
1

Rootkit Detection via Kernel Code Tunneling
Mihai Chiriac

mihai.chiriac@gmail.com

Abstract

 Current rootkit detection engines either use

methods like "cross view", or analyze specific data

and code areas. However, rootkits are getting more

and more complex. No more are inline patches

limited to the first bytes of a function: we can now

find them anywhere in the execution flow. Instead of

a simple jump/call to the malicious code, complex

control transfer trampolines are now commonplace -

and they can only be detected with a dynamic

analyzer.

We present a novel rootkit detection technique called

"kernel code tunneling". The technique uses a

custom-made dynamic instrumentation framework to

analyze execution flow. While similar dynamic

instrumentation engines do exist, our engine offers

significant advantages. First, it was designed for

kernel mode operation. Second, it was designed to

correctly handle potentially offensive code.

In this paper, we will present the design of a kernel-

based dynamic instrumentation engine, we will

analyze various tunneling sessions, with and without

active rootkits and we will look at specific cases

when instrumentation has provided us with enough

data to effectively clean the infected system.

Introduction

Fifteen years ago, the average malware

writer was an adolescent male, wanting to be noticed

by his peers. Things have dramatically changed in the

past years. No more are cyber criminals motivated by

goals such as fame, fun or revenge: they now seek

financial profit and want to stay away from the public

eye. In order to achieve financial profit, they need

their “creations” to stay undetected for as long as

possible.

As the name suggests, a targeted attack is a

cyber attack directed at specific individuals or

organizations. Specifically crafted malware, only

distributed to a handful of computers, may be

extremely difficult to show up on the radar of

security companies, especially with the current flood

of malicious software (exempli gratia, over twenty

million malware strains appeared in 2010 alone, a

daily average of 55,000 new threats [1]) - almost like

spotting a needle in a haystack. While offline (also

known as server-side) polymorphism is notoriously

more difficult to detect than classic polymorphism,

and anti-anti-virus tricks definitely complicate

detection, the ultimate tool to achieve stealth (and

thus, stay undetected) is the rootkit.

Rootkits are sophisticated tools that allow

pieces of malware to stay hidden, once they are

installed on a system. In 2008, more than half of the

biggest spam botnets used kernel rootkits, with

numbers continuing to grow in 2009 and 2010 [2].

Also, more advanced techniques began to be utilized,

further complicating detection and removal.

Classic detection methods

Rootkits achieve “stealth” by subverting

operating system functionality, typically by

modifying key data structures and/or operating

system code. Thus, careful investigation of these

areas is an obvious first approach. In kernel mode,

rootkits may modify data structures such as the

Interrupt Descriptor Table (IDT) or the System

Service Dispatch Table (SSDT), among others.

Processor model specific register

2

SYSENTER_EIP_MSR contains the address of the

code running at privilege level 0 responsible for

servicing system calls. Normally, all vectors in the

IDT/SSDT and the SYSENTER_EIP_MSR point to

addresses from within NTOSKRNL, the Windows

Kernel, therefore a trivially tampered data structure is

detectable with a simple bounds check.

Instead of modifying these data structures,

rootkits may alter the kernel code itself, typically by

detouring normal execution through the malware’s

own code. Since the detour itself is usually

performed by inserting a simple branch instruction to

the malicious handler (a technique known as inline

patching), common detection routines also perform

basic tests, such as checking whether the destination

of a branch instruction resides outside the bounds of

the currently analyzed module.

However, advancements in rootkit

technology greatly complicate detection: both the

Rustock.C (Fig. 1) and TDL3 (Fig. 2) rootkits give

control to their respective malicious routines via code

trampolines that reside in “legal” areas. Finding the

real destination of these trampolines may be

achievable with a static analyzer, but considering that

the trampolines may be changed from version to

version - not to mention polymorphic trampolines - a

dynamic analyzer will give the best results in the

general case. It is also worth mentioning that inline

patches are no longer limited to the first bytes of a

function, as they can be found anywhere in the

execution flow.

push cs
nop
sub esp, 4
mov dword ptr [esp], _address
retf

Fig. 1, Rootkit.Rustock.C trampoline

Fig. 2 Rootkit.TDL3 trampoline

Cross-view is a widely used rootkit detection

technique that involves comparing a “high level”

view of an operating system resource with a “low

level” view. Since rootkits are used to hide operating

system resources such as files, a rootkit detection tool

may compare the result of a high-level function like

FindNextFileA with the result of a lower-level

function like NtQueryDirectoryFile, or even the

results of a raw file system and disk parser. For

processes, a rootkit detection tool may use the high-

level function CreateToolhelp32Snapshot, the

lower-level function NtQuerySystemInformation or

the results of a low-level parser of EPROCESS

kernel structures, a circular, doubly-linked list that

can be referenced via the PsActiveProcessHead

kernel variable or via the exported function

PsGetCurrentProcess. A low-level view of the

process list may also be achieved by inspecting the

PspCidTable data structure, or even using other

techniques such as process identifier brute-forcing.

