

Computer Viruses
and Malware

Advances in Information Security

Sushil Jajodia
Consulting Editor

Center for Secure Information Systems
George Mason University
Fairfax, VA 22030-4444
email: iaiodia@smu.edu

The goals of the Springer International Series on ADVANCES IN INFORMATION
SECURITY are, one, to establish the state of the art of, and set the course for future research
in information security and, two, to serve as a central reference source for advanced and
timely topics in information security research and development. The scope of this series
includes all aspects of computer and network security and related areas such as fault tolerance
and software assurance.

ADVANCES IN INFORMATION SECURITY aims to publish thorough and cohesive
overviews of specific topics in information security, as well as works that are larger in scope
or that contain more detailed background information than can be accommodated in shorter
survey articles. The series also serves as a forum for topics that may not have reached a level
of maturity to warrant a comprehensive textbook treatment.

Researchers, as well as developers, are encouraged to contact Professor Sushil Jajodia with
ideas for books under this series.

Additional tities in the series:
HOP INTEGRITY IN THE INTERNET by Chin-Tser Huang and Mohamed G.
Gouda; ISBN-10: 0-387-22426-3
PRIVACY PRESERVING DATA MINING by Jaideep Vaidya, Chris Clifton and Michael
Zhu; ISBN-10: 0-387- 25886-8
BIOMETRIC USER AUTHENTICATION FOR IT SECURITY: From Fundamentals to
Handwriting by Claus Vielhauer; ISBN-10: 0-387-26194-X
IMPACTS AND RISK ASSESSMENT OF TECHNOLOGY FOR INTERNET
SECURITY.'Enabled Information Small-Medium Enterprises (TEISMES) by Charles A.
Shoniregun; ISBN-10: 0-387-24343-7
SECURITY IN E-LEARNING by Edgar R. Weippl; ISBN: 0-387-24341-0
IMAGE AND VIDEO ENCRYPTION: From Digital Rights Management to Secured
Personal Communication by Andreas Uhl and Andreas Pommer; ISBN: 0-387-23402-0
INTRUSION DETECTION AND CORRELATION: Challenges and Solutions by
Christopher Kruegel, Fredrik Valeur and Giovanni Vigna; ISBN: 0-387-23398-9
THE AUSTIN PROTOCOL COMPILER by Tommy M. McGuire and Mohamed G. Gouda;
ISBN: 0-387-23227-3
ECONOMICS OF INFORMATION SECURITY by L. Jean Camp and Stephen Lewis;
ISBN: 1-4020-8089-1
PRIMALITY TESTING AND INTEGER FACTORIZATION IN PUBLIC KEY
CRYPTOGRAPHY by Song Y. Yan; ISBN: 1-4020-7649-5
SYNCHRONIZING ESECURITY by GodfriQd B. Williams; ISBN: 1-4020-7646-0

Additional information about this series can be obtained from
http://www.springeronline.com

Computer Viruses
and Malware

by

John Ay cock
University of Calgary

Canada

Springer

John Aycock
University of Calgary
Dept. Computer Science
2500 University Drive N.W.
CALGARY AB T2N 1N4
CANADA

Library of Congress Control Number: 2006925091

Computer Viruses and Malware
by John Aycock, University of Calgary, AB, Canada

ISBN-13: 978-0-387-30236-2
ISBN-10: 0-387-30236-0
e-ISBN-13: 978-0-387-34188-0
e-ISBN-10: 0-387-34188-9

Printed on acid-free paper.

The use of general descriptive names, trademarks, etc. in this publication
does not imply, even in the absence of a specific statement, that such
names are exempt from the relevant protective laws and regulations
and therefore free for general use.

© 2006 Springer Science+Business Media, LLC
All rights reserved. This work may not be translated or copied in whole or
in part without the written permission of the publisher (Springer
Science+Business Media, LLC, 233 Spring Street, New York, NY 10013,
USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and
retrieval, electronic adaptation, computer software, or by similar or
dissimilar methodology now know or hereafter developed is forbidden.
The use in this publication of trade names, trademarks, service marks and
similar terms, even if the are not identified as such, is not to be taken as
an expression of opinion as to whether or not they are subject to
proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

To all the two-legged critters
in my house

Contents

Dedication
List of Figures
Preface

1. WE'VE GOT PROBLEMS

LI

L2

L3

L4

L5

L6

L7

L8

Dramatis Personae

The Myth of Absolute Security

The Cost of Malware

The Number of Threats

Speed of Propagation

People

About this Book

Some Words of Warning

2. DEFINITIONS AND TIMELINE

2.1

2.2

Malware Types
2.1.1
2.1.2
2.1.3
2.1.4
2.1.5
2.1.6
2.1.7
2.1.8
2.1.9

Logic Bomb
Trojan Horse
Back Door
Virus
Worm
Rabbit
Spyware
Adware
Hybrids, Droppers, and Blended Threats

2.1.10 Zombies

Naming

V

xi
XV

1

1

2

3

4

5

6

7

7

11

11
12
12
13
14
15
16
16
17
17
18

19

2.3
2.4

Authorship
TimeUne

3. VIRUSES

3.1

3.2

3.3

Classification by Target
3.1.1 Boot-Sector Infectors
3.1.2 File Infectors
3.1.3 Macro Viruses

Classification by Concealment Strategy
3.2.1 No Concealment
3.2.2 Encryption
3.2.3 Stealth
3.2.4 Oligomorphism
3.2.5 Polymorphism
3.2.6 Metamorphism
3.2.7 Strong Encryption

Virus Kits

viii COMPUTER VIRUSES AND MALWARE

21

22

27

28

28

30

33

34

34

35

37

38

38

46

47

48

ANTI-VIRUS TECHNIQUES 53

4.1 Detection: Static Methods 55
4.1.1 Scanners 55
4.1.2 Static Heuristics 69
4.1.3 Integrity Checkers 70

4.2 Detection: Dynamic Methods 71
4.2.1 Behavior Monitors/Blockers 71
4.2.2 Emulation 74

4.3 Comparison of Anti-Virus Detection Techniques 79

4.4 Verification, Quarantine, and Disinfection 80
4.4.1 Verification 81
4.4.2 Quarantine 82
4.4.3 Disinfection 82

4.5 Virus Databases and Virus Description Languages 85

4.6 Short Subjects 88
4.6.1 Anti-Stealth Techniques 88
4.6.2 Macro Virus Detection 89
4.6.3 Compiler Optimization 90

Contents ix

5. ANTI-ANTI-VIRUS TECHNIQUES 97

5.1 Retroviruses 97

5.2 Entry Point Obfuscation 99

5.3 Anti-Emulation 99
5.3.1 Outlast 99
5.3.2 Outsmart 100
5.3.3 Overextend 100

5.4 Armoring 101
5.4.1 Anti-Debugging 101
5.4.2 Anti-Disassembly 103

5.5 Tunneling 105

5.6 Integrity Checker Attacks 106

5.7 Avoidance 106

6. WEAKNESSES EXPLOITED 109

6.1 Technical Weaknesses 109
6.1.1 Background 110
6.1.2 Buffer Overflows 113
6.1.3 Integer Overflows 123
6.1.4 Format String Vulnerabilities 125
6.1.5 Defenses 127
6.1.6 Finding Weaknesses 132

6.2 Human Weaknesses 134
6.2.1 Virus Hoaxes 136

7. WORMS 143

7.1 Worm History 144
7.1.1 Xerox PARC, c. 1982 144
7.1.2 The Internet Worm, November 1988 145

7.2 Propagation 148
7.2.1 Initial Seeding 149
7.2.2 Finding Targets 150

8. DEWORMING 157

8.1 Defense 158
8.1.1 User 158
8.1.2 Host 158
8.1.3 Perimeter 163

8.2 Capture and Containment 167

X COMPUTER VIRUSES AND MALWARE

8.2.1 Honeypots 168
8.2.2 Reverse Firewalls 169
8.2.3 Throttling 170

8.3 Automatic Countermeasures 172

9. "APPLICATIONS" 177

9.1 Benevolent Malware 177

9.2 Spam 178

9.3 Access-for-Sale Worms 179

9.4 Cryptovirology 181

9.5 Information Warfare 182

9.6 Cyberterrorism 185

10. PEOPLE AND COMMUNITIES 189

10.1 Malware Authors 189
10.1.1 Who? 189
10.1.2 Why? 190

10.2 The Anti-Virus Community 191
10.2.1 Perceptions 192
10.2.2 Another Day in Paradise 192
10.2.3 Customer Demands 194
10.2.4 Engineering 195
10.2.5 Open Questions 196

11. WHAT SHOULD WE DO? 201

References 205

Index 223

List of Figures

1.1 Worm propagation curve 5
1.2 Ideal propagation curves for attackers and defenders 5
2.1 VGrep operation 20
2.2 Timeline of events 22
3.1 Multiple boot sector infections 29
3.2 Prepending virus 31
3.3 Appending virus 31
3.4 Concept in action 34
3.5 Encrypted virus pseudocode 35
3.6 Fun with NTFS alternate data streams 39
3.7 Virus kit 49
3.8 Virus kit, the next generation 49
4.1 Virus detection outcomes 54
4.2 Aho-Corasick finite automaton and failure function 56
4.3 Aho-Corasick in operation 57
4.4 Trie building 58
4.5 Trie labeling 59
4.6 Pattern substring selection for Veldman's algorithm 61
4.7 Data structures for Veldman's algorithm 62
4.8 Wu-Manber hash tables 63
4.9 Wu-Manber searching 63
4.10 The EICAR test file 65
4.11 Static vs. dynamic 72
4.12 From execution trace to dynamic signatures 73
4.13 Herding goats 77

xii COMPUTER VIRUSES AND MALWARE

4.14 Disinfection using checksums 84

4.15 Problem with unencrypted virus databases 86

4.16 Example virus descriptions 88
5.1 Checking for single-stepping 102

5.2 False disassembly 103

5.3 Anti-disassembly using strong cryptographic hash functions 104

5.4 On-demand code decryption 105

6.1 Conceptual memory layout 110

6.2 Sample segment allocation 111

6.3 Stack frame trace 112
6.4 Before and after a subroutine call 113
6.5 Code awaiting a stack smash 114

6.6 Stack smashing attack 115

6.7 Environmentally-friendly stack smashing 116
6.8 Code that goes just a little too far 117
6.9 Frame pointer overwrite attack 118
6.10 A normal function call with arguments 119
6.11 Return-to-library attack, with arguments 120
6.12 Overflowing the heap onto bookkeeping information 121
6.13 Dynamic memory allocator's free list 121

6.14 Normal free list unlinking 122
6.15 Attacked free list unlinking 123

6.16 Code with an integer overflow problem 124
6.17 Stack layout for calling a format function 126

6.18 Code with a format string vulnerability 127

6.19 Format string attack in progress 128

6.20 Canary placement 130

6.21 "It Takes Guts to Say 'Jesus'" virus hoax 136
6.22 "jdbgmgr.exe" virus hoax 137
7.1 A conversation with sendmail 146
7.2 Finger output 146
7.3 TCP connection establishment 148
7.4 IP address partitioning 150
7.5 Permutation scanning 152

8.1 An example network 157
8.2 Rate of patching over time 159

List of Figures xiii

8.3 Signatures in network traffic 165
8.4 Traffic accepted by an IDS and a host 166
8.5 TTL attack on an IDS 167
8.6 Network traffic throttling 171
9.1 Organized crime and access-for-sale worms 180
9.2 Disorganized crime and access-for-sale worms 180
10.1 Malware analysis workflow 193
10.2 In the zoo vs. in the wild 195

Preface

It seemed like a good idea at the time. In 2003,1 started teaching a course
on computer viruses and malicious software to senior undergraduate and grad­
uate students at the University of Calgary. It's been an interesting few years.
Computer viruses are a controversial and taboo topic, despite having such a
huge impact on our society; needless to say, there was some backlash about this
course from outside the University.

One of my initial practical concerns was whether or not I could find enough
detailed material to teach a 13-week course at this level. There were some
books on the topic, but (with all due respect to the authors of those books) there
were none that were suitable for use as a textbook.

I was more surprised to find out that there was a lot of information about
viruses and doing "bad" things, but there was very little information about anti­
virus software. A few quality minutes with your favorite web search engine will
yield virus writing tutorials, virus source code, and virus creation toolkits. In
contrast, although it's comprised of some extremely nice people, the anti-virus
community tends to be very industry-driven and insular, and isn't in the habit
of giving out its secrets. Unless you know where to look.

Several years, a shelf full of books, and a foot-high stack of printouts later,
I've ferreted out a lot of detailed material which I've assembled in this book.
It's a strange type of research for a computer scientist, and I'm sure that my
academic colleagues would cringe at some of the sources that I've had to use.
Virus writers don't tend to publish in peer-reviewed academic journals, and
anti-virus companies don't want to tip their hand. I would tend to characterize
this detective work more like historical research than standard computer science
research: your sources are limited, so you try and authenticate them; you piece
a sentence in one document together with a sentence in another document, and
you're able to make a useful connection. It's painstaking and often frustrating.

Technical information goes out of date very quickly, and in writing this book
I've tried to focus on the concepts more than details. My hope is that the

Xvi COMP UTER VIRUSES AND MALWARE

concepts will still be useful years from now, long after the minute details of
operating systems and programming languages have changed. Having said that,
I've included detail where it's absolutely necessary to explain what's going on,
and used specific examples of viruses and malicious software where it's useful to
establish precedents for certain techniques. Depending on why you're reading
this, a book with more concrete details might be a good complement to this
material.

Similarly, if you're using this as a textbook, I would suggest supplement­
ing it with details of the latest and greatest malicious software that's making
the rounds. Unfortunately there will be plenty of examples to choose from.
In my virus course, I also have a large segment devoted to the law and ethics
surrounding malicious software, which I haven't incorporated here - law is con­
stantly changing and being reinterpreted, and there are already many excellent
sources on ethics. Law and ethics are very important topics for any computer
professional, but they are especially critical for creating a secure environment
in which to work with malicious software.

I should point out that I've only used information from public sources to
write this book. I've deliberately excluded any information that's been told to
me in private conversations, and I'm not revealing anyone's trade secrets that
they haven't already given away themselves.

I'd like to thank the students I've taught in my virus course, who pushed me
with their excellent questions, and showed much patience as I was organizing
all this material into some semi-coherent form. Thanks too to those in the anti­
virus community who kept an open mind. I'd also like to thank the people who
read drafts of this book: Jorg Denzinger, Richard Ford, Sarah Gordon, Shannon
Jaeger, Cliff Marcellus, Jim Uhl, James Wolfe, and Mike Zastre. Their sugges­
tions and comments helped improve the book as well as encourage me. Finally,
Alan Aycock suggested some references for Chapter 10, Stefania Bertazzon
answered my questions about rational economics, Moustafa Hammad provided
an Arabic translation, and Maryam Mehri Dehnavi translated some Persian text
for me. Of course, any errors that remain are my own.

JOHN AYCOCK

Chapter 1

WE'VE GOT PROBLEMS

In ancient times, people's needs were simple: food, water, shelter, and the
occasional chance to propagate the species. Our basic needs haven't changed,
but the way we fulfill them has. Food is bought in stores which are fed by
supply chains with computerized inventory systems; water is dispensed through
computer-controlled water systems; parts for new shelters come from suppliers
with computer-ridden supply chains, and old shelters are bought and sold by
computer-wielding realtors. The production and transmission of energy to run
all of these systems is controlled by computer, and computers manage financial
transactions to pay for it all.

It's no secret that our society's infrastructure relies on computers now. Un­
fortunately, this means that a threat to computers is a threat to society. But how
do we protect our critical infrastructure? What are the problems it faces?

1.1 Dramatis Personae
There are four key threats to consider. These are the four horsemen of the

electronic apocalypse: spam, bugs, denials of service, and malicious software.

Spam The term commonly used to describe the abundance of unsolicited bulk
email which plagues the mailboxes of Internet users worldwide. The statis­
tics vary over time, but suggest that over 70% of email traffic currently falls
into this category.^

Bugs These are software errors which, when they crop up, can kill off your soft­
ware immediately, if you're lucky. They can also result in data corruption,
security weaknesses, and spurious, hard-to-find problems.

Denials of service Denial-of-service attacks, or DoS attacks,^ starve legiti­
mate usage of resources or services. For example, a DoS attack could use

2 COMPUTER VIRUSES AND MALWARE

up all available disk space on a system, so that other users couldn't make use
of it; generating reams of network traffic so that real traffic can't get through
would also be a denial of service. Simple DoS attacks are relatively easy
to mount by simply overwhelming a machine with requests, as a toddler
might overwhelm their parents with questions. Sophisticated DoS attacks
can involve more finesse, and may trick a machine into shutting a service
down instead of flooding it.

Malicious softM âre The real war is waged with malicious software, or mal-
ware. This is software whose intent is malicious, or whose effect is mali­
cious. The spectrum of malware covers a wide variety of specific threats,
including viruses, worms, Trojan horses, and spyware.

The focus of this book is malware, and the techniques which can be used to
detect, detain, and destroy it. This is not accidental. Of the four threats listed
above, malware has the deepest connection to the other three. Malware may be
propagated using spam, and may also be used to send spam; malware may take
advantage of bugs; malware may be used to mount DoS attacks. Addressing
the problem of malware is vital for improving computer security. Computer
security is vital to our society's critical infrastructure.

1.2 The Myth of Absolute Security
Obviously we want our computers to be secure against threats. Unfortu­

nately, there is no such thing as absolute security, where a computer is either
secure or it's not. You may take a great deal of technical precautions to safe­
guard your computers, but your protection is unlikely to be effective against
a determined attacker with sufficient resources. A government-funded spy
agency could likely penetrate your security, should they be motivated to do
so. Someone could drive a truck through the wall of your building and steal
your computers. Old-fashioned ways are effective, too: there are many ways
of coercing people into divulging information.^

Even though there is no absolute computer security, relative computer secu­
rity can be considered based on six factors:

• What is the importance of the information or resource being protected?

• What is the potential impact, if the security is breached?

• Who is the attacker likely to be?

• What are the skills and resources available to an attacker?

• What constraints are imposed by legitimate usage?

• What resources are available to implement security?

We \e Got Problems 3

Breaking down security in this way changes the problem. Security is no
longer a binary matter of secure or not-secure; it becomes a problem of risk
management,"^ and implementing security can be seen as making tradeoffs be­
tween the level of protection, the usability of the resulting system, and the cost
of implementation.

When you assess risks for risk management, you must consider the risks
posed to you by others, and consider the risks posed to others by you. Everybody
is your neighbor on the Internet, and it isn't farfetched to think that you could be
found negligent if you had insufficient computer security, and your computers
were used to attack another site.̂ ^^

1.3 TheCostofMalware
Malware unquestionably has a negative financial impact, but how big an

impact does it really have?^^^ It's important to know, because if computer
security is to be treated as risk management, then you have to accurately assess
how much damage a lapse in security could cause.

At first glance, gauging the cost of malware incidents would seem to be easy.
After all, there are any number of figures reported on this, figures attributed to
experts. They can vary from one another by an order of magnitude, so if you
disagree with one number, you can locate another more to your liking. I use
the gross domestic product of Austria, myself - it's a fairly large number, and
it's as accurate an estimate as any other.

In all fairness, estimating malware cost is a very hard problem. There are
two types of costs to consider: real costs and hidden costs.

Real costs These are costs which are apparent, and which are relatively easy
to calculate. If a computer virus reduced your computer to a bubbling
puddle of molten slag,^ the cost to replace it would be straightforward to
assess. Similarly, if an employee can't work because their computer is
having malware removed from it, then the employee's lost productivity can
be computed. The time that technical support staff spend tracking down
and fixing affected computers can also be computed. Not all costs are so
obvious, however.

Hidden costs Hidden costs are costs whose impact can't be measured accu­
rately, and may not even be known. Some businesses, like banks and com­
puter security companies, could suffer damage to their reputation from a
publicized malware incident. Regardless of the business, a leak of pro­
prietary information or customer data caused by malware could result in
enormous damage to a company, no different than industrial espionage.
Any downtime could drive existing customers to a competitor, or turn away
new, potential customers.

4 COMPUTER VIRUSES AND MALWARE

This has been cast in terms of business, but malware presents a cost to
individuals, too. Personal information stolen by malware from a computer,
such as passwords, credit card numbers, and banking information, can give
thieves enough for that tropical vacation they've always dreamed of, or provide
a good foundation for identity theft.

lA The Number of Threats
Even the exact number of threats is open to debate. A quick survey of

competing anti-virus products shows that the number of threats they claim to
detect can vary by as much as a factor of two. Curiously, the level of protection
each affords is about the same, meaning that more is not necessarily better.

Why? There is no industry-wide agreement on what constitutes a "threat,"
to begin with. It's not surprising, given that fact alone, that different anti-virus
products would have different numbers - they aren't all counting the same thing.
For example, there is some dispute as to whether or not automatically-generated
viruses produced by the same tool should be treated as individual threats, or
as only one threat. This came to the fore in 1998, when approximately 15,000
new automatically-generated viruses appeared overnight. ̂ ^̂ It is also difficult
to amass and correctly maintain a malware collection, ̂ ^̂ and inadvertent du­
plication or misclassification of malware samples is always a possibility. There
is no single clearinghouse for malware.

Another consideration is that the reported numbers are only for threats that
are known about. Ideally, computers should be protected from both known and
unknown threats. It's impossible to know about unknown threats, of course,
which means that it's impossible to precisely assess how well-protected your
computers are against threats.

Different anti-virus products may employ different detection techniques, too.
Not all methods of detection rely on exhaustive compilations of known threats,
and generic detection techniques routinely find both known and unknown threats
without knowing the exact nature of what they're detecting.

Even for known threats, not all may endanger your computers. The majority
of malware is targeted to some specific combination of computer architecture
and operating system, and sometimes even to a particular application. Effec­
tively these act as preconditions for a piece of malware to run; if any of these
conditions aren't true - for instance, you use a different operating system -
then that malware poses no direct threat to you. It is inert with respect to your
computers.

Even if it can't run, malware may carry an indirect liability risk if it passes
through your computers from one target to another. For example, one unaffected
computer could provide a shared directory; someone else's compromised com­
puter could deposit malware in that shared directory for later propagation. It is
prudent to look for threats to all computers, not just to your own.

^e 've Got Problems

compromised
machines

time

Figure LI. Worm propagation curve

1.5 Speed of Propagation
Once upon a time, the speed of malware propagation was measured in terms

of weeks or even months. This is no longer the case.
A typical worm propagation curve is shown in Figure 1.1. (For simplicity,

the effects on the curve from defensive measures aren't shown.) At first, the
worm spreads slowly to vulnerable machines, but eventually begins a period
of exponential growth when it spreads extremely rapidly. Finally, once the
majority of vulnerable machines have been compromised, the worm reaches a
saturation point; any further growth beyond this point is minimal.

For a worm to spread more quickly, the propagation curve needs to be moved
to the left. In other words, the worm author wants the period of exponential
growth to occur earlier, preferably before any defenses have been deployed.
This is shown in Figure 1.2a.

^ compromised
maciiines

; i

w 1

jr,\
a) attacker ideal

time

Figure 1.2. Ideal propagation curves for attackers and defenders

6 COMPUTER VIRUSES AND MALWARE

On the other hand, a defender wants to do one of two things. First, the
propagation curve could be pushed to the right, buying time to construct a
defense before the worm's exponential growth period. Second, the curve could
be compressed downwards, meaning that not all vulnerable machines become
compromised by the worm. These scenarios are shown in Figure 1.2b.

The time axis on these figures has been deliberately left unlabeled, because
the exact propagation rate will depend on the techniques that a particular worm
uses. However, the theoretical maximum speed of a carefully-designed worm
from initial release until saturation is startling: 510 milliseconds to 1.3 seconds.^
In less than two seconds, it's over. No defense that relies on any form of human
intervention will be fast enough to cope with threats like this.

1,6 People

Humans are the weak link on several other fronts too, all of which are taken
advantage of by malware.

By their nature, humans are trusting, social creatures. These are excellent
qualities for your friends to have, and also for your victims to possess: an entire
class of attacks, called social engineering attacks, are quick to exploit these
desirable human qualities.

Social engineering aside, many people simply aren't aware of the security
consequences of their actions. For example, several informal surveys of people
on the street have found them more than willing to provide enough information
for identity theft (even offering up their passwords) in exchange for chocolate,
theater tickets, and coffee vouchers. ̂ ^̂

Another problem is that humans - users - don't demand enough of software
vendors in terms of secure software. Even for security-savvy users who want
secure software, the security of any given piece of software is nearly impossible
to assess.

Secure software is software which can't be exploited by an attacker. Just
because some software hasn't been compromised is no indication that it's secure
- like the stock market, past performance is no guarantee of future results.
Unfortunately, that's really the only guideline users have to judge security: the
absence of an attack. Software security is thus an anti-feature for vendors,
because it's intangible. It's no wonder that vendors opt to add features rather
than improve security. Features are easier to sell.

Features are also easier to buy. Humans are naturally wooed by new fea­
tures, which forms a vicious cycle that gives software vendors little incentive
to improve software security.

Wfe \e Got Problems 7

1.7 About this Book

Malware poses an enormous problem in the context of faulty humans and
faulty software security. It could be that malware is the natural consequence of
the presence of these faults, like vermin slipping through building cracks in the
real world. Indeed, names like "computer virus" and "computer worm" bring
to mind their biological real-world counterparts.

Whatever the root cause, malware is a problem that needs to be solved. This
book looks at malware, primarily viruses and worms, and its countermeasures.
The next chapter lays the groundwork with some basic definitions and a timeline
of malware. Then, on to viruses: Chapters 3, 4, and 5 cover viruses, anti-virus
techniques, and anti-anti-virus techniques, in that order. Chapter 6 explains the
weaknesses that are exploited by malware, both technical and social - this is
necessary background for the worms in Chapter 7. Defenses against worms are
considered in Chapter 8. Some of the possible manifestations of malware are
looked at in Chapter 9, followed by a look at the people who create malware
and defend against it in Chapter 10. Some final thoughts on defense are in
Chapter 11.

The convention used for chapter endnotes is somewhat unusual. The notes
tend to fall into two categories. First, there are notes with additional content
related to the text. These have endnote numbers from 1-99 within a chapter.
Second, there are endnotes that provide citations and pointers to related material.
This kind of endnote is numbered 100 or above. The intent is to make the two
categories of endnote easily distinguishable in the text.

A lot of statements in this book are qualified with "can" and "could" and
"may" and "might." Software is infinitely malleable and can be made to do
almost anything; it is hubris to make bold statements about what malware can
and can't do.

Finally, this is not a programming book, and some knowledge of program­
ming (in both high- and low-level languages) is assumed, although pseudocode
is used where possible. A reasonable understanding of operating systems and
networks is also beneficial.

1.8 Some Words of Warning

Self-replicating software like viruses and worms has proven itself to be
very difficult to control, even from the very earliest experiments.^ While self-
replicating code may not intentionally be malicious, it can have similar effects
regardless. Of course, the risks of overtly malicious software should be obvi­
ous. Any experiments with malware, or analysis of malware, should be done in
a secure environment designed specifically for that purpose. While it's outside
the scope of this book to describe such a secure environment - the details would

8 COMPUTER VIRUSES AND MALWARE

be quickly out of date anyway - there are a number of sources of information
available. ̂ ^̂

Another thing to consider is that creation and/or distribution of malware may
violate local laws. Many countries have computer crime legislation now,̂ and
even if the law was violated in a different jurisdiction from where the perpetrator
is physically located, extradition agreements may apply. ̂ ^̂ Civil remedies for
victims of malware are possible as well.

Ironically, some dangers lurk in defensive techniques too. Some of the ma­
terial in this book is derived from patent documents; the intent is to provide a
wide range of information, and is not in any way meant to suggest that these
patents should be infringed. While every effort has been made to cite relevant
patents, it is possible that some have been inadvertently overlooked. Further­
more, patents may be interpreted very broadly, and the applicability of a patent
may depend greatly on the skill and financial resources of the patent holder's
legal team. Seek legal advice before rushing off to implement any of the tech­
niques described in this book.

We \e Got Problems 9

Notes for Chapter 1
1 Based on MessageLabs' sample size of 12.6 billion email messages [203].

This has a higher statistical significance than 99% of statistics you would
normally find.

2 Note the capitalization - "DOS" is an operating system, "DoS" is an attack.
3 In cryptography, this has been referred to as "rubber-hose" cryptanaly-

sis [279].
4 Schneier has argued this point of view, and that computer security is an un­

tapped market for insurance companies, who are in the business of managing
risk anyway [280].

5 Before any urban legends are started, computer viruses can't do this.
6 These numbers (510 ms for UDP-based worms, 1.3 s for TCP-based worms)

are the time it takes to achieve 95% saturation of a million vulnerable ma­
chines [303].

7 For example, Cohen's first viruses progressed surprisingly quickly [74], as
did Duff's shell script virus [95], and an early worm at Xerox ran amok [287].

8 Computer crime laws are not strictly necessary for prosecuting computer
crimes that are just electronic versions of "traditional" crimes like fraud [56],
but the trend is definitely to enact computer-specific laws.

100 Owens [237] discusses liability potential in great detail.
101 This section is based on Garfink and Landesman [117], and Ducklin [94]

touches on some of the same issues too.
102 Morley [213]. Ducklin [94] has a discussion of this issue, and of other

ways to measure the extent of the virus problem.
103 Bontchev [39] talks about the care and feeding of a "clean" virus library.
104 The informal surveys were reported in [30] (chocolate), [31, 274] (theater

tickets), and [184] (coffee vouchers). Less amusing, but more rigorous,
surveys have been done which show similar problems [270, 305].

105 There are a wide range of opinions on working with malware, ranging from
the inadequate to the paranoid. As a starting point, see [21, 75, 187, 282,
288,312].

106 Although U.S.-centric. Soma et al. [295] give a good overview of the
general features of extradition treaties.

Chapter 2

DEFINITIONS AND TIMELINE

It would be nice to present a clever taxonomy of malicious software, one that
clearly shows how each type of malware relates to every other type. However,
a taxonomy would give the quaint and totally incorrect impression that there is
a scientific basis for the classification of malware.

In fact, there is no universally-accepted definition of terms like "virus" and
"worm," much less an agreed-upon taxonomy, even though there have been oc­
casional attempts to impose mathematical formalisms onto malware. ̂ ^̂ Instead
of trying to pin down these terms precisely, the common characteristics each
type of malware typically has are listed.

2.1 Malware Types
Malware can be roughly broken down into types according to the malware's

method of operation. Anti-"virus" software, despite its name, is able to detect
all of these types of malware.

There are three characteristics associated with these malware types.

1 Self-replicating malware actively attempts to propagate by creating new
copies, or instances, of itself. Malware may also be propagated passively,
by a user copying it accidentally, for example, but this isn't self-replication.

2 The population growth of malware describes the overall change in the num­
ber of malware instances due to self-replication. Malware that doesn't self-
replicate will always have a zero population growth, but malware with a
zero population growth may self-replicate.

3 Parasitic malware requires some other executable code in order to exist.
"Executable" in this context should be taken very broadly to include any­
thing that can be executed, such as boot block code on a disk, binary code

12 COMPUTER VIRUSES AND MALWARE

in applications, and interpreted code. It also includes source code, like ap­
plication scripting languages, and code that may require compilation before
being executed.

2.1.1 Logic Bomb
Self-replicating: no
Population growth: zero
Parasitic: possibly

A logic bomb is code which consists of two parts:

1 A pay load, which is an action to perform. The payload can be anything, but
has the connotation of having a malicious effect.

2 A trigger, a boolean condition that is evaluated and controls when the pay-
load is executed. The exact trigger condition is limited only by the imagi­
nation, and could be based on local conditions like the date, the user logged
in, or the operating system version. Triggers could also be designed to be
set off remotely, or - like the "dead man's switch" on a train - be set off by
the absence of an event.

Logic bombs can be inserted into existing code, or could be standalone. A sim­
ple parasitic example is shown below, with a payload that crashes the computer
using a particular date as a trigger.

legitimate code
if date is Friday the 13th:

crash^computerO
legitimate code

Logic bombs can be concise and unobtrusive, especially in millions of lines
of source code, and the mere threat of a logic bomb could easily be used to
extort money from a company. In one case, a disgruntled employee rigged a
logic bomb on his employer's file server to trigger on a date after he was fired
from his job, causing files to be deleted with no possibility of recovery. He
was later sentenced to 41 months in prison.̂ ^^ Another case alleges that an
employee installed a logic bomb on 1000 company computers, date-triggered
to remove all the files on those machines; the person allegedly tried to profit
from the downturn in the company's stock prices that occurred as a result of the
damage.^

2.1.2 Trojan Horse
Self-replicating: no
Population growth: zero
Parasitic: yes

Definitions and Timeline 13

There was no love lost between the Greeks and the Trojans. The Greeks had
besieged the Trojans, holed up in the city of Troy, for ten years. They finally
took the city by using a clever ploy: the Greeks built an enormous wooden horse,
concealing soldiers inside, and tricked the Trojans into bringing the horse into
Troy. When night fell, the soldiers exited the horse and much unpleasantness
ensued. ̂ ^̂

In computing, a Trojan horse is a program which purports to do some benign
task, but secretly performs some additional malicious task. A classic example is
a password-grabbing login program which prints authentic-looking "username"
and "password" prompts, and waits for a user to type in the information. When
this happens, the password grabber stashes the information away for its creator,
then prints out an "invalid password" message before running the real login
program. The unsuspecting user thinks they made a typing mistake and re­
enters the information, none the wiser.

Trojan horses have been known about since at least 1972, when they were
mentioned in a well-known report by Anderson, who credited the idea to D. J.
Edwards. ̂ -̂̂

2.1.3 Back Door
Self-replicating: no
Population growth: zero
Parasitic: possibly

A back door is any mechanism which bypasses a normal security check. Pro­
grammers sometimes create back doors for legitimate reasons, such as skipping
a time-consuming authentication process when debugging a network server.

As with logic bombs, back doors can be placed into legitimate code or be
standalone programs. The example back door below, shown in gray, circum­
vents a login authentication process.

username = read_username()
password = read_password()
if tisername i s "133t h4ck0r":

r e tu rn ALLOW L̂OGIN
if username and password are va l id :

re tu rn ALLOW_LOGIN
e l s e :

re tu rn DENŶ LOGIN

One special kind of back door is a RAT, which stands for Remote Administra­
tion Tool or Remote Access Trojan, depending on who's asked. These programs
allow a computer to be monitored and controlled remotely; users may deliber­
ately install these to access a work computer from home, or to allow help desk

14 COMPUTER VIRUSES AND MALWARE

staff to diagnose and fix a computer problem from afar. However, if malware
surreptitiously installs a RAT on a computer, then it opens up a back door into
that machine.

2.1.4 Virus
Self-replicating: yes
Population growth: positive
Parasitic: yes

A virus is malware that, when executed, tries to replicate itself into other exe­
cutable code; when it succeeds, the code is said to be infected? The infected
code, when run, can infect new code in turn. This self-replication into existing
executable code is the key defining characteristic of a virus.

When faced with more than one virus to describe, a rather silly problem
arises. There's no agreement on the plural form of "virus." The two leading
contenders are "viruses" and "virii;" the latter form is often used by virus writers
themselves, but it's rare to see this used in the security community, who prefer
"viruses."^^^

If viruses sound like something straight out of science fiction, there's a reason
for that. They are. The early history of viruses is admittedly fairly murky, but
the first mention of a computer virus is in science fiction in the early 1970s,
with Gregory Benford's The Scarred Man in 1970, and David Gerrold's When
Harlie Was One in 1972.̂ ^^ Both stories also mention a program which acts to
counter the virus, so this is the first mention of anti-virus software as well.

The earliest real academic research on viruses was done by Fred Cohen in
1983, with the "virus" name coined by Len Adleman.^^^ Cohen is sometimes
called the "father of computer viruses," but it turns out that there were viruses
written prior to his work. Rich Skrenta's Elk Cloner was circulating in 1982, and
Joe Dellinger's viruses were developed between 1981-1983; all of these were
for the Apple II platform.̂ ^^ Some sources mention a 1980 glitch in Arpanet
as the first virus, but this was just a case of legitimate code acting badly; the
only thing being propagated was data in network packets. ̂ ^̂ Gregory Benford's
viruses were not limited to his science fiction stories; he wrote and released non-
malicious viruses in 1969 at what is now the Lawrence Livermore National
Laboratory, as well as in the early Arpanet.

Some computer games have featured self-replicating programs attacking one
another in a controlled environment. Core War appeared in 1984, where pro­
grams written in a simple assembly language called Redcode fought one an­
other; a combatant was assumed to be destroyed if its program counter pointed
to an invalid Redcode instruction. Programs in Core War existed only in a
virtual machine, but this was not the case for an earlier game, Darwin. Darwin
was played in 1961, where a program could hunt and destroy another combat-

Definitions and Timeline 15

ant in a non-virtual environment using a well-defined interface. ̂ ^̂ In terms of
strategy, successful combatants in these games were hard-to-find, innovative,
and adaptive, qualities that can be used by computer viruses too.-̂

Traditionally, viruses can propagate within a single computer, or may travel
from one computer to another using human-transported media, like a floppy
disk, CD-ROM, DVD-ROM, or USB flash drive. In other words, viruses don't
propagate via computer networks; networks are the domain of worms instead.
However, the label "virus" has been applied to malware that would traditionally
be considered a worm, and the term has been diluted in common usage to refer
to any sort of self-replicating malware.

Viruses can be caught in various stages of self-replication. A germ is the
original form of a virus, prior to any replication. A virus which fails to replicate
is called an intended. This may occur as a result of bugs in the virus, or
encountering an unexpected version of an operating system. A virus can be
dormant, where it is present but not yet infecting anything - for example, a
Windows virus can reside on a Unix-based file server and have no effect there,
but can be exported to Windows machines."^

2.1,5 Worm
Self-replicating: yes
Population growth: positive
Parasitic: no

A worm shares several characteristics with a virus. The most important char­
acteristic is that worms are self-replicating too, but self-replication of a worm
is distinct in two ways. First, worms are standalone,^ and do not rely on other
executable code. Second, worms spread from machine to machine across net­
works.

Like viruses, the first worms were fictional. The term "worm" was first
used in 1975 by John Brunner in his science fiction novel The Shockwave
Rider, (Interestingly, he used the term "vims" in the book too.)^ Experiments
with worms performing (non-malicious) distributed computations were done
at Xerox PARC around 1980, but there were earlier examples. A worm called
Creeper crawled around the Arpanet in the 1970s, pursued by another called
Reaper which hunted and killed off Creepers.^

A watershed event for the Internet happened on November 2, 1988, when a
worm incapacitated the fledgling Internet. This worm is now called the Internet
worm, or the Morris worm after its creator, Robert Morris, Jr. At the time,
Morris had just started a Ph.D. at Cornell University. He had been intending for
his worm to propagate slowly and unobtrusively, but what happened was just
the opposite. Morris was later convicted for his worm's unauthorized computer

16 COMPUTER VIRUSES AND MALWARE

access and the costs incurred to clean up from it. He was fined, and sentenced
to probation and community service.^ Chapter 7 looks at this worm in detail.

2.1.6 Rabbit
Self-replicating: yes
Population growth: zero
Parasitic: no

Rabbit is the term used to describe malware that multiplies rapidly. Rabbits
may also be called bacteria, for largely the same reason.

There are actually two kinds of rabbit.^ ̂ ^ The first is a program which tries
to consume all of some system resource, like disk space. A "fork bomb," a
program which creates new processes in an infinite loop, is a classic example
of this kind of rabbit. These tend to leave painfully obvious trails pointing to
the perpetrator, and are not of particular interest.

The second kind of rabbit, which the characteristics above describe, is a
special case of a worm. This kind of rabbit is a standalone program which
replicates itself across a network from machine to machine, but deletes the
original copy of itself after replication. In other words, there is only one copy
of a given rabbit on a network; it just hops from one computer to another.^
Rabbits are rarely seen in practice.

2.1.7 Spyware
Self-replicating: no
Population growth: zero
Parasitic: no

Spyware is software which collects information from a computer and transmits
it to someone else. Prior to its emergence in recent years as a threat, the term
"spyware" was used in 1995 as part of a joke, and in a 1994 Usenet posting
looking for "spy-ware" information.̂ ^^

The exact information spyware gathers may vary, but can include anything
which potentially has value:

1 Usernames and passwords. These might be harvested from files on the
machine, or by recording what the user types using a key logger. A keylogger
differs from a Trojan horse in that a keylogger passively captures keystrokes
only; no active deception is involved.

2 Email addresses, which would have value to a spammer.

3 Bank account and credit card numbers.

4 Software license keys, to facilitate software pirating.

Definitions and Timeline 17

Viruses and worms may collect similar information, but are not considered
spy ware, because spy ware doesn't self-replicate. ̂ ^̂ Spy ware may arrive on a
machine in a variety of ways, such as bundled with other software that the user
installs, or exploiting technical flaws in web browsers. The latter method causes
the spyware to be installed simply by visiting a web page, and is sometimes
called a drive-by download.

2.1.8 Adware
Self-replicating: no
Population growth: zero
Parasitic: no

Adware has similarities to spyware in that both are gathering information about
the user and their habits. Adware is more marketing-focused, and may pop up
advertisements or redirect a user's web browser to certain web sites in the hopes
of making a sale. Some adware will attempt to target the advertisement to fit
the context of what the user is doing. For example, a search for "Calgary" may
result in an unsolicited pop-up advertisement for "books about Calgary."

Adware may also gather and transmit information about users which can be
used for marketing purposes. As with spyware, adware does not self-replicate.

2.1.9 Hybrids, Droppers, and Blended Threats
The exact type of malware encountered in practice is not necessarily easy

to determine, even given these loose definitions of malware types. The nature
of software makes it easy to create hybrid malware which has characteristics
belonging to several different types. ̂ ^

A classic hybrid example was presented by Ken Thompson in his ACM
Turing award lecture. ̂ ^ He prepared a special C compiler executable which,
besides compiling C code, had two additional features:

1 When compiling the login source code, his compiler would insert a back
door to bypass password authentication.

2 When compiling the compiler's source code, it would produce a special
compiler executable with these same two features.

His special compiler was thus a Trojan horse, which replicated like a virus, and
created back doors. This also demonstrated the vulnerability of the compiler
tool chain: since the original source code for the compiler and login programs
wasn't changed, none of this nefarious activity was apparent.

Another hybrid example was a game called Animal, which played twenty
questions with a user. John Walker modified it in 1975, so that it would copy the
most up-to-date version of itself into all user-accessible directories whenever it

18 COMPUTER VIRUSES AND MALWARE

was run. Eventually, Animals could be found roaming in every directory in the
system. ̂ ̂ ̂ The copying behavior was unknown to the game's user, so it would be
considered a Trojan horse. The copying could also be seen as self-replication,
and although it didn't infect other code, it didn't use a network either - not
really a worm, not really a virus, but certainly exhibiting viral behavior.

There are other combinations of malware too. For example, a dropper is
malware which leaves behind, or drops, other malware. ̂ ^ A worm can propagate
itself, depositing a Trojan horse on all computers it compromises; a virus can
leave a back door in its wake.

A blended threat is a virus that exploits a technical vulnerability to propagate
itself, in addition to exhibiting "traditional" characteristics. This has consider­
able overlap with the definition of a worm, especially since many worms ex­
ploit technical vulnerabilities. These technical vulnerabilities have historically
required precautions and defenses distinct from those that anti-virus vendors
provided, and this rift may account for the duplication in terms. ̂ "̂̂ The Internet
worm was a blended threat, according to this definition.

2.1.10 Zombies
Computers that have been compromised can be used by an attacker for a

variety of tasks, unbeknownst to the legitimate owner; computers used in this
way are called zombies. The most common tasks for zombies are sending spam
and participating in coordinated, large-scale denial-of-service attacks.

Sending spam violates the acceptable use policy of many Internet service
providers, not to mention violating laws in some jurisdictions. Sites known
to send spam are also blacklisted, marking sites that engage in spam-related
activity so that incoming email from them can be summarily rejected. It is
therefore ill-advised for spammers to send spam directly, in such a way that it
can be traced back to them and their machines. Zombies provide a windfall for
spammers, because they are a free, throwaway resource: spam can be relayed
through zombies, which obscures the spammer's trail, and a blacklisted zombie
machine presents no hardship to the spammer. ̂ -̂

As for denials of service, one type of denial-of-service attack involves either
flooding a victim's network with traffic, or overwhelming a legitimate service
on the victim's network with requests. Launching this kind of attack from a
single machine would be pointless, since one machine's onslaught is unlikely
to generate enough traffic to take out a large target site, and traffic from one
machine can be easily blocked by the intended victim. On the other hand, a
large number of zombies all targeting a site at the same time can cause grief.
A coordinated, network-based denial-of-service attack that is mounted from a
large number of machines is called a distributed denial-of-service attack, or
DDoS attack.

Definitions and Timeline 19

Networks of zombies need not be amassed by the person that uses them; the
use of zombie networks can be bought for a price. ̂ ^ Another issue is how to con­
trol zombie networks. One method involves zombies listening for commands
on Internet Relay Chat (IRC) channels, which provides a relatively anonymous,
scalable means of control. When this is used, the zombie networks are referred
to as botnets, named after automated IRC client programs called bots}^

2,2 Naming
When a new piece of malware is spreading, the top priority of anti-virus

companies is to provide an effective defense, quickly. Coming up with a catchy
name for the malware is a secondary concern.

Typically the primary, human-readable name of a piece of malware is decided
by the anti-virus researcher^^ who first analyzes the malware.^^^ Names are
often based on unique characteristics that malware has, either some feature of
its code or some effect that it has. For example, a virus' name may be derived
from some distinctive string that is found inside it, like "Your PC i s now
Stoned !"^^ Virus writers, knowing this, may leave such clues deliberately in
the hopes that their creation is given a particular name. Anti-virus researchers,
knowing this, will ignore obvious naming clues so as not to play into the virus
writer's hand. ̂ ^

There is no central naming authority for malware, and the result is that a
piece of malware will often have several different names. Needless to say, this
is confusing for users of anti-virus software, trying to reconcile names heard in
alerts and media reports with the names used by their own anti-virus software.
To compound the problem, some sites use anti-virus software from multiple
different vendors, each of whom may have different names for the same, piece
of malware. ̂ ^ Common naming would benefit anti-virus researchers talking to
one another too.^^

Unfortunately, there isn't likely to be any central naming authority in the
near future, for two reasons.^^ First, the current speed of malware propagation
precludes checking with a central authority in a timely manner.̂ ^ Second, it
isn't always clear what would need to be checked, since one distinct piece of
malware may manifest itself in a practically infinite number of ways.

Recommendations for malware naming do exist, but in practice are not usu­
ally foUowed,̂ -̂ and anti-virus vendors maintain their own separately-named
databases of malware that they have detected. It would, in theory, be possible
to manually map malware names between vendors using the information in
these databases, but this would be a tedious and error-prone task.

A tool called VGrep automates this process of mapping names.^^^ First, a
machine is populated with the malware of interest. Then, as shown in Figure 2.1,
each anti-virus product examines each file on the machine, and outputs what (if
any) malware it detects. VGrep gathers all this anti-virus output and collates

20 COMPUTER VIRUSES AND MALWARE

infected.exe

llillH^^

llĴ ^̂

iiiii^^^

^
"W

^
w

^
w

Foo.D

Bar.D

-..

Foo.D

illllil Foo.D
Bar.D

database

Figure 2.1. VGrep operation

it for later searching. The real technical challenge is not collating the data,
but simply getting usable, consistent output from a wide range of anti-virus
products.

The naming problem and the need for tools like VGrep can be demonstrated
using an example. Using VGrep and cross-referencing vendor's virus databases,
the partial list of names below for the same worm can be found.̂ ^

Bagle.C
Email-worm.Win32.Bagle.c
W32/Bagle.c@MM
W32.Beagle.C@mm
WORM_BAGLE.C
Worm.Bagle.A3

These results highlight some of the key identifiers used for naming malware: ̂ ̂ ^

Malware type. This is the type of the threat which, for this example, is a worm.

Platform specifier. The environment in which the malware runs; this worm
needs the Windows 32-bit operating system API C'W32" and "Win32").^^
More generally, the platform specifier could be any execution environment,
such as an application's programming language (e.g., "VBS" for "Visual
Basic Script"), or may even need to specify a combination of hardware and
software platform.

Family name. The family name is the "human-readable" name of the malware
that is usually chosen by the anti-virus researcher performing the analysis.
This example shows several different, but obviously related, names. The
relationship is not always obvious: "Nachi" and "Welchia" are the same
worm, for instance.

Definitions and Timeline 21

Variant. Not unlike legitimate software, a piece of malware tends to be re­
leased multiple times with minor changes.^^ This change is referred to as
the malware's variant or, following the biological analogy, the strain of the
malware.

Variants are usually assigned letters in increasing order of discovery, so
this "C" variant is the third B[e]agle found. Particularly persistent families
with many variants will have multiple letters, as "Z" gives way to "AA."
Unfortunately, this is not unusual - some malware has dozens of variants.^^

ModiJRers. Modifiers supply additional information about the malware, such
as its primary means of propagation. For example, "mm" stands for "mass
mailing."

