" is an operating system, "DoS" is an attack. 
3 In cryptography, this has been referred to as "rubber-hose" cryptanaly-

sis [279]. 
4 Schneier has argued this point of view, and that computer security is an un­

tapped market for insurance companies, who are in the business of managing 
risk anyway [280]. 

5 Before any urban legends are started, computer viruses can't do this. 
6 These numbers (510 ms for UDP-based worms, 1.3 s for TCP-based worms) 

are the time it takes to achieve 95% saturation of a million vulnerable ma­
chines [303]. 

7 For example, Cohen's first viruses progressed surprisingly quickly [74], as 
did Duff's shell script virus [95], and an early worm at Xerox ran amok [287]. 

8 Computer crime laws are not strictly necessary for prosecuting computer 
crimes that are just electronic versions of "traditional" crimes like fraud [56], 
but the trend is definitely to enact computer-specific laws. 

100 Owens [237] discusses liability potential in great detail. 
101 This section is based on Garfink and Landesman [117], and Ducklin [94] 

touches on some of the same issues too. 
102 Morley [213]. Ducklin [94] has a discussion of this issue, and of other 

ways to measure the extent of the virus problem. 
103 Bontchev [39] talks about the care and feeding of a "clean" virus library. 
104 The informal surveys were reported in [30] (chocolate), [31, 274] (theater 

tickets), and [184] (coffee vouchers). Less amusing, but more rigorous, 
surveys have been done which show similar problems [270, 305]. 

105 There are a wide range of opinions on working with malware, ranging from 
the inadequate to the paranoid. As a starting point, see [21, 75, 187, 282, 
288,312]. 

106 Although U.S.-centric. Soma et al. [295] give a good overview of the 
general features of extradition treaties. 



Chapter 2 

DEFINITIONS AND TIMELINE 

It would be nice to present a clever taxonomy of malicious software, one that 
clearly shows how each type of malware relates to every other type. However, 
a taxonomy would give the quaint and totally incorrect impression that there is 
a scientific basis for the classification of malware. 

In fact, there is no universally-accepted definition of terms like "virus" and 
"worm," much less an agreed-upon taxonomy, even though there have been oc­
casional attempts to impose mathematical formalisms onto malware. ̂ ^̂  Instead 
of trying to pin down these terms precisely, the common characteristics each 
type of malware typically has are listed. 

2.1 Malware Types 
Malware can be roughly broken down into types according to the malware's 

method of operation. Anti-"virus" software, despite its name, is able to detect 
all of these types of malware. 

There are three characteristics associated with these malware types. 

1 Self-replicating malware actively attempts to propagate by creating new 
copies, or instances, of itself. Malware may also be propagated passively, 
by a user copying it accidentally, for example, but this isn't self-replication. 

2 The population growth of malware describes the overall change in the num­
ber of malware instances due to self-replication. Malware that doesn't self-
replicate will always have a zero population growth, but malware with a 
zero population growth may self-replicate. 

3 Parasitic malware requires some other executable code in order to exist. 
"Executable" in this context should be taken very broadly to include any­
thing that can be executed, such as boot block code on a disk, binary code 
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in applications, and interpreted code. It also includes source code, like ap­
plication scripting languages, and code that may require compilation before 
being executed. 

2.1.1 Logic Bomb 
Self-replicating: no 
Population growth: zero 
Parasitic: possibly 

A logic bomb is code which consists of two parts: 

1 A pay load, which is an action to perform. The payload can be anything, but 
has the connotation of having a malicious effect. 

2 A trigger, a boolean condition that is evaluated and controls when the pay-
load is executed. The exact trigger condition is limited only by the imagi­
nation, and could be based on local conditions like the date, the user logged 
in, or the operating system version. Triggers could also be designed to be 
set off remotely, or - like the "dead man's switch" on a train - be set off by 
the absence of an event. 

Logic bombs can be inserted into existing code, or could be standalone. A sim­
ple parasitic example is shown below, with a payload that crashes the computer 
using a particular date as a trigger. 

legitimate code 
if date is Friday the 13th: 

crash^computerO 
legitimate code 

Logic bombs can be concise and unobtrusive, especially in millions of lines 
of source code, and the mere threat of a logic bomb could easily be used to 
extort money from a company. In one case, a disgruntled employee rigged a 
logic bomb on his employer's file server to trigger on a date after he was fired 
from his job, causing files to be deleted with no possibility of recovery. He 
was later sentenced to 41 months in prison.̂ ^^ Another case alleges that an 
employee installed a logic bomb on 1000 company computers, date-triggered 
to remove all the files on those machines; the person allegedly tried to profit 
from the downturn in the company's stock prices that occurred as a result of the 
damage.^ 

2.1.2 Trojan Horse 
Self-replicating: no 
Population growth: zero 
Parasitic: yes 
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There was no love lost between the Greeks and the Trojans. The Greeks had 
besieged the Trojans, holed up in the city of Troy, for ten years. They finally 
took the city by using a clever ploy: the Greeks built an enormous wooden horse, 
concealing soldiers inside, and tricked the Trojans into bringing the horse into 
Troy. When night fell, the soldiers exited the horse and much unpleasantness 
ensued. ̂ ^̂  

In computing, a Trojan horse is a program which purports to do some benign 
task, but secretly performs some additional malicious task. A classic example is 
a password-grabbing login program which prints authentic-looking "username" 
and "password" prompts, and waits for a user to type in the information. When 
this happens, the password grabber stashes the information away for its creator, 
then prints out an "invalid password" message before running the real login 
program. The unsuspecting user thinks they made a typing mistake and re­
enters the information, none the wiser. 

Trojan horses have been known about since at least 1972, when they were 
mentioned in a well-known report by Anderson, who credited the idea to D. J. 
Edwards. ̂ -̂̂  

2.1.3 Back Door 
Self-replicating: no 
Population growth: zero 
Parasitic: possibly 

A back door is any mechanism which bypasses a normal security check. Pro­
grammers sometimes create back doors for legitimate reasons, such as skipping 
a time-consuming authentication process when debugging a network server. 

As with logic bombs, back doors can be placed into legitimate code or be 
standalone programs. The example back door below, shown in gray, circum­
vents a login authentication process. 

username = read_username() 
password = read_password() 
if tisername i s "133t h4ck0r": 

r e tu rn ALLOW L̂OGIN 
if username and password are va l id : 

re tu rn ALLOW_LOGIN 
e l s e : 

re tu rn DENŶ LOGIN 

One special kind of back door is a RAT, which stands for Remote Administra­
tion Tool or Remote Access Trojan, depending on who's asked. These programs 
allow a computer to be monitored and controlled remotely; users may deliber­
ately install these to access a work computer from home, or to allow help desk 
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staff to diagnose and fix a computer problem from afar. However, if malware 
surreptitiously installs a RAT on a computer, then it opens up a back door into 
that machine. 

2.1.4 Virus 
Self-replicating: yes 
Population growth: positive 
Parasitic: yes 

A virus is malware that, when executed, tries to replicate itself into other exe­
cutable code; when it succeeds, the code is said to be infected? The infected 
code, when run, can infect new code in turn. This self-replication into existing 
executable code is the key defining characteristic of a virus. 

When faced with more than one virus to describe, a rather silly problem 
arises. There's no agreement on the plural form of "virus." The two leading 
contenders are "viruses" and "virii;" the latter form is often used by virus writers 
themselves, but it's rare to see this used in the security community, who prefer 
"viruses."^^^ 

If viruses sound like something straight out of science fiction, there's a reason 
for that. They are. The early history of viruses is admittedly fairly murky, but 
the first mention of a computer virus is in science fiction in the early 1970s, 
with Gregory Benford's The Scarred Man in 1970, and David Gerrold's When 
Harlie Was One in 1972.̂ ^^ Both stories also mention a program which acts to 
counter the virus, so this is the first mention of anti-virus software as well. 

The earliest real academic research on viruses was done by Fred Cohen in 
1983, with the "virus" name coined by Len Adleman.^^^ Cohen is sometimes 
called the "father of computer viruses," but it turns out that there were viruses 
written prior to his work. Rich Skrenta's Elk Cloner was circulating in 1982, and 
Joe Dellinger's viruses were developed between 1981-1983; all of these were 
for the Apple II platform.̂ ^^ Some sources mention a 1980 glitch in Arpanet 
as the first virus, but this was just a case of legitimate code acting badly; the 
only thing being propagated was data in network packets. ̂ ^̂  Gregory Benford's 
viruses were not limited to his science fiction stories; he wrote and released non-
malicious viruses in 1969 at what is now the Lawrence Livermore National 
Laboratory, as well as in the early Arpanet. 

Some computer games have featured self-replicating programs attacking one 
another in a controlled environment. Core War appeared in 1984, where pro­
grams written in a simple assembly language called Redcode fought one an­
other; a combatant was assumed to be destroyed if its program counter pointed 
to an invalid Redcode instruction. Programs in Core War existed only in a 
virtual machine, but this was not the case for an earlier game, Darwin. Darwin 
was played in 1961, where a program could hunt and destroy another combat-



Definitions and Timeline 15 

ant in a non-virtual environment using a well-defined interface. ̂ ^̂  In terms of 
strategy, successful combatants in these games were hard-to-find, innovative, 
and adaptive, qualities that can be used by computer viruses too.-̂  

Traditionally, viruses can propagate within a single computer, or may travel 
from one computer to another using human-transported media, like a floppy 
disk, CD-ROM, DVD-ROM, or USB flash drive. In other words, viruses don't 
propagate via computer networks; networks are the domain of worms instead. 
However, the label "virus" has been applied to malware that would traditionally 
be considered a worm, and the term has been diluted in common usage to refer 
to any sort of self-replicating malware. 

Viruses can be caught in various stages of self-replication. A germ is the 
original form of a virus, prior to any replication. A virus which fails to replicate 
is called an intended. This may occur as a result of bugs in the virus, or 
encountering an unexpected version of an operating system. A virus can be 
dormant, where it is present but not yet infecting anything - for example, a 
Windows virus can reside on a Unix-based file server and have no effect there, 
but can be exported to Windows machines."^ 

2.1,5 Worm 
Self-replicating: yes 
Population growth: positive 
Parasitic: no 

A worm shares several characteristics with a virus. The most important char­
acteristic is that worms are self-replicating too, but self-replication of a worm 
is distinct in two ways. First, worms are standalone,^ and do not rely on other 
executable code. Second, worms spread from machine to machine across net­
works. 

Like viruses, the first worms were fictional. The term "worm" was first 
used in 1975 by John Brunner in his science fiction novel The Shockwave 
Rider, (Interestingly, he used the term "vims" in the book too.)^ Experiments 
with worms performing (non-malicious) distributed computations were done 
at Xerox PARC around 1980, but there were earlier examples. A worm called 
Creeper crawled around the Arpanet in the 1970s, pursued by another called 
Reaper which hunted and killed off Creepers.^ 

A watershed event for the Internet happened on November 2, 1988, when a 
worm incapacitated the fledgling Internet. This worm is now called the Internet 
worm, or the Morris worm after its creator, Robert Morris, Jr. At the time, 
Morris had just started a Ph.D. at Cornell University. He had been intending for 
his worm to propagate slowly and unobtrusively, but what happened was just 
the opposite. Morris was later convicted for his worm's unauthorized computer 
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access and the costs incurred to clean up from it. He was fined, and sentenced 
to probation and community service.^ Chapter 7 looks at this worm in detail. 

2.1.6 Rabbit 
Self-replicating: yes 
Population growth: zero 
Parasitic: no 

Rabbit is the term used to describe malware that multiplies rapidly. Rabbits 
may also be called bacteria, for largely the same reason. 

There are actually two kinds of rabbit.^ ̂ ^ The first is a program which tries 
to consume all of some system resource, like disk space. A "fork bomb," a 
program which creates new processes in an infinite loop, is a classic example 
of this kind of rabbit. These tend to leave painfully obvious trails pointing to 
the perpetrator, and are not of particular interest. 

The second kind of rabbit, which the characteristics above describe, is a 
special case of a worm. This kind of rabbit is a standalone program which 
replicates itself across a network from machine to machine, but deletes the 
original copy of itself after replication. In other words, there is only one copy 
of a given rabbit on a network; it just hops from one computer to another.^ 
Rabbits are rarely seen in practice. 

2.1.7 Spyware 
Self-replicating: no 
Population growth: zero 
Parasitic: no 

Spyware is software which collects information from a computer and transmits 
it to someone else. Prior to its emergence in recent years as a threat, the term 
"spyware" was used in 1995 as part of a joke, and in a 1994 Usenet posting 
looking for "spy-ware" information.̂ ^^ 

The exact information spyware gathers may vary, but can include anything 
which potentially has value: 

1 Usernames and passwords. These might be harvested from files on the 
machine, or by recording what the user types using a key logger. A keylogger 
differs from a Trojan horse in that a keylogger passively captures keystrokes 
only; no active deception is involved. 

2 Email addresses, which would have value to a spammer. 

3 Bank account and credit card numbers. 

4 Software license keys, to facilitate software pirating. 
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Viruses and worms may collect similar information, but are not considered 
spy ware, because spy ware doesn't self-replicate. ̂ ^̂  Spy ware may arrive on a 
machine in a variety of ways, such as bundled with other software that the user 
installs, or exploiting technical flaws in web browsers. The latter method causes 
the spyware to be installed simply by visiting a web page, and is sometimes 
called a drive-by download. 

2.1.8 Adware 
Self-replicating: no 
Population growth: zero 
Parasitic: no 

Adware has similarities to spyware in that both are gathering information about 
the user and their habits. Adware is more marketing-focused, and may pop up 
advertisements or redirect a user's web browser to certain web sites in the hopes 
of making a sale. Some adware will attempt to target the advertisement to fit 
the context of what the user is doing. For example, a search for "Calgary" may 
result in an unsolicited pop-up advertisement for "books about Calgary." 

Adware may also gather and transmit information about users which can be 
used for marketing purposes. As with spyware, adware does not self-replicate. 

2.1.9 Hybrids, Droppers, and Blended Threats 
The exact type of malware encountered in practice is not necessarily easy 

to determine, even given these loose definitions of malware types. The nature 
of software makes it easy to create hybrid malware which has characteristics 
belonging to several different types. ̂ ^ 

A classic hybrid example was presented by Ken Thompson in his ACM 
Turing award lecture. ̂ ^ He prepared a special C compiler executable which, 
besides compiling C code, had two additional features: 

1 When compiling the login source code, his compiler would insert a back 
door to bypass password authentication. 

2 When compiling the compiler's source code, it would produce a special 
compiler executable with these same two features. 

His special compiler was thus a Trojan horse, which replicated like a virus, and 
created back doors. This also demonstrated the vulnerability of the compiler 
tool chain: since the original source code for the compiler and login programs 
wasn't changed, none of this nefarious activity was apparent. 

Another hybrid example was a game called Animal, which played twenty 
questions with a user. John Walker modified it in 1975, so that it would copy the 
most up-to-date version of itself into all user-accessible directories whenever it 



18 COMPUTER VIRUSES AND MALWARE 

was run. Eventually, Animals could be found roaming in every directory in the 
system. ̂  ̂  ̂  The copying behavior was unknown to the game's user, so it would be 
considered a Trojan horse. The copying could also be seen as self-replication, 
and although it didn't infect other code, it didn't use a network either - not 
really a worm, not really a virus, but certainly exhibiting viral behavior. 

There are other combinations of malware too. For example, a dropper is 
malware which leaves behind, or drops, other malware. ̂ ^ A worm can propagate 
itself, depositing a Trojan horse on all computers it compromises; a virus can 
leave a back door in its wake. 

A blended threat is a virus that exploits a technical vulnerability to propagate 
itself, in addition to exhibiting "traditional" characteristics. This has consider­
able overlap with the definition of a worm, especially since many worms ex­
ploit technical vulnerabilities. These technical vulnerabilities have historically 
required precautions and defenses distinct from those that anti-virus vendors 
provided, and this rift may account for the duplication in terms. ̂ "̂̂  The Internet 
worm was a blended threat, according to this definition. 

2.1.10 Zombies 
Computers that have been compromised can be used by an attacker for a 

variety of tasks, unbeknownst to the legitimate owner; computers used in this 
way are called zombies. The most common tasks for zombies are sending spam 
and participating in coordinated, large-scale denial-of-service attacks. 

Sending spam violates the acceptable use policy of many Internet service 
providers, not to mention violating laws in some jurisdictions. Sites known 
to send spam are also blacklisted, marking sites that engage in spam-related 
activity so that incoming email from them can be summarily rejected. It is 
therefore ill-advised for spammers to send spam directly, in such a way that it 
can be traced back to them and their machines. Zombies provide a windfall for 
spammers, because they are a free, throwaway resource: spam can be relayed 
through zombies, which obscures the spammer's trail, and a blacklisted zombie 
machine presents no hardship to the spammer. ̂ -̂  

As for denials of service, one type of denial-of-service attack involves either 
flooding a victim's network with traffic, or overwhelming a legitimate service 
on the victim's network with requests. Launching this kind of attack from a 
single machine would be pointless, since one machine's onslaught is unlikely 
to generate enough traffic to take out a large target site, and traffic from one 
machine can be easily blocked by the intended victim. On the other hand, a 
large number of zombies all targeting a site at the same time can cause grief. 
A coordinated, network-based denial-of-service attack that is mounted from a 
large number of machines is called a distributed denial-of-service attack, or 
DDoS attack. 
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Networks of zombies need not be amassed by the person that uses them; the 
use of zombie networks can be bought for a price. ̂ ^ Another issue is how to con­
trol zombie networks. One method involves zombies listening for commands 
on Internet Relay Chat (IRC) channels, which provides a relatively anonymous, 
scalable means of control. When this is used, the zombie networks are referred 
to as botnets, named after automated IRC client programs called bots}^ 

2,2 Naming 
When a new piece of malware is spreading, the top priority of anti-virus 

companies is to provide an effective defense, quickly. Coming up with a catchy 
name for the malware is a secondary concern. 

Typically the primary, human-readable name of a piece of malware is decided 
by the anti-virus researcher^^ who first analyzes the malware.^^^ Names are 
often based on unique characteristics that malware has, either some feature of 
its code or some effect that it has. For example, a virus' name may be derived 
from some distinctive string that is found inside it, like "Your PC i s now 
Stoned !"^^ Virus writers, knowing this, may leave such clues deliberately in 
the hopes that their creation is given a particular name. Anti-virus researchers, 
knowing this, will ignore obvious naming clues so as not to play into the virus 
writer's hand. ̂ ^ 

There is no central naming authority for malware, and the result is that a 
piece of malware will often have several different names. Needless to say, this 
is confusing for users of anti-virus software, trying to reconcile names heard in 
alerts and media reports with the names used by their own anti-virus software. 
To compound the problem, some sites use anti-virus software from multiple 
different vendors, each of whom may have different names for the same, piece 
of malware. ̂ ^ Common naming would benefit anti-virus researchers talking to 
one another too.^^ 

Unfortunately, there isn't likely to be any central naming authority in the 
near future, for two reasons.^^ First, the current speed of malware propagation 
precludes checking with a central authority in a timely manner.̂ ^ Second, it 
isn't always clear what would need to be checked, since one distinct piece of 
malware may manifest itself in a practically infinite number of ways. 

Recommendations for malware naming do exist, but in practice are not usu­
ally foUowed,̂ -̂  and anti-virus vendors maintain their own separately-named 
databases of malware that they have detected. It would, in theory, be possible 
to manually map malware names between vendors using the information in 
these databases, but this would be a tedious and error-prone task. 

A tool called VGrep automates this process of mapping names.^^^ First, a 
machine is populated with the malware of interest. Then, as shown in Figure 2.1, 
each anti-virus product examines each file on the machine, and outputs what (if 
any) malware it detects. VGrep gathers all this anti-virus output and collates 
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Figure 2.1. VGrep operation 

it for later searching. The real technical challenge is not collating the data, 
but simply getting usable, consistent output from a wide range of anti-virus 
products. 

The naming problem and the need for tools like VGrep can be demonstrated 
using an example. Using VGrep and cross-referencing vendor's virus databases, 
the partial list of names below for the same worm can be found.̂ ^ 

Bagle.C 
Email-worm.Win32.Bagle.c 
W32/Bagle.c@MM 
W32.Beagle.C@mm 
WORM_BAGLE.C 
Worm.Bagle.A3 

These results highlight some of the key identifiers used for naming malware: ̂  ̂ ^ 

Malware type. This is the type of the threat which, for this example, is a worm. 

Platform specifier. The environment in which the malware runs; this worm 
needs the Windows 32-bit operating system API C'W32" and "Win32").^^ 
More generally, the platform specifier could be any execution environment, 
such as an application's programming language (e.g., "VBS" for "Visual 
Basic Script"), or may even need to specify a combination of hardware and 
software platform. 

Family name. The family name is the "human-readable" name of the malware 
that is usually chosen by the anti-virus researcher performing the analysis. 
This example shows several different, but obviously related, names. The 
relationship is not always obvious: "Nachi" and "Welchia" are the same 
worm, for instance. 
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Variant. Not unlike legitimate software, a piece of malware tends to be re­
leased multiple times with minor changes.^^ This change is referred to as 
the malware's variant or, following the biological analogy, the strain of the 
malware. 

Variants are usually assigned letters in increasing order of discovery, so 
this "C" variant is the third B[e]agle found. Particularly persistent families 
with many variants will have multiple letters, as "Z" gives way to "AA." 
Unfortunately, this is not unusual - some malware has dozens of variants.^^ 

ModiJRers. Modifiers supply additional information about the malware, such 
as its primary means of propagation. For example, "mm" stands for "mass 
mailing." 

The results also highlight the fact that not all vendors supply all these identifiers 
for every piece of malware, that there is no common agreement on the specific 
identifiers used, and that there is no common syntax used for names. 

Besides VGrep, there are online services where a suspect file can be uploaded 
and examined by multiple anti-virus products. Output from a service like this 
also illustrates the variety in malware naming :̂ ^ 

Worm/Mydoom.BC Win32:Mytob-D I-Worm/Mydoom 
Win32.Worm.Mytob.C Worm.Mytob.C Win32.HLLM.MyDoom.22 
W32/Mytob.D@mm W32/Mytob.C-mm Net-Worm.Win32.Mytob.c 
Win32/Mytob.D Mytob.D 

Ultimately, however, the biggest concern is that the malware is detected and 
eliminated, not what it's called. 

2.3 Authorship 
People whose computers are affected by malware typically have a variety 

of colorful terms to describe the person who created the malware. This book 
will use the comparatively bland terms malware author and malware writer to 
describe people who create malware; when appropriate, more specific terms 
like virus writer may be used too. 

There's a distinction to be made between the malware author and the mal­
ware distributor. Writing malware doesn't imply distributing malware, and 
vice versa, and there have been cases where the two roles are known to have 
been played by different people.^^ Having said that, the malware author and 
distributor will be assumed to be the same person throughout this book, for 
simplicity. 

Is a malware author a "hacker?" Yes and no. The term hacker has been 
distorted by the media and popular usage to refer to a person who breaks into 
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computers, especially when some kind of malicious intent is involved. Strictly 
speaking, a person who breaks into computers is a cracker, not a hacker,^ ̂ ^ and 
there may be a variety of motivations for doing so. In geek parlance, being 
called a hacker actually has a positive connotation, and means a person who 
is skilled at computer programming; hacking has nothing to do with computer 
intrusion or malware. 

Hacking (in the popular sense of the word) also implies a manual component, 
whereas the study of malware is the study of large-scale, automated forms of 
attack. Because of this distinction and the general confusion over the term, this 
book will not use it in relation to malware. 

2.4 Timeline 
Figure 2.2 puts some important events in context. With the exception of 

adware and spy ware, which appeared in the late 1990s, all of the different 
types of malware were known about in the early 1970s. The prevalence of 
virus, worms, and other malware has been gradually building steam since the 
mid-1980s, leaving us with lots of threats - no matter how they're counted. 

1969 - Benford's viruses 

1972 - Trojan horses known 

C.I 980 - Xerox worm experiments 

1983 - Cohen's virus woric 

1988 - Internet worm 
1969 - Moon landing 

1981 - IBM PC introduced 

1991 -Web invented 

Figure 2.2. Timeline of events 
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Notes for Chapter 2 

1 This case doesn't appear to have gone to trial yet, so the person may yet be 
found not guilty. Regardless, the charges in the indictment [327] serve as 
an example of how a logic bomb can be used maliciously. 

2 The term "computer virus" is preferable if there's any possibility of confu­
sion with biological viruses. 

3 Bassham and Polk [28] note that innovation is important for the longevity 
of computer viruses, especially if the result is something that hasn't yet 
been seen by anti-virus software. They also point out that non-destructive 
viruses have an increased chance of survival, by not drawing attention to 
themselves. 

4 These three definitions are based on Harley et al. [137]; Radatti [258] talks 
about viruses passing through unaffected platforms, which he calls Typhoid 
Mary Syndrome.' 

5 Insofar as a worm can be said to stand. 
6 This farsighted book also included ideas about an internet and laser print­

ers [50]. 
7 The Xerox work is described in Shoch and Hupp [287], and both they and 

Dewdney [91] mention Creeper and Reaper. There were two versions of 
Creeper, of which the first would be better called a rabbit, the second a 
worm. 

8 This version of the event is from [329]. An interesting historical twist: 
Morris, Jr.'s father was one of the people playing Darwin in the early 
1960s at Bell Labs, and created 'The species which eventually wiped out all 
opposition...' [9, page 95]. 

9 Nazario [229] calls this second kind of rabbit a "jumping executable worm." 
10 "Hybrid" is used in a generic sense here; Harley et al. [137] use the term "hy­

brid viruses" to describe viruses that execute concurrently with the infected 
code. 

11 From Thompson [322]; he simply calls it a Trojan horse. 
12 This differs from Harley et al. [137], who define a dropper to be a program 

that installs malware. However, this term is so often applied to malware that 
this narrower definition is used here. 

13 There are many other spamming techniques besides this; Spammer-X [300, 
Chapter 3] has more information. Back-door functionality left behind by 
worms has been used for sending spam in this manner [188]. 

14 Acohido and Swartz [2] mention a $2000-$3000 rental fee for 20,000 zom­
bies, but prices have been dropping [300]. 
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15 Cooke et al. [79] looks at botnet evolution, and takes the more general view 
that botnets are just zombie armies, and need a controlling communication 
channel, but that channel doesn't have to be IRC. There are also a wide 
variety of additional uses for botnets beyond those listed here [319]. 

16 In the anti-virus industry, people who analyze malware for anti-virus com­
panies are referred to as "researchers." This is different from the academic 
use of the term. 

17 This was one suggested way to find the Stoned virus [290]. 
18 Lyman [189], but this is common knowledge in the anti-virus community. 
19 Diversity is usually a good thing when it comes to defense, and large sites 

will often use different anti-virus software on desktop machines than they 
use on their gateway machines. In a panel discussion at the 2003 Vims 
Bulletin conference, one company revealed that they used eleven different 
anti-virus products. 

20 While the vast majority of interested parties want common naming, their 
motivations for wanting this may be different, and they may treat different 
parts of the name as being significant [182]. 

21 Having said this, an effort has been announced recently to provide uniform 
names for malware. The "Common Malware Enumeration" will issue a 
unique identifier for malware causing major outbreaks, so users can refer to 
highly mneumonic names like "CME-42," which intuitively may have been 
issued before "CME-40" and "CME-41" [176]. 

22 Of course, this begs the question of why such a central authority wasn't 
established in the early days of malware prevalence, when there was less 
malware and the propagation speeds tended to be much, much slower. 

23 CARO, the Computer Antivirus Research Organization, produced virus-
naming guidelines in 1991 [53], which have since been updated [109]. 

24 Vendor names have been removed from the results. 
25 "API" stands for "application programming interface." 
26 Not all variants necessarily come from the same source. For example, the 

"B" variant of the Blaster worm was released by someone who had acquired 
a copy of the "A" variant and modified it [330]. 

27 A few, like Gaobot, have hundreds of variants, and require three letters to 
describe their variant! 

28 This example is from [47], again with vendor information removed. 
29 Dellinger's "Virus 2" spread courtesy of the virus writer's friends [87], and 

secondhand stories indicate that Stoned was spread by someone besides its 
author [119,137,290]. Malware writers are rarely caught or come forward, 
so discovering these details is unusual. 
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100 For example, Adleman [3] and Cohen [75]. 
101 The details of the case may be found in [328]; [326] has sentencing 

information. 
102 Paraphrased liberally from Virgil's Aeneid, Book II [336]. 
103 Anderson [12]. 
104 A sidebar in Harley et al. [137, page 60] has an amusing collection of 

suggested plural forms that didn't make the cut. 
105 Benford [33] and Gerrold [118], respectively. Benford talks about his real 

computer viruses in this collection of reprinted stories. 
106 As told in Cohen [74]. 
107 Skrenta [289] and Dellinger [87]. 
108 The whole sordid tale is in Rosen [267]. 
109 The original Core War article is Dewdney [91]; Darwin is described in [9, 

201]. 
110 Bontchev [46]. 
111 Vossen [338] and van het Groenewoud [331], respectively. 
112 This definition of spy ware and adware follows Gordon [124]. 
113 Walker wrote a letter to Dewdney [340], correcting Dewdney's explanation 

of Animal in his column [92] (this column also mentions Skrenta's virus). 
114 Chien and Szor [70] explain blended threats and the historical context of 

the anti-virus industry with respect to them. 
115 Bontchev [44] and Lyman [189] describe the process by which a name is 

assigned. 
116 VGrep was originally by Ian Whalley; this discussion of its operation is 

based on its online documentation [333]. 
117 This description is based on the CARO identifiers and terminology [109]. 
118 The Jargon File lists the many nuances of "hacker," along with a hitch­

hiker's guide to the hacker subculture [260]. 



Chapter 3 

VIRUSES 

A computer virus has three parts: 100 

Infection mechanism How a virus spreads, by modifying other code to contain 
a (possibly altered) copy of the virus. The exact means through which a virus 
spreads is referred to as its infection vector. This doesn't have to be unique 
- a virus that infects in multiple ways is called multipartite. 

Trigger The means of deciding whether to deliver the payload or not. 

Payload What the virus does, besides spread. The payload may involve dam­
age, either intentional or accidental. Accidental damage may result from 
bugs in the virus, encountering an unknown type of system, or perhaps 
unanticipated multiple viral infections. 

Except for the infection mechanism, the other two parts are optional, because 
infection is one of the key defining characteristics of a virus. In the absence of 
infection, only the trigger and payload remain, which is a logic bomb. 

In pseudocode, a virus would have the structure below. The t r i g g e r func­
tion would return a boolean, whose value would indicate whether or not the 
trigger conditions were met. The payload could be anything, of course. 

def v i rus 0 : 
infec t 0 
if t r i g g e r 0 i s t r u e : 

payload0 

Infection is done by selecting some target code and infecting it, as shown 
below. The target code is locally accessible to the machine where the virus 
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runs, applying the definition of viruses from the last chapter. Locally acces­
sible targets may include code in shared network directories, though, as these 
directories are made to appear locally accessible. 

Generally, k targets may be infected each time the infection code below is run. 
The exact method used to select targets varies, and may be trivial, as in the case 
of the boot-sector infectors in Section 3.1.1. The tricky part of se lec t_ ta rge t 
is that the virus doesn't want to repeatedly re-infect the same code; that would 
be a waste of effort, and may reveal the presence of the virus. Select_target 
has to have some way to detect whether or not some potential target code is 
already infected, which is a double-edged sword. If the virus can detect itself, 
then so can anti-virus software. The infect _code routine performs the actual 
infection by placing some version of the virus' code in the target. 

def infect 0 : 
repeat k times: 

target = select_target() 
if no target: 

return 
infect_code(target) 

Viruses can be classified in a variety of ways. The next two sections classify 
them along orthogonal axes: the type of target the virus tries to infect, and the 
method the virus uses to conceal itself from detection by users and anti-virus 
software. Virus creation need not be difficult, either; the virus classification is 
followed by a look at do-it-yourself virus kits for the programming-challenged. 

3.1 Classification by Target 
One way of classifying viruses is by what they try to infect. This section 

looks at three: boot-sector infectors, executable file infectors, and data file 
infectors (a.k.a. macro viruses). 

3.1.1 Boot-Sector Infectors 
Although the exact details vary, the basic boot sequence on most machines 

goes through these steps: 

1 Power on. 

2 ROM-based instructions run, performing a self-test, device detection, and 
initialization. The boot device is identified, and the boot block is read from 
it; typically the boot block consists of the initial block(s) on the device.^ 
Once the boot block is read, control is transferred to the loaded code. This 
step is referred to as the primary boot. 
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Original 
boot block Virus #1 Virus #2 

Original copied Copy of original 
to fixed "safe" now destroyed 

location 
Time 

• 

Figure 3.1. Multiple boot sector infections 

3 The code loaded during the primary boot step loads a larger, more sophisti­
cated program that understands the boot device's filesystem structure, and 
transfers control to it. This is the secondary boot. 

4 The secondary boot code loads and runs the operating system kernel. 

A boot-sector infector, or BSI, is a virus that infects by copying itself to the 
boot block. It may copy the contents of the former boot block elsewhere on 
the disk first,̂  so that the virus can transfer control to it later to complete the 
booting process. 

One potential problem with preserving the boot block contents is that block 
allocation on disk is filesystem-specific. Properly allocating space to save the 
boot block requires a lot of code, a luxury not available to BSIs. An alternate 
method is to always copy the original boot block to some fixed, "safe" location 
on disk. This alternate method can cause problems when a machine is infected 
multiple times by different viruses that happen to use that same safe location, 
as shown in Figure 3.1. This is an example of unintentional damage being done 
by a virus, and has actually occurred: Stoned and Michelangelo were BSIs that 
both picked the same disk block as their safe location. ̂ ^̂  

In general, infecting the boot sector is strategically sound: the virus may be 
in a known location, but it establishes itself before any anti-virus software starts 
or operating system security is enabled. But BSIs are rare now. Machines are 
rebooted less often, and there is very little use of bootable media like floppy 
disks.^ From a defensive point of view, most operating systems prevent writing 
to the disk's boot block without proper authorization, and many a BIOS^ has 
boot block protection that can be enabled. 



30 COMPUTER VIRUSES AND MALWARE 

3.1.2 File Infectors 
Operating systems have a notion of files that are executable. In a broader 

sense, executable files may also include files that can be run by a command-line 
user "shell." A file infector is a virus that infects files which the operating 
system or shell consider to be executable; this could include batch files and 
shell scripts, but binary executables are the most common target. 

There are two main issues for file infectors: 

1 Where is the virus placed? 

2 How is the virus executed when the infected file is run? 

For BSIs, the answer to these questions was apparent. A BSI places itself in 
the boot block and gets executed through a machine's normal boot sequence. 
File infectors have a few more options at their disposal, though, and often the 
answers to these questions are interdependent. The remainder of this section is 
organized around the answer to the first question: where is the virus placed? 

3.1.2.1 Beginning of File 
Older, very simple executable file formats like the .COM MS-DOS format 

would treat the entire file as a combination of code and data. When executed, the 
entire file would be loaded into memory, and execution would start by jumping 
to the beginning of the loaded file.^^^ 

In this case, a virus that places itself at the start of the file gets control 
first when the infected file is run, as illustrated in Figure 3.2. This is called a 
prepending virus. Inserting itself at the start of a file involves some copying, 
which isn't difficult, but isn't the absolute easiest way to infect a file. 

3.1.2.2 End of File 

In contrast, appending code onto the end of a file is extremely easy. A virus 
that places itself at the end of a file is called an appending virus. 

How does the virus get control? There are two basic possibilities: 

• The original instruction(s) in the code can be saved, and replaced by a jump 
to the viral code. Later, the virus will transfer control back to the code it 
infected. The virus may try to run the original instructions directly in their 
saved location, or the virus may restore the infected code back to its original 
state and run it. 

• Many executable file formats specify the start location in a file header. The 
virus can change this start location to point to its own code, then jump to 
the original start location when done. 

Figure 3.3 shows an appending virus using the latter scheme. 
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Start __̂  
location 
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payload() 
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Figure 3.2. Prepending virus 
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New start 
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Figure 3.3. Appending virus 

3.1.2.3 Overwritten into File 

An overwriting virus places itself a^op part of the original code.^ This avoids 
an obvious change in file size that would occur with a prepending or appending 
virus, and the virus' code can be placed in a location where it will get control. 
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Obviously, overwriting code blindly is almost certain to break the original 
code and lead to rapid discovery of the virus. There are several options, with 
varying degrees of complexity and risk. 

• The virus can look for, and overwrite, sections of repeated values in the 
hopes of avoiding damage to the original code.^ Such values would tend 
to appear in a program's data rather than in the code, so a mechanism for 
gaining control during execution would have to be used as well. Ideally, the 
virus could restore the repeated value once it has finished running. 

• The virus can overwrite an arbitrary part of a file if it can somehow preserve 
the original contents elsewhere, similar to the BSI approach. An innocent-
looking data file of some kind, like a JPEG file, could be used to stash the 
original contents. A less-portable approach might take low-level details into 
account: many filesystems overallocate space for files, and an overwriting 
virus could quietly use this extra disk space without it showing up in normal 
filesystem operations. 

• Space may be overallocated inside a file too. Parts of an executable file may 
be padded so that they are aligned to a page boundary, so that the operating 
system kernel can efficiently map the executables into memory. The net 
result is unused space inside executable files where a virus may be located.^ 

• Conceivably, a virus could compress a part of the original code to make space 
for itself, and decompress the original code when the virus has completed 
execution. However, room would have to be made for both the virus and 
the decompression code. 

None of these options is likely to yield a large amount of space, so overwriting 
viruses must be small. 

3.1.2.4 Inserted into File 

Another possibility is that a virus can insert itself into the target code, moving 
the target code out of the way, and even interspersing small pieces of virus code 
with target code. This is no easy feat: branch targets in the code have to 
be changed, data locations must be updated, and linker relocation information 
needs modification. Needless to say, this file infection technique is rarely seen.^ 

3.1.2.5 Not in File 

A companion virus is one which installs itself in such a way that it is naturally 
executed before the original code. The virus never modifies the infected code, 
and gains control by taking advantage of the process by which the operating 
system or shell searches for executable files. Although this bears the hallmarks 
of a Troj an horse, a companion virus is a "real" virus by virtue of self-replication. 



