
Agents Companion

Authors: Antonio Gulli, Lavi Nigam,
Julia Wiesinger, Vladimir Vuskovic,
Irina Sigler, Ivan Nardini, Nicolas Stroppa,
Sokratis Kartakis, Narek Saribekyan,
Anant Nawalgaria, and Alan Bount

Agents Companion

February 2025 2

Acknowledgements

Editors & curators

Anant Nawalgaria

Content contributors

Steven Johnson

Hussain Chinoy

Designer

Michael Lanning

Introduction� 6

AgentOps� 8

Agent Success Metrics� 12

Agent Evaluation� 14

Assessing Agent Capabilities� 15

Evaluating Trajectory and Tool Use� 17

Evaluating the Final Response� 20

Human-in-the-Loop Evaluation� 21

More about Agent Evaluation� 22

Multiple Agents & Their Evaluation� 23

Understanding Multi-Agent Architectures� 24

Multi-Agent Design Patterns and Their Business Impact� 25

Important components of Agents� 28

Challenges in Multi-Agent systems � 31

Multi-Agent Evaluation� 32

Table of contents

Agentic RAG: A Critical Evolution in Retrieval-Augmented Generation� 33

Agentic RAG and its Importance� 34

Better Search, Better RAG� 36

Agents in the enterprise� 38

Manager of agents� 38

Google Agentspace� 40

NotebookLM Enterprise	 41

Google AgentSpace Enterprise	 43

From agents to contractors� 46

Contracts� 46

Contract Lifecycle� 49

Contract execution� 49

Contract Negotiation� 50

Contract Feedback� 51

Subcontracts� 51

Automotive AI: Real World Use of Multi-Agent Architecture� 54

Specialized Agents� 54

Conversational Navigation Agent	 54

Conversational Media Search Agent	 55

Message Composition Agent	 56

Car Manual Agent	 57

General Knowledge Agent	 57

Patterns in Use� 58

Hierarchical Pattern	 58

Diamond Pattern	 59

Peer-to-Peer	 61

Collaborative Pattern	 63

Response Mixer Agent	 65

Adaptive Loop Pattern	 66

Advantages of Multi-Agent Architecture for Automotive AI� 67

Agent Builder� 68

Summary� 69

Endnotes� 74

Agents Companion

February 2025 6

Introduction
Generative AI agents mark a leap forward from traditional, standalone language models,
offering a dynamic approach to problem-solving and interaction. As defined in the original
Agents paper, an agent is an application engineered to achieve specific objectives by
perceiving its environment and strategically acting upon it using the tools at its disposal.
The fundamental principle of an agent lies in its synthesis of reasoning, logic, and access to
external information, enabling it to perform tasks and make decisions beyond the inherent
capabilities of the underlying model. These agents possess the capacity for autonomous
operation, independently pursuing their goals and proactively determining subsequent
actions, often without explicit instructions.

The future of AI is agentic.

Agents Companion

February 2025 7

The architecture of an agent is composed of three essential elements that drive its behavior
and decision-making:

•	 Model: Within the agent's framework, the term "model" pertains to the language
model (LM) that functions as the central decision-making unit, employing instruction-
based reasoning and logical frameworks. The model can vary from general-purpose to
multimodal or fine-tuned, depending on the agent's specific requirements.

•	 Tools: Tools are critical for bridging the divide between the agent's internal capabilities
and the external world, facilitating interaction with external data and services. These
tools empower agents to access and process real-world information. Tools can include
extensions, functions, and data stores. Extensions bridge the gap between an API and
an agent, enabling agents to seamlessly execute APIs. Functions are self-contained
modules of code that accomplish specific tasks. Data stores provide access to dynamic
and up-to-date information, ensuring a model’s responses remain grounded in factuality
and relevance.

•	 Orchestration layer: The orchestration layer is a cyclical process that dictates how the
agent assimilates information, engages in internal reasoning, and leverages that reasoning
to inform its subsequent action or decision. This layer is responsible for maintaining
memory, state, reasoning, and planning. It employs prompt engineering frameworks to
steer reasoning and planning, facilitating more effective interaction with the environment
and task completion. Reasoning techniques such as ReAct, Chain-of-Thought (CoT), and
Tree-of-Thoughts (ToT) can be applied within this layer.

Building on these foundational concepts, this companion paper is designed for developers
and serves as a "102" guide to more advanced topics. It offers in-depth explorations of agent
evaluation methodologies and practical applications of Google agent products for enhancing
agent capabilities in solving complex, real-world problems.