Cross-view’s inherent need of going

“deeper” can be seen as some form of Achilles’ heel,

as most rootkits also find much deeper hiding places.

For example, TDL3 infects the lowest-level disk

miniport driver, greatly complicating the task of

obtaining a “real” view of the disk; moreover, the

same TDL3 does not need a process of its own, as it

injects its ring-3 code into svchost.exe, and keeps all

its files inside a custom file system.

A rootkit detection tool may also check the

integrity of loaded code (for example, by checking

whether the loaded code perfectly matches the code

on disk, after applying relocation information), but as

we will see later in the paper it is perfectly possible to

alter the normal code flow without altering a single

byte of the original code.

Dynamic binary instrumentation

Dynamic binary instrumentation is widely

used to measure a product’s performance, to diagnose

errors or simply to analyze a program’s behavior.

From a security point of view, it has been used in the

context of ABI enforcement, a technique known as

“program shepherding” [3].

mov eax, dword ptr [FFDF0308]
jmp dword ptr [eax+FC]

3

From a technical point of view, our dynamic binary

instrumentation framework consists of:

1) A code generation engine, generally

responsible of adding instrumentation code to the

original code; however, even if most instructions are

copied on a 1:1 basis, there are some notable

exceptions:

a) Possibly offensive instructions are either

replaced, or preceded by special instrumentation

code

b) Branch instructions are replaced with a set of

specific routines, responsible of returning control

back to the instrumentation engine. Fig. 3 shows

a basic block starting at linear address 4017F7

and ending with the branch instruction at 4017FF

(thus, the block itself ends at 401805). Should

the branch condition be met, the processor will

jump to the “branch taken” address, which is

401FE5; else, it will “fall through” to address

401805. Fig. 4 shows the translated basic block;

first, we see that except for the branch

instruction, all other instructions were copied on

a 1:1 basis. It is also worth mentioning that in

this case it was possible to compute both the

“Branch Taken” and “Fall Through” addresses at

translation time, therefore we simply need to

return control back to the instrumentation engine,

specifying the updated Instruction Pointer.

.4017F7 43 inc ebx
.4017F8 83 7D CC 00 cmp byte ptr [ebp-34], 00
.4017FC 89 5D B8 mov dword ptr [ebp-48], ebx
.4017FF 0F 8C E0 07 00 00 jl 401FE5
.401805

Fig. 3, A normal basic block

.3370000 43 inc ebx
.3370001 83 7D CC 00 cmp byte ptr [ebp-34], 00
.3370005 89 5D B8 mov dword ptr [ebp-48], ebx
.3370008 0F 8C ?? ?? ?? ?? jl __branch_taken
__fall_through:
 JUMP_TO_VM (401805)
__branch_taken:
 JUMP_TO_VM (401FE5)

Fig. 4, A translated basic block

It is extremely important not to affect execution in

any way. The “JUMP_TO_VM” macro should not

pollute the stack in any way, should not modify any

of the CPU registers or a memory area outside of its

own data structures. Therefore, the engine keeps a

per-thread data structure called a “shadow stack”,

used to spill registers that can be modified by the

code generation engine. An example basic block can

be seen in Fig. 5.

.3370000 43 inc ebx
.3370001 83 7D CC 00 cmp byte ptr [ebp-34], 00
.3370005 89 5D B8 mov dword ptr [ebp-48], ebx
.3370008 0F 8C ?? ?? ?? ?? jl __branch_taken
__fall_through:

4

 xchg esp, dword ptr [__shadow_stack]
 pushf
 pushad
 JUMP_TO_VM (401805)
 popad
 popfd
 xchg esp, dword ptr [__shadow_stack]
 jmp dword ptr [__shadow_eip]
 __branch_taken:
 […]

Fig. 5, A translated basic block, no stack pollution, no register alteration

2) A basic block manager, responsible of

keeping a list of already translated basic blocks (also

known as a “basic block cache”) for quick retrieval.

Keeping a basic block cache greatly increases

execution speed, as translation time is quickly

amortized when we encounter loops.