Viruses 33 

The easiest way to explain companion viruses is by example. ̂ ^̂  

• The companion virus can place itself earlier in the search path, with the 
same name as the target file, so that the virus will be executed first when an 
attempt is made to execute the target file. 

• MS-DOS searches for an executable named f oo by looking for f oo. com, 
f 00. exe, and f oo. bat, in that order. If the target file is a .EXE file, then 
the companion virus can be a .COM file with the same name. 

• The target file can be renamed, and the companion virus can be given the 
target file's original name. 

• Windows associates file types (as determined by the filename's extension) 
with applications in the Registry. With strategic Registry changes, the as­
sociation for .EXE files can be made to run the companion virus instead of 
the original executable. Effectively, all executable files are infected at once. 

• The ELF file format commonly used on recent Unix systems has an "inter­
preter" specified in each executable's file header - this invariably points to 
the system's run-time linker. ̂ "̂̂  A companion virus can replace the run-time 
linker, again causing all executables to be infected at once. 

• Companion viruses are possible even in GUI-based environments. A target 
application's icon can be overlaid with the icon for the companion virus. 
When a user clicks on what they think is the application's icon, the com­
panion virus runs instead. 

3.1.3 Macro Viruses 
Some applications allow data files, like word processor documents, to have 

"macros" embedded in them. Macros are short snippets of code written in a 
language which is typically interpreted by the application, a language which 
provides enough functionality to write a virus. Thus, macro viruses are better 
thought of as data file infectors, but since their predominant form has been 
macros, the name has stuck. 

When a macro-containing document is loaded by the application, the macros 
can be caused to run automatically, which gives control to the macro virus. 
Some applications warn the user about the presence of macros in a document, 
but these warnings may be easily ignored. 

A proof-of-concept of macro viruses was published in 1989,̂ ^^ in response 
to rumors of their existence. Macro viruses didn't hit the mainstream until 1995, 
when the Concept virus was distributed, targeting Microsoft Word documents 
across multiple platforms.^ 

Concept's operation is shown in Figure 3.4. Word has a persistent, global 
set of macros which apply to all edited documents, and this is Concept's target: 
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Figure 3.4. Concept in action 

once installed in the global macros, it can infect all documents edited in the 
future. A document infected by Concept includes two macros that have special 
properties in Word. 

AutoOpen Any code in the AutoOpen macro is run automatically when the 
file is opened. This is how an infected document gains control. 

FileSaveAs The code in the FileSaveAs macro is run when its namesake menu 
item (File... Save As...) is selected. In other words, this code can be used 
to infect any as-yet-uninfected document that is being saved by the user. 

From a technical standpoint, macro languages are easier to use than lower-
level programming languages, so macro viruses drastically lower the barrier to 
virus creation. 

3.2 Classification by Concealment Strategy 
Another way of classifying viruses is by how they try to conceal themselves, 

both from users and from anti-virus software. 

3.2.1 No Concealment 
Not hiding at all is one concealment strategy which is remarkably easy to 

implement in a computer virus. It goes without saying, however, that it's not 
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Before Decryption 

for i in 0...length (body) 
decrypt bodŷ ^ 

goto decrypted_body 

After Decryption 

for i in 0...length (body) 
decrypt body^ 

goto decrypted_body 

decrypted_body: 
infect() 
if trigger() is true: 

payload() 

Figure 3.5. Encrypted virus pseudocode 

very effective - once the presence of a virus is known, it's trivial to detect and 
analyze. 

3.2.2 Encryption 
With an encrypted virus, the idea is that the virus body (infection, trigger, and 

payload) is encrypted in some way to make it harder to detect. This "encryption" 
is not what cryptographers call encryption; virus encryption is better thought of 
as obfuscation. (Where it's necessary to distinguish between the two meanings 
of the word, I'll use the term "strong encryption" to mean encryption in the 
cryptographic sense.) 

When the virus body is in encrypted form, it's not runnable until decrypted. 
What executes first in the virus, then, is a decryptor loop, which decrypts the 
virus body and transfers control to it. The general principle is that the decryptor 
loop is small compared to the virus body, and provides a smaller profile for anti­
virus software to detect. 

Figure 3.5 shows pseudocode for an encrypted virus. A decryptor loop can 
decrypt the virus body in place, or to another location; this choice may be 
dictated by external constraints, like the writability of the infected program's 
code. This example shows an in-place decryption. 

How is virus encryption done? Here are six ways:̂ ^^ 

Simple encryption. No key is used for simple encryption, just basic param-
eterless operations, like incrementing and decrementing, bitwise rotation, 
arithmetic negation, and logical NOT:̂ ^ 
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Encryption Decryption 

inc body, 
rol body, 
neg body, 

dec body/ 
ror body/ 
neg body/ 

Static encryption key. A static, constant key is used for encryption which 
doesn't change from one infection to the next. The operations used would 
include arithmetic operations like addition, and logical operations like XOR. 
Notice that the use of reversible operations is a common feature of simpler 
types of virus encryption. In pseudocode: 

Encryption Decryption 

body/ + 123 body/ - 123 

body/ xor 42 body/ xor 42 

Variable encryption key. The key begins as a constant value, but changes as 
the decryption proceeds. For example: 

key = 123 
for i in 0... length (body) : 

body/ = body/ xor key 
key = key + body/ 

Substitution cipher. A more general encryption could employ lookup tables 
which map byte value between their encrypted and decrypted forms. Here, 
encrypt and decrypt are 256-byte arrays, initialized so that if encrypt [ j ] 
= k, then decrypt [k] = j : 

Encryption Decryption 

body/ = encrypt [body/] body/ = decrypt [body/] 

This substitution cipher is a 1:1 mapping, but in actual fact, the virus body 
may not contain all 256 possible byte values. A homophonic substitution 
cipher allows a l:n mapping, increasing complexity by permitting multiple 
encrypted values to correspond to one decrypted value. 

Strong encryption. There is no reason why viruses cannot use strong encryp­
tion. Previously, code size might have been a factor, if the virus would 
have to carry strong decryption code with it, but this is no longer a problem: 
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most systems now contain strong encryption libraries which can be used by 
107 

Viruses/^' 
The major weakness in the encryption schemes above is that the encrypted 

virus body is the same from one infection to the next. That constancy makes 
a virus as easy to detect as one using no concealment at all! With random 
encryption keys/^^ this error is avoided: the key used for encryption changes 
randomly with each new infection. This idea can be applied to any of the 
encryption types described here. Obviously, the virus' decryptor loop must be 
updated for each infection to incorporate the new key. 

3.2.3 Stealth 
A stealth virus is a virus that actively takes steps to conceal the infection 

itself, not just the virus body. Furthermore, a stealth virus tries to hide from 
everything, not just anti-virus software. Some examples of stealth techniques 
arebelow.*^^ 

• An infected file's original timestamp can be restored after infection, so that 
the file doesn't look freshly-changed. 

• The virus can store (or be capable of regenerating) all pre-infection infor­
mation about a file, including its timestamp, file size, and the file's contents. 
Then, system I/O calls can be intercepted, and the virus would play back the 
original information in response to any I/O operations on the infected file, 
making it appear uninfected. This technique is applicable to boot block I/O 
too. 

The exact method of intercepting I/O calls depends on the operating system. 
Under MS-DOS, for instance, I/O requests are made with interrupt calls, 
whose handlers are located via user-accessible interrupt vectors; the virus 
need only modify the interrupt vector to insert itself into the chain of interrupt 
handlers. On other systems, I/O is performed using shared libraries, so a 
virus can impose itself into key shared library routines to intercept I/O calls 
for most applications. 

• Some systems store the secondary boot loader as consecutive disk blocks, 
to make the primary boot loader's task simpler. On these systems, there are 
two views of the secondary boot loader, as a sequence of blocks, and as a file 
in the filesystem. A virus can insert itself into the secondary boot loader's 
blocks, relocating the original blocks elsewhere in the filesystem. The end 
result is that the usual, filesystem view shows no obvious changes, but the 
virus is hidden and gets run courtesy of the real primary boot loader. ̂ ^̂  

A variation is a reverse stealth virus, which makes everything look infected 
- the damage is done by anti-virus software frantically (and erroneously) trying 
to disinfect.*^^ 
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Stealth techniques overlap with techniques used by rootkits, Rootkits were 
originally toolkits for people who had broken into computers; they used these 
toolkits to hide their tracks and avoid detection. ̂ ^̂  Malware now uses rootkits 
too: for example, the Ryknos Trojan horse tried to hide itself using a rootkit 
intended for digital-rights management. ̂ -̂̂  

3.2.4 Oligomorphism 
Assuming an encrypted virus' key is randomly changed with each new in­

fection, the only unchanging part of the virus is the code in the decryptor loop. 
Anti-virus software will exploit this fact for detection, so the next logical de­
velopment is to change the decryptor loop's code with each infection. 

An oligomorphic virus, or semi-polymorphic virus, is an encrypted virus 
which has a small, finite number of different decryptor loops at its disposal. 
The virus selects a new decryptor loop from this pool for each new infection. 
For example, Whale had 30 different decryptor variants, and Memorial had 96 
decryptors.̂ ^"^ 

In terms of detection, oligomorphism only makes a virus marginally harder to 
spot. Instead of looking for one decryptor loop for the virus, anti-virus software 
can simply have all of the virus' possible decryptor loops enumerated, and look 
for them all. 

3.2.5 Polymorphism 
A polymorphic virus is superficially the same as an oligomorphic virus. Both 

are encrypted viruses, both change their decryptor loop on each infection. ̂ ^̂  
However, a polymorphic virus has, for all practical purposes, an infinite num­
ber of decryptor loop variations. Tremor, for example, has almost six billion 
possible decryptor loops!^^^ Polymorphic viruses clearly can't be detected by 
listing all the possible combinations. 

There are two questions that arise with respect to polymorphic viruses. First, 
how can a virus detect that it has previously infected a file, if its presence is 
hidden sufficiently well? Second, how does the virus change its decryptor loop 
from infection to infection? 

3.2.5.1 Self-Detection 

At first glance, it might seem easy for a polymorphic virus to detect if it has 
previously infected some code - when the virus morphs for a new infection, 
it can also change whatever aspect of itself that it looks for. This doesn't 
work, though, because a virus must be able to recognize infection by any of its 
practically-infinite forms. This means that the infection detection mechanism 
must be independent of the exact code used by the virus: 
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C:\DOCUME~l\aycock>dir target.com 
Volume in drive C has no label. 
Volume Serial Number is DEAD-BEEF 

Directory of C:\DOCUME~l\aycock 

Examining 
the original 

file 

11/07/2003 11:29 AM 0 target.com 
1 File(s) 0 bytes 
0 Dir(s) 13,797,240,832 bytes free 

C:\DOCUME~l\aycock>echo yes > target.com:infected 

C:\DOCUME~l\aycock>dir target.com 
Volume in drive C has no label. 
Volume Serial Number is DEAD-BEEF 

Directory of C:\DOCUME~l\aycock 

11/07/2003 11:30 AM 
1 File(s) 

0 target.com 
0 bytes 

0 Dir(s) 13,797,240,832 bytes free 

C:\DOCUME~l\aycock>more < target.com:infected 
yes 

Adding an 
alternate 

I data stream 

The added 
stream isn't 
obvious... 

...but it's 
I really there 

Figure 3.6. Fun with NTFS alternate data streams 

File timestamp. A virus could change the timestamp of an infected file, so that 
the sum of its time and date is some constant value K for all infections.^^^ 
A lot of software only displays the last two digits of the year, so an infected 
file's year could be increased by 100 without attracting attention.^^^ 

File size. An infected file could have its size padded out to some meaningful 
size, such as a multiple of 1234.̂ ^ 

Data hiding. In complex executable file formats, like ELF, not all parts of the 
file's information may be used by a system. A virus can hide a flag in unused 
areas, or look for an unusual combination of attributes that it has set in the 
file. For example, Zperm looks for the character "Z" as the minor linker 
version in an executable's file header on Windows.̂ ^^ 

Filesystem features. Some filesystems allow files to be tagged with arbitrary 
attributes, whose existence is not always made obvious. These can be used 
by a virus to store code, data, or flags which indicate that a file has been 
infected. Figure 3.6 shows such "alternate data streams" being used in an 
NTFS filesystem to attach a flag to a file; the presence of this flag doesn't 
show up in directory listings, the file size, or in the graphical filesystem 
browser. ̂ ^ 
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External storage. The indication that a file is infected need not be directly 
associated with the file itself. For example, a virus could use a hash function 
to map an infected file's name into an obfuscated string, and use that string to 
create a key in the Windows Registry. The virus could then use the existence 
of that key as an infection indicator. Even if the Registry key was discovered, 
it wouldn't immediately reveal the name of the infected file (especially if a 
strong cryptographic hash function was used). 

Note that none of these mechanisms need to work perfectly, because a false 
positive only means that the virus won't infect some code that it might have oth­
erwise. Also, since all these infection-detection methods work for polymorphic 
viruses, they also work for the more specific case of non-polymorphic viruses 
too. Viruses which retain some constancy can just look for one or two bytes of 
their own code,̂ ^^ rather than resorting to more elaborate methods. 

It was once suggested that systems could be inoculated against specific 
viruses by faking the virus' self-detection indicator on an uninfected system. ̂ ^̂  
Unfortunately, there are too many viruses now to make this feasible. 

3.2.5.2 Changing the Decryptor Loop 
The code in a polymorphic virus is transformed for each fresh infection using 

a mutation engine}^^ The mutation engine has a grab-bag of code transforma­
tion tricks which take as input one sequence of code and output another, equiva­
lent, sequence of code. Choosing which technique to apply and where to apply 
it can be selected by the engine using a pseudo-random number generator. ̂ ^̂  
The result is an engine which is extensible and which can permute code in a 
large number of ways. Some sample transformations are shown below. ̂ "̂̂  

Instruction equivalence. Especially on CISC architectures like the Intel x86, 
there are often many single instructions which have the same effect. All 
these instructions would set register r l to zero: 

clear rl 
xor rl,rl 
and 0,rl 
move 0,rl 

Instruction sequence equivalence. Instruction equivalence can be general­
ized to sequences of instructions. While single-instruction equivalence is at 
the mercy of the CPU's instruction set, instruction sequence equivalence is 
more portable, and applies to both high-level and low-level languages: 

X = 1 <=> y = 2 1 

X = y - 2 0 
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Instruction reordering. Instructions may have their order changed, so long 
as constraints imposed by inter-instruction dependencies are observed. 

r l = 1 2 r2 = r3 + r2 
r2 = r3 + r2 <=> r l = 12 
r4 = r l + r2 r4 = r l + r2 

Here, the calculation of r4 depends on the values of r l and r2, but the 
assignments to r 1 and r2 are independent of one another and may be done 
in any order. 

Instruction reordering is well-studied, because it is an application of the 
instruction scheduling done by optimizing compilers to increase instruction-
level parallelism. 

Register renaming. A minor, but significant, change can be introduced sim­
ply by changing the registers that instructions use. While this makes no 
difference from a high-level perspective, such as a human reading the code, 
renaming changes the bit patterns that encode the instructions; this compli­
cates matters for anti-virus software looking for the virus' instructions. For 
example: 

rl =12 r3 = 12 

r2 = 34 <=» rl = 34 

r3 = rl + r2 r2 = r3 + rl 

The concept of register renaming naturally extends to variable renaming in 
higher-level languages, such as those a macro virus might employ. 

Reordering data. Changing the locations of data in memory will have a similar 
effect in terms of altering instruction encoding as register renaming. This 
would not necessarily have a corresponding transformation in a high-level 
language, as the variable names themselves would not be changed, just their 
order. 

Making spaghetti. Although some programmers are naturally gifted when it 
comes to producing "spaghetti code," others are not as fortunate. Hap­
pily, code can be automatically transformed so that formerly-consecutive 
instructions are scattered, and linked together by unconditional jumps: 
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start: 
rl = 12 
r2 = 34 
r3 = rl + r2 

=> 

LI: 
r2 = 34 
goto L2 

start: 
rl = 12 
goto LI 

L2: 
r3 = rl + r2 

The instructions executed, and their execution order, is the same in both 
pieces of code. 

Inserting junk code. "Junk" computations can be inserted which are inert with 
respect to the original code - in other words, running the junk code doesn't 
affect what the original code does. Two examples of adding junk code are 
below: 

rl = 12 
inc rl 
inc rl 
rl = rl - 2 
r2 = 34 
r3 = rl + r2 

<= 
rl = 12 
r2 = 34 
r3 = rl + r2 

=> 
r5 = 42 
rl = 12 

X: 
r2 = 34 
dec r5 
bne X 
r3 = rl + r2 

The code on the left shows the difference between inserting junk code and 
using instruction sequence equivalence: with junk code, the original code 
isn't changed. The one on the right inserts a loop as junk code. 

Run-time code generation. One way to transform the code is to not have all 
of it present until it runs. Either fresh code can be generated at run time, or 
existing code can be modified. 

r l = 1 2 r l = 12 
r2 = 34 => r2 = 34 
r3 = r l + r2 generate r3 = rl + r2 

c a l l generated_code 

Interpretive dance. The way code is executed can be changed, from being 
directly executed to being interpreted by some application-specific virtual 
machine.^^^ A "classical" interpreter for such virtual machine code mimics 
the operation of a real CPU as it fetches, decodes, and executes instructions. 
In the example below, two of the real instructions are assigned different 
virtual machine opcodes. Another opcode forces the interpreter loop to exit. 
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demonstrating the mixing of interpreted and real code. In the interpreter, the 
variable ipc is the interpreter's program counter, and controls the instruction 
fetched and executed from the CODE array. 

rl = 12 
r2 = 34 
r3 = rl + r2 

=> 
ipc = 0 
loop: 

switch CODE[ipc]: 
case 0: 
exit loop 

case 1: 
r2 = 34 

case 2: 
rl = 12 

inc ipc 
r3 = rl + r2 

CODE: 
2 
1 
0 

This transformation can be repeated multiple times, giving multiple levels 
of interpreters. 

Concurrency. The original code can be separated into multiple threads of 
execution, which not only transforms the code, but can greatly complicate 
automatic analysis: ̂ ^ 

rl = 12 start thread T 
r2 = 34 => rl = 12 
r3 = rl + r2 wait for signal 

r3 = rl + r2 

T: 
r2 = 34 
send signal 
exit thread T 

Inlining and outlining. Code inlining is a technique normally employed to 
avoid subroutine call overhead, ̂ "̂  that replaces a subroutine call with the 
subroutine's code: 
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call SI 
call S2 

SI: 
rl = 12 
r2 = r3 
r4 = rl 
return 

S2: 
rl = 12 
r2 = 34 
rS = rl 
return 

+ 
+ 

+ 

r2 
r2 

r2 

rl = 12 
r2 = rS + r2 

=» r4 = rl + r2 

rl = 12 
r2 = 34 
r3 = rl + r2 

Outlining is the reverse operation; it need not preserve any logical code 
grouping, however: 

rl = 12 
r2 = r3 + r2 
r4 = rl + r2 

rl = 12 
r2 = 34 
r3 = rl + r2 

=> 

rl = 12 
r2 = r3 + r2 
call S12 
r3 = rl + r2 

S12: 
r4 = rl + 
rl = 12 
r2 = 34 
return 

r2 

Another option is to convert the code into threaded code, which has noth­
ing to do with threads used for concurrent programming, despite the name. 
Threaded code is normally used as an alternative way to implement program­
ming language interpreters.^^^ Subroutines in threaded code don't return to 
the place from which they were invoked, but instead directly jump to the next 
subroutine; the threaded code itself is simply an array of code addresses: 
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rl = 12 
r2 = r3 + r2 
r4 = rl + r2 

rl = 12 
r2 = 34 
rS = rl + r2 

next = &CODE 
goto [next] 
CODE: 

=> &I1 
&I2 
&X 

X: 
rl = 
r2 = 
rS = 

11: 
rl = 
inc 
goto 

12: 
r2 = 
r4 = 
inc 
goto 

12 
34 
rl + r2 

12 
next 
[next] 

r3 + r2 
rl + r2 
next 
[next] 

Subroutine interleaving. Inlining and outlining transformations maintain the 
original code, but rebundle it in different ways. Code can also be trans­
formed by combining independent subroutines together, as in the following 
example. 

call SI 
call S2 

SI: 
rl = 12 
r2 = r3 + 
r4 = rl + 
return 

S2: 
llllllBl 
iHIIIBII 
•Jllllllll 
return 

r2 
r2 

HI 

call S12 

=> S12: 
r5 = 12 
rl ̂  12 
r6 = r3 + r2 
r2 - 34 
r4 = r5 + r6 

rS == rl -̂  III 
return 
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The code from SI has had some registers renamed to avoid collisions with 
registers used by S2. The overall effect in the interleaved subroutine is the 
same as the original code in terms of the values computed. 

A number of these transformations are also used in the (legitimate) field 
of code obfuscation; code obfuscation research is used to try and prevent re­
verse engineering. There are also many, many elaborate code transformations 
performed by optimizing compilers. Not all compiler techniques and code 
obfuscation techniques have yet been used by virus writers. 

Instead of supplying transformations for the mutation engine to pick from, 
a virus writer may create a mutation engine that will automatically produce a 
distinct, equivalent decryptor loop. In compilers, automatically searching for 
a code sequence is referred to as superoptimization, and the search may be 
implemented in a variety of ways: brute-force, automated theorem proving, 
or any technique for searching a large search space. *̂ ^ Zellome, for example, 
uses a genetic algorithm in its mutation engine. ̂ ^̂  Enormous computational 
demands are required by such a search, although a clever algorithm may avoid 
generating too much illegal code and thus improve search time.^^ For now, this 
mutation method is a curiosity only. 

3.2,6 Metamorphism 
'Viruses aim to keep their size as small as possible and it is impractical to make the 

main virus body polymorphic' - Tarkan Yetiser̂ ^^ 

Metamorphic viruses are viruses that are polymorphic in the virus body.̂ ^^ 
They aren't encrypted, and thus need no decryptor loop, but avoid detection by 
changing: a new version of the virus body is produced for each new infection. 

The code-modifying techniques used by polymorphic viruses all apply to 
metamorphic viruses. Both employ a mutation engine, except a polymorphic 
virus need not change its engine on each infection, because it can reside in the 
encrypted part of the virus. In contrast, a metamorphic virus' mutation engine 
has to morph itself anew for each infection. 

Some metamorphic viruses are very elaborate. Simile's mutation engine, 
about 12,000 lines of assembly code, translates Simile from machine code to a 
machine-independent intermediate code. Operating on the intermediate code, 
the mutation engine undoes old obfuscations, applies new transformations, and 
generates fresh machine code.̂ ^^ Metamorphic mutation engines whose input 
and output are machine code must be able to disassemble and reassemble ma­
chine code. ̂ ^ 

Metamorphism is relatively straightforward to implement in viruses that 
spread in source code form, such as macro viruses. A virus may rely on system 
tools for metamorphism, too. Apparition, for instance, is written in Pascal^^ 
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and carries its own source code; if a compiler is found on an infected system, 
the virus inserts junk code into its source and recompiles itself. 

While polymorphic and metamorphic viruses are decidedly nontrivial to 
detect by anti-virus software, they are also hard for a virus writer to implement 
correctly - the numbers of these viruses are small in comparison to other types. 

3.2.7 Strong Encryption 
The encryption methods discussed so far result in viruses that, once captured, 

are susceptible to analysis. The major problem is not the encryption method, 
because that can always be strengthened; the major problem is that viruses carry 
their decryption keys with them.̂ ^^ 

This might seem a necessary weakness, because if a virus doesn't have its 
key, it can't decrypt and run its code. There are, however, two other possibilities. 

1 The key comes from outside an infected system: 

• A virus can retrieve the key from a web site, but that would mean that 
the virus would then have to carry the web site's address with it, which 
could be blocked as a countermeasure. To avoid knowing a specific web 
site's name, a virus could use a web search engine to get the key instead. 

Generally, any electronic data stream that a virus can monitor would be 
usable for key delivery, especially ones with high volumes of traffic that 
are unlikely to be blocked: email messages, Usenet postings, instant 
messaging, IRC, file-sharing networks. 

• A binary virus is one where the virus is in two parts, and doesn't become 
virulent until both pieces are present on a system.̂ ^^ There have only 
been a few binary viruses, such as Dichotomy and RMNS.^^ 

One manifestation of binary viruses would be where virus Vi has strongly-
encrypted code, and virus V2 has its key. But this scheme is unlikely 
to work well in practice. If Vi and V2 travel together, then both will 
bear the same risk of capture and analysis, defeating the purpose of 
separating the encryption key. If V\ and V2 spread separately (e.g., V2 
is released a month after Vi, and uses a different infection vector) then 
their spread would be independent. 

Now, say that P\ is the probability of Vi reaching a given machine, and 
P2 is that probability for V2. With an independent spread, the probability 
of them both finding the same machine and becoming virulent isP\xP2, 
i.e., smaller.̂ ^ 

2 The key comes from inside an infected system. Using environmental key 
generation, the decryption key is constructed of elements already present in 
the target's environment, like: 
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• the machine's domain name; 

• the time or date; 

• some data in the system (e.g., file contents); 

• the current user name; 

• the interface's language setting (e.g., Chinese, Hebrew). 

This makes it very easy to target viruses to particular individuals or groups. 
A target doesn't even know that they possess the key! 

Combined with strong encryption, environmental key generation would ren­
der a virus unanalyzable even if captured. To fully analyze an encrypted 
virus, it has to be decrypted, and while the elements comprising the key may 
be discovered, the exact value of the key will not.̂ ^ In this case, the only 
real hope of decryption lies in a poor choice of key. A poorly-chosen key 
with a relatively small range of possible values (e.g., the language setting) 
would be susceptible to a brute-force attack. 

How can the virus know that its decryption was successful? It doesn't. 
While the virus could carry a checksum with it to verify that the decryption 
worked,^ ̂  that might give away information to an analyst. An alternative 
method is to catch exceptions that invalid code may cause, then try to run 
the decrypted "code" and see if it works. 

3.3 Virus Kits 
Humans love their tools, and it's not surprising that a variety of tools exists 

for writing viruses. A virus kit is a program which automatically produces all 
or part of a virus' code.̂ "̂̂  They have different interfaces, from command-line 
tools to menu-based tools to full-blown graphical user interfaces. Figures 3.7 
and 3.8 show two versions of a GUI-based virus kit.̂ ^ 

Programming libraries are available, too, such as add-on mutation engines 
which will turn any virus into a polymorphic virus. In an Orwellian twist, 
though, success is failure. The more popular a virus kit or library, the greater 
the chance that anti-virus researchers have devoted time to detecting all of its 
progeny. 
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Notes for Chapter 3 
1 Even though there may be several initial blocks/sectors involved, I'll refer 

to this as the boot block (singular) for convenience. 
2 Disks are used for concreteness, but really this could be any bootable media. 
3 Although media is used which can potentially be bootable, like CD-ROMs, 

they are not often booted from. 
4 "BIOS" stands for "Basic Input/Output System;" this refers to in-ROM code 

on PCs. 
5 This section was originally based on Harley et al. [ 137]. Some sources would 

classify viruses using some of these techniques as "cavity infectors" [77], but 
as cavity infection involves overwriting, this distinction seems unnecessary. 

6 The ZeroHunt virus looked for sequences of bytes with the value 0, for 
instance [198]. 

7 This technique was employed for viruses back in 1987 [95], and is still in 
use [27, 58]. 

8 Having said that, Zmist does it [106]. 
9 Ironically, it was shipped out by Microsoft on some CD-ROMs [17]. The 

Concept source code is still easily obtainable, and an analysis can be found 
in many sources [122, 137, 187]. 

10 For the pedantic, there's an implied key of 1 for these operations. 
11 Executable files infected by the CTX virus, for example, will have their size 

adjusted to be a multiple of 101 bytes [195]. 
12 The Stream virus uses NTFS' alternate data streams, but not to detect infec­

tion. Stream is an overwriting virus that saves the original code as a separate 
data stream called "STR" that is associated with the infected file [313]. 

13 This example is only for illustration; threads do not typically share register 
contents. 

14 The term "subroutine" will be used generically to describe either a proce­
dure, function, or method. 

15 Joshi et al. [155] note their speedup compared to a brute-force algorithm. 
Agapow [4] examines clustering of functional code in the space of all pos­
sible programs, arguing that mutation from one piece of functional code to 
another is possible. 

16 The Mental Driller [320]; Lakhotia et al. [178] also discuss the mutation 
engine, and argue that metamorphic viruses are ultimately constrained in 
their complexity, because of their need to disassemble and de-obfuscate 
their own code. 

17 Borland's Object Pascal for Windows, to be precise [162]. 
18 Kaspersky [159, 160]. Interestingly, the 1961 Darwin players tried an ex­

periment with such multi-part programs, and declared the experiment a 
'flop' [201]. 
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19 Recall that probabilities fall in the range [0,1], so their product can't be 
greater than either one. 

20 Even if the exact key isn't discovered, general information about the virus' 
intent may be revealed by the elements used for the key. 

21 Bontchev[46]. Tht random decryption algorithm (RDA) works ^long those 
lines: the virus doesn't carry its key, but doesn't get its key from the environ­
ment, either. An RDA virus decrypts itself by brute force, trying different 
decryption keys until it locates a known value in the decrypted code [208]. 

22 Okay, it depends on how "virus" is defined - this is really a worm generator, 
but it has one of the best GUIs. These are both by [K]alamar. 

100 These parts are from Harley et al. [137]. The phrase "infection mechanism" 
is also used extensively in biology. 

101 As reported in [14]. 
102 Levine[183]. 
103 The first is from Bontchev [38]; everyone mentions the second [38, 137, 

187]; the third and final ones are from Harley et al. [137]. The fourth is 
mentioned in [77]. 

104 Levine [183]. 
105 Highland [141]. 
106 The first three are from [13], the fourth from [248]. 
107 As pointed out by one of my students. 
108 Wells [13]. 
109 The first two are from Harley et al. [137]. 
110 Bontchev [38]. 
111 Bontchev [46]. 
112 Hoglund and Butler [144]. 
113 Florio [112] analyzes Ryknos; the infamous rootkit in question was outed 

by Russinovich [271]. 
114 [161] and [309], respectively. 
115 Definition based on [217, 351]. 
116 Fischer [108]. 
117 Ludwig[187]. 
118 Ludwig again, and Ferbrache [103]. 
119 Szor[311]. 
120 Ferbrache [103]. 
121 Ferbrache [103]. 
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122 Nachenberg [217]. 
123 Yetiser[351]. 
124 These are from Cohen [75] (upon whom this organization was originally 

based) and Collberg et al. [76]; additional sources are noted below. 
125 Klint [166]. 
126 Bell [32]. There are other variations, like indirect threaded code [90]. 
127 The seminal superoptimization paper was Massalin [196], who used a 

brute-force search; Joshi et al. [155] use automated theorem proving, and 
Michalewicz and Fogel [206] cover a wide variety of heuristic search 
methods. 

128 Ferric and Shannon [105]. 
129 Yetiser[351]. 
130 This section is based on Szor and Ferric [314]. 
131 Perriotetal. [249]. 
132 Unless stated otherwise, this section is based on Filiol [107] and Riordan 

and Schneier [265]. 
133 Skulason [291] first described the idea, for the more general case of a 

multi-part virus; the term "binary virus" is from Bontchev [46]. 
134 This section is based on Tarala [316]. 
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ANTI-VIRUS TECHNIQUES 

' . . . it is trivial to write a program that identifies all infected programs with 100% 
accuracy.' - Eugene Spafford^ 

Anti-virus software does up to three major tasks: ̂ ^̂  

Detection Detecting whether or not some code is a virus or not which, in the 
purest form of detection, results in a Boolean value: yes, this code is in­
fected, or no, this code is not infected. Ultimately, detection is a losing 
game. Precisely detecting viruses by their appearance or behavior is prov-
ably undecidable^^^ - a virus writer can always construct a virus which is 
undetectable by some anti-virus software. (Then the anti-virus software can 
be updated to detect the new virus, at which point the virus writer can build 
another new virus, and so on.) 

Should a virus always be detected, even if it can't run? Yes. Even if a virus 
is dormant on one system, it is still useful to detect it so that the virus doesn't 
affect another system. Anti-virus software is regularly applied to incoming 
email, for instance, where the email recipient's machine is different from 
the machine running the mail server and anti-virus software. The other case 
is where a virus won't run on any system. Finding an intended virus may 
point to some underlying security flaw, and thus it can be useful to detect 
those viruses too. 

Identification Once a virus is detected, which virus is it? The identification 
process may be distinct from detection, or identification may occur as a side 
effect of the detection method being used. 

Disinfection Disinfection is the process of removing detected viruses; this is 
sometimes called cleaning. Normally a virus would need to be precisely 
identified in order to perform disinfection. 
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Virus present? 

yes no 

Virus y^s 
detected? 

no 

Figure 4.1. Virus detection outcomes 

Detection and disinfection can be performed using generic methods that try to 
work with known and unknown viruses, or using virus-specific methods which 
only work with known viruses. (Virus-specific methods may catch unknown 
variants of known viruses, however.) 

The majority of this chapter is devoted to detection. It is arguably the most 
important of the three tasks above, because identification and disinfection both 
require detection as a prerequisite. In addition, early detection (i.e., before an 
infection has occurred) completely alleviates the need for the other tasks. 

There are five possible outcomes for detection. Figure 4.1 shows four of 
them. Perfect virus detection would always have the outcomes circled on the 
diagonal, where a virus is detected if one is really present, and no virus is 
detected if none is there. Detection isn't perfect, though. K false positive is 
when the anti-virus software reports a virus even though a virus isn't really 
there, which can waste time and resources on wild goose chases. A false 
negative, or a miss, is when anti-virus software doesn't detect a virus that's 
present. Either type of false reading serves to undermine user confidence in 
the anti-virus software. The fifth outcome is ghost positives, where a virus 
is detected that is no longer there, but a previous attempt at disinfection was 
incomplete and left enough virus remnants to still be detected. ̂ ^̂  

Detection methods can be classified as static or dynamic, depending on 
whether or not the virus' code is running when the detection occurs. This 
chapter first looks at detection methods using this classification, then disinfec­
tion and related issues, virus databases and virus description languages, and 
some miscellaneous short topics. 
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4.1 Detection: Static Methods 
Static anti-virus techniques attempt virus detection without actually running 

any code. This section examines three static techniques: scanners, heuristics, 
and integrity checkers. 

4.1.1 Scanners 
The term "scanner" in the context of anti-virus software is another term 

which has been diluted through common usage, like "virus" itself. It is often 
applied generically to refer to anti-virus software, regardless of what technique 
the anti-virus software is using. 

Scanners can be classified based on when they are invoked: ̂ ^̂  

On-demand On-demand scanners run when explicitly started by the user. 
Many anti-virus techniques draw upon a database of information about cur­
rent threats, and forcing an on-demand scan is useful when a new virus 
database is installed. An on-demand scan may also be desirable when an 
infection is suspected, or when a questionable file is downloaded. 

On-access An on-access scanner runs continuously, scanning every file when 
it's accessed. As might be expected, the extra I/O overhead and resources 
consumed by the scanner impose a performance penalty. 

Some on-access scanners permit tuning, so that scans are only performed for 
read accesses or write accesses; normally scanning would be done for both. 
A machine where all files arrive via the network may only want scanning on 
write accesses, for example, because that would provide complete anti-virus 
coverage while minimizing the performance hit.^ 

In this section, a more restricted view is taken of scanners. Each virus is 
represented by one or more patterns, or signatures, sequences of bytes which 
(hopefully) uniquely characterize the virus. Signatures are sometimes called 
scan strings, and need not be constant strings. Some anti-virus software may 
support "don't care" symbols called wildcards that match an arbitrary byte, a 
part of a byte, or zero or more bytes. ̂ ^̂  

The process of searching for viruses by looking through a file for signatures 
is called scanning, and the code that does the search is called a scanner. More 
generally, the search is done through a stream of bytes, which would include 
the contents of a boot block, a whole file, part of a file being written or read, or 
network packets. 

With hundreds of thousands of signatures to look for, searching for them one 
at a time is infeasible. The biggest technical challenge in scanning is finding 
algorithms which are able to look for multiple patterns efficiently, and which 
scale well. The next sections examine three such algorithms, which illustrate 
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Figure 4.2. Aho-Corasick finite automaton and failure function 

the general principles behind multiple-pattern search, and which have been used 
in both anti-virus software and the intrusion-detection systems of Chapter 8. 

4.1.1.1 Algorithm: Aho-Corasick 
The Aho-Corasick algorithm dates back to 1975 and was originally intended 

for bibliographic search. ̂ ^̂  The algorithm is best illustrated with an example. A 
scanner would be looking for signatures which could be composed of any byte 
values, but for simplicity, English words will be used in the example instead of 
signatures: hi, hips, hip, hit, chip. 

Aho-Corasick needs two things for searching, both of which are shown in 
Figure 4.2: 

1 A finite automaton is used to keep track of the state of the search. Conceptu­
ally, this is represented as a graph, where the circles represent search states 
and the edges are possible transitions that can be made from one state to an­
other; the label on an edge indicates the character that causes that transition 
to be made. (The "other" label is a catch-all which matches any character for 
which there is no explicit transition.) A doubly-circled state is a final state, 
where output (i.e., a signature match) occurs, and the associated output is 
printed above its final state. The start state is denoted by an edge which 
doesn't originate at a state. The states are numbered for reference purposes. 

