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Abstract 
 

 Current rootkit detection engines either use 

methods like "cross view", or analyze specific data 

and code areas. However, rootkits are getting more 

and more complex. No more are inline patches 

limited to the first bytes of a function: we can now 

find them anywhere in the execution flow. Instead of 

a simple jump/call to the malicious code, complex 

control transfer trampolines are now commonplace - 

and they can only be detected with a dynamic 

analyzer. 

 

We present a novel rootkit detection technique called 

"kernel code tunneling". The technique uses a 

custom-made dynamic instrumentation framework to 

analyze execution flow. While similar dynamic 

instrumentation engines do exist, our engine offers 

significant advantages. First, it was designed for 

kernel mode operation. Second, it was designed to 

correctly handle potentially offensive code. 

 

In this paper, we will present the design of a kernel-

based dynamic instrumentation engine, we will 

analyze various tunneling sessions, with and without 

active rootkits and we will look at specific cases 

when instrumentation has provided us with enough 

data to effectively clean the infected system. 

 

 

Introduction 
 

Fifteen years ago, the average malware 

writer was an adolescent male, wanting to be noticed 

by his peers. Things have dramatically changed in the 

past years. No more are cyber criminals motivated by 

goals such as fame, fun or revenge: they now seek 

financial profit and want to stay away from the public 

eye. In order to achieve financial profit, they need 

their “creations” to stay undetected for as long as 

possible. 

As the name suggests, a targeted attack is a 

cyber attack directed at specific individuals or 

organizations. Specifically crafted malware, only 

distributed to a handful of computers, may be 

extremely difficult to show up on the radar of 

security companies, especially with the current flood 

of malicious software (exempli gratia, over twenty 

million malware strains appeared in 2010 alone, a 

daily average of 55,000 new threats [1]) - almost like 

spotting a needle in a haystack. While offline (also 

known as server-side) polymorphism is notoriously 

more difficult to detect than classic polymorphism, 

and anti-anti-virus tricks definitely complicate 

detection, the ultimate tool to achieve stealth (and 

thus, stay undetected) is the rootkit. 

Rootkits are sophisticated tools that allow 

pieces of malware to stay hidden, once they are 

installed on a system. In 2008, more than half of the 

biggest spam botnets used kernel rootkits, with 

numbers continuing to grow in 2009 and 2010 [2]. 

Also, more advanced techniques began to be utilized, 

further complicating detection and removal. 

 

 

Classic detection methods 
 

Rootkits achieve “stealth” by subverting 

operating system functionality, typically by 

modifying key data structures and/or operating 

system code. Thus, careful investigation of these 

areas is an obvious first approach. In kernel mode, 

rootkits may modify data structures such as the 

Interrupt Descriptor Table (IDT) or the System 

Service Dispatch Table (SSDT), among others. 

Processor model specific register 
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SYSENTER_EIP_MSR contains the address of the 

code running at privilege level 0 responsible for 

servicing system calls. Normally, all vectors in the 

IDT/SSDT and the SYSENTER_EIP_MSR point to 

addresses from within NTOSKRNL, the Windows 

Kernel, therefore a trivially tampered data structure is 

detectable with a simple bounds check. 

Instead of modifying these data structures, 

rootkits may alter the kernel code itself, typically by 

detouring normal execution through the malware’s 

own code.  Since the detour itself is usually 

performed by inserting a simple branch instruction to 

the malicious handler (a technique known as inline 

patching), common detection routines also perform 

basic tests, such as checking whether the destination 

of a branch instruction resides outside the bounds of 

the currently analyzed module. 