The results also highlight the fact that not all vendors supply all these identifiers
for every piece of malware, that there is no common agreement on the specific
identifiers used, and that there is no common syntax used for names.

Besides VGrep, there are online services where a suspect file can be uploaded
and examined by multiple anti-virus products. Output from a service like this
also illustrates the variety in malware naming :̂ ^

Worm/Mydoom.BC Win32:Mytob-D I-Worm/Mydoom
Win32.Worm.Mytob.C Worm.Mytob.C Win32.HLLM.MyDoom.22
W32/Mytob.D@mm W32/Mytob.C-mm Net-Worm.Win32.Mytob.c
Win32/Mytob.D Mytob.D

Ultimately, however, the biggest concern is that the malware is detected and
eliminated, not what it's called.

2.3 Authorship
People whose computers are affected by malware typically have a variety

of colorful terms to describe the person who created the malware. This book
will use the comparatively bland terms malware author and malware writer to
describe people who create malware; when appropriate, more specific terms
like virus writer may be used too.

There's a distinction to be made between the malware author and the mal­
ware distributor. Writing malware doesn't imply distributing malware, and
vice versa, and there have been cases where the two roles are known to have
been played by different people.^^ Having said that, the malware author and
distributor will be assumed to be the same person throughout this book, for
simplicity.

Is a malware author a "hacker?" Yes and no. The term hacker has been
distorted by the media and popular usage to refer to a person who breaks into

22 COMPUTER VIRUSES AND MALWARE

computers, especially when some kind of malicious intent is involved. Strictly
speaking, a person who breaks into computers is a cracker, not a hacker,^ ̂ ^ and
there may be a variety of motivations for doing so. In geek parlance, being
called a hacker actually has a positive connotation, and means a person who
is skilled at computer programming; hacking has nothing to do with computer
intrusion or malware.

Hacking (in the popular sense of the word) also implies a manual component,
whereas the study of malware is the study of large-scale, automated forms of
attack. Because of this distinction and the general confusion over the term, this
book will not use it in relation to malware.

2.4 Timeline
Figure 2.2 puts some important events in context. With the exception of

adware and spy ware, which appeared in the late 1990s, all of the different
types of malware were known about in the early 1970s. The prevalence of
virus, worms, and other malware has been gradually building steam since the
mid-1980s, leaving us with lots of threats - no matter how they're counted.

1969 - Benford's viruses

1972 - Trojan horses known

C.I 980 - Xerox worm experiments

1983 - Cohen's virus woric

1988 - Internet worm
1969 - Moon landing

1981 - IBM PC introduced

1991 -Web invented

Figure 2.2. Timeline of events

Definitions and Timeline 23

Notes for Chapter 2

1 This case doesn't appear to have gone to trial yet, so the person may yet be
found not guilty. Regardless, the charges in the indictment [327] serve as
an example of how a logic bomb can be used maliciously.

2 The term "computer virus" is preferable if there's any possibility of confu­
sion with biological viruses.

3 Bassham and Polk [28] note that innovation is important for the longevity
of computer viruses, especially if the result is something that hasn't yet
been seen by anti-virus software. They also point out that non-destructive
viruses have an increased chance of survival, by not drawing attention to
themselves.

4 These three definitions are based on Harley et al. [137]; Radatti [258] talks
about viruses passing through unaffected platforms, which he calls Typhoid
Mary Syndrome.'

5 Insofar as a worm can be said to stand.
6 This farsighted book also included ideas about an internet and laser print­

ers [50].
7 The Xerox work is described in Shoch and Hupp [287], and both they and

Dewdney [91] mention Creeper and Reaper. There were two versions of
Creeper, of which the first would be better called a rabbit, the second a
worm.

8 This version of the event is from [329]. An interesting historical twist:
Morris, Jr.'s father was one of the people playing Darwin in the early
1960s at Bell Labs, and created 'The species which eventually wiped out all
opposition...' [9, page 95].

9 Nazario [229] calls this second kind of rabbit a "jumping executable worm."
10 "Hybrid" is used in a generic sense here; Harley et al. [137] use the term "hy­

brid viruses" to describe viruses that execute concurrently with the infected
code.

11 From Thompson [322]; he simply calls it a Trojan horse.
12 This differs from Harley et al. [137], who define a dropper to be a program

that installs malware. However, this term is so often applied to malware that
this narrower definition is used here.

13 There are many other spamming techniques besides this; Spammer-X [300,
Chapter 3] has more information. Back-door functionality left behind by
worms has been used for sending spam in this manner [188].

14 Acohido and Swartz [2] mention a $2000-$3000 rental fee for 20,000 zom­
bies, but prices have been dropping [300].

24 COMPUTER VIRUSES AND MALWARE

15 Cooke et al. [79] looks at botnet evolution, and takes the more general view
that botnets are just zombie armies, and need a controlling communication
channel, but that channel doesn't have to be IRC. There are also a wide
variety of additional uses for botnets beyond those listed here [319].

16 In the anti-virus industry, people who analyze malware for anti-virus com­
panies are referred to as "researchers." This is different from the academic
use of the term.

17 This was one suggested way to find the Stoned virus [290].
18 Lyman [189], but this is common knowledge in the anti-virus community.
19 Diversity is usually a good thing when it comes to defense, and large sites

will often use different anti-virus software on desktop machines than they
use on their gateway machines. In a panel discussion at the 2003 Vims
Bulletin conference, one company revealed that they used eleven different
anti-virus products.

20 While the vast majority of interested parties want common naming, their
motivations for wanting this may be different, and they may treat different
parts of the name as being significant [182].

21 Having said this, an effort has been announced recently to provide uniform
names for malware. The "Common Malware Enumeration" will issue a
unique identifier for malware causing major outbreaks, so users can refer to
highly mneumonic names like "CME-42," which intuitively may have been
issued before "CME-40" and "CME-41" [176].

22 Of course, this begs the question of why such a central authority wasn't
established in the early days of malware prevalence, when there was less
malware and the propagation speeds tended to be much, much slower.

23 CARO, the Computer Antivirus Research Organization, produced virus-
naming guidelines in 1991 [53], which have since been updated [109].

24 Vendor names have been removed from the results.
25 "API" stands for "application programming interface."
26 Not all variants necessarily come from the same source. For example, the

"B" variant of the Blaster worm was released by someone who had acquired
a copy of the "A" variant and modified it [330].

27 A few, like Gaobot, have hundreds of variants, and require three letters to
describe their variant!

28 This example is from [47], again with vendor information removed.
29 Dellinger's "Virus 2" spread courtesy of the virus writer's friends [87], and

secondhand stories indicate that Stoned was spread by someone besides its
author [119,137,290]. Malware writers are rarely caught or come forward,
so discovering these details is unusual.

Definitions and Timeline 25

100 For example, Adleman [3] and Cohen [75].
101 The details of the case may be found in [328]; [326] has sentencing

information.
102 Paraphrased liberally from Virgil's Aeneid, Book II [336].
103 Anderson [12].
104 A sidebar in Harley et al. [137, page 60] has an amusing collection of

suggested plural forms that didn't make the cut.
105 Benford [33] and Gerrold [118], respectively. Benford talks about his real

computer viruses in this collection of reprinted stories.
106 As told in Cohen [74].
107 Skrenta [289] and Dellinger [87].
108 The whole sordid tale is in Rosen [267].
109 The original Core War article is Dewdney [91]; Darwin is described in [9,

201].
110 Bontchev [46].
111 Vossen [338] and van het Groenewoud [331], respectively.
112 This definition of spy ware and adware follows Gordon [124].
113 Walker wrote a letter to Dewdney [340], correcting Dewdney's explanation

of Animal in his column [92] (this column also mentions Skrenta's virus).
114 Chien and Szor [70] explain blended threats and the historical context of

the anti-virus industry with respect to them.
115 Bontchev [44] and Lyman [189] describe the process by which a name is

assigned.
116 VGrep was originally by Ian Whalley; this discussion of its operation is

based on its online documentation [333].
117 This description is based on the CARO identifiers and terminology [109].
118 The Jargon File lists the many nuances of "hacker," along with a hitch­

hiker's guide to the hacker subculture [260].

Chapter 3

VIRUSES

A computer virus has three parts: 100

Infection mechanism How a virus spreads, by modifying other code to contain
a (possibly altered) copy of the virus. The exact means through which a virus
spreads is referred to as its infection vector. This doesn't have to be unique
- a virus that infects in multiple ways is called multipartite.

Trigger The means of deciding whether to deliver the payload or not.

Payload What the virus does, besides spread. The payload may involve dam­
age, either intentional or accidental. Accidental damage may result from
bugs in the virus, encountering an unknown type of system, or perhaps
unanticipated multiple viral infections.

Except for the infection mechanism, the other two parts are optional, because
infection is one of the key defining characteristics of a virus. In the absence of
infection, only the trigger and payload remain, which is a logic bomb.

In pseudocode, a virus would have the structure below. The t r i g g e r func­
tion would return a boolean, whose value would indicate whether or not the
trigger conditions were met. The payload could be anything, of course.

def v i rus 0 :
infec t 0
if t r i g g e r 0 i s t r u e :

payload0

Infection is done by selecting some target code and infecting it, as shown
below. The target code is locally accessible to the machine where the virus

28 COMPUTER VIRUSES AND MALWARE

runs, applying the definition of viruses from the last chapter. Locally acces­
sible targets may include code in shared network directories, though, as these
directories are made to appear locally accessible.

Generally, k targets may be infected each time the infection code below is run.
The exact method used to select targets varies, and may be trivial, as in the case
of the boot-sector infectors in Section 3.1.1. The tricky part of se lec t_ ta rge t
is that the virus doesn't want to repeatedly re-infect the same code; that would
be a waste of effort, and may reveal the presence of the virus. Select_target
has to have some way to detect whether or not some potential target code is
already infected, which is a double-edged sword. If the virus can detect itself,
then so can anti-virus software. The infect _code routine performs the actual
infection by placing some version of the virus' code in the target.

def infect 0 :
repeat k times:

target = select_target()
if no target:

return
infect_code(target)

Viruses can be classified in a variety of ways. The next two sections classify
them along orthogonal axes: the type of target the virus tries to infect, and the
method the virus uses to conceal itself from detection by users and anti-virus
software. Virus creation need not be difficult, either; the virus classification is
followed by a look at do-it-yourself virus kits for the programming-challenged.

3.1 Classification by Target
One way of classifying viruses is by what they try to infect. This section

looks at three: boot-sector infectors, executable file infectors, and data file
infectors (a.k.a. macro viruses).

3.1.1 Boot-Sector Infectors
Although the exact details vary, the basic boot sequence on most machines

goes through these steps:

1 Power on.

2 ROM-based instructions run, performing a self-test, device detection, and
initialization. The boot device is identified, and the boot block is read from
it; typically the boot block consists of the initial block(s) on the device.^
Once the boot block is read, control is transferred to the loaded code. This
step is referred to as the primary boot.

Viruses 29

Original
boot block Virus #1 Virus #2

Original copied Copy of original
to fixed "safe" now destroyed

location
Time

•

Figure 3.1. Multiple boot sector infections

3 The code loaded during the primary boot step loads a larger, more sophisti­
cated program that understands the boot device's filesystem structure, and
transfers control to it. This is the secondary boot.

4 The secondary boot code loads and runs the operating system kernel.

A boot-sector infector, or BSI, is a virus that infects by copying itself to the
boot block. It may copy the contents of the former boot block elsewhere on
the disk first,̂ so that the virus can transfer control to it later to complete the
booting process.

One potential problem with preserving the boot block contents is that block
allocation on disk is filesystem-specific. Properly allocating space to save the
boot block requires a lot of code, a luxury not available to BSIs. An alternate
method is to always copy the original boot block to some fixed, "safe" location
on disk. This alternate method can cause problems when a machine is infected
multiple times by different viruses that happen to use that same safe location,
as shown in Figure 3.1. This is an example of unintentional damage being done
by a virus, and has actually occurred: Stoned and Michelangelo were BSIs that
both picked the same disk block as their safe location. ̂ ^̂

In general, infecting the boot sector is strategically sound: the virus may be
in a known location, but it establishes itself before any anti-virus software starts
or operating system security is enabled. But BSIs are rare now. Machines are
rebooted less often, and there is very little use of bootable media like floppy
disks.^ From a defensive point of view, most operating systems prevent writing
to the disk's boot block without proper authorization, and many a BIOS^ has
boot block protection that can be enabled.

30 COMPUTER VIRUSES AND MALWARE

3.1.2 File Infectors
Operating systems have a notion of files that are executable. In a broader

sense, executable files may also include files that can be run by a command-line
user "shell." A file infector is a virus that infects files which the operating
system or shell consider to be executable; this could include batch files and
shell scripts, but binary executables are the most common target.

There are two main issues for file infectors:

1 Where is the virus placed?

2 How is the virus executed when the infected file is run?

For BSIs, the answer to these questions was apparent. A BSI places itself in
the boot block and gets executed through a machine's normal boot sequence.
File infectors have a few more options at their disposal, though, and often the
answers to these questions are interdependent. The remainder of this section is
organized around the answer to the first question: where is the virus placed?

3.1.2.1 Beginning of File
Older, very simple executable file formats like the .COM MS-DOS format

would treat the entire file as a combination of code and data. When executed, the
entire file would be loaded into memory, and execution would start by jumping
to the beginning of the loaded file.^^^

In this case, a virus that places itself at the start of the file gets control
first when the infected file is run, as illustrated in Figure 3.2. This is called a
prepending virus. Inserting itself at the start of a file involves some copying,
which isn't difficult, but isn't the absolute easiest way to infect a file.

3.1.2.2 End of File

In contrast, appending code onto the end of a file is extremely easy. A virus
that places itself at the end of a file is called an appending virus.

How does the virus get control? There are two basic possibilities:

• The original instruction(s) in the code can be saved, and replaced by a jump
to the viral code. Later, the virus will transfer control back to the code it
infected. The virus may try to run the original instructions directly in their
saved location, or the virus may restore the infected code back to its original
state and run it.

• Many executable file formats specify the start location in a file header. The
virus can change this start location to point to its own code, then jump to
the original start location when done.

Figure 3.3 shows an appending virus using the latter scheme.

Viruses 31

Start __̂
location

Start,
location infect()

if trigger 0
payload()

IS true:

Before infection After infection

Figure 3.2. Prepending virus

Header Header

Start
location

Old start
location

infect(
if trigger 0

payload{)
goto start

New start
location

Before infection After infection

Figure 3.3. Appending virus

3.1.2.3 Overwritten into File

An overwriting virus places itself a^op part of the original code.^ This avoids
an obvious change in file size that would occur with a prepending or appending
virus, and the virus' code can be placed in a location where it will get control.

32 COMPUTER VIRUSES AND MALWARE

Obviously, overwriting code blindly is almost certain to break the original
code and lead to rapid discovery of the virus. There are several options, with
varying degrees of complexity and risk.

• The virus can look for, and overwrite, sections of repeated values in the
hopes of avoiding damage to the original code.^ Such values would tend
to appear in a program's data rather than in the code, so a mechanism for
gaining control during execution would have to be used as well. Ideally, the
virus could restore the repeated value once it has finished running.

• The virus can overwrite an arbitrary part of a file if it can somehow preserve
the original contents elsewhere, similar to the BSI approach. An innocent-
looking data file of some kind, like a JPEG file, could be used to stash the
original contents. A less-portable approach might take low-level details into
account: many filesystems overallocate space for files, and an overwriting
virus could quietly use this extra disk space without it showing up in normal
filesystem operations.

• Space may be overallocated inside a file too. Parts of an executable file may
be padded so that they are aligned to a page boundary, so that the operating
system kernel can efficiently map the executables into memory. The net
result is unused space inside executable files where a virus may be located.^

• Conceivably, a virus could compress a part of the original code to make space
for itself, and decompress the original code when the virus has completed
execution. However, room would have to be made for both the virus and
the decompression code.

None of these options is likely to yield a large amount of space, so overwriting
viruses must be small.

3.1.2.4 Inserted into File

Another possibility is that a virus can insert itself into the target code, moving
the target code out of the way, and even interspersing small pieces of virus code
with target code. This is no easy feat: branch targets in the code have to
be changed, data locations must be updated, and linker relocation information
needs modification. Needless to say, this file infection technique is rarely seen.^

3.1.2.5 Not in File

A companion virus is one which installs itself in such a way that it is naturally
executed before the original code. The virus never modifies the infected code,
and gains control by taking advantage of the process by which the operating
system or shell searches for executable files. Although this bears the hallmarks
of a Troj an horse, a companion virus is a "real" virus by virtue of self-replication.

Viruses 33

The easiest way to explain companion viruses is by example. ̂ ^̂

• The companion virus can place itself earlier in the search path, with the
same name as the target file, so that the virus will be executed first when an
attempt is made to execute the target file.

• MS-DOS searches for an executable named f oo by looking for f oo. com,
f 00. exe, and f oo. bat, in that order. If the target file is a .EXE file, then
the companion virus can be a .COM file with the same name.

• The target file can be renamed, and the companion virus can be given the
target file's original name.

• Windows associates file types (as determined by the filename's extension)
with applications in the Registry. With strategic Registry changes, the as­
sociation for .EXE files can be made to run the companion virus instead of
the original executable. Effectively, all executable files are infected at once.

• The ELF file format commonly used on recent Unix systems has an "inter­
preter" specified in each executable's file header - this invariably points to
the system's run-time linker. ̂ "̂̂ A companion virus can replace the run-time
linker, again causing all executables to be infected at once.

• Companion viruses are possible even in GUI-based environments. A target
application's icon can be overlaid with the icon for the companion virus.
When a user clicks on what they think is the application's icon, the com­
panion virus runs instead.

3.1.3 Macro Viruses
Some applications allow data files, like word processor documents, to have

"macros" embedded in them. Macros are short snippets of code written in a
language which is typically interpreted by the application, a language which
provides enough functionality to write a virus. Thus, macro viruses are better
thought of as data file infectors, but since their predominant form has been
macros, the name has stuck.

When a macro-containing document is loaded by the application, the macros
can be caused to run automatically, which gives control to the macro virus.
Some applications warn the user about the presence of macros in a document,
but these warnings may be easily ignored.

A proof-of-concept of macro viruses was published in 1989,̂ ^^ in response
to rumors of their existence. Macro viruses didn't hit the mainstream until 1995,
when the Concept virus was distributed, targeting Microsoft Word documents
across multiple platforms.^

Concept's operation is shown in Figure 3.4. Word has a persistent, global
set of macros which apply to all edited documents, and this is Concept's target:

34 COMPUTER VIRUSES AND MALWARE

Infection

Global
macros

Infected
document

After Infection

Global
macros

Time

Uninfected
document...

...becomes
Infected

Figure 3.4. Concept in action

once installed in the global macros, it can infect all documents edited in the
future. A document infected by Concept includes two macros that have special
properties in Word.

AutoOpen Any code in the AutoOpen macro is run automatically when the
file is opened. This is how an infected document gains control.

FileSaveAs The code in the FileSaveAs macro is run when its namesake menu
item (File... Save As...) is selected. In other words, this code can be used
to infect any as-yet-uninfected document that is being saved by the user.

From a technical standpoint, macro languages are easier to use than lower-
level programming languages, so macro viruses drastically lower the barrier to
virus creation.

3.2 Classification by Concealment Strategy
Another way of classifying viruses is by how they try to conceal themselves,

both from users and from anti-virus software.

3.2.1 No Concealment
Not hiding at all is one concealment strategy which is remarkably easy to

implement in a computer virus. It goes without saying, however, that it's not

Viruses 35

Before Decryption

for i in 0...length (body)
decrypt bodŷ ^

goto decrypted_body

After Decryption

for i in 0...length (body)
decrypt body^

goto decrypted_body

decrypted_body:
infect()
if trigger() is true:

payload()

Figure 3.5. Encrypted virus pseudocode

very effective - once the presence of a virus is known, it's trivial to detect and
analyze.

3.2.2 Encryption
With an encrypted virus, the idea is that the virus body (infection, trigger, and

payload) is encrypted in some way to make it harder to detect. This "encryption"
is not what cryptographers call encryption; virus encryption is better thought of
as obfuscation. (Where it's necessary to distinguish between the two meanings
of the word, I'll use the term "strong encryption" to mean encryption in the
cryptographic sense.)

When the virus body is in encrypted form, it's not runnable until decrypted.
What executes first in the virus, then, is a decryptor loop, which decrypts the
virus body and transfers control to it. The general principle is that the decryptor
loop is small compared to the virus body, and provides a smaller profile for anti­
virus software to detect.

Figure 3.5 shows pseudocode for an encrypted virus. A decryptor loop can
decrypt the virus body in place, or to another location; this choice may be
dictated by external constraints, like the writability of the infected program's
code. This example shows an in-place decryption.

How is virus encryption done? Here are six ways:̂ ^^

Simple encryption. No key is used for simple encryption, just basic param-
eterless operations, like incrementing and decrementing, bitwise rotation,
arithmetic negation, and logical NOT:̂ ^

36 COMPUTER VIRUSES AND MALWARE

Encryption Decryption

inc body,
rol body,
neg body,

dec body/
ror body/
neg body/

Static encryption key. A static, constant key is used for encryption which
doesn't change from one infection to the next. The operations used would
include arithmetic operations like addition, and logical operations like XOR.
Notice that the use of reversible operations is a common feature of simpler
types of virus encryption. In pseudocode:

Encryption Decryption

body/ + 123 body/ - 123

body/ xor 42 body/ xor 42

Variable encryption key. The key begins as a constant value, but changes as
the decryption proceeds. For example:

key = 123
for i in 0... length (body) :

body/ = body/ xor key
key = key + body/

Substitution cipher. A more general encryption could employ lookup tables
which map byte value between their encrypted and decrypted forms. Here,
encrypt and decrypt are 256-byte arrays, initialized so that if encrypt [j]
= k, then decrypt [k] = j :

Encryption Decryption

body/ = encrypt [body/] body/ = decrypt [body/]

This substitution cipher is a 1:1 mapping, but in actual fact, the virus body
may not contain all 256 possible byte values. A homophonic substitution
cipher allows a l:n mapping, increasing complexity by permitting multiple
encrypted values to correspond to one decrypted value.

Strong encryption. There is no reason why viruses cannot use strong encryp­
tion. Previously, code size might have been a factor, if the virus would
have to carry strong decryption code with it, but this is no longer a problem:

Viruses 37

most systems now contain strong encryption libraries which can be used by
107

Viruses/^'
The major weakness in the encryption schemes above is that the encrypted

virus body is the same from one infection to the next. That constancy makes
a virus as easy to detect as one using no concealment at all! With random
encryption keys/^^ this error is avoided: the key used for encryption changes
randomly with each new infection. This idea can be applied to any of the
encryption types described here. Obviously, the virus' decryptor loop must be
updated for each infection to incorporate the new key.

3.2.3 Stealth
A stealth virus is a virus that actively takes steps to conceal the infection

itself, not just the virus body. Furthermore, a stealth virus tries to hide from
everything, not just anti-virus software. Some examples of stealth techniques
arebelow.*^^

• An infected file's original timestamp can be restored after infection, so that
the file doesn't look freshly-changed.

• The virus can store (or be capable of regenerating) all pre-infection infor­
mation about a file, including its timestamp, file size, and the file's contents.
Then, system I/O calls can be intercepted, and the virus would play back the
original information in response to any I/O operations on the infected file,
making it appear uninfected. This technique is applicable to boot block I/O
too.

The exact method of intercepting I/O calls depends on the operating system.
Under MS-DOS, for instance, I/O requests are made with interrupt calls,
whose handlers are located via user-accessible interrupt vectors; the virus
need only modify the interrupt vector to insert itself into the chain of interrupt
handlers. On other systems, I/O is performed using shared libraries, so a
virus can impose itself into key shared library routines to intercept I/O calls
for most applications.

• Some systems store the secondary boot loader as consecutive disk blocks,
to make the primary boot loader's task simpler. On these systems, there are
two views of the secondary boot loader, as a sequence of blocks, and as a file
in the filesystem. A virus can insert itself into the secondary boot loader's
blocks, relocating the original blocks elsewhere in the filesystem. The end
result is that the usual, filesystem view shows no obvious changes, but the
virus is hidden and gets run courtesy of the real primary boot loader. ̂ ^̂

A variation is a reverse stealth virus, which makes everything look infected
- the damage is done by anti-virus software frantically (and erroneously) trying
to disinfect.*^^

38 COMPUTER VIRUSES AND MALWARE

Stealth techniques overlap with techniques used by rootkits, Rootkits were
originally toolkits for people who had broken into computers; they used these
toolkits to hide their tracks and avoid detection. ̂ ^̂ Malware now uses rootkits
too: for example, the Ryknos Trojan horse tried to hide itself using a rootkit
intended for digital-rights management. ̂ -̂̂

3.2.4 Oligomorphism
Assuming an encrypted virus' key is randomly changed with each new in­

fection, the only unchanging part of the virus is the code in the decryptor loop.
Anti-virus software will exploit this fact for detection, so the next logical de­
velopment is to change the decryptor loop's code with each infection.

An oligomorphic virus, or semi-polymorphic virus, is an encrypted virus
which has a small, finite number of different decryptor loops at its disposal.
The virus selects a new decryptor loop from this pool for each new infection.
For example, Whale had 30 different decryptor variants, and Memorial had 96
decryptors.̂ ^"^

In terms of detection, oligomorphism only makes a virus marginally harder to
spot. Instead of looking for one decryptor loop for the virus, anti-virus software
can simply have all of the virus' possible decryptor loops enumerated, and look
for them all.

3.2.5 Polymorphism
A polymorphic virus is superficially the same as an oligomorphic virus. Both

are encrypted viruses, both change their decryptor loop on each infection. ̂ ^̂
However, a polymorphic virus has, for all practical purposes, an infinite num­
ber of decryptor loop variations. Tremor, for example, has almost six billion
possible decryptor loops!^^^ Polymorphic viruses clearly can't be detected by
listing all the possible combinations.

There are two questions that arise with respect to polymorphic viruses. First,
how can a virus detect that it has previously infected a file, if its presence is
hidden sufficiently well? Second, how does the virus change its decryptor loop
from infection to infection?

3.2.5.1 Self-Detection

At first glance, it might seem easy for a polymorphic virus to detect if it has
previously infected some code - when the virus morphs for a new infection,
it can also change whatever aspect of itself that it looks for. This doesn't
work, though, because a virus must be able to recognize infection by any of its
practically-infinite forms. This means that the infection detection mechanism
must be independent of the exact code used by the virus:

Viruses 39

C:\DOCUME~l\aycock>dir target.com
Volume in drive C has no label.
Volume Serial Number is DEAD-BEEF

Directory of C:\DOCUME~l\aycock

Examining
the original

file

11/07/2003 11:29 AM 0 target.com
1 File(s) 0 bytes
0 Dir(s) 13,797,240,832 bytes free

C:\DOCUME~l\aycock>echo yes > target.com:infected

C:\DOCUME~l\aycock>dir target.com
Volume in drive C has no label.
Volume Serial Number is DEAD-BEEF

Directory of C:\DOCUME~l\aycock

11/07/2003 11:30 AM
1 File(s)

0 target.com
0 bytes

0 Dir(s) 13,797,240,832 bytes free

C:\DOCUME~l\aycock>more < target.com:infected
yes

Adding an
alternate

I data stream

The added
stream isn't
obvious...

...but it's
I really there

Figure 3.6. Fun with NTFS alternate data streams

File timestamp. A virus could change the timestamp of an infected file, so that
the sum of its time and date is some constant value K for all infections.^^^
A lot of software only displays the last two digits of the year, so an infected
file's year could be increased by 100 without attracting attention.^^^

File size. An infected file could have its size padded out to some meaningful
size, such as a multiple of 1234.̂ ^

Data hiding. In complex executable file formats, like ELF, not all parts of the
file's information may be used by a system. A virus can hide a flag in unused
areas, or look for an unusual combination of attributes that it has set in the
file. For example, Zperm looks for the character "Z" as the minor linker
version in an executable's file header on Windows.̂ ^^

Filesystem features. Some filesystems allow files to be tagged with arbitrary
attributes, whose existence is not always made obvious. These can be used
by a virus to store code, data, or flags which indicate that a file has been
infected. Figure 3.6 shows such "alternate data streams" being used in an
NTFS filesystem to attach a flag to a file; the presence of this flag doesn't
show up in directory listings, the file size, or in the graphical filesystem
browser. ̂ ^

40 COMPUTER VIRUSES AND MALWARE

External storage. The indication that a file is infected need not be directly
associated with the file itself. For example, a virus could use a hash function
to map an infected file's name into an obfuscated string, and use that string to
create a key in the Windows Registry. The virus could then use the existence
of that key as an infection indicator. Even if the Registry key was discovered,
it wouldn't immediately reveal the name of the infected file (especially if a
strong cryptographic hash function was used).

Note that none of these mechanisms need to work perfectly, because a false
positive only means that the virus won't infect some code that it might have oth­
erwise. Also, since all these infection-detection methods work for polymorphic
viruses, they also work for the more specific case of non-polymorphic viruses
too. Viruses which retain some constancy can just look for one or two bytes of
their own code,̂ ^^ rather than resorting to more elaborate methods.

It was once suggested that systems could be inoculated against specific
viruses by faking the virus' self-detection indicator on an uninfected system. ̂ ^̂
Unfortunately, there are too many viruses now to make this feasible.

3.2.5.2 Changing the Decryptor Loop
The code in a polymorphic virus is transformed for each fresh infection using

a mutation engine}^^ The mutation engine has a grab-bag of code transforma­
tion tricks which take as input one sequence of code and output another, equiva­
lent, sequence of code. Choosing which technique to apply and where to apply
it can be selected by the engine using a pseudo-random number generator. ̂ ^̂
The result is an engine which is extensible and which can permute code in a
large number of ways. Some sample transformations are shown below. ̂ "̂̂

Instruction equivalence. Especially on CISC architectures like the Intel x86,
there are often many single instructions which have the same effect. All
these instructions would set register r l to zero:

clear rl
xor rl,rl
and 0,rl
move 0,rl

Instruction sequence equivalence. Instruction equivalence can be general­
ized to sequences of instructions. While single-instruction equivalence is at
the mercy of the CPU's instruction set, instruction sequence equivalence is
more portable, and applies to both high-level and low-level languages:

X = 1 <=> y = 2 1

X = y - 2 0

Viruses 41

Instruction reordering. Instructions may have their order changed, so long
as constraints imposed by inter-instruction dependencies are observed.

r l = 1 2 r2 = r3 + r2
r2 = r3 + r2 <=> r l = 12
r4 = r l + r2 r4 = r l + r2

Here, the calculation of r4 depends on the values of r l and r2, but the
assignments to r 1 and r2 are independent of one another and may be done
in any order.

Instruction reordering is well-studied, because it is an application of the
instruction scheduling done by optimizing compilers to increase instruction-
level parallelism.

Register renaming. A minor, but significant, change can be introduced sim­
ply by changing the registers that instructions use. While this makes no
difference from a high-level perspective, such as a human reading the code,
renaming changes the bit patterns that encode the instructions; this compli­
cates matters for anti-virus software looking for the virus' instructions. For
example:

rl =12 r3 = 12

r2 = 34 <=» rl = 34

r3 = rl + r2 r2 = r3 + rl

The concept of register renaming naturally extends to variable renaming in
higher-level languages, such as those a macro virus might employ.

Reordering data. Changing the locations of data in memory will have a similar
effect in terms of altering instruction encoding as register renaming. This
would not necessarily have a corresponding transformation in a high-level
language, as the variable names themselves would not be changed, just their
order.

Making spaghetti. Although some programmers are naturally gifted when it
comes to producing "spaghetti code," others are not as fortunate. Hap­
pily, code can be automatically transformed so that formerly-consecutive
instructions are scattered, and linked together by unconditional jumps:

42 COMPUTER VIRUSES AND MALWARE

start:
rl = 12
r2 = 34
r3 = rl + r2

=>

LI:
r2 = 34
goto L2

start:
rl = 12
goto LI

L2:
r3 = rl + r2

The instructions executed, and their execution order, is the same in both
pieces of code.

Inserting junk code. "Junk" computations can be inserted which are inert with
respect to the original code - in other words, running the junk code doesn't
affect what the original code does. Two examples of adding junk code are
below:

rl = 12
inc rl
inc rl
rl = rl - 2
r2 = 34
r3 = rl + r2

<=
rl = 12
r2 = 34
r3 = rl + r2

=>
r5 = 42
rl = 12

X:
r2 = 34
dec r5
bne X
r3 = rl + r2

The code on the left shows the difference between inserting junk code and
using instruction sequence equivalence: with junk code, the original code
isn't changed. The one on the right inserts a loop as junk code.

Run-time code generation. One way to transform the code is to not have all
of it present until it runs. Either fresh code can be generated at run time, or
existing code can be modified.

r l = 1 2 r l = 12
r2 = 34 => r2 = 34
r3 = r l + r2 generate r3 = rl + r2

c a l l generated_code

Interpretive dance. The way code is executed can be changed, from being
directly executed to being interpreted by some application-specific virtual
machine.^^^ A "classical" interpreter for such virtual machine code mimics
the operation of a real CPU as it fetches, decodes, and executes instructions.
In the example below, two of the real instructions are assigned different
virtual machine opcodes. Another opcode forces the interpreter loop to exit.

Viruses 43

demonstrating the mixing of interpreted and real code. In the interpreter, the
variable ipc is the interpreter's program counter, and controls the instruction
fetched and executed from the CODE array.

rl = 12
r2 = 34
r3 = rl + r2

=>
ipc = 0
loop:

switch CODE[ipc]:
case 0:
exit loop

case 1:
r2 = 34

case 2:
rl = 12

inc ipc
r3 = rl + r2

CODE:
2
1
0

This transformation can be repeated multiple times, giving multiple levels
of interpreters.

Concurrency. The original code can be separated into multiple threads of
execution, which not only transforms the code, but can greatly complicate
automatic analysis: ̂ ^

rl = 12 start thread T
r2 = 34 => rl = 12
r3 = rl + r2 wait for signal

r3 = rl + r2

T:
r2 = 34
send signal
exit thread T

Inlining and outlining. Code inlining is a technique normally employed to
avoid subroutine call overhead, ̂ "̂ that replaces a subroutine call with the
subroutine's code:

44 COMPUTER VIRUSES AND MALWARE

call SI
call S2

SI:
rl = 12
r2 = r3
r4 = rl
return

S2:
rl = 12
r2 = 34
rS = rl
return

+
+

+

r2
r2

r2

rl = 12
r2 = rS + r2

=» r4 = rl + r2

rl = 12
r2 = 34
r3 = rl + r2

Outlining is the reverse operation; it need not preserve any logical code
grouping, however:

rl = 12
r2 = r3 + r2
r4 = rl + r2

rl = 12
r2 = 34
r3 = rl + r2

=>

rl = 12
r2 = r3 + r2
call S12
r3 = rl + r2

S12:
r4 = rl +
rl = 12
r2 = 34
return

r2

Another option is to convert the code into threaded code, which has noth­
ing to do with threads used for concurrent programming, despite the name.
Threaded code is normally used as an alternative way to implement program­
ming language interpreters.^^^ Subroutines in threaded code don't return to
the place from which they were invoked, but instead directly jump to the next
subroutine; the threaded code itself is simply an array of code addresses:

Viruses 45

rl = 12
r2 = r3 + r2
r4 = rl + r2

rl = 12
r2 = 34
rS = rl + r2

next = &CODE
goto [next]
CODE:

=> &I1
&I2
&X

X:
rl =
r2 =
rS =

11:
rl =
inc
goto

12:
r2 =
r4 =
inc
goto

12
34
rl + r2

12
next
[next]

r3 + r2
rl + r2
next
[next]

Subroutine interleaving. Inlining and outlining transformations maintain the
original code, but rebundle it in different ways. Code can also be trans­
formed by combining independent subroutines together, as in the following
example.

call SI
call S2

SI:
rl = 12
r2 = r3 +
r4 = rl +
return

S2:
llllllBl
iHIIIBII
•Jllllllll
return

r2
r2

HI

call S12

=> S12:
r5 = 12
rl ̂ 12
r6 = r3 + r2
r2 - 34
r4 = r5 + r6

rS == rl -̂ III
return

46 COMPUTER VIRUSES AND MALWARE

The code from SI has had some registers renamed to avoid collisions with
registers used by S2. The overall effect in the interleaved subroutine is the
same as the original code in terms of the values computed.

A number of these transformations are also used in the (legitimate) field
of code obfuscation; code obfuscation research is used to try and prevent re­
verse engineering. There are also many, many elaborate code transformations
performed by optimizing compilers. Not all compiler techniques and code
obfuscation techniques have yet been used by virus writers.

Instead of supplying transformations for the mutation engine to pick from,
a virus writer may create a mutation engine that will automatically produce a
distinct, equivalent decryptor loop. In compilers, automatically searching for
a code sequence is referred to as superoptimization, and the search may be
implemented in a variety of ways: brute-force, automated theorem proving,
or any technique for searching a large search space. *̂ ^ Zellome, for example,
uses a genetic algorithm in its mutation engine. ̂ ^̂ Enormous computational
demands are required by such a search, although a clever algorithm may avoid
generating too much illegal code and thus improve search time.^^ For now, this
mutation method is a curiosity only.

3.2,6 Metamorphism
'Viruses aim to keep their size as small as possible and it is impractical to make the

main virus body polymorphic' - Tarkan Yetiser̂ ^^

Metamorphic viruses are viruses that are polymorphic in the virus body.̂ ^^
They aren't encrypted, and thus need no decryptor loop, but avoid detection by
changing: a new version of the virus body is produced for each new infection.

The code-modifying techniques used by polymorphic viruses all apply to
metamorphic viruses. Both employ a mutation engine, except a polymorphic
virus need not change its engine on each infection, because it can reside in the
encrypted part of the virus. In contrast, a metamorphic virus' mutation engine
has to morph itself anew for each infection.

Some metamorphic viruses are very elaborate. Simile's mutation engine,
about 12,000 lines of assembly code, translates Simile from machine code to a
machine-independent intermediate code. Operating on the intermediate code,
the mutation engine undoes old obfuscations, applies new transformations, and
generates fresh machine code.̂ ^^ Metamorphic mutation engines whose input
and output are machine code must be able to disassemble and reassemble ma­
chine code. ̂ ^

Metamorphism is relatively straightforward to implement in viruses that
spread in source code form, such as macro viruses. A virus may rely on system
tools for metamorphism, too. Apparition, for instance, is written in Pascal^^

Viruses 47

and carries its own source code; if a compiler is found on an infected system,
the virus inserts junk code into its source and recompiles itself.

While polymorphic and metamorphic viruses are decidedly nontrivial to
detect by anti-virus software, they are also hard for a virus writer to implement
correctly - the numbers of these viruses are small in comparison to other types.

3.2.7 Strong Encryption
The encryption methods discussed so far result in viruses that, once captured,

are susceptible to analysis. The major problem is not the encryption method,
because that can always be strengthened; the major problem is that viruses carry
their decryption keys with them.̂ ^^

This might seem a necessary weakness, because if a virus doesn't have its
key, it can't decrypt and run its code. There are, however, two other possibilities.

1 The key comes from outside an infected system:

• A virus can retrieve the key from a web site, but that would mean that
the virus would then have to carry the web site's address with it, which
could be blocked as a countermeasure. To avoid knowing a specific web
site's name, a virus could use a web search engine to get the key instead.

Generally, any electronic data stream that a virus can monitor would be
usable for key delivery, especially ones with high volumes of traffic that
are unlikely to be blocked: email messages, Usenet postings, instant
messaging, IRC, file-sharing networks.

• A binary virus is one where the virus is in two parts, and doesn't become
virulent until both pieces are present on a system.̂ ^^ There have only
been a few binary viruses, such as Dichotomy and RMNS.^^

One manifestation of binary viruses would be where virus Vi has strongly-
encrypted code, and virus V2 has its key. But this scheme is unlikely
to work well in practice. If Vi and V2 travel together, then both will
bear the same risk of capture and analysis, defeating the purpose of
separating the encryption key. If V\ and V2 spread separately (e.g., V2
is released a month after Vi, and uses a different infection vector) then
their spread would be independent.

Now, say that P\ is the probability of Vi reaching a given machine, and
P2 is that probability for V2. With an independent spread, the probability
of them both finding the same machine and becoming virulent isP\xP2,
i.e., smaller.̂ ^

2 The key comes from inside an infected system. Using environmental key
generation, the decryption key is constructed of elements already present in
the target's environment, like:

48 COMPUTER VIRUSES AND MALWARE

• the machine's domain name;

• the time or date;

• some data in the system (e.g., file contents);

• the current user name;

• the interface's language setting (e.g., Chinese, Hebrew).

This makes it very easy to target viruses to particular individuals or groups.
A target doesn't even know that they possess the key!

Combined with strong encryption, environmental key generation would ren­
der a virus unanalyzable even if captured. To fully analyze an encrypted
virus, it has to be decrypted, and while the elements comprising the key may
be discovered, the exact value of the key will not.̂ ^ In this case, the only
real hope of decryption lies in a poor choice of key. A poorly-chosen key
with a relatively small range of possible values (e.g., the language setting)
would be susceptible to a brute-force attack.

How can the virus know that its decryption was successful? It doesn't.
While the virus could carry a checksum with it to verify that the decryption
worked,^ ̂ that might give away information to an analyst. An alternative
method is to catch exceptions that invalid code may cause, then try to run
the decrypted "code" and see if it works.

3.3 Virus Kits
Humans love their tools, and it's not surprising that a variety of tools exists

for writing viruses. A virus kit is a program which automatically produces all
or part of a virus' code.̂ "̂̂ They have different interfaces, from command-line
tools to menu-based tools to full-blown graphical user interfaces. Figures 3.7
and 3.8 show two versions of a GUI-based virus kit.̂ ^

Programming libraries are available, too, such as add-on mutation engines
which will turn any virus into a polymorphic virus. In an Orwellian twist,
though, success is failure. The more popular a virus kit or library, the greater
the chance that anti-virus researchers have devoted time to detecting all of its
progeny.

Viruses 49

-'•y- b a d UD

h : : r i . J , . - , - j - j . . h- i j 'V ••! H F A J M E

'd-.o;.)^^':c G:y jhi Cia:",

V -.? h l / c l e h j - ; h..:y|...- '..^.K.]e lo^iiil

(Ji..ih;v::::

Mr...

rdri-

h<h-dF:p:

C'3:h :v:^'ern

:.;ri,.f h-i;

L:.h-^r \ !-•-:;••: r/V-r • :-..-v" p•,-..• Fv

Figure 3.7. Virus kil

Mv ::,; iv i -

• i ^ M - t e :•:••"-.pur-̂

ins

Figure 3.8. Virus kit, the next generation

50 COMPUTER VIRUSES AND MALWARE

Notes for Chapter 3
1 Even though there may be several initial blocks/sectors involved, I'll refer

to this as the boot block (singular) for convenience.
2 Disks are used for concreteness, but really this could be any bootable media.
3 Although media is used which can potentially be bootable, like CD-ROMs,

they are not often booted from.
4 "BIOS" stands for "Basic Input/Output System;" this refers to in-ROM code

on PCs.
5 This section was originally based on Harley et al. [137]. Some sources would

classify viruses using some of these techniques as "cavity infectors" [77], but
as cavity infection involves overwriting, this distinction seems unnecessary.

6 The ZeroHunt virus looked for sequences of bytes with the value 0, for
instance [198].

7 This technique was employed for viruses back in 1987 [95], and is still in
use [27, 58].

8 Having said that, Zmist does it [106].
9 Ironically, it was shipped out by Microsoft on some CD-ROMs [17]. The

Concept source code is still easily obtainable, and an analysis can be found
in many sources [122, 137, 187].

10 For the pedantic, there's an implied key of 1 for these operations.
11 Executable files infected by the CTX virus, for example, will have their size

adjusted to be a multiple of 101 bytes [195].
12 The Stream virus uses NTFS' alternate data streams, but not to detect infec­

tion. Stream is an overwriting virus that saves the original code as a separate
data stream called "STR" that is associated with the infected file [313].

13 This example is only for illustration; threads do not typically share register
contents.

14 The term "subroutine" will be used generically to describe either a proce­
dure, function, or method.

15 Joshi et al. [155] note their speedup compared to a brute-force algorithm.
Agapow [4] examines clustering of functional code in the space of all pos­
sible programs, arguing that mutation from one piece of functional code to
another is possible.

16 The Mental Driller [320]; Lakhotia et al. [178] also discuss the mutation
engine, and argue that metamorphic viruses are ultimately constrained in
their complexity, because of their need to disassemble and de-obfuscate
their own code.

17 Borland's Object Pascal for Windows, to be precise [162].
18 Kaspersky [159, 160]. Interestingly, the 1961 Darwin players tried an ex­

periment with such multi-part programs, and declared the experiment a
'flop' [201].

Viruses 51

19 Recall that probabilities fall in the range [0,1], so their product can't be
greater than either one.

20 Even if the exact key isn't discovered, general information about the virus'
intent may be revealed by the elements used for the key.

21 Bontchev[46]. Tht random decryption algorithm (RDA) works ^long those
lines: the virus doesn't carry its key, but doesn't get its key from the environ­
ment, either. An RDA virus decrypts itself by brute force, trying different
decryption keys until it locates a known value in the decrypted code [208].

22 Okay, it depends on how "virus" is defined - this is really a worm generator,
but it has one of the best GUIs. These are both by [K]alamar.

100 These parts are from Harley et al. [137]. The phrase "infection mechanism"
is also used extensively in biology.

101 As reported in [14].
102 Levine[183].
103 The first is from Bontchev [38]; everyone mentions the second [38, 137,

187]; the third and final ones are from Harley et al. [137]. The fourth is
mentioned in [77].

104 Levine [183].
105 Highland [141].
106 The first three are from [13], the fourth from [248].
107 As pointed out by one of my students.
108 Wells [13].
109 The first two are from Harley et al. [137].
110 Bontchev [38].
111 Bontchev [46].
112 Hoglund and Butler [144].
113 Florio [112] analyzes Ryknos; the infamous rootkit in question was outed

by Russinovich [271].
114 [161] and [309], respectively.
115 Definition based on [217, 351].
116 Fischer [108].
117 Ludwig[187].
118 Ludwig again, and Ferbrache [103].
119 Szor[311].
120 Ferbrache [103].
121 Ferbrache [103].

52 COMPUTER VIRUSES AND MALWARE

122 Nachenberg [217].
123 Yetiser[351].
124 These are from Cohen [75] (upon whom this organization was originally

based) and Collberg et al. [76]; additional sources are noted below.
125 Klint [166].
126 Bell [32]. There are other variations, like indirect threaded code [90].
127 The seminal superoptimization paper was Massalin [196], who used a

brute-force search; Joshi et al. [155] use automated theorem proving, and
Michalewicz and Fogel [206] cover a wide variety of heuristic search
methods.

128 Ferric and Shannon [105].
129 Yetiser[351].
130 This section is based on Szor and Ferric [314].
131 Perriotetal. [249].
132 Unless stated otherwise, this section is based on Filiol [107] and Riordan

and Schneier [265].
133 Skulason [291] first described the idea, for the more general case of a

multi-part virus; the term "binary virus" is from Bontchev [46].
134 This section is based on Tarala [316].

Chapter 4

ANTI-VIRUS TECHNIQUES

' . . . it is trivial to write a program that identifies all infected programs with 100%
accuracy.' - Eugene Spafford^

Anti-virus software does up to three major tasks: ̂ ^̂

Detection Detecting whether or not some code is a virus or not which, in the
purest form of detection, results in a Boolean value: yes, this code is in­
fected, or no, this code is not infected. Ultimately, detection is a losing
game. Precisely detecting viruses by their appearance or behavior is prov-
ably undecidable^^^ - a virus writer can always construct a virus which is
undetectable by some anti-virus software. (Then the anti-virus software can
be updated to detect the new virus, at which point the virus writer can build
another new virus, and so on.)

Should a virus always be detected, even if it can't run? Yes. Even if a virus
is dormant on one system, it is still useful to detect it so that the virus doesn't
affect another system. Anti-virus software is regularly applied to incoming
email, for instance, where the email recipient's machine is different from
the machine running the mail server and anti-virus software. The other case
is where a virus won't run on any system. Finding an intended virus may
point to some underlying security flaw, and thus it can be useful to detect
those viruses too.

Identification Once a virus is detected, which virus is it? The identification
process may be distinct from detection, or identification may occur as a side
effect of the detection method being used.

Disinfection Disinfection is the process of removing detected viruses; this is
sometimes called cleaning. Normally a virus would need to be precisely
identified in order to perform disinfection.

54 COMPUTER VIRUSES AND MALWARE

Virus present?

yes no

Virus y^s
detected?

no

Figure 4.1. Virus detection outcomes

Detection and disinfection can be performed using generic methods that try to
work with known and unknown viruses, or using virus-specific methods which
only work with known viruses. (Virus-specific methods may catch unknown
variants of known viruses, however.)