A failure function tells the search algorithm which state to go to if no suitable 
transition is found in the finite automaton. Intuitively, this is the earliest place 
that the search can possibly resume matching. 
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Figure 4.3. Aho-Corasick in operation 

The computation of the finite automaton and failure function will be shown 
later, but for now, here is the search code that uses them: 

state = START_STATE 
while not end of input: 

ch = next input character 
ch 

while no edge state-^^ exists: 
state = failure(state) 

state = t 
if state is final: 

output matches 

(The notation s t a t e -^ t means an edge labeled ch from state s t a t e to some 
state t,) 

Figure 4.3 gives the result of running the search code on the input string 
"microchips," showing the finite automaton's state numbers underneath. From 
the start state 0, the first two input characters just cause a transition back to 
state 0. The third character, c, causes a transition into state 2, but there is no 
transition from state 2 for the following r, so the failure function is used to 
locate a state from which to resume the search: state 0 again. Skipping ahead, 
the transition from state 4 on i leads to state 7, a final state where the signature 
"hi" is matched. Two signatures are matched next, in state 9. There are no 
transitions at all from state 9, so the failure function is used again, causing the 
search to resume at state 5, where there is a transition on s to final state 8. The 
Aho-Corasick algorithm thus searches in parallel for multiple signatures, even 
detecting overlapping ones. 

How are the finite automaton and failure function constructed? There are 
three steps: 

1 Build a trie from the signatures.^ A trie is a tree structure used for searching, 
where the tree's edges are labeled. A signature has a unique path in the trie 
from the root to some leaf; signatures with common prefixes share trie paths 
as long as possible, then diverge. 
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Figure 4.4. Trie building 

Figure 4.4 shows the trie being built incrementally for the running example. 
The trie's root is the start state of the finite automaton, and a self-edge is 
added to it. A signature is added by starting at the root, tracing along existing 
paths until a necessary edge is absent, then adding the remaining edges and 
states. The end of a path becomes a final state. 

2 Label the states in the trie. The trie states are assigned numbers such that 
states closer to the root have lower numbers. This corresponds to a breadth-
first ordering of the states. (If the trie states are laid out as in previous 
figures, then numbering is a simple matter of stepping through the columns 
of states.) The breadth-first ordering and labels appear in Figure 4.5. 

3 Compute the failure function and finish the automaton. The failure function 
is undefined for the start state, but must be computed for all other states. 
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Figure 4.5. Trie labeling 

Any state directly connected to the start state (in other words, at a depth 
of 1 in the trie) can only resume searching at the start state. For other 
states, the partially-computed failure function is used to trace back through 
the automaton to find the earliest place the search can resume. Processing 
states in breadth-first order ensures that needed failure function values are 
always present. 

The computation algorithm is below. Notice that it not only fills in the failure 
function, but also updates the finite automaton. (The notation r -»s means 
an edge from some state r with some label a to state s, and s t a t e s /is an 
edge labeled a from state s t a t e to some state t.) 

foreach state s where depth(s) = 1: 
failure(s) = START^STATE 

foreach state s where depth(s) > 1, in breadth order: 
a 

find the edge r ~^s 
state = failure (r) 

a 
while no edge state-^r exists: 

state = failure(state) 
failure(s) = t 
output(s) U= output(0 

Returning to the example, the algorithm starts by initializing/a//wr^(l) = 0 
Mid failure(2) = 0. Then, tracing through the rest of the algorithm: 
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Computing state 7's failure function value causes its output to change in the 
finite automaton, and makes it a final state. State 9's output is changed too. 
The final result is identical to Figure 4.2. 

An alternative form of Aho-Corasick combines the finite automaton with 
the failure function. The result is a new finite automaton for searching that 
only makes one transition for every input character read, ensuring linear worst-
case performance. In practice, Aho-Corasick implementations must solve the 
challenging problem of how best to represent the finite automaton in a time-
and space-efficient manner. ̂ ^̂  

4.1.1.2 Algorithm: Veldman 

The Aho-Corasick algorithm is not the only way to search for signatures. 
One insight leads to a new family of search algorithms: it may be good enough 
to perform a linear search on a reduced set of signatures. The search doesn't 
have to be done in parallel. 

This insight underlies Veldman's signature search algorithm. ̂ ^̂  The set of 
signatures being looked for at any one time is filtered down to a manageable 
level, then a sequential search is done. The key is limiting the sequential search 
as much as possible. 

Four adjacent, non-wildcard bytes are chosen from each signature. These 
four-byte pattern substrings are then used to construct two hash tables which are 
used for filtering during the search. Ideally, each pattern substring is chosen so 
that many signatures are represented by the substring. For example. Figure 4.6 
shows that three pattern substrings are sufficient to express five signatures: 
blar?g, foo, greep, green, agreed. Two-byte pattern substrings are supported as 
a special case for signatures which are short or contain frequent wildcards, and 
the substrings don't have to be selected from the beginning of a signature. 

After the pattern substrings are chosen, the hash tables are built. The first 
hash table is used for the first two bytes of a substring, the second hash table 
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Figure 4.6. Pattern substring selection for Veldman's algorithm 

for the last two bytes of a substring, if present. At search time, the hash tables 
are indexed by adjacent pairs of input bytes. A single bit in the hash table 
entry indicates whether or not the pair of input bytes might be part of a pattern 
substring (and possibly part of a signature). A signature table is constructed 
along with the hash tables, too - this is an array of lists, where each list contains 
all the signatures that might match a pattern substring. The final hash table entry 
for a pattern substring is set to point to the appropriate signature list. Figure 4.7 
illustrates the hash tables and signature table for the example above. 

The search algorithm is given below. The match subroutine walks through 
a list of signatures and attempts to match each signature against the input. 
Matching also compensates for the inexact filtering done by the hash tables: 
for example, a byte sequence like "grar" or "blee" would pass through the hash 
tables, but would be winnowed out by match. 

foreach byte sequence bib2b3b4 in input: 
if HTl[bib2] i s V " : 

if two-byte pa t t e rn : 
s ignatures = HTl [bib2]->st 
match(signatures) 

e l s e : 
if HT2[b3b4] i s V " : 

s ignatures = HT2 [b3b4]->st 
match(signatures) 

Veldman's algorithm easily supports wildcards of arbitrary complexity in sig­
natures, something the stock Aho-Corasick algorithm doesn't handle.^^^ How­
ever, the sequential search overhead of Veldman's algorithm must be carefully 
monitored, and both Veldman and Aho-Corasick look at every byte in the input. 
Is it possible to do better? 

4.1.1.3 Algorithm: Wu-Manber 

The Wu-Manber algorithm relies on the same insight as Veldman's algorithm, 
limiting the set of signatures that must be linearly searched. ̂ ^̂  The difference 
is that Wu-Manber is able to skip input bytes that can't possibly correspond to a 
match, resulting in improved performance. The same example signatures will 
be used to demonstrate the algorithm: blar?g, foo, greep, green, agreed. 
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Figure 4.7. Data structures for Veldman's algorithm 

The Wu-Manber search code is below: 

i = MINLEN 
whi le i < n : 

s h i f t = SHIFT [b/_ lb/] 
i f s h i f t = 0: 

s i g n a t u r e s = HASH[b/-ib/] 
m a t c h ( s i g n a t u r e s ) 
s h i f t = 1 

i = i + s h i f t 

The bytes of the input are denoted bi to b^, and MINLEN is the minimum 
length of any pattern substring; its calculation will be explained below. Two 
hash tables are used, as shown in Figure 4.8. SHIFT holds the number of input 
bytes that may safely be skipped, and HASH stores the sets of signatures to 
attempt matching against. The hash functions used to index into the hash tables 
have not been shown, and in practice, different hash functions may be used for 
the different hash tables. The match subroutine attempts to match the input 
text starting at hi-MiNLEN+i against a list of signatures. 

A trace of the algorithm for the running example is in Figure 4.9. MINLEN 
is three, and for this short input, only four hash table lookups in SHIFT occur, 
with one (successful) matching attempt finding "foo" starting at b6. 

This leaves the question of how the hash tables are constructed. It is a 
four-step process: 
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Figure 4.9. Wu-Manber searching 

1 Calculating MINLEN. This is the minimum number of adjacent, non-wildcard 
bytes in any signature. For the example, MINLEN is 3 because of the signature 
"foo:" 

Signature Length 

blar?g 4 
foo 3 
greep 5 
green 5 
agreed 6 
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2 Initializing the SHIFT table. Now, take one pattern substring for each sig­
nature containing MINLEN bytes: bla, foo, gre, agr. The Wu-Manber search 
code above examines adjacent pairs of input bytes, so consider every two-
byte pair in the pattern substrings: 

ag fo la re 
bl gr 00 

If the pair of input bytes isn't one of these, then the search can safely skip 
MINLEN-1 input bytes. Because the SHIFT table holds the number of bytes 
to skip for any input byte pair, initialize each entry in it to MINLEN-1. 

3 Filling in the SHIFT table. For each two-byte pattern substring pair xy, q^y 
is the rightmost ending position of xy in any pattern substring. The SHIFT 
table is filled in by setting SHIFT [jcy] = MINLEN-(7xy. For example: 

xy 

bl 
la 
gr 

Signature(s) 

bla 
bla 

agr,gre 

<ixy 

2 
3 
3 

The bytes in the pattern substrings are numbered from 1, explaining why 
the ending position of "bl" in bil2a3 is 2, for instance. 

4 Filling in the HASH table. If MINLEN-̂ ĵ y is zero for some xy above, then the 
search has found the rightmost end of a pattern substring. A match can be 
tried; HASH [xyl is set to the list of signatures whose pattern substring ends 
inxy. 

The full Wu-Manber algorithm is much more general; only a simplified form 
of it has been presented here. It was designed to scale well and handle tens 
of thousands of signatures, even though its worst case is horrendous, requiring 
a sequential search through all signatures for every input byte. Tests have 
shown that it lives up to these design goals, outperforming advanced forms of 
Aho-Corasick except when the number of possible input values is very small."̂  

4.1.1.4 Testing 

How can a user determine if their anti-virus scanner is working? Testing 
using live viruses may seem to be a good idea, and an endless supply of them 
is available on the Internet and in a typical mailbox. ̂ ^̂  Malware of any sort 
is potentially dangerous, though, and shouldn't be handled without special 
precautions, especially by users without any special training. 
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Figure 4.10. The EICAR test file 

Testing can be done using non-viral code which the anti-virus software will 
recognize to be a test file. The EICAR test file is intended to fill the need for 
such a non-viral file. It is a legitimate MS-DOS program and, when run, prints 
the message: 

EICAR-STANDARD-ANTIVIRUS-TEST-FILE! 

All modem anti-virus software should detect this test file. The contents of the 
file were designed to be printable ASCII, and can be entered with any text editor. 
The only caveat is that the file's contents, in Figure 4.10, must be the first 68 
bytes in the file. (The disassembly of this code is not particularly enlightening, 
and is omitted.) Some trailing whitespace is permitted, so long as the file doesn't 
exceed 128 bytes in length; nothing else may be in the file. 

The drawback to the EICAR test file is that it is non-viral, and it hardly 
constitutes an exhaustive test of anti-virus software. Anti-virus software is 
unlikely to rely solely on a scanner anyway, and the EICAR test file does 
nothing to exercise other anti-virus techniques. 

4.1,1.5 Improving Performance 

Scanning an entire file for viruses is slow; it is referred to using the derogative 
term grunt scanning. There are four general approaches to improving scanner 
performance: 

Reduce amount scanned. Scanning an entire file is not only slow, but in­
creases the likelihood of false positives, as a signature may be erroneously 
found in the wrong place.̂ ^^ Instead, scanning can be targeted to specific 
locations based on assumptions about viral behavior. 

• Assuming that viruses add themselves to the beginning or the end of an 
executable file, searches can be limited to those areas. This is called top 
and tail scanning. 

• More complicated executable formats allow an executable's entry point 
to be specified. Scanning can be restricted to the program's entry point 
and instructions reachable from that entry point. 

• If the exact positions of all virus signatures are known, then scanning 
can be specifically directed to those areas. The assumption here is that 
all viruses are known, along with their behavior in terms of file location. 
This is in contrast to the more generic assumptions about virus locations 
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made above. In conjunction with the entry point scanning above, this 
is referred to dis fixed point scanning. 

• Many viruses are small. The amount scanned in any location can be set 
according to the size of common viruses. For example, if most viruses 
are less than 8K in size, then the scanner may only examine 8K areas at 
the beginning and end of the executable. ̂ ^̂  

Use of scanning-reduction techniques implies that the scanner will no longer 
see the complete input. The input to a scanning algorithm doesn't have to 
be a faithful representation of a file's contents, however. The algorithms 
work equally well on an abridged view of the input. 

Of the performance-enhancing approaches, reducing the amount scanned is 
the only approach that directly affects the potential correctness of the result. 

Reduce amount of scans. Regardless of how much of a file is or isn't scanned, 
avoiding a scan completely is better.^ This can be accomplished several 
ways: 

• Scanning can only be done for certain file types; only executable files 
may be scanned, for instance, and not data files. Viruses and other threats 
have been markedly versatile in choosing places to reside, making this 
scanning-avoidance option no longer viable. 

• Anti-virus software can compute and store state information for files 
that have been successfully scanned, and only re-scan files if they have 
changed.̂ -̂̂  While the technique is sound, a number of issues arise: ̂ ^̂  

- What information about a file is stored? A file's state information 
must be sufficient to determine if the file has been changed or not. 
File state may include the file length and the date/time of the last 
file modification; these are easy to compare for changes, but also 
easy for a virus writer to fake. 

A stronger means of change detection would compute a checksum 
of the file, and store the checksum in the file's state information 
too. Note that the checksum is only used for avoiding scans, and 
isn't used for virus detection in this case, like integrity checkers 
(Section 4.1.3) do. 

- Where is state information stored? The possible locations include: 
1 In memory. An in-memory cache of file state information would 

not persist across machine reboots, or any other situation where 
the anti-virus software would be restarted. The size of a mem­
ory cache would necessarily be bounded to prevent too much 
memory from being consumed, and a cache replacement algo­
rithm would be needed to select cache entries to evict when 
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the cache fills up. Removing file state from the cache doesn't 
change anti-virus accuracy, just performance - in the worst case, 
re-scanning would be required. 

2 On disk, in a database. File state information can be stored in 
a database on disk. Persistence and size aren't problems, but 
the file state database becomes a target for attack. Also, if the 
database is keyed to filenames, then a file which is renamed or 
copied is a file which gets rescanned, because its new identity 
isn't present in the database. 

3 On disk, tagged onto files. Extended filesystem attributes can 
be used to attach file state information onto the file itself. These 
attributes are carried along when a file is renamed or copied. 

- What constitutes a change? Obviously, any differences between 
the stored file state and its current state would indicate a change. 
The comparison should be ordered so that cheaper operations, like 
fetching a file's length, are done before more expensive operations 
like checksumming. 

Updates to the virus database, while not a change in file state per 
se, should appear as a change so that the file is re-scanned. ̂ ^̂  This 
is trivial to implement with an in-memory file state cache: a cache 
flush resets all stored file state information at once. For on-disk 
information, this can be implemented by adding the version of the 
virus database used for scanning into the file state information. 

An alternative approach is to use session keys. A session key is a 
unique key which is changed each time the anti-virus software is 
run, and files have the current session key attached to them when 
they are scanned. The scanner checks for a file's session key before 
scanning it; a re-scan is done if the session key doesn't match or is 
absent. 

- How are checksums computed efficiently?^ ^̂  Computing the check­
sum of an entire file can take longer than scanning it. This presents 
the same problem as grunt scanning had to begin with! Much the 
same solution is used: only checksum key areas of a file. The "key 
areas" of a file depend on the file type, though, which implies that 
checksumming code must be able to understand all the different 
types of file. 

A more clever way to find the key areas of a file is to leverage the 
existing anti-virus software. The scanner is implicitly identifying 
key areas by virtue of where it looks for a signature. The anti-virus 
checksumming code can let the scanner proceed, recording the disk 
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blocks accessed in the file - these are the key areas that should be 
checksummed. 

- How is tampering avoided? On-disk information of any kind is 
subject to attack. File state information can be encrypted to make 
it slightly harder to forge. If session keys are used, the session key 
can be used as the encryption key to encrypt something that can be 
verified for correct decryption: a constant value, the filename, or 
the file state information.^ 

Lower resource requirements. Engineering tradeoffs may be made to im­
prove on-access performance, such as lowering CPU and memory demands 
by using a smaller, less precise set of signatures. This doesn't have to impact 
overall accuracy, because additional verification can catch false positives, 
as Section 4.4 explains. 

Signature selection is a difficult issue, and involves tradeoffs in precision 
as well as resource requirements. Short signatures can result in false pos­
itives and misidentification;^^^ long signatures are more precise, but bloat 
the virus database. There is the additional danger of being too precise. Long 
signatures may be so specific as to not detect minor virus variants - ideally, 
signatures are chosen with possible variations in mind whenever possible, 
like changes to data strings. Compiler-generated code is not terribly distinc­
tive for short signatures, either, and signatures may be better chosen from 
the data area for viruses written in high-level languages.^^^ 

Change the algorithm. There is an overwhelming amount of research done 
on efficient string-searching algorithms, and improving the basic searching 
algorithm is always a possibility. 

One avenue that may be explored is the use of algorithms tailored to spe­
cific file types. There are many, many kinds of compressed, archived, en­
coded, and weakly encrypted files which may harbor viruses. Too many, 
in fact: typically, anti-virus scanners are preceded by a file type-specific 
decoder, which provides the scanner with a plaintext, logical view of the in­
put. Scanning algorithms exist for directly searching specific file types, like 
compressed files, which would avoid the need for separate decoding.^ ̂ ^ This 
would only make good engineering sense for file types which are frequently-
encountered and tend to have large file sizes. 

Change the algorithm implementation. Tuning an algorithm's implementa­
tion is a touchy process, and the results may depend on the compiler, CPU, 
and memory as much as they depend on the code itself. For algorithms 
that are implemented using frequent lookups in tables whose data doesn't 
change, converting the algorithm and its data into directly-executable code 
has yielded performance dividends in the past.̂ ^^ Effectively, the tables are 
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turned into code. Changing the underlying algorithm itself, rather than its 
implementation, is likely to have a bigger impact, though. ̂ ^̂  

These general approaches are not specific to scanners, and may be adapted 
to improve the performance of other anti-virus techniques. 

4.1.2 Static Heuristics 
Anti-virus softv^are can employ static heuristics in an attempt to duplicate 

expert anti-virus analysis. Static heuristics can find known or unknown viruses 
by looking for pieces of code that are generally "virus-like," instead of scanning 
for specific virus signatures.^^^ This is a static analysis technique, meaning that 
the code being analyzed is not running, and there is no guarantee that any 
suspicious code found would ever be executed. ̂ ^̂  

Static heuristic analysis is done is two steps:^^^ 

1 Data: the Gathering. Data can be collected using any number of static 
heuristics. Whether or not any one heuristic correctly classifies the input 
is not critical, because the results of many heuristics will be combined and 
analyzed later. 

A scanner can be used to locate short signatures which are generally in­
dicative of suspicious code, called boosters}^^ The presence of a booster 
increases the likelihood that the code being analyzed is viral. For example: 

• Junk code. 

• Decryption loops. 

• Self-modifying code. 

• Use of undocumented API calls. 

• Manipulation of interrupt vectors. 

• Use of unusual instructions, especially ones that wouldn't be generated 
by a compiler. 

• Strings containing obscenities, or obvious cues like the word "virus." 

It is equally important to look for things that are present in "normal" code, 
things that viruses don't usually do. For example, viruses don't often create 
pop-up dialogue boxes for the user.̂ ^^ This would be considered a negative 
heuristic, or a stopper. 

Other heuristics can be computed which aren't based on scanning: 

• The difference between an executable's entry point and its end of file 
can be computed. ̂ ^̂  Too small a value, when compared to the same 
value for typical uninfected executables, may point to an appender. 
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• Spectral analysis of the code may be done, computing a histogram of 
the bytes or instructions used in the code. Encrypted code will have a 
different spectral signature from unencrypted code.̂ ^^ 

2 Analysis. As hinted at by the terms "booster" and "stopper," analysis of 
static heuristic data may be as simple as weighting each heuristic's value 
and summing the results. If the sum passes some threshold, then the input 
is deemed to be infected. 

More elaborate methods of data analysis might use neural networks, expert 
systems, or data mining techniques.^^^ 

Signatures of suspicious code will most likely be chosen by expert anti-virus 
researchers. This process can be automated, however, at least for some restricted 
domains: IBM researchers automatically found static heuristic signatures for 
BSIs. They took two corpuses of boot blocks, one exclusively containing BSIs, 
one with no infections. A computer found trigrams - sequences of three bytes -
which appeared frequently in the BSI corpus but not in the other corpus. Finally, 
they computed a 4-cover such that each BSI had at least four of the found BSI 
trigrams. After this process, they were left with a set of only fifty trigrams to 
look for. The presence or absence of these trigrams was used to classify a boot 
block as infected or not.̂ "̂ ^ 

Static heuristics may be viewed as a way to reduce the resource requirements 
of anti-virus scanners. Full virus signatures in a virus database can be distilled 
down to a set of short, generic, static heuristic signatures. (The distillation may 
even be done automatically, using the IBM technique just described.) An anti­
virus scanner can look for these short signatures, loading in their associated set 
of full virus signatures only if a match is found. This alleviates the need to keep 
full signatures in memory.̂ ^^ 

4.1.3 Integrity Checkers 
With the exception of companion viruses, viruses operate by changing files. 

An integrity checker exploits this behavior to find viruses, by watching for 
unauthorized changes to files.^-^^ 

Integrity checkers must start with a perfectly clean, 100% virus-free system; 
it is impossible to understate this. The integrity checker initially computes 
and stores a checksum for each file in the system it's watching. Later, a file's 
checksum is recomputed and compared against the original, stored checksum. 
If the checksums are different, then a change to the file occured. 

There are three types of integrity checker: 

1 Offline. Checksums are only verified periodically, e.g., once a week. 

2 Self-checking. Executable files are modified to check themselves when 
run. Ironically, modifying executables to self-check their integrity involves 
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virus-like mechanisms. Self-checking can be done in a less-obtrusive way 
by adding the self-checking code into shared libraries. 

In general, anti-virus software will perform integrity self-checking, ̂ ^̂  re­
gardless of the anti-virus technique it uses. The allure of attacking anti-virus 
software is too great to ignore. 

3 Integrity shells. An executable file's checksum is verified immediately prior 
to execution. This can be incorporated into the operating system kernel for 
binary executable files; the ideal positioning is less clear for other types 
of "executable" files, like batch files, shell scripts, and scripting language 
programs. 

As Section 4.3 explains, integrity checkers have a long list of drawbacks, 
and are not suitable as the only means of anti-virus protection for a system. 

4.2 Detection: Dynamic Methods 
Dynamic anti-virus techniques decide whether or not code is infected by 

running the code and observing its behavior. 

4.2.1 Behavior Monitors/Blockers 
'Interestingly, viruses are detected now (and always have been) by behavioral recog­

nition. Unfortunately, the customers are the ones who have been forced to perform this 
function.' - Paul SchmehP "̂̂  

A behavior blocker is anti-virus software which monitors a running pro­
gram's behavior in real time, watching for suspicious activity. If such activity 
is seen, the behavior blocker can prevent the suspect operations from succeed­
ing, can terminate the program, or can ask the user for the appropriate action to 
perform. Behavior blockers are sometimes called behavior monitors, but the 
latter term implies (rightly or wrongly) that no action is taken, and the burglars 
are only watched while they steal the silver. 

What does a behavior blocker look for? Roughly speaking, a behavior 
blocker watches for a program to stray from what the blocker considers to 
be "normal" behavior. Normal behavior can be modeled in three ways, by 
describing: ̂ ^̂  

1 The actions that are permitted. This is called positive detection, 

2 The actions that are not permitted, called negative detection, 

3 Some combination of the two, in much the same way that static heuristics 
included boosters and stoppers. 

An analogy can be drawn with natural immune systems, because behavior 
blockers are trying to discern self from nonself, or normal from anomalous 
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Figure 4.11. Static vs. dynamic 

behavior. This is the same thing that immune systems need to do to distinguish 
normal cells from foreign invaders.^^^ Care must be taken, however, because 
anomalous behavior does not automatically imply viral behavior. 

The actions examined by behavior blockers do not need to include every 
instruction executed; they need only include actions of interest for virus de­
tection. For example, most virus activity eventually needs to call some system 
functionality, like I/O operations - only these actions have to be considered. No 
matter how obfuscated the I/O calls are statically, the calls will appear clearly 
when the code runs.̂ ^^ This is a major benefit enjoyed by dynamic types of 
analysis like behavior blocking. 

If each action that code performs is thought of as a symbol in a string, then 
behavior blockers can be seen to be looking for dynamic signatures instead 
of the static signatures used by static anti-virus techniques. (The same search 
algorithms can be used for dynamic signatures, but the "input string" is dynam­
ically generated.) The difference is shown in Figure 4.11. Other ideas carry 
over from static techniques, too. Behavior blockers can look for short dynamic 
signatures which are generally indicative of virus-like behavior. Looking at 
I/O actions, for instance, an appending virus might exhibit a dynamic signature 
like: 

1 Opening an executable, with both read and write permission. 

2 Reading the portion of the file header containing the executable's start ad­
dress. 

3 Writing the same portion of the file header. (The start address can be checked 
separately for changes consistent with expected viral behavior.) 
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Figure 4.12. From execution trace to dynamic signatures 

4 Seeking to the end of the file. 

5 Appending to the file. 

Variations on this dynamic signature are obviously possible, and those variants 
can be enumerated and watched for too. Generic, dynamic signatures like these 
can be produced by human anti-virus experts. 

Dynamic signatures specific to a given piece of code may be found auto­
matically that characterize permitted actions for the code. The code is run and 
profiled before it becomes infected, watching the actions the code performs. 
To produce dynamic signatures of length K, the stream of actions is examined 
through a window of size K, saving all unique combinations of actions (Fig­
ure 4.12 is an example for K = 3); those are the code's dynamic signatures for 
normal behavior, which are recorded in a database. When the same code is run 
later, the same process is repeated, but this time the actions within the window 
are looked up in the database, to ensure that they were previously seen. Too 
many new action sequences indicate abnormal behavior. In practice, using sys­
tem calls (without parameters) as actions, and a value of Â  = 10, this scheme 
was seen to work well for several Unix system programs.^^^ 

False positives from behavior blockers can be mitigated by taking context 
information into account. A notion of "ownership" is especially useful in this 
regard, because it gives applications a lot of leeway in terms of the behaviors 
they can exhibit when working with their files. ̂ -̂^ Web browsers maintain a 
cache of previously-downloaded data, for example. Web browsers also clear 
out their caches periodically, without warning, and a mass deletion of files looks 
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more than a little bit like something that a virus would do. A behavior blocker 
that tracked the cache files' creation would know that they "belong" to the web 
browser, and so the file deletion is probably legitimate. 

This file deletion example serves to illustrate a common criticism leveled 
at behavior blockers: the code whose behavior is being monitored is actually 
running. Any bad effects like file deletion that the behavior blocker doesn't 
prevent are allowed to proceed unchecked. A general, system-wide ''undo" 
facility can alleviate some of these concerns by increasing the time window 
which the behavior blocker has to detect viral behavior without ill effect. ̂ ^̂  Not 
all operations can be undone, such as anything transmitting information outside 
the machine. A short-term undo ability for some asynchronous operations, like 
sending email, can be implemented by introducing a transmission delay in 
sending email to a remote machine.̂ ^^ 

Finally, there is the question of how long a running program's behavior should 
be monitored. The duration of monitoring is a concern because monitoring adds 
run-time overhead. Assuming most viruses will reveal themselves early when 
an infected program runs, programs only need to be monitored when they start. 
However, this assumption is not always valid. In any case, behavior blockers 
can be enabled and disabled for a running program as needed. 

4.2.2 Emulation 
Behavior blocking allowed code to run on the real machine. In contrast, 

anti-virus techniques using emulation let the code being analyzed run in an 
emulated environment. The hope is that, under emulation, a virus will reveal 
itself. Because any virus found wouldn't be running on the real computer, no 
harm is done. 

Emulation can be applied two ways, although the boundary between them is 
admittedly fuzzy: 

Dynamic heuristics Dynamic heuristics are exactly the same as static heuris­
tics. The only difference is in how the data is gathered: dynamic heuristic 
analysis gathers its data from the emulator about the code being analyzed. 
The analysis is done the same way as it is for static heuristics. 

Dynamic heuristics can look for the same features as behavior blockers 
too, like system calls. The emulator is a safe virtual environment in which 
to monitor running code, however, and emulation doesn't run the code to 
completion. Dynamic heuristics can be used effectively to spot the dynamic 
signatures of metamorphic viruses. ̂ '̂ ^ 

Generic decryption For polymorphic viruses, the decryptor loop can be very 
hard for anti-virus software to spot. Generic decryption skirts this issue by 
relying on the virus' own decryptor loop to decrypt the virus body. Once 
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decrypted, the virus body can be detected using normal scanning methods. ̂ "̂^ 
This makes exact identification possible for known polymorphic viruses. 

Generic decryption uses heuristics to determine when a virus has decrypted 
itself. ̂ "̂"̂  For example, the virus may try to execute an instruction which 
resides in a previously-modified (i.e., decrypted) memory location. Another 
indicator is the apparent size of the decryption, although this amount will 
vary with the architecture. On Intel x86 platforms, 24 bytes or more of 
modified/decrypted memory is a promising sign of decryption. A series of 
boosters followed by some stoppers is yet another indication that decryption 
is complete. 

Besides heuristics, an emulator can scan memory for signatures periodically 
during emulation, and upon completion of the emulation. ̂ ^̂  

The rest of this section discusses the parts of an emulator, reasons to re-run 
the emulator, and ways to optimize emulation. 

4.2.2.1 Emulator Anatomy 
One way to execute code in a controlled way is to single-step through 

the code. Code could arguably be "emulated" this way.̂ "̂ ^ However, single-
stepping can be easily detected by a virus, and there is always the danger of a 
virus running in a non-virtual environment escaping. A more elaborate emula­
tion mechanism is needed. 

Conceptually, an emulator has five parts: ̂ "̂^ 

1 CPU emulation. 

2 Memory emulation. The full scope of the memory emulator's task is daunt­
ing: 32 bits of address means that potentially 4G of address space must 
be emulated. Fortunately, the emulator does not run enough of the code's 
instructions for that much emulated memory to be chewed up. 

For generic decryption, as mentioned above, the memory emulator will 
need to keep track of how much memory has been modified, and where it 
is. This is not only useful for deciding if the decryptor loop has finished. 
Later scanner operation can be limited to the areas of memory which the 
suspected virus has modified. 

3 Hardware and operating system emulation. Real operating system code isn't 
used in an emulator, but rather a stripped-down mock-up of it. Why? There 
are four reasons :̂ '̂ ^ 

• Copyright and licensing issues with the real operating system code. 

• Size - the real operating system consumes a lot of memory and disk 
space. 
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• Startup time. The overhead is too great to boot an operating system in 
the emulator (or restore a snapshot) for every program being emulated. 

• The emulator needs monitoring capability which isn't present in a real 
operating system. 

Many operating system calls in an emulator will return faked, fixed values. 

For hardware emulation, the parts typically used by viruses must be emu­
lated, such as timers that a virus might use to generate random numbers. 
The low-level disk interface would have once been important to emulate, 
but any code now talking to that interface directly is probably up to no good. 

4 Emulation controller. When does emulation stop? No attempt is made to run 
code being analyzed to completion (with the exception of running code in an 
anti-virus lab). There are two reasons for this. First, time spent emulating 
is time the user isn't getting any response from the program being analyzed. 
Second, some code never finishes; application programs run until the user 
tells them to quit, and network servers are meant to run indefinitely. This is 
related to the famous Halting Problem in computer science, which says that 
it is not possible in general for one program to decide if another program 
will ever stop running. 

In practice, the emulation controller will use rules and heuristics to decide 
when to stop emulation. Some example rules are: 

• The number of instructions emulated. The exact values are architecture-
dependent, and the maximum thresholds will increase with increases in 
computer power. On an Intel x86, less than 1000 instructions usually 
need to be emulated; emulation times start becoming prohibitive at about 
the 30,000 instruction mark.̂ "̂ ^ 

• The amount of time spent emulating. One anti-virus' default setting is 
45 seconds. 

• The proportion of instructions that modify memory. Too low a propor­
tion can mean non-viral code, or a virus which isn't encrypted.^^^ 

Heuristically, the emulation controller could watch for stoppers, things that 
viruses normally wouldn't do. For instance, most viruses won't perform 
output prior to decrypting. 

5 Extra analyses. The emulator may gather additional data during emulation 
which can be used for additional, post-emulation analyses. For example, 
a histogram can be maintained of executed instructions which are typical 
of virus decryption. This can be used to find well-obscured polymorphic 
viruses. A histogram can also be used to detect metamorphic viruses by 
comparing the emulation histogram to histograms of known metamorphic 
viruses. ̂ ^̂  
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Figure 4.13. Herding goats 

4.2.2.2 If at First You Don't Succeed 
The emulation controller may re-invoke the emulator for a variety of reasons: 

• Virus code may have results which are specific to a certain CPU and its 
properties. For example, self-modifying virus code may rely on how a 
particular CPU fetches its instructions, or instructions may be used which 
only work on a specific CPU. The emulator may need to be re-run with 
different CPU parameters. ̂ ^̂  

• If a virus is observed to install interrupt handlers, the emulator can be run 
on those handlers to test their behavior. ̂ ^̂  

• Some viruses do not take control at the usual entry point of an infected 
program, and instead have multiple entry points. The emulator can be run 
on each possible virus entry point. ̂ ^̂  

• The ability of a suspected virus to self-replicate can be confirmed using goat 
files.i^^ 

A goat file is a "sacrificial" file that can be used as a decoy, where any 
modifications to the goat file indicate illicit activity. A goat file with known 
properties can also be used to deduce information about a virus. 

The goat file in Figure 4.13 is an executable which in this case simply 
exits without performing any I/O. The goat file is fed to a suspected virus 
inside the emulator. If the goat file is modified, then the emulator is re-run, 
feeding the original goat file to the modified goat file. An attempt to modify 
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the original goat file must now indicate a virus, because self-replication has 
been demonstrated. 

• One problem with emulation is that viral behavior may be (deliberately) 
sporadic, only manifesting itself under certain conditions, like a time-based 
trigger. 

The code for these viral behaviors is usually run or not run based on the re­
sult of a conditional branch in the virus' code. The emulator can watch for 
untaken branches that could signal this, and queue up the untaken branches 
along with an approximate machine state for each: register contents, pro­
gram counter and stack pointer values, and some contents of the top of the 
stack. After the main emulation is done, the emulator can be re-run on the 
queued branches to try and flush out hidden behavior. ̂ ^̂  

• A related use of re-running the emulator is watching for unused memory 
areas in the virus which may be instructions. (The instructions could be 
executed through a mechanism which the emulator didn't discover.) The 
emulation controller can heuristically set a "virus region" of memory, and 
watch for parts of it that aren't executed during the main emulation. Later, 
a machine state can be guessed at, such as setting all the register contents to 
zero, and the emulator can try to run the unused memory areas.̂ '̂̂  

4.2.2.3 Emulator Optimizations 

"Optimization" is a broad term. Emulator optimizations can address emula­
tor size and complexity, as well as being used to improve emulator performance. 

• Instead of emulating real filesystems, the emulator can use real filesystems. ̂^̂  
Disk reads can be passed through to the real disk, and any disk writes can be 
stored in the emulator and not written through to the disk. Naturally, sub­
sequent reads of changed information would return the copy stored in the 
emulator. This optimization reduces emulator size, complexity, and startup 
time. 

• Data files may be emulated as though they contained code, because a virus 
may conceivably hide there. Code that makes extensive use of uninitialized 
registers is often an indication of a legitimate data file. This heuristic can 
be used to stop the emulator early. ̂ ^̂  

• A cache can be kept of previous emulator states, where a cached state record 
may include: ̂ ^̂  

- the register contents; 

- the program counter's value; 



Anti-Virus Techniques 79 

~ instructions around the memory location where the program counter 
points; 

- the stack pointer; 

- stack contents around where the stack pointer points; 

- the size of the emulated file; 

- the number of memory writes done by the emulated code; 

- the number of memory bytes changed by the emulated code; 

- a checksum of the data written to memory. 

The emulator is run for some relatively small number of instructions: 400-
1000 on an Intel x86. Normally the emulator would be paused here anyway, 
because if no decryption activity had been detected by this time, any virus 
would be assumed to be unencrypted, and the emulation controller could 
begin normal virus scanning. 

A state record is constructed at this point, and the state cache is searched. A 
cache hit signifies that the code has been emulated previously and declared 
virus-free, so emulation may stop here. Otherwise, emulation resumes and 
continues to its normal termination. If the code is still deemed to be clean, 
the constructed state record is added to the state record cache for later. The 
net effect is a speed improvement, because emulation can be stopped early 
for previously-emulated code. 

4.3 Comparison of Anti-Virus Detection Techniques 
This chapter has presented a wide range of anti-virus techniques, each with 

relative strengths and weaknesses. No one technique is best for detecting every 
type of virus, and a combination of techniques is the most secure design. 

Scanning 

Pro: Gives precise identification of any viruses that are found. This 
characteristic makes scanning useful by itself, as well as in conjunction 
with other anti-virus techniques. 

Con: Requires an up-to-date database of virus signatures for scanning 
to be effective. Even assuming that users update their virus databases 
right away, which isn't the case, there is a delay between the time when 
a new threat is discovered and when an anti-virus company has a signa­
ture update ready. This leaves open a window of opportunity in which 
systems can be compromised. Also, scanning only finds known viruses, 
and some minor variants of them. 
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Static heuristics 

• Pro: Static heuristic analysis detects both known and unknown viruses. 
• Con: False positives are a major problem, and a detected virus is neither 

identified, nor disinfectible except by using generic methods. 

Integrity checkers 

• Pro: Integrity checkers boast high operating speeds and low resource 
requirements. They detect known and unknown viruses.^^^ 

• Con: Detection only occurs after a virus has infected the computer, 
and the source of the infection can't necessarily be pinpointed. An 
integrity checker can't detect viruses in newly-created files, or ones 
modified legitimately, such as through a software update. Ultimately, 
the user will be called upon to assess whether a change to a file was 
made legitimately or not. Finally, found viruses can't be identified or 
disinfected. 