However, advancements in rootkit 

technology greatly complicate detection: both the 

Rustock.C (Fig. 1) and TDL3 (Fig. 2) rootkits give 

control to their respective malicious routines via code 

trampolines that reside in “legal” areas. Finding the 

real destination of these trampolines may be 

achievable with a static analyzer, but considering that 

the trampolines may be changed from version to 

version - not to mention polymorphic trampolines - a 

dynamic analyzer will give the best results in the 

general case. It is also worth mentioning that inline 

patches are no longer limited to the first bytes of a 

function, as they can be found anywhere in the 

execution flow. 

 
push cs 
nop 
sub esp, 4 
mov dword ptr [esp], _address 
retf 
 

 

Fig. 1, Rootkit.Rustock.C trampoline 

 

 

 

Fig. 2 Rootkit.TDL3 trampoline 

 

Cross-view is a widely used rootkit detection 

technique that involves comparing a “high level” 

view of an operating system resource with a “low 

level” view. Since rootkits are used to hide operating 

system resources such as files, a rootkit detection tool 

may compare the result of a high-level function like 

FindNextFileA with the result of a lower-level 

function like NtQueryDirectoryFile, or even the 

results of a raw file system and disk parser. For 

processes, a rootkit detection tool may use the high-

level function CreateToolhelp32Snapshot, the 

lower-level function NtQuerySystemInformation or 

the results of a low-level parser of EPROCESS 

kernel structures, a circular, doubly-linked list that 

can be referenced via the PsActiveProcessHead 

kernel variable or via the exported function 

PsGetCurrentProcess. A low-level view of the 

process list may also be achieved by inspecting the 

PspCidTable data structure, or even using other 

techniques such as process identifier brute-forcing. 

Cross-view’s inherent need of going 

“deeper” can be seen as some form of Achilles’ heel, 

as most rootkits also find much deeper hiding places. 

For example, TDL3 infects the lowest-level disk 

miniport driver, greatly complicating the task of 

obtaining a “real” view of the disk; moreover, the 

same TDL3 does not need a process of its own, as it 

injects its ring-3 code into svchost.exe, and keeps all 

its files inside a custom file system.  

A rootkit detection tool may also check the 

integrity of loaded code (for example, by checking 

whether the loaded code perfectly matches the code 

on disk, after applying relocation information), but as 

we will see later in the paper it is perfectly possible to 

alter the normal code flow without altering a single 

byte of the original code. 

 

 

 

Dynamic binary instrumentation 
 

Dynamic binary instrumentation is widely 

used to measure a product’s performance, to diagnose 

errors or simply to analyze a program’s behavior. 

From a security point of view, it has been used in the 

context of ABI enforcement, a technique known as 

“program shepherding” [3]. 

 
mov eax, dword ptr [FFDF0308] 
jmp dword ptr [eax+FC] 
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From a technical point of view, our dynamic binary 

instrumentation framework consists of: 

1) A code generation engine, generally 

responsible of adding instrumentation code to the 

original code; however, even if most instructions are 

copied on a 1:1 basis, there are some notable 

exceptions: 

a) Possibly offensive instructions are either 

replaced, or preceded by special instrumentation 

code 

b) Branch instructions are replaced with a set of 

specific routines, responsible of returning control 

back to the instrumentation engine. Fig. 3 shows 

a basic block starting at linear address 4017F7 

and ending with the branch instruction at 4017FF 

(thus, the block itself ends at 401805). Should 

the branch condition be met, the processor will 

jump to the “branch taken” address, which is 

401FE5; else, it will “fall through” to address 

401805. Fig. 4 shows the translated basic block; 

first, we see that except for the branch 

instruction, all other instructions were copied on 

a 1:1 basis. It is also worth mentioning that in 

this case it was possible to compute both the 

“Branch Taken” and “Fall Through” addresses at 

translation time, therefore we simply need to 

return control back to the instrumentation engine, 

specifying the updated Instruction Pointer.  