The majority of this chapter is devoted to detection. It is arguably the most
important of the three tasks above, because identification and disinfection both
require detection as a prerequisite. In addition, early detection (i.e., before an
infection has occurred) completely alleviates the need for the other tasks.

There are five possible outcomes for detection. Figure 4.1 shows four of
them. Perfect virus detection would always have the outcomes circled on the
diagonal, where a virus is detected if one is really present, and no virus is
detected if none is there. Detection isn't perfect, though. K false positive is
when the anti-virus software reports a virus even though a virus isn't really
there, which can waste time and resources on wild goose chases. A false
negative, or a miss, is when anti-virus software doesn't detect a virus that's
present. Either type of false reading serves to undermine user confidence in
the anti-virus software. The fifth outcome is ghost positives, where a virus
is detected that is no longer there, but a previous attempt at disinfection was
incomplete and left enough virus remnants to still be detected. ̂ ^̂

Detection methods can be classified as static or dynamic, depending on
whether or not the virus' code is running when the detection occurs. This
chapter first looks at detection methods using this classification, then disinfec­
tion and related issues, virus databases and virus description languages, and
some miscellaneous short topics.

Anti-Virus Techniques 55

4.1 Detection: Static Methods
Static anti-virus techniques attempt virus detection without actually running

any code. This section examines three static techniques: scanners, heuristics,
and integrity checkers.

4.1.1 Scanners
The term "scanner" in the context of anti-virus software is another term

which has been diluted through common usage, like "virus" itself. It is often
applied generically to refer to anti-virus software, regardless of what technique
the anti-virus software is using.

Scanners can be classified based on when they are invoked: ̂ ^̂

On-demand On-demand scanners run when explicitly started by the user.
Many anti-virus techniques draw upon a database of information about cur­
rent threats, and forcing an on-demand scan is useful when a new virus
database is installed. An on-demand scan may also be desirable when an
infection is suspected, or when a questionable file is downloaded.

On-access An on-access scanner runs continuously, scanning every file when
it's accessed. As might be expected, the extra I/O overhead and resources
consumed by the scanner impose a performance penalty.

Some on-access scanners permit tuning, so that scans are only performed for
read accesses or write accesses; normally scanning would be done for both.
A machine where all files arrive via the network may only want scanning on
write accesses, for example, because that would provide complete anti-virus
coverage while minimizing the performance hit.^

In this section, a more restricted view is taken of scanners. Each virus is
represented by one or more patterns, or signatures, sequences of bytes which
(hopefully) uniquely characterize the virus. Signatures are sometimes called
scan strings, and need not be constant strings. Some anti-virus software may
support "don't care" symbols called wildcards that match an arbitrary byte, a
part of a byte, or zero or more bytes. ̂ ^̂

The process of searching for viruses by looking through a file for signatures
is called scanning, and the code that does the search is called a scanner. More
generally, the search is done through a stream of bytes, which would include
the contents of a boot block, a whole file, part of a file being written or read, or
network packets.

With hundreds of thousands of signatures to look for, searching for them one
at a time is infeasible. The biggest technical challenge in scanning is finding
algorithms which are able to look for multiple patterns efficiently, and which
scale well. The next sections examine three such algorithms, which illustrate

56 COMPUTER VIRUSES AND MALWARE

other

.C hi chip,hip

2) >{4j ^^7j)—^^->(^

state

failure(state)

1 2 3 4 5 6 7 8 9

0 0 0 1 0 0 3 0 5

Figure 4.2. Aho-Corasick finite automaton and failure function

the general principles behind multiple-pattern search, and which have been used
in both anti-virus software and the intrusion-detection systems of Chapter 8.

4.1.1.1 Algorithm: Aho-Corasick
The Aho-Corasick algorithm dates back to 1975 and was originally intended

for bibliographic search. ̂ ^̂ The algorithm is best illustrated with an example. A
scanner would be looking for signatures which could be composed of any byte
values, but for simplicity, English words will be used in the example instead of
signatures: hi, hips, hip, hit, chip.

Aho-Corasick needs two things for searching, both of which are shown in
Figure 4.2:

1 A finite automaton is used to keep track of the state of the search. Conceptu­
ally, this is represented as a graph, where the circles represent search states
and the edges are possible transitions that can be made from one state to an­
other; the label on an edge indicates the character that causes that transition
to be made. (The "other" label is a catch-all which matches any character for
which there is no explicit transition.) A doubly-circled state is a final state,
where output (i.e., a signature match) occurs, and the associated output is
printed above its final state. The start state is denoted by an edge which
doesn't originate at a state. The states are numbered for reference purposes.

A failure function tells the search algorithm which state to go to if no suitable
transition is found in the finite automaton. Intuitively, this is the earliest place
that the search can possibly resume matching.

Anti-Virus Techniques 57

m i c r o c h i p s
0 0 0 2 0 0 2 4 7 9 8

/ t \
hi chip, hips

hip

Figure 4.3. Aho-Corasick in operation

The computation of the finite automaton and failure function will be shown
later, but for now, here is the search code that uses them:

state = START_STATE
while not end of input:

ch = next input character
ch

while no edge state-^^ exists:
state = failure(state)

state = t
if state is final:

output matches

(The notation s t a t e -^ t means an edge labeled ch from state s t a t e to some
state t,)

Figure 4.3 gives the result of running the search code on the input string
"microchips," showing the finite automaton's state numbers underneath. From
the start state 0, the first two input characters just cause a transition back to
state 0. The third character, c, causes a transition into state 2, but there is no
transition from state 2 for the following r, so the failure function is used to
locate a state from which to resume the search: state 0 again. Skipping ahead,
the transition from state 4 on i leads to state 7, a final state where the signature
"hi" is matched. Two signatures are matched next, in state 9. There are no
transitions at all from state 9, so the failure function is used again, causing the
search to resume at state 5, where there is a transition on s to final state 8. The
Aho-Corasick algorithm thus searches in parallel for multiple signatures, even
detecting overlapping ones.

How are the finite automaton and failure function constructed? There are
three steps:

1 Build a trie from the signatures.^ A trie is a tree structure used for searching,
where the tree's edges are labeled. A signature has a unique path in the trie
from the root to some leaf; signatures with common prefixes share trie paths
as long as possible, then diverge.

58 COMPUTER VIRUSES AND MALWARE

other

other

Other
A hi hi|

other
hi liip hips

i /f=\ p /f=^ S

Other

-6^K>^ hi hip hip

other

Added
hi

Added
hips

Added
hip

Added
hit

Added
chip

Figure 4.4. Trie building

Figure 4.4 shows the trie being built incrementally for the running example.
The trie's root is the start state of the finite automaton, and a self-edge is
added to it. A signature is added by starting at the root, tracing along existing
paths until a necessary edge is absent, then adding the remaining edges and
states. The end of a path becomes a final state.

2 Label the states in the trie. The trie states are assigned numbers such that
states closer to the root have lower numbers. This corresponds to a breadth-
first ordering of the states. (If the trie states are laid out as in previous
figures, then numbering is a simple matter of stepping through the columns
of states.) The breadth-first ordering and labels appear in Figure 4.5.

3 Compute the failure function and finish the automaton. The failure function
is undefined for the start state, but must be computed for all other states.

Anti-Virus Techniques 59

Other

0
h

I
hi

1 ' 3

1
2 4

hip

P 5

r
' 7

hips

^ 8

• chip

P 9

Figure 4.5. Trie labeling

Any state directly connected to the start state (in other words, at a depth
of 1 in the trie) can only resume searching at the start state. For other
states, the partially-computed failure function is used to trace back through
the automaton to find the earliest place the search can resume. Processing
states in breadth-first order ensures that needed failure function values are
always present.

The computation algorithm is below. Notice that it not only fills in the failure
function, but also updates the finite automaton. (The notation r -»s means
an edge from some state r with some label a to state s, and s t a t e s /is an
edge labeled a from state s t a t e to some state t.)

foreach state s where depth(s) = 1:
failure(s) = START^STATE

foreach state s where depth(s) > 1, in breadth order:
a

find the edge r ~^s
state = failure (r)

a
while no edge state-^r exists:

state = failure(state)
failure(s) = t
output(s) U= output(0

Returning to the example, the algorithm starts by initializing/a//wr^(l) = 0
Mid failure(2) = 0. Then, tracing through the rest of the algorithm:

60 COMPUTER VIRUSES AND MALWARE

s

3

4

5

6

7

8

9

1^3

2 ^ 4

3^5

3 ^ 6

4 ^ 7

5^8

7 ^ 9

state-^t

0-i.o

oAi
p

o-4o
A3
o-4o
3i;5

failure(s)

0

1

0

0

3

0

5

Computing state 7's failure function value causes its output to change in the
finite automaton, and makes it a final state. State 9's output is changed too.
The final result is identical to Figure 4.2.

An alternative form of Aho-Corasick combines the finite automaton with
the failure function. The result is a new finite automaton for searching that
only makes one transition for every input character read, ensuring linear worst-
case performance. In practice, Aho-Corasick implementations must solve the
challenging problem of how best to represent the finite automaton in a time-
and space-efficient manner. ̂ ^̂

4.1.1.2 Algorithm: Veldman

The Aho-Corasick algorithm is not the only way to search for signatures.
One insight leads to a new family of search algorithms: it may be good enough
to perform a linear search on a reduced set of signatures. The search doesn't
have to be done in parallel.

This insight underlies Veldman's signature search algorithm. ̂ ^̂ The set of
signatures being looked for at any one time is filtered down to a manageable
level, then a sequential search is done. The key is limiting the sequential search
as much as possible.

Four adjacent, non-wildcard bytes are chosen from each signature. These
four-byte pattern substrings are then used to construct two hash tables which are
used for filtering during the search. Ideally, each pattern substring is chosen so
that many signatures are represented by the substring. For example. Figure 4.6
shows that three pattern substrings are sufficient to express five signatures:
blar?g, foo, greep, green, agreed. Two-byte pattern substrings are supported as
a special case for signatures which are short or contain frequent wildcards, and
the substrings don't have to be selected from the beginning of a signature.

After the pattern substrings are chosen, the hash tables are built. The first
hash table is used for the first two bytes of a substring, the second hash table

Anti-Virus Techniques 61

blar fo gree

I I I 1 I 1

blar?g foo greep green agreed

Figure 4.6. Pattern substring selection for Veldman's algorithm

for the last two bytes of a substring, if present. At search time, the hash tables
are indexed by adjacent pairs of input bytes. A single bit in the hash table
entry indicates whether or not the pair of input bytes might be part of a pattern
substring (and possibly part of a signature). A signature table is constructed
along with the hash tables, too - this is an array of lists, where each list contains
all the signatures that might match a pattern substring. The final hash table entry
for a pattern substring is set to point to the appropriate signature list. Figure 4.7
illustrates the hash tables and signature table for the example above.

The search algorithm is given below. The match subroutine walks through
a list of signatures and attempts to match each signature against the input.
Matching also compensates for the inexact filtering done by the hash tables:
for example, a byte sequence like "grar" or "blee" would pass through the hash
tables, but would be winnowed out by match.

foreach byte sequence bib2b3b4 in input:
if HTl[bib2] i s V " :

if two-byte pa t t e rn :
s ignatures = HTl [bib2]->st
match(signatures)

e l s e :
if HT2[b3b4] i s V " :

s ignatures = HT2 [b3b4]->st
match(signatures)

Veldman's algorithm easily supports wildcards of arbitrary complexity in sig­
natures, something the stock Aho-Corasick algorithm doesn't handle.^^^ How­
ever, the sequential search overhead of Veldman's algorithm must be carefully
monitored, and both Veldman and Aho-Corasick look at every byte in the input.
Is it possible to do better?

4.1.1.3 Algorithm: Wu-Manber

The Wu-Manber algorithm relies on the same insight as Veldman's algorithm,
limiting the set of signatures that must be linearly searched. ̂ ^̂ The difference
is that Wu-Manber is able to skip input bytes that can't possibly correspond to a
match, resulting in improved performance. The same example signatures will
be used to demonstrate the algorithm: blar?g, foo, greep, green, agreed.

62 COMPUTER VIRUSES AND MALWARE

HT1 HT2 ST

aa
ab
ac

bl

fo

gr

n
K
K

•

•

•

^ ^ ^ ^ ^ foo

»| blar?g |

greep ~[»| greerr~}»| agreed

Figure 4.7. Data structures for Veldman's algorithm

The Wu-Manber search code is below:

i = MINLEN
whi le i < n :

s h i f t = SHIFT [b/_ lb/]
i f s h i f t = 0:

s i g n a t u r e s = HASH[b/-ib/]
m a t c h (s i g n a t u r e s)
s h i f t = 1

i = i + s h i f t

The bytes of the input are denoted bi to b^, and MINLEN is the minimum
length of any pattern substring; its calculation will be explained below. Two
hash tables are used, as shown in Figure 4.8. SHIFT holds the number of input
bytes that may safely be skipped, and HASH stores the sets of signatures to
attempt matching against. The hash functions used to index into the hash tables
have not been shown, and in practice, different hash functions may be used for
the different hash tables. The match subroutine attempts to match the input
text starting at hi-MiNLEN+i against a list of signatures.

A trace of the algorithm for the running example is in Figure 4.9. MINLEN
is three, and for this short input, only four hash table lookups in SHIFT occur,
with one (successful) matching attempt finding "foo" starting at b6.

This leaves the question of how the hash tables are constructed. It is a
four-step process:

Anti-Virus Techniques

SHIFT

63

HASH

ab
aq
bl
fo
qr
la

0 0

re
XX

2
1
1
1
0
0
0
0
2

ia

0 0

re

foo

-•I greep"~}»| green"

Figure 4.8. Wu-Manber hash tables

^/ ^2 bs b^ bs be bj bg

c a b X X f o 0
i k i

Initial
position

L

After
+2 shift

i k i

After
another
+2 5 shift

After
+1 shift,

match attempt

Figure 4.9. Wu-Manber searching

1 Calculating MINLEN. This is the minimum number of adjacent, non-wildcard
bytes in any signature. For the example, MINLEN is 3 because of the signature
"foo:"

Signature Length

blar?g 4
foo 3
greep 5
green 5
agreed 6

64 COMPUTER VIRUSES AND MALWARE

2 Initializing the SHIFT table. Now, take one pattern substring for each sig­
nature containing MINLEN bytes: bla, foo, gre, agr. The Wu-Manber search
code above examines adjacent pairs of input bytes, so consider every two-
byte pair in the pattern substrings:

ag fo la re
bl gr 00

If the pair of input bytes isn't one of these, then the search can safely skip
MINLEN-1 input bytes. Because the SHIFT table holds the number of bytes
to skip for any input byte pair, initialize each entry in it to MINLEN-1.

3 Filling in the SHIFT table. For each two-byte pattern substring pair xy, q^y
is the rightmost ending position of xy in any pattern substring. The SHIFT
table is filled in by setting SHIFT [jcy] = MINLEN-(7xy. For example:

xy

bl
la
gr

Signature(s)

bla
bla

agr,gre

<ixy

2
3
3

The bytes in the pattern substrings are numbered from 1, explaining why
the ending position of "bl" in bil2a3 is 2, for instance.

4 Filling in the HASH table. If MINLEN-̂ ĵ y is zero for some xy above, then the
search has found the rightmost end of a pattern substring. A match can be
tried; HASH [xyl is set to the list of signatures whose pattern substring ends
inxy.

The full Wu-Manber algorithm is much more general; only a simplified form
of it has been presented here. It was designed to scale well and handle tens
of thousands of signatures, even though its worst case is horrendous, requiring
a sequential search through all signatures for every input byte. Tests have
shown that it lives up to these design goals, outperforming advanced forms of
Aho-Corasick except when the number of possible input values is very small."̂

4.1.1.4 Testing

How can a user determine if their anti-virus scanner is working? Testing
using live viruses may seem to be a good idea, and an endless supply of them
is available on the Internet and in a typical mailbox. ̂ ^̂ Malware of any sort
is potentially dangerous, though, and shouldn't be handled without special
precautions, especially by users without any special training.

Anti-Virus Techniques 65

X50!P%@AP[4\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-FILE!$H+H*

Figure 4.10. The EICAR test file

Testing can be done using non-viral code which the anti-virus software will
recognize to be a test file. The EICAR test file is intended to fill the need for
such a non-viral file. It is a legitimate MS-DOS program and, when run, prints
the message:

EICAR-STANDARD-ANTIVIRUS-TEST-FILE!

All modem anti-virus software should detect this test file. The contents of the
file were designed to be printable ASCII, and can be entered with any text editor.
The only caveat is that the file's contents, in Figure 4.10, must be the first 68
bytes in the file. (The disassembly of this code is not particularly enlightening,
and is omitted.) Some trailing whitespace is permitted, so long as the file doesn't
exceed 128 bytes in length; nothing else may be in the file.

The drawback to the EICAR test file is that it is non-viral, and it hardly
constitutes an exhaustive test of anti-virus software. Anti-virus software is
unlikely to rely solely on a scanner anyway, and the EICAR test file does
nothing to exercise other anti-virus techniques.

4.1,1.5 Improving Performance

Scanning an entire file for viruses is slow; it is referred to using the derogative
term grunt scanning. There are four general approaches to improving scanner
performance:

Reduce amount scanned. Scanning an entire file is not only slow, but in­
creases the likelihood of false positives, as a signature may be erroneously
found in the wrong place.̂ ^^ Instead, scanning can be targeted to specific
locations based on assumptions about viral behavior.

• Assuming that viruses add themselves to the beginning or the end of an
executable file, searches can be limited to those areas. This is called top
and tail scanning.

• More complicated executable formats allow an executable's entry point
to be specified. Scanning can be restricted to the program's entry point
and instructions reachable from that entry point.

• If the exact positions of all virus signatures are known, then scanning
can be specifically directed to those areas. The assumption here is that
all viruses are known, along with their behavior in terms of file location.
This is in contrast to the more generic assumptions about virus locations

66 COUPUTER VIRUSES AND MALWARE

made above. In conjunction with the entry point scanning above, this
is referred to dis fixed point scanning.

• Many viruses are small. The amount scanned in any location can be set
according to the size of common viruses. For example, if most viruses
are less than 8K in size, then the scanner may only examine 8K areas at
the beginning and end of the executable. ̂ ^̂

Use of scanning-reduction techniques implies that the scanner will no longer
see the complete input. The input to a scanning algorithm doesn't have to
be a faithful representation of a file's contents, however. The algorithms
work equally well on an abridged view of the input.

Of the performance-enhancing approaches, reducing the amount scanned is
the only approach that directly affects the potential correctness of the result.

Reduce amount of scans. Regardless of how much of a file is or isn't scanned,
avoiding a scan completely is better.^ This can be accomplished several
ways:

• Scanning can only be done for certain file types; only executable files
may be scanned, for instance, and not data files. Viruses and other threats
have been markedly versatile in choosing places to reside, making this
scanning-avoidance option no longer viable.

• Anti-virus software can compute and store state information for files
that have been successfully scanned, and only re-scan files if they have
changed.̂ -̂̂ While the technique is sound, a number of issues arise: ̂ ^̂

- What information about a file is stored? A file's state information
must be sufficient to determine if the file has been changed or not.
File state may include the file length and the date/time of the last
file modification; these are easy to compare for changes, but also
easy for a virus writer to fake.

A stronger means of change detection would compute a checksum
of the file, and store the checksum in the file's state information
too. Note that the checksum is only used for avoiding scans, and
isn't used for virus detection in this case, like integrity checkers
(Section 4.1.3) do.

- Where is state information stored? The possible locations include:
1 In memory. An in-memory cache of file state information would

not persist across machine reboots, or any other situation where
the anti-virus software would be restarted. The size of a mem­
ory cache would necessarily be bounded to prevent too much
memory from being consumed, and a cache replacement algo­
rithm would be needed to select cache entries to evict when

Anti-Virus Techniques 67

the cache fills up. Removing file state from the cache doesn't
change anti-virus accuracy, just performance - in the worst case,
re-scanning would be required.

2 On disk, in a database. File state information can be stored in
a database on disk. Persistence and size aren't problems, but
the file state database becomes a target for attack. Also, if the
database is keyed to filenames, then a file which is renamed or
copied is a file which gets rescanned, because its new identity
isn't present in the database.

3 On disk, tagged onto files. Extended filesystem attributes can
be used to attach file state information onto the file itself. These
attributes are carried along when a file is renamed or copied.

- What constitutes a change? Obviously, any differences between
the stored file state and its current state would indicate a change.
The comparison should be ordered so that cheaper operations, like
fetching a file's length, are done before more expensive operations
like checksumming.

Updates to the virus database, while not a change in file state per
se, should appear as a change so that the file is re-scanned. ̂ ^̂ This
is trivial to implement with an in-memory file state cache: a cache
flush resets all stored file state information at once. For on-disk
information, this can be implemented by adding the version of the
virus database used for scanning into the file state information.

An alternative approach is to use session keys. A session key is a
unique key which is changed each time the anti-virus software is
run, and files have the current session key attached to them when
they are scanned. The scanner checks for a file's session key before
scanning it; a re-scan is done if the session key doesn't match or is
absent.

- How are checksums computed efficiently?^ ^̂ Computing the check­
sum of an entire file can take longer than scanning it. This presents
the same problem as grunt scanning had to begin with! Much the
same solution is used: only checksum key areas of a file. The "key
areas" of a file depend on the file type, though, which implies that
checksumming code must be able to understand all the different
types of file.

A more clever way to find the key areas of a file is to leverage the
existing anti-virus software. The scanner is implicitly identifying
key areas by virtue of where it looks for a signature. The anti-virus
checksumming code can let the scanner proceed, recording the disk

68 COMPUTER VIRUSES AND MALWARE

blocks accessed in the file - these are the key areas that should be
checksummed.

- How is tampering avoided? On-disk information of any kind is
subject to attack. File state information can be encrypted to make
it slightly harder to forge. If session keys are used, the session key
can be used as the encryption key to encrypt something that can be
verified for correct decryption: a constant value, the filename, or
the file state information.^

Lower resource requirements. Engineering tradeoffs may be made to im­
prove on-access performance, such as lowering CPU and memory demands
by using a smaller, less precise set of signatures. This doesn't have to impact
overall accuracy, because additional verification can catch false positives,
as Section 4.4 explains.

Signature selection is a difficult issue, and involves tradeoffs in precision
as well as resource requirements. Short signatures can result in false pos­
itives and misidentification;^^^ long signatures are more precise, but bloat
the virus database. There is the additional danger of being too precise. Long
signatures may be so specific as to not detect minor virus variants - ideally,
signatures are chosen with possible variations in mind whenever possible,
like changes to data strings. Compiler-generated code is not terribly distinc­
tive for short signatures, either, and signatures may be better chosen from
the data area for viruses written in high-level languages.^^^

Change the algorithm. There is an overwhelming amount of research done
on efficient string-searching algorithms, and improving the basic searching
algorithm is always a possibility.

One avenue that may be explored is the use of algorithms tailored to spe­
cific file types. There are many, many kinds of compressed, archived, en­
coded, and weakly encrypted files which may harbor viruses. Too many,
in fact: typically, anti-virus scanners are preceded by a file type-specific
decoder, which provides the scanner with a plaintext, logical view of the in­
put. Scanning algorithms exist for directly searching specific file types, like
compressed files, which would avoid the need for separate decoding.^ ̂ ^ This
would only make good engineering sense for file types which are frequently-
encountered and tend to have large file sizes.

Change the algorithm implementation. Tuning an algorithm's implementa­
tion is a touchy process, and the results may depend on the compiler, CPU,
and memory as much as they depend on the code itself. For algorithms
that are implemented using frequent lookups in tables whose data doesn't
change, converting the algorithm and its data into directly-executable code
has yielded performance dividends in the past.̂ ^^ Effectively, the tables are

Anti-Virus Techniques 69

turned into code. Changing the underlying algorithm itself, rather than its
implementation, is likely to have a bigger impact, though. ̂ ^̂

These general approaches are not specific to scanners, and may be adapted
to improve the performance of other anti-virus techniques.

4.1.2 Static Heuristics
Anti-virus softv^are can employ static heuristics in an attempt to duplicate

expert anti-virus analysis. Static heuristics can find known or unknown viruses
by looking for pieces of code that are generally "virus-like," instead of scanning
for specific virus signatures.^^^ This is a static analysis technique, meaning that
the code being analyzed is not running, and there is no guarantee that any
suspicious code found would ever be executed. ̂ ^̂

Static heuristic analysis is done is two steps:^^^

1 Data: the Gathering. Data can be collected using any number of static
heuristics. Whether or not any one heuristic correctly classifies the input
is not critical, because the results of many heuristics will be combined and
analyzed later.

A scanner can be used to locate short signatures which are generally in­
dicative of suspicious code, called boosters}^^ The presence of a booster
increases the likelihood that the code being analyzed is viral. For example:

• Junk code.

• Decryption loops.

• Self-modifying code.

• Use of undocumented API calls.

• Manipulation of interrupt vectors.

• Use of unusual instructions, especially ones that wouldn't be generated
by a compiler.

• Strings containing obscenities, or obvious cues like the word "virus."

It is equally important to look for things that are present in "normal" code,
things that viruses don't usually do. For example, viruses don't often create
pop-up dialogue boxes for the user.̂ ^^ This would be considered a negative
heuristic, or a stopper.

Other heuristics can be computed which aren't based on scanning:

• The difference between an executable's entry point and its end of file
can be computed. ̂ ^̂ Too small a value, when compared to the same
value for typical uninfected executables, may point to an appender.

70 COMPUTER VIRUSES AND MALWARE

• Spectral analysis of the code may be done, computing a histogram of
the bytes or instructions used in the code. Encrypted code will have a
different spectral signature from unencrypted code.̂ ^^

2 Analysis. As hinted at by the terms "booster" and "stopper," analysis of
static heuristic data may be as simple as weighting each heuristic's value
and summing the results. If the sum passes some threshold, then the input
is deemed to be infected.

More elaborate methods of data analysis might use neural networks, expert
systems, or data mining techniques.^^^

Signatures of suspicious code will most likely be chosen by expert anti-virus
researchers. This process can be automated, however, at least for some restricted
domains: IBM researchers automatically found static heuristic signatures for
BSIs. They took two corpuses of boot blocks, one exclusively containing BSIs,
one with no infections. A computer found trigrams - sequences of three bytes -
which appeared frequently in the BSI corpus but not in the other corpus. Finally,
they computed a 4-cover such that each BSI had at least four of the found BSI
trigrams. After this process, they were left with a set of only fifty trigrams to
look for. The presence or absence of these trigrams was used to classify a boot
block as infected or not.̂ "̂ ^

Static heuristics may be viewed as a way to reduce the resource requirements
of anti-virus scanners. Full virus signatures in a virus database can be distilled
down to a set of short, generic, static heuristic signatures. (The distillation may
even be done automatically, using the IBM technique just described.) An anti­
virus scanner can look for these short signatures, loading in their associated set
of full virus signatures only if a match is found. This alleviates the need to keep
full signatures in memory.̂ ^^

4.1.3 Integrity Checkers
With the exception of companion viruses, viruses operate by changing files.

An integrity checker exploits this behavior to find viruses, by watching for
unauthorized changes to files.^-^^

Integrity checkers must start with a perfectly clean, 100% virus-free system;
it is impossible to understate this. The integrity checker initially computes
and stores a checksum for each file in the system it's watching. Later, a file's
checksum is recomputed and compared against the original, stored checksum.
If the checksums are different, then a change to the file occured.

There are three types of integrity checker:

1 Offline. Checksums are only verified periodically, e.g., once a week.

2 Self-checking. Executable files are modified to check themselves when
run. Ironically, modifying executables to self-check their integrity involves

Anti-Virus Techniques 71

virus-like mechanisms. Self-checking can be done in a less-obtrusive way
by adding the self-checking code into shared libraries.

In general, anti-virus software will perform integrity self-checking, ̂ ^̂ re­
gardless of the anti-virus technique it uses. The allure of attacking anti-virus
software is too great to ignore.

3 Integrity shells. An executable file's checksum is verified immediately prior
to execution. This can be incorporated into the operating system kernel for
binary executable files; the ideal positioning is less clear for other types
of "executable" files, like batch files, shell scripts, and scripting language
programs.

As Section 4.3 explains, integrity checkers have a long list of drawbacks,
and are not suitable as the only means of anti-virus protection for a system.

4.2 Detection: Dynamic Methods
Dynamic anti-virus techniques decide whether or not code is infected by

running the code and observing its behavior.

4.2.1 Behavior Monitors/Blockers
'Interestingly, viruses are detected now (and always have been) by behavioral recog­

nition. Unfortunately, the customers are the ones who have been forced to perform this
function.' - Paul SchmehP "̂̂

A behavior blocker is anti-virus software which monitors a running pro­
gram's behavior in real time, watching for suspicious activity. If such activity
is seen, the behavior blocker can prevent the suspect operations from succeed­
ing, can terminate the program, or can ask the user for the appropriate action to
perform. Behavior blockers are sometimes called behavior monitors, but the
latter term implies (rightly or wrongly) that no action is taken, and the burglars
are only watched while they steal the silver.

What does a behavior blocker look for? Roughly speaking, a behavior
blocker watches for a program to stray from what the blocker considers to
be "normal" behavior. Normal behavior can be modeled in three ways, by
describing: ̂ ^̂

1 The actions that are permitted. This is called positive detection,

2 The actions that are not permitted, called negative detection,

3 Some combination of the two, in much the same way that static heuristics
included boosters and stoppers.

An analogy can be drawn with natural immune systems, because behavior
blockers are trying to discern self from nonself, or normal from anomalous

72 COMPUTER VIRUSES AND MALWARE

for i in 1...4:
p r i n t (i)

for i in 1...4
p r i n t (i)

Static view
(code isn't running)

print(i)
print(i)
print(i)
print(i)

Dynamic view
(code is running)

Figure 4.11. Static vs. dynamic

behavior. This is the same thing that immune systems need to do to distinguish
normal cells from foreign invaders.^^^ Care must be taken, however, because
anomalous behavior does not automatically imply viral behavior.

The actions examined by behavior blockers do not need to include every
instruction executed; they need only include actions of interest for virus de­
tection. For example, most virus activity eventually needs to call some system
functionality, like I/O operations - only these actions have to be considered. No
matter how obfuscated the I/O calls are statically, the calls will appear clearly
when the code runs.̂ ^^ This is a major benefit enjoyed by dynamic types of
analysis like behavior blocking.

If each action that code performs is thought of as a symbol in a string, then
behavior blockers can be seen to be looking for dynamic signatures instead
of the static signatures used by static anti-virus techniques. (The same search
algorithms can be used for dynamic signatures, but the "input string" is dynam­
ically generated.) The difference is shown in Figure 4.11. Other ideas carry
over from static techniques, too. Behavior blockers can look for short dynamic
signatures which are generally indicative of virus-like behavior. Looking at
I/O actions, for instance, an appending virus might exhibit a dynamic signature
like:

1 Opening an executable, with both read and write permission.

2 Reading the portion of the file header containing the executable's start ad­
dress.

3 Writing the same portion of the file header. (The start address can be checked
separately for changes consistent with expected viral behavior.)

Anti-Virus Techniques 73

open
open
read
wr i te
read
wri te
read
wri te
c lose
close J
cution trace

open open read

open read wr i te

V^ read wr i te read

wri te read wri te

read wri te c lose

wri te c lose close

Dynamic
signatures (K=3)

Figure 4.12. From execution trace to dynamic signatures

4 Seeking to the end of the file.

5 Appending to the file.

Variations on this dynamic signature are obviously possible, and those variants
can be enumerated and watched for too. Generic, dynamic signatures like these
can be produced by human anti-virus experts.

Dynamic signatures specific to a given piece of code may be found auto­
matically that characterize permitted actions for the code. The code is run and
profiled before it becomes infected, watching the actions the code performs.
To produce dynamic signatures of length K, the stream of actions is examined
through a window of size K, saving all unique combinations of actions (Fig­
ure 4.12 is an example for K = 3); those are the code's dynamic signatures for
normal behavior, which are recorded in a database. When the same code is run
later, the same process is repeated, but this time the actions within the window
are looked up in the database, to ensure that they were previously seen. Too
many new action sequences indicate abnormal behavior. In practice, using sys­
tem calls (without parameters) as actions, and a value of Â = 10, this scheme
was seen to work well for several Unix system programs.^^^

False positives from behavior blockers can be mitigated by taking context
information into account. A notion of "ownership" is especially useful in this
regard, because it gives applications a lot of leeway in terms of the behaviors
they can exhibit when working with their files. ̂ -̂^ Web browsers maintain a
cache of previously-downloaded data, for example. Web browsers also clear
out their caches periodically, without warning, and a mass deletion of files looks

74 COMPUTER VIRUSES AND MALWARE

more than a little bit like something that a virus would do. A behavior blocker
that tracked the cache files' creation would know that they "belong" to the web
browser, and so the file deletion is probably legitimate.

This file deletion example serves to illustrate a common criticism leveled
at behavior blockers: the code whose behavior is being monitored is actually
running. Any bad effects like file deletion that the behavior blocker doesn't
prevent are allowed to proceed unchecked. A general, system-wide ''undo"
facility can alleviate some of these concerns by increasing the time window
which the behavior blocker has to detect viral behavior without ill effect. ̂ ^̂ Not
all operations can be undone, such as anything transmitting information outside
the machine. A short-term undo ability for some asynchronous operations, like
sending email, can be implemented by introducing a transmission delay in
sending email to a remote machine.̂ ^^

Finally, there is the question of how long a running program's behavior should
be monitored. The duration of monitoring is a concern because monitoring adds
run-time overhead. Assuming most viruses will reveal themselves early when
an infected program runs, programs only need to be monitored when they start.
However, this assumption is not always valid. In any case, behavior blockers
can be enabled and disabled for a running program as needed.

4.2.2 Emulation
Behavior blocking allowed code to run on the real machine. In contrast,

anti-virus techniques using emulation let the code being analyzed run in an
emulated environment. The hope is that, under emulation, a virus will reveal
itself. Because any virus found wouldn't be running on the real computer, no
harm is done.

Emulation can be applied two ways, although the boundary between them is
admittedly fuzzy:

Dynamic heuristics Dynamic heuristics are exactly the same as static heuris­
tics. The only difference is in how the data is gathered: dynamic heuristic
analysis gathers its data from the emulator about the code being analyzed.
The analysis is done the same way as it is for static heuristics.

Dynamic heuristics can look for the same features as behavior blockers
too, like system calls. The emulator is a safe virtual environment in which
to monitor running code, however, and emulation doesn't run the code to
completion. Dynamic heuristics can be used effectively to spot the dynamic
signatures of metamorphic viruses. ̂ '̂ ^

Generic decryption For polymorphic viruses, the decryptor loop can be very
hard for anti-virus software to spot. Generic decryption skirts this issue by
relying on the virus' own decryptor loop to decrypt the virus body. Once

Anti-Virus Techniques 75

decrypted, the virus body can be detected using normal scanning methods. ̂ "̂^
This makes exact identification possible for known polymorphic viruses.

Generic decryption uses heuristics to determine when a virus has decrypted
itself. ̂ "̂"̂ For example, the virus may try to execute an instruction which
resides in a previously-modified (i.e., decrypted) memory location. Another
indicator is the apparent size of the decryption, although this amount will
vary with the architecture. On Intel x86 platforms, 24 bytes or more of
modified/decrypted memory is a promising sign of decryption. A series of
boosters followed by some stoppers is yet another indication that decryption
is complete.

Besides heuristics, an emulator can scan memory for signatures periodically
during emulation, and upon completion of the emulation. ̂ ^̂

The rest of this section discusses the parts of an emulator, reasons to re-run
the emulator, and ways to optimize emulation.

4.2.2.1 Emulator Anatomy
One way to execute code in a controlled way is to single-step through

the code. Code could arguably be "emulated" this way.̂ "̂ ^ However, single-
stepping can be easily detected by a virus, and there is always the danger of a
virus running in a non-virtual environment escaping. A more elaborate emula­
tion mechanism is needed.

Conceptually, an emulator has five parts: ̂ "̂^

1 CPU emulation.

2 Memory emulation. The full scope of the memory emulator's task is daunt­
ing: 32 bits of address means that potentially 4G of address space must
be emulated. Fortunately, the emulator does not run enough of the code's
instructions for that much emulated memory to be chewed up.

For generic decryption, as mentioned above, the memory emulator will
need to keep track of how much memory has been modified, and where it
is. This is not only useful for deciding if the decryptor loop has finished.
Later scanner operation can be limited to the areas of memory which the
suspected virus has modified.

3 Hardware and operating system emulation. Real operating system code isn't
used in an emulator, but rather a stripped-down mock-up of it. Why? There
are four reasons :̂ '̂ ^

• Copyright and licensing issues with the real operating system code.

• Size - the real operating system consumes a lot of memory and disk
space.

76 COMPUTER VIRUSES AND MALWARE

• Startup time. The overhead is too great to boot an operating system in
the emulator (or restore a snapshot) for every program being emulated.

• The emulator needs monitoring capability which isn't present in a real
operating system.

Many operating system calls in an emulator will return faked, fixed values.

For hardware emulation, the parts typically used by viruses must be emu­
lated, such as timers that a virus might use to generate random numbers.
The low-level disk interface would have once been important to emulate,
but any code now talking to that interface directly is probably up to no good.

4 Emulation controller. When does emulation stop? No attempt is made to run
code being analyzed to completion (with the exception of running code in an
anti-virus lab). There are two reasons for this. First, time spent emulating
is time the user isn't getting any response from the program being analyzed.
Second, some code never finishes; application programs run until the user
tells them to quit, and network servers are meant to run indefinitely. This is
related to the famous Halting Problem in computer science, which says that
it is not possible in general for one program to decide if another program
will ever stop running.

In practice, the emulation controller will use rules and heuristics to decide
when to stop emulation. Some example rules are:

• The number of instructions emulated. The exact values are architecture-
dependent, and the maximum thresholds will increase with increases in
computer power. On an Intel x86, less than 1000 instructions usually
need to be emulated; emulation times start becoming prohibitive at about
the 30,000 instruction mark.̂ "̂ ^

• The amount of time spent emulating. One anti-virus' default setting is
45 seconds.

• The proportion of instructions that modify memory. Too low a propor­
tion can mean non-viral code, or a virus which isn't encrypted.^^^

Heuristically, the emulation controller could watch for stoppers, things that
viruses normally wouldn't do. For instance, most viruses won't perform
output prior to decrypting.

5 Extra analyses. The emulator may gather additional data during emulation
which can be used for additional, post-emulation analyses. For example,
a histogram can be maintained of executed instructions which are typical
of virus decryption. This can be used to find well-obscured polymorphic
viruses. A histogram can also be used to detect metamorphic viruses by
comparing the emulation histogram to histograms of known metamorphic
viruses. ̂ ^̂

Anti-Virus Techniques 77

Emulator

Emulator

Figure 4.13. Herding goats

4.2.2.2 If at First You Don't Succeed
The emulation controller may re-invoke the emulator for a variety of reasons:

• Virus code may have results which are specific to a certain CPU and its
properties. For example, self-modifying virus code may rely on how a
particular CPU fetches its instructions, or instructions may be used which
only work on a specific CPU. The emulator may need to be re-run with
different CPU parameters. ̂ ^̂

• If a virus is observed to install interrupt handlers, the emulator can be run
on those handlers to test their behavior. ̂ ^̂

• Some viruses do not take control at the usual entry point of an infected
program, and instead have multiple entry points. The emulator can be run
on each possible virus entry point. ̂ ^̂

• The ability of a suspected virus to self-replicate can be confirmed using goat
files.i^^

A goat file is a "sacrificial" file that can be used as a decoy, where any
modifications to the goat file indicate illicit activity. A goat file with known
properties can also be used to deduce information about a virus.

The goat file in Figure 4.13 is an executable which in this case simply
exits without performing any I/O. The goat file is fed to a suspected virus
inside the emulator. If the goat file is modified, then the emulator is re-run,
feeding the original goat file to the modified goat file. An attempt to modify

78 COMPUTER VIRUSES AND MALWARE

the original goat file must now indicate a virus, because self-replication has
been demonstrated.

• One problem with emulation is that viral behavior may be (deliberately)
sporadic, only manifesting itself under certain conditions, like a time-based
trigger.

The code for these viral behaviors is usually run or not run based on the re­
sult of a conditional branch in the virus' code. The emulator can watch for
untaken branches that could signal this, and queue up the untaken branches
along with an approximate machine state for each: register contents, pro­
gram counter and stack pointer values, and some contents of the top of the
stack. After the main emulation is done, the emulator can be re-run on the
queued branches to try and flush out hidden behavior. ̂ ^̂

• A related use of re-running the emulator is watching for unused memory
areas in the virus which may be instructions. (The instructions could be
executed through a mechanism which the emulator didn't discover.) The
emulation controller can heuristically set a "virus region" of memory, and
watch for parts of it that aren't executed during the main emulation. Later,
a machine state can be guessed at, such as setting all the register contents to
zero, and the emulator can try to run the unused memory areas.̂ '̂̂

4.2.2.3 Emulator Optimizations

"Optimization" is a broad term. Emulator optimizations can address emula­
tor size and complexity, as well as being used to improve emulator performance.

• Instead of emulating real filesystems, the emulator can use real filesystems. ̂^̂
Disk reads can be passed through to the real disk, and any disk writes can be
stored in the emulator and not written through to the disk. Naturally, sub­
sequent reads of changed information would return the copy stored in the
emulator. This optimization reduces emulator size, complexity, and startup
time.

• Data files may be emulated as though they contained code, because a virus
may conceivably hide there. Code that makes extensive use of uninitialized
registers is often an indication of a legitimate data file. This heuristic can
be used to stop the emulator early. ̂ ^̂

• A cache can be kept of previous emulator states, where a cached state record
may include: ̂ ^̂

- the register contents;

- the program counter's value;

Anti-Virus Techniques 79

~ instructions around the memory location where the program counter
points;

- the stack pointer;

- stack contents around where the stack pointer points;

- the size of the emulated file;

- the number of memory writes done by the emulated code;

- the number of memory bytes changed by the emulated code;

- a checksum of the data written to memory.

The emulator is run for some relatively small number of instructions: 400-
1000 on an Intel x86. Normally the emulator would be paused here anyway,
because if no decryption activity had been detected by this time, any virus
would be assumed to be unencrypted, and the emulation controller could
begin normal virus scanning.

A state record is constructed at this point, and the state cache is searched. A
cache hit signifies that the code has been emulated previously and declared
virus-free, so emulation may stop here. Otherwise, emulation resumes and
continues to its normal termination. If the code is still deemed to be clean,
the constructed state record is added to the state record cache for later. The
net effect is a speed improvement, because emulation can be stopped early
for previously-emulated code.

4.3 Comparison of Anti-Virus Detection Techniques
This chapter has presented a wide range of anti-virus techniques, each with

relative strengths and weaknesses. No one technique is best for detecting every
type of virus, and a combination of techniques is the most secure design.

Scanning

Pro: Gives precise identification of any viruses that are found. This
characteristic makes scanning useful by itself, as well as in conjunction
with other anti-virus techniques.

Con: Requires an up-to-date database of virus signatures for scanning
to be effective. Even assuming that users update their virus databases
right away, which isn't the case, there is a delay between the time when
a new threat is discovered and when an anti-virus company has a signa­
ture update ready. This leaves open a window of opportunity in which
systems can be compromised. Also, scanning only finds known viruses,
and some minor variants of them.

80 COMPUTER VIRUSES AND MALWARE

Static heuristics

• Pro: Static heuristic analysis detects both known and unknown viruses.
• Con: False positives are a major problem, and a detected virus is neither

identified, nor disinfectible except by using generic methods.

Integrity checkers

• Pro: Integrity checkers boast high operating speeds and low resource
requirements. They detect known and unknown viruses.^^^

• Con: Detection only occurs after a virus has infected the computer,
and the source of the infection can't necessarily be pinpointed. An
integrity checker can't detect viruses in newly-created files, or ones
modified legitimately, such as through a software update. Ultimately,
the user will be called upon to assess whether a change to a file was
made legitimately or not. Finally, found viruses can't be identified or
disinfected.

Behavior blockers

• Pro: Known and unknown viruses are detected. ̂ ^̂
• Con: While a behavior blocker knows which executable is the problem,

unlike an integrity checker, it again cannot identify or disinfect the virus.
Run-time overhead and false positives are a concern, as is the fact that
the virus is already running on the system prior to being detected.

Emulation

• Pro: Any viruses found are running in a safe environment. Known and
unknown viruses are detected, even new polymorphic viruses. ̂ -̂̂

• Con: Emulation is slow. The emulator may stop before the virus reveals
itself, and even so, precise emulation is very hard to get correct. The
usual concerns about identification and disinfection apply to emulation,
too.

In general, dynamic methods impose a run-time overhead for monitoring
that is not incurred by static methods. The tradeoff is that dynamic methods,
by watching code run, effectively peel away a layer of obfuscation from viral
code.

4.4 Verification, Quarantine, and Disinfection
Once a virus is detected, few people will want to have it remain on their

computer. The tasks for anti-virus software that lie beyond detection are veri­
fication, quarantine, and disinfection. Compared to detection, these three tasks

Anti-Virus Techniques 81

are performed rarely, and can be much slower and more resource-intensive if
necessary. ̂ '̂̂

4.4.1 Verification
Virus detection usually doesn't provide the last word as to whether or not

code is infected. Anti-virus software will often perform a secondary verification
after the initial detection of a virus occurs.

Verification is performed for two reasons. First, it is used to reduce false
positives that might happen by coincidence, or by the use of short or overly
general signatures. Second, verification is used to positively identify the virus.
Identification is normally necessary for disinfection, and to prevent being led
astray; virus writers will sometimes deliberately make their virus look like
another one. In the absence of verification, anti-virus software can misidentify
the virus and do unintentional damage to the system when cleaning up after the
wrong virus.

Verification may begin by transforming the virus so as to make more in­
formation available. One way to accomplish this, when an encrypted virus is
suspected, is for the anti-virus software to try decrypting the virus body to re­
veal a larger signature. This process is called X-raying}^^ For emulation-based
anti-virus software, X-raying is a natural side effect of operation.

X-raying may be automated in easier ways than emulation, if some simplify­
ing assumptions are allowed. A virus using simple encryption or a static encryp­
tion key (with or without random encryption keys) does not hide the frequency
with which encrypted bytes occur; these encryption algorithms preserve the
frequency of values that was present in the unencrypted version. Cryptanalysts
were taking advantage of frequency analysis to crack codes as early as the 9th
century CE,̂ ^^ and the same principle applies to virus decryption. ̂ ^̂ Normal,
uninfected executables (i.e., the plaintext) tend to have frequently-repeated val­
ues, like zeroes. Under the assumptions above, if the most frequently-occurring
plaintext value is known, then the most frequently-occurring values in an en­
crypted version of code (ciphertext) should correspond to it. For example, say
that 99 is the most frequent value in plaintext, and 27 is most frequent in the
ciphertext. For XOR-based encryption, the key must be 120 (99 xor 27).

Back to verification, once all information is made available, verification may
be done in a number of ways:̂ ^^

• Comparing the found virus to a known copy of the virus. Shipping viruses
with anti-virus software would be rather unwise, making this option only
suitable for use in anti-virus labs.

• Using a virus-specific signature, for detection methods that aren't signature-
based to begin with. If the initial detection was signature-based, then a longer
signature can be used for verification.

82 COMPUTER VIRUSES AND MALWARE

• Checksumming all or part of the suspected virus, and comparing the com­
puted checksum to the known checksum of that virus.

• Calling special-purpose code to do the verification, which can be written in
a general-purpose or domain-specific programming language.

Except for special-purpose code, these are not viable solutions for metamorphic
viruses, because they rely on the (unencrypted) virus body being the same for
each infection.

4.4.2 Quarantine
When a virus is detected in a file, anti-virus software may need to quarantine

the infected file, isolating it from the rest of the system. ̂ ^̂ Quarantine is only a
temporary measure, and may only be done until the user decides how to handle
the file (e.g., giving approval to disinfect it). In other cases, the anti-virus
software may have generically detected a virus, but have no idea how to clean
it. Here, quarantine may be done until an anti-virus update is available that can
deal with the virus that was discovered.

Quarantine can simply be a matter of copying the infected file into a distinct
"quarantine" directory, removing the original infected file, and disabling all
permission to access the infected file. The problem is that the file permissions
may be easily changed by a user, and files may be copied out of a quarantine
directory in a virulent form. A good solution limits further spread by accident,
or casual copying, but shouldn't be elaborate, as accessing the infected file for
disinfection will still be necessary.

One solution is to encrypt quarantined files by some trivial means, like an
XOR with a constant. The virus is thereby rendered inert, because an executable
file encrypted this way will no longer be runnable, and copying the file does no
harm. Also, an encrypted, quarantined file is readily accessible for disinfection.

Another solution is to render the files in the quarantine directory invisible
- what can't be seen can't be copied. Anti-virus software can accomplish this
feat using file-hiding techniques like stealth viruses and rootkits use. However,
this may not be the best idea, as viruses may then try to hide in the quarantine
directory, letting the anti-virus software cloak their presence. There could also
be issues with false positives produced by virus-like behavior from anti-virus
software. ̂ ^̂

4.4.3 Disinfection
Disinfection does not mean that an infected system has been restored to its

original state, even if the disinfection was successful. ̂ ^̂ In some cases, like
overwriting viruses that don't preserve the original contents, disinfection is just
not possible.