Agents Companion

February 2025 8

While exploring these theoretical concepts, we'll examine how they manifest in real-world
implementations, with a particular focus on automotive AI as a compelling case study. The
automotive domain exemplifies the challenges and opportunities of multi-agent architectures
in production environments. Modern vehicles demand conversational interfaces that function
with or without connectivity, balance between on-device and cloud processing for both
safety and user experience, and seamlessly coordinate specialized capabilities across
navigation, media control, messaging, and vehicle systems. Through this automotive lens,
we'll see how different coordination patterns -- hierarchical, collaborative, and peer-to-
peer -- come together to create robust, responsive user experiences in environments with
significant constraints. This case study illustrates the practical application of multi-agent
systems that businesses across industries can adapt to their specific domains.

Anyone who has built with gen AI quickly realizes it’s easy to get from an idea to a proof-of-
concept, but it can be quite difficult to ensure high quality results and get to production - gen
AI agents are no exception. Quality and Reliability are the most cited concerns for deploying
to production, and the “AgentOps” process is a solution to optimize agent building.

AgentOps
Over the past two years, the field of Generative AI (GenAI) has undergone significant
changes, with enterprise customers focusing on how to operationalize related solutions. This
has resulted in various terms describing the operationalization of GenAI, such as MLOps for
GenAI, LLMOps, FMOps, and GenAIOps.

Agent and Operations (AgentOps) is a subcategory of GenAIOps that focuses on the efficient
operationalization of Agents. Its main additional components include internal and external
tool management, agent brain prompt (goal, profile, instructions) and orchestration, memory,
and task decomposition.

Agents Companion

February 2025 9

Figure 1. Relationship between DevOps, MLOps, and AgentOps.13

Each of these “Ops” requires capabilities like version control, automated deployments
through CI/CD, testing, logging, security and (critically) metrics. Each system often
implements some form of optimization based on metrics – measuring what your system
is and isn’t doing, measuring the outcomes and business metrics, and automating the
processes for more holistic metrics, and incrementally improving step by step. This practice
might be called “A/B experimentation” or “ML Ops” or “Metrics Driven development",
but they derive from the same general approach and we will rely on those principles for
AgentOps as well.

Remember that new practices don't replace the old. DevOps and MLOps best practices
are still necessary for AgentOps, as they are dependencies. For example, Agent tool use,
where APIs are invoked based on agent orchestration, often uses the same APIs you would

Agents Companion

February 2025 10

invoke with non-agentic software. Authentication and secret management, security, privacy,
exception handling, throttling, quotas, and scalability are still critical and require careful API
design in addition to Agent design.

Let’s go ahead and define these “ops” terms to help distinguish between them:

•	 Development and Operations (DevOps) is the practice of efficiently productionizing
deterministic software applications by integrating the elements of people, processes, and
technology. DevOps serves as the foundation for all the following terms.

•	 Machine Learning Operations (MLOps) builds upon the capabilities of DevOps and
concentrates on the efficient productionization of ML models. The primary distinction is
that the output of an ML model is non-deterministic and relies on the input data (garbage
in, garbage out).

•	 Foundation Model Operations (FMOps) expands upon the capabilities of MLOps
and focuses on the efficient productionization of pre-trained (trained from scratch) or
customized (fine-tuned) FMs.

•	 Prompt and Operations (PromptOps) is a subcategory of GenAIOps that focuses
on operationalizing prompts effectively. Its main additional capabilities include prompt
storage, lineage, metadata management (including evaluation scores), a centralized
prompt template registry, and a prompt optimizer.

•	 RAG and Operations (RAGOps) is a subcategory of GenAIOps that centers on efficiently
operationalizing RAG solutions. Its primary additional capabilities include the retrieval
process through offline data preparation (encompassing cleaning, chunking, vectorization,
similarity search, and re-ranking) and the generation process through prompt
augmentation and grounding.

Agents Companion

February 2025 11

•	 Agent and Operations (AgentOps) is a subcategory of GenAIOps that focuses on the
efficient operationalization of Agents. Its main additional components include internal
and external tool management, agent brain prompt (goal, profile, instructions) and
orchestration, memory, and task decomposition.

Figure 2. Each of these “Ops” are about technology, processes, and people14

All of these “Ops” are, in essence, the harmonious blend of people, processes, and
technologies working together to efficiently deploy machine learning solutions into a
live production environment. It’s crucial to recognize that Ops extends beyond mere
technology; it’s not simply about constructing and delivering a ML pipeline. Successful Ops
implementations delve deeper, considering the customer’s operational model, their existing
business units, and their overall organizational structure. This holistic approach ensures that
the technology is tailored to their specific needs, seamlessly integrating into the business
and maximizing value.

Agents Companion

February 2025 12

The next section will cover Agent Evaluation in detail, which is a significant part of the story
for AgentOps and automation to capture useful metrics. Before we go there, let’s start with a
thought experiment; imagine setting up an A/B experiment in production for your new Agent.
The treatment arm gets your new agent and the control arm does not. In that scenario, what
metrics are you measuring to determine if the treatment arm is doing better? What metrics
are you measuring to determine ROI for the project? Is it a goal being accomplished, or
sales totals, or a set of critical steps in a user journey? Those metrics must be understood,
instrumented and easily analyzed in addition to more detailed Agent Evaluation metrics.