 

 

 
.4017F7 43                 inc ebx 
.4017F8 83 7D CC 00        cmp byte ptr [ebp-34], 00 
.4017FC 89 5D B8           mov dword ptr [ebp-48], ebx 
.4017FF 0F 8C E0 07 00 00  jl 401FE5 
.401805  

 

 

Fig. 3, A normal basic block 

 

 
.3370000 43                 inc ebx 
.3370001 83 7D CC 00        cmp byte ptr [ebp-34], 00 
.3370005 89 5D B8           mov dword ptr [ebp-48], ebx 
.3370008 0F 8C ?? ?? ?? ??  jl __branch_taken 
__fall_through: 
                            JUMP_TO_VM (401805) 
__branch_taken: 
                            JUMP_TO_VM (401FE5) 

 

 

Fig. 4, A translated basic block 

 

It is extremely important not to affect execution in 

any way. The “JUMP_TO_VM” macro should not 

pollute the stack in any way, should not modify any 

of the CPU registers or a memory area outside of its 

own data structures. Therefore, the engine keeps a 

per-thread data structure called a “shadow stack”, 

used to spill registers that can be modified by the 

code generation engine. An example basic block can 

be seen in Fig. 5. 

 

 
.3370000 43                 inc ebx 
.3370001 83 7D CC 00        cmp byte ptr [ebp-34], 00 
.3370005 89 5D B8           mov dword ptr [ebp-48], ebx 
.3370008 0F 8C ?? ?? ?? ??  jl __branch_taken 
__fall_through: 
 



4 

 

 
         xchg esp, dword ptr [__shadow_stack] 
         pushf 
         pushad 
         JUMP_TO_VM (401805) 
         popad 
         popfd  
         xchg esp, dword ptr [__shadow_stack] 
         jmp dword ptr [__shadow_eip] 
 __branch_taken: 
         […] 

 

 

Fig. 5, A translated basic block, no stack pollution, no register alteration 

 

 

2) A basic block manager, responsible of 

keeping a list of already translated basic blocks (also 

known as a “basic block cache”) for quick retrieval. 

Keeping a basic block cache greatly increases 

execution speed, as translation time is quickly 

amortized when we encounter loops.  

3) A self-modifying code manager is 

mandatory, considering that we may be dealing with 

offensive code. Not handling self-modifying code can 

have disastrous consequences: if a program modifies 

a basic block that has already been executed 

(therefore, it is present on our basic block cache) we 

might execute the old, stored code, instead of 

executing the modified one. In user mode, our engine 

handles self modifying code by making sure that 

every basic block resides in write-protected memory - 

if not, we change the memory attributes ourselves - 

and analyzing possible “Access Violation” 

exceptions. If a write would indeed modify one of 

our translated basic blocks, we’d just delete it from 

our basic block cache and temporarily remove the 

write protection to allow the write operation. An 

interesting particular case arises when an instruction 

modifies its own basic block – in that case, we have 

to re-translate the basic block and resume execution 

accordingly. 

4) An asynchronous task handler is an 

extremely important component of our framework. A 

well-known anti-debugging trick is to transfer control 

by generating an exception. Our engine handles this 

situation by hooking the 

KiUserExceptionDispatcher function and by 

inspecting its parameters. The first parameter is an 

EXCEPTION_RECORD structure, which contains 

valuable information such as the exception code and 

the exception address. If an exception occurs inside 

our translated code, we need to update the 

ExceptionAddress member with the correct value 

(thus, we need to keep a mapping between the real 

code and the translated code). The second parameter 

is a CONTEXT structure, which contains the CPU 

registers from when the exception occurred. Just like 

with the exception address, we need to update the 

Eip member with the correct value. 

 

We also need to correctly handle APCs 

(Asynchronous Procedure Calls) and user mode 

callbacks sent by win32k.sys; our engine handles 

these events by hooking KiUserApcDispatcher and 

KeUserModeCallback, respectively. 

 

While testing the engine, we have observed a series 

of speed optimizations: 

 

1) In most cases, we were able to directly 

link translated basic blocks; this 

happens when we’re able to compute a 

block’s successors at translation time 

(Fig. 6). Initially, the 

“cache_fall_through” and 

“cache_branch_taken” variables point 

to a subroutine that finds the 

successor(s). All subsequent executions 

of the basic block will use the cached 

addresses. 

2) For basic blocks with successors that 

cannot be computed statically (Fig. 7A), 

we first attempt to find a match within 
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the last 4 successors (Fig. 7B). We also 

notice that since the lea/jecxz pair does 

not alter CPU flags, there’s no need for 

the expensive pushfd/popfd pair. 