As with everything else anti-virus, there are different ways to do disinfection:

Anti-Virus Techniques 83

• Restore infected files from backups. Because everyone meticulously keeps
backups of their files, the affected files can be restored to their backed-up
state. Some files are meant to change, like data files, and consequently
restoring these files may result in data loss. There are also viruses called
data diddlers, which are viruses whose payload slowly changes files. ̂ ^̂ By
the time a data diddler has been detected, it can have made many subtle
changes, and those changed files - not the original ones - would have been
caught on the backups.

• Virus-specific. Anti-virus software can encode in its database the infor­
mation necessary to disinfect each known virus. Many viruses share char­
acteristics, like relocating an executable's start address, so in many cases
disinfection is a matter of invoking generic disinfection subroutines with the
correct parameters.̂ ^-^

Virus-specific information needed for disinfection can be derived automat­
ically by anti-virus researchers, at least for relatively simple viruses. Goat
files with different properties can be deliberately infected, and the resulting
corpus of infected files can be compared to the originals. This comparison
can reveal where a virus puts itself in an infected file, how the virus gets con­
trol, and where any relocated bytes from the original file may be found. ̂ "̂̂
This can be likened to a chosen-plaintext attack in cryptography. ̂ ^̂

• Virus-behavior-specific. Rather than customize disinfection to individual
viruses, disinfection can be attempted based on assumptions about viral
behavior. For prepending viruses, or appenders that gain control by modi­
fying the program header, disinfection is a matter of: restoring the original
program header; moving the original file contents back to their original
location.

Anti-virus software can store some information in advance for each exe­
cutable file on an uninfected system which can be used later for disinfection. ̂ ^̂
The necessary information to store is the program header, the file length, and
a checksum of the executable file's contents sans header. This disinfection
technique integrates well with integrity checkers, since integrity checkers
store roughly the same information anyway.

For an infected file, the saved program header can be immediately restored.
The tricky part is determining where the original file contents reside, because
a prepending virus may have shifted them from their original location in
the file. The disinfector knows the checksum of the original file contents,
however - it can iterate over the infected file, checksumming the same
number of bytes as were used for the original checksum (the uninfected file
length minus the header length). If the new checksum matches the stored
checksum, then the original file contents have been located and can be

84 COMPUTER VIRUSES AND MALWARE

1000-byte
checksum <

= 5309

1000-byte
checksum <

= 0867

Header

1000-byte
> checksum

= 5309

Before infection After infection

Figure 4.14. Disinfection using checksums

restored. This is shown in Figure 4.14. The number of checksum iterations
needed in the worst case is equivalent to the added length of the virus, the
difference between the lengths of the infected and uninfected files.

This method naturally enjoys several built-in safety checks which guard
against situations where this disinfection method is inapplicable. The com­
puted virus length can be checked for too-small, or even negative, values.
Failure to match the stored checksum in the prescribed number of iterations
also flags inapplicability.

Using the virus' code:

- Stealth viruses happily supply the uninfected contents of a file. Anti­
virus software can exploit this to disinfect a stealth virus by simply
asking the virus for the file's contents. ̂ '̂ ^

- Generic disinfection methods assume that the virus will eventually re­
store and jump to the code it infected. A generic disinfector executes
the virus under controlled conditions, watching for the original code to
be restored by the virus on the disinfector's behalf.̂ ^^

* One anti-virus system stepped through the viral code in a real, not
emulated, environment. The system ran harmless-looking instruc­
tions, skipping potentially harmful ones until the virus jumped back
to the original code. This turned out to be a dangerous approach,
and virus writers eventually found ways to trick the disinfector. ̂ ^̂

* The infected code can be emulated until the virus jumps to the
original code. The obvious way to do this is to have the emulator's
controller heuristically watch for the jump.

Anti-Virus Techniques 85

A minor variant allows anti-virus disinfection code to run inside the
emulator along with the infected code. The disinfection code can
then be in native code and yet be portable (subject to the emulator's
own portability). As needed, the virus' code can be called by the
disinfection code, and the emulator can sport an interface by which
the in-emulator disinfection code can export a clean version of the
file.

Cruder disinfection can be done by zeroing out the virus, or simply deleting
the infected file.^^^ This will eradicate the virus, but won't restore the system
at all.^

4.5 Virus Databases and Virus Description Languages
Up to now, the existence of a virus database for anti-virus software has

been assumed but not discussed. Conceptually, a virus database is a database
containing records, one for every known vims. When a virus is detected using
a known-virus detection method, one side effect is to produce a virus identifier.
This virus identifier may not be the virus' name, or even be human-readable, but
can be used to index into the virus database and find the record corresponding
to the found virus. ̂ ^̂

A virus record will contain all the information that the anti-virus software
requires to handle the virus. This may include:

• A printable name for the virus, to display for the user.

• Verification data for the virus. Again, a copy of the entire virus would not
be present; the last section discussed other ways to perform verification.

• Disinfection instructions for the virus.

Any virus signatures stored in the database must be carefully handled. Why?
Figure 4.15 illustrates a potential problem with virus databases, when more than
one anti-virus program is present on a system. If virus signatures are stored in
an unencrypted form, then one anti-virus program may declare another vendor's
virus database to be infected, because it can find a wealth of virus signatures in
the database file! The safest strategy is to encrypt stored virus signatures, and
never to decrypt them. Instead, the input data being checked for a signature
can be similarly encrypted, and the signature check can compare the encrypted
forms. ̂ ^̂

As new viruses are discovered, an anti-virus vendor will update their virus
database, and all their users will require an updated copy of the virus database
in order to be properly protected against the latest threats. This raises a number
of questions:

86 COMPUTER VIRUSES AND MALWARE

P
,,W32J\wful.B ,
^Excnjdal ing ' '^

, MaaHomble.B ,

Virus Database #1 Virus Database #2

Figure 4.15. Problem with unencrypted virus databases

How is a user informed of updates? The typical model is that users peri­
odically poll the anti-virus vendor for updates. The polling is done auto­
matically by the anti-virus software, although a user can manually force an
update to occur. Another model is referred to as a push model, where the
anti-virus vendor "pushes out" updates to users as soon as they are available.
Many vendors use the polling model, but will email alerts about new threats
to users upon request, permitting them to make an informed choice about
updating.

Should updates be manual or automatic? Automatic updates have the poten­
tial to provide current known-virus protection for users as soon as possible.
Currency aside, some machines are not aggressively maintained by their
users. Automatic updates are not always the best choice, however. Anti­
virus software, like any software, can have bugs. It is rare, but possible, for
a database update to cause substantial headaches for users because of this.
In one case, a buggy update caused the networks of some Japanese railway,
subway, and media organizations to be inaccessible for hours.̂ -̂̂

How often should updates be done? Frequency of updates is in part a
reflection of the rate at which new threats appear. Once upon a time, monthly
updates would have been sufficient; now, weekly and daily updates may not
be often enough.

How should updates be distributed? Electronic distribution of updates, es­
pecially via the Internet, is the only viable means to disseminate frequent up­
dates. This means that anti-virus vendors must have infrastructures for dis-

Anti-Virus Techniques 87

tributing updates that are able to withstand heavy load - a highly-publicized
threat may cause many users to update at the same time.

The update process is an attractive target for attackers. It is something that
is done often by users, and compromising updates would create a huge pool
of vulnerable machines. The compromise may occur in a number of ways:

- The vendor's machines that distribute the update may be attacked.

- An update may be compromised at the vendor before reaching the dis­
tribution machines. Anti-virus vendors are amply protected internally
from malware, but an inside threat is always possible.

- A user machine may be spoofed, so that it connects to an attacker's
machine instead of the vendor's machines.

- A "man-in-the-middle" attack may be mounted, where an attacker is
able to intercept communications between the user and vendor. An
attacker may modify the real update, or inject their own update into the
communications channel.

There is also the practical matter of what form the update will take. Trans­
mitting a fresh copy of the entire virus database is not feasible due to the
bandwidth demands it would place on the vendor's update infrastructure,
not to mention the comparatively limited bandwidth that many users have.

The virus database will have a relatively small number of changes between
updates, so instead of sending the entire database, a vendor can just send
the changes to the database. These changes are sometimes called deltas}^^
Furthermore, these deltas can be compressed to try and make them smaller
still. Downloaded deltas should be verified to protect against attacks and
transmission errors.

The update mechanism can also be used to update the anti-virus engine itself, not
just the virus database. ̂ ̂ ^ This may be necessary to fix bugs, or add functionality
required to detect new viruses. Known-virus scanners will need their data
structures updated with the latest signatures as well.

Clearly, the information in the virus database and other updates from an
anti-virus vendors must come from someplace. Anti-virus vendors often have
an in-house virus description language, a domain-specific language designed
to describe viruses, and how to detect, verify, and disinfect each one.̂ ^^ Two
examples are given in Figure 4.16. Anti-virus researchers create descriptions
such as these, and a compiler for the virus description language translates them
into the virus database format.

Domain-specific languages tend to be very good at describing things in their
domain, but not very good for general use. Virus description languages can
have escape mechanisms to call code written in a general-purpose language.

88 COMPUTER VIRUSES AND MALWARE

VERV description
VIRUS example ; short alias for virus
NAME An example virus ; full virus name
LOAD S-EXE 0000 0500 ; load bytes 0-500 from .EXE entry point
DEXORl 0100 0500 0035 0000 ; XOR bytes 100-500 with key at byte 35
ZERO 0035 0001 ; set key at byte 35 to zero
CODE 0000 0500 4a4f484e ; is checksum of bytes 0-500 = 4a4f484e?

CVDL description
; looks for two words in virus' data
: example,'"painfully" AND "contrived",!

Figure 4.16. Example virus descriptions

code which is compiled and either interpreted or run natively. ̂ ^̂ This allows
special-purpose code to be written for detection, verification, or disinfection.

Special-purpose code can be used to direct the entire virus detection, instead
of only being invoked when needed. For example, for viruses which have
multiple entry points, special-purpose code can tell a scanner what locations it
should scan.̂ ^^

4,6 Short Subjects
To conclude this chapter, a veritable potpourri of short topics: anti-stealth

techniques, macro virus detection, and the role of compiler optimization in
anti-virus detection.

4,6.1 Anti-Stealth Techniques
One assumption made up to this point is that anti-virus software sees an

accurate picture of the data being checked for viruses. But what if a virus is
using stealth to hide?

Anti-stealth techniques are countermeasures used against stealth viruses.
There are two options:

1 Detect and disable the stealth mechanism. For example, calls to the operat­
ing system can be examined to make sure they're going to the "right" place.
Section 5.5 looks at this in more depth.

2 Bypass the usual mechanisms to call the operating system in favor of unsub-
vertible ones. For Unix, this would mean that anti-virus software only uses
direct system calls (assuming, of course, that the operating system kernel is
secure); for MS-DOS systems, this could mean making direct BIOS calls to
get disk data.

Anti-Virus Techniques 89

4.6,2 Macro Virus Detection
Macro viruses present some interesting problems for anti-virus software. ̂ ^̂

Macros are in source form, and are easy to change and allow a lot of freedom
with formatting. Macro language interpreters can be extremely robust in terms
of buUishly continuing execution in the face of errors; a missing or damaged
macro won't necessarily keep a macro virus from operating. Some specific
problems with macro viruses:

• Accidental or deliberate changes to a macro virus, even to its formatting, may
create a new macro virus. This may even happen automatically: Microsoft
Word converts documents from one version of Word to another, and this
conversion has created new macro viruses in the process,

• Bugs in macro virus propagation, or incomplete disinfection of a macro
virus, can create new macro virus variants. Anti-virus software can acci­
dentally create viruses if it's not careful!

• A macro virus can accidentally "snatch" macros from an environment it
infects, becoming a new virus. In one case, a Word macro virus even swiped
two macros from Microsoft's software that protects against macro viruses. ̂ ^̂

Macro viruses, despite these problems, have one redeeming feature. ̂ ^̂ Macros
operate in a restricted domain, so anti-virus detection can determine what con­
stitutes "normal" behavior with a very high degree of confidence. This limits
the number of false positives that might otherwise be incurred by detection.

All of the same ideas have been trotted out for macro viruses as have been used
for other types of virus, including signature scanning, static heuristics, behavior
blocking, and emulation.^^^ Due to variability in formatting, methods looking
for static signatures are facilitated by removing whitespace and comments,
or translating it into some equivalent canonical form first.^ A similar need for
canonicalization arises from macro languages which aren't case sensitive, where
f 00, FOO, and Foe would all refer to the same variable.^^^

More systemic approaches to macro virus detection periodically examine
documents on a system, and build a database of the documents and their
properties.̂ ^"^ In particular, macros in documents can be tracked; the sudden
appearance of macros in a document, a change to known macros in a document,
or a number of documents with the same changes to their macros are all signals
that a macro virus may be active.

Macro viruses have not been parasitic, meaning they have not inserted vi­
ral code into legitimate code, but have acted more like companion viruses.^^^
(Nothing prevents macro viruses from being parasitic; it's just slightly more ef­
fort to implement.) Disinfection strategies for macro viruses have consequently
tended towards deletion-based approaches:

90 COMPUTER VIRUSES AND MALWARE

• Delete all macros in the infected document, including any unfortunate, le­
gitimate user macros.

• Delete macros known to be associated with the virus found. This requires a
known-macro-virus database.

• For macro viruses detected using heuristics, remove the macros found to
contain the offending behavior. ̂ ^̂

• Emulator-based detection can track the macros seen to be used by the macro
virus and delete them.̂ ^^

Applications supporting macros treat macros in a much more guarded fashion
than they once did, and macro viruses are a much less prominent threat than
they have been as a result. ̂ ^̂

4.6.3 Compiler Optimization
Compiler techniques have natural overlaps with anti-virus detection. For

example, some scanning algorithms are applied to match patterns in trees, for
code generation; ̂ ^̂ scanning and parsing are needed for macro virus detection;
work on efficient interpretation is applicable to emulation, and interpreting
special-purpose code in the anti-virus engine.

One suggestion which rears its head occasionally is the possibility of us­
ing compiler optimizations for detection of viruses. Given that a number of
compiler optimization techniques perform some sophisticated analyses, it isn't
surprising to consider applying them to the problem of virus detection:

• Constant propagation replaces variables which are defined as constants with
the constants themselves. This increases the information available about
code being analyzed, and facilitates other optimizations. With the code
below, constant propagation yields the name of the file being opened:

f i l e = "c : \autoexec.bat" f i l e = "c : \autoexec .bat"

f = open(file) f = openC'c:\autoexec.bat")

Constant propagation has been proposed to assist in the static analysis of
macro viruses.^^^

• Dead code is code which is executed, but the results are never used. In the
code below, for example, the first assignment to r 1 is dead, because its value
is not used before r l is redefined:

r l = 123
r l = r2 + 7

Anti-Virus Techniques 91

Polymorphic viruses tend to exhibit a lot of dead code - more than 25%
- especially when compared to non-viral code, so dead code analysis can
make a useful heuristic to help with polymorphic virus detection.^^^

However, some problems loom. Compiler optimization algorithms are not
known for efficiency, with the exception of algorithms designed specifically for
use in dynamic, or just-in-time, compilers. Such algorithms tend to trade speed
increases for decreases in accuracy, though. It is often possible to concoct pro­
grams which exercise the worst case performance of optimization algorithms,
or programs which make the task of precise analysis undecidable. Virus writers
will undoubtedly take advantage of this if anti-virus' use of compiler optimiza­
tion becomes widespread.

92 COMPUTER VIRUSES AND MALWARE

Notes for Chapter 4
1 And the rest of the quote: 'Unfortunately, this program must identify every

(or nearly so) program as infected, whether it is or not!' [299, page 258]
2 Until the anti-virus signatures are updated or files are accessed from a non-

network source, at which point a full on-demand scan would be indicated.
3 Obligatory Knuth citation: [168]. He says that the pronunciation of "trie"

is "try."
4 Navarro and Raffinot [227]. "Very small" means 4-8 values, whereas scan­

ning inputs will have 256 possible values for each input byte.
5 Unless the scan would take less effort than deciding whether or not to scan

in the first place!
6 Although if this is done incorrectly, it opens the door for a brute-force attack

on the session key.
7 With the exception of simple companion viruses.
8 This is obvious to compiler writers, who've been handling whitespace (and

lack thereof) since compiling Fortran in the 1950s, but seemingly not so for
patent examiners: Kuo [175].

100 Harley et al. [137] was used for this introductory section.
101 Cohen [74]. Harrison et al. [138] make some interesting follow-on points

regarding Cohen's proof and Turing-compatibility.
102 Muttik [214].
103 Harley etal. [137].
104 Mallen-FuUerton [192] considers the case of wildcards that match one

byte; Bontchev [46] takes a more general view.
105 Not surprisingly, Aho and Corasick [5]. The version of the algorithm given

here is a slight reformulation of the first version of the algorithm that Aho
and Corasick give in their paper.

106 Tuck et al. [324] discuss many of these implementation choices for Aho-
Corasick.

107 The version here is an much-abstracted form of Veldman's algorithm. The
unadulterated version is in Bontchev [46].

108 Kumar and Spafford [174] adapted Aho-Corasick for wildcards.
109 The original algorithm is described in Wu and Manber [349], and is very

general; the version here is a simplification along the lines of [227, 324].
110 This section is based on [96].
111 This item is based on Bontchev [46]. Top and tail scanning, entry point

scanning, and size-based scanning assumptions are also in Nachenberg [217].
112 Nachenberg [217].

Anti-Virus Techniques 93

113 Carr[54].
114 Unless otherwise noted, this item is based on Flint and Hughes [111].
115 Carr[54].
116 This item is based on Nachenberg [215].
117 Mallen-Fullerton [192] talks about the signature length tradeoff.
118 Muttik[214].
119 For example, Navarro and Tarhio [228].
120 For example, Pennello [245].
121 Bentley [34].
122 Gryaznov [133], Symantec [307], and Zenkin [354].
123 Gryaznov [133].
124 Symantec [307], who apply this division to static and dynamic heuristics.
125 The "booster" and "stopper" terminology is from Nachenberg [221], who

uses them in the context of emulation.
126 Gryaznov [133].
127 Nachenberg [221].
128 Ludwig [187]; detristan et al. [89] look at spectrum analysis in the context

of intrusion detection systems. Muttik [214] talks about opcode frequency
analysis too. Weber et al. [342] use instruction frequencies to try and spot
hand-written assembly code, on the premise that more viruses are written
in assembly code than high-level languages.

129 See [318, 307, 283], respectively.
130 Tesauroetal. [318].
131 Kephartetal. [163].
132 This section is based on Bontchev [38].
133 Bontchev [46].
134 Schmehl [278].
135 The first two are from Esponda et al. [101].
136 Like the Spanish Inquisition. No one ever expects them. Oh, right:

Hofmeyretal. [143].
137 Nachenberg [216].
138 Hofmeyretal. [143].
139 Ford and Michalske [113], who also supply the browser story.
140 Ford and Thompson [114].
141 El Far et al. [98] look at a related idea: being able to recall unread messages

from a remote machine soon after transmission.
142 Jordan [154] argues this for emulation with dynamic heuristics, but of the

course the argument applies equally well to behavior blockers.

94 COMPUTER VIRUSES AND MALWARE

143 Nachenberg [217].
144 These first two heuristics are from Nachenberg [220], the third from [221].
145 Nachenberg [222].
146 Natvig [225] and Szor [308].
147 Based on Veldman [332], who had a four-part organization.
148 This item is based on Natvig [225].
149 Nachenberg [220].
150 Nachenberg [222].
151 Nachenberg [222].
152 Nachenberg [223].
153 Chambers [59].
154 Nachenberg [219].
155 Chambers [59] and Natvig [225].
156 Chambers [59] and Nachenberg [220].
157 Nachenberg [220].
158 Natvig [225].
159 Nachenberg [221].
160 This item is based on Nachenberg [223].
161 Pros and cons from [38, 354].
162 [Dis]advantages of behavior blockers are from Zenkin [354]. A mostly-

overlapping set of disadvantages is in Nachenberg [216].
163 Veldman [332] mentions emulator advantages and disadvantages.
164 Chess [64] points this out for verification.
165 Nachenberg [217]; also Perriot and Ferrie [248], who argue the use of

X-raying for virus detection.
166 Al-Kadi [7].
167 Itshaketal. [151].
168 All but the second are from Chess [64].
169 This section is based on Templeton [317].
170 This solution, and one of the attendant problems, was suggested by [306].
171 Harleyetal. [137].
172 Bontchev [46].
173 Nachenberg [218].
174 Chess etal. [66].
175 Schneier [279].
176 This method is from Mann [193].
177 Bontchev [46].

Anti-Virus Techniques 95

178 Szor [308].
179 This, and the "minor variant" below, are from Nachenberg [218].
180 Templeton[317].
181 From Kouznetsov et al., along with the virus record contents below [170].
182 Bontchev [46]. Carr [54] mentions a virus database which is compressed

and encrypted.
183 Japan Times [153].
184 This, and the bandwidth problem, are from Kouznetsov and Ushakov [170].
185 Paketal. [238].
186 For examples, see [54, 64, 238, 251, 252, 259]. The examples in Fig­

ure 4.16 use the descriptions of VERY [64] and CVDL [251, 252, 259].
187 Nachenberg [219] and Pak et al. [238].
188 Nachenberg [219].
189 These problems are from Bontchev [43].
190 See [42, 200].
191 Zenkin [354].
192 See [61, 175] (signature scanning), [61,169] (static heuristics), [341, 354]

(behavior blocking), and [69] (emulation).
193 Bontchev [43].
194 Chess etal. [65].
195 Bontchev [43], who also gives the first three disinfection methods below.
196 Chen et al. [61], who also proposed cleaning within macros by replacing

detected macro virus instructions with non-viral instructions.
197 Chi [69].
198 Bontchev [45] opines on this at length.
199 Ahoetal. [6].
200 Ko [169].
201 Perriot [247], who also discusses lots of other optimizations and their

application to polymorphic virus detection.

Chapter 5

ANTI-ANTI-VIRUS TECHNIQUES

All viruses self-replicate, but not all viruses act in an openly hostile way
towards anti-virus software. Anti-anti-virus techniques are techniques used by
viruses which do one of three things:

1 Aggressively attack anti-virus software.

2 Try to make analysis difficult for anti-virus researchers.

3 Try to avoid being detected by anti-virus software, using knowledge of how
anti-virus software works.

The lack of clear definitions in this field comes into play again: arguably, any
of the encryption methods described in Chapter 3 is an attempt to achieve the
latter two goals.

To further confuse matters, "anti-anti-virus" is different from "anti-virus
virus." Anti-virus virus has been used variously to describe: a virus that attacks
other viruses; anti-virus software that propagates itself through viral means;
software which drops viruses on a machine, then offers to sell "anti-virus"
software to remove the viruses it put there. ̂ ^̂

Back to the relatively well-defined anti-anti-virus, this includes seven tech­
niques: retroviruses, entry point obfuscation, anti-emulation, armoring, tunnel­
ing, integrity checker attacks, and avoidance.

5.1 Retroviruses
A virus that actively tries to disable anti-virus software running on an in­

fected machine is referred to as a retrovirus} This is a generic term for a virus
employing this type of active defense, and doesn't imply that any particular
technique is used.

98 COMPUTER VIRUSES AND MALWARE

Having said that, a common retrovirus technique is for a virus to carry a
list with it of process names used by anti-virus products. When it infects a
machine, a retrovirus will enumerate the currently-running processes, and kill
off any processes which match one of the names in the list. A partial list is
shown below :̂

Avgw.exe
F-Prot.exe
Navw32.exe
Regedit.exe
Scan32.exe
Zonealarm.exe

It's not unusual to see lists like this appear in malware analyses. Thi^ particular
list not only includes anti-virus process names, but also other security products
like firewalls, and system utilities like the Windows Registry editor.

A more aggressive retrovirus can target the antivirus software on disk as
well as in memory, so that antivirus protection is disabled even after the in­
fected system is rebooted. For example, Ganda kills processes that appear to
be anti-virus software, using the above list-based method; it also examines the
programs run at system startup, looking for anti-virus software using the same
list of names. If Ganda finds anti-virus software during this examination, it
locates the executable image on disk and replaces the first instruction with a
"return" instruction. This causes the anti-virus software to exit immediately
after starting.^^^

The above methods have one major drawback: by killing off the anti-virus
software, they leave a telltale sign. An alert user might notice the absence of
the anti-virus icon.^ For the purposes of retroviruses, it's sufficient to render
anti-virus software incapable of full operation, disabling it rather than killing it
off completely.

How can this be done? One approach would be to try and starve anti-virus
software of CPU time. A retrovirus with appropriate permission could reduce
the priority of anti-virus software to the minimum value possible, to (ideally)
keep it from running.^^^ Most operating system schedulers have a mechanism
to boost the priority of CPU-starved processes,"^ however, so attacking anti­
virus software by reducing process priority is unlikely to be very effective.
Another way to disable anti-virus software is to adjust the way a computer
looks up hostname information on the network, to prevent anti-virus software
from being able to connect to the anti-virus company's servers and update its
database.

Anti-Anti-Virus Techniques 99

5.2 Entry Point Obfuscation
Modifying an executable's start address, or the code at the original start ad­

dress, constitutes extremely suspicious behavior for anti-virus heuristics. A
virus can try to get control elsewhere instead; this is called entry point obfus­
cation or EPO.

Picking a random location in an executable to gain control isn't a brilliant
survival strategy, because a infrequently-executed error handler may be chosen
as easily as a frequently-executed loop. A more controlled selection of a location
is better. Simile and Ganda both use EPO, and look for calls to the ExitProcess
API function; these calls are overwritten to point to the viral code instead. ̂ ^̂
Because ExitProcess is called when a program wants to quit, these viruses get
control upon the infected code's exit.

Locations for EPO may also be chosen by looking for known code sequences
in executables.̂ ^"^ Compilers for high-level languages emit repetitive code, and
a virus can search the executable for such repetitive instruction sequences to
overwrite with a jump to the virus' code. As the sequence being replaced is
known, the virus can always restore and run the original instructions later.

5.3 Anti-Emulation
Techniques to avoid anti-virus emulators can be divided into three categories,

based on whether they try to outlast, outsmart, or overextend the emulator. The
fix for the latter two categories is just to improve the emulator, although this
tends to come at the cost of increased emulator complexity.

5.3.1 Outlast
Except in an anti-virus lab, the amount of time an emulator has to spend

running a program is strictly limited by the user's patience.^^^ How can a virus
evade detection long enough for the emulator to give up?

• Code can be added to the virus which does nothing, wasting time until the
emulator quits - then the real viral code can run.̂ ^^ The emulator may look
for obvious junk code, so the code would need to be disguised as a valid
operation, like computing the first n digits of n.

• A virus need not replicate every time it's run. It can act benign nine times
out of every ten, for example, in a statistical ploy to appear harmless 90%
of the time. If the anti-virus software is using the performance-improving
tricks in Section 4.2.2.3, then the virus might get lucky and have an infected
program be marked as clean when emulated; a later execution of that infected
program would give the virus a free hand.

• Emulators operate under the assumption that viral code will intercept exe­
cution at or near the start of an infected program. Entry point obfuscation,

100 COMPUTER VIRUSES AND MALWARE

besides an anti-heuristic measure, can also be considered an anti-emulation
technique, because it can delay execution of viral code.

5.3.2 Outsmart
An alternative to waiting until emulator scrutiny is over is to restructure the

viral code so that it doesn't look suspicious when it's emulated. The decryptor
code could be spread all over, instead of appearing as one tight loop; multiple
decryption passes could be used to decrypt the virus body.̂ ^^ Most techniques
for avoiding dynamic heuristics would be candidates here.

5.3.3 Overextend
A virus can push the boundaries of an emulator in an effort to either crash the

emulator - not likely for a mature anti-virus emulator - or detect that the virus
is being run under emulation, so that the virus can take appropriate (in)action.
Here are some ways to try and overextend an emulator:

• Some CPUs, especially CISC ones, have undocumented instructions. ̂ ^̂ A
virus can use these instructions in the hopes that an emulator will not support
them, and thus give itself away.

• The same idea can be applied to bugs that a CPU may exhibit, or differences
between different processor implementations. The emulator may need to
track results that are processor-dependent to correctly emulate such a virus.

• The emulator's memory system can be exercised by trying to access unusual
locations that, on a real machine, might cause a memory fault or access
some memory-mapped I/O.̂ ^^ A cruder attack may simply try to exhaust an
emulator's memory by accessing lots of locations. Memory system attacks
are not particularly effective, however.

• Assuming emulators return fixed values for calls to many operating system
and other API functions, a virus can check for differences between two calls
of the same function where a change should occur. For example, a virus
could ask for the current time twice, assuming an emulated environment
will return the same value both times.

• An emulator may be taxed by importing obscure, but standard, libraries in
case the emulator doesn't handle all of them.̂ ̂ ^

• External resources are next to impossible to properly emulate. A virus could
take advantage of this by looking for external things like web pages.̂ ^^

• Finally, checks specific to certain emulators can be performed. An emulator
may only support a well-known set of I/O devices, or may have an interface
to the "outside world" which can be tested for.̂

Anti-Anti-Virus Techniques 101

5A Armoring
A virus is said to be armored if it uses techniques which try to make analysis

hard for anti-virus researchers. In particular, anti-debugging methods can be
used against dynamic analysis, and anti-disassembly methods can be used to
slow static analysis. Interestingly, these techniques have been in use since at
least the 1980s to guard against software piracy.̂ ̂ ^

5.4.1 Anti-Debugging
Making dynamic analysis a painful process for humans is the realm of anti-

debugging. These techniques target peculiarities of how debuggers work.^ This
is a last gasp, though - if the viral code is already being analyzed in a debugger,
then its survival time is dwindling. If the goal is to annoy the human analyst,
then the best bet in survival terms is to follow a false trail when a debugger is
detected, and avoid any viral behavior.̂ ^^

There are three weak points in a debugger that can be used to detect its
presence: idiosyncrasies, breakpoints, and single-stepping.

Debugger-specific idiosyncrasies. As with emulators, debuggers won't present
a program being debugged with an environment identical to its normal en­
vironment, and a virus can look for quirks of known debuggers.^ ̂ "̂

Debugger breakpoints. Debuggers implement breakpoints by modifying the
program being debugged, inserting special breakpoint instructions at points
where the debugger wants to regain control. Typical breakpoint instructions
cause the CPU to trap to an interrupt service routine.^ ̂ ^

A virus can look for signs of debugging by being introspective: it can exam­
ine its own code for breakpoint instructions. Since the virus may use external
library code where debugger breakpoints can be set, breakpoint instructions
can also be looked for at the entry points to library API functions.^^^

More generally, a virus can look for any changes to itself. From the virus'
point of view, a change is an error, and there are two distinct possibilities for
dealing with errors: error detection and error correction. Error detection,
like the use of checksums or CRCs, would tell the virus whether or not a
change had occurred to it, and the virus could take action accordingly. On
the other hand, error correction not only detects errors, but is able to repair a
finite number of them. A robust virus would imply the use of error correction
over error detection - this would guard against transmission errors and keep
casual would-be virus writers from modifying the virus, and also be able to
remove debugger breakpoint instructions. ̂ ^̂

Single-stepping. Debuggers trace through code, instruction by instruction, us­
ing the single-stepping facilities available in many CPUs. After each instruc­
tion is executed, the CPU posts an interrupt which the debugger handles.

102 COMPUTER VIRUSES AND MALWARE

Push 123 Pop 123 Still 123?

Normal
execution

sp—•J
123

s p — •

123
sp—H

123

5 ^

time

Single-
stepping

sp—••
123

s p — •
123

Interrupt
info

s p — •

123
s p — •

Interrupt
info

sp—H

Interrupt
info

§ <

Push 123 Interrupt Pop 123 Interrupt Still 123?

Figure 5.L Checking for single-stepping

There are several ways to check for single-stepping:

• Push a value on the stack, pop it off, then check to see if it's still there7 As
Figure 5.1 shows, an interrupt would dump information onto the stack,
destroying the value that had been placed on there. Strictly speaking,
any interrupt would cause this to happen, not just a single-stepping
interrupt, but it is a conservative test from the virus' point of view.

• Handling interrupts is an expensive task. Sample the current time, and
watch for the slowdown that would occur under single-stepping.^^^

• CPUs commonly have an instruction prefetch queue, where instructions
are loaded prior to their execution for performance reasons. A virus
can dynamically modify the next instruction immediately following the
program counter; if the new instruction runs rather than the old one,
then single-stepping may be enabled. Why? Because the instruction
prefetch queue was flushed, which would occur on an interrupt.

The latter two methods are possible anti-emulation methods as well, because
they would look for slow or incomplete emulators.

A general approach to anti-debugging is to look for changes to the addresses
of interrupt handlers, and render the virus nonfunctional if the handler address
is unexpected. One way to accomplish this is to include the addresses of the

Anti-Anti-Virus Techniques 103

main: e8 05 00 00 00 31 cO 8b Id 42 58 c3 00

main:
call
xor
mov

main-f 10
%eax,%eax
0xc35842, %ebx

main+10:
pop %eax
ret

False disassembly True disassembly

Figure 5.2. False disassembly

breakpoint and single-stepping interrupt handlers as part of the virus' decryption
key. 119

And, if all else fails, ask. Windows has an API function called IsDebugger-
Present which returns the calling process' debugging status. Elkem.C is one
piece of malware that uses this technique. ̂ ^̂ The means of asking need not be
direct, either. A request under Linux to trace a process more than once fails,
and if a debugger has traced the virus' process already, an attempt by the virus
to trace itself will fail.̂ ^i

5.4,2 Anti-Disassembly
Any of the code obfuscation techniques used by polymorphic and metamor-

phic viruses are anti-disassembly techniques, but only in a weak sense. There
are two goals for strong anti-disassembly:

1 Disassembly should not be easily automated; the valuable time of an expert
human should be required to make sense of the code.

2 The full code should not be available until such time as the code actually
runs.

To make automation difficult, a virus' code can make use of problems which
are computationally very hard to solve. It turns out that the simple trick of mix­
ing code and data is one such problem: precise separation of the two is known
to be unsolvable.i^^ In general, a virus may be structured so that separating
code and data is also impossible - this can be done by using instructions as data
values and vice versa.

A careful mix of code and data may even throw off human analysis tem­
porarily. The x86 assembly code in Figure 5.2 starts with a subroutine call that

104 COMPUTER VIRUSES AND MALWARE

Environment

Username Strong
cryptographic
hash function K

Lower
bound

..01101

upper
bound

01011100111010

Generated
instructions

Figure 5.3, Anti-disassembly using strong cryptographic hash functions

never returns: when run, the called code pops the saved return address off the
stack and returns, so the net effect of this code is the same as a single re tu rn
instruction. However, some bytes have been placed after the call, causing a
false disassembly to occur when main is disassembled.^

The second anti-disassembly goal, not having the full code available until
run time, can be met in several ways:

• Code can be dynamically generated when the virus runs, much like a just-
in-time (JIT) compiler.

• Existing code can modify itself as the virus runs.^ Self-modifying code is a
rarity now in typical, compiler-generated programs, and this behavior would
act as a red flag for anti-virus heuristics.

• A more complex dynamic code generation scheme could draw on the ex­
ecution environment for its instructions, much like the environmental key
generation described in Section 3.2.7. An environmental parameter, like
a username, is combined with a constant "salt" K which is chosen by the
virus writer, and fed into a strong cryptographic hash function. Resulting
bytes from the hash function are extracted and used as instructions. The
value of K is selected to yield a desired instruction sequence when this
is done. Direct analysis of this scheme is very difficult, because the viral
code is not available to be analyzed and, even if an educated guess can be
made about it, the strong cryptographic hash ensures that the exact value of
the environmental parameter cannot be determined even when K is known.
This scheme is illustrated in Figure 5.3, where the information in the shaded
boxes indicates the information available to an analyst.^^^

• Keep the code in encrypted form, and decrypt parts of it only when needed. ̂ ^
Figure 5.4 shows how this can be done by inserting a breakpoint into the
code immediately before an encrypted instruction, and supplying interrupt
handlers for breakpoint and single-stepping interrupts.^^^

Anti-Anti-Virus Techniques 105

instruction

breakpoint

encrypted instruction

instruction

instruction

def breakpoint_handler(): def singlestep_handler():

decrypt next instruction re-encrypt last instruction

enable single-stepping disable single-stepping

return from interrupt return from interrupt

Figure 5.4. On-demand code decryption

Another suggestion is to use separate threads of execution, one to decrypt
code ahead of the virus' program counter, the other to re-encrypt behind the
virus' program counter.̂ ^^ This would intentionally be a delicately-tuned
system, so that any variance (like that introduced by a debugger or emulator)
would cause a crash, making it an anti-debugging technique too.

Anti-disassembly techniques are not solely for irritating human anti-virus
researchers. They can also be seen as a defense against anti-virus software
using static heuristics.

5.5 Tunneling
Anti-virus software may monitor calls to the operating system's API to watch

for suspicious activity. A tunneling virus is one that traces through the code for
API functions the virus uses, to ensure that execution will end up at the "right"
place, i.e., the virus isn't being monitored. If the virus does detect monitoring,
tunneling allows the monitoring to be bypassed. ̂ ^̂ An interesting symmetry
is that the defensive technique in this case is exactly the same as the offensive
technique: tracing through the API code.

The code "tracing" necessary for tunneling can be implemented by viruses
in several ways,̂ ^^ all of which resemble anti-virus techniques. A static anal­
ysis method would scan through the code, looking for control flow changes.
Dynamic methods would single-step through the code being traced, or use full­
blown emulation.

Tunneling can only be done when the code in question can be read, obvi­
ously. For operating systems without strong memory protection between user
processes and the operating system, like MS-DOS, tunneling is an effective
technique. Many operating systems do distinguish between user space and ker­
nel space, though, a barrier which is crossed by a trap-based operating system
API. In other words, the kernel's code cannot be read by user processes. Sur­
prisingly, tunneling can still be useful, because most high-level programming

106 COMPUTER VIRUSES AND MALWARE

languages don't call the operating system directly, but call small library stubs
that do the dirty work - these stubs can be tunneled into.

Anti-virus software can dodge this issue if it installs itself into the operating
system kernel. (This is also a desirable goal for viruses, because a virus in the
kernel would control the machine completely.)

5.6 Integrity Checker Attacks
In terms of anti-anti-virus techniques, integrity checkers warrant some care­

ful handling, because they are able to catch any file change at all, not just
suspicious code.̂ ^^

Stealth viruses have a big advantage against integrity checkers. A stealth
virus can hide file changes completely, so the checker never sees them. Com­
panion viruses are effective against integrity checkers for the same reason,
because no changes to the infected file are ever seen.

Stealth viruses can also infect when a file is read, so the act of computing a
checksum by an integrity checker will itself infect a file. In that case, the viral
code would be included in the checksum without any alarm being raised.

Similarly, a "slow" virus can infect only when a file was about to be legiti­
mately changed anyway. ̂ ^̂ The infection doesn't need to be immediate, so long
as any alert that the integrity checker pops up appears soon after the legitimate
change; a user is likely to dismiss the alert as a false positive.

Finally, integrity checkers may have flaws that can be exploited. In one
classic case, deleting the integrity checker's database of checksums caused the
checker to faithfully recompute checksums for all files! ̂^

5.7 Avoidance
Those who admit to remembering the Karate Kid movies will know that the

best way to avoid a punch is not to be there. The same principle applies to
anti-anti-virus techniques. A virus can hide in places where anti-virus software
doesn't look. If anti-virus software only checks the hard drive, infect USB
keys and floppies; if anti-virus software doesn't examine all file types, infect
those file types; if files with special names aren't checked, infect files with
those names. ̂ -̂^ Unusual types of file archive formats may temporarily escape
unpacking and scrutiny, too. ̂ ^̂ In general, avoidance is not particularly effective
as a strategy, though.

Anti-Anti-Virus Techniques 107

Notes for Chapter 5
1 Retroviruses have also been called "anti-antivirus viruses." No, really [77].
2 This is an excerpt from Avkiller, which is actually a Trojan horse, but the

name is irresistible in this context [185].
3 Although the Windows taskbar hides icons of "inactive" applications by

default, so a vanishing anti-virus icon may not be noticed.
4 Windows and Unix systems, for example, both have multilevel feedback

queues that operate this way [202, 294].
5 For example, VMware can be detected in a number of ways [233, 353].
6 Assuming a software-based debugger.
7 This, and the prefetch technique, are from Natvig [226]. He notes that the

prefetch method's success depends upon how the CPU manages the prefetch
queue.

8 Alas, this trick doesn't work as well for CPUs whose instructions need to
be word-aligned in memory, but code and data can still be mixed.

9 Generally, self-modifying code can wreak havoc on static analysis tools [186].
10 grugq and scut [132] call this "running line code."
11 Proof of concept courtesy of the Peach virus [15].

100 See [149, 244], [77], and [242], respectively.
101 Molnar and Szappanos [210].
102 A student suggested this possibility, although no actual example of this

technique has been found to date.
103 Analyses of Simile and Ganda can be found in Perriot et al. [249] and

Molnar and Szappanos [210], respectively.
104 GriYo[131].
105 The issue of how long to emulate is mentioned in Nachenberg [217], also

Szor [308].
106 See Nachenberg [217]. [314] mentions the problems of junk code and

occasional replication.
107 These possibilities are from Veldman [332].
108 These first four are from Veldman [332].
109 See also Natvig [226].
110 Natvig [226] talks about library-related emulation problems.
111 Szor and Ferrie [314] point out the external resource problem.
112 See Krakowicz [172] for an early, pre-lowercase treatise on the subject.
113 Hasson [139] suggests this strategy when using anti-debugging for soft­

ware protection.

108 COMPUTER VIRUSES AND MALWARE

114 Hasson [139] andCrackZ [81].
115 See Rosenberg [268] for more information on this and single-stepping.
116 Hasson [139].
117 Pless [254] talks about the error detection/correction distinction. The use

of Hamming codes for error correction for the first two reasons is in Fer-
brache [103]; RDA.Fighter uses them for anti-debugging [83].

118 CrackZ[81].
119 Stampf[302].
120 This suggestion was made by CrackZ [81]; the Elkem.C analysis is in [239].
121 Cesare [57].
122 Horspool and Marovac [146].
123 Aycocketal. [22].
124 Bontchev [46].
125 Stampf[302].
126 Bontchev [46]; Methyl [205].
127 Methyl [205].
128 This section is based on Bontchev [38].
129 Gryaznov [133].
130 The first two are from Bontchev [38], the last from Sowhat [297].
131 Hypponen [149] notes this, along with a laundry list of anti-anti-virus

techniques.

Chapter 6

WEAKNESSES EXPLOITED

Weaknesses are thin ice on the frozen lake of security, vulnerable points
through which a system's security may be compromised. Thin ice doesn't
always break, and not all weaknesses are exploitable. However, an examination
of the devious and ingenious ways that security can be breached is enlightening.

Malware may exploit weaknesses to initially infiltrate a system, or to gain
additional privileges on an already-compromised machine. The weaknesses
may be exploited automatically by malware authors' creations, or manually by
people directly targeting a system. In this chapter, the initiator of an exploit
attempt will be generically called an "attacker."

Weaknesses fall into two broad categories, based on where the weakness
lies. Technical weaknesses involve tricking the target computer, while human
weaknesses involve tricking people.

6.1 Technical Weaknesses

Weaknesses in hardware are possible, but weaknesses in software are dis­
turbingly common. After some background material, a number of frequent
weaknesses are discussed, such as various kinds of buffer overflow (stack
smashing, frame pointer overwriting, returns into libraries, heap overflows,
and memory allocator attacks), integer overflows, and format string vulnerabil­
ities. This is unfortunately not an exhaustive list of all possible weaknesses. At
the end of this section, how weaknesses are found, and defenses to these weak­
nesses are examined. Where possible, weaknesses and defenses are presented
in a language- and architecture-independent way.

110 COMPUTER VIRUSES AND MALWARE

High
memory

Low
memory

Stack

1

t
Heap

Data

Code

Figure 6.1. Conceptual memory layout

6.1,1 Background
Conceptually, a process' address space is divided into four "segments" as

shown in Figure 6.1:^

• The program's code resides in the fixed-size code segment. This segment
is usually read-only.

• Program data whose sizes are known at compile-time are in the fixed-size
data segment.

• A "heap" segment follows the data segment and grows upwards; it also holds
program data. The heap as used in this context has nothing whatsoever to
do with a heap data structure, even though they share the name.

• A stack starts at high memory and grows downwards. In practice, the
direction of stack growth depends on the architecture. Downwards growth
will be assumed here for concreteness.

A variable in an imperative language, like C, C++, and Java, is allocated to a
segment based on the variable's lifetime and the persistence of its data. A sample
C program with different types of variable allocation is shown in Figure 6.2.
Global variables have known sizes and persist throughout run-time, so they are
placed into the data segment by a compiler. Space for dynamic allocation has to
grow on demand; dynamic allocation is done from the heap segment. Finally,
local variables don't persist beyond the return of a subroutine, and subroutine

Weaknesses Exploited 111

Code for |
foo in code
segment

Global
vanable in

data segment Dynamically-
allocated space

in heap

int i;

void foo 0 {
char *p = (char *)malloc(123) ,

Local variable
on stack

Figure 6.2. Sample segment allocation

calls within a program follow a stack discipline, so local variables are allocated
space on the stack.

A subroutine gets a new copy of its local variables each time the subroutine is
called. These are stored in the subroutine's stack frame, which can be thought
of as a structure on the stack. When a subroutine is entered, space for the
subroutine's stack frame is allocated on the stack; when a subroutine exits, its
stack frame space is deallocated. The code to manage the stack frame is added
automatically by a compiler.^ Figure 6.3 shows how the stack frames change
when code runs. Note that A is called a second time before the first call to A has
returned, and consequently A has two stack frames on the stack at that point,
one for each invocation.

More than local variables may be found in a stack frame. It serves as a repos­
itory for all manner of bookkeeping information, depending on the particular
subroutine, including:

• Saved register values. Registers are a limited resource, and it is often the case
that multiple subroutines will use the same registers. Calling conventions
specify the protocol for saving, and thus preserving, register contents that
are not supposed to be changed - this may be done by the calling subroutine
(the caller), the called subroutine (the callee), or some combination of the
two. If registers need to be saved, they will be saved into the stack frame.

Temporary space. There may not be enough registers to hold all necessary
values that a subroutine needs, and some values may be placed in temporary
space in the stack frame.

112 COMPUTER VIRUSES AND MALWARE

def
de f
de f
de f

main () :
A() : . .

B() : . .

CO : . .

. . .
. B()

. CO

. A()

main's
stack frame

main's
stack frame

A's
stack frame

main's
stack frame

A's
stack frame

B's
stack frame

main's
stack frame

A's
stack frame

B's
stack frame

C's
stack frame

main's
stack frame

A's
stack frame

B's
stack frame

C'S
stack frame

A's
stack frame

main's
stack frame

A's
stack frame

B's
stack frame

C'S
stack frame

Main
started

Main
calls A

A
calls B

B
calls 0

0
calls A

A
returns

Figure 6.3. Stack frame trace

• Input arguments to the subroutine. Arguments passed to the subroutine, if
any.

• Output arguments from the subroutine. These are arguments that the sub­
routine passes to other subroutines that it calls.

• Return address. When the subroutine returns, this is the address at which
execution resumes.

• Saved frame pointer. A register is usually reserved for use as a stack pointer,
but the stack pointer may move about as arguments and other data are pushed
onto the stack. A suhroutinQ's frame pointer is a register that always points
to a fixed position within the subroutine's stack frame, so that a subroutine
can always locate its local variables with constant offsets. Because each
newly-called subroutine will have its own stack frame, and thus its own
frame pointer, the previous value of the frame pointer must be saved in the
stack frame.

The inclusion of the last four as part of the stack frame proper is philosophical;
some architectures include them, some don't. They will be assumed to be
separate here in order to illustrate software weaknesses. For similar reasons,
similar assumptions: arguments are passed on the stack, the return address and

Weaknesses Exploited 113

Higher
memory

Lower
memory

Caller's
stack frame

Caller's argument
build area

Before
call

Frame
pointer

^ Stack
pointer

Caller's
stack frame

Caller's argument
build area

Return address

Saved frame ptr

Callee's
stack frame

After
call

^ New frame
pointer

New stack
pointer

Figure 6.4. Before and after a subroutine call

saved frame pointer are on the stack. Variations of the weaknesses described
here can often be found for situations where these assumptions aren't true.

Figure 6.4 shows the stack before and after a subroutine call. Prior to the
call, the caller will have placed any arguments being passed into its argument
build area. The call instruction will push the return address onto the stack and
transfer execution to the callee.^ The callee's code will begin by saving the old
frame pointer onto the stack and creating a new stack frame.