Behavior blockers 

• Pro: Known and unknown viruses are detected. ̂ ^̂  
• Con: While a behavior blocker knows which executable is the problem, 

unlike an integrity checker, it again cannot identify or disinfect the virus. 
Run-time overhead and false positives are a concern, as is the fact that 
the virus is already running on the system prior to being detected. 

Emulation 

• Pro: Any viruses found are running in a safe environment. Known and 
unknown viruses are detected, even new polymorphic viruses. ̂ -̂̂  

• Con: Emulation is slow. The emulator may stop before the virus reveals 
itself, and even so, precise emulation is very hard to get correct. The 
usual concerns about identification and disinfection apply to emulation, 
too. 

In general, dynamic methods impose a run-time overhead for monitoring 
that is not incurred by static methods. The tradeoff is that dynamic methods, 
by watching code run, effectively peel away a layer of obfuscation from viral 
code. 

4.4 Verification, Quarantine, and Disinfection 
Once a virus is detected, few people will want to have it remain on their 

computer. The tasks for anti-virus software that lie beyond detection are veri­
fication, quarantine, and disinfection. Compared to detection, these three tasks 
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are performed rarely, and can be much slower and more resource-intensive if 
necessary. ̂ '̂̂  

4.4.1 Verification 
Virus detection usually doesn't provide the last word as to whether or not 

code is infected. Anti-virus software will often perform a secondary verification 
after the initial detection of a virus occurs. 

Verification is performed for two reasons. First, it is used to reduce false 
positives that might happen by coincidence, or by the use of short or overly 
general signatures. Second, verification is used to positively identify the virus. 
Identification is normally necessary for disinfection, and to prevent being led 
astray; virus writers will sometimes deliberately make their virus look like 
another one. In the absence of verification, anti-virus software can misidentify 
the virus and do unintentional damage to the system when cleaning up after the 
wrong virus. 

Verification may begin by transforming the virus so as to make more in­
formation available. One way to accomplish this, when an encrypted virus is 
suspected, is for the anti-virus software to try decrypting the virus body to re­
veal a larger signature. This process is called X-raying}^^ For emulation-based 
anti-virus software, X-raying is a natural side effect of operation. 

X-raying may be automated in easier ways than emulation, if some simplify­
ing assumptions are allowed. A virus using simple encryption or a static encryp­
tion key (with or without random encryption keys) does not hide the frequency 
with which encrypted bytes occur; these encryption algorithms preserve the 
frequency of values that was present in the unencrypted version. Cryptanalysts 
were taking advantage of frequency analysis to crack codes as early as the 9th 
century CE,̂ ^^ and the same principle applies to virus decryption. ̂ ^̂  Normal, 
uninfected executables (i.e., the plaintext) tend to have frequently-repeated val­
ues, like zeroes. Under the assumptions above, if the most frequently-occurring 
plaintext value is known, then the most frequently-occurring values in an en­
crypted version of code (ciphertext) should correspond to it. For example, say 
that 99 is the most frequent value in plaintext, and 27 is most frequent in the 
ciphertext. For XOR-based encryption, the key must be 120 (99 xor 27). 

Back to verification, once all information is made available, verification may 
be done in a number of ways:̂ ^^ 

• Comparing the found virus to a known copy of the virus. Shipping viruses 
with anti-virus software would be rather unwise, making this option only 
suitable for use in anti-virus labs. 

• Using a virus-specific signature, for detection methods that aren't signature-
based to begin with. If the initial detection was signature-based, then a longer 
signature can be used for verification. 
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• Checksumming all or part of the suspected virus, and comparing the com­
puted checksum to the known checksum of that virus. 

• Calling special-purpose code to do the verification, which can be written in 
a general-purpose or domain-specific programming language. 

Except for special-purpose code, these are not viable solutions for metamorphic 
viruses, because they rely on the (unencrypted) virus body being the same for 
each infection. 

4.4.2 Quarantine 
When a virus is detected in a file, anti-virus software may need to quarantine 

the infected file, isolating it from the rest of the system. ̂ ^̂  Quarantine is only a 
temporary measure, and may only be done until the user decides how to handle 
the file (e.g., giving approval to disinfect it). In other cases, the anti-virus 
software may have generically detected a virus, but have no idea how to clean 
it. Here, quarantine may be done until an anti-virus update is available that can 
deal with the virus that was discovered. 

Quarantine can simply be a matter of copying the infected file into a distinct 
"quarantine" directory, removing the original infected file, and disabling all 
permission to access the infected file. The problem is that the file permissions 
may be easily changed by a user, and files may be copied out of a quarantine 
directory in a virulent form. A good solution limits further spread by accident, 
or casual copying, but shouldn't be elaborate, as accessing the infected file for 
disinfection will still be necessary. 

One solution is to encrypt quarantined files by some trivial means, like an 
XOR with a constant. The virus is thereby rendered inert, because an executable 
file encrypted this way will no longer be runnable, and copying the file does no 
harm. Also, an encrypted, quarantined file is readily accessible for disinfection. 

Another solution is to render the files in the quarantine directory invisible 
- what can't be seen can't be copied. Anti-virus software can accomplish this 
feat using file-hiding techniques like stealth viruses and rootkits use. However, 
this may not be the best idea, as viruses may then try to hide in the quarantine 
directory, letting the anti-virus software cloak their presence. There could also 
be issues with false positives produced by virus-like behavior from anti-virus 
software. ̂ ^̂  

4.4.3 Disinfection 
Disinfection does not mean that an infected system has been restored to its 

original state, even if the disinfection was successful. ̂ ^̂  In some cases, like 
overwriting viruses that don't preserve the original contents, disinfection is just 
not possible. 

As with everything else anti-virus, there are different ways to do disinfection: 
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• Restore infected files from backups. Because everyone meticulously keeps 
backups of their files, the affected files can be restored to their backed-up 
state. Some files are meant to change, like data files, and consequently 
restoring these files may result in data loss. There are also viruses called 
data diddlers, which are viruses whose payload slowly changes files. ̂ ^̂  By 
the time a data diddler has been detected, it can have made many subtle 
changes, and those changed files - not the original ones - would have been 
caught on the backups. 

• Virus-specific. Anti-virus software can encode in its database the infor­
mation necessary to disinfect each known virus. Many viruses share char­
acteristics, like relocating an executable's start address, so in many cases 
disinfection is a matter of invoking generic disinfection subroutines with the 
correct parameters.̂ ^-^ 

Virus-specific information needed for disinfection can be derived automat­
ically by anti-virus researchers, at least for relatively simple viruses. Goat 
files with different properties can be deliberately infected, and the resulting 
corpus of infected files can be compared to the originals. This comparison 
can reveal where a virus puts itself in an infected file, how the virus gets con­
trol, and where any relocated bytes from the original file may be found. ̂ "̂̂  
This can be likened to a chosen-plaintext attack in cryptography. ̂ ^̂  

• Virus-behavior-specific. Rather than customize disinfection to individual 
viruses, disinfection can be attempted based on assumptions about viral 
behavior. For prepending viruses, or appenders that gain control by modi­
fying the program header, disinfection is a matter of: restoring the original 
program header; moving the original file contents back to their original 
location. 

Anti-virus software can store some information in advance for each exe­
cutable file on an uninfected system which can be used later for disinfection. ̂ ^̂  
The necessary information to store is the program header, the file length, and 
a checksum of the executable file's contents sans header. This disinfection 
technique integrates well with integrity checkers, since integrity checkers 
store roughly the same information anyway. 

For an infected file, the saved program header can be immediately restored. 
The tricky part is determining where the original file contents reside, because 
a prepending virus may have shifted them from their original location in 
the file. The disinfector knows the checksum of the original file contents, 
however - it can iterate over the infected file, checksumming the same 
number of bytes as were used for the original checksum (the uninfected file 
length minus the header length). If the new checksum matches the stored 
checksum, then the original file contents have been located and can be 
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Figure 4.14. Disinfection using checksums 

restored. This is shown in Figure 4.14. The number of checksum iterations 
needed in the worst case is equivalent to the added length of the virus, the 
difference between the lengths of the infected and uninfected files. 

This method naturally enjoys several built-in safety checks which guard 
against situations where this disinfection method is inapplicable. The com­
puted virus length can be checked for too-small, or even negative, values. 
Failure to match the stored checksum in the prescribed number of iterations 
also flags inapplicability. 

Using the virus' code: 

- Stealth viruses happily supply the uninfected contents of a file. Anti­
virus software can exploit this to disinfect a stealth virus by simply 
asking the virus for the file's contents. ̂ '̂ ^ 

- Generic disinfection methods assume that the virus will eventually re­
store and jump to the code it infected. A generic disinfector executes 
the virus under controlled conditions, watching for the original code to 
be restored by the virus on the disinfector's behalf.̂ ^^ 

* One anti-virus system stepped through the viral code in a real, not 
emulated, environment. The system ran harmless-looking instruc­
tions, skipping potentially harmful ones until the virus jumped back 
to the original code. This turned out to be a dangerous approach, 
and virus writers eventually found ways to trick the disinfector. ̂ ^̂  

* The infected code can be emulated until the virus jumps to the 
original code. The obvious way to do this is to have the emulator's 
controller heuristically watch for the jump. 
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A minor variant allows anti-virus disinfection code to run inside the 
emulator along with the infected code. The disinfection code can 
then be in native code and yet be portable (subject to the emulator's 
own portability). As needed, the virus' code can be called by the 
disinfection code, and the emulator can sport an interface by which 
the in-emulator disinfection code can export a clean version of the 
file. 

Cruder disinfection can be done by zeroing out the virus, or simply deleting 
the infected file.^^^ This will eradicate the virus, but won't restore the system 
at all.^ 

4.5 Virus Databases and Virus Description Languages 
Up to now, the existence of a virus database for anti-virus software has 

been assumed but not discussed. Conceptually, a virus database is a database 
containing records, one for every known vims. When a virus is detected using 
a known-virus detection method, one side effect is to produce a virus identifier. 
This virus identifier may not be the virus' name, or even be human-readable, but 
can be used to index into the virus database and find the record corresponding 
to the found virus. ̂ ^̂  

A virus record will contain all the information that the anti-virus software 
requires to handle the virus. This may include: 

• A printable name for the virus, to display for the user. 

• Verification data for the virus. Again, a copy of the entire virus would not 
be present; the last section discussed other ways to perform verification. 

• Disinfection instructions for the virus. 

Any virus signatures stored in the database must be carefully handled. Why? 
Figure 4.15 illustrates a potential problem with virus databases, when more than 
one anti-virus program is present on a system. If virus signatures are stored in 
an unencrypted form, then one anti-virus program may declare another vendor's 
virus database to be infected, because it can find a wealth of virus signatures in 
the database file! The safest strategy is to encrypt stored virus signatures, and 
never to decrypt them. Instead, the input data being checked for a signature 
can be similarly encrypted, and the signature check can compare the encrypted 
forms. ̂ ^̂  

As new viruses are discovered, an anti-virus vendor will update their virus 
database, and all their users will require an updated copy of the virus database 
in order to be properly protected against the latest threats. This raises a number 
of questions: 
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Figure 4.15. Problem with unencrypted virus databases 

How is a user informed of updates? The typical model is that users peri­
odically poll the anti-virus vendor for updates. The polling is done auto­
matically by the anti-virus software, although a user can manually force an 
update to occur. Another model is referred to as a push model, where the 
anti-virus vendor "pushes out" updates to users as soon as they are available. 
Many vendors use the polling model, but will email alerts about new threats 
to users upon request, permitting them to make an informed choice about 
updating. 

Should updates be manual or automatic? Automatic updates have the poten­
tial to provide current known-virus protection for users as soon as possible. 
Currency aside, some machines are not aggressively maintained by their 
users. Automatic updates are not always the best choice, however. Anti­
virus software, like any software, can have bugs. It is rare, but possible, for 
a database update to cause substantial headaches for users because of this. 
In one case, a buggy update caused the networks of some Japanese railway, 
subway, and media organizations to be inaccessible for hours.̂ -̂̂  

How often should updates be done? Frequency of updates is in part a 
reflection of the rate at which new threats appear. Once upon a time, monthly 
updates would have been sufficient; now, weekly and daily updates may not 
be often enough. 

How should updates be distributed? Electronic distribution of updates, es­
pecially via the Internet, is the only viable means to disseminate frequent up­
dates. This means that anti-virus vendors must have infrastructures for dis-
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tributing updates that are able to withstand heavy load - a highly-publicized 
threat may cause many users to update at the same time. 

The update process is an attractive target for attackers. It is something that 
is done often by users, and compromising updates would create a huge pool 
of vulnerable machines. The compromise may occur in a number of ways: 

- The vendor's machines that distribute the update may be attacked. 

- An update may be compromised at the vendor before reaching the dis­
tribution machines. Anti-virus vendors are amply protected internally 
from malware, but an inside threat is always possible. 

- A user machine may be spoofed, so that it connects to an attacker's 
machine instead of the vendor's machines. 

- A "man-in-the-middle" attack may be mounted, where an attacker is 
able to intercept communications between the user and vendor. An 
attacker may modify the real update, or inject their own update into the 
communications channel. 

There is also the practical matter of what form the update will take. Trans­
mitting a fresh copy of the entire virus database is not feasible due to the 
bandwidth demands it would place on the vendor's update infrastructure, 
not to mention the comparatively limited bandwidth that many users have. 

The virus database will have a relatively small number of changes between 
updates, so instead of sending the entire database, a vendor can just send 
the changes to the database. These changes are sometimes called deltas}^^ 
Furthermore, these deltas can be compressed to try and make them smaller 
still. Downloaded deltas should be verified to protect against attacks and 
transmission errors. 

The update mechanism can also be used to update the anti-virus engine itself, not 
just the virus database. ̂  ̂ ^ This may be necessary to fix bugs, or add functionality 
required to detect new viruses. Known-virus scanners will need their data 
structures updated with the latest signatures as well. 

Clearly, the information in the virus database and other updates from an 
anti-virus vendors must come from someplace. Anti-virus vendors often have 
an in-house virus description language, a domain-specific language designed 
to describe viruses, and how to detect, verify, and disinfect each one.̂ ^^ Two 
examples are given in Figure 4.16. Anti-virus researchers create descriptions 
such as these, and a compiler for the virus description language translates them 
into the virus database format. 

Domain-specific languages tend to be very good at describing things in their 
domain, but not very good for general use. Virus description languages can 
have escape mechanisms to call code written in a general-purpose language. 
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VERV description 
VIRUS example ; short alias for virus 
NAME An example virus ; full virus name 
LOAD S-EXE 0000 0500 ; load bytes 0-500 from .EXE entry point 
DEXORl 0100 0500 0035 0000 ; XOR bytes 100-500 with key at byte 35 
ZERO 0035 0001 ; set key at byte 35 to zero 
CODE 0000 0500 4a4f484e ; is checksum of bytes 0-500 = 4a4f484e? 

CVDL description 
; looks for two words in virus' data 
: example,'"painfully" AND "contrived",! 

Figure 4.16. Example virus descriptions 

code which is compiled and either interpreted or run natively. ̂ ^̂  This allows 
special-purpose code to be written for detection, verification, or disinfection. 

Special-purpose code can be used to direct the entire virus detection, instead 
of only being invoked when needed. For example, for viruses which have 
multiple entry points, special-purpose code can tell a scanner what locations it 
should scan.̂ ^^ 

4,6 Short Subjects 
To conclude this chapter, a veritable potpourri of short topics: anti-stealth 

techniques, macro virus detection, and the role of compiler optimization in 
anti-virus detection. 

4,6.1 Anti-Stealth Techniques 
One assumption made up to this point is that anti-virus software sees an 

accurate picture of the data being checked for viruses. But what if a virus is 
using stealth to hide? 

Anti-stealth techniques are countermeasures used against stealth viruses. 
There are two options: 

1 Detect and disable the stealth mechanism. For example, calls to the operat­
ing system can be examined to make sure they're going to the "right" place. 
Section 5.5 looks at this in more depth. 

2 Bypass the usual mechanisms to call the operating system in favor of unsub-
vertible ones. For Unix, this would mean that anti-virus software only uses 
direct system calls (assuming, of course, that the operating system kernel is 
secure); for MS-DOS systems, this could mean making direct BIOS calls to 
get disk data. 
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4.6,2 Macro Virus Detection 
Macro viruses present some interesting problems for anti-virus software. ̂ ^̂  

Macros are in source form, and are easy to change and allow a lot of freedom 
with formatting. Macro language interpreters can be extremely robust in terms 
of buUishly continuing execution in the face of errors; a missing or damaged 
macro won't necessarily keep a macro virus from operating. Some specific 
problems with macro viruses: 

• Accidental or deliberate changes to a macro virus, even to its formatting, may 
create a new macro virus. This may even happen automatically: Microsoft 
Word converts documents from one version of Word to another, and this 
conversion has created new macro viruses in the process, 

• Bugs in macro virus propagation, or incomplete disinfection of a macro 
virus, can create new macro virus variants. Anti-virus software can acci­
dentally create viruses if it's not careful! 

• A macro virus can accidentally "snatch" macros from an environment it 
infects, becoming a new virus. In one case, a Word macro virus even swiped 
two macros from Microsoft's software that protects against macro viruses. ̂ ^̂  

Macro viruses, despite these problems, have one redeeming feature. ̂ ^̂  Macros 
operate in a restricted domain, so anti-virus detection can determine what con­
stitutes "normal" behavior with a very high degree of confidence. This limits 
the number of false positives that might otherwise be incurred by detection. 

All of the same ideas have been trotted out for macro viruses as have been used 
for other types of virus, including signature scanning, static heuristics, behavior 
blocking, and emulation.^^^ Due to variability in formatting, methods looking 
for static signatures are facilitated by removing whitespace and comments, 
or translating it into some equivalent canonical form first.^ A similar need for 
canonicalization arises from macro languages which aren't case sensitive, where 
f 00, FOO, and Foe would all refer to the same variable.^^^ 

More systemic approaches to macro virus detection periodically examine 
documents on a system, and build a database of the documents and their 
properties.̂ ^"^ In particular, macros in documents can be tracked; the sudden 
appearance of macros in a document, a change to known macros in a document, 
or a number of documents with the same changes to their macros are all signals 
that a macro virus may be active. 

Macro viruses have not been parasitic, meaning they have not inserted vi­
ral code into legitimate code, but have acted more like companion viruses.^^^ 
(Nothing prevents macro viruses from being parasitic; it's just slightly more ef­
fort to implement.) Disinfection strategies for macro viruses have consequently 
tended towards deletion-based approaches: 
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• Delete all macros in the infected document, including any unfortunate, le­
gitimate user macros. 

• Delete macros known to be associated with the virus found. This requires a 
known-macro-virus database. 

• For macro viruses detected using heuristics, remove the macros found to 
contain the offending behavior. ̂ ^̂  

• Emulator-based detection can track the macros seen to be used by the macro 
virus and delete them.̂ ^^ 

Applications supporting macros treat macros in a much more guarded fashion 
than they once did, and macro viruses are a much less prominent threat than 
they have been as a result. ̂ ^̂  

4.6.3 Compiler Optimization 
Compiler techniques have natural overlaps with anti-virus detection. For 

example, some scanning algorithms are applied to match patterns in trees, for 
code generation; ̂ ^̂  scanning and parsing are needed for macro virus detection; 
work on efficient interpretation is applicable to emulation, and interpreting 
special-purpose code in the anti-virus engine. 

One suggestion which rears its head occasionally is the possibility of us­
ing compiler optimizations for detection of viruses. Given that a number of 
compiler optimization techniques perform some sophisticated analyses, it isn't 
surprising to consider applying them to the problem of virus detection: 

• Constant propagation replaces variables which are defined as constants with 
the constants themselves. This increases the information available about 
code being analyzed, and facilitates other optimizations. With the code 
below, constant propagation yields the name of the file being opened: 

f i l e = "c : \autoexec.bat" f i l e = "c : \autoexec .bat" 

f = open(file) f = openC'c:\autoexec.bat") 

Constant propagation has been proposed to assist in the static analysis of 
macro viruses.^^^ 

• Dead code is code which is executed, but the results are never used. In the 
code below, for example, the first assignment to r 1 is dead, because its value 
is not used before r l is redefined: 

r l = 123 
r l = r2 + 7 
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Polymorphic viruses tend to exhibit a lot of dead code - more than 25% 
- especially when compared to non-viral code, so dead code analysis can 
make a useful heuristic to help with polymorphic virus detection.^^^ 

However, some problems loom. Compiler optimization algorithms are not 
known for efficiency, with the exception of algorithms designed specifically for 
use in dynamic, or just-in-time, compilers. Such algorithms tend to trade speed 
increases for decreases in accuracy, though. It is often possible to concoct pro­
grams which exercise the worst case performance of optimization algorithms, 
or programs which make the task of precise analysis undecidable. Virus writers 
will undoubtedly take advantage of this if anti-virus' use of compiler optimiza­
tion becomes widespread. 



92 COMPUTER VIRUSES AND MALWARE 

Notes for Chapter 4 
1 And the rest of the quote: 'Unfortunately, this program must identify every 

(or nearly so) program as infected, whether it is or not!' [299, page 258] 
2 Until the anti-virus signatures are updated or files are accessed from a non-

network source, at which point a full on-demand scan would be indicated. 
3 Obligatory Knuth citation: [168]. He says that the pronunciation of "trie" 

is "try." 
4 Navarro and Raffinot [227]. "Very small" means 4-8 values, whereas scan­

ning inputs will have 256 possible values for each input byte. 
5 Unless the scan would take less effort than deciding whether or not to scan 

in the first place! 
6 Although if this is done incorrectly, it opens the door for a brute-force attack 

on the session key. 
7 With the exception of simple companion viruses. 
8 This is obvious to compiler writers, who've been handling whitespace (and 

lack thereof) since compiling Fortran in the 1950s, but seemingly not so for 
patent examiners: Kuo [175]. 

100 Harley et al. [137] was used for this introductory section. 
101 Cohen [74]. Harrison et al. [138] make some interesting follow-on points 

regarding Cohen's proof and Turing-compatibility. 
102 Muttik [214]. 
103 Harley etal. [137]. 
104 Mallen-FuUerton [192] considers the case of wildcards that match one 

byte; Bontchev [46] takes a more general view. 
105 Not surprisingly, Aho and Corasick [5]. The version of the algorithm given 

here is a slight reformulation of the first version of the algorithm that Aho 
and Corasick give in their paper. 

106 Tuck et al. [324] discuss many of these implementation choices for Aho-
Corasick. 

107 The version here is an much-abstracted form of Veldman's algorithm. The 
unadulterated version is in Bontchev [46]. 

108 Kumar and Spafford [174] adapted Aho-Corasick for wildcards. 
109 The original algorithm is described in Wu and Manber [349], and is very 

general; the version here is a simplification along the lines of [227, 324]. 
110 This section is based on [96]. 
111 This item is based on Bontchev [46]. Top and tail scanning, entry point 

scanning, and size-based scanning assumptions are also in Nachenberg [217]. 
112 Nachenberg [217]. 
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113 Carr[54]. 
114 Unless otherwise noted, this item is based on Flint and Hughes [111]. 
115 Carr[54]. 
116 This item is based on Nachenberg [215]. 
117 Mallen-Fullerton [192] talks about the signature length tradeoff. 
118 Muttik[214]. 
119 For example, Navarro and Tarhio [228]. 
120 For example, Pennello [245]. 
121 Bentley [34]. 
122 Gryaznov [133], Symantec [307], and Zenkin [354]. 
123 Gryaznov [133]. 
124 Symantec [307], who apply this division to static and dynamic heuristics. 
125 The "booster" and "stopper" terminology is from Nachenberg [221], who 

uses them in the context of emulation. 
126 Gryaznov [133]. 
127 Nachenberg [221]. 
128 Ludwig [187]; detristan et al. [89] look at spectrum analysis in the context 

of intrusion detection systems. Muttik [214] talks about opcode frequency 
analysis too. Weber et al. [342] use instruction frequencies to try and spot 
hand-written assembly code, on the premise that more viruses are written 
in assembly code than high-level languages. 

129 See [318, 307, 283], respectively. 
130 Tesauroetal. [318]. 
131 Kephartetal. [163]. 
132 This section is based on Bontchev [38]. 
133 Bontchev [46]. 
134 Schmehl [278]. 
135 The first two are from Esponda et al. [101]. 
136 Like the Spanish Inquisition. No one ever expects them. Oh, right: 

Hofmeyretal. [143]. 
137 Nachenberg [216]. 
138 Hofmeyretal. [143]. 
139 Ford and Michalske [113], who also supply the browser story. 
140 Ford and Thompson [114]. 
141 El Far et al. [98] look at a related idea: being able to recall unread messages 

from a remote machine soon after transmission. 
142 Jordan [154] argues this for emulation with dynamic heuristics, but of the 

course the argument applies equally well to behavior blockers. 
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143 Nachenberg [217]. 
144 These first two heuristics are from Nachenberg [220], the third from [221]. 
145 Nachenberg [222]. 
146 Natvig [225] and Szor [308]. 
147 Based on Veldman [332], who had a four-part organization. 
148 This item is based on Natvig [225]. 
149 Nachenberg [220]. 
150 Nachenberg [222]. 
151 Nachenberg [222]. 
152 Nachenberg [223]. 
153 Chambers [59]. 
154 Nachenberg [219]. 
155 Chambers [59] and Natvig [225]. 
156 Chambers [59] and Nachenberg [220]. 
157 Nachenberg [220]. 
158 Natvig [225]. 
159 Nachenberg [221]. 
160 This item is based on Nachenberg [223]. 
161 Pros and cons from [38, 354]. 
162 [Dis]advantages of behavior blockers are from Zenkin [354]. A mostly-

overlapping set of disadvantages is in Nachenberg [216]. 
163 Veldman [332] mentions emulator advantages and disadvantages. 
164 Chess [64] points this out for verification. 
165 Nachenberg [217]; also Perriot and Ferrie [248], who argue the use of 

X-raying for virus detection. 
166 Al-Kadi [7]. 
167 Itshaketal. [151]. 
168 All but the second are from Chess [64]. 
169 This section is based on Templeton [317]. 
170 This solution, and one of the attendant problems, was suggested by [306]. 
171 Harleyetal. [137]. 
172 Bontchev [46]. 
173 Nachenberg [218]. 
174 Chess etal. [66]. 
175 Schneier [279]. 
176 This method is from Mann [193]. 
177 Bontchev [46]. 
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178 Szor [308]. 
179 This, and the "minor variant" below, are from Nachenberg [218]. 
180 Templeton[317]. 
181 From Kouznetsov et al., along with the virus record contents below [170]. 
182 Bontchev [46]. Carr [54] mentions a virus database which is compressed 

and encrypted. 
183 Japan Times [153]. 
184 This, and the bandwidth problem, are from Kouznetsov and Ushakov [170]. 
185 Paketal. [238]. 
186 For examples, see [54, 64, 238, 251, 252, 259]. The examples in Fig­

ure 4.16 use the descriptions of VERY [64] and CVDL [251, 252, 259]. 
187 Nachenberg [219] and Pak et al. [238]. 
188 Nachenberg [219]. 
189 These problems are from Bontchev [43]. 
190 See [42, 200]. 
191 Zenkin [354]. 
192 See [61, 175] (signature scanning), [61,169] (static heuristics), [341, 354] 

(behavior blocking), and [69] (emulation). 
193 Bontchev [43]. 
194 Chess etal. [65]. 
195 Bontchev [43], who also gives the first three disinfection methods below. 
196 Chen et al. [61], who also proposed cleaning within macros by replacing 

detected macro virus instructions with non-viral instructions. 
197 Chi [69]. 
198 Bontchev [45] opines on this at length. 
199 Ahoetal. [6]. 
200 Ko [169]. 
201 Perriot [247], who also discusses lots of other optimizations and their 

application to polymorphic virus detection. 



Chapter 5 

ANTI-ANTI-VIRUS TECHNIQUES 

All viruses self-replicate, but not all viruses act in an openly hostile way 
towards anti-virus software. Anti-anti-virus techniques are techniques used by 
viruses which do one of three things: 

1 Aggressively attack anti-virus software. 

2 Try to make analysis difficult for anti-virus researchers. 

3 Try to avoid being detected by anti-virus software, using knowledge of how 
anti-virus software works. 

The lack of clear definitions in this field comes into play again: arguably, any 
of the encryption methods described in Chapter 3 is an attempt to achieve the 
latter two goals. 

To further confuse matters, "anti-anti-virus" is different from "anti-virus 
virus." Anti-virus virus has been used variously to describe: a virus that attacks 
other viruses; anti-virus software that propagates itself through viral means; 
software which drops viruses on a machine, then offers to sell "anti-virus" 
software to remove the viruses it put there. ̂ ^̂  

Back to the relatively well-defined anti-anti-virus, this includes seven tech­
niques: retroviruses, entry point obfuscation, anti-emulation, armoring, tunnel­
ing, integrity checker attacks, and avoidance. 

5.1 Retroviruses 
A virus that actively tries to disable anti-virus software running on an in­

fected machine is referred to as a retrovirus} This is a generic term for a virus 
employing this type of active defense, and doesn't imply that any particular 
technique is used. 
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Having said that, a common retrovirus technique is for a virus to carry a 
list with it of process names used by anti-virus products. When it infects a 
machine, a retrovirus will enumerate the currently-running processes, and kill 
off any processes which match one of the names in the list. A partial list is 
shown below :̂  

Avgw.exe 
F-Prot.exe 
Navw32.exe 
Regedit.exe 
Scan32.exe 
Zonealarm.exe 

It's not unusual to see lists like this appear in malware analyses. Thi^ particular 
list not only includes anti-virus process names, but also other security products 
like firewalls, and system utilities like the Windows Registry editor. 

A more aggressive retrovirus can target the antivirus software on disk as 
well as in memory, so that antivirus protection is disabled even after the in­
fected system is rebooted. For example, Ganda kills processes that appear to 
be anti-virus software, using the above list-based method; it also examines the 
programs run at system startup, looking for anti-virus software using the same 
list of names. If Ganda finds anti-virus software during this examination, it 
locates the executable image on disk and replaces the first instruction with a 
"return" instruction. This causes the anti-virus software to exit immediately 
after starting.^^^ 

The above methods have one major drawback: by killing off the anti-virus 
software, they leave a telltale sign. An alert user might notice the absence of 
the anti-virus icon.^ For the purposes of retroviruses, it's sufficient to render 
anti-virus software incapable of full operation, disabling it rather than killing it 
off completely. 

How can this be done? One approach would be to try and starve anti-virus 
software of CPU time. A retrovirus with appropriate permission could reduce 
the priority of anti-virus software to the minimum value possible, to (ideally) 
keep it from running.^^^ Most operating system schedulers have a mechanism 
to boost the priority of CPU-starved processes,"^ however, so attacking anti­
virus software by reducing process priority is unlikely to be very effective. 
Another way to disable anti-virus software is to adjust the way a computer 
looks up hostname information on the network, to prevent anti-virus software 
from being able to connect to the anti-virus company's servers and update its 
database. 
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5.2 Entry Point Obfuscation 
Modifying an executable's start address, or the code at the original start ad­

dress, constitutes extremely suspicious behavior for anti-virus heuristics. A 
virus can try to get control elsewhere instead; this is called entry point obfus­
cation or EPO. 

Picking a random location in an executable to gain control isn't a brilliant 
survival strategy, because a infrequently-executed error handler may be chosen 
as easily as a frequently-executed loop. A more controlled selection of a location 
is better. Simile and Ganda both use EPO, and look for calls to the ExitProcess 
API function; these calls are overwritten to point to the viral code instead. ̂ ^̂  
Because ExitProcess is called when a program wants to quit, these viruses get 
control upon the infected code's exit. 

Locations for EPO may also be chosen by looking for known code sequences 
in executables.̂ ^"^ Compilers for high-level languages emit repetitive code, and 
a virus can search the executable for such repetitive instruction sequences to 
overwrite with a jump to the virus' code. As the sequence being replaced is 
known, the virus can always restore and run the original instructions later. 

5.3 Anti-Emulation 
Techniques to avoid anti-virus emulators can be divided into three categories, 

based on whether they try to outlast, outsmart, or overextend the emulator. The 
fix for the latter two categories is just to improve the emulator, although this 
tends to come at the cost of increased emulator complexity. 

5.3.1 Outlast 
Except in an anti-virus lab, the amount of time an emulator has to spend 

running a program is strictly limited by the user's patience.^^^ How can a virus 
evade detection long enough for the emulator to give up? 

• Code can be added to the virus which does nothing, wasting time until the 
emulator quits - then the real viral code can run.̂ ^^ The emulator may look 
for obvious junk code, so the code would need to be disguised as a valid 
operation, like computing the first n digits of n. 

• A virus need not replicate every time it's run. It can act benign nine times 
out of every ten, for example, in a statistical ploy to appear harmless 90% 
of the time. If the anti-virus software is using the performance-improving 
tricks in Section 4.2.2.3, then the virus might get lucky and have an infected 
program be marked as clean when emulated; a later execution of that infected 
program would give the virus a free hand. 

• Emulators operate under the assumption that viral code will intercept exe­
cution at or near the start of an infected program. Entry point obfuscation, 
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besides an anti-heuristic measure, can also be considered an anti-emulation 
technique, because it can delay execution of viral code. 

5.3.2 Outsmart 
An alternative to waiting until emulator scrutiny is over is to restructure the 

viral code so that it doesn't look suspicious when it's emulated. The decryptor 
code could be spread all over, instead of appearing as one tight loop; multiple 
decryption passes could be used to decrypt the virus body.̂ ^^ Most techniques 
for avoiding dynamic heuristics would be candidates here. 

5.3.3 Overextend 
A virus can push the boundaries of an emulator in an effort to either crash the 

emulator - not likely for a mature anti-virus emulator - or detect that the virus 
is being run under emulation, so that the virus can take appropriate (in)action. 
Here are some ways to try and overextend an emulator: 

• Some CPUs, especially CISC ones, have undocumented instructions. ̂ ^̂  A 
virus can use these instructions in the hopes that an emulator will not support 
them, and thus give itself away. 

• The same idea can be applied to bugs that a CPU may exhibit, or differences 
between different processor implementations. The emulator may need to 
track results that are processor-dependent to correctly emulate such a virus. 

• The emulator's memory system can be exercised by trying to access unusual 
locations that, on a real machine, might cause a memory fault or access 
some memory-mapped I/O.̂ ^^ A cruder attack may simply try to exhaust an 
emulator's memory by accessing lots of locations. Memory system attacks 
are not particularly effective, however. 

• Assuming emulators return fixed values for calls to many operating system 
and other API functions, a virus can check for differences between two calls 
of the same function where a change should occur. For example, a virus 
could ask for the current time twice, assuming an emulated environment 
will return the same value both times. 

• An emulator may be taxed by importing obscure, but standard, libraries in 
case the emulator doesn't handle all of them.̂  ̂ ^ 

• External resources are next to impossible to properly emulate. A virus could 
take advantage of this by looking for external things like web pages.̂ ^^ 

• Finally, checks specific to certain emulators can be performed. An emulator 
may only support a well-known set of I/O devices, or may have an interface 
to the "outside world" which can be tested for.̂  
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5A Armoring 
A virus is said to be armored if it uses techniques which try to make analysis 

hard for anti-virus researchers. In particular, anti-debugging methods can be 
used against dynamic analysis, and anti-disassembly methods can be used to 
slow static analysis. Interestingly, these techniques have been in use since at 
least the 1980s to guard against software piracy.̂  ̂ ^ 

5.4.1 Anti-Debugging 
Making dynamic analysis a painful process for humans is the realm of anti-

debugging. These techniques target peculiarities of how debuggers work.^ This 
is a last gasp, though - if the viral code is already being analyzed in a debugger, 
then its survival time is dwindling. If the goal is to annoy the human analyst, 
then the best bet in survival terms is to follow a false trail when a debugger is 
detected, and avoid any viral behavior.̂ ^^ 

There are three weak points in a debugger that can be used to detect its 
presence: idiosyncrasies, breakpoints, and single-stepping. 

Debugger-specific idiosyncrasies. As with emulators, debuggers won't present 
a program being debugged with an environment identical to its normal en­
vironment, and a virus can look for quirks of known debuggers.^ ̂ "̂  

Debugger breakpoints. Debuggers implement breakpoints by modifying the 
program being debugged, inserting special breakpoint instructions at points 
where the debugger wants to regain control. Typical breakpoint instructions 
cause the CPU to trap to an interrupt service routine.^ ̂ ^ 

A virus can look for signs of debugging by being introspective: it can exam­
ine its own code for breakpoint instructions. Since the virus may use external 
library code where debugger breakpoints can be set, breakpoint instructions 
can also be looked for at the entry points to library API functions.^^^ 

More generally, a virus can look for any changes to itself. From the virus' 
point of view, a change is an error, and there are two distinct possibilities for 
dealing with errors: error detection and error correction. Error detection, 
like the use of checksums or CRCs, would tell the virus whether or not a 
change had occurred to it, and the virus could take action accordingly. On 
the other hand, error correction not only detects errors, but is able to repair a 
finite number of them. A robust virus would imply the use of error correction 
over error detection - this would guard against transmission errors and keep 
casual would-be virus writers from modifying the virus, and also be able to 
remove debugger breakpoint instructions. ̂ ^̂  

Single-stepping. Debuggers trace through code, instruction by instruction, us­
ing the single-stepping facilities available in many CPUs. After each instruc­
tion is executed, the CPU posts an interrupt which the debugger handles. 
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Figure 5.L Checking for single-stepping 

There are several ways to check for single-stepping: 

• Push a value on the stack, pop it off, then check to see if it's still there7 As 
Figure 5.1 shows, an interrupt would dump information onto the stack, 
destroying the value that had been placed on there. Strictly speaking, 
any interrupt would cause this to happen, not just a single-stepping 
interrupt, but it is a conservative test from the virus' point of view. 