 

 
.3370000 43                 inc ebx 
.3370001 83 7D CC 00        cmp byte ptr [ebp-34], 00 
.3370005 89 5D B8           mov dword ptr [ebp-48], ebx 
.3370008 0F 8C ?? ?? ?? ??  jl __branch_taken 
__fall_through: 

          jmp dword ptr [_BB.cache_fall_through] 
 __branch_taken: 
          jmp dword ptr [_BB.cache_branch_taken] 

 

 

Fig. 6, A translated basic block, successors are directly linked.  

 

 
 .405B17 FF 24 95 20 5B 40 00  jmp dword ptr [405B20+edx*4] 

 

 

Fig. 7A, An indirect control transfer instruction.  

 

 
            SPILL_EAX 

SPILL_ECX 
mov eax, dword ptr [405B20+edx*4] 
lea ecx, dword ptr [eax - _real_address_1] 
jecxz _1 
[…] 
// no match, so JUMP_TO_VM (eax) 
_1: 
RESTORE_EAX 
RESTORE_ECX 
jmp _translated_address_1 
[…] 

 

 

  Fig. 7B, Handling indirect control transfer  

 

Normally, we don’t need to add instrumentation code 

to every basic block. For the purpose of rootkit 

detection we only need to keep the list of executed 

basic blocks, the list of possibly offensive 

instructions discovered during translation, and other 

flags, such as the presence of “garbage”, do-nothing 

instructions. Most of these operations can be 

performed only once, at translation time. Thus, our 

instrumentation engine is able to reach speeds that 

are comparable to native execution (average 

slowdown of only 25%). 

 

Dynamic binary instrumentation in 

kernel mode 
 

Porting our dynamic binary instrumentation engine to 

kernel mode proved to be a tedious task. First of all, 

we needed to be able to analyze code running not 

only at PASSIVE_LEVEL, but also at APC or DPC 

levels. We wanted to control each and every aspect of 

the code generation engine, therefore: 

a) We’ve developed a custom memory 

manager. Our engine’s memory 

requirements and access patterns were very 
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simple: we needed to store the basic block 

structures, the basic block cache and 

instrumentation information. Since most of 

these structures needed to be accessible by 

code running at any IRQL, our memory 

manager allocates during initialization a 

chunk of memory from the non-paged pool 

and partitions it as needed.  

b) We’ve removed any kind of concurrent 

access control from the instrumentation 

engine. In user mode, our engine may 

concurrently analyze any number of threads. 

The situation in kernel mode is much more 

complex, as it would be theoretically 

possible for a thread to have to wait before 

being granted access to a shared resource 

(the basic block cache, for example). If we 

want to instrument more than one thread, we 

can create a new instance of the engine.  

c) Detecting (and modifying) exceptions can 

theoretically be implemented by hooking 

various vectors from the IDT. In its current 

implementation, our engine does not 

monitor exceptions. It is possible for a 

rootkit to use hardware “read” breakpoints 

on its own code, and therefore detect that its 

code is being read. We are considering 

several tactics to circumvent this behavior. 

d) Self modifying code is extremely difficult to 

detect in kernel mode; theoretically, we can 

use the same approach used in user mode, 

but practically it is almost impossible to 

detect all variations (a rootkit may directly 

modify page attributes, etc). Our current 

kernel mode implementation does not use 

the “direct basic block linking” 

optimization, so every transfer goes through 

the engine, which is responsible of 

verifying, via a set of checksums, that no 

modifications have occurred. However, if a 

basic block modifies itself (assuming the 

block is large enough and the modification 

occurs beyond the pre-fetch queue) our 

engine will execute the old, unmodified, 

code. Several strategies are being considered 

to prevent this behavior. 