Agent Success Metrics

Metrics are critical to building, monitoring, and comparing revisions of Agents. Business
metrics, like revenue or user engagement, are probably outside of the scope of the agent
itself but these should be the north star metric for your agents.

Most Agents are designed around accomplishing goals, so goal completion rate is a key
metric to track. Similarly, a goal might be broken down into a few critical tasks or critical
user interactions. Each of these critical tasks and interactions should be independently
instrumented and measured.

So before we get into the details of the Agent itself, we already have several metrics
identified which you should be able to easily track on a dashboard. Each business metric,
goal, or critical interaction, will be aggregated in a familiar fashion: attempts, successes,
rates, etc. Additionally, metrics you should be able to get from any application telemetry
system are very important to track for agents as well, metrics like latency, errors, etc.

Agents Companion

February 2025 13

None of these metrics are specific to Agents, you could track them for any software, but they
are even more important for Agent builders. Deterministic code does only what you tell it to
do, whereas an agent can do a lot more, relying on LLMs which are trained on huge amounts
of data. Instrumentation of these high level metrics is an important part of observability.
You can think of them as Key Performance Indicators (KPI) for the agent, and they allow for
observability in the aggregate, a higher level perspective of your agents.

Human feedback is one of the more critical metrics to track as well. A simple 👍👎 or user
feedback form, within the context of an agent or task can go a long way to understanding
where your agent does well and where it needs improvement. This feedback can come from
end users of a consumer system, but also employees, QA testers, and process or domain
experts reviewing the agent.

More detailed observability is also very important for agent building, being able to see and
understand what the agent is doing and why it’s doing that. An agent can be instrumented
with “trace” to log all of the inner workings of the agent, not only the critically important
tasks and user interactions. You could conceptually measure every internal step as metrics,
but that is rarely done. Instead these detailed traces are used to debug an agent when
metrics or manual testing show a problem, you can dig into details and see what went wrong.

Agents Companion

February 2025 14

Figure 3: An example of Cloud Observability showing traces for an agent with tools and LLM
OpenTelemetry spans.15

So far we’ve been talking about business metrics, goals, tasks, human feedback, and traces
– those are all ways of understanding the actions and impact of your agents, in production.
While developing an agent, in addition to manual testing, automated testing will be much
more efficient in the long run and provide greater insights into the behavior of agents.

Agent Evaluation
To bridge the gap between a proof-of-concept and a production-ready AI agent, a robust
and automated evaluation framework is essential. Unlike evaluating generative models, where
the focus is primarily on the final output, agent evaluation requires a deeper understanding of
the decision-making process. Agent evaluation can be broken down into three components
that we discuss in this chapter:

1.	 Assessing Agent Capabilities: Evaluating an agent's core abilities, such as its capacity to
understand instructions and reason logically.

Agents Companion

February 2025 15

2.	 Evaluating Trajectory and Tool Use: Analyzing the steps an agent takes to reach a
solution, including its choice of tools, strategies, and the efficiency of its approach.

3.	 Evaluating the Final Response: Assessing the quality, relevance, and correctness of the
agent's final output.

Assessing Agent Capabilities

Before evaluating your specific agentic use cases, publicly available benchmarks and
technical reports can provide insight into core capabilities and limitations to consider when
building out your agentic use cases. Public benchmarks exist for most fundamental agentic
capabilities like model performance, hallucinations, tool calling and planning. For example,
tool calling, the ability to select and use appropriate tools, is demonstrated by benchmarks
like the Berkeley Function-Calling Leaderboard (BFCL)16 and τ-bench17 that also outlines
common mistakes. Another example, PlanBench18 aims to assess planning and reasoning,
across several domains and specific capabilities.

But tool calling and planning is not the only capability you should consider. Agents inherit
behaviors from their LLMs and each of their other components. Likewise, agent and user
interactions have a history in traditional conversational design systems and workflow
systems, and therefore can inherit the set of metrics and measurements that are used to
determine the efficacy of these systems.

Agents Companion

February 2025 16

Figure 4: A high level diagram of AgentBench.19

Holistic agent benchmarks like AgentBench19 try to capture end-to-end performance across
several scenarios. This is more realistic, when the scenario reflects your agent use case,
but not if it’s testing capabilities your agent doesn’t implement. It is difficult to simulate
the environment, tools, instructions, and use case requirements in ways that are both
specific and general at the same time. Companies and organizations are setting up public
benchmarks for specialized use cases, like Adyen’s Data Analyst leaderboard DBAStep20
which may give you a more targeted evaluation - if you understand both the evaluation
approach and the agents who are on the leaderboard.