• Handling interrupts is an expensive task. Sample the current time, and 
watch for the slowdown that would occur under single-stepping.^^^ 

• CPUs commonly have an instruction prefetch queue, where instructions 
are loaded prior to their execution for performance reasons. A virus 
can dynamically modify the next instruction immediately following the 
program counter; if the new instruction runs rather than the old one, 
then single-stepping may be enabled. Why? Because the instruction 
prefetch queue was flushed, which would occur on an interrupt. 

The latter two methods are possible anti-emulation methods as well, because 
they would look for slow or incomplete emulators. 

A general approach to anti-debugging is to look for changes to the addresses 
of interrupt handlers, and render the virus nonfunctional if the handler address 
is unexpected. One way to accomplish this is to include the addresses of the 
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main: e8 05 00 00 00 31 cO 8b Id 42 58 c3 00 

main: 
call 
xor 
mov 

main-f 10 
%eax,%eax 
0xc35842, %ebx 

main+10: 
pop %eax 
ret 

False disassembly True disassembly 

Figure 5.2. False disassembly 

breakpoint and single-stepping interrupt handlers as part of the virus' decryption 
key. 119 

And, if all else fails, ask. Windows has an API function called IsDebugger-
Present which returns the calling process' debugging status. Elkem.C is one 
piece of malware that uses this technique. ̂ ^̂  The means of asking need not be 
direct, either. A request under Linux to trace a process more than once fails, 
and if a debugger has traced the virus' process already, an attempt by the virus 
to trace itself will fail.̂ ^i 

5.4,2 Anti-Disassembly 
Any of the code obfuscation techniques used by polymorphic and metamor-

phic viruses are anti-disassembly techniques, but only in a weak sense. There 
are two goals for strong anti-disassembly: 

1 Disassembly should not be easily automated; the valuable time of an expert 
human should be required to make sense of the code. 

2 The full code should not be available until such time as the code actually 
runs. 

To make automation difficult, a virus' code can make use of problems which 
are computationally very hard to solve. It turns out that the simple trick of mix­
ing code and data is one such problem: precise separation of the two is known 
to be unsolvable.i^^ In general, a virus may be structured so that separating 
code and data is also impossible - this can be done by using instructions as data 
values and vice versa. 

A careful mix of code and data may even throw off human analysis tem­
porarily. The x86 assembly code in Figure 5.2 starts with a subroutine call that 
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Figure 5.3, Anti-disassembly using strong cryptographic hash functions 

never returns: when run, the called code pops the saved return address off the 
stack and returns, so the net effect of this code is the same as a single re tu rn 
instruction. However, some bytes have been placed after the call, causing a 
false disassembly to occur when main is disassembled.^ 

The second anti-disassembly goal, not having the full code available until 
run time, can be met in several ways: 

• Code can be dynamically generated when the virus runs, much like a just-
in-time (JIT) compiler. 

• Existing code can modify itself as the virus runs.^ Self-modifying code is a 
rarity now in typical, compiler-generated programs, and this behavior would 
act as a red flag for anti-virus heuristics. 

• A more complex dynamic code generation scheme could draw on the ex­
ecution environment for its instructions, much like the environmental key 
generation described in Section 3.2.7. An environmental parameter, like 
a username, is combined with a constant "salt" K which is chosen by the 
virus writer, and fed into a strong cryptographic hash function. Resulting 
bytes from the hash function are extracted and used as instructions. The 
value of K is selected to yield a desired instruction sequence when this 
is done. Direct analysis of this scheme is very difficult, because the viral 
code is not available to be analyzed and, even if an educated guess can be 
made about it, the strong cryptographic hash ensures that the exact value of 
the environmental parameter cannot be determined even when K is known. 
This scheme is illustrated in Figure 5.3, where the information in the shaded 
boxes indicates the information available to an analyst.^^^ 

• Keep the code in encrypted form, and decrypt parts of it only when needed. ̂ ^ 
Figure 5.4 shows how this can be done by inserting a breakpoint into the 
code immediately before an encrypted instruction, and supplying interrupt 
handlers for breakpoint and single-stepping interrupts.^^^ 
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Figure 5.4. On-demand code decryption 

Another suggestion is to use separate threads of execution, one to decrypt 
code ahead of the virus' program counter, the other to re-encrypt behind the 
virus' program counter.̂ ^^ This would intentionally be a delicately-tuned 
system, so that any variance (like that introduced by a debugger or emulator) 
would cause a crash, making it an anti-debugging technique too. 

Anti-disassembly techniques are not solely for irritating human anti-virus 
researchers. They can also be seen as a defense against anti-virus software 
using static heuristics. 

5.5 Tunneling 
Anti-virus software may monitor calls to the operating system's API to watch 

for suspicious activity. A tunneling virus is one that traces through the code for 
API functions the virus uses, to ensure that execution will end up at the "right" 
place, i.e., the virus isn't being monitored. If the virus does detect monitoring, 
tunneling allows the monitoring to be bypassed. ̂ ^̂  An interesting symmetry 
is that the defensive technique in this case is exactly the same as the offensive 
technique: tracing through the API code. 

The code "tracing" necessary for tunneling can be implemented by viruses 
in several ways,̂ ^^ all of which resemble anti-virus techniques. A static anal­
ysis method would scan through the code, looking for control flow changes. 
Dynamic methods would single-step through the code being traced, or use full­
blown emulation. 

Tunneling can only be done when the code in question can be read, obvi­
ously. For operating systems without strong memory protection between user 
processes and the operating system, like MS-DOS, tunneling is an effective 
technique. Many operating systems do distinguish between user space and ker­
nel space, though, a barrier which is crossed by a trap-based operating system 
API. In other words, the kernel's code cannot be read by user processes. Sur­
prisingly, tunneling can still be useful, because most high-level programming 
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languages don't call the operating system directly, but call small library stubs 
that do the dirty work - these stubs can be tunneled into. 

Anti-virus software can dodge this issue if it installs itself into the operating 
system kernel. (This is also a desirable goal for viruses, because a virus in the 
kernel would control the machine completely.) 

5.6 Integrity Checker Attacks 
In terms of anti-anti-virus techniques, integrity checkers warrant some care­

ful handling, because they are able to catch any file change at all, not just 
suspicious code.̂ ^^ 

Stealth viruses have a big advantage against integrity checkers. A stealth 
virus can hide file changes completely, so the checker never sees them. Com­
panion viruses are effective against integrity checkers for the same reason, 
because no changes to the infected file are ever seen. 

Stealth viruses can also infect when a file is read, so the act of computing a 
checksum by an integrity checker will itself infect a file. In that case, the viral 
code would be included in the checksum without any alarm being raised. 

Similarly, a "slow" virus can infect only when a file was about to be legiti­
mately changed anyway. ̂ ^̂  The infection doesn't need to be immediate, so long 
as any alert that the integrity checker pops up appears soon after the legitimate 
change; a user is likely to dismiss the alert as a false positive. 

Finally, integrity checkers may have flaws that can be exploited. In one 
classic case, deleting the integrity checker's database of checksums caused the 
checker to faithfully recompute checksums for all files! ̂^ 

5.7 Avoidance 
Those who admit to remembering the Karate Kid movies will know that the 

best way to avoid a punch is not to be there. The same principle applies to 
anti-anti-virus techniques. A virus can hide in places where anti-virus software 
doesn't look. If anti-virus software only checks the hard drive, infect USB 
keys and floppies; if anti-virus software doesn't examine all file types, infect 
those file types; if files with special names aren't checked, infect files with 
those names. ̂ -̂^ Unusual types of file archive formats may temporarily escape 
unpacking and scrutiny, too. ̂ ^̂  In general, avoidance is not particularly effective 
as a strategy, though. 
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Notes for Chapter 5 
1 Retroviruses have also been called "anti-antivirus viruses." No, really [77]. 
2 This is an excerpt from Avkiller, which is actually a Trojan horse, but the 

name is irresistible in this context [185]. 
3 Although the Windows taskbar hides icons of "inactive" applications by 

default, so a vanishing anti-virus icon may not be noticed. 
4 Windows and Unix systems, for example, both have multilevel feedback 

queues that operate this way [202, 294]. 
5 For example, VMware can be detected in a number of ways [233, 353]. 
6 Assuming a software-based debugger. 
7 This, and the prefetch technique, are from Natvig [226]. He notes that the 

prefetch method's success depends upon how the CPU manages the prefetch 
queue. 

8 Alas, this trick doesn't work as well for CPUs whose instructions need to 
be word-aligned in memory, but code and data can still be mixed. 

9 Generally, self-modifying code can wreak havoc on static analysis tools [186]. 
10 grugq and scut [132] call this "running line code." 
11 Proof of concept courtesy of the Peach virus [15]. 

100 See [149, 244], [77], and [242], respectively. 
101 Molnar and Szappanos [210]. 
102 A student suggested this possibility, although no actual example of this 

technique has been found to date. 
103 Analyses of Simile and Ganda can be found in Perriot et al. [249] and 

Molnar and Szappanos [210], respectively. 
104 GriYo[131]. 
105 The issue of how long to emulate is mentioned in Nachenberg [217], also 

Szor [308]. 
106 See Nachenberg [217]. [314] mentions the problems of junk code and 

occasional replication. 
107 These possibilities are from Veldman [332]. 
108 These first four are from Veldman [332]. 
109 See also Natvig [226]. 
110 Natvig [226] talks about library-related emulation problems. 
111 Szor and Ferrie [314] point out the external resource problem. 
112 See Krakowicz [172] for an early, pre-lowercase treatise on the subject. 
113 Hasson [139] suggests this strategy when using anti-debugging for soft­

ware protection. 
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114 Hasson [139] andCrackZ [81]. 
115 See Rosenberg [268] for more information on this and single-stepping. 
116 Hasson [139]. 
117 Pless [254] talks about the error detection/correction distinction. The use 

of Hamming codes for error correction for the first two reasons is in Fer-
brache [103]; RDA.Fighter uses them for anti-debugging [83]. 

118 CrackZ[81]. 
119 Stampf[302]. 
120 This suggestion was made by CrackZ [81 ]; the Elkem.C analysis is in [239]. 
121 Cesare [57]. 
122 Horspool and Marovac [146]. 
123 Aycocketal. [22]. 
124 Bontchev [46]. 
125 Stampf[302]. 
126 Bontchev [46]; Methyl [205]. 
127 Methyl [205]. 
128 This section is based on Bontchev [38]. 
129 Gryaznov [133]. 
130 The first two are from Bontchev [38], the last from Sowhat [297]. 
131 Hypponen [149] notes this, along with a laundry list of anti-anti-virus 

techniques. 



Chapter 6 

WEAKNESSES EXPLOITED 

Weaknesses are thin ice on the frozen lake of security, vulnerable points 
through which a system's security may be compromised. Thin ice doesn't 
always break, and not all weaknesses are exploitable. However, an examination 
of the devious and ingenious ways that security can be breached is enlightening. 

Malware may exploit weaknesses to initially infiltrate a system, or to gain 
additional privileges on an already-compromised machine. The weaknesses 
may be exploited automatically by malware authors' creations, or manually by 
people directly targeting a system. In this chapter, the initiator of an exploit 
attempt will be generically called an "attacker." 

Weaknesses fall into two broad categories, based on where the weakness 
lies. Technical weaknesses involve tricking the target computer, while human 
weaknesses involve tricking people. 

6.1 Technical Weaknesses 

Weaknesses in hardware are possible, but weaknesses in software are dis­
turbingly common. After some background material, a number of frequent 
weaknesses are discussed, such as various kinds of buffer overflow (stack 
smashing, frame pointer overwriting, returns into libraries, heap overflows, 
and memory allocator attacks), integer overflows, and format string vulnerabil­
ities. This is unfortunately not an exhaustive list of all possible weaknesses. At 
the end of this section, how weaknesses are found, and defenses to these weak­
nesses are examined. Where possible, weaknesses and defenses are presented 
in a language- and architecture-independent way. 



110 COMPUTER VIRUSES AND MALWARE 

High 
memory 

Low 
memory 

Stack 

1 

t 
Heap 

Data 

Code 
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6.1,1 Background 
Conceptually, a process' address space is divided into four "segments" as 

shown in Figure 6.1:^ 

• The program's code resides in the fixed-size code segment. This segment 
is usually read-only. 

• Program data whose sizes are known at compile-time are in the fixed-size 
data segment. 

• A "heap" segment follows the data segment and grows upwards; it also holds 
program data. The heap as used in this context has nothing whatsoever to 
do with a heap data structure, even though they share the name. 

• A stack starts at high memory and grows downwards. In practice, the 
direction of stack growth depends on the architecture. Downwards growth 
will be assumed here for concreteness. 

A variable in an imperative language, like C, C++, and Java, is allocated to a 
segment based on the variable's lifetime and the persistence of its data. A sample 
C program with different types of variable allocation is shown in Figure 6.2. 
Global variables have known sizes and persist throughout run-time, so they are 
placed into the data segment by a compiler. Space for dynamic allocation has to 
grow on demand; dynamic allocation is done from the heap segment. Finally, 
local variables don't persist beyond the return of a subroutine, and subroutine 
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Figure 6.2. Sample segment allocation 

calls within a program follow a stack discipline, so local variables are allocated 
space on the stack. 

A subroutine gets a new copy of its local variables each time the subroutine is 
called. These are stored in the subroutine's stack frame, which can be thought 
of as a structure on the stack. When a subroutine is entered, space for the 
subroutine's stack frame is allocated on the stack; when a subroutine exits, its 
stack frame space is deallocated. The code to manage the stack frame is added 
automatically by a compiler.^ Figure 6.3 shows how the stack frames change 
when code runs. Note that A is called a second time before the first call to A has 
returned, and consequently A has two stack frames on the stack at that point, 
one for each invocation. 

More than local variables may be found in a stack frame. It serves as a repos­
itory for all manner of bookkeeping information, depending on the particular 
subroutine, including: 

• Saved register values. Registers are a limited resource, and it is often the case 
that multiple subroutines will use the same registers. Calling conventions 
specify the protocol for saving, and thus preserving, register contents that 
are not supposed to be changed - this may be done by the calling subroutine 
(the caller), the called subroutine (the callee), or some combination of the 
two. If registers need to be saved, they will be saved into the stack frame. 

Temporary space. There may not be enough registers to hold all necessary 
values that a subroutine needs, and some values may be placed in temporary 
space in the stack frame. 
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Figure 6.3. Stack frame trace 

• Input arguments to the subroutine. Arguments passed to the subroutine, if 
any. 

• Output arguments from the subroutine. These are arguments that the sub­
routine passes to other subroutines that it calls. 

• Return address. When the subroutine returns, this is the address at which 
execution resumes. 

• Saved frame pointer. A register is usually reserved for use as a stack pointer, 
but the stack pointer may move about as arguments and other data are pushed 
onto the stack. A suhroutinQ's frame pointer is a register that always points 
to a fixed position within the subroutine's stack frame, so that a subroutine 
can always locate its local variables with constant offsets. Because each 
newly-called subroutine will have its own stack frame, and thus its own 
frame pointer, the previous value of the frame pointer must be saved in the 
stack frame. 

The inclusion of the last four as part of the stack frame proper is philosophical; 
some architectures include them, some don't. They will be assumed to be 
separate here in order to illustrate software weaknesses. For similar reasons, 
similar assumptions: arguments are passed on the stack, the return address and 
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saved frame pointer are on the stack. Variations of the weaknesses described 
here can often be found for situations where these assumptions aren't true. 

Figure 6.4 shows the stack before and after a subroutine call. Prior to the 
call, the caller will have placed any arguments being passed into its argument 
build area. The call instruction will push the return address onto the stack and 
transfer execution to the callee.^ The callee's code will begin by saving the old 
frame pointer onto the stack and creating a new stack frame. 

6.1.2 Buffer Overflows 
A bujfer overflow is a weakness in code where the bounds of an array (often 

a buffer) can be exceeded. An attacker who is able to write into the buffer, 
directly or indirectly, will be able to write over other data in memory and cause 
the code to do something it wasn't supposed to. Generally, this means that an 
attacker could coerce a program into executing arbitrary code of the attacker's 
choice. Often the attacker's goal is to have this "arbitrary code" start a user shell, 
preferably with all the privileges of the subverted program - for this reason, the 
code the attacker tries to have run is generically referred to as shellcode. 

One question immediately arises: why are these buffers' array bounds not 
checked? Some languages, like C, don't have automatic bounds checking. 
Sometimes, bounds-checking code is present, but has bugs. Other times, a 
buffer overflow is an indirect effect of another bug. 
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def main(): 
fill_buffer0 

def fill_buffer0 : 
character buffer[100] 
i = 0 
ch = input () 
while ch 9^ NEWLINE: 

buffer^ = ch 
ch = input() 
i = i + 1 

Figure 6.5. Code awaiting a stack smash 

Buffer overflows are not new. The general principle was known at least as 
far back as 1972,̂ ^^ and a buffer overflow was exploited by the Internet worm 
in 1988. 

6.1.2.1 Stack Smashing 
Stack smashing is a specific type of buffer overflow, where the buffer being 

overflowed is located in the stack. ̂ ^̂  In other words, the buffer is a local variable 
in the code, as in Figure 6.5. Here, no bounds checking is done on the input 
being read. As the stack-allocated buffer is filled from low to high memory, an 
attacker can continue writing, right over top of the return address on the stack. 
The attacker's input can be shellcode, followed by the address of the shellcode 
on the stack - when f ill_buf f er returns, it resumes execution where the 
attacker specified, and runs the shellcode. This is illustrated in Figure 6.6. 

The main problem for the attacker is finding out the address of the buffer in the 
stack. Fortunately for the attacker, many operating systems situate a process' 
stack at the same memory location each time a program runs. To account 
for slight variance, an attacker can precede the shellcode with a sequence of 
"NOP" instructions that do nothing."^ Because jumping anyplace into this NOP 
sequence will cause execution to slide into the shellcode, this is called a NOP 
sled}^^ The exploit string, the input sent by the attacker, is thus 

NOP NOP NOP .. . shellcode new-return-address 

The space taken up by the NOP sled and the shellcode must be equal to the 
distance from the start of the buffer to the return address on the stack, otherwise 
the new return address won't be written to the correct spot on the stack. The 
saved frame pointer on the stack doesn't have to be preserved, either, because 
execution won't be returning to the caller anyway. 

There are several other issues that arise for an attacker: 
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Figure 6.6. Stack smashing attack 

The length of the exploit string must be known, but the exact location on 
the stack may not be, due to the NOP sled. The addresses of strings in the 
shellcode cannot be hardcoded as a result - for example, shellcode may need 
a string containing the path to a user shell like /b in /sh . Some architectures 
allow addresses to be specified relative to the program counter's value, called 
PC-relative addressing. Other architectures, like the Intel x86, don't have 
PC-relative addressing, but do allow PC-relative subroutine calls. On the 
x86, a PC-relative jump from one part of the shellcode to another part of the 
shellcode will leave the caller's location on top of the stack. This location 
is the stack address of the shellcode. 

Depending on the code being attacked, some byte values can terminate the 
input before the buffer is overflowed. In Figure 6.5, for instance, a new-
line character terminates the input. The exploit string cannot contain these 
input-terminating values. An attacker must rewrite their exploit string if nec­
essary, to compute the forbidden values instead of containing them directly. 
For example, an ASCII NUL character (byte value 0) can be computed by 
XORing a value with itself. 

A buffer may be too small to hold the shellcode. One possible workaround 
is to write the shellcode after writing the new return address. 

Another possibility is to use the program's environment. Most operating 
systems allow environment variables to be set, which are variable names 
and values that are copied into a program's address space when it starts 
running. If an attacker controls the exploited program's environment, they 
can put their shellcode into an environment variable. Instead of making the 
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Figure 6.7. Environmentally-friendly stack smashing 

new return address point to the overwritten buffer, the attacker points the new 
return address to the environment variable's memory location (Figure 6.7).^ 

6.1.2.2 Frame Pointer Overwriting 

What if a buffer can be overrun by only one byte? Can an attack be staged? 
Under some circumstances, it can, except instead of overwriting the return 
address on the stack, the attack overwrites a byte of the saved frame pointer. 
This is ^ frame pointer overwriting attack. ̂ ^̂  

The success of this attack relies on two factors: 

1 Some architectures demand that data be aligned in memory, meaning that 
the data must start at a specific byte boundary. For example, integers may 
be required to be aligned to a four-byte boundary, where the last two bits of 
the data's memory address are zero. When necessary, compilers will insert 
padding - unused bytes - to ensure that alignment constraints are met. There 
must be no padding on the stack between the buffer and the saved frame 
pointer for a frame pointer overwrite to work. Otherwise, writing one byte 
beyond the buffer would only alter a padding byte, not the saved frame 
pointer. Padding aside, no other data items can reside between the buffer 
and saved frame pointer, for similar reasons. 
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d e f m a i n ( ) : 
fill_buffer0 

def fill_buffer0 : 
character buffer[100] 
i = 0 
ch = input() 
while i <= 100 and ch T^ NEWLINE: 

buffer^ = ch 
ch = input 0 
i = i + 1 

Figure 6.8. Code that goes just a little too far 

2 The architecture must be little-endian. Endianness refers to the way an 
architecture stores data in memory. For example, consider the four-byte 
hexadecimal number aabbccdd. A big-endian machine would store the 
most significant byte first in memory; a little-endian machine like the Intel 
x86 would store the least significant byte first: 

X X+1 X-f2 X+3 

Big-endian aa bb cc dd 
Little-endian dd cc bb aa 

On a big-endian machine, a frame pointer overwrite would change the most 
significant byte of the saved frame pointer; this would radically change 
where the saved frame pointer points in memory. However, on a little-
endian machine, the overwrite changes the least significant byte, causing 
the saved frame pointer to only change slightly. 

When the called subroutine returns, it restores the saved frame pointer from 
the stack; the caller's code will then use that frame pointer value. After a frame 
pointer attack, the caller will have a distorted view of where its stack frame is. 

For example, the code in Figure 6.8 allows one byte to be written beyond the 
buffer, because it erroneously uses <= instead of <.̂  Figure 6.9 shows the stack 
layout before and after the attack. By overwriting the buffer and changing the 
saved frame pointer, the attacker can make the saved frame pointer point inside 
the buffer, something the attacker controls. The attacker can then forge a stack 
frame for the caller, convincing the caller's code to use fake stack frame values, 
and eventually return to a return address of the attacker's choice. The exploit 
string would be 
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NOP NOP NOP .. . shellcode fake-stack-frame 
fake-saved-frame-pointer shellcode-address 

new-frame-pointer-byte 

A saved frame pointer attack isn't straightforward to mount, but serves to 
demonstrate two things. First, an off-by-one error is enough to leave an ex­
ploitable weakness. Second, it demonstrates that just guarding the return ad­
dress on the stack is insufficient as a defense. 

6.1.2.3 Returns into Libraries 

The success of basic stack smashing attacks relies on the shellcode they inject 
into the stack-allocated buffer. One suggested defense against these attacks is 
to make the stack's memory nonexecutable. In other words, the CPU would be 
unable to execute code in the stack, even if specifically directed to do so. 

Unfortunately, this defense doesn't work. If an attacker can't run arbitrary 
code, they can still run other code. As it happens, there is a huge repository 
of interesting code already loaded into the address space of most processes: 
shared library code.̂ "̂̂  An attacker can overwrite a return address on the stack 
to point to a shared library routine to execute. For example, an attacker may 
call the system library routine, which runs an arbitrary command. 
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Main's 
stack frame 

Return address 

Saved frame ptr 

Buffer 
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Main's 
stack frame 

Before frame 
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Figure 6.9. Frame pointer overwrite attack 



Weaknesses Exploited 119 

Higher 
memory 

Lower 
memory 

Argument N 

Argument 2 

Argument 1 

Return address 
Stack 
pointer 

Figure 6.10. A normal function call with arguments 

Arguments may be passed to library routines by the attacker by writing be­
yond the return address in the stack. Figure 6.10 shows the initial stack contents 
a subroutine would expect to see when called with arguments; Figure 6.11 shows 
a retum-to-library attack which passes arguments. Notice the extra placeholder 
required, because the called library function expects a return address on the 
stack at that location. 

This attack is often called a return-to-libc attack, because the C shared library 
is the usual target, but the attack's concept is generalizable to any shared library. 

6.1.2.4 Heap Overflows 
This next attack is somewhat of a misnomer. A heap overflow is a buffer 

overflow, where the buffer is located in the heap or the data segment. ̂ ^̂  The idea 
is not to overwrite the return address or the saved frame pointer, but to overwrite 
other variables that are adjacent to the buffer. These are more "portable" in a 
sense, because heap overflows don't rely on assumptions about stack layout, 
byte ordering, or calling conventions. 

For example, the following global declarations would be allocated to the data 
segment: 

character buffer[123] 
function pointer p 

Overflowing the buffer allows an attacker to change the value of the function 
pointer p, which is the address of a function to call. If the program performs a 
function call using p later, then it jumps to the address the attacker specified; 
again, this allows an attacker to run arbitrary code. 
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Figure 6.1 L Return-to-library attack, with arguments 

The range of possibilities for heap overflow attacks depends on the vari­
ables that can be overwritten, how the program uses those variables, and the 
imagination of the attacker. 

6.1.2.5 Memory Allocator Attacks 
One way heap overflows can be used is to attack the dynamic memory allo­

cator. As previously mentioned, space is dynamically allocated from the heap. 
The allocator needs to maintain bookkeeping information for each block of 
memory that it oversees in the heap, allocated or unallocated. Allocators find 
space for this information by overallocating memory - when a program requests 
an X-byte block of memory, the allocator reserves extra space: 

• Before the block, room for bookkeeping information. 

• After the block, space may be needed to round the block size up. This may 
be done to avoid fragmenting the heap with remainder blocks that are too 
small to be useful, or to observe memory alignment constraints. 

The key observation is that the bookkeeping information is stored in the heap, 
following an allocated block. Exploiting a heap overflow in one block allows the 
bookkeeping information for the following block to be overwritten, as shown 
in Figure 6.12.̂ ^^ 
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Figure 6.12. Overflowing the heap onto bookkeeping information 

Figure 6.13. Dynamic memory allocator's free list 

By itself, this isn't terribly interesting, but memory allocators tend to keep 
track of free, unallocated memory blocks in a data structure called difree list. 
As in Figure 6.13, the free list will be assumed here to be a doubly-linked list, 
so that blocks can be removed from the list easily. When an allocated block is 
freed, the allocator checks to see if the block immediately following it is also 
free; if so, the two can be merged to make one larger block of free memory. 
This is where the free list is used: the already-free block must be unlinked from 
the free list, in favor of the merged block. 

A typical sequence for unlinking a block from a doubly-linked list is shown 
in Figure 6.14. The blocks on the list have been abstracted into uniform list 
nodes, each with two pointers as bookkeeping information, a "previous" pointer 
pointing to the previous list node, and a "next" pointer pointing to the next node. 
From the initial state, there are two steps to unlink a node B\ 

1 The next node, C, is found by following B's next pointer. C's previous 
pointer is set to the value of B's previous pointer. 



122 COMPUTER VIRUSES AND MALWARE 

A 

Time 

B 

1 ^ 

A 

\ 1 /^ 

B 

'^ i 

C 

Figure 6.14. Normal free list unlinking 

2 5's previous pointer is followed to find the previous node, A, A's next 
pointer is set to the value of B's next pointer. 

Now, say that an attacker exploits a heap overflow in the allocated block 
immediately before fi, and overwrites B\ list pointers. 5's previous pointer is 
set to the address of the attacker's shellcode, and fi's next pointer is assigned 
the address of a code pointer that already exists in the program. For example, 
this code pointer may be a return address on the stack, or a function pointer in 
the data segment. The attacker then waits for the program to free the memory 
block it overflowed. 

Figure 6.15 illustrates the result. The memory allocator finds the next adja­
cent block {E) free, and tries to merge it. When the allocator unlinks B from 
the list, it erroneously assumes that 5's two pointers point to free list nodes. 
Following the same two steps as above, the allocator overwrites the targeted 
code pointer with the shellcode's address in the first step. This was the primary 
goal of the exploit. The second step writes a pointer just past the start of the 
shellcode. This would normally render the shellcode unrunnable, but the shell-
code can be made to start with a jump instruction, skipping over the part of the 
shellcode that is overwritten during unlinking. 

After the allocator's unlinking is complete, the targeted code address points 
to the shellcode, and the shellcode is run whenever the program uses that over­
written code address. 
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Figure 6.15. Attacked free list unlinking 

6.13 Integer Overflows 
In most programming languages, numbers do not have infinite precision. 

For instance, the range of integers may be limited to what can be encoded in 
16 bits7 This leads to some interesting effects: ̂ ^̂  

• Integer overflows, where a value "wraps around." For example, 30000 + 
30000 = -5536. 
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• Sign errors. Mixing signed and unsigned numbers can lead to unexpected 
results. The unsigned value 65432 is -104 when stored in a signed variable, 
for instance. 

• Truncation errors, when a higher-precision value is stored in a variable with 
lower precision. For example, the 32-bit value 8675309 becomes 24557 in 
16 bits. 

Few languages check for these kinds of problems, because doing so would oc­
casionally impose additional overhead, and more occasionally, the programmer 
actually intended for the effect to occur. 

At this point in the chapter, it should come as little surprise that these effects 
can be exploited by an attacker - they are collectively called integer overflow 
attacks. Usually the attack isn't direct, but uses an integer overflow to cause 
other types of weaknesses, like buffer overflows. ̂ ^̂  

The code in Figure 6.16 has such a problem, and is derived from real code. 
All numbers are 16 bits long: n is the number of elements in an array to be 
read in; s ize is the size in bytes of each array element; t o t a l s i z e is the total 
number of bytes required to hold the array. If an attacker's input results in n 
being 1234 and s ize being 56, their product is 69104, which doesn't fit in 
16 bits - t o t a l s i z e is set to 3568 instead. As a result of the integer overflow, 
only 3568 bytes of dynamic memory are allocated, yet the attacker can feed in 
69104 bytes of input in the loop that follows, giving a heap overflow. 

n = input_number() 
size = input_number() 
totalsize = n * size 

buffer = allocate_memory(totalsize) 

i = 0 
buffer_pointer ^ buffer 
while i < n: 

buffer_pointerQ gĵ ĝ_̂  = input_N_bytes (size) 
buffer_pointer = buffer_pointer + size 
i - i + 1 

Figure 6.16. Code with an integer overflow problem 
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6,1.4 Format String Vulnerabilities 
'Perhaps one of the most interesting en'ors that we discovered was a result of an 

unusual interaction of two parts of csh, along with a little careless programming. The 
following string will cause the VAX version of csh to crash 

!o%8f 

and the following string 

!o%888888888f 

will hang... most versions of csh.' - Barton Miller et al.̂ °^ 

Format functions in C take as input a "format string" followed by zero or more 
arguments. The format string tells the function how to compose the arguments 
into an output string; depending on the format function, the output string may 
be written to a file, the standard output location, or a buffer in memory.^ Format 
string problems, the cause of the errors in the above quote, were a curiosity in 
1990 when those words were published. By 1999, format string problems were 
recognized as a security problem, and they were being actively exploited by 
2000.^1^ 

The canonical example of a format function is pr int f : 

char *s = " i s page"; 
in t n = 125; 
p r in t f ( "He l lo , world!") ; 
p r in t f ( "This Xs ^d ." , s , n ) ; 

The first call to p r in t f prints Hello, world!; its format string doesn't 
contain any special directives telling p r in t f to look for any additional argu­
ments. The second call, on the other hand, does - 7oS says to interpret the 
next unread argument (s) as a pointer to a string, and "/od treats the next unread 
argument (n) as an integer. The result is the output 

This i s page 125. 

Saying "the next unread argument" implies that p r in t f consumes the argu­
ments as it formats the output string, and this is exacdy what happens. Fig­
ure 6.17 shows the stack layout for a call to printf , assuming again that 
arguments are passed on the stack. As a format function reads its arguments, 
it effectively steps a pointer through the stack, where the pointer identifies the 
next argument to be read. 

Format functions exhibit a touching faith in the correctness of the format 
string. A format function has no way of knowing how many arguments were 
really passed by its caller, which can be disastrous if an attacker is able to supply 
any part of a format string.^ ̂ ^ For example, if the program contains 

p r i n t f ( e r r o r ) ; 



126 COMPUTER VIRUSES AND MALWARE 

Higher 
memory 

Lower 
memory 

Caller's 
stack frame 

Argument_2 

Argument_1 

Pointer to 
format_string 

Return address 

Saved frame ptr 

Printf's 
stack frame 

printf(format_string, 
argument_1, 
argument_2) 

To format 
^ string 

Figure 6.17. Stack layout for calling a format function 

and an attacker manages to set the variable e r ror to "yosyosyosyos", then the 
program will almost certainly crash. Pr in t f ' s attacker-specified format string 
tells it to grab the next four items off the stack and treat each one as a pointer 
to a string. The problem is that the next four items on the stack aren 7 pointers 
to strings, so p r in t f will make wild memory references in an effort to format 
its alleged strings. 

As is, this attack can be used to print out the contents of a target program's 
stack: an attacker can craft a format string which walks up the stack, inter­
preting each stack item as a number and printing the result. Changing e r ro r 
to "yodyodyodyod" in the above example would be enough to print the stack con­
tents. This is one possible way that addresses can be discovered for a later stack 
smashing attack. 

Even more is possible if the attacker can control a format string located in the 
stack. The code in Figure 6.18 is a common scenario, where a buffer's contents 
are formatted for later output. The snprintf function is a format function 
with two additional arguments, a buffer and the buffer's length; snpr int f 
writes its formatted output to this buffer. It also demonstrates that a format 
string vulnerability can be exploited indirectly, as the flaw here is in the call to 
pr intf , not snprintf . 

With this code, the attacker's format string can be the ungainly construction 

\x78\x56\x34\xl2 yodyodyodyodyodyodyod yon" 
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v o i d p r i n t _ e r r o r ( c h a r *s) 
{ 

char buffer[123]; 
snprintf(buffer, sizeof(buffer), 

''Error: %s", s) ; 
printf(buffer); 

Figure 6.18. Code with a format string vulnerability 

The buffer, a local variable on the stack, contains p r i n t f s format string after 
the call to snprintf . Pr int f is thus called with a format string that the attacker 
has supplied in part: 

"Error: \x78\x56\x34\xl2 yodyodyod7odyodyodyod yn" 

There are four parts to this format string. 

1 Error: is added by snprintf . It plays no part in this attack and can be 
ignored. 

2 \x78\x56\x34\xl2 is the address 12345678 in little-endian format; in C 
strings, \x introduces a pair of hexadecimal digits. 

3 yodyodyodyodyodyodyd, used as mentioned above to walk up the stack's contents. 

4 yn is a format string directive. It tells p r in t f to interpret the next unread 
argument as a pointer to an integer. Pr int f writes the number of bytes it's 
formatted so far into the pointed-to integer. Through this mechanism, the 
attacker has a way to have a value written to an arbitrary memory location. 

The stack layout during an attack is given in Figure 6.19. The attacker's format 
string causes p r in t f to walk up the stack, printing integers, until the next unread 
argument is the address the attacker encoded in the format string. (Remember 
that the buffer is in the stack, so the attacker's format string is there too.) The %n 
takes the attacker's address and writes a number at that address. The attacker 
can control the number written by adding junk characters to the format string, 
changing the number of bytes p r in t f formats, and consequently the number 
written for yn. 

Like other attacks, if an attacker can make a single specified value change, 
then the possibility of running shellcode exists. 

6.1.5 Defenses 
The underlying moral in studying these technical vulnerabilities is to never, 

ever, ever trust input to a program. Having bulletproof input routines and bug-
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Figure 6.19. Format string attack in progress 

free code is the best defense to technical vulnerabilities, but expecting this of 
all software is like asking Santa Claus for world peace - well intentioned, but 
unlikely to happen in the near future. 

In the meantime, two types of defenses can be considered, ones that are 
specific to a type of vulnerability, and ones that are more general. 

6.1.5.1 Vulnerability-Specific Defenses 
Defenses can be directed to guarding against certain types of vulnerability. 

For example: 

Format string vulnerabilities 

• Source code auditing is a particularly effective defense, because the 
number of format functions is relatively small, and it is easy to search 
source code for calls to format functions.^^^ 
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• Remove support for yoii in format functions, or only allow constant 
format strings that an attacker can't change. ̂  ̂ ^ This defense would break 
existing code in addition to violating the C specification. 

• If a format function knew how many arguments it had been called with, 
then it could avoid reading nonexistent arguments. Unfortunately, this 
information isn't available at run-time. 

A program's source code can be altered to supply this information. Calls 
to known format functions can be wrapped in macros that keep track 
of the number of arguments passed. Even this doesn't always work, 
because nonstandard format functions may be used, or standard format 
functions may be used in unusual ways. For example, the code may 
save a function pointer to p r in t f and call it later, rather than calling 
p r in t f directly. 

Stack smashing 

• As mentioned before, one defense against stack smashing is to mark 
the stack's memory as nonexecutable; the same idea can be extended 
to the data and heap segments. This is not a complete defense, since 
a return-to-library attack is still possible, but it does close one attack 
vector. 

Some programs legitimately need to have executable code in odd places 
in memory, like just-in-time compilers and nested C functions.^ An 
alternative memory protection approach ensures that memory pages can 
be writable or executable, but not both at the same time. This provides 
the same protection, but with more flexibility for legitimate programs. ̂ ^ 

• The control information in the stack, the return address and the saved 
frame pointer, can be guarded against inappropriate modification. This 
method prevents stack smashing attacks, and also catches some buggy 
programs. The way the control information is guarded is by using 
canaries. 

Miners used to use live canaries as a safety precaution. A buildup of 
toxic gases in a mine would kill a canary before a human, so canaries 
were taken down into mines as an early-warning system. Finding a 
metabolically-challenged canary meant that it was time for a coffee 
break on the surface. 