 

 

Analysis – reading the MBR 
 

The device drivers involved in managing a 

particular storage device are collectively known as a 

storage stack [4]. If an application attempts an 

operation on a storage device, the request will first be 

received by the I/O Manager; the I/O Manager will, 

in turn, send the request to the File System; the File 

System will translate file addresses to volume 

addresses, and will forward the request to the Volume 

Manager. 

Windows supports basic volumes (on a 

single partition) and dynamic volumes (can span 

across multiple partitions).  Thus, the Volume 

Manager will forward the initial I/O request to the 

Partition Manager. 

The lower-level drivers are the “Class 

drivers” - used to manage a particular device type, 

such as disks, or tapes, “Port drivers” that manage a 

specific transport (Storport for SCSI and RAID, 

Atapi for IDE-based devices), and “Miniport 

drivers”, which are vendor supplied and manage 

hardware-specific details [4]. 

Appendix 1 shows an basic instrumentation 

session – we use a handle to \\.\PHYSICALDRIVE0, 

and we try to read, using ZwReadFile, its first sector. 

We see how the instrumentation engine analyzes -

basic block by basic block - the entire code path. 

We start in our own driver (KLup.sys) and 

we see how the engine arrives at ZwReadFile, down 

through the I/O subsystem, until we reach 

PartMgr.sys, which in turn calls ClassPNP.sys and 

Disk.sys. Our test system has an IDE hard disk, so 

the execution flows down to Ataport.sys, Atapi.sys 

and IntelIDE.sys (our miniport driver), and back up, 

to ClassPNP, PartMgr and finally, to KLup.sys, 

where instrumentation ends. 

Once the instrumentation has ended, we can 

start an analysis session, using all the data that we’ve 

gathered: effective addresses of every block of code, 

their contents and various translation-related statistics 

(particularly “garbage” code that does not seem to be 

generated by a compiler). We see that each and every 

address is valid (i.e. it belongs to one of the code 

sections of a legally loaded module) and the code 

matches 1:1 the code on disk, so we assume that this 

particular code flow hasn’t been altered. 
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Appendix 2 shows the same basic 

instrumentation task: we use a previously opened 

handle to \\.\PHYSICALDRIVE0 and we try to read 

its first sector, again using ZwReadFile. The 

difference is that we run the engine on a machine 

infected with the TDL3 rootkit. 

We again start in our own driver, KLup.sys, 

and we reach ZwReadFile and PartMgr.sys, which in 

turn calls ClassPNP.sys and Disk.sys. This particular 

system (a VMWare machine) has a simulated SCSI 

hard disk, therefore we should execute code from 

Storport.sys. However, we see that from 

ClassPNP.sys execution jumps to the resource 

section of “lsi_scsi.sys”, where there’s a code 

trampoline (Fig. 2) to an unclaimed memory zone – 

surely, it’s where the rootkit resides. Our 

instrumentation engine continues and eventually 

reaches Storport.sys, then the real code of 

lsi_scsi.sys, then back to KLup, normally passing 

through ClassPNP and disk.sys.  

In this analysis session we’ve noticed the 

following abnormalities: 

 

- A code trampoline outside of the code sections of 

lsi_scsi.sys 

- A mismatch between the memory and disk 

images of lsi_scsi.sys (interestingly, NOT the 

code section!) 

- Execution of “orphaned” code – code that does 

not belong to a legally loaded module 

 

 

 

Fig. 8 shows a greatly simplified hook routine; we 

notice that it first checks the input parameters and 

alters them as needed. If necessary, it gives control to 

the original handler and alters the original results. 

 

 

 

 

 
Handler () 
{ 
 Check / Alter Input () 
 Call Original Handler (); 
 Check / Alter Results (); 
} 
 

 

Fig. 8, Simplified rootkit handler 

 

 

System disinfection 
 

 Obviously, the best method to clean a 

rootkit-infected machine is by booting the system 

from a clean disk. If a rootkit is already present in 

memory it may interfere with the disinfection itself. 

However, our engine offers interesting “live” system 

disinfection capabilities. 