3) A self-modifying code manager is

mandatory, considering that we may be dealing with

offensive code. Not handling self-modifying code can

have disastrous consequences: if a program modifies

a basic block that has already been executed

(therefore, it is present on our basic block cache) we

might execute the old, stored code, instead of

executing the modified one. In user mode, our engine

handles self modifying code by making sure that

every basic block resides in write-protected memory -

if not, we change the memory attributes ourselves -

and analyzing possible “Access Violation”

exceptions. If a write would indeed modify one of

our translated basic blocks, we’d just delete it from

our basic block cache and temporarily remove the

write protection to allow the write operation. An

interesting particular case arises when an instruction

modifies its own basic block – in that case, we have

to re-translate the basic block and resume execution

accordingly.

4) An asynchronous task handler is an

extremely important component of our framework. A

well-known anti-debugging trick is to transfer control

by generating an exception. Our engine handles this

situation by hooking the

KiUserExceptionDispatcher function and by

inspecting its parameters. The first parameter is an

EXCEPTION_RECORD structure, which contains

valuable information such as the exception code and

the exception address. If an exception occurs inside

our translated code, we need to update the

ExceptionAddress member with the correct value

(thus, we need to keep a mapping between the real

code and the translated code). The second parameter

is a CONTEXT structure, which contains the CPU

registers from when the exception occurred. Just like

with the exception address, we need to update the

Eip member with the correct value.

We also need to correctly handle APCs

(Asynchronous Procedure Calls) and user mode

callbacks sent by win32k.sys; our engine handles

these events by hooking KiUserApcDispatcher and

KeUserModeCallback, respectively.

While testing the engine, we have observed a series

of speed optimizations:

1) In most cases, we were able to directly

link translated basic blocks; this

happens when we’re able to compute a

block’s successors at translation time

(Fig. 6). Initially, the

“cache_fall_through” and

“cache_branch_taken” variables point

to a subroutine that finds the

successor(s). All subsequent executions

of the basic block will use the cached

addresses.

2) For basic blocks with successors that

cannot be computed statically (Fig. 7A),

we first attempt to find a match within

5

the last 4 successors (Fig. 7B). We also

notice that since the lea/jecxz pair does

not alter CPU flags, there’s no need for

the expensive pushfd/popfd pair.

.3370000 43 inc ebx
.3370001 83 7D CC 00 cmp byte ptr [ebp-34], 00
.3370005 89 5D B8 mov dword ptr [ebp-48], ebx
.3370008 0F 8C ?? ?? ?? ?? jl __branch_taken
__fall_through:

 jmp dword ptr [_BB.cache_fall_through]
 __branch_taken:
 jmp dword ptr [_BB.cache_branch_taken]

Fig. 6, A translated basic block, successors are directly linked.

 .405B17 FF 24 95 20 5B 40 00 jmp dword ptr [405B20+edx*4]

Fig. 7A, An indirect control transfer instruction.

 SPILL_EAX

SPILL_ECX
mov eax, dword ptr [405B20+edx*4]
lea ecx, dword ptr [eax - _real_address_1]
jecxz _1
[…]
// no match, so JUMP_TO_VM (eax)
_1:
RESTORE_EAX
RESTORE_ECX
jmp _translated_address_1
[…]

 Fig. 7B, Handling indirect control transfer

Normally, we don’t need to add instrumentation code

to every basic block. For the purpose of rootkit

detection we only need to keep the list of executed

basic blocks, the list of possibly offensive

instructions discovered during translation, and other

flags, such as the presence of “garbage”, do-nothing

instructions. Most of these operations can be

performed only once, at translation time. Thus, our

instrumentation engine is able to reach speeds that

are comparable to native execution (average

slowdown of only 25%).

Dynamic binary instrumentation in

kernel mode

Porting our dynamic binary instrumentation engine to

kernel mode proved to be a tedious task. First of all,

we needed to be able to analyze code running not

only at PASSIVE_LEVEL, but also at APC or DPC

levels. We wanted to control each and every aspect of

the code generation engine, therefore:

a) We’ve developed a custom memory

manager. Our engine’s memory

requirements and access patterns were very

6

simple: we needed to store the basic block

structures, the basic block cache and

instrumentation information. Since most of

these structures needed to be accessible by

code running at any IRQL, our memory

manager allocates during initialization a

chunk of memory from the non-paged pool

and partitions it as needed.

b) We’ve removed any kind of concurrent

access control from the instrumentation

engine. In user mode, our engine may

concurrently analyze any number of threads.