6.1.2 Buffer Overflows
A bujfer overflow is a weakness in code where the bounds of an array (often

a buffer) can be exceeded. An attacker who is able to write into the buffer,
directly or indirectly, will be able to write over other data in memory and cause
the code to do something it wasn't supposed to. Generally, this means that an
attacker could coerce a program into executing arbitrary code of the attacker's
choice. Often the attacker's goal is to have this "arbitrary code" start a user shell,
preferably with all the privileges of the subverted program - for this reason, the
code the attacker tries to have run is generically referred to as shellcode.

One question immediately arises: why are these buffers' array bounds not
checked? Some languages, like C, don't have automatic bounds checking.
Sometimes, bounds-checking code is present, but has bugs. Other times, a
buffer overflow is an indirect effect of another bug.

114 COMPUTER VIRUSES AND MALWARE

def main():
fill_buffer0

def fill_buffer0 :
character buffer[100]
i = 0
ch = input ()
while ch 9^ NEWLINE:

buffer^ = ch
ch = input()
i = i + 1

Figure 6.5. Code awaiting a stack smash

Buffer overflows are not new. The general principle was known at least as
far back as 1972,̂ ^^ and a buffer overflow was exploited by the Internet worm
in 1988.

6.1.2.1 Stack Smashing
Stack smashing is a specific type of buffer overflow, where the buffer being

overflowed is located in the stack. ̂ ^̂ In other words, the buffer is a local variable
in the code, as in Figure 6.5. Here, no bounds checking is done on the input
being read. As the stack-allocated buffer is filled from low to high memory, an
attacker can continue writing, right over top of the return address on the stack.
The attacker's input can be shellcode, followed by the address of the shellcode
on the stack - when f ill_buf f er returns, it resumes execution where the
attacker specified, and runs the shellcode. This is illustrated in Figure 6.6.

The main problem for the attacker is finding out the address of the buffer in the
stack. Fortunately for the attacker, many operating systems situate a process'
stack at the same memory location each time a program runs. To account
for slight variance, an attacker can precede the shellcode with a sequence of
"NOP" instructions that do nothing."^ Because jumping anyplace into this NOP
sequence will cause execution to slide into the shellcode, this is called a NOP
sled}^^ The exploit string, the input sent by the attacker, is thus

NOP NOP NOP .. . shellcode new-return-address

The space taken up by the NOP sled and the shellcode must be equal to the
distance from the start of the buffer to the return address on the stack, otherwise
the new return address won't be written to the correct spot on the stack. The
saved frame pointer on the stack doesn't have to be preserved, either, because
execution won't be returning to the caller anyway.

There are several other issues that arise for an attacker:

Weaknesses Exploited 115

Higher
memory

Lower
memory

Return address

Saved frame ptr

Buffer

Before
stack smash

Buffer fills
upwards

New return address-

Shellcode

After
stack smash

^

Figure 6.6. Stack smashing attack

The length of the exploit string must be known, but the exact location on
the stack may not be, due to the NOP sled. The addresses of strings in the
shellcode cannot be hardcoded as a result - for example, shellcode may need
a string containing the path to a user shell like /b in /sh . Some architectures
allow addresses to be specified relative to the program counter's value, called
PC-relative addressing. Other architectures, like the Intel x86, don't have
PC-relative addressing, but do allow PC-relative subroutine calls. On the
x86, a PC-relative jump from one part of the shellcode to another part of the
shellcode will leave the caller's location on top of the stack. This location
is the stack address of the shellcode.

Depending on the code being attacked, some byte values can terminate the
input before the buffer is overflowed. In Figure 6.5, for instance, a new-
line character terminates the input. The exploit string cannot contain these
input-terminating values. An attacker must rewrite their exploit string if nec­
essary, to compute the forbidden values instead of containing them directly.
For example, an ASCII NUL character (byte value 0) can be computed by
XORing a value with itself.

A buffer may be too small to hold the shellcode. One possible workaround
is to write the shellcode after writing the new return address.

Another possibility is to use the program's environment. Most operating
systems allow environment variables to be set, which are variable names
and values that are copied into a program's address space when it starts
running. If an attacker controls the exploited program's environment, they
can put their shellcode into an environment variable. Instead of making the

116 COMPUTER VIRUSES AND MALWARE

Higher
memory

Lower
memory

Environment
variables, including

shellcode

Return address

Saved frame ptr

Small buffer

Before
stack smash

Environment
variables, Including

shellcode

New return address

Arbitrary filler

After
stack smash

Figure 6.7. Environmentally-friendly stack smashing

new return address point to the overwritten buffer, the attacker points the new
return address to the environment variable's memory location (Figure 6.7).^

6.1.2.2 Frame Pointer Overwriting

What if a buffer can be overrun by only one byte? Can an attack be staged?
Under some circumstances, it can, except instead of overwriting the return
address on the stack, the attack overwrites a byte of the saved frame pointer.
This is ^ frame pointer overwriting attack. ̂ ^̂

The success of this attack relies on two factors:

1 Some architectures demand that data be aligned in memory, meaning that
the data must start at a specific byte boundary. For example, integers may
be required to be aligned to a four-byte boundary, where the last two bits of
the data's memory address are zero. When necessary, compilers will insert
padding - unused bytes - to ensure that alignment constraints are met. There
must be no padding on the stack between the buffer and the saved frame
pointer for a frame pointer overwrite to work. Otherwise, writing one byte
beyond the buffer would only alter a padding byte, not the saved frame
pointer. Padding aside, no other data items can reside between the buffer
and saved frame pointer, for similar reasons.

Weaknesses Exploited 117

d e f m a i n () :
fill_buffer0

def fill_buffer0 :
character buffer[100]
i = 0
ch = input()
while i <= 100 and ch T^ NEWLINE:

buffer^ = ch
ch = input 0
i = i + 1

Figure 6.8. Code that goes just a little too far

2 The architecture must be little-endian. Endianness refers to the way an
architecture stores data in memory. For example, consider the four-byte
hexadecimal number aabbccdd. A big-endian machine would store the
most significant byte first in memory; a little-endian machine like the Intel
x86 would store the least significant byte first:

X X+1 X-f2 X+3

Big-endian aa bb cc dd
Little-endian dd cc bb aa

On a big-endian machine, a frame pointer overwrite would change the most
significant byte of the saved frame pointer; this would radically change
where the saved frame pointer points in memory. However, on a little-
endian machine, the overwrite changes the least significant byte, causing
the saved frame pointer to only change slightly.

When the called subroutine returns, it restores the saved frame pointer from
the stack; the caller's code will then use that frame pointer value. After a frame
pointer attack, the caller will have a distorted view of where its stack frame is.

For example, the code in Figure 6.8 allows one byte to be written beyond the
buffer, because it erroneously uses <= instead of <.̂ Figure 6.9 shows the stack
layout before and after the attack. By overwriting the buffer and changing the
saved frame pointer, the attacker can make the saved frame pointer point inside
the buffer, something the attacker controls. The attacker can then forge a stack
frame for the caller, convincing the caller's code to use fake stack frame values,
and eventually return to a return address of the attacker's choice. The exploit
string would be

118 COMPUTER VIRUSES AND MALWARE

NOP NOP NOP .. . shellcode fake-stack-frame
fake-saved-frame-pointer shellcode-address

new-frame-pointer-byte

A saved frame pointer attack isn't straightforward to mount, but serves to
demonstrate two things. First, an off-by-one error is enough to leave an ex­
ploitable weakness. Second, it demonstrates that just guarding the return ad­
dress on the stack is insufficient as a defense.

6.1.2.3 Returns into Libraries

The success of basic stack smashing attacks relies on the shellcode they inject
into the stack-allocated buffer. One suggested defense against these attacks is
to make the stack's memory nonexecutable. In other words, the CPU would be
unable to execute code in the stack, even if specifically directed to do so.

Unfortunately, this defense doesn't work. If an attacker can't run arbitrary
code, they can still run other code. As it happens, there is a huge repository
of interesting code already loaded into the address space of most processes:
shared library code.̂ "̂̂ An attacker can overwrite a return address on the stack
to point to a shared library routine to execute. For example, an attacker may
call the system library routine, which runs an arbitrary command.

Higher
memory

Lower
memory

Main's
stack frame

Return address

Saved frame ptr

Buffer

New saved frame ptr

Main's
stack frame

Before frame
pointer overwrite

After frame
pointer overwrite

Figure 6.9. Frame pointer overwrite attack

Weaknesses Exploited 119

Higher
memory

Lower
memory

Argument N

Argument 2

Argument 1

Return address
Stack
pointer

Figure 6.10. A normal function call with arguments

Arguments may be passed to library routines by the attacker by writing be­
yond the return address in the stack. Figure 6.10 shows the initial stack contents
a subroutine would expect to see when called with arguments; Figure 6.11 shows
a retum-to-library attack which passes arguments. Notice the extra placeholder
required, because the called library function expects a return address on the
stack at that location.

This attack is often called a return-to-libc attack, because the C shared library
is the usual target, but the attack's concept is generalizable to any shared library.

6.1.2.4 Heap Overflows
This next attack is somewhat of a misnomer. A heap overflow is a buffer

overflow, where the buffer is located in the heap or the data segment. ̂ ^̂ The idea
is not to overwrite the return address or the saved frame pointer, but to overwrite
other variables that are adjacent to the buffer. These are more "portable" in a
sense, because heap overflows don't rely on assumptions about stack layout,
byte ordering, or calling conventions.

For example, the following global declarations would be allocated to the data
segment:

character buffer[123]
function pointer p

Overflowing the buffer allows an attacker to change the value of the function
pointer p, which is the address of a function to call. If the program performs a
function call using p later, then it jumps to the address the attacker specified;
again, this allows an attacker to run arbitrary code.

120 COMPUTER VIRUSES AND MALWARE

Higher
memory

Lower
memory

Caller's
stack frame

Return address

Saved frame ptr

Buffer

Before
attack

Argument N

Argument 2

Argument 1

Arbitrary filler

New return address

Arbitrary filler

After
attack

To library
^ routine

Figure 6.1 L Return-to-library attack, with arguments

The range of possibilities for heap overflow attacks depends on the vari­
ables that can be overwritten, how the program uses those variables, and the
imagination of the attacker.

6.1.2.5 Memory Allocator Attacks
One way heap overflows can be used is to attack the dynamic memory allo­

cator. As previously mentioned, space is dynamically allocated from the heap.
The allocator needs to maintain bookkeeping information for each block of
memory that it oversees in the heap, allocated or unallocated. Allocators find
space for this information by overallocating memory - when a program requests
an X-byte block of memory, the allocator reserves extra space:

• Before the block, room for bookkeeping information.

• After the block, space may be needed to round the block size up. This may
be done to avoid fragmenting the heap with remainder blocks that are too
small to be useful, or to observe memory alignment constraints.

The key observation is that the bookkeeping information is stored in the heap,
following an allocated block. Exploiting a heap overflow in one block allows the
bookkeeping information for the following block to be overwritten, as shown
in Figure 6.12.̂ ^^

Weaknesses Exploited 121

Bookkeeping
information for
allocated block

Bookkeeping
information for

free block

Allocated
block

Free
block

Lower
nnemory

Direction of
heap overflow

Higher
memory

Figure 6.12. Overflowing the heap onto bookkeeping information

Figure 6.13. Dynamic memory allocator's free list

By itself, this isn't terribly interesting, but memory allocators tend to keep
track of free, unallocated memory blocks in a data structure called difree list.
As in Figure 6.13, the free list will be assumed here to be a doubly-linked list,
so that blocks can be removed from the list easily. When an allocated block is
freed, the allocator checks to see if the block immediately following it is also
free; if so, the two can be merged to make one larger block of free memory.
This is where the free list is used: the already-free block must be unlinked from
the free list, in favor of the merged block.

A typical sequence for unlinking a block from a doubly-linked list is shown
in Figure 6.14. The blocks on the list have been abstracted into uniform list
nodes, each with two pointers as bookkeeping information, a "previous" pointer
pointing to the previous list node, and a "next" pointer pointing to the next node.
From the initial state, there are two steps to unlink a node B\

1 The next node, C, is found by following B's next pointer. C's previous
pointer is set to the value of B's previous pointer.

122 COMPUTER VIRUSES AND MALWARE

A

Time

B

1 ^

A

\ 1 /^

B

'^ i

C

Figure 6.14. Normal free list unlinking

2 5's previous pointer is followed to find the previous node, A, A's next
pointer is set to the value of B's next pointer.

Now, say that an attacker exploits a heap overflow in the allocated block
immediately before fi, and overwrites B\ list pointers. 5's previous pointer is
set to the address of the attacker's shellcode, and fi's next pointer is assigned
the address of a code pointer that already exists in the program. For example,
this code pointer may be a return address on the stack, or a function pointer in
the data segment. The attacker then waits for the program to free the memory
block it overflowed.

Figure 6.15 illustrates the result. The memory allocator finds the next adja­
cent block {E) free, and tries to merge it. When the allocator unlinks B from
the list, it erroneously assumes that 5's two pointers point to free list nodes.
Following the same two steps as above, the allocator overwrites the targeted
code pointer with the shellcode's address in the first step. This was the primary
goal of the exploit. The second step writes a pointer just past the start of the
shellcode. This would normally render the shellcode unrunnable, but the shell-
code can be made to start with a jump instruction, skipping over the part of the
shellcode that is overwritten during unlinking.

After the allocator's unlinking is complete, the targeted code address points
to the shellcode, and the shellcode is run whenever the program uses that over­
written code address.

Weaknesses Exploited 123

Address to
overwrite

Time

B

Address to
overwrite

Figure 6.15. Attacked free list unlinking

6.13 Integer Overflows
In most programming languages, numbers do not have infinite precision.

For instance, the range of integers may be limited to what can be encoded in
16 bits7 This leads to some interesting effects: ̂ ^̂

• Integer overflows, where a value "wraps around." For example, 30000 +
30000 = -5536.

124 COMPUTER VIRUSES AND MALWARE

• Sign errors. Mixing signed and unsigned numbers can lead to unexpected
results. The unsigned value 65432 is -104 when stored in a signed variable,
for instance.

• Truncation errors, when a higher-precision value is stored in a variable with
lower precision. For example, the 32-bit value 8675309 becomes 24557 in
16 bits.

Few languages check for these kinds of problems, because doing so would oc­
casionally impose additional overhead, and more occasionally, the programmer
actually intended for the effect to occur.

At this point in the chapter, it should come as little surprise that these effects
can be exploited by an attacker - they are collectively called integer overflow
attacks. Usually the attack isn't direct, but uses an integer overflow to cause
other types of weaknesses, like buffer overflows. ̂ ^̂

The code in Figure 6.16 has such a problem, and is derived from real code.
All numbers are 16 bits long: n is the number of elements in an array to be
read in; s ize is the size in bytes of each array element; t o t a l s i z e is the total
number of bytes required to hold the array. If an attacker's input results in n
being 1234 and s ize being 56, their product is 69104, which doesn't fit in
16 bits - t o t a l s i z e is set to 3568 instead. As a result of the integer overflow,
only 3568 bytes of dynamic memory are allocated, yet the attacker can feed in
69104 bytes of input in the loop that follows, giving a heap overflow.

n = input_number()
size = input_number()
totalsize = n * size

buffer = allocate_memory(totalsize)

i = 0
buffer_pointer ^ buffer
while i < n:

buffer_pointerQ gĵ ĝ_̂ = input_N_bytes (size)
buffer_pointer = buffer_pointer + size
i - i + 1

Figure 6.16. Code with an integer overflow problem

Weaknesses Exploited 125

6,1.4 Format String Vulnerabilities
'Perhaps one of the most interesting en'ors that we discovered was a result of an

unusual interaction of two parts of csh, along with a little careless programming. The
following string will cause the VAX version of csh to crash

!o%8f

and the following string

!o%888888888f

will hang... most versions of csh.' - Barton Miller et al.̂ °^

Format functions in C take as input a "format string" followed by zero or more
arguments. The format string tells the function how to compose the arguments
into an output string; depending on the format function, the output string may
be written to a file, the standard output location, or a buffer in memory.^ Format
string problems, the cause of the errors in the above quote, were a curiosity in
1990 when those words were published. By 1999, format string problems were
recognized as a security problem, and they were being actively exploited by
2000.^1^

The canonical example of a format function is pr int f :

char *s = " i s page";
in t n = 125;
p r in t f ("He l lo , world!") ;
p r in t f ("This Xs ^d ." , s , n) ;

The first call to p r in t f prints Hello, world!; its format string doesn't
contain any special directives telling p r in t f to look for any additional argu­
ments. The second call, on the other hand, does - 7oS says to interpret the
next unread argument (s) as a pointer to a string, and "/od treats the next unread
argument (n) as an integer. The result is the output

This i s page 125.

Saying "the next unread argument" implies that p r in t f consumes the argu­
ments as it formats the output string, and this is exacdy what happens. Fig­
ure 6.17 shows the stack layout for a call to printf , assuming again that
arguments are passed on the stack. As a format function reads its arguments,
it effectively steps a pointer through the stack, where the pointer identifies the
next argument to be read.

Format functions exhibit a touching faith in the correctness of the format
string. A format function has no way of knowing how many arguments were
really passed by its caller, which can be disastrous if an attacker is able to supply
any part of a format string.^ ̂ ^ For example, if the program contains

p r i n t f (e r r o r) ;

126 COMPUTER VIRUSES AND MALWARE

Higher
memory

Lower
memory

Caller's
stack frame

Argument_2

Argument_1

Pointer to
format_string

Return address

Saved frame ptr

Printf's
stack frame

printf(format_string,
argument_1,
argument_2)

To format
^ string

Figure 6.17. Stack layout for calling a format function

and an attacker manages to set the variable e r ror to "yosyosyosyos", then the
program will almost certainly crash. Pr in t f ' s attacker-specified format string
tells it to grab the next four items off the stack and treat each one as a pointer
to a string. The problem is that the next four items on the stack aren 7 pointers
to strings, so p r in t f will make wild memory references in an effort to format
its alleged strings.

As is, this attack can be used to print out the contents of a target program's
stack: an attacker can craft a format string which walks up the stack, inter­
preting each stack item as a number and printing the result. Changing e r ro r
to "yodyodyodyod" in the above example would be enough to print the stack con­
tents. This is one possible way that addresses can be discovered for a later stack
smashing attack.

Even more is possible if the attacker can control a format string located in the
stack. The code in Figure 6.18 is a common scenario, where a buffer's contents
are formatted for later output. The snprintf function is a format function
with two additional arguments, a buffer and the buffer's length; snpr int f
writes its formatted output to this buffer. It also demonstrates that a format
string vulnerability can be exploited indirectly, as the flaw here is in the call to
pr intf , not snprintf .

With this code, the attacker's format string can be the ungainly construction

\x78\x56\x34\xl2 yodyodyodyodyodyodyod yon"

Weaknesses Exploited 127

v o i d p r i n t _ e r r o r (c h a r *s)
{

char buffer[123];
snprintf(buffer, sizeof(buffer),

''Error: %s", s) ;
printf(buffer);

Figure 6.18. Code with a format string vulnerability

The buffer, a local variable on the stack, contains p r i n t f s format string after
the call to snprintf . Pr int f is thus called with a format string that the attacker
has supplied in part:

"Error: \x78\x56\x34\xl2 yodyodyod7odyodyodyod yn"

There are four parts to this format string.

1 Error: is added by snprintf . It plays no part in this attack and can be
ignored.

2 \x78\x56\x34\xl2 is the address 12345678 in little-endian format; in C
strings, \x introduces a pair of hexadecimal digits.

3 yodyodyodyodyodyodyd, used as mentioned above to walk up the stack's contents.

4 yn is a format string directive. It tells p r in t f to interpret the next unread
argument as a pointer to an integer. Pr int f writes the number of bytes it's
formatted so far into the pointed-to integer. Through this mechanism, the
attacker has a way to have a value written to an arbitrary memory location.

The stack layout during an attack is given in Figure 6.19. The attacker's format
string causes p r in t f to walk up the stack, printing integers, until the next unread
argument is the address the attacker encoded in the format string. (Remember
that the buffer is in the stack, so the attacker's format string is there too.) The %n
takes the attacker's address and writes a number at that address. The attacker
can control the number written by adding junk characters to the format string,
changing the number of bytes p r in t f formats, and consequently the number
written for yn.

Like other attacks, if an attacker can make a single specified value change,
then the possibility of running shellcode exists.

6.1.5 Defenses
The underlying moral in studying these technical vulnerabilities is to never,

ever, ever trust input to a program. Having bulletproof input routines and bug-

128 COMPUTER VIRUSES AND MALWARE

Higher
memory

r

Print_error's /
stack frame \

V.

Lower
memory

%n I

78563412

Pointer to
format string

Return address

Saved frame ptr

Printf's
stack frame

>- Buffer

Figure 6.19. Format string attack in progress

free code is the best defense to technical vulnerabilities, but expecting this of
all software is like asking Santa Claus for world peace - well intentioned, but
unlikely to happen in the near future.

In the meantime, two types of defenses can be considered, ones that are
specific to a type of vulnerability, and ones that are more general.

6.1.5.1 Vulnerability-Specific Defenses
Defenses can be directed to guarding against certain types of vulnerability.

For example:

Format string vulnerabilities

• Source code auditing is a particularly effective defense, because the
number of format functions is relatively small, and it is easy to search
source code for calls to format functions.^^^

Weaknesses Exploited 129

• Remove support for yoii in format functions, or only allow constant
format strings that an attacker can't change. ̂ ̂ ^ This defense would break
existing code in addition to violating the C specification.

• If a format function knew how many arguments it had been called with,
then it could avoid reading nonexistent arguments. Unfortunately, this
information isn't available at run-time.

A program's source code can be altered to supply this information. Calls
to known format functions can be wrapped in macros that keep track
of the number of arguments passed. Even this doesn't always work,
because nonstandard format functions may be used, or standard format
functions may be used in unusual ways. For example, the code may
save a function pointer to p r in t f and call it later, rather than calling
p r in t f directly.

Stack smashing

• As mentioned before, one defense against stack smashing is to mark
the stack's memory as nonexecutable; the same idea can be extended
to the data and heap segments. This is not a complete defense, since
a return-to-library attack is still possible, but it does close one attack
vector.

Some programs legitimately need to have executable code in odd places
in memory, like just-in-time compilers and nested C functions.^ An
alternative memory protection approach ensures that memory pages can
be writable or executable, but not both at the same time. This provides
the same protection, but with more flexibility for legitimate programs. ̂ ^

• The control information in the stack, the return address and the saved
frame pointer, can be guarded against inappropriate modification. This
method prevents stack smashing attacks, and also catches some buggy
programs. The way the control information is guarded is by using
canaries.

Miners used to use live canaries as a safety precaution. A buildup of
toxic gases in a mine would kill a canary before a human, so canaries
were taken down into mines as an early-warning system. Finding a
metabolically-challenged canary meant that it was time for a coffee
break on the surface.

For stack smashing defense, a canary is a value which is strategically
located in the stack frame, between the local variables and the control
information (Figure 6.20). A canary can't withstand an attack- in theory
- and if the canary is corrupted, then an attack may have occurred, so
the program should issue an alert and exit immediately.^^^

130 COMPUTER VIRUSES AND MALWARE

Higher
memory

Lower
memory

Caller's
stack frame

Return address

Saved frame ptr

Canary ̂ fe>

Callee's
stack frame

Figure 6.20. Canary placement

Support for canaries is provided by a language's compiler. Space for
the canary must be added in each stack frame, code must be added at
subroutine entry to initialize the canary, and code at subroutine exit must
verify the canary's value for correctness. With all this code being added,
overhead is a concern for canary-based defenses.
An attacker trying to compromise a program using canaries would have
to overflow a buffer and overwrite control information as usual, and
write the correct canary value so that the attack isn't discovered. There
are three types of canary, distinguished by how they try and prevent an
attacker from writing the correct canary value:

1 Terminator canaries. Assuming that the most common type of stack
smashing involves input and strings, a terminator canary uses a
constant canary value which is a combination of four bytes, line
and string terminators all: carriage return, newline, NUL, and -1
for good measure. The hope is that an attacker, sending these bytes
to overwrite the canary correctly, would unwittingly end their input
before the exploit succeeds.

Weaknesses Exploited 131

2 Random canaries. The canary value can also be changed to prevent
an attacker from succeeding; the theory is that an attacker must
know the canary value in order to construct an exploit string. A
random canary is a secret canary value that is changed randomly
each time a program runs. ̂ ̂ The random canary value for a program
is stored in a global location, and is copied from this global location
to a stack frame upon subroutine entry. The global location may
possibly be situated in a read-only memory page to avoid being
altered by an attacker. However, note that the presence of a format
string vulnerability can be used by an attacker to find out the secret
canary value.

3 Random XOR canaries. This is a random canary, with some or all
of the control information XORed in with the canary for each stack
frame. Any successful attack must set the canary appropriately -
not an impossible task, but not an easy one either.

Canaries can be extended to guard against some heap overflows as
well, by situating a canary in the bookkeeping information of each
dynamically-allocated block. ̂ ̂ ̂ A general problem with canaries of any
sort is that they only provide a perimeter guard for a memory area, and
a program can still be attacked by overflowing a buffer onto other, un­
guarded variables within the guarded memory area.̂ ^^ A partial remedy
is to alter the memory layout of variables, so that buffers are situated as
close to a canary as possible, with no non-buffer variables in between. ̂ ̂ ^

Generally, defenses to specific vulnerabilities that rely on the availability of
source code or compilers won't work. Source code is not always available,
as in the cases of third-party libraries and legacy code. Even if source code
is available, compilers may not be, or users may lack the expertise or time to
make source code changes, recompile, and reinstall.

6.1.5.2 General Defenses

Since most of the technical vulnerabilities stem from the use of program­
ming languages with weaknesses, like the lack of bounds checking, one general
approach is to stop using those languages. No more C, no more C++. This sug­
gestion ignores many realities: legacy code, programmer training, programmer
and management biases towards certain programming languages, the cost and
availability of tools and compilers, constraints from third-party libraries. In any
case, even if use of "weak" programming languages was stopped, history has
shown that existing applications in those languages would linger in active use
for decades.

A related idea is not to change programming languages, but to repair prob­
lems with an existing language after the fact. For example, bounds checking

132 COMPUTER VIRUSES AND MALWARE

could be added to C programs. Current approaches to bounds checking C code
are dogged by problems: incomplete protection, breaking existing code. This
is also an area where adding 'less than 26%' overhead is deemed to make a tool
practical for use.̂ ^^

A more feasible defense is to randomize the locations of as many addresses
as possible. If the locations of the stack, shared libraries, program code, and
heap-allocated memory change each time the program is run, then an attacker's
task is made more difficult.̂ ^^ However, it also makes legitimate debugging
more difficult, in terms of finding spurious bugs, if these locations change non-
deterministically. There is also evidence that the amount of randomization that
can be provided is insufficient to prevent attacks completely. ̂ ^̂ A brute-force
attack on a well-chosen target is possible, albeit much slower than attacking a
system without any randomization.

A program's code can also be monitored as it runs, akin to behavior blocking
anti-virus techniques. ̂ ^ The monitoring system looks for potential attacks by
watching for specific abnormal behaviors, like a function return jumping into
a buffer, or a return instruction not returning to its call site. The tricky part is
pausing the monitored program's execution at critical points so that checks may
be performed, without introducing excessive overhead, without modifying the
monitored program's code. A solution comes in the form of caching:

• The monitoring system maintains a cache of code chunks that have already
been checked against the monitor's security policy.

• Cached code chunks run directly on the CPU, rather than using slow em­
ulation, and a chunk returns control back to the monitor when it's done
running.

• Each control transfer is checked - if the destination corresponds to an
already-cached code chunk, then execution goes to the cached chunk. Oth­
erwise, the destination code chunk is checked for security violations and
copied into the code cache.

Code chunks in the cache can be optimized, mitigating some of the monitoring
overhead.

6.1.6 Finding Weaknesses
How do attackers find technical weaknesses in the first place? They can find

the vulnerabilities themselves:

• Source code can be studied for vulnerabilities, when attacking a system
where the source is available. ̂ -̂ Even when a system is closed-source, it
may be derived in part from a system with available source code.

Weaknesses Exploited 133

• Disassembly listings of programs and libraries can be manually searched,
looking for opportunities. For example, an attacker could look for buffer-
handling code or calls to format functions. While this may sounds daunting,
it is never wise to underestimate the amount of free time an attacker will
dedicate to a task like this.

• Instead of poring over disassembly listings, an attacker can reconstruct a
facsimile of the target program's source code using tools for reverse engi­
neering, like decompilers. This provides a slightly higher-level view onto
the target code.

• Vulnerabilities can be discovered even without direct access to the target
program or its source code. Treating the target program as a "black box"
might be necessary if the target program is running on a remote machine
for which the attacker doesn't have access.̂ "̂ For example, an attacker can
look for buffer overflows by feeding a program inputs of various lengths
until a suspicious condition is seen, like abruptly-terminated output. More
information, such as the buffer's length, can be found through trial-and-error
at that point by performing a binary search using different input lengths.
Computers excel at repeating such mundane tasks, and finding the length of
a buffer can be automated. ̂ ^

In general, any research on automated program-testing can be applied by an
attacker. Such methods have a demonstrated ability to find long sequences
of inputs which cause a program to misbehave.^^

The other option an attacker has is to wait for someone else to find a vulner­
ability, or at least point the way:

• There are a number of full disclosure mailing lists. Advocates of full disclo­
sure argue that the best way to force software vendors to fix a vulnerability
is to release all its details, and possibly even code that exploits the vulner­
abilities. (The extreme contrast to this is security through obscurity, which
holds that hiding security-related details of a system means that attackers
will never be able to figure them out. Again, underestimating an attacker is
a bad strategy.) An exploit made available on a full-disclosure list can either
be used directly, or might be used to indicate the direction of more serious
problems in the targeted code.

• A vendor security patch is a wealth of information. Either the patch itself
can be studied to see what vulnerability it fixed, or a system can be compared
before and after applying a patch to see what changed.

Tools are available to help with the comparison task. All but the most
trivial alteration to the patched executables will result in a flurry of binary
changes: branch instructions and their targets are moved; information about

134 COMPUTER VIRUSES AND MALWARE

a program's symbols changes as code moves around; new code optimization
opportunities are found and taken by the code's compiler. For this reason,
tools performing a straight binary comparison will not yield much useful
information to an attacker.̂ ^^

Useful binary comparison tools must filter out nonessential differences in
the binary code. This is related to the problem of producing small patches
for binary executables. Any observed difference between two executables
must be characterized as either a primary change, a direct result of the code
being changed, or a secondary change, an artifact of a primary change. *̂ ^
For example, an inserted instruction would be a primary change; a branch
offset moved to accommodate the insertion is a secondary change. Spotting
secondary changes can be done several ways:

- An architecture-dependent tool effectively disassembles the code to find
instructions like branches which tend to exhibit secondary changes. ̂ ^̂

- An architecture-independent tool can guess at the same information
by assuming that code movements are small, only affecting the least-
significant bytes of addresses.̂ ^"^

Naturally an attacker would only be interested in learning about primary
changes, after probable secondary changes have been identified.

Other binary comparison approaches build "before" and "after" graphs of
the code, using information like the code's control flow. A heuristic attempt
is made to find an isomorphism between the graphs; in other words, the
graphs are "matched up" as well as possible. Any subgraph that can't be
matched indicates a possible change in the corresponding code.̂ ^^

The Holy Grail for an attacker is the zero-day exploit, an exploit for a vulner­
ability that is made the same day as the vulnerability is announced - hopefully
the same day that a patch for the vulnerability is released. From an attacker's
point of view, the faster an exploit appears, the fewer machines that will be
patched to plug the hole. In practice, software vendors are not always fast or
forthcoming,^^ and an exploit may be well-known long before a patch for the
vulnerability manifests itself.

6.2 Human Weaknesses
Humans are the weakest link in the chain of security. Humans forget to apply

critical security patches, they introduce exploitable bugs, they misconfigure
software in vulnerable ways. There is even an entire genre of attacks based on
tricking people, called social engineering.

Classic social engineering attacks tend to be labor-intensive, and don't scale
well. Some classic ploys include: ̂ ^̂

Weaknesses Exploited 135

• Impersonation. An attacker can pretend to be someone else to extract infor­
mation from a target. For example, a "helpless user" role may convince the
target to divulge some useful information about system access; an "impor­
tant user" role may demand information from the target. ̂ ^̂

• Dumpster diving. Fishing through garbage for useful information. "Useful"
is a broad term, and could include discarded computer hard drives and
backups with valuable data, or company organization charts suitable for
assuming identities. Identity theft is another use for such information.

• Shoulder surfing. Discovering someone's password by watching them over
their shoulder as they enter it in.

These classic attacks have limited application to malware. Even impersonation,
which doesn't require the attacker to have a physical presence, works much
better on the phone or in person. *̂ ^

Technology-based social engineering attacks useful for malware must be
amenable to the automation of both information gathering and the use of gath­
ered information. For example, usemames and passwords can be automatically
used by malware to gain initial access to a system. They can be collected
automatically with social engineering:

• Phony pop-up boxes, asking the user to re-enter their username and pass­
word.

• Fake email about winning contests, directing users to an attacker's web
site. There, the user must create an account to register for their "prize"
by providing a username and password. People tend to re-use usernames
and passwords to reduce the amount they must remember, so there is a high
probability that the information entered into the attacker's web site will yield
some real authentication information.

The same principle can be used to lure people to an attacker's website to
foist drive-by downloads on them. The website can exploit bugs in a user's
web browser to execute arbitrary code on their machine, using the technical
weaknesses described earlier.

• Phishing attacks send email which tricks recipients into visiting the at­
tacker's web site and entering information. For example, a phishing email
might threaten to close a user's account unless they update their account in­
formation. The attacker's web site, meanwhile, is designed to look exactly
like the legitimate web site normally visited to update account information.
The user enters their username and password, and possibly some other per­
sonal information useful for identity theft or credit card fraud, thus giving
all this information to the attacker. Malware can use phishing to harvest
usernames and passwords.

136 COMPUTER VIRUSES AND MALWARE

If you receive an email titled "It Takes Guts to Say
'Jesus'" do NOT open it. It will erase everything on
your hard drive.

Forward this letter out to as many people as you can.
This is a new, very malicious virus and not many
people know about it. This information was announced
yesterday morning from IBM; please share it with
everyone that might access the internet. Once again,
pass this along to EVERYONE in your address book so
that this may be stopped,

AOL has said that this is a very dangerous virus and
that there is NO remedy for it at this time. Please
practice cautionary measures and forward this to all
your online friends ASAP.

Figure 6.21. "It Takes Guts to Say 'Jesus'" virus hoax

User education is the best defense against known and unknown social engineer­
ing attacks of this kind. Establishing security policies, and teaching users what
information has value, gives users guidelines as to the handling of sensitive
information like their usemames and passwords.^^^

Social engineering may also be used by malware to spread, by tricking people
into propagating the malware along. And, one special form of "malware" that
involves no code uses social engineering extensively: virus hoaxes.

6.2.1 Virus Hoaxes
'This virus works on the honor system. Please forward this message to everyone you

know, then delete all the files on your hard disk.' - Anonymous^^

A virus hoax is essentially the same as a chain letter, but contains "informa­
tion" about some fictitious piece of malware. A virus hoax doesn't do damage
itself, but consumes resources - human and computer - as the hoax gets propa­
gated. Some hoaxes may do damage through humans, advising a user to make
modifications to their system which could damage it, or render it vulnerable to
a later attack.

There are three parts to a typical hoax email :̂ -̂ ^

1 The hook. This is something that grabs the hoax recipient's attention.

2 The threat. Some dire warning about damage to the recipient's computer
caused by the alleged virus, which may be enhanced with confusing "tech-
nobabble" to make the hoax sound more convincing.

3 The request. An action for the recipient to perform. This will usually include
forwarding the hoax to others, but may also include modifying the system.

Some examples are given in Figures 6.21 and 6.22.̂ ^ Figure 6.21 is a classic
virus hoax, whose only goal is to propagate. The virus hoax in Figure 6.22 is

Weaknesses Exploited 137

I found the little bear in my machine because of that I am sending this
message in order for you to find it in your machine. The procedure is
very simple:

The objective of this e-mail is to warn all Hotmail users about a new
virus that is spreading by MSN Messenger. The name of this virus is
jdbgmgr.exe and it is sent automatically by the Messenger and by the
address book too. The virus is not detected by McAfee or Norton and it
stays quiet for 14 days before damaging the system.

The virus can be cleaned before it deletes the files from your system.
In order to eliminate it, it is just necessary to do the following
steps:
1. Go to Start, click "Search"
2.- In the "Files or Folders option" write the name jdbgmgr.exe
3.- Be sure that you are searching in the drive "C"
4.- Click "find now"
5.- If the virus is there (it has a little bear-like icon with the name

of jdbgmgr.exe DO NOT OPEN IT FOR ANY REASON
6.- Right click and delete it (it will go to the Recycle bin)
7.- Go to the recycle bin and delete it or empty the recycle bin.

IF YOU FIND THE VIRUS IN ALL OF YOUR SYSTEMS SEND THIS MESSAGE TO ALL
OF YOUR CONTACTS LOCATED IN YOUR ADDRESS BOOK BEFORE IT CAN CAUSE ANY
DAMAGE.

Figure 6.22. "jdbgmgr.exe" virus hoax

slightly more devious, sending Windows users on a mission to find bear-shaped
icons. As it turns out, this is the icon for a Java debugger utility which is
legitimately found on Windows.

Why does a virus hoax work? It relies on some of the same persuasion factors
as social engineering:^^^

• A good hook elicits a sense of excitement, in the same way that a com­
mittee meeting doesn't. Hooks may claim some authority, like IBM, as
their information source; this is an attempt to exploit the recipient's trust in
authority.

• The sense of excitement is enhanced by the hoax's threat. Overloading the
recipient with technical-sounding details, in combination with excitement,
creates an enhanced emotional state that detracts from critical thinking.
Consequently, this means that the hoax may be subjected to less scrutiny
and skepticism than it might otherwise receive.

• The request, especially the request to forward the hoax, may be complied
with simply because the hoax was persuasive enough. There may be other
factors involved, though. A recipient may want to feel important, may
want to ingratiate themselves to other users, or may genuinely want to warn
others. A hidden agenda may be present, too - a recipient may pass the

138 COMPUTER VIRUSES AND MALWARE

hoax around, perceiving the purported threat as a way to justify an increase
in the computer security budget.

Virus hoaxes seem to be on the decline, possibly because they are extremely
vulnerable to spam filtering. Even in the absence of technical solutions, edu­
cation is effective. Users can be taught to verify a suspected virus hoax against
anti-virus vendors' databases before sending it along; if the mail is a hoax, the
chances are excellent that others have received and reported the hoax already.

Weaknesses Exploited 139

Notes for Chapter 6

1 This is based on a simplified Unix memory model, with a few exceptions:
the code segment is called the text segment, and what is lumped together
here as the data segment is really a combination of the Unix data and bss
segments.

2 Again, this is a simplification. An optimizing compiler may place some or
all of a subroutine's stack frame into registers if possible, to avoid costly
memory references. Some architectures, like the SPARC, are specifically
designed to facilitate this.

3 Assumptions, assumptions, assumptions. RISC architectures tend not to
push the return address, but dump it into a register so that it can be saved
only if necessary.

4 An alternative is to replicate the new return address several times at the end,
especially when the exact distance from the buffer to the return address on
the stack isn't known.

5 On some systems, the stack location isn't consistent across executions of
a program, but the environment variable location is, so the environment
variable trick provides an alternative attack vector.

6 This assumes that array indexing starts from zero.
7 16-bit numbers are used in this section for clarity, but the same idea works

for numbers with any finite precision.
8 This is a simplified explanation, and doesn't take into account format func­

tions for input, various obscure format functions, and format functions that
take an opaquely-typed variable argument list rather than the arguments
themselves.

9 The latter being a peculiarity of the "gcc" dialect of C, the implementation
of which is described in Breuel [48].

10 OpenBSD allows this with their "W^X" scheme [85].
11 For multithreaded programs, each thread has its own stack. The random

canary could thus be changed on a per-thread basis, with the canary's correct
value placed in thread-local storage instead of a global location.

12 Kiriansky et al. [164] call this "program shepherding," and build their system
on top of HP's Dynamo dynamic optimization system [25]. Renert [261]
does largely the same thing, code cache and all (albeit permitting more gen­
eral security policies), but neglects to mention the highly-related Dynamo
work.

13 This includes, but is not restricted to, open-source systems. "Available"
doesn't necessarily imply "freely," "easily," or "widely."

14 Yet.
15 This technique of finding "blind" buffer overflows is described in [84, 194].

140 COMPUTER VIRUSES AND MALWARE

16 For example, Chan et al. [60] apply an evolutionary learning algorithm to
testing the game AI in Electronic Arts' FIFA-99 game.

17 To be fair - at least on the vendor speed issue - patches must be thoroughly
tested, and the same vulnerability may exist in several of a vendor's prod­
ucts [224].

18 This is one of many variants of the "honor system virus" circulating. No
traces of this particular one seem evident before May 2000, right after the
release of the (non-hoax) ILOVEYOU email worm. An honor system virus
was posted to Usenet around this time, but it's unclear if it is the original
source or merely another derivative [181].

19 There are many different versions of these hoaxes floating around; the ones
given here are edited to include the essential features of each.

100 Anderson [12].
101 This section is based on Aleph One [8].
102 Erickson [100].
103 The description of this attack is based on klog [167].
104 This section is based on [231, 292].
105 This section is based on Conover [78].
106 The description of this vulnerability is based on Solar Designer [293] and

an anonymous author [18].
107 This categorization is due to Howard [147].
108 blexim [36], who also provides the XDR code from which Figure 6.16 was

derived.
109 Miller et al. [209, page 39].
110 Cowan etal. [80].
111 This format string vulnerability discussion is based on scut [284].
112 Koziol etal. [171].
113 The defenses against format string vulnerabilities are from Cowan et al.

[80].
114 This ornithological discussion is based on Wagle and Cowan [339].
115 Robertson et al. [266].
116 BulbaandKil3r[51].
117 Etoh[102].
118 Astonishingly, this claim is made in Ruwase and Lam [272, page 159].
119 A number of systems do this now: see Drepper [93] and de Raadt [85].

This type of randomization is one way to avoid software monocultures;
see Just and Cornwall [157] for a discussion of other techniques.

Weaknesses Exploited 141

120 Shacham et al. [285]. A related attack on instruction set randomization
can be found in Sovarel et al. [296].

121 Hunt and Mcllroy [148] describe the early Unix dif f utility.
122 We follow the terminology from Baker et al. [24].
123 Baker etal. [24].
124 Percival [246].
125 Flake [110] and Sabin [273].
126 Granger [128].
127 Also in Allen [10].
128 Harl [136].
129 Granger [129].
130 CIAC [72].
131 Based on Gordon et al. [126], Gragg [127], and Granger [128].

Chapter 7

WORMS

The general structure of a worm is:

def wormO :
propagate 0
if trigger0 is true:

payloadO

At this level of abstraction, there is no distinction between a worm and a virus.
(For comparison, the virus pseudocode is on page 27.) The real difference is
in how they propagate. Propagating by infecting other code is the domain of
a virus; actively searching for vulnerable machines across a network makes a
worm. A worm can either be said to infest or infect its victims; the latter term
will be used here. A single copy of a worm will be called a worm instance,
where it's necessary to avoid ambiguity.

In some cases, worms are classified by the primary method they use for
transport. A worm using instant messaging (IM) to spread is called an IM
worm, and a worm using email is an email worm. For example, many email
worms arrive as an email attachment, which the user is tricked into running.
When run, the worm harvests email addresses off the machine and mails itself
to those addresses.

Tricking users into doing something is social engineering, and this is one
mechanism that worms use to infect machines. Another mechanism that worms
exploit for infection are technical weaknesses. A user doesn't have to be tricked
into running an email attachment, if just viewing the email allows the worm's
code to execute via a buffer overrun. A user doesn't have to be involved at all, if
the worm spreads using buffer overruns between long-running network server
processes on different machines.

144 COMPUTER VIRUSES AND MALWARE

A worm can also exploit existing, legitimate transactions. For example,
consider a worm able to watch and modify network communications, especially
one located on a network server machine. The worm can wait for legitimate
transfers of executable files - file transfers, network filesystem use - and either
substitute itself in place of the requested executable file, or insert itself into the
requested file in a virus-like fashion.̂ ^^

Most of the details about worms have already been covered in earlier chapters,
like technical weaknesses and human weaknesses. Worms can also employ the
same techniques that viruses do in order to try and conceal themselves; worms
can use encryption, and can be oligomorphic, polymorphic, or metamorphic.
This chapter therefore only examines the propagation which makes worms
distinct from viruses, beginning with a look at two historically important worms.

7.1 Worm History
The origins of the term "worm" were mentioned in Section 2.1.5, along with

some examples of early worms. This section examines two of these in more
depth: the Xerox worm and the Internet worm.

7.1.1 Xerox PARC, c. 1982
'All worm behavior ceased. Unfortunately the embarrassing results were left for all

to see: 100 dead machines scattered around the building.' - John Shoch and Jon
Hupp^^^

The worm used in the Xerox PARC experiments of the early 1980s wasn't
intentionally malicious, despite the above quote. It was intended as a framework
for distributed computation, to make use of otherwise unused CPU time. A
user would write a program to run in parallel, on many different machines -
this program would sit atop the worm mechanism, and the worm would manage
the mechanics of making the program run on different machines.

It would be highly unusual to see a worm now that places an artificial limit
on its own propagation, but that was exactly what the Xerox worm did. The
Xerox worm was composed of multiple segments, by way of analogy to real
biological worms; at most one worm segment could run on any one machine.
A bounded, finite number of segments were started, and all segments kept in
contact with one another. If the worm lost contact with a segment (for example,
someone rebooted the machine that the segment was running on), then the other
segments sought another machine upon which to run a segment.

Safety mechanisms were built in to the worm. This was done in part to
assuage user concerns about having such a beast running on their computer;
segments were not allowed to perform disk accesses, for example. Keeping
segments in contact had a safety benefit, too, in that the entire worm could be
shut down with a single command. And was, in the case from which the above

Worms 145

quote was taken. The worm had gone out of control through an odd set of
circumstances, and had to be stopped.

One of the key insights the researchers at Xerox PARC made from their worm
experiments was that managing worm growth and stability are hard problems.

7.1.2 The Internet Worm, November 1988
'We are currently under attack from an Internet VIRUS. It has hit UC Berkeley, UC

San Diego, Lawrence Livermore, Stanford, and NASA Ames.' - Peter Yeê ^̂

Whether people called it a worm or a virus, the Internet worm was a major
wake-up call for Internet security.^ It worked in three stages:

Stage 1 The first stage was for the worm to get a shell on the remote machine
being targeted. The worm would use one of three methods to acquire a shell,
mostly relying on security holes of mythic proportion:

1 Users read and send email using mail programs which are generically
called mail user agents. The actual gory details of transmitting and
delivering mail across the network are handled by daemons called mail
transport agents. Mail user agents send mail by passing it off to a
mail transport agent, which in turn can talk to mail transport agents on
different machines, to send the mail along its merry way.

Sendmail was a widely-used mail transport agent at the time of the
Internet worm. An example of sending mail, by talking to the sendmail
daemon, is in Figure 7.1. Simple commands are used to identify the
connecting machine, specify the mail's sender and receiver, send the
mail, and complete the connection.

Older versions of sendmail also supported a "debug" command, which
allowed a remote user to specify a program as the email's recipient,
without any authentication. The Internet worm trivially exploited this
to start a shell on the remote machine.

2 The f inger program was a user program which could be used to dis­
cover information about another Unix user; indeed, it was once common
to sit in a terminal room and finger people. A sample output is shown
in Figure 7.2.

This example gets its information from the local machine only, but using
an @ sign in the command line

finger aycock@cpsc.ucalgary.ca

would cause information to be requested about the user from the speci­
fied machine. Finger would make a network connection to the finger
daemon on the remote machine and send a query about the user.

146 COMPUTER VIRUSES AND MALWARE

220 mail.cpsc.ucalgary.ca ESMTP Sendmail
helo mymachine
250 mail.cpsc.ucalgary.ca Hello mymachine, pleased to meet you
mail from: elvis
250 2.1.0 elvis... Sender ok
rcpt to: aycock
250 2.1.5 aycock... Recipient ok
data
354 Enter mail, end with ''." on a line by itself
From: elvis
To: aycock
Siibject: the present you sent

Thank you, thank you very much.

Sincerely,

The King

250 2.0.0 hAQHNJxY0022 01 Message accepted for delivery
quit
221 2.0.0 mail.cpsc.ucalgary.ca closing connection

Figure 7.1. A conversation with sendmail

% finger aycock

Login: aycock Name: John Aycock
Directory: /home/aycock Shell: /bin/sh
On since Wed Nov 26 09:38 (MST) on pts/2 from serverl
No mail.
No plan.

Figure 7.2. Finger output

The finger daemon read input from the network connection using C's
gets function, which does no bounds checking on what it reads in. The
Internet worm would exploit this by performing a stack smashing attack
against the finger daemon to get a shell.