 Fig. 9A shows a basic block belonging to 

TDL3’s hooking routine. We could simply patch the 

conditional branch instruction, and transform it into 

an unconditional branch (Fig. 9B) – however, even if 

the solution is very effective, it’s not very elegant. 

Furthermore, the piece of malware could check its 

own integrity, via checksums or other means. 

 An elegant solution is to keep “pairs” or 

basic blocks: original and disarmed. We currently 

have a hardcoded list or “pairs”, but we are planning 

to create signature files. Our code generation engine 

follows a simple rule: if a basic block is matched 

exactly to an original block, then translate it as if it 

was the disarmed one. This way, we effectively 

execute the clean code path without altering a single 

bit of existing code, obtaining the desired results (e.g. 

read/write the real disk sectors, etc). This technique is 

extremely useful in detection and identification – as 

we execute the clean code path we have access to the 

full range of existing detection technologies. 

 
.822E3B46 8B 44 24 20        mov     eax, [esp+20h] 
.822E3B4A 8B 78 60           mov     edi, [eax+60h] 
.822E3B4D 80 3F 0F           cmp     byte ptr [edi], 0Fh 
.822E3B50 0F 85 95 01 00 00  jnz     __Original_Handler 
 

 

Fig. 9A, Basic block belonging to TDL3’s hook (original) 
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.822E3B46 8B 44 24 20        mov     eax, [esp+20h] 
.822E3B4A 8B 78 60           mov     edi, [eax+60h] 
.822E3B4D 80 3F 0F           cmp     byte ptr [edi], 0Fh 
.822E3B50 90                 nop 
.822E3B51 E9 95 01 00 00     jmp     __Original_Handler 

 

 

Fig. 9B, Basic block belonging to TDL3’s hook (disarmed) 

 

 

Conclusions and future work 
 

Kernel code instrumentation is a very 

powerful rootkit detection technology. We’ve shown 

how instrumenting a simple ZwReadFile call can 

help us analyze the entire storage stack, from the file 

system to the volume and partition managers, to the 

class, port and miniport drivers, and back up the 

chain. A call to ZwCreateFile helps us analyze all 

the file system filter drivers and the file system driver 

itself and it’s an invaluable tool in detecting rootkits 

that hide files or folders. We suggest that analyzing 

less than a dozen of API calls, in particular those 

related to the file system, the registry, process and 

thread management, one could detect the majority of 

kernel rootkits. We’ve shown that the extreme level 

of control offered by dynamic binary instrumentation 

can help augmenting detection, but also the more 

elegant implementation of disinfection routines. 

A particular class of kernel rootkits cannot 

be detected by our engine and has to be identified 

using other technologies. DKOM (Direct Kernel 

Object Manipulation) does not modify the code, or 

the code flow in any way, since it only alters kernel 

data structures, such as the EPROCESS list. 

Another type of rootkit, called “Shadow 

Walker” [5], works by desynchronizing the CPU 

Data Translation Look-aside Buffers (DTLBs) from 

the Instruction Look-aside Buffers (ITLBs). Since the 

ITLBs contain the virtual to physical translations for 

code and the DTLBs contain the virtual to physical 

translation for data, desynchronizing the two means 

that it’s possible for virtual address X to contain 

malicious code when executed and clean code when 

read. This is possible because virtual address X can 

point to a specific physical page when it’s executed 

(according to the ITLB) and to a completely different 

physical page when it’s read (according to the 

DTLB). Interestingly, in this case, dynamic binary 

instrumentation will execute the clean code, as read 

by the code generator, which may be enough to 

detect the rootkit. 

 Our current implementation only performs 

instrumentation on 32-bit code. Recently (summer of 

2010) TDL3 (now TDL4) was updated to include a 

64-bit component, and we expect others to follow 

suit, so we are currently developing a 64-bit version. 

We are also working on analyzing network 

calls via Windows Sockets Kernel (WSK). This 

technique will allow our engine to detect most traffic-

filtering kernel malware. 

 

 

Appendix 1 
 -attached as appendix_1.txt 

 

 

Appendix 2 
 -attached as appendix_2.txt 
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