Public benchmarks are a valuable starting point, to get a feeling for what is possible and
identify pitfalls to look out for. Most benchmark assessments include discussions of common
failure modes that can guide you in setting up your own, use-case specific evaluation
framework.

Agents Companion

February 2025 17

Beyond public evaluations, you will want to evaluate the behavior of your agent across a
variety of scenarios to ensure it does what you want it to do. You are simulating interactions
with your agent and evaluating how it responds. This includes the evaluating final response
and also the set of steps it takes along the way (trajectory). Those are the 2 most common
and practical approaches we recommend you start with. There are many other evaluation
techniques you can use beyond these, either for finer details on sub-components or
broader approaches.

Software engineers will compare this to automated testing of code. Investing in automated
tests saves you time and gives you confidence in the software you are building. With agents,
this automation pays off faster, in both time and confidence. Curating the evaluation data
set will be extremely important for accurately representing the use case your agent will
encounter, even more so than in software testing.

Evaluating Trajectory and Tool Use

An agent usually does several actions before it responds back to the user. It might compare
the user input with session history to disambiguate a term, or lookup a policy document,
search a knowledge base or invoke an API to save a ticket. Each of those actions is a step on
a path, also called a “trajectory” of actions. Every time your agent does something, there’s a
trajectory of actions under the hood.

Comparing the trajectory that you expect the agent to take vs the trajectory that the agent
actually took, is particularly useful for developers who want to debug their application,
identifying errors or inefficiencies, and ultimately improving performance.

Agents Companion

February 2025 18

Figure 5: LangSmith diagram of final evaluation and trajectory.21

The following six ground-truth-based automated trajectory evaluations provide different
lenses to assess the performance of an agent:

1.	 Exact match: Requires the AI agent to produce a sequence of actions (a "trajectory") that
perfectly mirrors the ideal solution. This is the most rigid metric, allowing no deviation from
the expected path.

2.	 In-order match: This metric assesses an agent's ability to complete the expected
trajectory, while accommodating extra, unpenalized actions. Success is defined by
completing the core steps in order, with flexibility for additional actions.

3.	 Any-order match: Compared to in-order match, this metric now disregards the order. It
asks if the agent included all necessary actions, but does not look into the order of actions
taken and also allows for extra steps.

Agents Companion

February 2025 19

4.	 Precision: How many of the tool calls in the predicted trajectory are actually relevant or
correct according to the reference trajectory?

5.	 Recall: How many of the essential tool calls from the reference trajectory are actually
captured in the predicted trajectory?

6.	 Single-tool use: Understand if a specific action is within the agent's trajectory. This
metric is useful to understand if the agent has learned to utilize a particular tool yet.

Figure 6: A radar chart plotting a single trajectory evaluation with a few metrics.24

Agents Companion

February 2025 20

Consider these metrics as different lenses for analyzing and debugging your agent's
trajectory. Each metric offers a unique perspective, but not all will be relevant to every
situation. For instance, some use cases demand strict adherence to the ideal trajectory, while
others allow for more creative deviations. A clear limitation of this evaluation approach is that
you need to have a reference trajectory in place for this to work. While ground-truth-based
automated trajectory evaluations that are discussed here are prevalent in popular libraries.
Research is advancing the use of agent autoraters for more efficient evaluation, for example
Agent as a Judge, 202422.

Evaluating the Final Response

The final response evaluation boils down to a simple question: Does your agent achieve its
goals? You can define custom success criteria, tailored to your specific needs, to measure
this. For example, you could assess whether a retail chatbot accurately answers product
questions, or whether a research agent effectively summarizes findings with the appropriate
tone and style. To automate this process, you can use autorater. An autorater is an LLM
that acts as a judge. Given the input prompts and the generated response, it mirrors
human evaluation by assessing the response against a set of user-provided criteria. For
this evaluation to work, it is crucial to consider that given the absence of ground-truth, you
need to be very precise in defining your evaluation criteria, as this is the core of what your
evaluation is looking at. You find a number of predefined criteria in various libraries, treat
them as a starting point and tweak them to provide your definition of good.

Agents Companion

February 2025 21

Human-in-the-Loop Evaluation

The fields of agent development and agent evaluation are rapidly evolving. Evaluating
AI agents presents significant challenges, including defining clear objectives, designing
realistic environments, managing stochastic behavior, and ensuring fairness and bias
mitigation, particularly in socially impactful applications. Therefore, it's crucial to incorporate
a human-in-the-loop approach alongside the automated evaluations discussed previously
(which involve predefined metrics and autoraters). Human-in-the-loop is valuable for tasks
requiring subjective judgment or creative problem-solving, it can also serve to calibrate and
double-check if your automated evaluation approaches actually work and align with your
preferences. Key benefits include:

•	 Subjectivity: Humans can evaluate qualities that are difficult to quantify, such as
creativity, common sense, and nuance.