For stack smashing defense, a canary is a value which is strategically 
located in the stack frame, between the local variables and the control 
information (Figure 6.20). A canary can't withstand an attack- in theory 
- and if the canary is corrupted, then an attack may have occurred, so 
the program should issue an alert and exit immediately.^^^ 
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Figure 6.20. Canary placement 

Support for canaries is provided by a language's compiler. Space for 
the canary must be added in each stack frame, code must be added at 
subroutine entry to initialize the canary, and code at subroutine exit must 
verify the canary's value for correctness. With all this code being added, 
overhead is a concern for canary-based defenses. 
An attacker trying to compromise a program using canaries would have 
to overflow a buffer and overwrite control information as usual, and 
write the correct canary value so that the attack isn't discovered. There 
are three types of canary, distinguished by how they try and prevent an 
attacker from writing the correct canary value: 

1 Terminator canaries. Assuming that the most common type of stack 
smashing involves input and strings, a terminator canary uses a 
constant canary value which is a combination of four bytes, line 
and string terminators all: carriage return, newline, NUL, and -1 
for good measure. The hope is that an attacker, sending these bytes 
to overwrite the canary correctly, would unwittingly end their input 
before the exploit succeeds. 
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2 Random canaries. The canary value can also be changed to prevent 
an attacker from succeeding; the theory is that an attacker must 
know the canary value in order to construct an exploit string. A 
random canary is a secret canary value that is changed randomly 
each time a program runs. ̂  ̂  The random canary value for a program 
is stored in a global location, and is copied from this global location 
to a stack frame upon subroutine entry. The global location may 
possibly be situated in a read-only memory page to avoid being 
altered by an attacker. However, note that the presence of a format 
string vulnerability can be used by an attacker to find out the secret 
canary value. 

3 Random XOR canaries. This is a random canary, with some or all 
of the control information XORed in with the canary for each stack 
frame. Any successful attack must set the canary appropriately -
not an impossible task, but not an easy one either. 

Canaries can be extended to guard against some heap overflows as 
well, by situating a canary in the bookkeeping information of each 
dynamically-allocated block. ̂  ̂  ̂  A general problem with canaries of any 
sort is that they only provide a perimeter guard for a memory area, and 
a program can still be attacked by overflowing a buffer onto other, un­
guarded variables within the guarded memory area.̂ ^^ A partial remedy 
is to alter the memory layout of variables, so that buffers are situated as 
close to a canary as possible, with no non-buffer variables in between. ̂  ̂ ^ 

Generally, defenses to specific vulnerabilities that rely on the availability of 
source code or compilers won't work. Source code is not always available, 
as in the cases of third-party libraries and legacy code. Even if source code 
is available, compilers may not be, or users may lack the expertise or time to 
make source code changes, recompile, and reinstall. 

6.1.5.2 General Defenses 

Since most of the technical vulnerabilities stem from the use of program­
ming languages with weaknesses, like the lack of bounds checking, one general 
approach is to stop using those languages. No more C, no more C++. This sug­
gestion ignores many realities: legacy code, programmer training, programmer 
and management biases towards certain programming languages, the cost and 
availability of tools and compilers, constraints from third-party libraries. In any 
case, even if use of "weak" programming languages was stopped, history has 
shown that existing applications in those languages would linger in active use 
for decades. 

A related idea is not to change programming languages, but to repair prob­
lems with an existing language after the fact. For example, bounds checking 
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could be added to C programs. Current approaches to bounds checking C code 
are dogged by problems: incomplete protection, breaking existing code. This 
is also an area where adding 'less than 26%' overhead is deemed to make a tool 
practical for use.̂ ^^ 

A more feasible defense is to randomize the locations of as many addresses 
as possible. If the locations of the stack, shared libraries, program code, and 
heap-allocated memory change each time the program is run, then an attacker's 
task is made more difficult.̂ ^^ However, it also makes legitimate debugging 
more difficult, in terms of finding spurious bugs, if these locations change non-
deterministically. There is also evidence that the amount of randomization that 
can be provided is insufficient to prevent attacks completely. ̂ ^̂  A brute-force 
attack on a well-chosen target is possible, albeit much slower than attacking a 
system without any randomization. 

A program's code can also be monitored as it runs, akin to behavior blocking 
anti-virus techniques. ̂ ^ The monitoring system looks for potential attacks by 
watching for specific abnormal behaviors, like a function return jumping into 
a buffer, or a return instruction not returning to its call site. The tricky part is 
pausing the monitored program's execution at critical points so that checks may 
be performed, without introducing excessive overhead, without modifying the 
monitored program's code. A solution comes in the form of caching: 

• The monitoring system maintains a cache of code chunks that have already 
been checked against the monitor's security policy. 

• Cached code chunks run directly on the CPU, rather than using slow em­
ulation, and a chunk returns control back to the monitor when it's done 
running. 

• Each control transfer is checked - if the destination corresponds to an 
already-cached code chunk, then execution goes to the cached chunk. Oth­
erwise, the destination code chunk is checked for security violations and 
copied into the code cache. 

Code chunks in the cache can be optimized, mitigating some of the monitoring 
overhead. 

6.1.6 Finding Weaknesses 
How do attackers find technical weaknesses in the first place? They can find 

the vulnerabilities themselves: 

• Source code can be studied for vulnerabilities, when attacking a system 
where the source is available. ̂ -̂  Even when a system is closed-source, it 
may be derived in part from a system with available source code. 
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• Disassembly listings of programs and libraries can be manually searched, 
looking for opportunities. For example, an attacker could look for buffer-
handling code or calls to format functions. While this may sounds daunting, 
it is never wise to underestimate the amount of free time an attacker will 
dedicate to a task like this. 

• Instead of poring over disassembly listings, an attacker can reconstruct a 
facsimile of the target program's source code using tools for reverse engi­
neering, like decompilers. This provides a slightly higher-level view onto 
the target code. 

• Vulnerabilities can be discovered even without direct access to the target 
program or its source code. Treating the target program as a "black box" 
might be necessary if the target program is running on a remote machine 
for which the attacker doesn't have access.̂ "̂  For example, an attacker can 
look for buffer overflows by feeding a program inputs of various lengths 
until a suspicious condition is seen, like abruptly-terminated output. More 
information, such as the buffer's length, can be found through trial-and-error 
at that point by performing a binary search using different input lengths. 
Computers excel at repeating such mundane tasks, and finding the length of 
a buffer can be automated. ̂ ^ 

In general, any research on automated program-testing can be applied by an 
attacker. Such methods have a demonstrated ability to find long sequences 
of inputs which cause a program to misbehave.^^ 

The other option an attacker has is to wait for someone else to find a vulner­
ability, or at least point the way: 

• There are a number of full disclosure mailing lists. Advocates of full disclo­
sure argue that the best way to force software vendors to fix a vulnerability 
is to release all its details, and possibly even code that exploits the vulner­
abilities. (The extreme contrast to this is security through obscurity, which 
holds that hiding security-related details of a system means that attackers 
will never be able to figure them out. Again, underestimating an attacker is 
a bad strategy.) An exploit made available on a full-disclosure list can either 
be used directly, or might be used to indicate the direction of more serious 
problems in the targeted code. 

• A vendor security patch is a wealth of information. Either the patch itself 
can be studied to see what vulnerability it fixed, or a system can be compared 
before and after applying a patch to see what changed. 

Tools are available to help with the comparison task. All but the most 
trivial alteration to the patched executables will result in a flurry of binary 
changes: branch instructions and their targets are moved; information about 
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a program's symbols changes as code moves around; new code optimization 
opportunities are found and taken by the code's compiler. For this reason, 
tools performing a straight binary comparison will not yield much useful 
information to an attacker.̂ ^^ 

Useful binary comparison tools must filter out nonessential differences in 
the binary code. This is related to the problem of producing small patches 
for binary executables. Any observed difference between two executables 
must be characterized as either a primary change, a direct result of the code 
being changed, or a secondary change, an artifact of a primary change. *̂ ^ 
For example, an inserted instruction would be a primary change; a branch 
offset moved to accommodate the insertion is a secondary change. Spotting 
secondary changes can be done several ways: 

- An architecture-dependent tool effectively disassembles the code to find 
instructions like branches which tend to exhibit secondary changes. ̂ ^̂  

- An architecture-independent tool can guess at the same information 
by assuming that code movements are small, only affecting the least-
significant bytes of addresses.̂ ^"^ 

Naturally an attacker would only be interested in learning about primary 
changes, after probable secondary changes have been identified. 

Other binary comparison approaches build "before" and "after" graphs of 
the code, using information like the code's control flow. A heuristic attempt 
is made to find an isomorphism between the graphs; in other words, the 
graphs are "matched up" as well as possible. Any subgraph that can't be 
matched indicates a possible change in the corresponding code.̂ ^^ 

The Holy Grail for an attacker is the zero-day exploit, an exploit for a vulner­
ability that is made the same day as the vulnerability is announced - hopefully 
the same day that a patch for the vulnerability is released. From an attacker's 
point of view, the faster an exploit appears, the fewer machines that will be 
patched to plug the hole. In practice, software vendors are not always fast or 
forthcoming,^^ and an exploit may be well-known long before a patch for the 
vulnerability manifests itself. 

6.2 Human Weaknesses 
Humans are the weakest link in the chain of security. Humans forget to apply 

critical security patches, they introduce exploitable bugs, they misconfigure 
software in vulnerable ways. There is even an entire genre of attacks based on 
tricking people, called social engineering. 

Classic social engineering attacks tend to be labor-intensive, and don't scale 
well. Some classic ploys include: ̂ ^̂  
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• Impersonation. An attacker can pretend to be someone else to extract infor­
mation from a target. For example, a "helpless user" role may convince the 
target to divulge some useful information about system access; an "impor­
tant user" role may demand information from the target. ̂ ^̂  

• Dumpster diving. Fishing through garbage for useful information. "Useful" 
is a broad term, and could include discarded computer hard drives and 
backups with valuable data, or company organization charts suitable for 
assuming identities. Identity theft is another use for such information. 

• Shoulder surfing. Discovering someone's password by watching them over 
their shoulder as they enter it in. 

These classic attacks have limited application to malware. Even impersonation, 
which doesn't require the attacker to have a physical presence, works much 
better on the phone or in person. *̂ ^ 

Technology-based social engineering attacks useful for malware must be 
amenable to the automation of both information gathering and the use of gath­
ered information. For example, usemames and passwords can be automatically 
used by malware to gain initial access to a system. They can be collected 
automatically with social engineering: 

• Phony pop-up boxes, asking the user to re-enter their username and pass­
word. 

• Fake email about winning contests, directing users to an attacker's web 
site. There, the user must create an account to register for their "prize" 
by providing a username and password. People tend to re-use usernames 
and passwords to reduce the amount they must remember, so there is a high 
probability that the information entered into the attacker's web site will yield 
some real authentication information. 

The same principle can be used to lure people to an attacker's website to 
foist drive-by downloads on them. The website can exploit bugs in a user's 
web browser to execute arbitrary code on their machine, using the technical 
weaknesses described earlier. 

• Phishing attacks send email which tricks recipients into visiting the at­
tacker's web site and entering information. For example, a phishing email 
might threaten to close a user's account unless they update their account in­
formation. The attacker's web site, meanwhile, is designed to look exactly 
like the legitimate web site normally visited to update account information. 
The user enters their username and password, and possibly some other per­
sonal information useful for identity theft or credit card fraud, thus giving 
all this information to the attacker. Malware can use phishing to harvest 
usernames and passwords. 
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If you receive an email titled "It Takes Guts to Say 
'Jesus'" do NOT open it. It will erase everything on 
your hard drive. 

Forward this letter out to as many people as you can. 
This is a new, very malicious virus and not many 
people know about it. This information was announced 
yesterday morning from IBM; please share it with 
everyone that might access the internet. Once again, 
pass this along to EVERYONE in your address book so 
that this may be stopped, 

AOL has said that this is a very dangerous virus and 
that there is NO remedy for it at this time. Please 
practice cautionary measures and forward this to all 
your online friends ASAP. 

Figure 6.21. "It Takes Guts to Say 'Jesus'" virus hoax 

User education is the best defense against known and unknown social engineer­
ing attacks of this kind. Establishing security policies, and teaching users what 
information has value, gives users guidelines as to the handling of sensitive 
information like their usemames and passwords.^^^ 

Social engineering may also be used by malware to spread, by tricking people 
into propagating the malware along. And, one special form of "malware" that 
involves no code uses social engineering extensively: virus hoaxes. 

6.2.1 Virus Hoaxes 
'This virus works on the honor system. Please forward this message to everyone you 

know, then delete all the files on your hard disk.' - Anonymous^^ 

A virus hoax is essentially the same as a chain letter, but contains "informa­
tion" about some fictitious piece of malware. A virus hoax doesn't do damage 
itself, but consumes resources - human and computer - as the hoax gets propa­
gated. Some hoaxes may do damage through humans, advising a user to make 
modifications to their system which could damage it, or render it vulnerable to 
a later attack. 

There are three parts to a typical hoax email :̂ -̂ ^ 

1 The hook. This is something that grabs the hoax recipient's attention. 

2 The threat. Some dire warning about damage to the recipient's computer 
caused by the alleged virus, which may be enhanced with confusing "tech-
nobabble" to make the hoax sound more convincing. 

3 The request. An action for the recipient to perform. This will usually include 
forwarding the hoax to others, but may also include modifying the system. 

Some examples are given in Figures 6.21 and 6.22.̂ ^ Figure 6.21 is a classic 
virus hoax, whose only goal is to propagate. The virus hoax in Figure 6.22 is 



Weaknesses Exploited 137 

I found the little bear in my machine because of that I am sending this 
message in order for you to find it in your machine. The procedure is 
very simple: 

The objective of this e-mail is to warn all Hotmail users about a new 
virus that is spreading by MSN Messenger. The name of this virus is 
jdbgmgr.exe and it is sent automatically by the Messenger and by the 
address book too. The virus is not detected by McAfee or Norton and it 
stays quiet for 14 days before damaging the system. 

The virus can be cleaned before it deletes the files from your system. 
In order to eliminate it, it is just necessary to do the following 
steps: 
1. Go to Start, click "Search" 
2.- In the "Files or Folders option" write the name jdbgmgr.exe 
3.- Be sure that you are searching in the drive "C" 
4.- Click "find now" 
5.- If the virus is there (it has a little bear-like icon with the name 

of jdbgmgr.exe DO NOT OPEN IT FOR ANY REASON 
6.- Right click and delete it (it will go to the Recycle bin) 
7.- Go to the recycle bin and delete it or empty the recycle bin. 

IF YOU FIND THE VIRUS IN ALL OF YOUR SYSTEMS SEND THIS MESSAGE TO ALL 
OF YOUR CONTACTS LOCATED IN YOUR ADDRESS BOOK BEFORE IT CAN CAUSE ANY 
DAMAGE. 

Figure 6.22. "jdbgmgr.exe" virus hoax 

slightly more devious, sending Windows users on a mission to find bear-shaped 
icons. As it turns out, this is the icon for a Java debugger utility which is 
legitimately found on Windows. 

Why does a virus hoax work? It relies on some of the same persuasion factors 
as social engineering:^^^ 

• A good hook elicits a sense of excitement, in the same way that a com­
mittee meeting doesn't. Hooks may claim some authority, like IBM, as 
their information source; this is an attempt to exploit the recipient's trust in 
authority. 

• The sense of excitement is enhanced by the hoax's threat. Overloading the 
recipient with technical-sounding details, in combination with excitement, 
creates an enhanced emotional state that detracts from critical thinking. 
Consequently, this means that the hoax may be subjected to less scrutiny 
and skepticism than it might otherwise receive. 

• The request, especially the request to forward the hoax, may be complied 
with simply because the hoax was persuasive enough. There may be other 
factors involved, though. A recipient may want to feel important, may 
want to ingratiate themselves to other users, or may genuinely want to warn 
others. A hidden agenda may be present, too - a recipient may pass the 
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hoax around, perceiving the purported threat as a way to justify an increase 
in the computer security budget. 

Virus hoaxes seem to be on the decline, possibly because they are extremely 
vulnerable to spam filtering. Even in the absence of technical solutions, edu­
cation is effective. Users can be taught to verify a suspected virus hoax against 
anti-virus vendors' databases before sending it along; if the mail is a hoax, the 
chances are excellent that others have received and reported the hoax already. 
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Notes for Chapter 6 

1 This is based on a simplified Unix memory model, with a few exceptions: 
the code segment is called the text segment, and what is lumped together 
here as the data segment is really a combination of the Unix data and bss 
segments. 

2 Again, this is a simplification. An optimizing compiler may place some or 
all of a subroutine's stack frame into registers if possible, to avoid costly 
memory references. Some architectures, like the SPARC, are specifically 
designed to facilitate this. 

3 Assumptions, assumptions, assumptions. RISC architectures tend not to 
push the return address, but dump it into a register so that it can be saved 
only if necessary. 

4 An alternative is to replicate the new return address several times at the end, 
especially when the exact distance from the buffer to the return address on 
the stack isn't known. 

5 On some systems, the stack location isn't consistent across executions of 
a program, but the environment variable location is, so the environment 
variable trick provides an alternative attack vector. 

6 This assumes that array indexing starts from zero. 
7 16-bit numbers are used in this section for clarity, but the same idea works 

for numbers with any finite precision. 
8 This is a simplified explanation, and doesn't take into account format func­

tions for input, various obscure format functions, and format functions that 
take an opaquely-typed variable argument list rather than the arguments 
themselves. 

9 The latter being a peculiarity of the "gcc" dialect of C, the implementation 
of which is described in Breuel [48]. 

10 OpenBSD allows this with their "W^X" scheme [85]. 
11 For multithreaded programs, each thread has its own stack. The random 

canary could thus be changed on a per-thread basis, with the canary's correct 
value placed in thread-local storage instead of a global location. 

12 Kiriansky et al. [164] call this "program shepherding," and build their system 
on top of HP's Dynamo dynamic optimization system [25]. Renert [261] 
does largely the same thing, code cache and all (albeit permitting more gen­
eral security policies), but neglects to mention the highly-related Dynamo 
work. 

13 This includes, but is not restricted to, open-source systems. "Available" 
doesn't necessarily imply "freely," "easily," or "widely." 

14 Yet. 
15 This technique of finding "blind" buffer overflows is described in [84, 194]. 
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16 For example, Chan et al. [60] apply an evolutionary learning algorithm to 
testing the game AI in Electronic Arts' FIFA-99 game. 

17 To be fair - at least on the vendor speed issue - patches must be thoroughly 
tested, and the same vulnerability may exist in several of a vendor's prod­
ucts [224]. 

18 This is one of many variants of the "honor system virus" circulating. No 
traces of this particular one seem evident before May 2000, right after the 
release of the (non-hoax) ILOVEYOU email worm. An honor system virus 
was posted to Usenet around this time, but it's unclear if it is the original 
source or merely another derivative [181]. 

19 There are many different versions of these hoaxes floating around; the ones 
given here are edited to include the essential features of each. 

100 Anderson [12]. 
101 This section is based on Aleph One [8]. 
102 Erickson [100]. 
103 The description of this attack is based on klog [167]. 
104 This section is based on [231, 292]. 
105 This section is based on Conover [78]. 
106 The description of this vulnerability is based on Solar Designer [293] and 

an anonymous author [18]. 
107 This categorization is due to Howard [147]. 
108 blexim [36], who also provides the XDR code from which Figure 6.16 was 

derived. 
109 Miller et al. [209, page 39]. 
110 Cowan etal. [80]. 
111 This format string vulnerability discussion is based on scut [284]. 
112 Koziol etal. [171]. 
113 The defenses against format string vulnerabilities are from Cowan et al. 

[80]. 
114 This ornithological discussion is based on Wagle and Cowan [339]. 
115 Robertson et al. [266]. 
116 BulbaandKil3r[51]. 
117 Etoh[102]. 
118 Astonishingly, this claim is made in Ruwase and Lam [272, page 159]. 
119 A number of systems do this now: see Drepper [93] and de Raadt [85]. 

This type of randomization is one way to avoid software monocultures; 
see Just and Cornwall [157] for a discussion of other techniques. 



Weaknesses Exploited 141 

120 Shacham et al. [285]. A related attack on instruction set randomization 
can be found in Sovarel et al. [296]. 

121 Hunt and Mcllroy [148] describe the early Unix dif f utility. 
122 We follow the terminology from Baker et al. [24]. 
123 Baker etal. [24]. 
124 Percival [246]. 
125 Flake [110] and Sabin [273]. 
126 Granger [128]. 
127 Also in Allen [10]. 
128 Harl [136]. 
129 Granger [129]. 
130 CIAC [72]. 
131 Based on Gordon et al. [126], Gragg [127], and Granger [128]. 



Chapter 7 

WORMS 

The general structure of a worm is: 

def wormO : 
propagate 0 
if trigger0 is true: 

payloadO 

At this level of abstraction, there is no distinction between a worm and a virus. 
(For comparison, the virus pseudocode is on page 27.) The real difference is 
in how they propagate. Propagating by infecting other code is the domain of 
a virus; actively searching for vulnerable machines across a network makes a 
worm. A worm can either be said to infest or infect its victims; the latter term 
will be used here. A single copy of a worm will be called a worm instance, 
where it's necessary to avoid ambiguity. 

In some cases, worms are classified by the primary method they use for 
transport. A worm using instant messaging (IM) to spread is called an IM 
worm, and a worm using email is an email worm. For example, many email 
worms arrive as an email attachment, which the user is tricked into running. 
When run, the worm harvests email addresses off the machine and mails itself 
to those addresses. 

Tricking users into doing something is social engineering, and this is one 
mechanism that worms use to infect machines. Another mechanism that worms 
exploit for infection are technical weaknesses. A user doesn't have to be tricked 
into running an email attachment, if just viewing the email allows the worm's 
code to execute via a buffer overrun. A user doesn't have to be involved at all, if 
the worm spreads using buffer overruns between long-running network server 
processes on different machines. 
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A worm can also exploit existing, legitimate transactions. For example, 
consider a worm able to watch and modify network communications, especially 
one located on a network server machine. The worm can wait for legitimate 
transfers of executable files - file transfers, network filesystem use - and either 
substitute itself in place of the requested executable file, or insert itself into the 
requested file in a virus-like fashion.̂ ^^ 

Most of the details about worms have already been covered in earlier chapters, 
like technical weaknesses and human weaknesses. Worms can also employ the 
same techniques that viruses do in order to try and conceal themselves; worms 
can use encryption, and can be oligomorphic, polymorphic, or metamorphic. 
This chapter therefore only examines the propagation which makes worms 
distinct from viruses, beginning with a look at two historically important worms. 

7.1 Worm History 
The origins of the term "worm" were mentioned in Section 2.1.5, along with 

some examples of early worms. This section examines two of these in more 
depth: the Xerox worm and the Internet worm. 

7.1.1 Xerox PARC, c. 1982 
'All worm behavior ceased. Unfortunately the embarrassing results were left for all 

to see: 100 dead machines scattered around the building.' - John Shoch and Jon 
Hupp^^^ 

The worm used in the Xerox PARC experiments of the early 1980s wasn't 
intentionally malicious, despite the above quote. It was intended as a framework 
for distributed computation, to make use of otherwise unused CPU time. A 
user would write a program to run in parallel, on many different machines -
this program would sit atop the worm mechanism, and the worm would manage 
the mechanics of making the program run on different machines. 

It would be highly unusual to see a worm now that places an artificial limit 
on its own propagation, but that was exactly what the Xerox worm did. The 
Xerox worm was composed of multiple segments, by way of analogy to real 
biological worms; at most one worm segment could run on any one machine. 
A bounded, finite number of segments were started, and all segments kept in 
contact with one another. If the worm lost contact with a segment (for example, 
someone rebooted the machine that the segment was running on), then the other 
segments sought another machine upon which to run a segment. 

Safety mechanisms were built in to the worm. This was done in part to 
assuage user concerns about having such a beast running on their computer; 
segments were not allowed to perform disk accesses, for example. Keeping 
segments in contact had a safety benefit, too, in that the entire worm could be 
shut down with a single command. And was, in the case from which the above 



Worms 145 

quote was taken. The worm had gone out of control through an odd set of 
circumstances, and had to be stopped. 

One of the key insights the researchers at Xerox PARC made from their worm 
experiments was that managing worm growth and stability are hard problems. 

7.1.2 The Internet Worm, November 1988 
'We are currently under attack from an Internet VIRUS. It has hit UC Berkeley, UC 

San Diego, Lawrence Livermore, Stanford, and NASA Ames.' - Peter Yeê ^̂  

Whether people called it a worm or a virus, the Internet worm was a major 
wake-up call for Internet security.^ It worked in three stages: 

Stage 1 The first stage was for the worm to get a shell on the remote machine 
being targeted. The worm would use one of three methods to acquire a shell, 
mostly relying on security holes of mythic proportion: 

1 Users read and send email using mail programs which are generically 
called mail user agents. The actual gory details of transmitting and 
delivering mail across the network are handled by daemons called mail 
transport agents. Mail user agents send mail by passing it off to a 
mail transport agent, which in turn can talk to mail transport agents on 
different machines, to send the mail along its merry way. 

Sendmail was a widely-used mail transport agent at the time of the 
Internet worm. An example of sending mail, by talking to the sendmail 
daemon, is in Figure 7.1. Simple commands are used to identify the 
connecting machine, specify the mail's sender and receiver, send the 
mail, and complete the connection. 

Older versions of sendmail also supported a "debug" command, which 
allowed a remote user to specify a program as the email's recipient, 
without any authentication. The Internet worm trivially exploited this 
to start a shell on the remote machine. 

2 The f inger program was a user program which could be used to dis­
cover information about another Unix user; indeed, it was once common 
to sit in a terminal room and finger people. A sample output is shown 
in Figure 7.2. 

This example gets its information from the local machine only, but using 
an @ sign in the command line 

finger aycock@cpsc.ucalgary.ca 

would cause information to be requested about the user from the speci­
fied machine. Finger would make a network connection to the finger 
daemon on the remote machine and send a query about the user. 
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220 mail.cpsc.ucalgary.ca ESMTP Sendmail 
helo mymachine 
250 mail.cpsc.ucalgary.ca Hello mymachine, pleased to meet you 
mail from: elvis 
250 2.1.0 elvis... Sender ok 
rcpt to: aycock 
250 2.1.5 aycock... Recipient ok 
data 
354 Enter mail, end with ''." on a line by itself 
From: elvis 
To: aycock 
Siibject: the present you sent 

Thank you, thank you very much. 

Sincerely, 

The King 

250 2.0.0 hAQHNJxY0022 01 Message accepted for delivery 
quit 
221 2.0.0 mail.cpsc.ucalgary.ca closing connection 

Figure 7.1. A conversation with sendmail 

% finger aycock 

Login: aycock Name: John Aycock 
Directory: /home/aycock Shell: /bin/sh 
On since Wed Nov 26 09:38 (MST) on pts/2 from serverl 
No mail. 
No plan. 

Figure 7.2. Finger output 

The finger daemon read input from the network connection using C's 
gets function, which does no bounds checking on what it reads in. The 
Internet worm would exploit this by performing a stack smashing attack 
against the finger daemon to get a shell. 

3 Several utility programs used to permit a user to run commands on a 
remote machine. The Internet worm tried two of these in an effort to 
get a remote shell: rexec and rsh. 

Rexec required a password to log in to the remote machine. The worm's 
third stage would guess at passwords, trying obvious ones like the user-
name, and mounting a dictionary attack too. A dictionary attack is 
where an attacker has a dictionary of commonly-used words, which are 
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tried one by one as potential passwords. The worm's third stage carried 
a list of 432 words that it used for this purpose. 

Rsh could be even more accommodating for getting a remote shell. It 
had a facility where users coming from specified "trusted" hosts didn't 
even have to supply a password. 

Stage 2 Once a shell was obtained on the remote machine, the worm would 
send commands to create, compile, and run a small C program on the ma­
chine being infected. This program was portable across the prevalent Unix 
architectures of the time, and had another technical advantage. Because it 
was sent in source form, it was immune to damage from communication 
channels which only passed through seven bits out of eight, which would 
have destroyed a binary executable file. 

The compiled program was a "grappling hook" which was used to pull the 
worm's Stage 3 executable files onto the machine being infected.̂ ^^ When 
run, the grappling hook would make a network connection back to the infect­
ing machine (whose worm instance was expecting the incoming connection). 
This connection was used to transfer several Stage 3 executables, one for 
each architecture that the worm could infect. These executables would be 
tried until one succeeded in running. 

Stage 3 At this point, the worm was fully established on the infected machine, 
and would begin trying to propagate itself to other machines. 

Some rudimentary stealth measures were deployed. The worm named itself 
"sh" to appear as a user shell, and modified its command-line arguments; 
both these would make the running worm process look unremarkable to a 
casual observer. Previous remnants, like temporary files used for compil­
ing the grappling hook, were removed. Finally, the worm prevented "core 
dump" files from being created - a Unix system will create core dump files 
for processes incurring fatal errors, or upon receipt of an explicit user re­
quest to do so. This latter step prevented easy capture of worm samples for 
analysis. 

New target machines were selected using information from the infected 
machine. Information from network interfaces, network routing tables, and 
various files containing names of other computers were all used to locate 
new machines to try and infect. 

The Internet worm carried no destructive payload. Worm damage was col­
lateral, as each worm instance simply used lots and lots of machine and network 
resources. 
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Figure 7.3. TCP connection establishment 

7.2 Propagation 
Humans are slow, compared to computers and computer networks. Worms 

thus have the potential to spread very, very quickly, because humans don't have 
to be involved in the process of worm propagation. ̂ ^̂  

At the extreme end of the scale are fast burners, worms that propagate as 
fast as they possibly can. Some of these worms have special names, reflecting 
their speed. A Warhol worm infects its vulnerable population in less than 15 
minutes; this name comes from artist Andy Warhol's famous quote 'In the future 
everyone will be famous for fifteen minutes.' A flash worm goes one better, 
and infects the vulnerable population in a matter of seconds. 

How can a worm propagate this quickly? With a combination of these 
methods: 

• Shorten the initial startup time. Recalling the worm growth curve in Fig­
ure 1.2 (page 5), this shifts the growth curve to the left. 

• Minimize contention between instances of the worm. This includes avoiding 
general contention in network traffic, as well as avoiding pointless attempts 
to re-infect the same machine. 

• Increase the rate at which potential target machines are probed, by scanning 
them in parallel. This is a tradeoff, because such network activity can result 
in network traffic contention. 

• Attack using low-overhead network protocols. The less back-and-forth that 
a network protocol requires, the faster a worm using that protocol can spread. 
The Slammer worm, for example, used the User Datagram Protocol (UDP) to 
infect SQL database servers using a buffer overflow. ̂ ^̂  UDP is a lightweight, 
connectionless protocol: there is no overhead involved to set up a logical 
network connection between two computers trying to communicate. From 
Slammer's point of view, this meant one network packet, one new victim. 

In contrast, worms using a connection-based network protocol like the 
Transmission Control Protocol (TCP) have several packets' worth of over­
head to establish a connection, before any exploit can even be started. ̂ ^̂  
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Figure 7.3 shows two computers establishing a connection using TCP. Each 
computer must send one SYN packet to the other, and acknowledge the 
other's SYN packet with an ACK. (One ACK is "piggybacked" on a SYN 
packet, so only three packets are exchanged in practice.) All this network 
traffic occurs before a worm is able to talk to and exploit a server, making 
TCP-based worms much slower in comparison to UDP-based worms. 

At the other end of the speed scale are surreptitious worms that deliberately 
propagate slowly to avoid notice. Such a worm might hide in normal network 
traffic, like the network traffic for file-sharing. Slow propagation might be used 
to build up a zombie army for a massive DDoS attack, or for any other purpose 
for which a botnet might be used. 

In the remainder of this section, the initial spread of a worm is considered, 
as are ways that a worm finds new victim machines to infect. 

7.2.1 Initial Seeding 
Worms need to be injected into a network somehow. The way that a worm 

is initially released is called seeding, A single network entry point would be 
relatively easy to trace back to the worm author, and start the worm's growth 
curve at its lowest point. An effective seeding method should be as anonymous 
and untraceable as possible, and distribute many instances of the worm into the 
network. 

Three possibilities have been suggested: 

• Wireless networks. There are many, many wireless networks connected to 
the Internet with little or no security enabled.̂ ^^ Using wireless networks 
for seeding satisfies the anonymity criterion, although physical proximity 
to the wireless access point by the worm writer is required, making this 
option not entirely risk-free. Barring a co-ordinated release, however, this 
method of seeding doesn't scale well to injecting large worm populations. 
A co-ordinated release is risky, too, as many people will know about the 
worm and its creator. 

• Spam. Seeding a worm by spamming the worm out to people can satisfy 
both effectiveness criteria: anonymity and volume. Spamming can be used 
to seed worms even when the worm doesn't normally propagate through 
email. 

• Botnets. Botnets may be used in several ways for seeding and, like spam­
ming, meet both effectiveness criteria. Botnets may be used to send the 
worm's seeding spam, and they may be also used to release the worm di­
rectly in a highly-distributed way. 

Access to common network services can be had in a hard-to-trace way, so this 
list is far from complete. 
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Figure 7.4. IP address partitioning 

7.2.2 Finding Targets 
On the Internet, a machine is identified in two ways: by a domain name 

and an Internet Protocol (IP) address. Domain names are a convenience for 
humans; they are human-readable and are quietly mapped into IP addresses. IP 
addresses, which are just numbers, are used internally for the real business of 
networking, like routing Internet traffic from place to place. 

IP addresses come in two flavors, distinguished by a version number: the 
most prevalent kind now are version 4 addresses {IPv4), but support for ver­
sion 6 addresses {IPv6) is increasing. IPv4 addresses are shorter, only 32 bits 
compared to IPv6's 128 bits, and the same principles apply to both in terms of 
worm propagation; this book will use IPv4 addresses for conciseness. 

The bits of an IP address are partitioned to facilitate routing packets to the 
correct machine. Part of the address describes the network, part identifies the 
computer (host) within that network. IP addresses are categorized based on 
their size: 

Network Class Network Bits Host Bits 

Class A 
Class B 
Class C 

16 
24 

24 
16 

For example. Figure 7.4 breaks down the IP address for the web server at the 
University of Calgary's Department of Computer Science. The University of 
Calgary has a class B address, 136.159; its host part is further subdivided, to 
identify a subnet, 5, and the exact host on that subnet, 17. 

Why is this relevant to worms? A worm has to identify a potential target 
machine. For worm propagation, it is substantially easier for a worm to guess 
at an IP address and find a target than it is for a worm to guess correctly at a 
domain name. 
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A worm looking for machines to infect is said to scan for targets; this is 
different from the use of "scan" to describe anti-virus activity. There are five 
basic strategies that a worm can use to scan: 

Random scanning A worm may pick a target by randomly choosing a value to 
use as an IP address. This was done, for example, by Code Red I. Choosing 
an IP address randomly can select a target literally anywhere in the world. 

Localized scanning Random scanning is good for widespread distribution, but 
it's a hit-and-miss approach for worms exploiting technical vulnerabilities 
to spread. It is much likelier that computers on the same network, in the 
same administrative domain, are going to be maintained in a similar fashion. 
For example, if one Windows machine on a network has an unpatched buffer 
overflow, the chances are good that another Windows machine on the same 
network is going to be unpatched too. 

Localized scanning tries to take advantage of this. Target machines are again 
chosen randomly, but with a bias towards local machines; a "local machine" 
is heuristically selected by taking advantage of the IP address partitioning 
described above. For example. Code Red II picked target IP addresses in 
this way:̂ ^^ 

Probability Target Selection 

1/8 All four bytes randomly chosen 
3/8 Only last two bytes randomly chosen 
4/8 Last three bytes randomly chosen 

Hit-list scanning Prior to worm release, a "hit-list" can be compiled which 
contains the IP addresses of some machines known to be vulnerable to a 
technical flaw the worm plans to exploit. Compiling such a list is a possible 
application for a previously-released surreptitious worm, or a botnet. The 
list need not be 100% accurate, since it will only be used as a starting point, 
and doesn't need to contain a large number of IP addresses - 50,000 or less 
are enough. 

After its release, the worm starts by targeting the machines named in the hit-
list. Each time the worm successfully propagates, it divides the remainder 
of the list in half, sending half along with the new worm instance. Once the 
list is exhausted, the worm can fall back onto other scanning strategies. 

Hit-list scanning is useful for two reasons: 

1 Avoiding contention. The hit-list keeps multiple instances of a worm 
from targeting the same machines. 
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Figure 7.5. Permutation scanning 

2 Speeding up initial spread. By providing a list of known targets, slow 
propagation by trial-and-error is avoided, and the worm's growth curve 
shifts to the left as a result. 

A variation on the hit-list scheme precompiles a list of all vulnerable ma­
chines on the Internet, and sends it along with the worm in compressed form. 
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Permutation scanning If a worm is able to tell whether or not a target candi­
date is already infected, then other means of contention avoidance can be 
used. Permutation scanning is where instances of a worm share a common 
permutation of the IP address space, a pseudo-random sequence over all 
2^^ possible IP address values. Each new instance is given a position in 
the sequence at which to start infecting, and the worm continues to work 
through the sequence from there. Figure 7.5 has an example for a ten-value 
permutation. 

If a machine is encountered which is already infected, then the worm picks 
a new spot in the sequence randomly. This gives the worm a simple mech­
anism for distributed coordination without any communication overhead 
between worm instances. (Interestingly, peer-to-peer networks for file shar­
ing share the same need for low-overhead distributed coordination. ̂ ^̂ ) 

This coordination mechanism can be used by the worm to heuristically 
detect saturation, too. If a worm instance continually finds already-infected 
machines, despite randomly resituating itself in the permutation sequence, 
then it can serve as an indicator that most of the vulnerable machines have 
been infected. More generally, a worm can mathematically model its own 
growth curve, to estimate how close it is to the saturation point. ̂ ^̂  The 
saturation point can signal the opportune time to release a payload, because 
there is little more to do in terms of spreading, and countermeasures to the 
worm are doubtlessly being deployed already. 

Topological scanning Information on infected machines can be used to select 
new targets, instead of using a random search. This is called topological 
scanning, because the worm follows the topology of the information it finds. 