The situation in kernel mode is much more

complex, as it would be theoretically

possible for a thread to have to wait before

being granted access to a shared resource

(the basic block cache, for example). If we

want to instrument more than one thread, we

can create a new instance of the engine.

c) Detecting (and modifying) exceptions can

theoretically be implemented by hooking

various vectors from the IDT. In its current

implementation, our engine does not

monitor exceptions. It is possible for a

rootkit to use hardware “read” breakpoints

on its own code, and therefore detect that its

code is being read. We are considering

several tactics to circumvent this behavior.

d) Self modifying code is extremely difficult to

detect in kernel mode; theoretically, we can

use the same approach used in user mode,

but practically it is almost impossible to

detect all variations (a rootkit may directly

modify page attributes, etc). Our current

kernel mode implementation does not use

the “direct basic block linking”

optimization, so every transfer goes through

the engine, which is responsible of

verifying, via a set of checksums, that no

modifications have occurred. However, if a

basic block modifies itself (assuming the

block is large enough and the modification

occurs beyond the pre-fetch queue) our

engine will execute the old, unmodified,

code. Several strategies are being considered

to prevent this behavior.

Analysis – reading the MBR

The device drivers involved in managing a

particular storage device are collectively known as a

storage stack [4]. If an application attempts an

operation on a storage device, the request will first be

received by the I/O Manager; the I/O Manager will,

in turn, send the request to the File System; the File

System will translate file addresses to volume

addresses, and will forward the request to the Volume

Manager.

Windows supports basic volumes (on a

single partition) and dynamic volumes (can span

across multiple partitions). Thus, the Volume

Manager will forward the initial I/O request to the

Partition Manager.

The lower-level drivers are the “Class

drivers” - used to manage a particular device type,

such as disks, or tapes, “Port drivers” that manage a

specific transport (Storport for SCSI and RAID,

Atapi for IDE-based devices), and “Miniport

drivers”, which are vendor supplied and manage

hardware-specific details [4].

Appendix 1 shows an basic instrumentation

session – we use a handle to \\.\PHYSICALDRIVE0,

and we try to read, using ZwReadFile, its first sector.

We see how the instrumentation engine analyzes -

basic block by basic block - the entire code path.

We start in our own driver (KLup.sys) and

we see how the engine arrives at ZwReadFile, down

through the I/O subsystem, until we reach

PartMgr.sys, which in turn calls ClassPNP.sys and

Disk.sys. Our test system has an IDE hard disk, so

the execution flows down to Ataport.sys, Atapi.sys

and IntelIDE.sys (our miniport driver), and back up,

to ClassPNP, PartMgr and finally, to KLup.sys,

where instrumentation ends.

Once the instrumentation has ended, we can

start an analysis session, using all the data that we’ve

gathered: effective addresses of every block of code,

their contents and various translation-related statistics

(particularly “garbage” code that does not seem to be

generated by a compiler). We see that each and every

address is valid (i.e. it belongs to one of the code

sections of a legally loaded module) and the code

matches 1:1 the code on disk, so we assume that this

particular code flow hasn’t been altered.

7

Appendix 2 shows the same basic

instrumentation task: we use a previously opened

handle to \\.\PHYSICALDRIVE0 and we try to read

its first sector, again using ZwReadFile. The

difference is that we run the engine on a machine

infected with the TDL3 rootkit.

We again start in our own driver, KLup.sys,

and we reach ZwReadFile and PartMgr.sys, which in

turn calls ClassPNP.sys and Disk.sys. This particular

system (a VMWare machine) has a simulated SCSI

hard disk, therefore we should execute code from

Storport.sys. However, we see that from

ClassPNP.sys execution jumps to the resource

section of “lsi_scsi.sys”, where there’s a code

trampoline (Fig. 2) to an unclaimed memory zone –

surely, it’s where the rootkit resides. Our

instrumentation engine continues and eventually

reaches Storport.sys, then the real code of

lsi_scsi.sys, then back to KLup, normally passing

through ClassPNP and disk.sys.

In this analysis session we’ve noticed the

following abnormalities:

- A code trampoline outside of the code sections of

lsi_scsi.sys

- A mismatch between the memory and disk

images of lsi_scsi.sys (interestingly, NOT the

code section!)

- Execution of “orphaned” code – code that does

not belong to a legally loaded module

Fig. 8 shows a greatly simplified hook routine; we

notice that it first checks the input parameters and

alters them as needed. If necessary, it gives control to

the original handler and alters the original results.

Handler ()
{
 Check / Alter Input ()
 Call Original Handler ();
 Check / Alter Results ();
}

Fig. 8, Simplified rootkit handler

System disinfection

 Obviously, the best method to clean a

rootkit-infected machine is by booting the system

from a clean disk. If a rootkit is already present in

memory it may interfere with the disinfection itself.