•	 Contextual Understanding: Human evaluators can consider the broader context of the
agent's actions and their implications.

•	 Iterative Improvement: Human feedback provides valuable insights for refining the
agent's behavior and learning process.

•	 Evaluating the evaluator: Human feedback can provide a signal to calibrate and refine
your autoraters.

To implement human-in-the-loop evaluation, consider these methods:

•	 Direct Assessment: Human experts directly rate or score the agent's performance on
specific tasks.

•	 Comparative Evaluation: Experts compare the agent's performance to that of other
agents or your previous iterations.

Agents Companion

February 2025 22

•	 User Studies: Participants interact with the agent and provide feedback on its behavior,
usability, and overall effectiveness.

More about Agent Evaluation

In this section we cover agent evaluation from the practical perspective. But this is just the tip
of the iceberg. Agent evaluation presents many challenges. Evaluation data for your agents
may be difficult to find. While synthetic data or LLMs as judges can be used, evaluations
may still be incomplete. Also, LLM-as-a-Judge metrics, for example, may prioritize final
outcomes over the agent's reasoning and intermediate actions, potentially missing key
insights. Additionally, as evaluations for agent systems have a history in conversational and
workflow systems, there is so much to explore on how to inherit methods and metrics to
evaluate agent's capabilities, such as the ability to improve task performance over multiple
interactions. Evaluations for multi-modal generations pose additional complexities; images,
audio, and video evaluations require their own evaluation methods and metrics. Finally, real-
world environments pose further challenges, as they are dynamic and unpredictable, making
it difficult to evaluate agents in controlled settings.

Looking ahead, to solve these open challenges, the field of agent evaluation is evolving
rapidly. Key trends include a shift towards process-based evaluation, prioritizing the
understanding of agent reasoning; an increase in AI-assisted evaluation methods for
improved scalability; and a stronger focus on real-world application contexts. The
development of new standardized benchmarks is also gaining traction, facilitating objective
comparisons between agents, while increased emphasis on explainability and interpretability
aims to provide deeper insights into agent behavior.

Agents Companion

February 2025 23

Table 1: A table comparing strengths and weaknesses of automated evaluations for Agents.

At this point it should be clear that only by continually refining evaluation methods, we will
ensure that AI agents are developed and deployed responsibly, effectively, and ethically in
the coming future.

Multiple Agents & Their Evaluation
Agent evaluation, which assesses the effectiveness, reliability, and adaptability of
autonomous AI agents, as seen in the previous section, has emerged as a key focus area.
We have seen a significant evolution in AI systems, transitioning towards multi-agent
architectures—where multiple specialized agents collaborate to achieve complex objectives.

A multi-agent system is like a team of experts, each specializing in a particular area, working
together to solve a complex problem. Each agent is an independent entity, potentially using a
different LLM, and with its own unique role and context. Agents communicate and collaborate
to achieve a common goal. This approach differs from traditional single-agent systems,
where one LLM handles all aspects of a task.

Evaluation Method Strengths Weaknesses

Human Evaluation
Captures nuanced behavior,
considers human factors

Subjective, time-consuming,
expensive, difficult to scale

LLM-as-a-Judge Scalable, efficient, consistent
May overlook intermediate steps,
limited by LLM capabilities

Automated Metrics Objective, scalable, efficient
May not capture full capabilities,
susceptible to gaming

Agents Companion

February 2025 24

Multi-agent systems offer several advantages over single-agent systems:

•	 Enhanced Accuracy: Agents can cross-check each other's work, leading to more
accurate results.

•	 Improved Efficiency: Agents can work in parallel, speeding up task completion.

•	 Better Handling of Complex Tasks: Large tasks can be broken down into smaller, more
manageable subtasks, with each agent focusing on a specific aspect.

•	 Increased Scalability: The system can be easily scaled by adding more agents with
specialized capabilities.

•	 Improved Fault Tolerance: If one agent fails, others can take over its responsibilities.

•	 Reduced Hallucinations and Bias: By combining the perspectives of multiple agents,
the system can reduce the effects of hallucinations and bias, leading to more reliable and
trustworthy outputs.

Understanding Multi-Agent Architectures

Unlike traditional monolithic AI systems, multi-agent architectures break down a problem
into distinct tasks handled by specialized agents. Each agent operates with defined roles,
interacting dynamically with others to optimize decision-making, knowledge retrieval, and
execution. These architectures enable more structured reasoning, decentralized problem-
solving, and scalable task automation, offering a paradigm shift from single-agent workflows.