The topology followed may or may not coincide with the physical network 
topology. A worm may follow information about a machine's network 
interfaces to new target hosts, but other types of information can result in 
propagation along social networks. Email worms can mail themselves to 
email addresses they mine off an infected machine, and IM worms can send 
themselves to people in a victim's "buddy list."^^^ 

Topological scanning is particularly useful for propagation in large, sparse 
address spaces. The Internet worm, for example, used topological scanning 
due to the relatively small number of machines in the IP address space of 
1988. In contrast, random scanning would waste a lot of effort locating 
targets in such an address space. 

Passive Scanning A surreptitious worm can wait for topological information 
to come to it. A passive scanning worm can eavesdrop, or sniff, network 
traffic to gather information about:̂ ^^ 
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• Valid IP addresses. The worm can gather the addresses of potefttial 
targets in a way that dodges some of the worm countermeasures in the 
next chapter. 

• Operating system and services. A worm can benefit from knowing 
a target machine's operating system type, operating system version, 
network services, and network service versions.^ Worms able to exploit 
multiple technical weaknesses can pick a suitable infection vector, and 
other worms can rule out unsuitable targets. 

• Network traffic patterns. A slow worm can limit its network activity 
to times when there is normally legitimate network activity. The other 
network activity can act as cover traffic for the worm's operation. 

In some cases targets have already been identified for other reasons, and a 
worm need only extract the information. For example, the Santy worm exploited 
a flaw in web software, and used Google to search for targets.̂ -̂̂  

Putting all the pieces together - virus-like concealment, exploitation of tech­
nical and human weaknesses, hijacking legitimate transactions, extremely rapid 
spreading - worms are a very potent type of malware. Equally potent defensive 
measures are needed. 
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Notes for Chapter 7 
1 It wasn't just Yee that referred to it as a virus. Of the two primary sources 

used for this section, one calls it a virus, one a worm, both argue their case: 
Eichin and Rochlis [97] and Spafford [298]. 

2 This is called passive fingerprinting [301]. 

100 Nazarioetal. [230]. 
101 Shoch and Hupp [287, page 176]. This section on the Xerox worm was 

based on this source too. 
102 Yee [350]. 
103 The term "grappling hook" is from Eichin and Rochlis [97]. 
104 This section is based on Stamford et al. [304]. 
105 Sz6randPerriot[315]. 
106 McKusick et al. [202]. 
107 Stampf [302] mentions the worm potential in wireless forms of communication. 
108 CERT [55]. 
109 Wiley [346]. 
110 Vogt [337]. Ma et al. [190] analyze self-stopping worms in great detail. 
111 Hindocha and Chien [142]. 
112 Nazarioetal. [230]. 
113 Hypponen [150]. 



Chapter 8 

DEWORMING 

Work on handling worms, from a defender's point of view, can be classified 
three ways: defense, worm capture and containment, and automatic counter-
measures. This chapter follows that organization. 

Most of the techniques described here can be illustrated on a network like the 
one in Figure 8.1. An internal network is connected to the Internet through some 

Honeypot Internal I 
network ! 

Figure 8.1. An example network 
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computer at the network's perimeter. The nature of this perimeter computer has 
been left deliberately vague; it can be a dedicated network router or a general-
purpose computer, which may be performing a variety of defensive tasks in 
addition to shuffling network packets back and forth. The internal network has 
a critical subnet, a set of machines which special pains must be taken to protect. 
There is the user and their computer, which is a host on the network. Finally, a 
computer acting as a "honeypot" may be present, whose role will be described 
in Section 8.2.1. 

First, defense. 

8.1 Defense 
How can worms be kept out in the first place? Looking at the path from the 

Internet to the user in Figure 8.1, defensive measures can be taken at any point 
along that path. 

8.1.1 User 
User education can't be forgotten. Education is especially useful to prevent 

the propagation of email worms that require an attachment to be run by a 
human. Users can also be thought of as finely-attenuated sensors which detect 
the most insignificant slowdowns in network speed, a fact to which any network 
administrator can attest. Network traffic from worms that is otherwise hidden 
may be detected by users. 

8.1.2 Host 
The next line of defense is the user's computer; defenses deployed here are 

called host-based defenses. Some of the best defenses against worms are the 
most mundane: applying patches, limiting the amount of available services on 
a machine. From there, defenses specific to likely attack vectors are the next 
step, followed by anti-virus software being used on the host to look for worms. 

8.1.2.1 Patching 

Many intrusions by malware are completely preventable. A lot of worms do 
not exploit previously-unknown vulnerabilities, but use known vulnerabilities 
for which a patch is available. Illustrated in Figure 8.2, the rate of patching is 
an exponential decay curve which never reaches zero.̂ ^^ In other words, many 
machines remain vulnerable for a long period of time after a patch is available, 
and some machines are never patched. The situation is even worse: the over­
all patching rate does not change dramatically even when a widely-publicized 
worm is circulating, exploiting the vulnerability.^ Studies of a number of se­
curity vulnerabilities for which patches are available have shown similar, dis­
couraging results. ̂ ^̂  
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Figure 8.2. Rate of patching over time 

There may be a variety of excellent reasons for the laxity of patching. ̂ ^̂  
Qualified personnel may not be available to apply a patch, or may not have time. 
People may not know about the patch. Bureaucratic issues may preclude proper 
maintenance, or policy matters may prevail - for example, some companies 
require updates to be tested before distributing them. This policy may be seen 
to be a prudent precaution, because applying some patches (especially hastily-
prepared ones made in response to a vulnerability) may break more software 
than it fixes. 

New commodity operating systems (e.g., Windows, MacOS) have automated 
update systems which notify a user that updates are available, and lead them 
through the process of downloading and installing the updates. Not everyone 
runs the newest version of an operating system, and policy may trump the use 
of automated updates, but in the long term, automated update systems will 
probably have a positive impact on security. 

8.1.2.2 Limiting Available Services 
The reasoning for limiting available services comes from two premises: 

1 Worms exploit technical weaknesses, like buffer overflows, in network 
servers. (Here, a server refers to the program that supplies a particular 
service.) 

2 Technical weaknesses are likely to evenly manifest themselves throughout 
network server code. 

Based on these premises, the conclusion can be drawn that the more network 
servers a machine runs, the likelier it is that some technical weakness is exposed 
that a worm can exploit. The corollary is that the fewer network servers a 
machine runs, the more secure it is. 

While the soundness of this logic may be debated, the general idea of reducing 
potential attack vectors to defend against worms is a good one. There are 
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pragmatic aspects to limiting network servers, too, in that it also limits the 
amount of software to patch. 

The hard part is determining which servers to shut down. This can involve 
much trial-and-error even for experts, turning off one server after another to see 
if it affects the machine's operation. Some effects may only be apparent after 
an extended period of time, if a server is shut down that only sees occasional 
use. 

8.1.2.3 Countermeasures against Specific Weal^nesses 
Besides trying to reduce the number of running servers that might contain 

weaknesses, countermeasures can be used to guard against specific kinds of 
technical weakness that are exploited by worms. A number of these were 
presented in Section 6.1.5, such as: 

• Canaries to detect buffer overflows 

• Randomizing memory locations to make finding memory addresses harder 

• Code monitoring to watch for unusual behavior 

Countermeasures to specific technical weaknesses are certainly an important 
part of worm defense. However, such countermeasures are based on assump­
tions about how worms are likely to break into a system. They are of little 
use against any new types of technical vulnerability that do not happen to be 
guarded against, and they do not catch worms that use social engineering to 
spread. 

8.1.2.4 Anti-Virus Software 

Anti-virus software can and does look for worms, but there are three major 
problems that hamper anti-virus software's effectiveness: 

1 To function properly, anti-virus software detecting known worms needs an 
up-to-date virus database, but virus database updates cannot be prepared 
and deployed fast enough to counter rapidly-spreading worms. 

2 Some powerful anti-virus techniques are unusable: integrity checking and 
emulation certify a program as malware-free at the start of the program's 
execution. These techniques are useless against a worm that injects its code 
into a running program which has already been declared clean. 

3 A worm need not reside someplace that anti-virus software can analyze. 
Many anti-virus techniques are geared to catch malware that writes itself 
somewhere in a computer's filesystem; a worm that exploits a buffer over­
flow in a long-running network server can remain in memory only, unde­
tected. 
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This suggests that anti-virus software is no panacea for worm defense. The last 
problem, detecting in-memory threats, can at least be addressed. 

8.1.2.5 Memory Scanning 
Searching for in-memory threats is called memory scanning. Once, memory 

scanning was an easy task for anti-virus software: the amount of physical 
memory on machines was small, and any program could read from any part of 
the memory. Now, two features have made their way into almost all operating 
systems, both of which complicate memory scanning: 

Memory protection. Hardware protection prevents one process from access­
ing another process' memory unless they have both explicitly agreed to 
share memory. This memory protection greatly increases system stability, 
because it limits the effect of a misbehaving process - malicious or oth­
erwise. The drawback from the anti-virus point of view is that memory 
protection prevents a memory scanner from directly looking at other pro­
cesses' memory. 

Virtual memory. The operating system and hardware can conspire to provide 
virtual memory to processes. With virtual memory, each process thinks it 
has an enormous amount of memory to use, more memory than is physically 
available. The virtual memory contents are stored on disk, and the physical 
memory acts as a cache for the virtual memory. The operating system, 
with hardware support, traps virtual memory references that refer to virtual 
memory pages which are not currently present in physical memory. The 
operating system arranges for the absent memory pages to be loaded from 
disk to physical memory, possibly evicting some physical memory contents 
to make room. 

Disks are orders of magnitude slower than physical memory. If a process 
were to randomly access its virtual memory, it would slow to a crawl waiting 
for memory pages to be loaded from disk. Fortunately, that rarely happens. 
Most programs naturally exhibit a high degree of locality of reference, mean­
ing that they tend to reference only a small set of memory areas at any given 
time.^ As a program's execution continues, the set of memory areas ref­
erenced changes to a different small set of memory areas, and so on. The 
memory pages currently required by a process are called its working set, and 
the operating system ideally keeps all processes' working sets in physical 
memory to minimize slow disk activity. 

Virtual memory is a huge convenience for programmers, because it reduces 
the need to work around physical memory restrictions. The net effect of 
virtual memory for anti-virus software is that a memory scanner doesn't 
have everything immediately accessible that it needs to scan. 
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An operating system can have memory protection without having virtual mem­
ory; virtual memory can be supported without having strong memory protection 
between processes, but this is not normally done. The remainder of this sec­
tion only considers operating systems with both memory protection and virtual 
memory, because it is the hardest case to handle. 

There are several different ways that memory scanning can be implemented 
in such operating systems: ̂ ^̂  

• As an ordinary user process, anti-virus software can scan memory by us­
ing operating system facilities intended for debugging. Debuggers need to 
examine (and modify) the memory of a process being debugged, and oper­
ating systems have an API to support debuggers. ̂ "̂̂  Anti-virus software can 
use this API, pretending to be a debugger, to examine and scan processes' 
memory. This avoids memory protection issues. 

Care must be taken when scanning the memory of a process. Attempting 
to scan all the virtual memory that a process uses will force the operating 
system to bring in memory pages from disk, an incredibly slow operation 
in comparison to accessing physical memory. The victim process being 
scanned would have its working set of memory pages decimated until the 
operating system slowly recovers them. If possible, querying the operating 
system to determine what memory pages are already present in memory, and 
only scanning those pages, reduces unpleasantness with a process' virtual 
memory. The alternative is grim: one memory scanner increased the resident 
memory usage of a poor process being scanned by over 2000%. 

Memory scanning can further be limited, beyond restricting it to in-memory 
pages. Ideally, assuming that the anti-virus software already examined a 
process' executable code in the filesystem before it ran, the only thing that 
requires rescanning is memory that has been changed. Extracting this in­
formation from the operating system is not always possible, however. 

Not all processes can be debugged by a user process, for security reasons. 
For example, processes belonging to another user or privileged system pro­
cesses will not permit just any user process to attach a debugger to them. The 
anti-virus software must run with escalated privileges to allow it to "debug" 
all other processes. 

Some of the problems with the memory scanning implementation above 
can be avoided if the anti-virus software runs as part of the operating system 
kernel. Kernel-based anti-virus software will have permission to access all 
processes' memory, avoiding access problems. 

A memory scanner can be integrated more deeply into the kernel for even 
better effect. Tying a memory scanner into the operating system's virtual 
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memory manager would still avoid permission problems, plus give the mem­
ory scanner access to information about modified and in-memory pages. 

Once a worm or other malware is discovered in memory, memory disinfection 
can be done by terminating the offending process completely. Riskier options 
are to terminate suspect threads within the infected process, or to patch the 
code in the infected process as it runs. Operating systems share memory pages 
between processes when possible, as for shared library code or read-only pro­
gram code segments, and consequently many processes may be affected by an 
infection - the best memory disinfection may be a reboot. Disinfection may 
be an ultimately futile operation anyway, because if the infection vector was a 
technical weakness, then a worm can re-exploit the machine right away. 

Any of the above implementations of memory scanning leave another win­
dow of opportunity for worms, because the scanning is not done continuously. 
Rescanning memory continuously, for each memory write, would involve a 
prohibitive amount of overhead except perhaps for interpreted languages that 
already proudly sport prohibitive overhead. 

Philosophically, it is not clear that memory scanning by anti-virus software 
is a good idea. Memory scanning necessarily weakens the memory protection 
between unrelated code, in this case the anti-virus software and the process' 
code being examined. Strong memory protection was implemented in operating 
systems for good reason, and circumventing it may only introduce new attack 
vectors. Anti-virus software that doesn't scan memory, in combination with 
other defenses, may be a wiser choice. 

8.1.3 Perimeter 
The first line of defense for a network is at its perimeter. The computer 

at the perimeter forming the defense may be a general-purpose computer, or a 
special-purpose computer like a router. In either case, there are several functions 
the perimeter computer may serve to block incoming worms. Two functions, 
firewalls and intrusion detection systems, are presented in their "pure" form 
below; in practice, the perimeter computer may perform both of these functions 
and more. 

8.1.3.1 Firewalls 

A firewall is software which filters incoming network traffic to a network; 
if the software runs on a computer dedicated to this task, then that computer 
is also referred to as a firewall.^ Firewall software can be run on a perimeter 
computer, a host computer, or both. 

Each network packet in the traffic has two basic parts, header and data. This 
is analogous to sending a letter: the envelope has the addresses of the letter's 
sender and receiver, and the letter's contents are sealed inside the envelope. A 
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packet's header has the sender and receiver information, and its data contains the 
packet contents that are meant for the recipient. Basic firewalls filter network 
packets based on header information:'̂  

• The source IP address, or the computer that the packet purportedly comes 
from. 

• The source port. Each computer has a fixed number of virtual "ports" 
for communication; the combination of an IP address and port identifies a 
communications endpoint. 

• The IP address of the computer where the packet is destined. 

• The destination port. The network servers providing services usually reside 
at well-known port numbers, so that a computer trying to contact a service 
knows where to direct its request. 

• The protocol type. Filtering on the protocol type results in a very coarse­
grained discrimination between different traffic types: connection-based 
(TCP), connectionless (UDP), and low-level control messages (ICMP). 

A firewall will have a set of rules which describe the policy it should imple­
ment - in other words, which packets it should pass through, and which packets 
it should drop. A firewall could look at a packet's data too, called deep packet 
inspection, but the format and semantics of the data depend on exactly where 
the packet is going. Making sense of the packet data would require the firewall 
to understand the language of every network service, and doing so would both 
slow and complicate a firewall, just like opening and reading a letter is slower 
and more complicated than glancing at its envelope. 

As a worm defense, a firewall provides a similar function to limiting available 
network services. A firewall prevents a worm from communicating with, and 
possibly exploiting, vulnerable network servers. It only defends against outside 
attacks, so any worm that makes it past the firewall (e.g., an email worm that a 
user runs on their computer behind the firewall) can operate with impunity. 

8.1.3.2 Intrusion Detection Systems 
An intrusion detection system analyzes incoming network traffic, performing 

deep packet inspection to watch for packets or sequences of packets that signal 
attacks. ̂ ^̂  Like firewalls, intrusion detection systems can run on the perimeter 
computer or a host computer. Like criminals, intrusion detection systems go 
by a wide variety of names: 

• Intrusion detection systems (IDS). 

• Host intrusion detection systems (HIDS), for host-based IDS. 
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Figure 8.3. Signatures in network traffic 

• Network intrusion detection systems (NIDS), for network-based IDS. These 
need not only be at the network perimeter. IDS (and firewalls) may also be 
deployed internally to a network, to add extra worm protection for critical 
internal subnets. ̂ ^̂  

• Intrusion prevention systems (IPS).^ "Prevention" implies that an attack is 
thwarted rather than just noticed. Although there are no commonly agreed-
upon definitions, an IPS would imply a system that filters traffic like a 
firewall, but that is able to do deep packet inspection like an IDS.̂ ^^ In 
contrast, an IDS doesn't filter traffic, only watches it and raises an alarm if 
suspicious activity is found. 

For worms, an intrusion detection system can either look for the signatures 
of known worms, or for generic signatures of technical weakness exploits like 
a NOP sled.^ Exactly the same algorithms can be used for IDS as for signature 
matching in anti-virus software, along with which come the same signature 
updating issues.^ 

IDS signature matching is not completely straightforward, because of the 
properties of network traffic. A signature may not be obvious in the stream of 
input packets (Figure 8.3): 

• Packets containing a signature may arrive out of order. 

• A packet may he fragmented, broken into smaller pieces which may be sent 
out of sequence. 

Network traffic can be deliberately crafted to present an IDS with these non-
obvious signatures. The host machine receiving the packets will reassemble 
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Figure 8.4. Traffic accepted by an IDS and a host 

the fragments and reorder the packets. The IDS should reconstruct the correct 
packet stream also, but in practice may not do so correctly or may reconstruct 
it differently than the receiving host. In either case, the result is exploitable. 
One solution is traffic normalization, which ensures that network traffic is in 
a canonical, unambiguous form for the IDS and other hosts by reordering and 
reassembling packets if necessary. ̂ ^̂  Even so, a worm may defy easy signature-
based detection by being encrypted, polymorphic, or metamorphic. 

Other avenues of attack are possible against an IDS. With the exception of a 
host-based IDS, an IDS runs on a separate machine which may have different 
behavior than the hosts it protects. Figure 8.4 shows the results: an IDS may 
accept traffic that a host will reject; a host may accept traffic that an IDS will 
reject. An IDS may also see traffic that never reaches a host. For example, 
each IP packet has a "time-to-live" counter (TTL) that is decremented once 
for every time the packet is sent from machine to machine during its delivery; 
when the counter reaches zero, the packet is discarded. Figure 8.5 shows an 
attack exploiting the TTL counter. The traffic has been constructed so that the 
IDS receives extra packets that prevent it from seeing the attack signature, yet 
the extra packets expire due to a low TTL value before reaching the targeted 
host. 10̂  

The fact that an IDS can detect but not block attacks is exploitable too. In the 
simplest case, a fast-spreading worm attacks and executes its payload before an 
IDS alarm is responded to. But an IDS is a so-called fail-open system, meaning 
that it leaves the network accessible in the event that the IDS fails. A more 
advanced attack would first overload the IDS with a denial of service, then 
perform the worm infection while the IDS is struggling and unable to raise an 
alarm. 

Finally, an IDS is a real-time system.^ It must be able to keep up with the 
maximum rate of network traffic. Powerful, accurate, but high-overhead de-
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Figure 8.5. TTL attack on an IDS 

tection techniques are not suitable for use in an IDS. Taken together, all these 
drawbacks make an IDS yet another partial worm defense. 

8.2 Capture and Containment 
If defense is about keeping a worm out, then capture and containment is 

about keeping a worm in. This may seem like a counterintuitive thing to do, but 
if a worm has breached the primary defenses, then limiting the worm's spread 
may be the best remaining option. It has even been suggested that it is naive to 
assume that all machines can remain clean during a worm attack, and that some 
machines may have to be sacrificed to ensure the survival of the majority.̂ ^^ 

Worm containment can limit internal spread within a network. This reduces 
the amount of worm infections to clean up, and also has wider repercussions. 
Containing a worm and preventing it from spreading to other people's networks 
is arguably part of being a good Internet neighbor, but more practically, reason­
able containment measures may limit legal liability. Two containment measures 
are presented in this section, reverse firewalls and throttling. 

Worm capture can be done for a variety of reasons. Capturing a worm can 
provide an early warning of worm activity. It can also slow and limit a worm's 
spread, depending on the type of worm and worm capture. Honeypots are one 
method of worm capture. 
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8.2.1 Honey pots 
Honeypots are computers that are meant to be compromised, computers 

which may be either real or emulated. Early documented examples were in­
tended to bait and study human attackers,^ but honeypots can be used equally 
well to capture worms. ̂ ^ 

There are three questions related to honeypots: 

1 How is a honeypot built? A honeypot should be constructed so that a worm 
is presented with an environment complete enough to infect. In addition, 
a honeypot should ideally be impossible for a worm to break out of, and a 
honeypot should be easy to restore to a pristine state. Emulators are often 
considered for honeypot systems, because they meet all these criteria. 

The major problem with using emulators for honeypots is also a problem 
when using emulators for anti-virus software: it may be possible for a worm 
to detect that it is in an emulator.^ ̂  ̂  For example, a worm can look for device 
names provided by common emulators. 

2 How is a worm drawn to a honeypot? A honeypot should be located in 
an otherwise-unused place in the network, and not be used for any other 
purpose except as a honeypot. The reasoning is that a honeypot should 
have no reason to receive legitimate traffic - all traffic to a honeypot is 
suspicious.^^^ A honeypot doesn't generate network traffic by itself, the 
downside being that a passive scanning worm will be able to avoid the 
honeypot. 

One honeypot with one IP address in an large network stands little chance 
of being targeted by a worm scanning randomly or quasi-randomly. A large 
range of consecutive addresses can be routed to a single honeypot to supply 
a larger worm target.̂ ^^ 

Other mechanisms can be used to lure the discriminating worm. A honeypot 
can provide a fake shared network directory containing goat files, for worms 
that spread using such shared directories - the goat files and shared directory 
can be periodically checked for changes that may signify worm activity. 
Email worms can be directed to a honeypot by salting mailing lists with 
fake email addresses residing on the honeypot. 

3 What can a honeypot do with a worm? It can capture samples of worms, and 
be used to gauge the overall amount and type of worm activity. A honeypot 
is one way to get an early warning of worms; more ways will be seen in 
Section 8.3. 

Honeypots can deliberately respond slowly, to try and slow down a worm's 
spread. This type of honeypot system is called a tarpit}^^ A worm that 
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scans for infectible machines in parallel will not be susceptible to a tarpit, 
however.̂  ̂ ^ 

Certain types of worms can be severely impacted by honeypot capture. A 
hit-list worm passes half its targets along to each newly-infected machine, 
so hitting a honeypot cuts the worm's spread from that point by half.̂ ^^ 

It is questionable whether or not honeypots are as useful against worms as 
other means of defense. Early warning of a spreading worm is useful, but there 
are other ways to receive a warning, and worm capture is not generally useful 
to anyone except specialists. 

8.2,2 Reverse Firewalls 
A reverse firewall filters outgoing traffic from a network, unlike a normal 

firewall which filters incoming traffic. In practice, filtering in both directions 
would probably be handled by the same software or device. 

As with firewalls, the key to an effective reverse firewall is its policy: what 
outbound connections should be permitted? The principle is that a worm's 
connections to infect other machines will not conform to the reverse firewall 
policy, and the worm's spread is thus blocked. The decision is based on the 
same packet header information as was used for a firewall, including source 
and destination IP addresses and ports. For example, policy may dictate that 
no machine in the critical network of Figure 8.1 may have an outgoing Internet 
connection, or that a user's computer may only connect to outside machines on 
port 80, the usual port for a web server. 

A host-based reverse firewall can implement a finer-grained policy by re­
stricting Internet access on a per-application basis. Only certain specified ap­
plications are allowed to open network connections, and then only connections 
in keeping with the reverse firewall's outbound traffic policy. A worm, as a 
newly-installed executable unknown to the reverse firewall, could not open net­
work connections to spread. In theory. Still, worm activity is possible in the 
presence of a host-based reverse firewall: 

• A worm can use alternative methods to spread when faced with a reverse 
firewall, such as placing itself in shared network directories. As a result, no 
worm code is run on the host being monitored by the reverse firewall. 

• Legitimate code that is already approved to access the Internet can be sub­
verted by a worm. A worm can simply fake user input to an existing mail 
program to spread via email, for instance. A worm could exhibit viral be­
havior, too, infecting an existing "approved" executable by indirect means, 
like a web browser plug-in, or more direct means that a virus would nor­
mally use. To guard against the latter case, a host-based reverse firewall can 
use integrity checking to watch for changes to approved executables. 
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m Social engineering may be employed by a worm. A host-based reverse 
firewall may prompt the user with the name of the program attempting to 
open a network connection, for the user to permit or deny the operation. 
This would typically happen under two circumstances: 

1 The program has never opened a network connection before. This would 
be the case for a worm, newly-installed software, or old, installed soft­
ware that has never been used. 

2 The program was approved to use the network before, but has changed; 
a software upgrade may have occurred, or the program's code may have 
been infected. 

A surreptitious worm could patiently wait until a user installs or upgrades 
software, then open a network connection. The user is likely to assume the 
reverse firewall's prompt is related to the legitimate software modification 
and permit the worm's connection. The worm may also give its executable 
an important-sounding name, which the reverse firewall will dutifully report 
in the user prompt, intimidating the user into allowing the worm's operation 
for fear that their computer won't work properly. 

Legitimate applications may farm out Internet operations to a separate pro­
gram. Legitimate user prompts from a reverse firewall can request network 
access approval for software with radically-different names than the appli­
cation that the user ran. Users will likely approve any user prompts made 
shortly after they initiate an action in an application, and a worm can exploit 
this to sneakily receive a user's approval for its network operations. 

The underlying problem with a reverse firewall is that it tries to block unau­
thorized activity by watching network connection activity, an action performed 
by worms and legitimate software. False positives are guaranteed, which open 
the possibility of circumventing the reverse firewall. 

8.2.3 Throttling 
A reverse firewall can be improved upon by taking context into account. 

Instead of watching for single connections being opened, the overall rate of 
new connections can be monitored. A system that limits the rate of outgoing 
connections that a given machine is allowed to make is called a throttle^^ 

A throttle doesn't attempt to distinguish between worms and legitimate soft­
ware, nor does it try to prevent worms from entering. It only considers outbound 
connections, and throttles the rate at which all programs make them. As a throt­
tle only slows down the connection rate, as opposed to dropping connections, 
no harm is done even if there are false positives - everything still works, just 
more slowly. 
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Figure 8.6. Network traffic throttling 

The throttling process can be refined with more context. Most connections 
are established to machines that were recently connected to; this is similar to 
the locality of reference exploited by virtual memory. For example, a web 
browser may initially connect to a web site to download a web page, followed 
by subsequent connections to retrieve images for the page, followed by requests 
for linked web pages at the site. A working set of recently-connected machines 
can be kept for a throttled host. Connections to machines in the working set 
proceed without delay, as do new connections which fit into the fixed-length 
working set. Other connections are delayed by a second, not long enough to 
cause grief, but effective for slowing down fast-moving worms. Extreme worm­
like behavior can be caught with the context provided by the throttling delay. 
Too many outstanding new connections can cause a machine to be locked out 
from the network. ̂ ^ 

TCP connections are started by the connecting machine sending a SYN 
packet, and a throttle can use these SYN packets as an indicator of new con­
nections. In Figure 8.6, a pair of machines are throttled with a working set 
of size two. The uninfected machine's new connection to machine B passes 
through immediately, because B was connected to recently, and is therefore 
present in the working set. The infected machine has its connection to machine 
A go through, because there is one free spot in the working set; machine D is 
in the working set, and that connection goes through as well. The other two 
connections the infected machine makes are delayed. With adaptations, the 
throttle concept can be extended beyond TCP to UDP, as well as higher-level 
applications like email and instant messaging.^^^ 
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Throttles are designed around heuristics characterizing "normal" network 
usage. Like other heuristic systems, throttles can be evaded by avoiding be­
havior that the heuristics look for.̂ ^̂  For example, a worm can slow its rate 
of spreading down, avoiding the lockout threshold; the number of infection at­
tempts each worm instance makes can be constrained to the throttle's working 
set size to avoid delays. Because throttles are not widely used at present, a 
worm's best strategy may be to ignore the possibility of throttles altogether, as 
they will not significantly impact the overall worm spread. 

One criticism leveled at throttles is that they may slow down some programs, 
like mail transport agents, that can legitimately have a high connection rate.^^^ 
Different throttling mechanisms which address this criticism can be devised by 
using additional context information. Worms poking randomly for victims on 
the network will have a higher probability of failure than legitimate programs 
- either there is no machine at the address the worm generates, or the machine 
there doesn't supply a suitably-exploitable service.̂ ^^ A throttle can take the 
success of connection attempts into account. 

A credit-based throttle assigns a number of credits to each host it monitors, 
akin to a bank account. Only hosts with a positive account balance are allowed 
to make outbound connections; a zero balance will result in a host's outgoing 
connections being delayed or blocked completely. A host starts with a small 
initial balance, and its account is debited for each connection attempt the host 
makes, and credited for each of the connection attempts that succeed. Host 
account balances are reexamined every second for fairness: too-high balances 
are pared back, and hosts with persistent zero balances are credited. ̂ ^ 

Unfortunately, a credit-based throttle doesn't fare well against worms that 
violate its assumptions about worm scanning. A worm using hit-list, topologi­
cal, or passive scanning would naturally tend to make successful connections, 
for instance. Special attacks can be crafted, too. A worm need only mix its 
random scans with connections to hosts (infected or otherwise) that are known 
to respond, to avoid being throttled. 

In computer science, sometimes solving the general problem is easier than 
solving a more specific problem. Instead of trying to discern worm traffic from 
legitimate traffic, or watching individual hosts' new connections, a general 
problem can be considered: how can network load be fairly balanced? Allocat­
ing bandwidth such that high-bandwidth applications (fast-spreading worms, 
DDoS attacks, file transfers, streaming media) do not starve low-bandwidth ap­
plications (web browsing, terminal sessions) may effectively throttle the speed 
and network impact of worm spread. ̂ ^̂  

8.3 Automatic Countermeasures 
The losses from worm attacks can be reduced in other ways besides slowing 

worm propagation. Especially for fast-spreading worms, automatic counter-
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measures are the only possible defense that can react quickly enough. There 
are two problems to solve: 

1 How to detect worm activity. Activity detection serves as the trigger for 
automatic countermeasures. 

2 What countermeasures to take. The reaction must be appropriate to the 
threat, keeping in mind that worm detection may produce false positives. 
Severing the Internet connection every time someone in Marketing gets 
overzealous surfing the web will not be tolerated for long. 

Several methods to detect worm activity have been seen already. Worm 
capture using honeypots is one method; detecting a sudden spike in excessive 
throttling is another. Trying to capture various facets of worm behavior leads 
to other methods, for example: 

• A worm may exploit a vulnerability in one particular network server, located 
at a well-known port. A worm activity monitor can watch for a lot of 
incoming and outgoing traffic destined to one port. This can be qualified by 
the number of distinct IP address destinations, on the premise that legitimate 
traffic between two machines may involve heavy use of the same port, but 
worms will try to fan out to many different machines. ̂ ^̂  

• Most network applications refer to other machines using human-readable 
domain names, which are mapped into IP addresses with queries to the 
domain name system (DNS). Worms, on the other hand, mostly scan using IP 
addresses directly. Worm activity may thus be characterized by correlating 
DNS queries with connection attempts - connections not preceded by DNS 
requests may signify worms.̂ "̂̂  Unfortunately, this registers false positives 
for some legitimate applications, so a Draconian reaction based on this 
classifier is not the best idea. 

What reaction should be taken to worm activity? Some examples of auto­
matic countermeasures are below. ̂ ^̂  

• Affected machines can be cut off from the network to prevent further worm 
spread. A more aggressive approach may be taken to guard critical networks, 
which may be automatically isolated to try and prevent a worm from getting 
inside them. 

• Targeted network servers can be automatically shut down. 

• Filtering rules can be inserted automatically into firewalls to block the hosts 
from which worm activity is originating.^^ Or, a filter can drop packets 
addressed to the port of a targeted network server, ̂ ^̂  which is less resource-
intensive as the number of worm-infected machines increases. 
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Automatic countermeasures must be deployed judiciously, because an attacker 
can also use them, deliberately triggering the countermeasures to perform a DoS 
attack. ̂ ^̂  This danger can be mitigated by providing automatic countermeasure 
systems with a whitelist, a list of systems which are not allowed to be blocked. ̂  ̂ ^ 
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Notes for Chapter 8 

1 Strictly speaking, the worm release causes another, smaller, exponential 
patching decay curve [262]. 

2 This is especially true of code, somewhat less so for data, although some 
data structures and algorithms play more nicely with virtual memory than 
others. Stacks, for example, exhibit a high degree of locality when they are 
accessed with "push" and "pop" operations. 

3 The firewalls described here would be classed as "packet-filtering" firewalls. 
Cheswick and Bellovin, for example, distinguish between several different 
kinds of firewall [68]. 

4 The header information here is based on the information available for the 
widely-used IP protocol suite. 

5 The acronyms NIPS and HIPS have tragically failed to materialize. 
6 Although as with viruses, a worm may try to disguise this feature, possibly 

by using junk code instead of a NOP sled [253]. 
7 This describes only signature-based IDS. Another type, anomaly-based IDS, 

watches for traffic abnormalities rather than any specific feature [20]. Watch­
ing for abnormalities that may signify worm activity is examined in Sec­
tion 8.3. 

8 A soft real-time system, that is. 
9 For example, Cheswick's famous observations of "Berferd" [67]. There do 

not seem to be any publicly-documented examples prior to 1990 [301]. It is 
interesting that a 1980 report specifically excluded a threat scenario which 
corresponds to a honeypot: 'Penetrator Not Authorized Use of Computer' 
but 'Penetrator Authorized to Use Data/Program Resource' [11, page 7]. 

10 Foulkes and Morris [115] and Overton [236]. A "virus trap" patent applica­
tion in the mid-1990s arguably suggests this use of honeypots, but there the 
trap is used to execute programs before they are transferred to a protected 
machine [281]. 

11 The original work used a working set of length five, and a lockout threshold 
of 100 [325]. 

12 Suggested values are an initial balance of ten credits, a debit of one for 
initiated connections, and a credit of two for successful connections. Hosts 
over their initial balance have a third of their credits clawed back each 
second, and hosts are given one credit after having a zero balance for four 
seconds [276]. 

13 One vendor calls this shunning [73]. 
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100 This section is based on Rescorla [262] except where otherwise noted. For 
simplicity, applying workarounds and upgrading to new, fixed software 
versions are also considered "patching" here because they all have the 
same net effect: fixing the vulnerability. 

101 Arbaugh et al. [19], Moore et al. [212], and Provos and Honeyman [255]. 
102 Arbaugh et al. [19] and Provos and Honeyman [255]. 
103 These, and the disinfection options, are based on Szor [310]. 
104 Rosenberg [268]. 
105 This section is based on Ptacek and Newsham [256] unless otherwise noted. 
106 Foulkes and Morris [115]. 
107 Desai [88]. 
108 Handleyetal. [135]. 
109 Paxson [243]. 
110 Ford and Thompson [114]. 
111 Holz and Raynal [145] and Krawetz [173]. 
112 Oudot[234]. 
113 Foulkes and Morris [115] describe this, and the "other mechanisms" below. 

Overton [236] also talks about luring worms with fake shared network 
resources. 

114 Oudot and Holz [235]. 
115 Oudot [234]. 
116 Nazario [229]. 
117 This section is based on Twycross and Williamson [325] except where 

otherwise noted. 
118 See Twycross and Williamson [325] (UDP), Williamson [347] (email), and 

Williamson et al. [348] (instant messaging). 
119 These suggestions are from Staniford et al. [303]. 
120 This, the credit-based throttle, and attacks on the credit-based throttle, are 

from Schechter et al. [276]. 
121 ChenandRanka[62]. 
122 Matrawyetal. [197]. 
123 Chen and Heidemann [63]. 
124 Whyteetal. [345]. 
125 Foulkes and Morris [115] and Oudot [234]. 
126 Chen and Heidemann [63]. 
127 Jung et al. [156] and Ptacek and Newsham [256]. 
128 Jung et al. [156] and Whyte et al. [345]. 



Chapter 9 

"APPLICATIONS" 

Malware can arguably be used in many areas, for better or worse. This chapter 
briefly looks at a number of "applications" for malicious software, for want of a 
better word. The applications are roughly grouped in order of increasing gravity: 
good (benevolent malware), annoying (spam), illegal (access-for-sale worms 
and cryptovirology), and martial (information warfare and cyberterrorism). 

9.1 Benevolent Malware 
"Benevolent malicious software" is obviously a contradiction in terms. Nor­

mally specific types of malware would be named - a benevolent virus, a benev­
olent worm. The generic term benevolent malware will be used to describe 
software which would otherwise be classified as malware, yet is intended to 
have a "good" effect.̂ ^^ 

Real attempts at benevolent malware have been made.^ For example: 

• Den Zuk, a boot-sector infecting virus in 1988, did no damage itself but 
removed the Pakistani Brain and Ohio viruses from a system. Later variants 
had the nasty habit of reformatting disks. ̂ ^̂  

• In 2001, the Cheese worm circulated, trying to clean up after the Lion (1 iOn) 
worm that had hit Linux systems. The problem was that Cheese's operation 
produced a lot of network traffic.̂ ^^ 

• The Welchia worm tried to clean up Blaster-infected machines in 2003, even 
going so far as to automatically apply an official Microsoft patch for the bug 
that Blaster exploited. ̂ -̂̂  Again, Welchia produced so much network traffic 
that the cure was worse than the disease. 