3 Several utility programs used to permit a user to run commands on a
remote machine. The Internet worm tried two of these in an effort to
get a remote shell: rexec and rsh.

Rexec required a password to log in to the remote machine. The worm's
third stage would guess at passwords, trying obvious ones like the user-
name, and mounting a dictionary attack too. A dictionary attack is
where an attacker has a dictionary of commonly-used words, which are

Worms 147

tried one by one as potential passwords. The worm's third stage carried
a list of 432 words that it used for this purpose.

Rsh could be even more accommodating for getting a remote shell. It
had a facility where users coming from specified "trusted" hosts didn't
even have to supply a password.

Stage 2 Once a shell was obtained on the remote machine, the worm would
send commands to create, compile, and run a small C program on the ma­
chine being infected. This program was portable across the prevalent Unix
architectures of the time, and had another technical advantage. Because it
was sent in source form, it was immune to damage from communication
channels which only passed through seven bits out of eight, which would
have destroyed a binary executable file.

The compiled program was a "grappling hook" which was used to pull the
worm's Stage 3 executable files onto the machine being infected.̂ ^^ When
run, the grappling hook would make a network connection back to the infect­
ing machine (whose worm instance was expecting the incoming connection).
This connection was used to transfer several Stage 3 executables, one for
each architecture that the worm could infect. These executables would be
tried until one succeeded in running.

Stage 3 At this point, the worm was fully established on the infected machine,
and would begin trying to propagate itself to other machines.

Some rudimentary stealth measures were deployed. The worm named itself
"sh" to appear as a user shell, and modified its command-line arguments;
both these would make the running worm process look unremarkable to a
casual observer. Previous remnants, like temporary files used for compil­
ing the grappling hook, were removed. Finally, the worm prevented "core
dump" files from being created - a Unix system will create core dump files
for processes incurring fatal errors, or upon receipt of an explicit user re­
quest to do so. This latter step prevented easy capture of worm samples for
analysis.

New target machines were selected using information from the infected
machine. Information from network interfaces, network routing tables, and
various files containing names of other computers were all used to locate
new machines to try and infect.

The Internet worm carried no destructive payload. Worm damage was col­
lateral, as each worm instance simply used lots and lots of machine and network
resources.

148 COMPUTER VIRUSES AND MALWARE

/ \

\ /

Time

Connection
source

Connection
destination

Figure 7.3. TCP connection establishment

7.2 Propagation
Humans are slow, compared to computers and computer networks. Worms

thus have the potential to spread very, very quickly, because humans don't have
to be involved in the process of worm propagation. ̂ ^̂

At the extreme end of the scale are fast burners, worms that propagate as
fast as they possibly can. Some of these worms have special names, reflecting
their speed. A Warhol worm infects its vulnerable population in less than 15
minutes; this name comes from artist Andy Warhol's famous quote 'In the future
everyone will be famous for fifteen minutes.' A flash worm goes one better,
and infects the vulnerable population in a matter of seconds.

How can a worm propagate this quickly? With a combination of these
methods:

• Shorten the initial startup time. Recalling the worm growth curve in Fig­
ure 1.2 (page 5), this shifts the growth curve to the left.

• Minimize contention between instances of the worm. This includes avoiding
general contention in network traffic, as well as avoiding pointless attempts
to re-infect the same machine.

• Increase the rate at which potential target machines are probed, by scanning
them in parallel. This is a tradeoff, because such network activity can result
in network traffic contention.

• Attack using low-overhead network protocols. The less back-and-forth that
a network protocol requires, the faster a worm using that protocol can spread.
The Slammer worm, for example, used the User Datagram Protocol (UDP) to
infect SQL database servers using a buffer overflow. ̂ ^̂ UDP is a lightweight,
connectionless protocol: there is no overhead involved to set up a logical
network connection between two computers trying to communicate. From
Slammer's point of view, this meant one network packet, one new victim.

In contrast, worms using a connection-based network protocol like the
Transmission Control Protocol (TCP) have several packets' worth of over­
head to establish a connection, before any exploit can even be started. ̂ ^̂

Worms 149

Figure 7.3 shows two computers establishing a connection using TCP. Each
computer must send one SYN packet to the other, and acknowledge the
other's SYN packet with an ACK. (One ACK is "piggybacked" on a SYN
packet, so only three packets are exchanged in practice.) All this network
traffic occurs before a worm is able to talk to and exploit a server, making
TCP-based worms much slower in comparison to UDP-based worms.

At the other end of the speed scale are surreptitious worms that deliberately
propagate slowly to avoid notice. Such a worm might hide in normal network
traffic, like the network traffic for file-sharing. Slow propagation might be used
to build up a zombie army for a massive DDoS attack, or for any other purpose
for which a botnet might be used.

In the remainder of this section, the initial spread of a worm is considered,
as are ways that a worm finds new victim machines to infect.

7.2.1 Initial Seeding
Worms need to be injected into a network somehow. The way that a worm

is initially released is called seeding, A single network entry point would be
relatively easy to trace back to the worm author, and start the worm's growth
curve at its lowest point. An effective seeding method should be as anonymous
and untraceable as possible, and distribute many instances of the worm into the
network.

Three possibilities have been suggested:

• Wireless networks. There are many, many wireless networks connected to
the Internet with little or no security enabled.̂ ^^ Using wireless networks
for seeding satisfies the anonymity criterion, although physical proximity
to the wireless access point by the worm writer is required, making this
option not entirely risk-free. Barring a co-ordinated release, however, this
method of seeding doesn't scale well to injecting large worm populations.
A co-ordinated release is risky, too, as many people will know about the
worm and its creator.

• Spam. Seeding a worm by spamming the worm out to people can satisfy
both effectiveness criteria: anonymity and volume. Spamming can be used
to seed worms even when the worm doesn't normally propagate through
email.

• Botnets. Botnets may be used in several ways for seeding and, like spam­
ming, meet both effectiveness criteria. Botnets may be used to send the
worm's seeding spam, and they may be also used to release the worm di­
rectly in a highly-distributed way.

Access to common network services can be had in a hard-to-trace way, so this
list is far from complete.

150 COMPUTER VIRUSES AND MALWARE

136.159

University
of Calgary
network

Computer
Science
subnet

Specific
computer
on subnet

Figure 7.4. IP address partitioning

7.2.2 Finding Targets
On the Internet, a machine is identified in two ways: by a domain name

and an Internet Protocol (IP) address. Domain names are a convenience for
humans; they are human-readable and are quietly mapped into IP addresses. IP
addresses, which are just numbers, are used internally for the real business of
networking, like routing Internet traffic from place to place.

IP addresses come in two flavors, distinguished by a version number: the
most prevalent kind now are version 4 addresses {IPv4), but support for ver­
sion 6 addresses {IPv6) is increasing. IPv4 addresses are shorter, only 32 bits
compared to IPv6's 128 bits, and the same principles apply to both in terms of
worm propagation; this book will use IPv4 addresses for conciseness.

The bits of an IP address are partitioned to facilitate routing packets to the
correct machine. Part of the address describes the network, part identifies the
computer (host) within that network. IP addresses are categorized based on
their size:

Network Class Network Bits Host Bits

Class A
Class B
Class C

16
24

24
16

For example. Figure 7.4 breaks down the IP address for the web server at the
University of Calgary's Department of Computer Science. The University of
Calgary has a class B address, 136.159; its host part is further subdivided, to
identify a subnet, 5, and the exact host on that subnet, 17.

Why is this relevant to worms? A worm has to identify a potential target
machine. For worm propagation, it is substantially easier for a worm to guess
at an IP address and find a target than it is for a worm to guess correctly at a
domain name.

Worms 151

A worm looking for machines to infect is said to scan for targets; this is
different from the use of "scan" to describe anti-virus activity. There are five
basic strategies that a worm can use to scan:

Random scanning A worm may pick a target by randomly choosing a value to
use as an IP address. This was done, for example, by Code Red I. Choosing
an IP address randomly can select a target literally anywhere in the world.

Localized scanning Random scanning is good for widespread distribution, but
it's a hit-and-miss approach for worms exploiting technical vulnerabilities
to spread. It is much likelier that computers on the same network, in the
same administrative domain, are going to be maintained in a similar fashion.
For example, if one Windows machine on a network has an unpatched buffer
overflow, the chances are good that another Windows machine on the same
network is going to be unpatched too.

Localized scanning tries to take advantage of this. Target machines are again
chosen randomly, but with a bias towards local machines; a "local machine"
is heuristically selected by taking advantage of the IP address partitioning
described above. For example. Code Red II picked target IP addresses in
this way:̂ ^^

Probability Target Selection

1/8 All four bytes randomly chosen
3/8 Only last two bytes randomly chosen
4/8 Last three bytes randomly chosen

Hit-list scanning Prior to worm release, a "hit-list" can be compiled which
contains the IP addresses of some machines known to be vulnerable to a
technical flaw the worm plans to exploit. Compiling such a list is a possible
application for a previously-released surreptitious worm, or a botnet. The
list need not be 100% accurate, since it will only be used as a starting point,
and doesn't need to contain a large number of IP addresses - 50,000 or less
are enough.

After its release, the worm starts by targeting the machines named in the hit-
list. Each time the worm successfully propagates, it divides the remainder
of the list in half, sending half along with the new worm instance. Once the
list is exhausted, the worm can fall back onto other scanning strategies.

Hit-list scanning is useful for two reasons:

1 Avoiding contention. The hit-list keeps multiple instances of a worm
from targeting the same machines.

152 COMPUTER VIRUSES AND MALWARE

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

n n m n
J C I I C I I

4 7 5 2 3 10 6 1 9 8

D D D D D
Machine 6 Machine 7 Machine 8 Machines Machine 10

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

D D n m n
I I I I I I I ^ I

4 7 5 2 3 10 6 1 9 8

J

D m D D D
I I
Machines Machine 7 Machines Machines Machine 10

Time

Machine 1 Machine 2 Machine 3 Machine 4 Machine 5

D n
I I I : I I ^ I

4 7 5 2 3 10 6 1 9 8
t

o S o D
1 I 1 1 I 1

Machines Machine 7 Machines Machines Machine 10

Figure 7.5. Permutation scanning

2 Speeding up initial spread. By providing a list of known targets, slow
propagation by trial-and-error is avoided, and the worm's growth curve
shifts to the left as a result.

A variation on the hit-list scheme precompiles a list of all vulnerable ma­
chines on the Internet, and sends it along with the worm in compressed form.

Worms 153

Permutation scanning If a worm is able to tell whether or not a target candi­
date is already infected, then other means of contention avoidance can be
used. Permutation scanning is where instances of a worm share a common
permutation of the IP address space, a pseudo-random sequence over all
2^^ possible IP address values. Each new instance is given a position in
the sequence at which to start infecting, and the worm continues to work
through the sequence from there. Figure 7.5 has an example for a ten-value
permutation.

If a machine is encountered which is already infected, then the worm picks
a new spot in the sequence randomly. This gives the worm a simple mech­
anism for distributed coordination without any communication overhead
between worm instances. (Interestingly, peer-to-peer networks for file shar­
ing share the same need for low-overhead distributed coordination. ̂ ^̂)

This coordination mechanism can be used by the worm to heuristically
detect saturation, too. If a worm instance continually finds already-infected
machines, despite randomly resituating itself in the permutation sequence,
then it can serve as an indicator that most of the vulnerable machines have
been infected. More generally, a worm can mathematically model its own
growth curve, to estimate how close it is to the saturation point. ̂ ^̂ The
saturation point can signal the opportune time to release a payload, because
there is little more to do in terms of spreading, and countermeasures to the
worm are doubtlessly being deployed already.

Topological scanning Information on infected machines can be used to select
new targets, instead of using a random search. This is called topological
scanning, because the worm follows the topology of the information it finds.

The topology followed may or may not coincide with the physical network
topology. A worm may follow information about a machine's network
interfaces to new target hosts, but other types of information can result in
propagation along social networks. Email worms can mail themselves to
email addresses they mine off an infected machine, and IM worms can send
themselves to people in a victim's "buddy list."^^^

Topological scanning is particularly useful for propagation in large, sparse
address spaces. The Internet worm, for example, used topological scanning
due to the relatively small number of machines in the IP address space of
1988. In contrast, random scanning would waste a lot of effort locating
targets in such an address space.

Passive Scanning A surreptitious worm can wait for topological information
to come to it. A passive scanning worm can eavesdrop, or sniff, network
traffic to gather information about:̂ ^^

154 COMPUTER VIRUSES AND MALWARE

• Valid IP addresses. The worm can gather the addresses of potefttial
targets in a way that dodges some of the worm countermeasures in the
next chapter.

• Operating system and services. A worm can benefit from knowing
a target machine's operating system type, operating system version,
network services, and network service versions.^ Worms able to exploit
multiple technical weaknesses can pick a suitable infection vector, and
other worms can rule out unsuitable targets.

• Network traffic patterns. A slow worm can limit its network activity
to times when there is normally legitimate network activity. The other
network activity can act as cover traffic for the worm's operation.

In some cases targets have already been identified for other reasons, and a
worm need only extract the information. For example, the Santy worm exploited
a flaw in web software, and used Google to search for targets.̂ -̂̂

Putting all the pieces together - virus-like concealment, exploitation of tech­
nical and human weaknesses, hijacking legitimate transactions, extremely rapid
spreading - worms are a very potent type of malware. Equally potent defensive
measures are needed.

Worms 155

Notes for Chapter 7
1 It wasn't just Yee that referred to it as a virus. Of the two primary sources

used for this section, one calls it a virus, one a worm, both argue their case:
Eichin and Rochlis [97] and Spafford [298].

2 This is called passive fingerprinting [301].

100 Nazarioetal. [230].
101 Shoch and Hupp [287, page 176]. This section on the Xerox worm was

based on this source too.
102 Yee [350].
103 The term "grappling hook" is from Eichin and Rochlis [97].
104 This section is based on Stamford et al. [304].
105 Sz6randPerriot[315].
106 McKusick et al. [202].
107 Stampf [302] mentions the worm potential in wireless forms of communication.
108 CERT [55].
109 Wiley [346].
110 Vogt [337]. Ma et al. [190] analyze self-stopping worms in great detail.
111 Hindocha and Chien [142].
112 Nazarioetal. [230].
113 Hypponen [150].

Chapter 8

DEWORMING

Work on handling worms, from a defender's point of view, can be classified
three ways: defense, worm capture and containment, and automatic counter-
measures. This chapter follows that organization.

Most of the techniques described here can be illustrated on a network like the
one in Figure 8.1. An internal network is connected to the Internet through some

Honeypot Internal I
network !

Figure 8.1. An example network

158 COMPUTER VIRUSES AND MALWARE

computer at the network's perimeter. The nature of this perimeter computer has
been left deliberately vague; it can be a dedicated network router or a general-
purpose computer, which may be performing a variety of defensive tasks in
addition to shuffling network packets back and forth. The internal network has
a critical subnet, a set of machines which special pains must be taken to protect.
There is the user and their computer, which is a host on the network. Finally, a
computer acting as a "honeypot" may be present, whose role will be described
in Section 8.2.1.

First, defense.

8.1 Defense
How can worms be kept out in the first place? Looking at the path from the

Internet to the user in Figure 8.1, defensive measures can be taken at any point
along that path.

8.1.1 User
User education can't be forgotten. Education is especially useful to prevent

the propagation of email worms that require an attachment to be run by a
human. Users can also be thought of as finely-attenuated sensors which detect
the most insignificant slowdowns in network speed, a fact to which any network
administrator can attest. Network traffic from worms that is otherwise hidden
may be detected by users.

8.1.2 Host
The next line of defense is the user's computer; defenses deployed here are

called host-based defenses. Some of the best defenses against worms are the
most mundane: applying patches, limiting the amount of available services on
a machine. From there, defenses specific to likely attack vectors are the next
step, followed by anti-virus software being used on the host to look for worms.

8.1.2.1 Patching

Many intrusions by malware are completely preventable. A lot of worms do
not exploit previously-unknown vulnerabilities, but use known vulnerabilities
for which a patch is available. Illustrated in Figure 8.2, the rate of patching is
an exponential decay curve which never reaches zero.̂ ^^ In other words, many
machines remain vulnerable for a long period of time after a patch is available,
and some machines are never patched. The situation is even worse: the over­
all patching rate does not change dramatically even when a widely-publicized
worm is circulating, exploiting the vulnerability.^ Studies of a number of se­
curity vulnerabilities for which patches are available have shown similar, dis­
couraging results. ̂ ^̂

Deworming 159

unpatched
machines

Time

Figure 8.2. Rate of patching over time

There may be a variety of excellent reasons for the laxity of patching. ̂ ^̂
Qualified personnel may not be available to apply a patch, or may not have time.
People may not know about the patch. Bureaucratic issues may preclude proper
maintenance, or policy matters may prevail - for example, some companies
require updates to be tested before distributing them. This policy may be seen
to be a prudent precaution, because applying some patches (especially hastily-
prepared ones made in response to a vulnerability) may break more software
than it fixes.

New commodity operating systems (e.g., Windows, MacOS) have automated
update systems which notify a user that updates are available, and lead them
through the process of downloading and installing the updates. Not everyone
runs the newest version of an operating system, and policy may trump the use
of automated updates, but in the long term, automated update systems will
probably have a positive impact on security.

8.1.2.2 Limiting Available Services
The reasoning for limiting available services comes from two premises:

1 Worms exploit technical weaknesses, like buffer overflows, in network
servers. (Here, a server refers to the program that supplies a particular
service.)

2 Technical weaknesses are likely to evenly manifest themselves throughout
network server code.

Based on these premises, the conclusion can be drawn that the more network
servers a machine runs, the likelier it is that some technical weakness is exposed
that a worm can exploit. The corollary is that the fewer network servers a
machine runs, the more secure it is.

While the soundness of this logic may be debated, the general idea of reducing
potential attack vectors to defend against worms is a good one. There are

160 COMPUTER VIRUSES AND MALWARE

pragmatic aspects to limiting network servers, too, in that it also limits the
amount of software to patch.

The hard part is determining which servers to shut down. This can involve
much trial-and-error even for experts, turning off one server after another to see
if it affects the machine's operation. Some effects may only be apparent after
an extended period of time, if a server is shut down that only sees occasional
use.

8.1.2.3 Countermeasures against Specific Weal^nesses
Besides trying to reduce the number of running servers that might contain

weaknesses, countermeasures can be used to guard against specific kinds of
technical weakness that are exploited by worms. A number of these were
presented in Section 6.1.5, such as:

• Canaries to detect buffer overflows

• Randomizing memory locations to make finding memory addresses harder

• Code monitoring to watch for unusual behavior

Countermeasures to specific technical weaknesses are certainly an important
part of worm defense. However, such countermeasures are based on assump­
tions about how worms are likely to break into a system. They are of little
use against any new types of technical vulnerability that do not happen to be
guarded against, and they do not catch worms that use social engineering to
spread.

8.1.2.4 Anti-Virus Software

Anti-virus software can and does look for worms, but there are three major
problems that hamper anti-virus software's effectiveness:

1 To function properly, anti-virus software detecting known worms needs an
up-to-date virus database, but virus database updates cannot be prepared
and deployed fast enough to counter rapidly-spreading worms.

2 Some powerful anti-virus techniques are unusable: integrity checking and
emulation certify a program as malware-free at the start of the program's
execution. These techniques are useless against a worm that injects its code
into a running program which has already been declared clean.

3 A worm need not reside someplace that anti-virus software can analyze.
Many anti-virus techniques are geared to catch malware that writes itself
somewhere in a computer's filesystem; a worm that exploits a buffer over­
flow in a long-running network server can remain in memory only, unde­
tected.

Deworming 161

This suggests that anti-virus software is no panacea for worm defense. The last
problem, detecting in-memory threats, can at least be addressed.

8.1.2.5 Memory Scanning
Searching for in-memory threats is called memory scanning. Once, memory

scanning was an easy task for anti-virus software: the amount of physical
memory on machines was small, and any program could read from any part of
the memory. Now, two features have made their way into almost all operating
systems, both of which complicate memory scanning:

Memory protection. Hardware protection prevents one process from access­
ing another process' memory unless they have both explicitly agreed to
share memory. This memory protection greatly increases system stability,
because it limits the effect of a misbehaving process - malicious or oth­
erwise. The drawback from the anti-virus point of view is that memory
protection prevents a memory scanner from directly looking at other pro­
cesses' memory.

Virtual memory. The operating system and hardware can conspire to provide
virtual memory to processes. With virtual memory, each process thinks it
has an enormous amount of memory to use, more memory than is physically
available. The virtual memory contents are stored on disk, and the physical
memory acts as a cache for the virtual memory. The operating system,
with hardware support, traps virtual memory references that refer to virtual
memory pages which are not currently present in physical memory. The
operating system arranges for the absent memory pages to be loaded from
disk to physical memory, possibly evicting some physical memory contents
to make room.

Disks are orders of magnitude slower than physical memory. If a process
were to randomly access its virtual memory, it would slow to a crawl waiting
for memory pages to be loaded from disk. Fortunately, that rarely happens.
Most programs naturally exhibit a high degree of locality of reference, mean­
ing that they tend to reference only a small set of memory areas at any given
time.^ As a program's execution continues, the set of memory areas ref­
erenced changes to a different small set of memory areas, and so on. The
memory pages currently required by a process are called its working set, and
the operating system ideally keeps all processes' working sets in physical
memory to minimize slow disk activity.

Virtual memory is a huge convenience for programmers, because it reduces
the need to work around physical memory restrictions. The net effect of
virtual memory for anti-virus software is that a memory scanner doesn't
have everything immediately accessible that it needs to scan.

162 COMPUTER VIRUSES AND MALWARE

An operating system can have memory protection without having virtual mem­
ory; virtual memory can be supported without having strong memory protection
between processes, but this is not normally done. The remainder of this sec­
tion only considers operating systems with both memory protection and virtual
memory, because it is the hardest case to handle.

There are several different ways that memory scanning can be implemented
in such operating systems: ̂ ^̂

• As an ordinary user process, anti-virus software can scan memory by us­
ing operating system facilities intended for debugging. Debuggers need to
examine (and modify) the memory of a process being debugged, and oper­
ating systems have an API to support debuggers. ̂ "̂̂ Anti-virus software can
use this API, pretending to be a debugger, to examine and scan processes'
memory. This avoids memory protection issues.

Care must be taken when scanning the memory of a process. Attempting
to scan all the virtual memory that a process uses will force the operating
system to bring in memory pages from disk, an incredibly slow operation
in comparison to accessing physical memory. The victim process being
scanned would have its working set of memory pages decimated until the
operating system slowly recovers them. If possible, querying the operating
system to determine what memory pages are already present in memory, and
only scanning those pages, reduces unpleasantness with a process' virtual
memory. The alternative is grim: one memory scanner increased the resident
memory usage of a poor process being scanned by over 2000%.

Memory scanning can further be limited, beyond restricting it to in-memory
pages. Ideally, assuming that the anti-virus software already examined a
process' executable code in the filesystem before it ran, the only thing that
requires rescanning is memory that has been changed. Extracting this in­
formation from the operating system is not always possible, however.

Not all processes can be debugged by a user process, for security reasons.
For example, processes belonging to another user or privileged system pro­
cesses will not permit just any user process to attach a debugger to them. The
anti-virus software must run with escalated privileges to allow it to "debug"
all other processes.

Some of the problems with the memory scanning implementation above
can be avoided if the anti-virus software runs as part of the operating system
kernel. Kernel-based anti-virus software will have permission to access all
processes' memory, avoiding access problems.

A memory scanner can be integrated more deeply into the kernel for even
better effect. Tying a memory scanner into the operating system's virtual

Deworming 163

memory manager would still avoid permission problems, plus give the mem­
ory scanner access to information about modified and in-memory pages.

Once a worm or other malware is discovered in memory, memory disinfection
can be done by terminating the offending process completely. Riskier options
are to terminate suspect threads within the infected process, or to patch the
code in the infected process as it runs. Operating systems share memory pages
between processes when possible, as for shared library code or read-only pro­
gram code segments, and consequently many processes may be affected by an
infection - the best memory disinfection may be a reboot. Disinfection may
be an ultimately futile operation anyway, because if the infection vector was a
technical weakness, then a worm can re-exploit the machine right away.

Any of the above implementations of memory scanning leave another win­
dow of opportunity for worms, because the scanning is not done continuously.
Rescanning memory continuously, for each memory write, would involve a
prohibitive amount of overhead except perhaps for interpreted languages that
already proudly sport prohibitive overhead.

Philosophically, it is not clear that memory scanning by anti-virus software
is a good idea. Memory scanning necessarily weakens the memory protection
between unrelated code, in this case the anti-virus software and the process'
code being examined. Strong memory protection was implemented in operating
systems for good reason, and circumventing it may only introduce new attack
vectors. Anti-virus software that doesn't scan memory, in combination with
other defenses, may be a wiser choice.

8.1.3 Perimeter
The first line of defense for a network is at its perimeter. The computer

at the perimeter forming the defense may be a general-purpose computer, or a
special-purpose computer like a router. In either case, there are several functions
the perimeter computer may serve to block incoming worms. Two functions,
firewalls and intrusion detection systems, are presented in their "pure" form
below; in practice, the perimeter computer may perform both of these functions
and more.

8.1.3.1 Firewalls

A firewall is software which filters incoming network traffic to a network;
if the software runs on a computer dedicated to this task, then that computer
is also referred to as a firewall.^ Firewall software can be run on a perimeter
computer, a host computer, or both.

Each network packet in the traffic has two basic parts, header and data. This
is analogous to sending a letter: the envelope has the addresses of the letter's
sender and receiver, and the letter's contents are sealed inside the envelope. A

164 COMPUTER VIRUSES AND MALWARE

packet's header has the sender and receiver information, and its data contains the
packet contents that are meant for the recipient. Basic firewalls filter network
packets based on header information:'̂

• The source IP address, or the computer that the packet purportedly comes
from.

• The source port. Each computer has a fixed number of virtual "ports"
for communication; the combination of an IP address and port identifies a
communications endpoint.

• The IP address of the computer where the packet is destined.

• The destination port. The network servers providing services usually reside
at well-known port numbers, so that a computer trying to contact a service
knows where to direct its request.

• The protocol type. Filtering on the protocol type results in a very coarse­
grained discrimination between different traffic types: connection-based
(TCP), connectionless (UDP), and low-level control messages (ICMP).

A firewall will have a set of rules which describe the policy it should imple­
ment - in other words, which packets it should pass through, and which packets
it should drop. A firewall could look at a packet's data too, called deep packet
inspection, but the format and semantics of the data depend on exactly where
the packet is going. Making sense of the packet data would require the firewall
to understand the language of every network service, and doing so would both
slow and complicate a firewall, just like opening and reading a letter is slower
and more complicated than glancing at its envelope.

As a worm defense, a firewall provides a similar function to limiting available
network services. A firewall prevents a worm from communicating with, and
possibly exploiting, vulnerable network servers. It only defends against outside
attacks, so any worm that makes it past the firewall (e.g., an email worm that a
user runs on their computer behind the firewall) can operate with impunity.

8.1.3.2 Intrusion Detection Systems
An intrusion detection system analyzes incoming network traffic, performing

deep packet inspection to watch for packets or sequences of packets that signal
attacks. ̂ ^̂ Like firewalls, intrusion detection systems can run on the perimeter
computer or a host computer. Like criminals, intrusion detection systems go
by a wide variety of names:

• Intrusion detection systems (IDS).

• Host intrusion detection systems (HIDS), for host-based IDS.

Deworming 165

Signature

^wH 0 1 FRH HvT

0 FRH pwl rivT " v v l 0 nn IW
Out-of-order
packet arrival

Fragmented
packets

Figure 8.3. Signatures in network traffic

• Network intrusion detection systems (NIDS), for network-based IDS. These
need not only be at the network perimeter. IDS (and firewalls) may also be
deployed internally to a network, to add extra worm protection for critical
internal subnets. ̂ ^̂

• Intrusion prevention systems (IPS).^ "Prevention" implies that an attack is
thwarted rather than just noticed. Although there are no commonly agreed-
upon definitions, an IPS would imply a system that filters traffic like a
firewall, but that is able to do deep packet inspection like an IDS.̂ ^^ In
contrast, an IDS doesn't filter traffic, only watches it and raises an alarm if
suspicious activity is found.

For worms, an intrusion detection system can either look for the signatures
of known worms, or for generic signatures of technical weakness exploits like
a NOP sled.^ Exactly the same algorithms can be used for IDS as for signature
matching in anti-virus software, along with which come the same signature
updating issues.^

IDS signature matching is not completely straightforward, because of the
properties of network traffic. A signature may not be obvious in the stream of
input packets (Figure 8.3):

• Packets containing a signature may arrive out of order.

• A packet may he fragmented, broken into smaller pieces which may be sent
out of sequence.

Network traffic can be deliberately crafted to present an IDS with these non-
obvious signatures. The host machine receiving the packets will reassemble

166 COMPUTER VIRUSES AND MALWARE

Traffic
accepted
by host

Traffic
accepted
by IDS

Figure 8.4. Traffic accepted by an IDS and a host

the fragments and reorder the packets. The IDS should reconstruct the correct
packet stream also, but in practice may not do so correctly or may reconstruct
it differently than the receiving host. In either case, the result is exploitable.
One solution is traffic normalization, which ensures that network traffic is in
a canonical, unambiguous form for the IDS and other hosts by reordering and
reassembling packets if necessary. ̂ ^̂ Even so, a worm may defy easy signature-
based detection by being encrypted, polymorphic, or metamorphic.

Other avenues of attack are possible against an IDS. With the exception of a
host-based IDS, an IDS runs on a separate machine which may have different
behavior than the hosts it protects. Figure 8.4 shows the results: an IDS may
accept traffic that a host will reject; a host may accept traffic that an IDS will
reject. An IDS may also see traffic that never reaches a host. For example,
each IP packet has a "time-to-live" counter (TTL) that is decremented once
for every time the packet is sent from machine to machine during its delivery;
when the counter reaches zero, the packet is discarded. Figure 8.5 shows an
attack exploiting the TTL counter. The traffic has been constructed so that the
IDS receives extra packets that prevent it from seeing the attack signature, yet
the extra packets expire due to a low TTL value before reaching the targeted
host. 10̂

The fact that an IDS can detect but not block attacks is exploitable too. In the
simplest case, a fast-spreading worm attacks and executes its payload before an
IDS alarm is responded to. But an IDS is a so-called fail-open system, meaning
that it leaves the network accessible in the event that the IDS fails. A more
advanced attack would first overload the IDS with a denial of service, then
perform the worm infection while the IDS is struggling and unable to raise an
alarm.

Finally, an IDS is a real-time system.^ It must be able to keep up with the
maximum rate of network traffic. Powerful, accurate, but high-overhead de-

Deworming 167

Packets
at IDS ~w1 0 X I R I IM

TTL=50 TTL=50 TTL=1 TTL=50 TTL=50

Packets
at host ~v\/1 [o ~R] MVI

TTL=48 TTL=48 TTL=48 TTL=48

Figure 8.5. TTL attack on an IDS

tection techniques are not suitable for use in an IDS. Taken together, all these
drawbacks make an IDS yet another partial worm defense.

8.2 Capture and Containment
If defense is about keeping a worm out, then capture and containment is

about keeping a worm in. This may seem like a counterintuitive thing to do, but
if a worm has breached the primary defenses, then limiting the worm's spread
may be the best remaining option. It has even been suggested that it is naive to
assume that all machines can remain clean during a worm attack, and that some
machines may have to be sacrificed to ensure the survival of the majority.̂ ^^

Worm containment can limit internal spread within a network. This reduces
the amount of worm infections to clean up, and also has wider repercussions.
Containing a worm and preventing it from spreading to other people's networks
is arguably part of being a good Internet neighbor, but more practically, reason­
able containment measures may limit legal liability. Two containment measures
are presented in this section, reverse firewalls and throttling.

Worm capture can be done for a variety of reasons. Capturing a worm can
provide an early warning of worm activity. It can also slow and limit a worm's
spread, depending on the type of worm and worm capture. Honeypots are one
method of worm capture.

168 COMPUTER VIRUSES AND MALWARE

8.2.1 Honey pots
Honeypots are computers that are meant to be compromised, computers

which may be either real or emulated. Early documented examples were in­
tended to bait and study human attackers,^ but honeypots can be used equally
well to capture worms. ̂ ^

There are three questions related to honeypots:

1 How is a honeypot built? A honeypot should be constructed so that a worm
is presented with an environment complete enough to infect. In addition,
a honeypot should ideally be impossible for a worm to break out of, and a
honeypot should be easy to restore to a pristine state. Emulators are often
considered for honeypot systems, because they meet all these criteria.

The major problem with using emulators for honeypots is also a problem
when using emulators for anti-virus software: it may be possible for a worm
to detect that it is in an emulator.^ ̂ ̂ For example, a worm can look for device
names provided by common emulators.

2 How is a worm drawn to a honeypot? A honeypot should be located in
an otherwise-unused place in the network, and not be used for any other
purpose except as a honeypot. The reasoning is that a honeypot should
have no reason to receive legitimate traffic - all traffic to a honeypot is
suspicious.^^^ A honeypot doesn't generate network traffic by itself, the
downside being that a passive scanning worm will be able to avoid the
honeypot.

One honeypot with one IP address in an large network stands little chance
of being targeted by a worm scanning randomly or quasi-randomly. A large
range of consecutive addresses can be routed to a single honeypot to supply
a larger worm target.̂ ^^

Other mechanisms can be used to lure the discriminating worm. A honeypot
can provide a fake shared network directory containing goat files, for worms
that spread using such shared directories - the goat files and shared directory
can be periodically checked for changes that may signify worm activity.
Email worms can be directed to a honeypot by salting mailing lists with
fake email addresses residing on the honeypot.

3 What can a honeypot do with a worm? It can capture samples of worms, and
be used to gauge the overall amount and type of worm activity. A honeypot
is one way to get an early warning of worms; more ways will be seen in
Section 8.3.

Honeypots can deliberately respond slowly, to try and slow down a worm's
spread. This type of honeypot system is called a tarpit}^^ A worm that

Deworming 169

scans for infectible machines in parallel will not be susceptible to a tarpit,
however.̂ ̂ ^

Certain types of worms can be severely impacted by honeypot capture. A
hit-list worm passes half its targets along to each newly-infected machine,
so hitting a honeypot cuts the worm's spread from that point by half.̂ ^^

It is questionable whether or not honeypots are as useful against worms as
other means of defense. Early warning of a spreading worm is useful, but there
are other ways to receive a warning, and worm capture is not generally useful
to anyone except specialists.

8.2,2 Reverse Firewalls
A reverse firewall filters outgoing traffic from a network, unlike a normal

firewall which filters incoming traffic. In practice, filtering in both directions
would probably be handled by the same software or device.

As with firewalls, the key to an effective reverse firewall is its policy: what
outbound connections should be permitted? The principle is that a worm's
connections to infect other machines will not conform to the reverse firewall
policy, and the worm's spread is thus blocked. The decision is based on the
same packet header information as was used for a firewall, including source
and destination IP addresses and ports. For example, policy may dictate that
no machine in the critical network of Figure 8.1 may have an outgoing Internet
connection, or that a user's computer may only connect to outside machines on
port 80, the usual port for a web server.

A host-based reverse firewall can implement a finer-grained policy by re­
stricting Internet access on a per-application basis. Only certain specified ap­
plications are allowed to open network connections, and then only connections
in keeping with the reverse firewall's outbound traffic policy. A worm, as a
newly-installed executable unknown to the reverse firewall, could not open net­
work connections to spread. In theory. Still, worm activity is possible in the
presence of a host-based reverse firewall:

• A worm can use alternative methods to spread when faced with a reverse
firewall, such as placing itself in shared network directories. As a result, no
worm code is run on the host being monitored by the reverse firewall.

• Legitimate code that is already approved to access the Internet can be sub­
verted by a worm. A worm can simply fake user input to an existing mail
program to spread via email, for instance. A worm could exhibit viral be­
havior, too, infecting an existing "approved" executable by indirect means,
like a web browser plug-in, or more direct means that a virus would nor­
mally use. To guard against the latter case, a host-based reverse firewall can
use integrity checking to watch for changes to approved executables.

170 COMPUTER VIRUSES AND MALWARE

m Social engineering may be employed by a worm. A host-based reverse
firewall may prompt the user with the name of the program attempting to
open a network connection, for the user to permit or deny the operation.
This would typically happen under two circumstances:

1 The program has never opened a network connection before. This would
be the case for a worm, newly-installed software, or old, installed soft­
ware that has never been used.

2 The program was approved to use the network before, but has changed;
a software upgrade may have occurred, or the program's code may have
been infected.

A surreptitious worm could patiently wait until a user installs or upgrades
software, then open a network connection. The user is likely to assume the
reverse firewall's prompt is related to the legitimate software modification
and permit the worm's connection. The worm may also give its executable
an important-sounding name, which the reverse firewall will dutifully report
in the user prompt, intimidating the user into allowing the worm's operation
for fear that their computer won't work properly.

Legitimate applications may farm out Internet operations to a separate pro­
gram. Legitimate user prompts from a reverse firewall can request network
access approval for software with radically-different names than the appli­
cation that the user ran. Users will likely approve any user prompts made
shortly after they initiate an action in an application, and a worm can exploit
this to sneakily receive a user's approval for its network operations.

The underlying problem with a reverse firewall is that it tries to block unau­
thorized activity by watching network connection activity, an action performed
by worms and legitimate software. False positives are guaranteed, which open
the possibility of circumventing the reverse firewall.

8.2.3 Throttling
A reverse firewall can be improved upon by taking context into account.

Instead of watching for single connections being opened, the overall rate of
new connections can be monitored. A system that limits the rate of outgoing
connections that a given machine is allowed to make is called a throttle^^

A throttle doesn't attempt to distinguish between worms and legitimate soft­
ware, nor does it try to prevent worms from entering. It only considers outbound
connections, and throttles the rate at which all programs make them. As a throt­
tle only slows down the connection rate, as opposed to dropping connections,
no harm is done even if there are false positives - everything still works, just
more slowly.

Deworming 111

Uninfected
machine

Working
sets

©
Infected
machine

S Y N B

S Y N A

SYNe

SYNc
S Y N D

B
C

D

A

B
V J

D

Figure 8.6. Network traffic throttling

The throttling process can be refined with more context. Most connections
are established to machines that were recently connected to; this is similar to
the locality of reference exploited by virtual memory. For example, a web
browser may initially connect to a web site to download a web page, followed
by subsequent connections to retrieve images for the page, followed by requests
for linked web pages at the site. A working set of recently-connected machines
can be kept for a throttled host. Connections to machines in the working set
proceed without delay, as do new connections which fit into the fixed-length
working set. Other connections are delayed by a second, not long enough to
cause grief, but effective for slowing down fast-moving worms. Extreme worm­
like behavior can be caught with the context provided by the throttling delay.
Too many outstanding new connections can cause a machine to be locked out
from the network. ̂ ^

TCP connections are started by the connecting machine sending a SYN
packet, and a throttle can use these SYN packets as an indicator of new con­
nections. In Figure 8.6, a pair of machines are throttled with a working set
of size two. The uninfected machine's new connection to machine B passes
through immediately, because B was connected to recently, and is therefore
present in the working set. The infected machine has its connection to machine
A go through, because there is one free spot in the working set; machine D is
in the working set, and that connection goes through as well. The other two
connections the infected machine makes are delayed. With adaptations, the
throttle concept can be extended beyond TCP to UDP, as well as higher-level
applications like email and instant messaging.^^^

172 COMPUTER VIRUSES AND MALWARE

Throttles are designed around heuristics characterizing "normal" network
usage. Like other heuristic systems, throttles can be evaded by avoiding be­
havior that the heuristics look for.̂ ^̂ For example, a worm can slow its rate
of spreading down, avoiding the lockout threshold; the number of infection at­
tempts each worm instance makes can be constrained to the throttle's working
set size to avoid delays. Because throttles are not widely used at present, a
worm's best strategy may be to ignore the possibility of throttles altogether, as
they will not significantly impact the overall worm spread.

One criticism leveled at throttles is that they may slow down some programs,
like mail transport agents, that can legitimately have a high connection rate.^^^
Different throttling mechanisms which address this criticism can be devised by
using additional context information. Worms poking randomly for victims on
the network will have a higher probability of failure than legitimate programs
- either there is no machine at the address the worm generates, or the machine
there doesn't supply a suitably-exploitable service.̂ ^^ A throttle can take the
success of connection attempts into account.

A credit-based throttle assigns a number of credits to each host it monitors,
akin to a bank account. Only hosts with a positive account balance are allowed
to make outbound connections; a zero balance will result in a host's outgoing
connections being delayed or blocked completely. A host starts with a small
initial balance, and its account is debited for each connection attempt the host
makes, and credited for each of the connection attempts that succeed. Host
account balances are reexamined every second for fairness: too-high balances
are pared back, and hosts with persistent zero balances are credited. ̂ ^

Unfortunately, a credit-based throttle doesn't fare well against worms that
violate its assumptions about worm scanning. A worm using hit-list, topologi­
cal, or passive scanning would naturally tend to make successful connections,
for instance. Special attacks can be crafted, too. A worm need only mix its
random scans with connections to hosts (infected or otherwise) that are known
to respond, to avoid being throttled.

In computer science, sometimes solving the general problem is easier than
solving a more specific problem. Instead of trying to discern worm traffic from
legitimate traffic, or watching individual hosts' new connections, a general
problem can be considered: how can network load be fairly balanced? Allocat­
ing bandwidth such that high-bandwidth applications (fast-spreading worms,
DDoS attacks, file transfers, streaming media) do not starve low-bandwidth ap­
plications (web browsing, terminal sessions) may effectively throttle the speed
and network impact of worm spread. ̂ ^̂

8.3 Automatic Countermeasures
The losses from worm attacks can be reduced in other ways besides slowing

worm propagation. Especially for fast-spreading worms, automatic counter-

Deworming 173

measures are the only possible defense that can react quickly enough. There
are two problems to solve:

1 How to detect worm activity. Activity detection serves as the trigger for
automatic countermeasures.

2 What countermeasures to take. The reaction must be appropriate to the
threat, keeping in mind that worm detection may produce false positives.
Severing the Internet connection every time someone in Marketing gets
overzealous surfing the web will not be tolerated for long.

Several methods to detect worm activity have been seen already. Worm
capture using honeypots is one method; detecting a sudden spike in excessive
throttling is another. Trying to capture various facets of worm behavior leads
to other methods, for example:

• A worm may exploit a vulnerability in one particular network server, located
at a well-known port. A worm activity monitor can watch for a lot of
incoming and outgoing traffic destined to one port. This can be qualified by
the number of distinct IP address destinations, on the premise that legitimate
traffic between two machines may involve heavy use of the same port, but
worms will try to fan out to many different machines. ̂ ^̂

• Most network applications refer to other machines using human-readable
domain names, which are mapped into IP addresses with queries to the
domain name system (DNS). Worms, on the other hand, mostly scan using IP
addresses directly. Worm activity may thus be characterized by correlating
DNS queries with connection attempts - connections not preceded by DNS
requests may signify worms.̂ "̂̂ Unfortunately, this registers false positives
for some legitimate applications, so a Draconian reaction based on this
classifier is not the best idea.

What reaction should be taken to worm activity? Some examples of auto­
matic countermeasures are below. ̂ ^̂

• Affected machines can be cut off from the network to prevent further worm
spread. A more aggressive approach may be taken to guard critical networks,
which may be automatically isolated to try and prevent a worm from getting
inside them.

• Targeted network servers can be automatically shut down.

• Filtering rules can be inserted automatically into firewalls to block the hosts
from which worm activity is originating.^^ Or, a filter can drop packets
addressed to the port of a targeted network server, ̂ ^̂ which is less resource-
intensive as the number of worm-infected machines increases.

174 COMPUTER VIRUSES AND MALWARE

Automatic countermeasures must be deployed judiciously, because an attacker
can also use them, deliberately triggering the countermeasures to perform a DoS
attack. ̂ ^̂ This danger can be mitigated by providing automatic countermeasure
systems with a whitelist, a list of systems which are not allowed to be blocked. ̂ ̂ ^

Deworming 175

Notes for Chapter 8

1 Strictly speaking, the worm release causes another, smaller, exponential
patching decay curve [262].

2 This is especially true of code, somewhat less so for data, although some
data structures and algorithms play more nicely with virtual memory than
others. Stacks, for example, exhibit a high degree of locality when they are
accessed with "push" and "pop" operations.

3 The firewalls described here would be classed as "packet-filtering" firewalls.
Cheswick and Bellovin, for example, distinguish between several different
kinds of firewall [68].

4 The header information here is based on the information available for the
widely-used IP protocol suite.

5 The acronyms NIPS and HIPS have tragically failed to materialize.
6 Although as with viruses, a worm may try to disguise this feature, possibly

by using junk code instead of a NOP sled [253].
7 This describes only signature-based IDS. Another type, anomaly-based IDS,

watches for traffic abnormalities rather than any specific feature [20]. Watch­
ing for abnormalities that may signify worm activity is examined in Sec­
tion 8.3.

8 A soft real-time system, that is.
9 For example, Cheswick's famous observations of "Berferd" [67]. There do

not seem to be any publicly-documented examples prior to 1990 [301]. It is
interesting that a 1980 report specifically excluded a threat scenario which
corresponds to a honeypot: 'Penetrator Not Authorized Use of Computer'
but 'Penetrator Authorized to Use Data/Program Resource' [11, page 7].

10 Foulkes and Morris [115] and Overton [236]. A "virus trap" patent applica­
tion in the mid-1990s arguably suggests this use of honeypots, but there the
trap is used to execute programs before they are transferred to a protected
machine [281].

11 The original work used a working set of length five, and a lockout threshold
of 100 [325].

12 Suggested values are an initial balance of ten credits, a debit of one for
initiated connections, and a credit of two for successful connections. Hosts
over their initial balance have a third of their credits clawed back each
second, and hosts are given one credit after having a zero balance for four
seconds [276].

13 One vendor calls this shunning [73].

176 COMPUTER VIRUSES AND MALWARE

100 This section is based on Rescorla [262] except where otherwise noted. For
simplicity, applying workarounds and upgrading to new, fixed software
versions are also considered "patching" here because they all have the
same net effect: fixing the vulnerability.

101 Arbaugh et al. [19], Moore et al. [212], and Provos and Honeyman [255].
102 Arbaugh et al. [19] and Provos and Honeyman [255].
103 These, and the disinfection options, are based on Szor [310].
104 Rosenberg [268].
105 This section is based on Ptacek and Newsham [256] unless otherwise noted.
106 Foulkes and Morris [115].
107 Desai [88].
108 Handleyetal. [135].
109 Paxson [243].
110 Ford and Thompson [114].
111 Holz and Raynal [145] and Krawetz [173].
112 Oudot[234].
113 Foulkes and Morris [115] describe this, and the "other mechanisms" below.

Overton [236] also talks about luring worms with fake shared network
resources.

114 Oudot and Holz [235].
115 Oudot [234].
116 Nazario [229].
117 This section is based on Twycross and Williamson [325] except where

otherwise noted.
118 See Twycross and Williamson [325] (UDP), Williamson [347] (email), and

Williamson et al. [348] (instant messaging).
119 These suggestions are from Staniford et al. [303].
120 This, the credit-based throttle, and attacks on the credit-based throttle, are

from Schechter et al. [276].
121 ChenandRanka[62].
122 Matrawyetal. [197].
123 Chen and Heidemann [63].
124 Whyteetal. [345].
125 Foulkes and Morris [115] and Oudot [234].
126 Chen and Heidemann [63].
127 Jung et al. [156] and Ptacek and Newsham [256].
128 Jung et al. [156] and Whyte et al. [345].

Chapter 9

"APPLICATIONS"

Malware can arguably be used in many areas, for better or worse. This chapter
briefly looks at a number of "applications" for malicious software, for want of a
better word. The applications are roughly grouped in order of increasing gravity:
good (benevolent malware), annoying (spam), illegal (access-for-sale worms
and cryptovirology), and martial (information warfare and cyberterrorism).

9.1 Benevolent Malware
"Benevolent malicious software" is obviously a contradiction in terms. Nor­

mally specific types of malware would be named - a benevolent virus, a benev­
olent worm. The generic term benevolent malware will be used to describe
software which would otherwise be classified as malware, yet is intended to
have a "good" effect.̂ ^^

Real attempts at benevolent malware have been made.^ For example:

• Den Zuk, a boot-sector infecting virus in 1988, did no damage itself but
removed the Pakistani Brain and Ohio viruses from a system. Later variants
had the nasty habit of reformatting disks. ̂ ^̂

• In 2001, the Cheese worm circulated, trying to clean up after the Lion (1 iOn)
worm that had hit Linux systems. The problem was that Cheese's operation
produced a lot of network traffic.̂ ^^

• The Welchia worm tried to clean up Blaster-infected machines in 2003, even
going so far as to automatically apply an official Microsoft patch for the bug
that Blaster exploited. ̂ -̂̂ Again, Welchia produced so much network traffic
that the cure was worse than the disease.