At their core, multi-agent systems leverage principles of modularity, collaboration, and
hierarchy to create a robust AI ecosystem. Agents within these systems can be categorized
based on their function for example:

Agents Companion

February 2025 25

•	 Planner Agents: Responsible for breaking down high-level objectives into
structured sub-tasks.

•	 Retriever Agents: Optimize knowledge acquisition by dynamically fetching relevant data
from external sources.

•	 Execution Agents: Perform computations, generate responses, or interact with APIs.

•	 Evaluator Agents: Monitor and validate responses, ensuring coherence and alignment
with objectives.

Through these components, multi-agent architectures extend beyond simple prompt-based
interactions, enabling AI-driven workflows that are adaptive, explainable, and efficient.

Multi-Agent Design Patterns and Their Business Impact

To design effective multi-agent architectures, specific design patterns have emerged. These
patterns define interaction protocols, delegation mechanisms, and role distributions, allowing
businesses to implement AI-driven automation in structured ways. Some common design
patterns include:

Agents Companion

February 2025 26

Table 2: A table comparing types of multi-agent systems.

Type of Multi-Agent System Description Example

Sequential

Agents work in a sequential
manner, with each agent
completing its task before
passing the output to the
next agent.

An assembly line, where each
worker performs a specific
operation before passing the
product to the next worker.

Hierarchical

Agents are organized in a
hierarchical structure, with a
"manager" agent coordinating the
workflow and delegating tasks to
"worker" agents.

A system with a leader agent
responsible for making strategic
decisions and follower agents
executing tasks based on the
leader's instructions.

Collaborative

Agents work together
collaboratively, sharing
information and resources to
achieve a common goal.

A team of researchers working
on a project, where each member
contributes their expertise
and insights.

Competitive
Agents may compete with
each other to achieve the
best outcome.

LLMs act as individual players in a
game like Overcooked-AI, where
they must coordinate their actions
to achieve a shared goal while
competing for resources and
optimizing individual performance.

Agents Companion

February 2025 27

Figure 7: An image depicting different multi-agent topologies, from LangGraph documentation.23

The choice of design pattern depends on the specific application and the desired level of
interaction between agents.

Businesses benefit from these patterns by reducing operational bottlenecks, improving
knowledge retrieval, and enhancing automation reliability. Multi-agent systems enable
companies to scale AI deployments while ensuring agility in decision-making and
workflow execution.

Agents Companion

February 2025 28

Important components of Agents

The architecture of LLM-based AI agents consists of several interrelated components
essential for autonomous operation and intelligent interaction:

•	 Interaction Wrapper: This component serves as the interface between the agent
and its environment, managing communication and adapting to various input and
output modalities.

•	 Memory Management: This includes short-term working memory for immediate context,
cache, and sessions . It also can include long-term storage for learned patterns and
experiences, as episodes, examples, skills or reference data. It also includes “reflection”
to decide which short term items (eg: user preference) should be copied into long term
memory (eg: user profile), and if that can be shared across agents, tasks, or sessions.

•	 Cognitive Functionality: This is often underpinned by Chain-of-Thought (CoT), ReAct,
reasoning, thinking, or a planner subsystem - it allows agents to decompose complex
tasks into logical steps and engage in self-correction. In some cases this also includes
user intent refinement, to ask a clarifying question if uncertain.

•	 Tool Integration: This subsystem enables agents to utilize external tools, expanding
their capabilities beyond natural language processing. Dynamic tool registries allowing
discovery, registration, and “Tool RAG”.

•	 Flow / Routing: This governs connections with other agents, facilitating dynamic neighbor
discovery and efficient communication within the multi-agent system. This might be
implemented as a delegation of a task to a background agent, or handoff of the user
interaction to an agent, or the use of an agent as a tool.

Agents Companion

February 2025 29

•	 Feedback Loops / Reinforcement Learning: These enable continuous learning and
adaptation by processing interaction outcomes and refining decision-making strategies.
For gen AI agents this rarely takes the form of traditional RL training, but the performance
metrics of the past can be incorporated into future decision making.

•	 Agent Communication: Effective communication between agents is crucial for the
success of multi-agent systems. The Agent to Agent communication protocol facilitates
structured and efficient communication among agents, enabling them to achieve
consensus and address complex problems collaboratively

•	 Remote Agent Communication: Agent to Agent communication within an organization
is critical to allows agents to share messages, tasks, and knowledge. Once your multi-
agent system includes a remote agent, the communication protocol becomes even more
important. Asynchronous tasks and sessions need to be durable, and updated with
notifications while end users are not in session. Negotiations between Agents must allow
for bringing a user into session and for supported UX capabilities.