These latter two can be thought of as "predator" worms. Such a predator worm 
could both destroy existing instances of its target worm, as well as immunize a 
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machine against further incursions through a particular infection vector. Studies 
have been done simulating the effect that a well-constructed predator worm 
would have on its worm "prey." Simulations predict that, if a predator worm 
and immunization method are ready in advance, then a predator worm can 
significantly curtail the spread of a target worm.̂ ^^ However, a number of 
hurdles remain, legal, ethical, and technical. 

Legally, a predator worm is violating the law by breaking into machines, 
despite its good intentions. It may be possible to unleash a predator worm in a 
private network, in which the predator worm's author has permission for their 
worm to operate, but there is a risk of the worm escaping from an open network. 

Ethically, releasing a predator worm on the Internet at large affects machines 
whose owners haven't permitted such an activity, and past examples have in­
spired no confidence that a predator worm's impact would be beneficial in 
practice. Even if a predator worm's network activity were controlled, unex­
pected software interactions could be expected on machines that are infected. 
A worm's effect would have to be incredibly damaging to society, far more 
so than any seen to date, before a predator worm's actions could be seen to 
contribute to a universal good. 

Technically, there are the issues of control, compatibility, and consumption 
of resources mentioned above. There is also the thorny issue of verification: 
what is a predator worm doing, and how can its behavior be verified? Has a 
predator worm been subverted by another malware writer, and how can anti­
virus software distinguish good worms from bad?^^^ 

Of all the possible applications for benevolent malware, including predator 
worms, there has been no "killer application," a problem for which benevolent 
malware is clearly the best solution. Everything doable by benevolent malware 
can also be accomplished by other, more controlled means. 

One possible niche for benevolent malware is the area of mobile agents. A 
mobile agent is a program that transfers itself from one computer to another 
as it performs one or more tasks on behalf of a user.̂ ^^ For example, a user's 
mobile agent may propagate itself from one airline site to another, in search of 
cheap airfares. From the point of view of malware, mobile agents bear more 
than a passing resemblance to rabbits, and serious questions have been raised 
about mobile agent security. ̂ ^̂  As was the case for benevolent malware, mobile 
agents may be a solution in search of a problem: one analysis concluded that 
mobile agents had overall advantages, but 'With one rather narrow exception, 
there is nothing that can be done with mobile agents that cannot also be done 
with other means.' ̂ ^̂  

9.2 Spam 
An infected computer may just be a means to an end. Malware can install 

open proxy servers, which can be used to relay spam.^ It can also turn infected 
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machines into zombies that can be used for a variety of purposes, like conduct­
ing DDoS attacks. In either case, the malware writer would use the infected 
computer later, with almost no chance of being caught. 

A zombie network can be leveraged to send more effective spam: infected 
computers can be viewed as repositories of legitimate email corpora. Malware 
can mine information about a user's email-writing style and social network, 
then use that analysis to customize new spam messages being sent out, so that 
they appear to originate from the user.̂ ^^ For example, malware can use saved 
email to learn a user's typical habits for email capitalization, misspellings, and 
signatures. The malware can then automatically mimic those habits in spam sent 
to people the user normally emails; these people are also discovered through 
malware mining saved email. 

9.3 Access-for-Sale Worms 
Access-for-sale worms are the promise of scalable, targeted intrusion. A 

worm author creates a worm which compromises machines and installs a back 
door on them. Access to the back door is transferred by the worm author to a 
"cyberthief," who then uses the back door to break into the machine.^ 

Access to a machine's back door would be unique to a machine, and guarded 
by a cryptographic key. By transferring the key, a worm author grants back 
door access to that one machine. There is a fine granularity of control, because 
access is granted on a machine-by-machine basis. 

Why would access to a single machine be of interest, when entire botnets can 
be had? Crime, particularly stealing information which may later be used for 
blackmail or identity theft. The value of such access increases in proportion to 
its exclusivity - in other words, a competitor must not be allowed to obtain and 
sell access too. Ironically, this means that a good access-for-sale worm must 
patch the vulnerabilities in a machine it compromises, to prevent a competing 
access-for-sale worm from doing the same thing. 

There are two "business models" for access-for-sale worms: 

1 Organized crime. A crime organization retains the services of a worm 
author and a group of cyberthieves, shown in Figure 9.1. The worm author 
creates and deploys an access-for-sale worm, and the back door keys are 
distributed to the cyberthieves. This keeps the "turf" divided amongst the 
cyberthieves, who then mine the compromised machines for information."^ 
Due to the insular nature of organized crime, countermeasures that come 
between the worm author and cyberthieves are unlikely to work. Standard 
worm countermeasures are the only reliable defenses. 

2 Disorganized crime. Here, the worm author sells a back door key to a 
cyberthief. Compromised machines must first be advertised to potential 
customers by the worm author: this may be as crude as posting a list on some 
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underground website, or an infected machine may leak a unique identifier on 
some covert channel that a customer can detect.^ The customer-cyberthief 
buys the back door access key for their chosen target machine from the worm 
author, which is used by the cyberthief to break in. The whole process is 
shown in Figure 9.2. 

This model admits two additional defenses. First, the worm author's reputa­
tion can be attacked. The worm author and cyberthief probably don't know 
one another, so an access key sale is based on the seller's reputation and a 
certain amount of trust. One defense would make an infected machine con­
tinue to look infected, even after the machine has been cleaned, in the hopes 
of damaging the seller's reputation. Second, law enforcement authorities 
could set up honeypots and sell access as if the honeypots were access-
for-sale machines. This would keep the doughnut budget in good stead, 
and might lead to the capture of some cyberthieves, or at least increase the 
cyberthieves' risk substantially. 

The access-for-sale worm would require some verification mechanism to en­
sure that an access key did in fact come from the worm author. This mechanism 
can be constructed using public-key cryptography, where a message is strongly 
encrypted and decrypted using different keys: Si private key known only to the 
message sender, and a public key known to everyone.^ ̂ ^ 

The access-for-sale worm can carry the worm author's public key with it, 
and each compromised machine can be assigned a unique identifier (based on 
its network address, for example). When the worm author transfers an access 
key, they encrypt the machine's unique identifier with their private key; the 
worm can decrypt and verify the identifier using the public key. If a symmetric 
cryptographic scheme were used, where the same key is used for encryption 
and decryption, then capturing a worm sample would reveal the secret key, 
permitting access to all of the worm's back doors. 

9.4 Cryptovirology 
Using viruses and other malware for extortion is called cryptovirology}^^ 

After a virus has deployed its payload and been discovered, the effects of its 
payload should be devastating and irreversible for the victim, but reversible for 
the virus writer. The virus writer can then demand money to undo the damage. 

For example, such a virus - a cryptovirus - could strongly encrypt the victim's 
data such that only the virus author can decrypt it.̂  The cryptovirus can employ 
public-key cryptography to avoid having to carry a capturable, secret decryption 
key with it to each new infection. The victim's data is encrypted using the virus 
writer's public key, and the virus writer can supply their private key to decrypt 
the data once a ransom is paid. 
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Even on fast computers, public-key encryption would be slow to encrypt 
large directories and filesy stems. There are faster options for a crypto virus: 

• The cryptovirus can randomly generate a unique secret key for each in­
fection. This secret key is used to strongly encrypt the victim's data us­
ing a faster, symmetric strong encryption algorithm. The cryptovirus then 
strongly encrypts the random secret key with the virus writer's public key 
and stores the result in a file. The victim transmits the file along with the 
ransom money; the virus writer is then able to recover the unique secret key 
without revealing their private key. 

• Hardware mechanisms can be used. Some ATA hard drives have a rarely-
used feature which allows their contents to be password-protected, rendering 
the contents unusable even if the computer is booted from different media. 
A cryptovirus can set this hard drive password if the feature is available.^ ̂ ^ 

This can be used in conjunction with the randomly-generated unique key 
scheme above, but the cryptovirus couldn't store the encrypted secret key 
file on the encrypted hard drive. If no other writable media is available, the 
cryptovirus could simply display the encrypted secret key on the screen for 
the victim to write down. 

Both options avoid the virus writer needing a different public/private key pair 
for each new infection, lest a victim pay the ransom and publish the private 
decryption key for other victims as a public service. 

There are only a few known instances of malware using encryption for ex­
tortion. The AIDS Trojan horse of 1989 was sent on floppy disks, mass-mailed 
worldwide via regular postal mail. It was an informational program relating 
to the (human) AIDS virus, released under a curious software license. The 
license gave it leave to render a computer inoperable unless the user paid for 
the software ($189 or $378, depending on the leasing option). It was true to its 
word: after approximately 90 reboots, the Trojan encrypted filenames using a 
simple substitution cipher. ̂ -̂̂  

More recently, the PGPCoder Trojan encrypted files with specific filename 
extensions, roughly corresponding to likely user document types. A text file 
was left behind in each directory where files were encrypted, with instructions 
on how to buy the decryptor: a bargain at $200.̂ "̂̂  

9.5 Information Warfare 
Information warfare is the use of computers to supplement or supplant con­

ventional warfare. Computers can play a variety of roles in this regard, includ­
ing acquiring information from an adversary's computers, planting information 
in their computers, and corrupting an adversary's data. Information warfare 
can also be applied in an isolating capacity, in an 'information embargo' that 
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prevents an adversary from getting information in or out.̂ ^^ This section con­
centrates on malware-related information warfare only. 

Computers are a great equalizer, and information warfare is a key weapon 
in asymmetric warfare, a form of warfare where an enemy possesses a decided 
advantage in one or more areas.^^^ For example, the United States currently 
enjoys an advantage over many countries in terms of weaponry, and countries 
that cannot respond in kind have been proactively developing computer attack 
capabilities to counter this perceived threat.^ 

Laws, rules of engagement, and the level of conflict may constrain informa­
tion operations. Legally, it is unclear whether information warfare constitutes 
warfare; this is an important point, as it governs what international law applies 
to information warfare. For example, civilian targets are usually off limits in 
conventional warfare, but information warfare may not be able to avoid sub­
stantial collateral damage to civilian computers and network infrastructure.^^^ 
A conservative approach is that malware may never be used in peacetime, but 
may be deployed by intelligence agencies as the conflict level rises. In all-out 
war, both intelligence agencies and the military may use malware. Ultimately, 
information warfare of any kind may be limited if an adversary's communica­
tions infrastructure has been destroyed or otherwise disabled.^^^ 

It is interesting to think of malware-based information warfare as an elec­
tronic countermeasure.^^^ An electronic countermeasure, or ECM, is any elec­
tronic means used to deny an enemy use of electronic technology, like radar 
jamming. Early jamming ECM was roughly analogous to a DoS attack, but 
current ECM systems heavily employ deception, making an enemy see false 
information.^ A comparison of traditional ECM and malware is below. 

Persistence 

• Traditional ECM: The effect of the ECM only lasts as long as the trans­
mission of the jamming signal or false information. 

• Malware: The effect of malware lingers until the malware is stopped 
by the adversary. This longer persistence allows targets to be attacked 
in advance, with the malware lying dormant until needed. 

Targeting 

• Traditional ECM: Only direct targeting of an adversary's systems is 
possible. 

• Malware: Both direct and indirect targeting is possible through con­
nected, but weaker, points in an adversary's defenses. 
Malware can be a double-edged sword. Careful thought must be given 
to the design of malware for information warfare, so that it doesn't start 
targeting the computers of the original attacker and their allies. ̂ ^̂  
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Deception 

• Traditional ECM: Possible. 

• Malware: Also possible. There are many possibilities for presenting 
false information to an adversary without them being aware of it. 

Range of effects 

• Traditional ECM: Because the targets are special-purpose devices with 
limited functionality, the range of effects that ECM can elicit from their 
targets is similarly limited. 

• Malware: The targets are more general-purpose computers, and the 
malware's effects can be designed to fit the situation. For example:^^^ 

- Logic bombs. 

- Denials of service at critical times. 

- Precision-guided attacks, to destroy a single machine or file. 

- Intelligence gathering, looking for specific, vital information. After 
the information is found, there is also the problem of smuggling 
it out. One possibility for worm-based intelligence gathering is 
to allow the information to propagate with the worm, in strongly-
encrypted form, and intercept a copy of the worm later. ̂ ^̂  

- A forced quarantine virus, which deliberately makes its presence 
known to an adversary. The adversary must isolate the affected 
machines, thus fragmenting and reducing the effectiveness of the 
adversary's computing infrastructure. 

Reliability 

• Traditional ECM: It is unknown until ECM is used whether or not it 
will work, a detriment to the planning of military operations. 

• Malware: Depending on the setting, malware may be able to signal 
indicating that it is in place and ready for use. Whether or not it will 
actually work is still unknown, as with traditional ECM. 

Continuity 

Traditional ECM: Must continually overcome the target, even if the 
target adapts to the attack using electronic counter-counter measures 
(ECCM). 

Malware: An adversary's defenses must only be overcome once, at their 
weakest point, unlike traditional ECM which attacks the strongest point. 
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The way that malware is inserted into an adversary's system may be more 
exotic in information warfare. Direct transmission is still an option, either by 
self-replication or by espionage. Indirect transmission is possible, too, such as 
passing malware through third parties like military contractors or other software 
vendors, who may be oblivious to the malware transmission. Malware may 
be present, but dormant, in systems sold by a country to its potential future 
enemies. Another indirect means of transmission is to deliberately leak details 
of a malware-infected system, and wait for an enemy to copy it.̂ ^^ 

9.6 Cyberterrorism 
'We do not use the term 'ice pick terrorism' to define bombings of ice-pick factories, 

nor would we use it to define terrorism carried out with ice picks. Thus we question 
the use of the term cyberterrorism to describe just any sort of threat or crime carried out 
with or against computers in general.' - Sarah Gordon and Richard Ford̂ "̂̂  

The United Nations has been unable to agree on a definition of terrorism. ̂ ^̂  A 
definition of cy&^rterrorism that is universally agreed-upon is equally elusive. 
This lack of a standard cyberterrorism definition makes the classification of 
individual acts hard to pin down. Is malware that launches a DDoS attack 
against a government web site cyberterrorism? What about malware that simply 
carries a string with an anti-government slogan? 

Terrorism has been compared to theater, in that terrorists want to maximize 
the emotional impact of their attacks. From the terrorists' point of view, an 
effective terrorist act is one that puts people in constant fear of their lives. 
Terrorist acts that merely irritate people are not effective. 

By this token, cyberterrorist acts cannot be useful as terrorist tools unless 
their effect tangibly protrudes into the real world. Being unable to electronically 
access a bank account is inconvenient, but doesn't strike the fear of death into 
victims as would a cyberterrorist attack against nuclear facilities, the power 
grid, or hospitals. Luckily, no one is colossally stupid enough to connect such 
vital systems to the Internet. 

In lieu of such attacks against critical systems, cyberterrorist acts might 
play the same role as malware does in information warfare. Cyberterrorism 
can be used as a complement to traditional, real-world physical attacks, to 
confuse an enemy by disrupting computer-based communications for rescue 
efforts, or by sowing disinformation during a terrorist attack. Prior to an attack, 
misleading intelligence traffic can be generated. Terrorists have unfortunately 
shown themselves to be very good at lateral thinking, and a cyberterrorist attack 
is likely to strike something unexpected and undefended. 

Are stricter laws and standards needed for these new weapons, these Internet-
connected computers?^^^ 
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Notes for Chapter 9 

1 The benevolent effect may be accidental in some unusual cases. A man sur­
rendered himself to German police after receiving a (false) message from a 
variant of the Sober worm claiming that he was being investigated. When 
the police did investigate, they found child pornography on the man's com­
puter [264]. 

2 For example, Sobig did this [188]. 
3 The eye-roll-inducing term "cyberthief" is due to Schechter and Smith [277], 

on whom this section is based. Arguably, the thieves aren't hackers/crackers, 
because the machine is pre-cracked for their safety and comfort. 

4 This would presumably be "cyberturf." 
5 A covert channel is a means of transmitting information which was never 

intended for that purpose. For example, information can be leaked from an 
infected machine in unused or used network packet bits [269]. The problem 
of trying to prevent information leaks via covert channels is referred to as 
the confinement problem [179]. 

6 Strictly speaking, the original cryptovirus definition requires the use of 
strong, public-key cryptography [352]. A more general view of cryp-
toviruses, without the public-key requirement, is taken here. 

7 For example, countries possessing or developing offensive computer virus 
capabilities include Bulgaria [204], China [49, 71, 232], Cuba [204], North 
Korea [49], Russia [321], Singapore [49], and Taiwan [49]. 

8 Falsehoods are limited by law and convention. Falsely seeming to have a 
larger force than actually exists, or falsely appearing to be attacking else­
where to draw off enemy troops are completely acceptable feints. Pretending 
to surrender in order to lure out and ambush enemy troops is called an act 
of perfidy and is prohibited [130]. 

100 Cohen [75] makes a case for benevolent viruses. 
101 McAfee [199]. 
102 Barber [26]. 
103 Perriot and Knowles [250]. 
104 Predator worms and their effects are studied in Toyoizumi and Kara [323], 

and Gupta and DuVarney [134]. 
105 These issues are discussed at length by Bontchev [40]. 
106 White [344]. 
107 See, for example, Harrison et al. [138] and Jansen and Karygiannis [152]. 
108 Harrison et al. [138, page 17]. 
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109 Aycock and Friess [23]. 
110 Schneier [279]. 
111 This section is based on Young and Yung [352]. 
112 Bogeholz [37] and Vidstrom [335]. 
113 Bates [29] andFerbrache [103]. 
114 Panda Labs [240]. The $200 figure is from Panda Labs too [241]. 
115 The concept and term are from Kanuck [158, page 289]. 
116 O'Brien and Nusbaum [232]. 
117 Ellis [99] and Greenberg et al. [130]. 
118 This conservative approach and the point about communications infras­

tructure is from the Department of the Army [140]. 
119 The material on electronic countermeasures is based on Cramer and Pratt [82] 

unless otherwise noted. 
120 From [16]. 
121 With the exception of intelligence gathering, these are also mentioned 

(occasionally using slightly different terminology) in Thomas [321]. 
122 Young and Yung [352]. 
123 These insertion possibilities are from [16, 82, 321]. 
124 Gordon and Ford [125, page 645], upon which this section is based. 
125 Schaechter [275]. 
126 Ellis [99] examines the same suggestion in the context of information 

warfare. 



Chapter 10 

PEOPLE AND COMMUNITIES 

10.1 Mai ware Authors 
' . . . [virus writers] have a chronic lack of girlfriends, are usually socially inadequate 

and are drawn compulsively to write self-replicating codes.' - Jan Hruska, Sophos^^^ 

Very little is known about virus writers, much less malware authors in general. 
The reason for this is simple: very few of them are ever found. ̂  Furthermore, 
the limited research that has been done does not support Hruska's quote above. 
The two big questions that the existing research begins to answer are who writes 
malware, and why do they do it? 

10.1.1 Who? 
Humans are a diverse lot, and there is always a danger when generalizing 

about any group of people. The work that has been done on virus writers has 
looked at four factors: age, sex, moral development, and technical skill. ̂ ^̂  

The age of virus writers is varied. There are the stereotypical young adoles­
cents, but also college students and employed adult professionals. The explosive 
growth of malware has really only taken place since the mid-1980s, and it is 
possible that older virus writers will be seen as time goes on. 

Virus writers are predominantly male, with only occasional exceptions.^ 
Females are typically regarded as inferior in the virus community, so it wouldn't 
be a particularly welcoming environment for them. There is also a theory 
that gender differences in moral development may partially explain the lack of 
females. ̂ ^̂  

With respect to ethical and moral development, not all virus writers are the 
same, and some fall within "normal" ranges. There is also a general distaste 
for deliberately destructive code amongst the virus writers studied, and there is 
no one directly targeted by viruses - with the possible exception of anti-virus 
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researchers! The lack of interest in destruction is borne out by the relatively 
small amount of malware which tries to do damage. The main reason that 
ethically-normal virus writers stop writing viruses is simply that they grow out 
of it. 

Finally, there are the technical skills of virus writers, which are often derided 
by the anti-virus community. As with any software development, the barrier to 
entry is low for virus writing, and consequently a fair degree of bad program­
ming is seen in virus writing as it is in any programming discipline. However, 
virus writers with real impact must have a variety of skills to field techniques 
like stealth and polymorphism, or employ lateral thinking to exploit new and 
unguarded attack vectors. Arguably the skill level of virus writers is a direct 
reflection of the increasing sophistication level of anti-virus defenses. ̂ -̂̂  

10.1.2 Why? 
Attributing the motivation to write malware to a single factor is a gross 

oversimplification. In fact, not all driving forces behind the creation of malware 
may even be conscious motivations.̂ ^"^ Malware may be written for a variety 
of reasons, including: 

Fascination with technology. Exploring technology underpins hacker culture, 
and the same ideas apply to creating malware. Creating malware, like writ­
ing any software, poses an intellectual challenge. In fact, since the anti-virus 
community acts as an opponent, writing malware may even have a greater 
draw from a game-playing point of view than other forms of software de­
velopment. 

Fame. Virus writers are known to form informal groups to exchange informa­
tion and communicate with like-minded people.^ As with any group, people 
may want to achieve fame within their community which would mean cre­
ating cleverly-written malware with impact. Having a creation appear on 
the "top ten" lists of malware that many anti-virus companies maintain for 
their customers' information can result in prestige for the creator. 

Graffiti. Malware writing can serve as a form of expression in much the same 
way that graffiti does in the physical world. Arguably, this is a malicious 
act, but one not specifically targeted to any one person or group. 

Revenge. Malware can be used to exact revenge for some real or imagined 
slight, by a disgruntled employee or ex-spouse, for instance. 

Ideology. Ideological motivations are difficult to assess unless the malware 
writer is found, because what appears to be political or religious motivation 
may just be a red herring. Having said that, there have been some instances 
which suggest this underlying cause. One version of the Code Red worm 
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attempted a DDoS on the White House web site, for instance.'̂  The Cager 
Trojan horse^^^ may have been religiously-motivated, because it tried to 
prevent infected machines from viewing adult web sites - an offender would 
be presented with a quote from the Qur'an in Arabic, English, and Persian, 
followed by advice in Persian on how to atone for looking at naughty pictures 
on the Internet. 

Commercial sabotage. Malware can be hard to target accurately, but some 
attempts at sabotaging a single company have been seen. This may tie in 
to schemes for revenge, or possibly financial gain for a malware writer who 
hopes to take advantage of lower stock prices, for example. 

Extortion. On occasion, malware has been used on a large scale to try and 
extort money from people. 

Warfare and espionage. Malware can be used for military or intelligence pur­
poses, or as a complement to traditional forms of warfare. Such malware 
can be employed by both established armies as well as terrorist groups. 

Malware battles. A relatively recent development, malware writers can have 
their creations fight one another using the Internet as their battleground. 
This was seen in the Mydoom/Netsky/Bagle episode in 2004.̂ ^^ 

Commercial gain. Malware skills may be leveraged in various ways by others, 
resulting in malware authors being paid for their wares. For example, use 
of worm-constructed botnets may be sold to spammers. 

Again, humans are complicated, and their motivations may not be simple. 
The graffiti motivation is an interesting one which deserves further research. 

There is a relatively large amount of research on graffiti artists, and the parallels 
to virus writers are compelling. Females are marginalized there too; it has been 
suggested that females express "graffiti urges" in different ways than males, ̂ ^̂  
and also that the graffiti subculture is an inherently masculine one.̂ ^^ Graffiti 
writers have an adversarial relationship with the authorities trying to stop them, 
but the two groups also share a curious bond. Motivations for graffiti writers flow 
from the adversarial contest, but also a desire for fame within their subculture, 
and a love of the art. Equivalents to malware battles and commercial gain exist 
in the graffiti world too. 

10.2 The Anti-Virus Community 
Malware authors and people in the anti-virus community have one thing in 

common: there isn't a lot written about either. The anti-virus community is 
shaped by a number of external forces, including external perceptions of them 
as well as customer demands and legal minefields. 
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10.2.1 Perceptions 
The most common perception about the anti-virus community is a conspiracy 

theory. Anti-virus companies have the most to gain by a steady stream of 
malware, so the argument goes, and anti-virus companies conveniently know 
how to defend against any new threats. There is no evidence whatsoever that 
supports this theory. 

The evidence that does exist also doesn't support the conspiracy theory. If 
it were true, then anti-virus companies would want to boost revenue with the 
least amount of effort on their part - a rational plan. Any malware that wasn't 
noted by current or potential customers would therefore be wasted effort, and 
anti-virus researchers would work no more than was necessary. 

There is lots and lots of malware that doesn't attract attention, though; not 
just variants but entire families of malware can go unnoticed by most anti-virus 
customers. Monitoring anti-virus updates and comparing that information to 
malware-related media stories is a good demonstration of this fact. The sheer 
volume of malware is inconsistent with the conspiracy theory, too, because far 
more effort is being expended by anti-virus researchers than would be necessary 
to sustain the industry. 

Anti-virus researchers do benefit from staying ahead of malware writers, even 
if they don't produce the malware themselves. Researchers may monitor web 
sites frequented by malware writers for up-and-coming threats, especially so-
called "virus exchange" or "vX" sites. Malware writers have also been known 
to send their latest creations directly to anti-virus companies, which tends to 
support the motivation of malware writing as an intellectual thrill rather than a 
destructive pursuit. ̂ ^̂  

10.2.2 Another Day in Paradise 
A workday for an anti-virus researcher is long, to begin with. An 80-hour 

work week is not uncommon for researchers, ̂ ^̂  which can obviously exact a 
personal toll. 

Samples of potential malware candidates can be captured by anti-virus com­
panies' own defensive systems, like firewalls and honeypots. Malware sam­
ples may also be submitted by customers; this is the scenario depicted by the 
flowchart in Figure 10.1.̂ ^^ Conceptually, there are two databases kept: one 
with known malware, the other with known malware-free, or "clean" files. 
Any submission is first checked against both these databases, in order to avoid 
re-analyzing a submission and to respond to customers as quickly as possible. 

If the submission is absent from both databases, then it must be analyzed. 
There is still no guarantee that the submission is malicious, so this is the next 
thing to determine; if the answer is negative, then the clean file database can be 
updated with the result. Otherwise, for replicating malware, a large number of 
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Figure 10.1. Malware analysis workflow 
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samples are produced to ensure that all manifestations of the malware variant 
are able to be detected. (Virus writers can try to derail this process by having 
their viruses mutate slowly.)^ 

Adding detection to the anti-virus software comes next. The result is verified 
against both databases, because detection of the new malware shouldn't inter­
fere with existing detection, nor should it cause false positives. Testing will also 
try to catch problems on any of the platforms that the anti-virus software runs 
on. For this reason alone, anti-virus software is more challenging than mal­
ware writing, because malware doesn't have a customer base that complains if 
something goes wrong. 

Finally, the malware database gets updated and the customer is notified. 
Most anti-virus companies have online "malware encyclopedias" which provide 
details about malware to the public, and these would also be updated at this time. 

While a workday for an anti-virus researcher may be long, the workday for 
an anti-virus company may be endless. Anti-virus companies may maintain 
offices worldwide, strategically located in different time zones, so that around-
the-clock security coverage can be given to their customers. ̂ ^̂  

m.23 Customer Demands 
Anti-virus customers have certain expectations of their anti-virus software, 

which can be simply stated: 100% perfect detection of known and unknown 
threats, with no false positives. This is an impossible task, of course. 

Complicating matters is that different customers may want different "threats" 
to be detected. Techniques used by anti-virus software may be applied more 
generally to locate many types of programs - this is called gray area detection. ̂ ^^ 
Anti-virus software may be employed to look for: 

Jokes and games. "Joke" executables and games may be completely harmless, 
yet having them may violate corporate IT policies. 

Cracking tools. The legitimacy of programs like password crackers and port 
scanners may depend on context. System administrators can use these pro­
grams to check for vulnerabilities and weak passwords in their own systems, 
but other users possessing these may be cause for alarm. 

Adware. Spyware is now largely recognized as a threat, but adware may also 
pose a risk of leaking information to another party. Some people see adware 
as performing a useful function, and it's not always obvious what programs 
have been installed quietly, and what programs have been deliberately in­
stalled by a user. 

Remote administration tools. Again, RATs may provide a useful service, but 
their presence may also constitute a security breach or a policy violation. 
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Figure 10.2. In the zoo vs. in the wild 

Gray area detection is a delicate matter, because vendors of legitimate soft­
ware may object to having their product negatively classified by anti-virus soft­
ware, and there may be legal ramifications for doing so. Some anti-virus vendors 
attempt to forestall legal action, especially for spy ware, through an appeals pro­
cess which software producers can follow if they feel that their software has 
been misclassified.^^^ More generally, the threat of legal action is possible for 
any false positive. 

10.2.4 Engineering 
Malware is often categorized based on where it's located. ̂  ̂ ^ Malware is said 

to be in the wild if it's actively spreading or otherwise functioning on anyone's 
computer. Malware not in the wild, which only exists in malware collections 
and anti-virus research labs, is in the zoo^ Accurately determining whether 
malware is actually in the wild requires omniscience in the general case, so an 
approximation is used. An organization called the WildList Organization^ ̂ ^ has 
a worldwide membership of anti-virus experts who verify malware occurrences 
and report their data, which is combined to form the WildList, a (presumably 
close) approximation of the malware in the wild at any given time. Malware on 
the WildList is confusingly referred to as being In the Wild (ItW). As Figure 10.2 
shows, this means that malware can be in the wild but not In the Wild, but 
something In the Wild must be in the wild. Hopefully that clarifies things.^ 

An argument can be made, from an engineering point of view, that the only 
threats that need to be detected are those that are in the wild, since anything 
in the zoo cannot pose a direct threat. Anti-virus software could potentially be 
made smaller and faster by only detecting malware in the wild, whose numbers 
can be several orders of magnitude lower than the total number of threats. ̂ ^̂  

From a marketing point of view, however, this would be a bad idea. If 
company A advertises that they protect against 100,000 threats, and company 
B's product only guards against 500 threats - even if they're really the only 
ones that are in the wild - then company 5 is at a competitive disadvantage. 
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Marketing is somewhat of a sore spot in the anti-virus community in any 
case. Product claims of detecting 100% of known and unknown threats are 
obviously silly, and misrepresentation is one possible legal concern.^ ^̂  

10.2,5 Open Questions 
There are a number of interesting questions which (at least at this time) have 

no obvious answer. 

• Anti-virus products are installed in computer systems in an ideal place to 
perform any number of tasks/^^ like gray area detection. Should anti-virus 
software... 

- . . . supply a firewall? This is clearly in the realm of computer security, 
yet integrating firewall and anti-virus software may make both defenses 
vulnerable to attack by reducing the amount of software diversity. 

- . . . provide content filtering? More gray area detection, content filtering 
would block objectionable content - or any content that might violate 
IT policy - from being received. Filtering might also watch outgoing 
content too, since sending offensive material (either intentionally, or 
through zombies) could damage a company's reputation. 

- . . . perform spam detection? Anti-spam is a growing concern for anti­
virus companies, although spam detection techniques have compara­
tively little overlap with malware detection techniques. 

- . . . apply software patches? Where technical weaknesses are exploited 
by worms, for example, anti-virus disinfection may only be temporary 
if the vulnerability used as an infection vector is still present. The safest 
approach is probably not to apply relevant software patches, since doing 
so may accidentally break software, introducing more customer support 
and liability issues. 

• Anti-virus researchers perform reverse engineering and decompilation le­
gitimately as part of their jobs, and also routinely decipher "protection mea­
sures." It's unlikely that any malware author will take them to task for this, 
but researchers may also trace into legitimate code or need to understand 
undocumented software mechanisms. At what point does this run afoul of 
copyright laws?^^^ 

• Users of anti-virus software may occasionally be presented with quarantined 
files to assess. Are there situations in which looking at these files, or the 
data within them, violates privacy laws? This may be even riskier in the 
case of a false positive. 
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• For computer owners, use of anti-virus software is a widespread practice. 
Does this mean that computer owners are liable for negligence if they don't 
use anti-virus software?^^^ Do anti-virus companies have a captive market? 



198 COMPUTER VIRUSES AND MALWARE 

Notes for Chapter 10 

1 This raises the question of where virus writers are physically located. There 
was once a virus "scene" which shifted from country to country [123], but 
the Internet has largely made geographical location irrelevant. 

2 Gigabyte was one example of a female virus writer [207]. 
3 Arguably, virus writers form a subculture distinguished by their interest in 

viruses. 
4 This was Code Red version 2, and the DDoS attack was thwarted [211]. 
5 Bontchev [46] calls this "slow polymorphism." 
6 The "zoo" label is often heard applied to viruses, as in "a zoo virus." 
7 If this figure were drawn to scale, the In the Wild circle would be a barely-

visible dot in comparison to the zoo circle. 

100 As quoted in an interview with Reuters [263]. 
101 Unless otherwise noted, this section and the next are based on [121, 123]. 
102 Gordon [121] and Bissett and Shipton [35] both suggest this. 
103 Suggested, for example, in Nachenberg [217]. 
104 Bisset and Shipton [35] speculate on unconscious motivations, and suggest 

some possible conscious motivations, as do Harley et al. [137]. 
105 Laguerta [177]. 
106 Covered in a number of places, such as Sherer [286]. 
107 Landy and Steele [180], and expanded upon by Abel and Buckley [1]. The 

latter also examines whether graffiti derives from a Freudian urge to smear 
feces, no doubt an excellent topic for dinner conversation. 

108 Macdonald [191], which was used for the remainder of these comments 
on graffiti as well. 

109 These assertions are made in Schmehl [278], and virus trading is mentioned 
in interviews with virus writers [120]. 

110 This figure is from Bontchev [41]. 
111 This section is based on Vibert [334] and (to a lesser degree) Schmehl [278]. 
112 Kirsner [165]. 
113 Gray area detection is discussed in Purisma [257]. 
114 For example, [52]. 
115 This section is based on Wells [343]. 
116 http://www.wildlist.org 
117 An argument in favor of zoo virus detection is made in Ferric and Per-

riot [104]. 
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118 Gamertsfelder[116]. 
119 Purisma [257]. 
120 These latter three questions are raised and analyzed in Gamertsfelder [116]. 
121 This was mentioned at the EICAR 2004 conference during the presentation 

of Vasiu and Vasiu's "Taxonomy of Malware" paper. Opinions are varied: 
de Villiers concludes (after a lengthy analysis) that ' . . . most cases of virus 
infection involve negligence' [86, page 169], but Owens [237] is skeptical 
about individuals being held liable for infections. 
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WHAT SHOULD WE DO? 

A book of this nature would not be complete without some kind of prediction 
about the future of malware. Such predictions share the distinguished quality of 
being invariably wrong, so this prediction will cover a wide range of scenarios. 

Vicious cyberattacks will cause the Internet to melt down, and all 
malware-relatedproblems will disappear within a year's time. 

In reality, there is no magic single solution to malware. (And, if there was, 
be assured that a bread-crumb trail of patents would cover every part of it.) 
Current and foreseeable defenses are but a house of cards. They are based on 
assumptions about "typical" malware behavior, and assumptions about malware 
writers which dramatically underestimate them. One violation of the assump­
tions and the house of cards comes tumbling down, defenders left scrambling 
to prop it up again. 

What is clear is that no human intervention is possible in some attacks due 
to their speed. More automatic countermeasures are needed, not necessarily to 
stop malware completely - there is no such thing as absolute security, after all 
- but slowing malware down to a manageable rate would be valuable in itself. 

As for malware detection, it is an undecidable problem. No perfect solu­
tion is possible, and the only way to tackle such a problem is with heuristics. 
Heuristics, rules of thumb, are fallible. In other words, a technical arms race 
rages on between attackers and defenders. Whether or not the race is winnable 
is immaterial now; the finish line is still far off. Many excellent defensive steps 
that can be taken are not very technical at all, though: 

Plan B. Organizations, and to some extent individual computer users, must 
have a plan for disaster recovery. What happens when defenses fail and 
malware strikes? Can machines be rebuilt, data be restored? 
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Education. A broad view of education must be taken. Users must be educated 
to harden them to social engineering attacks, but education can't stop there. 
The next generation of computer scientists and computer programmers must 
be educated in depth about malware. Treating malware as a taboo subject 
is only security through obscurity. 

Vendor pressure. It must be made clear to software vendors that security is 
a priority for their customers, a higher priority than more frilly features. 
Customers can also demand to know why software is riddled with techni­
cal weaknesses, which should make customers and vendors both ask some 
pointed questions of educators and software researchers. 

Minimalism. Users must responsibly use features that are present, which in 
part comes through education. Enabled features like network servers provide 
more potential attack vectors than having all such features turned off. 

At the extreme end of the minimalism scale, it can be argued that computers 
are too general-purpose. Malware affects computers because they are just 
another form of software for a computer to gleefully run. Special-purpose 
devices doing one thing, and only one thing, are one way to help avoid 
exploitable problems. 

Software updating. Until less-vulnerable software can be produced, software 
updating will still be a necessity. Mechanisms and policies that facilitate 
updating are a good thing. 

Layers of defense. If each defensive technique is only a partial solution, then 
deploy a variety of defenses. Defenses should ideally be chosen that are 
based on different underlying assumptions, so that the patchwork defensive 
quilt will hopefully still work even if some assumptions turn out to be false. 

Avoiding monocultures. In biology, having all members of a species the same 
is a potentially fatal problem: one disease can wipe the species out. Yet that 
is exactly the fatal problem the majority of computers exhibit. This isn't 
necessarily to say that everyone should change operating systems and ap­
plications, although that is one coarse-grained way to avoid a monoculture. 
Monocultures can be avoided in part just by automatically injecting ran­
domness into the data locations and code of programs. 

Diversity can be achieved by separating functionality physically, too. For 
example, moving firewall functionality to a different physical device makes 
the overall defenses that much harder to completely overcome. 

Will malware ever go away? Even if all technical vulnerabilities are fixed, 
there will still be human vulnerabilities. But the point is academic, because 
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human nature virtually guarantees the large-scale availability of technical vul­
nerabilities for the foreseeable future. Suffice it to say that the computer security 
industry will continue to flourish, and security researchers will be employed for 
some time to come. 
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