These latter two can be thought of as "predator" worms. Such a predator worm
could both destroy existing instances of its target worm, as well as immunize a

178 COMPUTER VIRUSES AND MALWARE

machine against further incursions through a particular infection vector. Studies
have been done simulating the effect that a well-constructed predator worm
would have on its worm "prey." Simulations predict that, if a predator worm
and immunization method are ready in advance, then a predator worm can
significantly curtail the spread of a target worm.̂ ^^ However, a number of
hurdles remain, legal, ethical, and technical.

Legally, a predator worm is violating the law by breaking into machines,
despite its good intentions. It may be possible to unleash a predator worm in a
private network, in which the predator worm's author has permission for their
worm to operate, but there is a risk of the worm escaping from an open network.

Ethically, releasing a predator worm on the Internet at large affects machines
whose owners haven't permitted such an activity, and past examples have in­
spired no confidence that a predator worm's impact would be beneficial in
practice. Even if a predator worm's network activity were controlled, unex­
pected software interactions could be expected on machines that are infected.
A worm's effect would have to be incredibly damaging to society, far more
so than any seen to date, before a predator worm's actions could be seen to
contribute to a universal good.

Technically, there are the issues of control, compatibility, and consumption
of resources mentioned above. There is also the thorny issue of verification:
what is a predator worm doing, and how can its behavior be verified? Has a
predator worm been subverted by another malware writer, and how can anti­
virus software distinguish good worms from bad?^^^

Of all the possible applications for benevolent malware, including predator
worms, there has been no "killer application," a problem for which benevolent
malware is clearly the best solution. Everything doable by benevolent malware
can also be accomplished by other, more controlled means.

One possible niche for benevolent malware is the area of mobile agents. A
mobile agent is a program that transfers itself from one computer to another
as it performs one or more tasks on behalf of a user.̂ ^^ For example, a user's
mobile agent may propagate itself from one airline site to another, in search of
cheap airfares. From the point of view of malware, mobile agents bear more
than a passing resemblance to rabbits, and serious questions have been raised
about mobile agent security. ̂ ^̂ As was the case for benevolent malware, mobile
agents may be a solution in search of a problem: one analysis concluded that
mobile agents had overall advantages, but 'With one rather narrow exception,
there is nothing that can be done with mobile agents that cannot also be done
with other means.' ̂ ^̂

9.2 Spam
An infected computer may just be a means to an end. Malware can install

open proxy servers, which can be used to relay spam.^ It can also turn infected

''Applications '* 179

machines into zombies that can be used for a variety of purposes, like conduct­
ing DDoS attacks. In either case, the malware writer would use the infected
computer later, with almost no chance of being caught.

A zombie network can be leveraged to send more effective spam: infected
computers can be viewed as repositories of legitimate email corpora. Malware
can mine information about a user's email-writing style and social network,
then use that analysis to customize new spam messages being sent out, so that
they appear to originate from the user.̂ ^^ For example, malware can use saved
email to learn a user's typical habits for email capitalization, misspellings, and
signatures. The malware can then automatically mimic those habits in spam sent
to people the user normally emails; these people are also discovered through
malware mining saved email.

9.3 Access-for-Sale Worms
Access-for-sale worms are the promise of scalable, targeted intrusion. A

worm author creates a worm which compromises machines and installs a back
door on them. Access to the back door is transferred by the worm author to a
"cyberthief," who then uses the back door to break into the machine.^

Access to a machine's back door would be unique to a machine, and guarded
by a cryptographic key. By transferring the key, a worm author grants back
door access to that one machine. There is a fine granularity of control, because
access is granted on a machine-by-machine basis.

Why would access to a single machine be of interest, when entire botnets can
be had? Crime, particularly stealing information which may later be used for
blackmail or identity theft. The value of such access increases in proportion to
its exclusivity - in other words, a competitor must not be allowed to obtain and
sell access too. Ironically, this means that a good access-for-sale worm must
patch the vulnerabilities in a machine it compromises, to prevent a competing
access-for-sale worm from doing the same thing.

There are two "business models" for access-for-sale worms:

1 Organized crime. A crime organization retains the services of a worm
author and a group of cyberthieves, shown in Figure 9.1. The worm author
creates and deploys an access-for-sale worm, and the back door keys are
distributed to the cyberthieves. This keeps the "turf" divided amongst the
cyberthieves, who then mine the compromised machines for information."^
Due to the insular nature of organized crime, countermeasures that come
between the worm author and cyberthieves are unlikely to work. Standard
worm countermeasures are the only reliable defenses.

2 Disorganized crime. Here, the worm author sells a back door key to a
cyberthief. Compromised machines must first be advertised to potential
customers by the worm author: this may be as crude as posting a list on some

180 COMPUTER VIRUSES AND MALWARE

Worm-infected machines

Figure 9.1. Organized crime and access-for-sale worms

2. Access bought

3. Access key transferred

m
V J

M

1. ID leaked

-»))

»»);

•»)):

4. Access key
used to
break in

Cyberthief

Figure 9.2. Disorganized crime and access-for-sale worms

''Applications '* 181

underground website, or an infected machine may leak a unique identifier on
some covert channel that a customer can detect.^ The customer-cyberthief
buys the back door access key for their chosen target machine from the worm
author, which is used by the cyberthief to break in. The whole process is
shown in Figure 9.2.

This model admits two additional defenses. First, the worm author's reputa­
tion can be attacked. The worm author and cyberthief probably don't know
one another, so an access key sale is based on the seller's reputation and a
certain amount of trust. One defense would make an infected machine con­
tinue to look infected, even after the machine has been cleaned, in the hopes
of damaging the seller's reputation. Second, law enforcement authorities
could set up honeypots and sell access as if the honeypots were access-
for-sale machines. This would keep the doughnut budget in good stead,
and might lead to the capture of some cyberthieves, or at least increase the
cyberthieves' risk substantially.

The access-for-sale worm would require some verification mechanism to en­
sure that an access key did in fact come from the worm author. This mechanism
can be constructed using public-key cryptography, where a message is strongly
encrypted and decrypted using different keys: Si private key known only to the
message sender, and a public key known to everyone.^ ̂ ^

The access-for-sale worm can carry the worm author's public key with it,
and each compromised machine can be assigned a unique identifier (based on
its network address, for example). When the worm author transfers an access
key, they encrypt the machine's unique identifier with their private key; the
worm can decrypt and verify the identifier using the public key. If a symmetric
cryptographic scheme were used, where the same key is used for encryption
and decryption, then capturing a worm sample would reveal the secret key,
permitting access to all of the worm's back doors.

9.4 Cryptovirology
Using viruses and other malware for extortion is called cryptovirology}^^

After a virus has deployed its payload and been discovered, the effects of its
payload should be devastating and irreversible for the victim, but reversible for
the virus writer. The virus writer can then demand money to undo the damage.

For example, such a virus - a cryptovirus - could strongly encrypt the victim's
data such that only the virus author can decrypt it.̂ The cryptovirus can employ
public-key cryptography to avoid having to carry a capturable, secret decryption
key with it to each new infection. The victim's data is encrypted using the virus
writer's public key, and the virus writer can supply their private key to decrypt
the data once a ransom is paid.

182 COMPUTER VIRUSES AND MALWARE

Even on fast computers, public-key encryption would be slow to encrypt
large directories and filesy stems. There are faster options for a crypto virus:

• The cryptovirus can randomly generate a unique secret key for each in­
fection. This secret key is used to strongly encrypt the victim's data us­
ing a faster, symmetric strong encryption algorithm. The cryptovirus then
strongly encrypts the random secret key with the virus writer's public key
and stores the result in a file. The victim transmits the file along with the
ransom money; the virus writer is then able to recover the unique secret key
without revealing their private key.

• Hardware mechanisms can be used. Some ATA hard drives have a rarely-
used feature which allows their contents to be password-protected, rendering
the contents unusable even if the computer is booted from different media.
A cryptovirus can set this hard drive password if the feature is available.^ ̂ ^

This can be used in conjunction with the randomly-generated unique key
scheme above, but the cryptovirus couldn't store the encrypted secret key
file on the encrypted hard drive. If no other writable media is available, the
cryptovirus could simply display the encrypted secret key on the screen for
the victim to write down.

Both options avoid the virus writer needing a different public/private key pair
for each new infection, lest a victim pay the ransom and publish the private
decryption key for other victims as a public service.

There are only a few known instances of malware using encryption for ex­
tortion. The AIDS Trojan horse of 1989 was sent on floppy disks, mass-mailed
worldwide via regular postal mail. It was an informational program relating
to the (human) AIDS virus, released under a curious software license. The
license gave it leave to render a computer inoperable unless the user paid for
the software ($189 or $378, depending on the leasing option). It was true to its
word: after approximately 90 reboots, the Trojan encrypted filenames using a
simple substitution cipher. ̂ -̂̂

More recently, the PGPCoder Trojan encrypted files with specific filename
extensions, roughly corresponding to likely user document types. A text file
was left behind in each directory where files were encrypted, with instructions
on how to buy the decryptor: a bargain at $200.̂ "̂̂

9.5 Information Warfare
Information warfare is the use of computers to supplement or supplant con­

ventional warfare. Computers can play a variety of roles in this regard, includ­
ing acquiring information from an adversary's computers, planting information
in their computers, and corrupting an adversary's data. Information warfare
can also be applied in an isolating capacity, in an 'information embargo' that

''Applications'' 183

prevents an adversary from getting information in or out.̂ ^^ This section con­
centrates on malware-related information warfare only.

Computers are a great equalizer, and information warfare is a key weapon
in asymmetric warfare, a form of warfare where an enemy possesses a decided
advantage in one or more areas.^^^ For example, the United States currently
enjoys an advantage over many countries in terms of weaponry, and countries
that cannot respond in kind have been proactively developing computer attack
capabilities to counter this perceived threat.^

Laws, rules of engagement, and the level of conflict may constrain informa­
tion operations. Legally, it is unclear whether information warfare constitutes
warfare; this is an important point, as it governs what international law applies
to information warfare. For example, civilian targets are usually off limits in
conventional warfare, but information warfare may not be able to avoid sub­
stantial collateral damage to civilian computers and network infrastructure.^^^
A conservative approach is that malware may never be used in peacetime, but
may be deployed by intelligence agencies as the conflict level rises. In all-out
war, both intelligence agencies and the military may use malware. Ultimately,
information warfare of any kind may be limited if an adversary's communica­
tions infrastructure has been destroyed or otherwise disabled.^^^

It is interesting to think of malware-based information warfare as an elec­
tronic countermeasure.^^^ An electronic countermeasure, or ECM, is any elec­
tronic means used to deny an enemy use of electronic technology, like radar
jamming. Early jamming ECM was roughly analogous to a DoS attack, but
current ECM systems heavily employ deception, making an enemy see false
information.^ A comparison of traditional ECM and malware is below.

Persistence

• Traditional ECM: The effect of the ECM only lasts as long as the trans­
mission of the jamming signal or false information.

• Malware: The effect of malware lingers until the malware is stopped
by the adversary. This longer persistence allows targets to be attacked
in advance, with the malware lying dormant until needed.

Targeting

• Traditional ECM: Only direct targeting of an adversary's systems is
possible.

• Malware: Both direct and indirect targeting is possible through con­
nected, but weaker, points in an adversary's defenses.
Malware can be a double-edged sword. Careful thought must be given
to the design of malware for information warfare, so that it doesn't start
targeting the computers of the original attacker and their allies. ̂ ^̂

184 COMPUTER VIRUSES AND MALWARE

Deception

• Traditional ECM: Possible.

• Malware: Also possible. There are many possibilities for presenting
false information to an adversary without them being aware of it.

Range of effects

• Traditional ECM: Because the targets are special-purpose devices with
limited functionality, the range of effects that ECM can elicit from their
targets is similarly limited.

• Malware: The targets are more general-purpose computers, and the
malware's effects can be designed to fit the situation. For example:^^^

- Logic bombs.

- Denials of service at critical times.

- Precision-guided attacks, to destroy a single machine or file.

- Intelligence gathering, looking for specific, vital information. After
the information is found, there is also the problem of smuggling
it out. One possibility for worm-based intelligence gathering is
to allow the information to propagate with the worm, in strongly-
encrypted form, and intercept a copy of the worm later. ̂ ^̂

- A forced quarantine virus, which deliberately makes its presence
known to an adversary. The adversary must isolate the affected
machines, thus fragmenting and reducing the effectiveness of the
adversary's computing infrastructure.

Reliability

• Traditional ECM: It is unknown until ECM is used whether or not it
will work, a detriment to the planning of military operations.

• Malware: Depending on the setting, malware may be able to signal
indicating that it is in place and ready for use. Whether or not it will
actually work is still unknown, as with traditional ECM.

Continuity

Traditional ECM: Must continually overcome the target, even if the
target adapts to the attack using electronic counter-counter measures
(ECCM).

Malware: An adversary's defenses must only be overcome once, at their
weakest point, unlike traditional ECM which attacks the strongest point.

''Applications " 185

The way that malware is inserted into an adversary's system may be more
exotic in information warfare. Direct transmission is still an option, either by
self-replication or by espionage. Indirect transmission is possible, too, such as
passing malware through third parties like military contractors or other software
vendors, who may be oblivious to the malware transmission. Malware may
be present, but dormant, in systems sold by a country to its potential future
enemies. Another indirect means of transmission is to deliberately leak details
of a malware-infected system, and wait for an enemy to copy it.̂ ^^

9.6 Cyberterrorism
'We do not use the term 'ice pick terrorism' to define bombings of ice-pick factories,

nor would we use it to define terrorism carried out with ice picks. Thus we question
the use of the term cyberterrorism to describe just any sort of threat or crime carried out
with or against computers in general.' - Sarah Gordon and Richard Ford̂ "̂̂

The United Nations has been unable to agree on a definition of terrorism. ̂ ^̂ A
definition of cy&^rterrorism that is universally agreed-upon is equally elusive.
This lack of a standard cyberterrorism definition makes the classification of
individual acts hard to pin down. Is malware that launches a DDoS attack
against a government web site cyberterrorism? What about malware that simply
carries a string with an anti-government slogan?

Terrorism has been compared to theater, in that terrorists want to maximize
the emotional impact of their attacks. From the terrorists' point of view, an
effective terrorist act is one that puts people in constant fear of their lives.
Terrorist acts that merely irritate people are not effective.

By this token, cyberterrorist acts cannot be useful as terrorist tools unless
their effect tangibly protrudes into the real world. Being unable to electronically
access a bank account is inconvenient, but doesn't strike the fear of death into
victims as would a cyberterrorist attack against nuclear facilities, the power
grid, or hospitals. Luckily, no one is colossally stupid enough to connect such
vital systems to the Internet.

In lieu of such attacks against critical systems, cyberterrorist acts might
play the same role as malware does in information warfare. Cyberterrorism
can be used as a complement to traditional, real-world physical attacks, to
confuse an enemy by disrupting computer-based communications for rescue
efforts, or by sowing disinformation during a terrorist attack. Prior to an attack,
misleading intelligence traffic can be generated. Terrorists have unfortunately
shown themselves to be very good at lateral thinking, and a cyberterrorist attack
is likely to strike something unexpected and undefended.

Are stricter laws and standards needed for these new weapons, these Internet-
connected computers?^^^

186 COMPUTER VIRUSES AND MALWARE

Notes for Chapter 9

1 The benevolent effect may be accidental in some unusual cases. A man sur­
rendered himself to German police after receiving a (false) message from a
variant of the Sober worm claiming that he was being investigated. When
the police did investigate, they found child pornography on the man's com­
puter [264].

2 For example, Sobig did this [188].
3 The eye-roll-inducing term "cyberthief" is due to Schechter and Smith [277],

on whom this section is based. Arguably, the thieves aren't hackers/crackers,
because the machine is pre-cracked for their safety and comfort.

4 This would presumably be "cyberturf."
5 A covert channel is a means of transmitting information which was never

intended for that purpose. For example, information can be leaked from an
infected machine in unused or used network packet bits [269]. The problem
of trying to prevent information leaks via covert channels is referred to as
the confinement problem [179].

6 Strictly speaking, the original cryptovirus definition requires the use of
strong, public-key cryptography [352]. A more general view of cryp-
toviruses, without the public-key requirement, is taken here.

7 For example, countries possessing or developing offensive computer virus
capabilities include Bulgaria [204], China [49, 71, 232], Cuba [204], North
Korea [49], Russia [321], Singapore [49], and Taiwan [49].

8 Falsehoods are limited by law and convention. Falsely seeming to have a
larger force than actually exists, or falsely appearing to be attacking else­
where to draw off enemy troops are completely acceptable feints. Pretending
to surrender in order to lure out and ambush enemy troops is called an act
of perfidy and is prohibited [130].

100 Cohen [75] makes a case for benevolent viruses.
101 McAfee [199].
102 Barber [26].
103 Perriot and Knowles [250].
104 Predator worms and their effects are studied in Toyoizumi and Kara [323],

and Gupta and DuVarney [134].
105 These issues are discussed at length by Bontchev [40].
106 White [344].
107 See, for example, Harrison et al. [138] and Jansen and Karygiannis [152].
108 Harrison et al. [138, page 17].

''Applications " 187

109 Aycock and Friess [23].
110 Schneier [279].
111 This section is based on Young and Yung [352].
112 Bogeholz [37] and Vidstrom [335].
113 Bates [29] andFerbrache [103].
114 Panda Labs [240]. The $200 figure is from Panda Labs too [241].
115 The concept and term are from Kanuck [158, page 289].
116 O'Brien and Nusbaum [232].
117 Ellis [99] and Greenberg et al. [130].
118 This conservative approach and the point about communications infras­

tructure is from the Department of the Army [140].
119 The material on electronic countermeasures is based on Cramer and Pratt [82]

unless otherwise noted.
120 From [16].
121 With the exception of intelligence gathering, these are also mentioned

(occasionally using slightly different terminology) in Thomas [321].
122 Young and Yung [352].
123 These insertion possibilities are from [16, 82, 321].
124 Gordon and Ford [125, page 645], upon which this section is based.
125 Schaechter [275].
126 Ellis [99] examines the same suggestion in the context of information

warfare.

Chapter 10

PEOPLE AND COMMUNITIES

10.1 Mai ware Authors
' . . . [virus writers] have a chronic lack of girlfriends, are usually socially inadequate

and are drawn compulsively to write self-replicating codes.' - Jan Hruska, Sophos^^^

Very little is known about virus writers, much less malware authors in general.
The reason for this is simple: very few of them are ever found. ̂ Furthermore,
the limited research that has been done does not support Hruska's quote above.
The two big questions that the existing research begins to answer are who writes
malware, and why do they do it?

10.1.1 Who?
Humans are a diverse lot, and there is always a danger when generalizing

about any group of people. The work that has been done on virus writers has
looked at four factors: age, sex, moral development, and technical skill. ̂ ^̂

The age of virus writers is varied. There are the stereotypical young adoles­
cents, but also college students and employed adult professionals. The explosive
growth of malware has really only taken place since the mid-1980s, and it is
possible that older virus writers will be seen as time goes on.

Virus writers are predominantly male, with only occasional exceptions.^
Females are typically regarded as inferior in the virus community, so it wouldn't
be a particularly welcoming environment for them. There is also a theory
that gender differences in moral development may partially explain the lack of
females. ̂ ^̂

With respect to ethical and moral development, not all virus writers are the
same, and some fall within "normal" ranges. There is also a general distaste
for deliberately destructive code amongst the virus writers studied, and there is
no one directly targeted by viruses - with the possible exception of anti-virus

190 COMPUTER VIRUSES AND MALWARE

researchers! The lack of interest in destruction is borne out by the relatively
small amount of malware which tries to do damage. The main reason that
ethically-normal virus writers stop writing viruses is simply that they grow out
of it.

Finally, there are the technical skills of virus writers, which are often derided
by the anti-virus community. As with any software development, the barrier to
entry is low for virus writing, and consequently a fair degree of bad program­
ming is seen in virus writing as it is in any programming discipline. However,
virus writers with real impact must have a variety of skills to field techniques
like stealth and polymorphism, or employ lateral thinking to exploit new and
unguarded attack vectors. Arguably the skill level of virus writers is a direct
reflection of the increasing sophistication level of anti-virus defenses. ̂ -̂̂

10.1.2 Why?
Attributing the motivation to write malware to a single factor is a gross

oversimplification. In fact, not all driving forces behind the creation of malware
may even be conscious motivations.̂ ^"^ Malware may be written for a variety
of reasons, including:

Fascination with technology. Exploring technology underpins hacker culture,
and the same ideas apply to creating malware. Creating malware, like writ­
ing any software, poses an intellectual challenge. In fact, since the anti-virus
community acts as an opponent, writing malware may even have a greater
draw from a game-playing point of view than other forms of software de­
velopment.

Fame. Virus writers are known to form informal groups to exchange informa­
tion and communicate with like-minded people.^ As with any group, people
may want to achieve fame within their community which would mean cre­
ating cleverly-written malware with impact. Having a creation appear on
the "top ten" lists of malware that many anti-virus companies maintain for
their customers' information can result in prestige for the creator.

Graffiti. Malware writing can serve as a form of expression in much the same
way that graffiti does in the physical world. Arguably, this is a malicious
act, but one not specifically targeted to any one person or group.

Revenge. Malware can be used to exact revenge for some real or imagined
slight, by a disgruntled employee or ex-spouse, for instance.

Ideology. Ideological motivations are difficult to assess unless the malware
writer is found, because what appears to be political or religious motivation
may just be a red herring. Having said that, there have been some instances
which suggest this underlying cause. One version of the Code Red worm

People and Communities 191

attempted a DDoS on the White House web site, for instance.'̂ The Cager
Trojan horse^^^ may have been religiously-motivated, because it tried to
prevent infected machines from viewing adult web sites - an offender would
be presented with a quote from the Qur'an in Arabic, English, and Persian,
followed by advice in Persian on how to atone for looking at naughty pictures
on the Internet.

Commercial sabotage. Malware can be hard to target accurately, but some
attempts at sabotaging a single company have been seen. This may tie in
to schemes for revenge, or possibly financial gain for a malware writer who
hopes to take advantage of lower stock prices, for example.

Extortion. On occasion, malware has been used on a large scale to try and
extort money from people.

Warfare and espionage. Malware can be used for military or intelligence pur­
poses, or as a complement to traditional forms of warfare. Such malware
can be employed by both established armies as well as terrorist groups.

Malware battles. A relatively recent development, malware writers can have
their creations fight one another using the Internet as their battleground.
This was seen in the Mydoom/Netsky/Bagle episode in 2004.̂ ^^

Commercial gain. Malware skills may be leveraged in various ways by others,
resulting in malware authors being paid for their wares. For example, use
of worm-constructed botnets may be sold to spammers.

Again, humans are complicated, and their motivations may not be simple.
The graffiti motivation is an interesting one which deserves further research.

There is a relatively large amount of research on graffiti artists, and the parallels
to virus writers are compelling. Females are marginalized there too; it has been
suggested that females express "graffiti urges" in different ways than males, ̂ ^̂
and also that the graffiti subculture is an inherently masculine one.̂ ^^ Graffiti
writers have an adversarial relationship with the authorities trying to stop them,
but the two groups also share a curious bond. Motivations for graffiti writers flow
from the adversarial contest, but also a desire for fame within their subculture,
and a love of the art. Equivalents to malware battles and commercial gain exist
in the graffiti world too.

10.2 The Anti-Virus Community
Malware authors and people in the anti-virus community have one thing in

common: there isn't a lot written about either. The anti-virus community is
shaped by a number of external forces, including external perceptions of them
as well as customer demands and legal minefields.

192 COMP UTER VIRUSES AND MALWARE

10.2.1 Perceptions
The most common perception about the anti-virus community is a conspiracy

theory. Anti-virus companies have the most to gain by a steady stream of
malware, so the argument goes, and anti-virus companies conveniently know
how to defend against any new threats. There is no evidence whatsoever that
supports this theory.

The evidence that does exist also doesn't support the conspiracy theory. If
it were true, then anti-virus companies would want to boost revenue with the
least amount of effort on their part - a rational plan. Any malware that wasn't
noted by current or potential customers would therefore be wasted effort, and
anti-virus researchers would work no more than was necessary.

There is lots and lots of malware that doesn't attract attention, though; not
just variants but entire families of malware can go unnoticed by most anti-virus
customers. Monitoring anti-virus updates and comparing that information to
malware-related media stories is a good demonstration of this fact. The sheer
volume of malware is inconsistent with the conspiracy theory, too, because far
more effort is being expended by anti-virus researchers than would be necessary
to sustain the industry.

Anti-virus researchers do benefit from staying ahead of malware writers, even
if they don't produce the malware themselves. Researchers may monitor web
sites frequented by malware writers for up-and-coming threats, especially so-
called "virus exchange" or "vX" sites. Malware writers have also been known
to send their latest creations directly to anti-virus companies, which tends to
support the motivation of malware writing as an intellectual thrill rather than a
destructive pursuit. ̂ ^̂

10.2.2 Another Day in Paradise
A workday for an anti-virus researcher is long, to begin with. An 80-hour

work week is not uncommon for researchers, ̂ ^̂ which can obviously exact a
personal toll.

Samples of potential malware candidates can be captured by anti-virus com­
panies' own defensive systems, like firewalls and honeypots. Malware sam­
ples may also be submitted by customers; this is the scenario depicted by the
flowchart in Figure 10.1.̂ ^^ Conceptually, there are two databases kept: one
with known malware, the other with known malware-free, or "clean" files.
Any submission is first checked against both these databases, in order to avoid
re-analyzing a submission and to respond to customers as quickly as possible.

If the submission is absent from both databases, then it must be analyzed.
There is still no guarantee that the submission is malicious, so this is the next
thing to determine; if the answer is negative, then the clean file database can be
updated with the result. Otherwise, for replicating malware, a large number of

People and Communities 193

Submission

IVIalware
database

Known to
be clean?

N

Check for
known malwarel

N

Analyze: is it
malware?

N

l Y

Replicate
samples

Find way to
detect samples

Test
detection

Update
database

Clean
I database

Figure 10.1. Malware analysis workflow

194 COMPUTER VIRUSES AND MALWARE

samples are produced to ensure that all manifestations of the malware variant
are able to be detected. (Virus writers can try to derail this process by having
their viruses mutate slowly.)^

Adding detection to the anti-virus software comes next. The result is verified
against both databases, because detection of the new malware shouldn't inter­
fere with existing detection, nor should it cause false positives. Testing will also
try to catch problems on any of the platforms that the anti-virus software runs
on. For this reason alone, anti-virus software is more challenging than mal­
ware writing, because malware doesn't have a customer base that complains if
something goes wrong.

Finally, the malware database gets updated and the customer is notified.
Most anti-virus companies have online "malware encyclopedias" which provide
details about malware to the public, and these would also be updated at this time.

While a workday for an anti-virus researcher may be long, the workday for
an anti-virus company may be endless. Anti-virus companies may maintain
offices worldwide, strategically located in different time zones, so that around-
the-clock security coverage can be given to their customers. ̂ ^̂

m.23 Customer Demands
Anti-virus customers have certain expectations of their anti-virus software,

which can be simply stated: 100% perfect detection of known and unknown
threats, with no false positives. This is an impossible task, of course.

Complicating matters is that different customers may want different "threats"
to be detected. Techniques used by anti-virus software may be applied more
generally to locate many types of programs - this is called gray area detection. ̂ ^^
Anti-virus software may be employed to look for:

Jokes and games. "Joke" executables and games may be completely harmless,
yet having them may violate corporate IT policies.

Cracking tools. The legitimacy of programs like password crackers and port
scanners may depend on context. System administrators can use these pro­
grams to check for vulnerabilities and weak passwords in their own systems,
but other users possessing these may be cause for alarm.

Adware. Spyware is now largely recognized as a threat, but adware may also
pose a risk of leaking information to another party. Some people see adware
as performing a useful function, and it's not always obvious what programs
have been installed quietly, and what programs have been deliberately in­
stalled by a user.

Remote administration tools. Again, RATs may provide a useful service, but
their presence may also constitute a security breach or a policy violation.

People and Communities 195

in the
wild

In the
Wild

Figure 10.2. In the zoo vs. in the wild

Gray area detection is a delicate matter, because vendors of legitimate soft­
ware may object to having their product negatively classified by anti-virus soft­
ware, and there may be legal ramifications for doing so. Some anti-virus vendors
attempt to forestall legal action, especially for spy ware, through an appeals pro­
cess which software producers can follow if they feel that their software has
been misclassified.^^^ More generally, the threat of legal action is possible for
any false positive.

10.2.4 Engineering
Malware is often categorized based on where it's located. ̂ ̂ ^ Malware is said

to be in the wild if it's actively spreading or otherwise functioning on anyone's
computer. Malware not in the wild, which only exists in malware collections
and anti-virus research labs, is in the zoo^ Accurately determining whether
malware is actually in the wild requires omniscience in the general case, so an
approximation is used. An organization called the WildList Organization^ ̂ ^ has
a worldwide membership of anti-virus experts who verify malware occurrences
and report their data, which is combined to form the WildList, a (presumably
close) approximation of the malware in the wild at any given time. Malware on
the WildList is confusingly referred to as being In the Wild (ItW). As Figure 10.2
shows, this means that malware can be in the wild but not In the Wild, but
something In the Wild must be in the wild. Hopefully that clarifies things.^

An argument can be made, from an engineering point of view, that the only
threats that need to be detected are those that are in the wild, since anything
in the zoo cannot pose a direct threat. Anti-virus software could potentially be
made smaller and faster by only detecting malware in the wild, whose numbers
can be several orders of magnitude lower than the total number of threats. ̂ ^̂

From a marketing point of view, however, this would be a bad idea. If
company A advertises that they protect against 100,000 threats, and company
B's product only guards against 500 threats - even if they're really the only
ones that are in the wild - then company 5 is at a competitive disadvantage.

196 COMPUTER VIRUSES AND MALWARE

Marketing is somewhat of a sore spot in the anti-virus community in any
case. Product claims of detecting 100% of known and unknown threats are
obviously silly, and misrepresentation is one possible legal concern.^ ^̂

10.2,5 Open Questions
There are a number of interesting questions which (at least at this time) have

no obvious answer.

• Anti-virus products are installed in computer systems in an ideal place to
perform any number of tasks/^^ like gray area detection. Should anti-virus
software...

- . . . supply a firewall? This is clearly in the realm of computer security,
yet integrating firewall and anti-virus software may make both defenses
vulnerable to attack by reducing the amount of software diversity.

- . . . provide content filtering? More gray area detection, content filtering
would block objectionable content - or any content that might violate
IT policy - from being received. Filtering might also watch outgoing
content too, since sending offensive material (either intentionally, or
through zombies) could damage a company's reputation.

- . . . perform spam detection? Anti-spam is a growing concern for anti­
virus companies, although spam detection techniques have compara­
tively little overlap with malware detection techniques.

- . . . apply software patches? Where technical weaknesses are exploited
by worms, for example, anti-virus disinfection may only be temporary
if the vulnerability used as an infection vector is still present. The safest
approach is probably not to apply relevant software patches, since doing
so may accidentally break software, introducing more customer support
and liability issues.

• Anti-virus researchers perform reverse engineering and decompilation le­
gitimately as part of their jobs, and also routinely decipher "protection mea­
sures." It's unlikely that any malware author will take them to task for this,
but researchers may also trace into legitimate code or need to understand
undocumented software mechanisms. At what point does this run afoul of
copyright laws?^^^

• Users of anti-virus software may occasionally be presented with quarantined
files to assess. Are there situations in which looking at these files, or the
data within them, violates privacy laws? This may be even riskier in the
case of a false positive.

People and Communities 197

• For computer owners, use of anti-virus software is a widespread practice.
Does this mean that computer owners are liable for negligence if they don't
use anti-virus software?^^^ Do anti-virus companies have a captive market?

198 COMPUTER VIRUSES AND MALWARE

Notes for Chapter 10

1 This raises the question of where virus writers are physically located. There
was once a virus "scene" which shifted from country to country [123], but
the Internet has largely made geographical location irrelevant.

2 Gigabyte was one example of a female virus writer [207].
3 Arguably, virus writers form a subculture distinguished by their interest in

viruses.
4 This was Code Red version 2, and the DDoS attack was thwarted [211].
5 Bontchev [46] calls this "slow polymorphism."
6 The "zoo" label is often heard applied to viruses, as in "a zoo virus."
7 If this figure were drawn to scale, the In the Wild circle would be a barely-

visible dot in comparison to the zoo circle.

100 As quoted in an interview with Reuters [263].
101 Unless otherwise noted, this section and the next are based on [121, 123].
102 Gordon [121] and Bissett and Shipton [35] both suggest this.
103 Suggested, for example, in Nachenberg [217].
104 Bisset and Shipton [35] speculate on unconscious motivations, and suggest

some possible conscious motivations, as do Harley et al. [137].
105 Laguerta [177].
106 Covered in a number of places, such as Sherer [286].
107 Landy and Steele [180], and expanded upon by Abel and Buckley [1]. The

latter also examines whether graffiti derives from a Freudian urge to smear
feces, no doubt an excellent topic for dinner conversation.

108 Macdonald [191], which was used for the remainder of these comments
on graffiti as well.

109 These assertions are made in Schmehl [278], and virus trading is mentioned
in interviews with virus writers [120].

110 This figure is from Bontchev [41].
111 This section is based on Vibert [334] and (to a lesser degree) Schmehl [278].
112 Kirsner [165].
113 Gray area detection is discussed in Purisma [257].
114 For example, [52].
115 This section is based on Wells [343].
116 http://www.wildlist.org
117 An argument in favor of zoo virus detection is made in Ferric and Per-

riot [104].

People and Communities 199

118 Gamertsfelder[116].
119 Purisma [257].
120 These latter three questions are raised and analyzed in Gamertsfelder [116].
121 This was mentioned at the EICAR 2004 conference during the presentation

of Vasiu and Vasiu's "Taxonomy of Malware" paper. Opinions are varied:
de Villiers concludes (after a lengthy analysis) that ' . . . most cases of virus
infection involve negligence' [86, page 169], but Owens [237] is skeptical
about individuals being held liable for infections.

Chapter 11

WHAT SHOULD WE DO?

A book of this nature would not be complete without some kind of prediction
about the future of malware. Such predictions share the distinguished quality of
being invariably wrong, so this prediction will cover a wide range of scenarios.

Vicious cyberattacks will cause the Internet to melt down, and all
malware-relatedproblems will disappear within a year's time.

In reality, there is no magic single solution to malware. (And, if there was,
be assured that a bread-crumb trail of patents would cover every part of it.)
Current and foreseeable defenses are but a house of cards. They are based on
assumptions about "typical" malware behavior, and assumptions about malware
writers which dramatically underestimate them. One violation of the assump­
tions and the house of cards comes tumbling down, defenders left scrambling
to prop it up again.

What is clear is that no human intervention is possible in some attacks due
to their speed. More automatic countermeasures are needed, not necessarily to
stop malware completely - there is no such thing as absolute security, after all
- but slowing malware down to a manageable rate would be valuable in itself.

As for malware detection, it is an undecidable problem. No perfect solu­
tion is possible, and the only way to tackle such a problem is with heuristics.
Heuristics, rules of thumb, are fallible. In other words, a technical arms race
rages on between attackers and defenders. Whether or not the race is winnable
is immaterial now; the finish line is still far off. Many excellent defensive steps
that can be taken are not very technical at all, though:

Plan B. Organizations, and to some extent individual computer users, must
have a plan for disaster recovery. What happens when defenses fail and
malware strikes? Can machines be rebuilt, data be restored?

202 COMPUTER VIRUSES AND MALWARE

Education. A broad view of education must be taken. Users must be educated
to harden them to social engineering attacks, but education can't stop there.
The next generation of computer scientists and computer programmers must
be educated in depth about malware. Treating malware as a taboo subject
is only security through obscurity.

Vendor pressure. It must be made clear to software vendors that security is
a priority for their customers, a higher priority than more frilly features.
Customers can also demand to know why software is riddled with techni­
cal weaknesses, which should make customers and vendors both ask some
pointed questions of educators and software researchers.

Minimalism. Users must responsibly use features that are present, which in
part comes through education. Enabled features like network servers provide
more potential attack vectors than having all such features turned off.

At the extreme end of the minimalism scale, it can be argued that computers
are too general-purpose. Malware affects computers because they are just
another form of software for a computer to gleefully run. Special-purpose
devices doing one thing, and only one thing, are one way to help avoid
exploitable problems.

Software updating. Until less-vulnerable software can be produced, software
updating will still be a necessity. Mechanisms and policies that facilitate
updating are a good thing.

Layers of defense. If each defensive technique is only a partial solution, then
deploy a variety of defenses. Defenses should ideally be chosen that are
based on different underlying assumptions, so that the patchwork defensive
quilt will hopefully still work even if some assumptions turn out to be false.

Avoiding monocultures. In biology, having all members of a species the same
is a potentially fatal problem: one disease can wipe the species out. Yet that
is exactly the fatal problem the majority of computers exhibit. This isn't
necessarily to say that everyone should change operating systems and ap­
plications, although that is one coarse-grained way to avoid a monoculture.
Monocultures can be avoided in part just by automatically injecting ran­
domness into the data locations and code of programs.

Diversity can be achieved by separating functionality physically, too. For
example, moving firewall functionality to a different physical device makes
the overall defenses that much harder to completely overcome.

Will malware ever go away? Even if all technical vulnerabilities are fixed,
there will still be human vulnerabilities. But the point is academic, because

What Should We Do? 203

human nature virtually guarantees the large-scale availability of technical vul­
nerabilities for the foreseeable future. Suffice it to say that the computer security
industry will continue to flourish, and security researchers will be employed for
some time to come.

References

Many of these sources can be found on the Internet using a search engine,
and underground sites tend to move around anyway, so URLs have been omitted
except where there appears to be a meaningful single location for a document.
The spelling and capitalization of author names/handles in the original sources
has been preserved.

[1] E. L. Abel and B. E. Buckley. The Handwriting on the Wall: Toward a Sociology and
Psychology of Graffiti. Greenwood Press, 1977.

[2] B. Acohido and J. Swartz. Going price for network of zombie PCs: $2,000-$3,000.
USA Today, 8 September 2004.

[3] L. M. Adleman. An abstract theory of computer viruses. In Advances in Cryptology -
CRYPTO '88 (LNCS 403), pages 354-374, 1990.

[4] P.-M. Agapow. Computational brittleness and evolution in machine language. Complex­
ity International, 3, 1996.

[5] A. V. Aho and M. J. Corasick. Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6):333-340, 1975.

[6] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code generation using tree matching
and dynamic programming. Journal of the ACM, 11(4):491-516, 1989.

[7] I. A. Al-Kadi. Origins of cryptology: the Arab contributions. Cryptologia, XVI(2):97-
126, 1992.

[8] Aleph One. Smashing the stack for fun and profit. Phrack, 7(49), 1996.

[9] NQ. Darwin. Software - Practice and Experience, 2:93-96, 1972.

[10] M. Allen. The use of 'social engineering' as a means of violating computer systems.
SANS Information Security Reading Room, 13 August 2001.

[11] J. P. Anderson. Computer security threat monitoring and surveillance, 15 April 1980.

206 REFERENCES

[12] J. P. Anderson. Computer security technology planning study: Volume II, October 1972.
ESD-TR-73-51,Vol. II.

[13] Anonymous. Understanding encryption and polymorphism. Written by J. Wells?

[14] Anonymous. Double trouble. Virus Bulletin, page 5, April 1992.

[15] Anonymous. Peach virus targets Central Point. Virus Bulletin, pages 17-18, May 1992.

[16] Anonymous. Disabling technologies - a critical assessment. Jane's International De­
fense Review, 21(1), 1994.

[17] Anonymous. Winword.Concept. Virus Bulletin, page 3, October 1995.

[18] anonymous. Once upon a free() Phrack, 0x0b(0x39), 2001.

[19] W. A. Arbaugh, W. L. Fithen, and J. McHugh. Windows of vulnerability: A case study
analysis. IEEE Computer, 33(12):52-59, 2000.

[20] S. Axelsson. Aspects of the modelling and performance of intrusion detection. Licentiate
thesis, Department of Computer Engineering, Chalmers University of Technology, 2000.

[21] J. Aycock and K. Barker. Creating a secure computer virus laboratory. In 13th Annual
EICAR Conference, 2004. 13pp.

[22] J. Aycock, R. deGraaf, and M. Jacobson, Jr. Anti-disassembly using cryptographic
hash functions. Technical Report 2005-793-24, University of Calgary, Department of
Computer Science, 2005.

[23] J. Aycock and N. Friess. Spam zombies from outer space. Technical Report 2006-808-01,
University of Calgary, Department of Computer Science, 2006.

[24] B. S. Baker, U. Manber, and R. Muth. Compressing differences of executable code. In
ACM SIGPLAN Workshop of Compiler Support for System Software, 1999.

[25] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A transparent dynamic optimiza­
tion system. In Proceedings of the ACM SIGPLAN '00 Conference on Programming
Language Design and Implementation (PLDI), pages 1-12, 2000.

[26] B. Barber. Cheese worm: Pros and cons of a "friendly" worm. SANS Information
Security Reading Room, 2001.

[27] A. Bartolich. The ELF virus writing HOWTO, 15 February 2003.

[28] L. E. Bassham and W. T. Polk. Threat assessment of malicious code and human threats.
Technical Report IR 4939, NIST, October 1992.

[29] J. Bates. Trojan horse: AIDS information introductory diskette version 2.0. Virus Bul­
letin, pages 3-6, January 1990.

[30] BBC News. Passwords revealed by sweet deal, 20 April 2004.

[31] BBC News. How to sell your self for a song, 24 March 2005.

[32] J.R.Bell. Threaded code. Communications of the ACM, 16(6):370-372, 1973.

REFERENCES 207

[33] G. Benford. Worlds Vast and Various. EOS, 2000.

[34] J. L. Bentley. Writing Efficient Programs. Prentice-Hall, 1982.

[35] A. Bissett and G. Shipton. Some human dimensions of computer virus creation and
infection. InternationalJournal of Human-Computer Studies, 52:899-913, 2000.

[36] blexim. Basic integer overflows. Phrack, 0x0b(0x3c), 2002.

[37] H. Bogeholz. At your disservice: How ATA security functions jeopardize your data, c't
8/2005, S. 172: Hard Disk Security, 1 April 2005.

[38] V. Bontchev. Possible virus attacks against integrity programs and how to prevent them.
In Virus Bulletin Conference, pages 131-141, 1992.

[39] V. Bontchev. Analysis and maintenance of a clean virus library. In Virus Bulletin
Conference, pages 77-89, 1993.

[40] V. Bontchev. Are "good" computer viruses still a bad idea? In Proceedings of the 3rd
Annual EICAR Conference, pages 25-47, 1994.

[41] V. Bontchev. Future trends in virus writing, 1994.

[42] V. Bontchev. Possible macro virus attacks and how to prevent them. Computers &
Security, 15(7):595-626, 1996.

[43] V. Bontchev. Macro virus identification problems. Computers & Security, 17(l):69-89,
1998.

[44] V. Bontchev. Anti-virus spamming and the virus-naming mess: Part 2. Virus Bulletin,
pages 13-15, July 2004.

[45] V. Bontchev. The real reason for the decline of the macro virus. Virus Bulletin, pages
14-15, January 2006.

[46] V. V. Bontchev. Methodology of Computer Anti-Virus Research. PhD thesis. University
of Hamburg, 1998.

[47] Jordi Bosveld. Online malware scan, http://virusscan.jotti.org/.

[48] T. M. Breuel. Lexical closures for C-i-H. In USENIX C++ Conference Proceedings,
pages 293-304, 1988.

[49] D. Bristow. Asia: grasping information warfare? Jane's Intelligence Review, 1 December
2000.

[50] J. Brunner. The Shockwave Rider. Ballantine, 1975.

[51] Bulba and Kil3r. Bypassing StackGuard and StackShield. Phrack, Oxa(Ox38), 2000.

[52] CA. eTrust PestPatrol vendor appeal process. CA Spy ware Information Center, 25 April
2005. Version 1.1.

[53] CARO. A new virus naming convention, c. 1991.

[54] K. Carr. Sophos anti-virus detection: a technical overview, October 2002.

208 REFERENCES

[55] CERT. Cert incident note IN-2001-09. http://www.cert.org/incident.notes/IN-2001-
09.html, 6 August 2001.

[56] K. Cesare. Prosecuting computer virus authors: The need for an adequate and immediate
international solution. The Transnational Lawyer, 14:135-170, 2001.

[57] S. Cesare. Linux anti-debugging techniques (fooling the debugger), 1999.

[58] S. Cesare. Unix viruses. Undated, post-October 1998.

[59] D. A. Chambers. Method and apparatus for detection of computer viruses. United States
Patent #5,398,196, 14 March 1995.

[60] B. Chan, J. Denzinger, D. Gates, K. Loose, and J. Buchanan. Evolutionary behavior
testing of commercial computer games. In Proceedings of the 2004 IEEE Congress on
Evolutionary Computation (CEC), pages 125-132, 2004.

[61] E. Y. Chen, J. T. Ro, M. M. Deng, and L. M. Chi. System, apparatus and method for
the detection and removal of viruses in macros. United States Patent #5,951,698, 14
September 1999.

[62] S. Chen and S. Ranka. Detecting Internet worms at early stage. IEEE Journal on Selected
Areas in Communications, 23(10):2003-2012, 2005.

[63] X. Chen and J. Heidemann. Detecting early worm propagation through packet match­
ing. Technical Report ISI-TR-2004-585, University of Southern California, Information
Sciences Institute, 2004.

[64] D. M. Chess. Virus verification and removal. Virus Bulletin, pages 7-11, November
1991.

[65] D. M. Chess, R. Ford, J. O. Kephart, and M. G. Swimmer. System and method for
detecting and repairing document-infecting viruses using dynamic heuristics. United
States Patent #6,711,583, 23 March 2004.

[66] D. M. Chess, J. O. Kephart, and G. B. Sorkin. Automatic analysis of a computer virus
structure and means of attachment to its hosts. United States Patent #5,485,575, 16
January 1996.

[67] B. Cheswick. An evening with Berferd in which a cracker is lured, endured, and studied.
In Proceedings of the Winter USENIX Conference, 1992.

[68] W. R. Cheswick and S. M. Bellovin. Firewalls and Internet Security: Repelling the Wily
Hacker. Addison-Wesley, 1994.

[69] D. Chi. Detection and elimination of macro viruses. United States Patent #5,978,917, 2
November 1999.

[70] E. Chien and P. Szor. Blended attacks exploits, vulnerabilities and buffer-overflow
techniques in computer viruses. In Virus Bulletin Conference, pages 72-106, 2002.

[71] Chosun Ilbo. N. Korea's hackers rival CIA, expert warns. Digital Chosunilbo (English
Edition), 2 June 2005.

[72] CIAC. Information about hoaxes. http://hoaxbusters.ciac.org/HBHoaxInfo.html.

REFERENCES 209

[73] Cisco Systems, Inc. Cisco threat defense system guide: How to provide effective worm
mitigation, April 2004.

[74] F. Cohen. Computer viruses: Theory and experiments. Computers & Security, 6(1):22-
35, 1987.

[75] F. B. Cohen. A Short Course on Computer Viruses. Wiley, second edition, 1994.

[76] C. Collberg, C. Thomborson, and D. Low. A taxonomy of obfuscating transformations.
Technical Report 148, University of Auckland, Department of Computer Science, 1997.

[77] Computer Associates. Security advisor center glossary.
http://www3.ca.com/securityadvisor/glossary.aspx, 2005.

[78] M. Conover and wOOwOO Security Team. wOOwOO on heap overflows, 1999.

[79] E. Cooke, F. Jahanian, and D. McPherson. The zombie roundup: Understanding, detect­
ing, and disrupting botnets. In USENIX SRUTI Workshop, 2005.

[80] C. Cowan, M. Barringer, S. Beattie, and G. Kroah-Hartman. FormatGuard: Automatic
protection from pr in t f format string vulnerabilities. In Proceedings of the 10th USENIX
Security Symposium, 2001.

[81] CrackZ. Anti-debugging & software protection advice, 25 April 2003.

[82] M. L. Cramer and S. R. Pratt. Computer virus countermeasures - a new type of electronic
warfare. In L. J. Hoffman, editor. Rogue Programs: Viruses, Worms, and Trojan Horses,
chapter 20, pages 246-260. Van Nostrand Reinhold, 1990.

[83] I. Daniloff. Fighting talk. Virus Bulletin, pages 10-12, December 1997.

[84] I. Dawson. Blind buffer overflows in IS API extensions. SecurityFocus, 25 January 2005.

[85] T. de Raadt. Exploit mitigation techniques. AUUG'2004 Annual Conference.

[86] M. de Villiers. Computer viruses and civil liability: A conceptual framework. Tort Trial
& Insurance Practice Law Journal, 40:1:123-179, 2004.

[87] J. Dellinger. Re: Prize for most useful computer virus. Risks Digest, 12(30), 1991.

[88] N. Desai. Intrusion prevention systems: the next step in the evolution of IDS. Security-
Focus, 27 February 2003.