•	 Agent & Tool Registry (mesh): As you go beyond a handful of tools or a handful of
agents, you need a robust system to discover, register, administer, select and utilize from
a “mesh” of tools or agents. Critically important is the ontology and description of the
tools and agents, their capabilities and requirements, and their performance metrics. Your
agents will make a plan and choose which tool or which agent to use from such a system,
and those choices are informed by the data in the system

Agents Companion

February 2025 30

Figure 8: An image demonstrating the process of a user interacting with multiple, self-coordinating agents.24

These architectural elements provide a robust foundation for the autonomous operation and
collaborative capabilities of LLM agents within multi-agent systems.

Agents Companion

February 2025 31

Challenges in Multi-Agent systems

While multi-agent systems offer numerous advantages, they also face several challenges:

•	 Task Communication: Today most agent frameworks communicate in messages, not
structured async tasks.

•	 Task Allocation: Efficiently dividing complex tasks among different agents can be
challenging, and feedback loops are often left up to the developer to implement.

•	 Coordinating Reasoning: Getting agents to debate and reason together effectively
requires sophisticated coordination mechanisms.

•	 Managing Context: Keeping track of all the information, tasks, and conversations
between agents can be overwhelming.

•	 Time and Cost: Multi-agent interactions can be computationally expensive and time-
consuming. This results in higher runtime prices and more user latency.

•	 Complexity: In the same way that microservice architecture allows each microservice
more flexibility and simplicity, the system as a whole usually becomes more complex.

Addressing these challenges is crucial for developing robust and efficient
multi-agent systems.

Agents Companion

February 2025 32

Multi-Agent Evaluation

Luckily, the evaluation of multi-agent systems is a clear progression of evaluating single
agent systems. Agent Success Metrics are unchanged, business metrics as your north star,
goals and critical task success metrics, application telemetry metrics like latency and errors.
Instrumenting the multi-agent system with trace will help debug and understand what is
happening during complex interactions.

In the Agent Evaluation section we discussed Evaluating Trajectories and Evaluating the Final
Response as the 2 best approaches to automated evaluation of an agent, and this remains
the case for multi-agent systems. For a multi-agent system, a trajectory of actions might
include several or even all of your agents. Even though several agents may collaborate on a
task, a single final answer is returned to the user at the end and can be evaluated in isolation.

Because a multi-agent system probably has more steps, you can drill down and evaluate at
every step. You can evaluate each of your agents in isolation and the system as a whole.
Trajectory evaluations are a scalable approach to do exactly this.

There are some questions you need to ask, which are unique to multi-agent
systems, including:

•	 Cooperation and Coordination: How well do agents work together and coordinate their
actions to achieve common goals?

•	 Planning and Task Assignment: Did we come up with the right plan, and did we stick to
it? Did child agents deviate from the main plan or get lost in a cul-de-sac?

•	 Agent Utilization: How effectively do agents select the right agent and choose to use the
agent as a tool, delegate a background task, or transfer the user?

Agents Companion

February 2025 33

•	 Scalability: Does the system's quality improve as more agents are added? Does the
latency go down? Are we being more efficient or less?

These types of questions can guide developers to identify areas for improvement in the
multi-agent system. You will answer these questions using the same tools you use for single
agent systems, but the complexity of the analysis goes up.

Agentic RAG: A Critical Evolution in
Retrieval-Augmented Generation
A significant advancement in multi-agent architectures is Agentic Retrieval-Augmented
Generation (Agentic RAG). Traditional RAG pipelines rely on a static approach—retrieving
knowledge from vector databases and feeding it into an LLM for synthesis. However, this
approach often fails when dealing with ambiguous, multi-step, or multi-perspective queries.

Agentic RAG introduces autonomous retrieval agents that actively refine their search
based on iterative reasoning. These agents enhance retrieval in the following ways:

•	 Context-Aware Query Expansion: Instead of relying on a single search pass, agents
generate multiple query refinements to retrieve more relevant and comprehensive results.

•	 Multi-Step Reasoning: Agents decompose complex queries into smaller logical steps,
retrieving information sequentially to build structured responses.

•	 Adaptive Source Selection: Instead of fetching data from a single vector database,
retrieval agents dynamically select the best knowledge sources based on context.

•	 Validation and Correction: Evaluator agents cross-check retrieved knowledge for
hallucinations and contradictions before integrating it into the final response.

Agents Companion

February 2025 34

This approach significantly improves response accuracy, explainability, and adaptability,
making it a crucial innovation for enterprises dealing with complex knowledge retrieval tasks
in areas like legal research, scientific discovery, and business intelligence.

Agentic RAG and its Importance

Agentic RAG (Retrieval-Augmented Generation) is an advanced approach that combines the
strengths of RAG with the autonomy of AI agents. Traditional RAG systems retrieve relevant
information from external knowledge sources to enhance LLM responses. Agentic RAG
takes this a step further by employing intelligent agents to orchestrate the retrieval process,
evaluate the retrieved information, and make decisions about how to best utilize it.