However, our engine offers interesting “live” system

disinfection capabilities.

 Fig. 9A shows a basic block belonging to

TDL3’s hooking routine. We could simply patch the

conditional branch instruction, and transform it into

an unconditional branch (Fig. 9B) – however, even if

the solution is very effective, it’s not very elegant.

Furthermore, the piece of malware could check its

own integrity, via checksums or other means.

 An elegant solution is to keep “pairs” or

basic blocks: original and disarmed. We currently

have a hardcoded list or “pairs”, but we are planning

to create signature files. Our code generation engine

follows a simple rule: if a basic block is matched

exactly to an original block, then translate it as if it

was the disarmed one. This way, we effectively

execute the clean code path without altering a single

bit of existing code, obtaining the desired results (e.g.

read/write the real disk sectors, etc). This technique is

extremely useful in detection and identification – as

we execute the clean code path we have access to the

full range of existing detection technologies.

.822E3B46 8B 44 24 20 mov eax, [esp+20h]
.822E3B4A 8B 78 60 mov edi, [eax+60h]
.822E3B4D 80 3F 0F cmp byte ptr [edi], 0Fh
.822E3B50 0F 85 95 01 00 00 jnz __Original_Handler

Fig. 9A, Basic block belonging to TDL3’s hook (original)

8

.822E3B46 8B 44 24 20 mov eax, [esp+20h]
.822E3B4A 8B 78 60 mov edi, [eax+60h]
.822E3B4D 80 3F 0F cmp byte ptr [edi], 0Fh
.822E3B50 90 nop
.822E3B51 E9 95 01 00 00 jmp __Original_Handler

Fig. 9B, Basic block belonging to TDL3’s hook (disarmed)

Conclusions and future work

Kernel code instrumentation is a very

powerful rootkit detection technology. We’ve shown

how instrumenting a simple ZwReadFile call can

help us analyze the entire storage stack, from the file

system to the volume and partition managers, to the

class, port and miniport drivers, and back up the

chain. A call to ZwCreateFile helps us analyze all

the file system filter drivers and the file system driver

itself and it’s an invaluable tool in detecting rootkits

that hide files or folders. We suggest that analyzing

less than a dozen of API calls, in particular those

related to the file system, the registry, process and

thread management, one could detect the majority of

kernel rootkits. We’ve shown that the extreme level

of control offered by dynamic binary instrumentation

can help augmenting detection, but also the more

elegant implementation of disinfection routines.

A particular class of kernel rootkits cannot

be detected by our engine and has to be identified

using other technologies. DKOM (Direct Kernel

Object Manipulation) does not modify the code, or

the code flow in any way, since it only alters kernel

data structures, such as the EPROCESS list.

Another type of rootkit, called “Shadow

Walker” [5], works by desynchronizing the CPU

Data Translation Look-aside Buffers (DTLBs) from

the Instruction Look-aside Buffers (ITLBs). Since the

ITLBs contain the virtual to physical translations for

code and the DTLBs contain the virtual to physical

translation for data, desynchronizing the two means

that it’s possible for virtual address X to contain

malicious code when executed and clean code when

read. This is possible because virtual address X can

point to a specific physical page when it’s executed

(according to the ITLB) and to a completely different

physical page when it’s read (according to the

DTLB). Interestingly, in this case, dynamic binary

instrumentation will execute the clean code, as read

by the code generator, which may be enough to

detect the rootkit.

 Our current implementation only performs

instrumentation on 32-bit code. Recently (summer of

2010) TDL3 (now TDL4) was updated to include a

64-bit component, and we expect others to follow

suit, so we are currently developing a 64-bit version.

We are also working on analyzing network

calls via Windows Sockets Kernel (WSK). This

technique will allow our engine to detect most traffic-

filtering kernel malware.

Appendix 1
 -attached as appendix_1.txt

Appendix 2
 -attached as appendix_2.txt

References

[1] BitDefender report, 2010, www.bitdefender.com

[2] “The top 10 spam botnets: New and improved”,

www.techrepublic.com, accessed February 2010

[3] “Secure Execution via Program Shepherding”,

Vladimir Kiriansky, Derek Bruening, Saman

Amarasinghe, USENIX Security Symposium, August

2002

[4] “Microsoft Windows Internals, 4
th
 Edition”, Mark

E. Russinovich and David A. Solomon, 2004

[5] “Shadow Walker – Raising the bar for rootkit

detection”, Sherri Sparks, Jamie Butler, BlackHat

Briefings, 2005