[89] t. detristan, t. ulenspiegel, yann_malcom, and m. s. von underduk. Polymoiphic shellcode
engine using spectrum analysis. Phrack, 0x0b(0x3d), 2003.

[90] R. B. K. Dewar. Indirect threaded code. Communications of the ACM, 18(6):330-331,
1975.

[91] A. K. Dewdney. In the game called Core War hostile programs engage in a battle of
bits. Scientific American, 250(5yA4-22, 1984.

[92] A. K. Dewdney. A Core War bestiary of viruses, worms and other threats to computer
memories. Scientific American, 252(3yA 4-23, 1985.

210 REFERENCES

[93] U. Drepper. Security enhancements in Red Hat Enterprise Linux (beside SELinux), 16
June 2004.

[94] P. Ducklin. Counting viruses. In Virus Bulletin Conference, pages 73-85, 1999.

[95] T. Duff. Experience with viruses on UNIX systems. Computing Systems, 2(2): 155-171,
1989.

[96] EICAR. The anti-virus test file, http://www.eicar.org/anti_virus_test_file.htm, 1 May
2003.

[97] M. W. Eichin and J. A. Rochlis. With microscope and tweezers: An analysis of the
Internet virus of November 1988. In Proceedings of the 1989 IEEE Symposium on
Security and Privacy, pages 326-343, 1989.

[98] I. K. El Far, R. Ford, A. Ondi, and M. Pancholi. On the impact of short-term email
message recall on the spread of malware. In Proceedings of the 14th Annual EICAR
Conference, pages 175-189, 2005.

[99] B. W. Ellis. The international legal implications and limitations of information warfare:
What are our options? USAWC Strategy Research Report, 10 April 2001.

[100] J. Erickson. Hacking: The Art of Exploitation. No Starch Press, 2003.

[101] F. Esponda, S. Forrest, and P. Helman. A formal framework for positive and negative
detection schemes. IEEE Transactions on Systems, Man, and Cybernetics, 34(1):357-
373, 2004.

[102] H. Etoh. Stack protection schemes: (propolice, StackGuard, XP SP2). PacSec/core04
Conference, 2004.

[103] D. Ferbrache. A Pathology of Computer Viruses. Springer-Verlag, 1992.

[104] P. Ferrie and F. Perriot. Detecting complex viruses. SecurityFocus, 6 December 2004.

[105] P. Ferrie and H. Shannon. It's Zell(d)ome the one you expect. Virus Bulletin, pages
7-11, May 2005.

[106] P. Ferrie and P. Szor. Zmist opportunities. Virus Bulletin, pages 6-7, March 2001.

[107] E. Filiol. Strong cryptography armoured computer viruses forbidding code analysis: The
Bradley virus. In Proceedings of the 14th Annual EICAR Conference, pages 216-227,
2005.

[108] C. Fischer. TREMOR analysis (PC). VIRUS-L Digest, 6(88), 1993.

[109] N. FitzGerald. A virus by any other name - virus naming updated. Virus Bulletin, pages
7-9, January 2003.

[110] H. Flake. Structural comparison of executable objects. In Workshop on Detection of
Intrusions and Malware & Vulnerability Assessment (DIMVA), 2004.

[I l l] B. Flint and M. Hughes. Fast virus scanning using session stamping. United States
Patent #6,735,700, 11 May 2004.

REFERENCES 211

[112] E. Florio. Backdoor.Ryknos. Symantec Security Response, 22 November 2005.

[113] R. Ford and J. Michalske. Gatekeeper II: New approaches to generic virus prevention.
In Virus Bulletin Conference, pages 45-50, 2004.

[114] R. Ford and H. H. Thompson. The future of proactive virus detection. In 13th Annual
EICAR Conference, 2004. 11pp.

[115] R. Foulkes and J. Morris. Fighting worms in a large corporate environment: A design
for a network anti-worm solution. In Virus Bulletin Conference, pages 56-66, 2002.

[116] L. Gamertsfelder. Anti-virus technologies - filtering the legal issues. In Virus Bulletin
Conference, pages 31-35, 2003.

[117] S. Garfink and M. Landesman. Lies, damn lies and computer virus costs. In Virus
Bulletin Conference, pages 20-23, 2004.

[118] D. Gerrold. When Harlie Was One. Nelson Doubleday, 1972.

[119] R Gillingwater. Re: Where did they come from ? (PC), comp.virus, 27 November 1989.

[120] S. Gordon. Faces behind the masks, 1994.

[121] S. Gordon. The generic virus writer. In Virus Bulletin Conference, 1994.

[122] S. Gordon. What a (Winword.)Concept. Virus Bulletin, pages 8-9, September 1995.

[123] S. Gordon. The generic virus writer II. In Virus Bulletin Conference, 1996.

[124] S. Gordon. Spy ware 101: Exploring spy ware and adware risk assessment. In 14th Annual
EICAR Conference, pages 204-215, 2005.

[125] S. Gordon and R. Ford. Cyberterrorism? Computers & Security, 21(7):636-647, 2002.

[126] S. Gordon, R. Ford, and J. Wells. Hoaxes & hypes. In Virus Bulletin Conference, 1997.

[127] D. Gragg. A multi-level defense against social engineering. SANS Information Security
Reading Room, 2002.

[128] S. Granger. Social engineering fundamentals, part I: Hacker tactics. SecurityFocus, 18
December 2001.

[129] S. Granger. Social engineering fundamentals, part II: Combat strategies. SecurityFocus,
9 January 2002.

[130] L. T. Greenberg, S. E. Goodman, and K. J. Soo Hoo. Information Warfare and Interna­
tional Law. National Defense University Press, 1998.

[131] GriYo. EPO: Entry-point obscuring. 29A e-zine, 4, c. 2000.

[132] grugq and scut. Armouring the ELF: Binary encryption on the UNIX platform. Phrack,
0x0b(0x3a),2001.

[133] D. O. Gryaznov. Scanners of the year 2000: Heuristics. In Virus Bulletin Conference,
pages 225-234, 1995.

212 REFERENCES

[134] A. Gupta and D. C. DuVarney. Using predators to combat worms and viruses: A
simulation-based study. In 20th Annual Computer Security Applications Conference,
2004.

[135] M. Handley, V. Paxson, and C. Kreibich. Network intrusion detection: Evasion, traffic
normalization, and end-to-end protocol semantics. In Proceedings of the 10th USENIX
Security Symposium, 2001.

[136] Had. People hacking: The psychology of social engineering. Access All Areas III, 1997.

[137] D. Harley, R. Slade, and U. E. Gattiker. Viruses Revealed. Osborne/McGraw-Hill, 2001.

[138] C. G. Harrison, D. M. Chess, and A. Kershenbaum. Mobile agents: Are they a good
idea? IBM Research Report, 28 March 1995.

[139] R. Hasson. Anti-debugging tips, http://www.soft-analysts.com/debugging.php, 13
February 2003.

[140] Headquarters, Department of the Army. Information operations. Field manual No.
100-6, 27 August 1996. United States Army.

[141] H. J. Highland. A macro virus. Computers & Security, 8(3):178-188, 1989.

[142] N. Hindocha and E. Chien. Malicious threats and vulnerabilities in instant messaging.
In Virus Bulletin Conference, pages 114-124, 2003.

[143] S. A. Hofmeyr, S. Forrest, and A. Somayaji. Intrusion detection using sequences of
system calls. Journal of Computer Security, 6:151-180, 1998.

[144] G. Hoglund and J. Butler. Rootkits: subverting the Windows kernel. Addison-Wesley,
2006.

[145] T. Holz and F. Raynal. Defeating honeypots: System issues, part 1. SecurityFocus, 23
March 2005.

[146] R. N. Horspool andN. Marovac. Anapproachtotheproblemofdetranslation of computer
programs. The Computer Journal, 23{3y223-229, 1980.

[147] M. Howard. Reviewing code for integer manipulation vulnerabilities. MSDN Library,
28 April 2003.

[148] J. W. Hunt and M. D. Mcllroy. An algorithm for differential file comparison. Technical
Report 41, Bell Laboratories, Computer Science, 1976.

[149] M. Hypponen. Retroviruses - how viruses fight back. In Virus Bulletin Conference,
1994.

[150] M. Hypponen. Santy. F-Secure Virus Descriptions, 21 December 2004.

[151] C. Itshak, N. Vitaly, and M. Taras. Virus detection system. Canadian Patent Application
#2,460,607, 27 March 2003.

[152] W. Jansen and T. Karygiannis. Mobile agent security. NIST Special Publication 800-19,
1999.

REFERENCES 213

[153] Japan Times. Bug in antivirus software hits LANs at JR East, some media, 24 April
2005.

[154] M. Jordan. Dealing with metamorphism. Virus Bulletin, pages 4-6, October 2002.

[155] R. Joshi, G. Nelson, and K. Randall. Denali: a goal-directed superoptimizer. In Pro­
ceedings oftheACMSIGPLAN2002 Conference on Programming language design and
implementation, pages 304-314, 2002.

[156] J. Jung, V. Paxson, A. W. Berger, and H. Balakrishnan. Fast poitscan detection using
sequential hypothesis testing. In Proceedings of the 2004 IEEE Symposium on Security
and Privacy, pages 211-225, 2004.

[157] J. E. Just and M. Cornwall. Review and analysis of synthetic diversity for breaking
monocultures. In Proceedings of the 2004 ACM Workshop on Rapid Malcode, pages
23-32, 2004.

[158] S. R Kanuck. Information warfare: New challenges for public international law. Harvard
International Law Journal, 37(l):272-292, 1996.

[159] E. Kaspersky. Dichotomy: Double trouble. Virus Bulletin, pages 8-9, December 1994.

[160] E. Kaspersky. RMNS - the perfect couple. Virus Bulletin, pages 8-9, May 1995.

[161] Kaspersky Lab. Virus.DOS.Whale, 2000. Whale appeared c. 1990.

[162] Kaspersky Lab. Virus.Winl6.Apparition.a, 2000. Apparition appeared c. 1998.

[163] J. O. Kephart, A. G. G. Morin, G. B. Sorkin, and J. W. Wells. Efficient detection of
computer viruses and other data traits. United States Patent #6,016,546, 18 January
2000.

[164] V. Kiriansky, D. Bruening, and S. Amarasinghe. Secure execution via program shep­
herding. In Proceedings of the 11th USENIX Security Symposium, 2002.

[165] S. Kirsner. Sweating in the hot zone. Fast Company, 99, October 2005.

[166] P. Klint. Interpretation techniques. Software - Practice and Experience, 11:963-973,
1981.

[167] klog. The frame pointer overwrite. Phrack, 9(55), 1999.

[168] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Addison-Wesley, second edition, 1998.

[169] C. W. Ko. Method and apparatus for detecting a macro computer virus using static
analysis. United States Patent #6,697,950, 24 February 2004.

[170] V. Kouznetsov and A. Ushakov. System and method for efficiently managing computer
virus definitions using a structured virus database. United States Patent #6,622,150, 16
September 2003.

[171] J. Koziol, D. Aitel, D. Litchfield, C. Anley, S. Eren, N. Mehta, and R. Hassell. The
Shellcoder's Handbook: Discovering and Exploiting Security Holes. Wiley, 2004,

214 REFERENCES

[172] Krakowicz. Krakowicz's kracking korner: The basics of kracking II, c. 1983.

[173] N. Krawetz. Anti-honeypot technology. IEEE Security & Privacy, pages 76-79, Jan­
uary/February 2004.

[174] S. Kumar and E. H. Spafford. A generic virus scanner in C++. In Proceedings of the
8th Computer Security Applications Conference, pages 210-219, 1992.

[175] C. J. Kuo, J. Koltchev, D.-C. Zheng, and J. Peter. Method of treating whitespace during
virus detection. United States Patent #6,230,288, 8 May 2001.

[176] J. Kuo and D. Beck. The common malware enumeration (CME) initiative. Virus Bulletin,
pages 14-15, September 2005.

[177] Z. M. Laguerta. TROJ.CAGER.A. Trend Micro Virus Encyclopedia, 6 September 2005.

[178] A. Lakhotia, A. Kapoor, and E. U. Kumar. Are metamorphic viruses really invincible?
part 1. Virus Bulletin, pages 5-7, December 2004.

[179] B. W. Lampson. A note on the confinement problem. Communications of the ACM,
16(10):613-615, 1973.

[180] E. E. Landy and J. M. Steele. Graffiti as a function of building utilization. Perceptual
and Motor Skills, 25:111-112, 1967.

[181] T. Laundrie. All we need is love. rec.humor.funny ILOVEYOU digest, joke attributed
to M. Barker, 8 May 2000.

[182] A. J. Lee. Hunting the unicorn. Virus Bulletin, pages 13-16, May 2004.

[183] J. R. Levine. Linkers and Loaders. Morgan Kaufmann, 2000.

[184] J. Leyden. Americans are pants at password security. The Register, 6 May 2005.

[185] Y. Liu. Avkiller.Trojan. Symantec Security Response, 17 May 2002.

[186] R. W. Lo, K. N. Levitt, and R. A. Olsson. MCF: a malicious code filter. Computers &
Security, 14(6):541-566, 1995.

[187] M. Ludwig. The Giant Black Book of Computer Viruses. American Eagle, second
edition, 1998.

[188] LURHQ. Sobig.a and the spam you received today, 21 April 2003.

[189] J. Lyman. Name that worm - how computer viruses get their names. NewsFactor
Technology News, 8 January 2002.

[190] J. Ma, G. M. Voelker, and S. Savage. Self-stopping worms. In Proceedings of the 2005
ACM Workshop on Rapid Malcode, pages 12-21, 2005.

[191] N. Macdonald. The Graffiti Subculture: Youth, Masculinity and Identity in London and
New York. Palgrave, 2001.

[192] G. M. Mallen-Fullerton. The minimum size of virus identification signatures. In Fifth
International Computer Virus & Security Conference, pages 813-817, 1992.

REFERENCES 215

[193] O. Mann. Method for recovery of a computer program infected by a computer virus.
United States Patent #5,408,642, 18 April 1995.

[194] Marc. Re: Blind remote buffer overflow. VULN-DEV List, 28 April 2000.

[195] A. Marinescu. Win32/CTX virus description. RAV Antivirus, 15 November 1999
(detection date).

[196] H. Massalin. Superoptimizer: a look at the smallest program. In Proceedings of the
Second International Conference on Architectual Support for Programming Languages
and Operating Systems, ^2igQ^ 122-126, 1987.

[197] A. Matrawy, R C. van Oorschot, and A. Somayaji. Mitigating network denial-of-service
through diversity-based traffic management. In Proceedings of the 3rd International
Conference on Applied Cryptography and Network Security, LNCS 3531, pages 104-
121,2005.

[198] McAfee Inc. ZeroHunt. Virus Information Library, 15 December 1990.

[199] McAfee Inc. Den Zuk. Virus Information Library, 1988.

[200] McAfee Inc. WM/Colors.D;M;P. Virus Information Library, 1997.

[201] M. D. Mcllroy, R. Morris, and V A. Vyssotsky. Letter to No, c/o C. A. Lang, editor,
Software - Practice and Experience, http://www.cs.dartmouth.edu/~doug/darwin.pdf,
29 June 1971.

[202] M. K. McKusick, K. Bostic, M. J. Karels, and J. S. Quarterman. The Design and
Implementation of the 4.4BSD Operating System. Addison-Wesley, 1996.

[203] MessageLabs. MessageLabs Intelligence Annual Email Security Report 2004, 2004.

[204] E. Messmer. Threat of 'infowar' brings CIA warnings. Network World, 13 September
1999.

[205] Methyl. Tunneling with single step mode. Undated, post-1989.

[206] Z. Michalewicz and D. B. Fogel. How to Solve It: Modern Heuristics. Springer-Verlag,
2000.

[207] J. Middleton. Virus writers get behind Gigabyte, vnunet.com, 13 May 2002.

[208] MidNyte. An introduction to encryption, part I, April 1999.

[209] B. R Miller, L. Fredriksen, and B. So. Study of the reliability of UNIX utilities. Com­
munications of the ACM, 33(12):32-44, 1990.

[210] G. Molnar and G. Szappanos. Casualties of war: W32/Ganda. Virus Bulletin, pages
7-10, May 2003.

[211] D. Moore and C. Shannon. The spread of the code-red worm (crv2). CAIDA analysis,
C.2001.

[212] D. Moore, C. Shannon, and J. Brown. Code-Red: a case study on the spread and victims
of an Internet worm. In 2nd Internet Measurement Workshop, 2002.

216 REFERENCES

[213] P. Morley. The biggie. Virus Bulletin, pages 10-11, November 1998.

[214] I. Muttik. Stripping down an AV engine. In Virus Bulletin Conference, pages 59-68,
2000.

[215] C. Nachenberg. Antivirus accelerator. United States Patent #6,021,510, 1 February
2000.

[216] C. Nachenberg. Behavior blocking: The next step in anti-virus protection. SecurityFocus,
19 March 2002.

[217] C. Nachenberg. Computer virus-antivirus coevolution. Communications of the ACM,
40(1):46-51, 1997.

[218] C. Nachenberg. Emulation repair system. United States Patent #6,067,410, 23 May
2000.

[219] C. S. Nachenberg. Data driven detection of viruses. United States Patent #6,851,057, 1
February 2005.

[220] C. S. Nachenberg. Dynamic heuristic method for detecting computer viruses using
decryption exploration and evaluation phases. United States Patent #6,357,008,12 March
2002.

[221] C.S. Nachenberg. Polymorphic virus detection module. United States Patent #5,826,013,
20 October 1998.

[222] C. S. Nachenberg. Histogram-based virus detection. Canadian Patent Application
#2,403,676, 20 September 2001.

[223] C. S. Nachenberg. State-based cache for antivirus software. United States Patent
#5,999,723, 7 December 1999.

[224] R. Naraine. Microsoft's security response center: How little patches are made. eWeek,
8 June 2005.

[225] K. Natvig. Sandbox technology inside AV scanners. In Virus Bulletin Conference, pages
475-488,2001.

[226] K. Natvig. Sandbox II: The Internet. In Virus Bulletin Conference, pages 125-141,2002.

[227] G. Navarro and M. Raffinot. Flexible Pattern Matching in Strings. Cambridge, 2002.

[228] G. Navarro and J. Tarhio. LZgrep: a Boyer-Moore string matching tool for Ziv-Lempel
compressed text. Software - Practice and Experience, 35(12): 1107-1130, 2005.

[229] J. Nazario. Defense and Detection Strategies against Internet Worms. Artech House,
2004.

[230] J. Nazario, J. Anderson, R. Wash, and C. Connelly. The future of Internet worms. In
Blackhat Briefings, 2001.

[231] Nergal. The advanced return-into-lib(c) exploits: PaX case study. Phrack, 0x0b(0x3a),
2001.

REFERENCES 217

[232] K. O'Brien and J. Nusbaum. Intelligence gathering on asymmetric threats -- part one.
Jane's Intelligence Review, 1 October 2000.

[233] H. O'Dea. Trapping worms in a virtual net. In Vims Bulletin Conference, pages 176-186,
2004.

[234] L. Oudot. Fighting Internet worms with honey pots. Security Focus, 23 October 2003.

[235] L. Oudot and T. Holz. Defeating honeypots: Network issues, part I. SecurityFocus, 28
September 2004.

[236] M. Overton. Worm charming: Taking SMB-Lure to the next level. In Virus Bulletin
Conference, 2003.

[237] R. C. Owens. Turning worms: Some thoughts on liabilities for spreading computer
infections. Canadian Journal of Law and Technology, 3(l):33-47, 2004.

[238] M. C.-H. Pak, A. Ouchakov, K. N. Pham, D. O. Gryaznov, and V. Kouznetsov. Sys­
tem and method for executing computer virus definitions containing general purpose
programming language extensions. United States Patent #6,718,469, 6 April 2004.

[239] Panda Software. Elkem.C. Virus Encyclopedia, 2005.

[240] Panda Software. PGPCoder.A. Virus Encyclopedia, 2005.

[241] Panda Software. A Trojan digitally encrypts files and asks for a ransom. Press release,
25 May 2005.

[242] paperghost. We're calm like a bomb: The antivirus virus. Vitalsecurity.org, 1 June 2005.

[243] V. Paxson. Bro: A system for detecting network intruders in real-time. In Proceedings
of the 7th USENIX Security Symposium, 1998.

[244] J. Pearce. Antivirus virus on the loose. ZDNet Australia, 20 January 2003.

[245] T. J. Pennello. Very fast LR parsing. In Proceedings of the SIGPLAN '86 Symposium
on Compiler Construction, pages 145-151, 1986.

[246] C. Percival. Naive differences of executable code, 2003.

[247] F. Perriot. Defeating polymorphism through code optimization. In Virus Bulletin Con­
ference, pages 142-159, 2003.

[248] F. Perriot and P. Ferrie. Principles and practise of X-raying. In Virus Bulletin Conference,
pages 51-66,2004.

[249] F. Perriot, P. Ferrie, and P. Szor. Striking similarities. Virus Bulletin, pages 4-6, May
2002.

[250] F. Perriot and D. Knowles. W32.Welchia.Worm. Symantec Security Response, 28 July
2004.

[251] R.Perry. Extensions to CVDL, the CyberSoft virus description language. CyberSoft
White Paper, 11 August 2001.

[252] R. Perry. CyberSoft CVDL tutorial. CyberSoft White Paper, 16 September 2001.

218 REFERENCES

[253] phantasmal phantasmagoria. On polymorphic evasion. BugTraq, 2 October 2004.

[254] V. Pless. Introduction to the Theory of Error-Correcting Codes. Wiley, 1982.

[255] N. Provos and P. Honeyman. ScanSSH - scanning the Internet for SSH servers. In
Proceedings of the LISA 2001 15th Systems Administration Conference, pages 25-30,
2001.

[256] T. H. Ptacek and T. N. Newsham. Insertion, evasion, and denial of service: Eluding
network intrusion detection. Secure Networks, Inc., 1998.

[257] J. Purisma. To do or not to do: Anti-virus accessories. In Virus Bulletin Conference,
pages 125-130, 2003.

[258] P. Radatti. Computer viruses in Unix networks, 1995.

[259] P. V. Radatti. The CyberSoft virus description language. CyberSoft White Paper, 1996.

[260] E. S. Raymond, ed. The jargon file, version 4.4.7, 2003.

[261] C. Renert. Proactive detection of code injection worms. In Virus Bulletin Conference,
pages 147-158,2004.

[262] E. Rescorla. Security holes... who cares? In Proceedings of the 12th USENIX Security
Symposium, pages 75-90, 2003.

[263] Reuters. Looking into the mind of a virus writer. CNN.com, 19 March 2003.

[264] Reuters. Computer worm traps child pom offender in Germany, reuters.com, 20 De­
cember 2005.

[265] J. Riordan and B. Schneier. Environmental key generation towards clueless agents. In
Mobile Agents and Security (LNCS 1419), pages 15-24, 1998.

[266] W. Robertson, C. Kruegel, D. Mutz, and F. Valeur. Run-time detection of heap-based
overflows. In Proceedings of the 17th Large Installation Systems Administration Con­
ference, pages 51-59, 2003.

[267] E. C. Rosen. Vulnerabilities of network control protocols: An example. ACM SIGCOMM
Computer Communication Review, 11(3): 10-16, 1981.

[268] J. B. Rosenberg. How Debuggers Work: Algorithms, Data Structures, and Architecture.
Wiley, 1996.

[269] C. H. Rowland. Covert channels in the TCP/IP protocol suite. First Monday, 2(5), 1997.

[270] RSA Security. Internet identity theft threatens to be the next crime wave to hit Britain.
Press release, 20 April 2004.

[271] M. Russinovich. Sony, rootkits and digital rights management gone too far. Mark's
Syslnternals Blog, 31 October 2005.

[272] O. Ruwase and M. S. Lam. A practical dynamic buffer overflow detector. In Proceedings
of the Network and Distributed System Security (NDSS) Symposium, pages 159-169,
2004.

REFERENCES 219

[273] T. Sabin. Comparing binaries with graph isomorphisms. BindView white paper, 2004.

[274] A. Saita. Security no match for theater lovers. SearchSecurity.com, 24 March 2005.

[275] I. Schaechter. Definitions of terrorism, http://www.unodc.org/unodc/terrorism_defini-
tions.html, 2000.

[276] S. E. Schechter, J. Jung, and A. W. Berger. Fast detection of scanning worm infections.
In Seventh International Symposium on Recent Advances in Intrusion Detection (RAID),
LNCS 3224, pages 59-81, 2004.

[277] S. E. Schechter and M. D. Smith. Access for sale: A new class of worm. In Proceedings
of the 2003 ACM Workshop on Rapid Malcode, pages 19-23, 2003.

[278] P. Schmehl. Past its prime: Is anti-virus scanning obsolete? SecurityFocus, 2002.

[279] B. Schneier. Applied Cryptography. Wiley, second edition, 1996.

[280] B. Schneier. Insurance and the computer industry. Communications of the ACM,
44(3):114-115, 2001.

[281] J. Schnurer and T. J. Klemmer. Computer virus trap. Canadian Patent Application
#2,191,205, 7 December 1995.

[282] K. Scholdstrom. How to use live viruses as an education tool. In Virus Bulletin Confer­
ence, pages 251-261, 2002.

[283] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo. Data mining methods for detection
of new malicious executables. In Proceedings of the 2001 IEEE Symposium on Security
and Privacy, pages 38-49, 2001.

[284] scut. Exploiting format string vulnerabilities, version 1.2, 1 September 2001.

[285] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effec­
tiveness of address-space randomization. In Proceedings of the Ilth ACM Conference
on Computer and Communications Security, pages 298-307, 2004.

[286] L. Sherer. Keeping pace in a war of worms. Virus Bulletin, page 2, May 2004.

[287] J. F. Shoch and J. A. Hupp. The "worm" programs - early experience with a distributed
computation. Communications of the ACM, 25(3yA12-\W, 1982.

[288] E. Skoudis and L. Zeltser. Malware: Fighting Malicious Code. Prentice Hall, 2004.

[289] R. Skrenta. Elk doner, http://www.skrenta.com/cloner.

[290] F. Skulason. New Zealand - causing chaos worldwide. Virus Bulletin, pages 9-10, May
1990.

[291] F. Skulason. More about UVDs. comp.virus, 28 January 1990.

[292] Solar Designer. Getting around non-executable stack (and fix). Bugtraq, 10 August
1997.

[293] Solar Designer. JPEG COM marker processing vulnerability in Netscape browsers.
OW-002-netscape-jpeg, revision 1, 25 July 2000.

220 REFERENCES

[294] D. A. Solomon and M. E. Russinovich. Inside Microsoft Windows 2000. Microsoft
Press, third edition, 2000.

[295] J. T. Soma, T. F. Muther, Jr., and H. M. L. Brissette. Transnational extradition for
computer crimes: Are new treaties and laws needed? Harvard Journal on Legislation,
34:317-371, 1997.

[296] A. N. Sovarel, D. Evans, and N. Paul. Where's the FEEB? The effectiveness of instruction
set randomization. In Proceedings of the 14th USENIX Security Symposium, pages 145-
160, 2005.

[297] Sowhat. Multiple antivirus reserved device name handling vulnerability. BugTraq, 19
October 2004.

[298] E. H. Spafford. The Internet worm program: An analysis. Technical Report CSD-TR-
823, Purdue University, Department of Computer Sciences, 1988.

[299] E. H. Spafford. Computer viruses as artificial life. Journal of Artificial Life, 1(3):249-
265, 1994.

[300] Spammer-X. Inside the SPAM Cartel. Syngress, 2004.

[301] L. Spitzner. Honeypots: Tracking Hackers. Addison-Wesley, 2003.

[302] N. Stampf. Worms of the future: Trying to exorcise the worst. SecurityFocus, 2 October
2003.

[303] S. Staniford, D. Moore, V. Paxson, and N. Weaver. The top speed of flash worms. In
Proceedings of the 2004 ACM Workshop on Rapid Malcode, pages 33-42, 2004.

[304] S. Staniford, V. Paxson, and N. Weaver. How to Own the Internet in your spare time. In
Proceedings of the llth USENIX Security Symposium, 2002.

[305] J. M. Stanton, K. R. Stam, P. Mastrangelo, and J. Jolton. Analysis of end user security
behaviors. Computers & Security, 24(2): 124-133, 2005.

[306] Symantec. Symantec norton protected recycle bin exposure. SYM06-002, 10 January
2006.

[307] Symantec. Understanding heuristics: Symantec's Bloodhound technology. Symantec
White Paper Series, Volume XXXIV, 1997.

[308] P. Szor. Generic disinfection. In Virus Bulletin Conference, 1996.

[309] R Szor. Win95.Memorial, 1997.

[310] P. Szor. Memory scanning under Windows NT. In Virus Bulletin Conference, pages
325-346, 1999.

[311] R Szor. W95.Zperm.A, 2000.

[312] P. Szor. The Art of Computer Virus Research and Defense. Addison-Wesley, 2005.

[313] R Szor. W2K.Stream. Symantec Security Response, 7 September 2000.

REFERENCES 221

[314] P. Szor and P. Ferric. Hunting for metamorphic. In Vims Bulletin Conference, pages
123-144,2001.

[315] P. Szor and F. PeiTiot. Slamdunk. Vims Bulletin, pages 6-7, March 2003.

[316] J. Tarala. Virii generators: Understanding the threat. SANS Information Security Read­
ing Room, 2002.

[317] R. F. Templeton. Method of managing computer virus infected files. United States Patent
#6,401,210, 4 June 2002.

[318] G. Tesauro, J. O. Kephart, and G. B. Sorkin. Neural networks for computer virus recog­
nition. IEEE Expert, ll(4):5-6, 1996.

[319] The Honeynet Project & Research Alliance. Know your enemy: Tracking botnets, 13
March 2005.

[320] The Mental Driller. Metamorphism in practice. 29A e-zine, 6, March 2002.

[321] T. L. Thomas. Russian views on information-based warfare. Airpower Journal, pages
25-35, 1996.

[322] K. Thompson. Reflections on trusting trust. Communications of the ACM, 27(8):761-
763, 1984.

[323] H. Toyoizumi and A. Kara. Predators: Good will mobile codes combat against computer
viruses. In Proceedings of the 2002 Workshop of New Security Paradigms, pages 11-17,
2002.

[324] N. Tuck, T. Sherwood, B. Calder, and G. Varghese. Deterministic memory-efficient
string matching algorithms for intrusion detection. In IEEE INFOCOM 2004, volume 4,
pages 2628-2639, 2004.

[325] J. Twycross and M. M. Williamson. Implementing and testing a virus throttle. In
Proceedings of the 12th USENIX Security Symposium, pages 285-294, 2003.

[326] United States Attorney's Office. Former computer network administrator at New Jersey
high-tech firm sentenced to 41 months for unleashing $ 10 million computer 'time bomb'.
News release, 26 February 2002.

[327] United States of America v. Roger Duronio, Indictment, United States District Court,
District of New Jersey, 2002.

[328] United States v. Lloyd, 269 F3d 228 (3rd Cir. 2001).

[329] United States v. Morris, 928 F.2d 504 (2nd Cir. 1991).

[330] United States of America v. Jeffrey Lee Parson, Plea agreement. United States District
Court, Western District of Washington at Seattle, Case 2:03-cr-00379-mjp, 2004.

[331] Ferry van het Groenewoud. Info wanted on spy-ware,
comp.sys.ibm.pc.hardware.networking (cross-posted), 5 November 1994.

[332] F. Veldman. Generic decryptors: Emulators of the future. IVPC Conference, 1998.

222 REFERENCES

[333] VGrep. How is the vgrep database created?, 2005.

[334] R. Vibert. A day in the life of an anti-virus lab. SecurityFocus, 2000.

[335] A. Vidstrom. Computer forensics and the ATA interface. Technical Report FOI-R-
1638-SE, Swedish Defense Research Agency, Command and Control Systems, 2005.

[336] Virgil. The Aeneid. 19 BCE. Translation by J. Dryden, R F. Collier & Son, 1909.

[337] T. Vogt. Simulating and optimising worm propagation algorithms. Security Focus, 29
September 2003.

[338] R. Vossen. Win95 source marketing, comp.programming, 16 October 1995.

[339] R Wagle and C. Cowan. StackGuard: Simple stack smash protection for GCC. In
Proceedings of the GCC Developers Summit, pages 243-255, 2003.

[340] J. Walker. The animal episode. Open letter to A. K. Dewdney, 1985.

[341] J. E. Walsh and E. H. A. Altberg. Method and apparatus for protecting data files on a
computer from virus infection. United States Patent #5,956,481, 21 September 1999.

[342] M. Weber, M. Schmid, M. Schatz, and D. Geyer. A toolkit the detecting and analyzing
malicious software. In 18th Annual Computer Security Applications Conference, 2002.

[343] J. Wells. A radical new approach to virus scanning. CyberSoft White Paper, 1999.

[344] J. White. Mobile agents white paper. General Magic, 1996.

[345] D. Whyte, E. Kranakis, and P. C. van Oorschot. DNS-based detection of scanning worms
in an enterprise network. In Proceedings of the 12th Annual Network and Distributed
System Security Symposium, 2005.

[346] B. Wiley. Curious Yellow: The first coordinated worm design.
http://blanu.net/curious-yellow.html.

[347] M. M. Williamson. Design, implementation and test of an email virus throttle. In 19th
Annual Computer Security Applications Conference, 2003.

[348] M. M. Williamson, A. Parry, and A. Byde. Virus throttling for instant messaging. In
Virus Bulletin Conference, pages 38-44, 2004.

[349] S. Wu and U. Manber. A fast algorithm for multi-pattern searching. Technical Report
94-17, University of Arizona, Department of Computer Science, 1994.

[350] R E. Yee. Internet VIRUS alert, comp.protocols.tcp-ip, 3 November 1988.

[351] T. Yetiser. Polymorphic viruses: Implementation, detection, and protection, 1993.

[352] A. Young and M. Yung. Cryptovirology: Extortion-based security threats and counter-
measures. In Proceedings of the 1996 IEEE Symposium on Security and Privacy, pages
129-140, 1996.

[353] zOmbie. Vmware has you, 13 June 2002.

[354] D. Zenkin. Fighting against the invisible enemy. Computers & Security, 20(4):316-321,
2001.

Index

absolute security, 2, 201
access-for-sale worm, 179-181
address space randomization, 132, 160, 202
Adleman, L., 14
adware, 17, 194
Aho-Corasick algorithm, 56-61, 64
Anderson, J. P., 13
Animal, 17
anti-anti-virus, 97-106
anti-debugging, 101-103, 105
anti-disassembly, 103-105
anti-emulation, 99-100, 102, 168
anti-stealth, 88
anti-virus

community, 191-197
marketing, 195-196
performance, 55, 65-69, 74, 76, 78-81,

99,195
researcher, 19,20, 192
scanning, 55-70, 79
testing, 64-65
virus, 97

appending virus, 30, 31, 69, 72, 83
armored virus, 101-105
Aipanet, 14
aiTay bounds check, 113, 131-132, 146
asymmetric encryption, see public-key encryp­

tion
asymmetric warfare, 183
Austria, 3
authentication, 13, 16, 17, 135, 145
author

ofmalware, 21, 189-192,201
of virus, 14, 19,21, 181-182, 189-191
of worm, 5, 149, 179-181

automated theorem proving, 46

backdoor, 13-14, 17, 179, 181
bacteria, see rabbit
basic input/output system, 29, 88

batch file, 30,71
behavior blocker, 71-74, 132
behavior monitor, see behavior blocker
benevolent malware, 177-178
Benford, G., 14
big-endian, 117
binary comparison, 133-134
binary virus, 47
BIOS, see basic input/output system
blacklist, 18
blackmail, 179
blended threat, 18
booster, 69-71, 75
boot sequence, 28-30
boot-sector infector, 28-30, 32, 70
bot, 19
botnet, 19, 149, 151, 191
breakpoint, 101, 103, 104
Brunner, J., 15
brute-force search, 46, 48, 132
buddy list, 153
buffer overflow, 113-122, 124, 130, 133, 143,

148, 151, 159, 160
bug, 1,2, 15,27,86,87,89, 100, 106, 113, 127,

129, 132, 135, 177

cache,66-67, 73-74, 78-79, 132, 161
canary, 129-131, 160
checksum, 48, 66-68, 70, 82-84, 101, 106
chosen-plaintext attack, 83
cleaning, see disinfection
code auditing, 128, 132
code inlining, 43-44
code outlining, 44
Cohen, R, 14
collateral damage, 147, 183
companion virus, 32-33, 70, 89, 106
compiler, 17, 41, 46, 47, 68, 69, 87, 90-91, 99,

104, 110, 111, 116, 130, 131, 134,
147

224 INDEX

compression, 32, 68, 87, 152
conspiracy theory, 192
constant propagation, 90
core dump, 147
Core War, 14
covert channel, 181
cracker, 22, 194
Creeper, 15
cryptovirology, 181-182
cybeiterrorism, 185

Darwin, 14
data diddler, 83
data mining, 70, 179
data reordering, 41, 131
database, 19, 20, 55, 67, 68, 70, 73, 79, 85-87,

89,98,106, 138, 160, 192-194
DDoS attack, see distributed denial-of-service

attack
dead code elimination, 90
debugging, 13, 162

see also anti-debugging
decompiler, 133, 196
decryptor loop, 35, 37, 38, 40-46, 69, 75, 100
deep packet inspection, 164, 165
Dellinger, J., 14
delta, 87
denial-of-service attack, 1-2, 18, 166, 174, 183,

184
see also distributed denial-of-service at­

tack
detection, 53-80

comparison of methods, 79-80
dynamic, 71-79
dynamic heuristic, 74
known viruses, 54
static, 55-71
static heuristic, 69-70, 80, 105
unknown viruses, 54
see also generic detection

dictionary attack, 146
disassembly, 46, 133, 134

see also anti-disassembly
disinfection, 37, 53, 54, 80-85, 163

known viruses, 54
unknown viruses, 54
see also generic disinfection

disinformation, 185
distributed denial-of-service attack, 18,149,172,

179,185
DNS, see domain name system
domain name, 48, 98, 150, 173
domain name system, 173
dormant virus, 15, 53
DoS attack, see denial-of-service attack
drive-by download, 17, 135
dropper, 18

dumpster diving, 135
dynamic memory allocation, 110, 120-122, 124,

131,132

ECCM, see electronic counter-countermeasure
ECM, see electronic countermeasure
Edwards, D. J., 13
EICAR test file, 65
electronic counter-countermeasure, 184
electronic countermeasure, 183-184
ELF file, 33
email worm, 21, 143, 153, 158, 168, 169
emulation, 74-79, 132, 160, 168

see also anti-emulation
encrypted virus, 35-38, 46, 47, 70, 76, 79, 81,

97,104
encrypted worm, 144, 166
encryption, see strong encryption
endianness, 117
endnote convention, 7
entry point, 30, 65-66, 69, 72, 77, 83, 88

library, 101
subroutine, 130, 131
see also entry point obfuscation

entry point obfuscation, 99
environment variable, 115-116
environmental key generation, 47, 104
EPO, see entry point obfuscation
error correction, 101
error detection, 101
espionage, 3, 185, 191
ethics, 178, 190
expert system, 70
exploit string, 114, 115, 117, 131
extortion, 12, 181-182, 191

fail-open system, 166
failure function, 56, 60
false negative, 54
false positive, 40, 54, 65,68,73, 80-82, 89,106,

170, 173, 194, 195
fast burner, 148
females, 189, 191
file infector, 30-33
filesystem, 29, 32, 37, 39, 67, 78, 160, 162, 182
finger, 145-146
finite automaton, 56, 60
firewall, 98, 163-165, 192, 196, 202

see also reverse firewall
fixed point scanning, 66
flash worm, 148
footnote convention, see endnote convention
forced quarantine virus, 184
Ford, R., 185
fork bomb, 16
format function, 125, 126, 128, 129, 133
format string vulnerability, 125-127, 131

defense, 128-129

INDEX 225

frame pointer, 112-114, 116, 117, 119, 129
frame pointer overwriting, 116-118
free list, 121, 122
frequency analysis, 81
full disclosure, 133

generic decryption, 74-75
generic detection, 4, 54, 82
generic disinfection, 54, 80, 83, 84
genetic algorithm, 46
germ, 15
Gerrold, D., 14
ghost positive, 54
goat file, 77-78, 83, 168
Google, 154
Gordon, S., 185
graffiti, 190, 191
graph isomorphism, 134
grappling hook, 147
gray area detection, 194-196
grunt scanning, 65, 67

hacker, 21-22, 190
halting problem, 76
hard drive password, 182
hash function, 40, 62, 104
hash table, 60-64
header

file, 30, 33, 39, 72, 83
packet, 163-164, 169

heap overflow, 119-120, 122, 124
defense, 131

HIDS, see intrusion detection system
histogram, 70, 76
hit-list scanning worm, 151-152, 169, 172
honeypot, 168-169, 173, 181, 192
host-based defense, 158, 169
Hruska,J., 189
Hupp, J. A., 144
hybrid malware, 17

ICMP, see Internet control message protocol
identity theft, 4, 6, 135, 179
IDS, see intrusion detection system
IM worm, see instant messaging worm
immune system, 71-72
immunization, 177-178
impersonation, 135, 179
infection, 14, 143
infection mechanism, 27, 34
infection vector, 27, 47, 154, 196
infestation, see infection
information embargo, 182
information warfare, 182-185, 191
inoculation, 40
input terminator, 115, 130
insider threat, 87

instant messaging worm, 143, 153
instruction fetching, 43, 77, 102
instruction reordering, 41
instruction scheduling, 41
instruction sequence equivalence, 40, 46
integer overflow, 123-124
integer sign en-or, 124
integer truncation error, 124
integrity checker, 66, 70-71, 80, 83, 160, 169

attack, 106
integrity shell, 71
intended virus, 15, 53
Internet control message protocol, 164
Internet protocol address, 150, 151, 153, 154,

164, 169, 173
Internet relay chat, 19, 47
Internet worm, 15, 18, 114, 145-147, 153

stealth, 147
interpreted code, 11, 33, 42-44, 88-90, 163
interrupt handler, 37, 77, 101-104
interrupt vector, 37, 69
intrusion detection system, 56, 164-167
intrusion prevention system, see intrusion detec­

tion system
IP address, see Internet protocol address
IPS, see intrusion detection system
IRC, see Internet relay chat
ItW, see Wild, In the

jamming, 183
JIT compilation, see run-time code generation
junk code, 42, 47, 69, 99
just-in-time compilation, see run-time code gen­

eration

keylogger, 16

legal considerations, 8, 18, 75, 167, 178, 183,
195,196

see also liability, negligence
liability, 4
little-endian, 117, 127
load balancing, 172
locality of reference, 161, 171
localized scanning worm, 151
logic bomb, 12-13,27, 184

macro virus, 33-34, 41, 46
detection, 89-90
disinfection, 89-90

mail transport agent, 145, 172
mail user agent, 145, 169
malicious software, see malware
malware, 2

analysis, 7, 19, 20, 48, 97, 101, 103, 104,
192-194

collection, 4
cost, 3-4

226 INDEX

distributor, 21
instance, 11
naming, 19-21
sample, 4, 168, 192-194
taxonomy, 11
type, 11-20

man-in-the-middle attack, 87
memory allocator attack, 120-122
memory layout, 110
memory protection, 110,118,129,131, 161-163
memory scanning, 161-163
metamoiphism, 46-47,74, 76, 82,103,144,166
Miller, B. P., 125
miss, see false negative
mobile agent, 178
monoculture, 202
moral development, 189
Morris worm, see Internet worm
Morris, R., Jr., 15
motivation, 190-191
multipartite virus, 27
mutation engine, 40, 46, 48

negative heuristic, see stopper
negligence, 3, 197
neural network, 70
NIDS, see intrusion detection system
NOP sled, 114, 115, 165
NTFS alternate data stream, 39

obfuscation, 35, 40, 46, 72, 80, 103
oligomorphism, 38, 144
on-access scanning, 55, 68
on-demand scanning, 55
open proxy, 178
operating system scheduler, 98
organized crime, 179
overwriting virus, 31-32, 82

packet
filtering, 163-165, 169, 173
fragmented, 165
out of order, 165
reassembly, 165-166

padding, 32, 39, 116, 120
parasite, 11, 12, 89
passive scanning worm, 153-154, 168, 172
patching, 133,134,151,158-160,163,177,179,

196,202
patent, 8
payload, 12, 27, 83, 147, 153, 166, 181
PC-relative address, 115
peer-to-peer network, 153
perimeter defense, 163
permutation scanning worm, 153
phishing, 135
polymorphism, 38-48, 75, 76, 80, 91, 103, 144,

166, 190

population growth, 11
predator worm, 177-178
prepending virus, 30, 31, 83
program counter, 14,43,78, 102, 105
propagation

curve, 5, 6, 148, 149, 152, 153
speed, 5-6, 15, 19, 148-149, 172
see also self-replication

public-key encryption, 181-182

quarantine, 82

rabbit, 16, 178
random scanning worm, 151, 153, 168, 172
RAT, see remote administration tool
rate limiting, see throttling
Reaper, 15
register renaming, 41
remote access Trojan, see remote administration

tool
remote administration tool, 13, 194
retrovirus, 97-98
return-to-libc attack, see return-to-library attack
return-to-library attack, 118-119, 129
reverse engineering, 46, 133, 196
reverse firewall, 169-170
reverse stealth virus, 37
rexec, 146
risk management, 3
rootkit, 38, 82
rsh, 146
run-time code generation, 42, 91, 104, 129

saturation point, 5, 153
scan string, see signature
scanning

anti-virus, see anti-virus scanning
worm, 151-154

Schmehl,R, 71
secure software, 6, 7, 202
security through obscurity, 133, 202
seeding, 149
segment, 110, 119, 129, 163

worm, 144
self-detection, 28, 38-40
self-modifying code, 69, 77, 102, 104
self-replication, 7, 11, 14-18, 32, 77-78, 99,

143, 185, 192
semi-polymorphism, see oligomorphism
sendmail, 145
session key, 67, 68
shell, 30,32, 113, 115, 145-147
shellscript, 30, 71
shellcode, 113-115, 118, 122, 127
Shoch,J. R, 144
shoulder surfing, 135

INDEX 227

signature, 55, 56, 60, 65, 68-70, 75, 81, 85, 87,
89

dynamic, 72-74
worm, 165

single-stepping, 75, 101-105
Skrenta, R., 14
sniffing network traffic, 153
social engineering, 6, 134-137, 143, 160, 170
social network, 153, 179
Spafford, E. H., 53
spaghetti code, 41-42
spam, 1, 2, 18, 138, 149, 178-179, 191, 196
special-purpose code, 82, 88, 90
spectral analysis, 70
spy ware, 16-17, 195
stack frame, 111-113, 117, 129-131
stack pointer, 78, 79, 112
stack smashing, 114-116, 118, 126, 146

defense, 129-131
start address, see entry point
stealth virus, 37-38, 82, 84, 106, 190

see also anti-stealth
stopper, 69-71, 75, 76, 78
strain, see variant
strong encryption, 35-37, 40, 47-48, 104, 179,

181-182, 184
subroutine interleaving, 45-46
superoptimization, 46
surreptitious worm, 149, 151, 153, 170
symmetric encryption, 181, 182

tarpit, 168
TCP, see transmission control protocol
terrorism, 185, 191
Thompson, K., 17
thread (of execution), 43, 105, 163
threaded code, 44
threats

known vs. unknown, 4
number of, 4, 192, 195

throttling, 170-173
credit-based, 172

time-to-live counter attack, 166
timestamp, 37, 39, 66
top and tail scanning, 65
topological scanning worm, 153, 172
traffic normalization, 166
transmission control protocol, 148-149, 164,

171
trie, 57
trigger, 12,27,78
Trojan horse, 12-13, 16-18, 32
TTL counter attack, see time-to-live counter at­

tack
tunneling virus, 105-106

UDP, see user datagram protocol
undecidability, 53, 201
updating, see patching
user datagram protocol, 148-149, 164, 171
user education, 136, 138, 158,202

variable renaming, 41
variant, 21,54, 68, 79
Veldman algorithm, 60-61
verification, 68, 81-82, 85, 194

predator worm, 178
VGrep, 19
virtual memory, 161, 162, 171
virus, 14-15,27-48, 143-145

description language, 87-88
detection, see detection
disinfection, see disinfection
exchange site, 192
hoax, 136-138
identification, 53, 54, 75, 79-81
inserted into file, 32
kit, 48
plural form of, 14
pseudocode, 27
verification, see verification

vX site, see virus exchange site

Walker,!., 17
Warhol worm, 148
Warhol, A., 148
whitelist, 174
Wild, In the, 195
wild, in the, 195
wildcard, 55,60,61,63
WildList, 195
WildList Organization, 195
Windows Registry, 33, 40, 98
wireless network, 149
working set, 161, 162, 171, 172
worm, 15-16, 143-154

instance, 143
pseudocode, 143

writer (malware, virus, worm), see author
Wu-Manber algorithm, 61-64

X-raying, 81
Xerox PARC, 15, 144-145

Yee, RE., 145
Yetiser, T., 46

zero-day exploit, 134
zombie, 18-19, 149, 179, 196
zoo, in the, 195