Agentic RAG offers several advantages over traditional RAG:

•	 Improved Accuracy: Agents can evaluate the quality of retrieved information and make
decisions about which sources to trust, leading to more accurate and reliable responses.

•	 Enhanced Contextual Understanding: Agents can consider the context of the user's
query and the retrieved information to generate more relevant and meaningful responses.

•	 Increased Adaptability: Agents can adapt to changing information needs and
dynamically adjust their retrieval strategies to provide the most up-to-date and relevant
information. This adaptability is crucial in complex domains where information is constantly
evolving, such as healthcare, finance, and legal research.

Agents Companion

February 2025 35

Figure 9: A diagram of Agentic RAG from Vectorize.io.25

Agentic RAG is particularly valuable in complex domains where information is constantly
evolving, such as healthcare, finance, and legal research. For example, in healthcare, agentic
RAG can help navigate complicated medical databases, research papers, and patient
records, providing doctors with comprehensive and accurate information.

Agents Companion

February 2025 36

Better Search, Better RAG

Almost all RAG approaches require a search engine to index and retrieve relevant data. The
introduction of agents allows for refinement of query, filtering, ranking, and the final answer.
Agentic RAG agents are executing several searches to retrieve information.

For developers who are trying to optimize existing RAG implementations, it is usually most
valuable to improve search results (measured in recall) prior to introducing agents. Some of
the main techniques to improve search performance are:

•	 Parse source documents and chunk them: Vertex AI Layout Parser can handle complex
document layouts, embedded tables, and embedded images like charts, and uses a
semantic chunker to keep chunks on topic with a hierarchy of headings.

•	 Add metadata to your chunks: synonyms, keywords, authors, dates, tags and categories
allow your searches to boost, bury, and filter; these allow your users or your agents more
control over search results.

•	 Fine tune the embedding model or add a search adaptor which changes embedding
space: these allow the searchable index of vectors to represent your domain better than a
general purpose embedding model.

•	 A faster vector database can improve search quality: to search embeddings, you must
make a tradeoff between speed and accuracy, upgrading to an ultra-fast Vertex AI
Vector Search can improve both latency and quality

•	 Use a ranker: vector searches are fast but approximate, they should return dozens or
hundreds of results which need to be re-ranked by a more sophisticated system to ensure
the top few results are the most relevant or best answer.

•	 Implement check grounding: as a safeguard on grounded generation, you can ensure
each phrase is actually citable by retrieved chunks.

Agents Companion

February 2025 37

Figure 10: A diagram of common RAG and search components, showing Vertex AI Search26, search builder
APIs27, and RAG Engine.28

Vertex AI Search26 is a powerful search engine providing Google quality search for your
data and can be used with any RAG or Agentic RAG implementation. Each of the above
components is automatically available within Vertex AI Search, without any development
time at all. For developers who want to build their own search engine, each of the above
components is exposed as a standalone API27, and RAG Engine28 can orchestrate the whole
pipeline easily, with a LlamaIndex-like Python-based interface.

Agents Companion

February 2025 38

Agents in the enterprise

Manager of agents

2025 is the year of the agents, and this will particularly be true in the context of enterprises
that will develop and use agents that will assist employees to perform specific tasks
or autonomously run in the background performing automation. Business analysts can
effortlessly uncover industry trends and create compelling, data-driven presentations
fueled by AI-generated insights. HR teams can revolutionize the employee experience with
streamlined onboarding, even for complex tasks like 401k selection. Software engineers
can proactively identify and resolve bugs, enabling them to build and iterate with greater
efficiency, and accelerate deployment cycles. Marketers can unlock deeper performance
analysis, optimize content recommendations, and fine-tune campaigns effortlessly to achieve
better results.

We see two types of agents emerging:

1.	 “Assistants”: Agents that interact with the user, take a task, execute it, and come back
to the user. Conversational agents popularized by frameworks like Gems or GPTs usually
belong to this category. Assistants can be general - able to help on a variety of tasks - or
specialized to a particular domain, or tasks. Examples include agents that help schedule
meetings, analyze data, write code, write marketing press releases, help sellers with
sales opportunities, or even agents that perform deep research on a particular topic
as requested by the user. These agents can be synchronous and return the requested
information or perform the requested task fast, or they run for a longer period of time
before returning (like the deep research agents).

Agents Companion

February 2025 39

2.	 "Automation agents”: Agents that run in the background, listen to events, monitor
changes in systems or data, and then make smart decisions and act. Action might include
acting on backend systems, performing some tests to validate the observation, fixing
problems, notifying the right employees, etc. This can really be seen as the backbone of
the automation of the future. While in the past we had to write special code to specify
the logic of automations, now we can start relying on smart and general decision making
abilities of AI agents.

Rather than simply invoking agents to perform a task and wait for the output, knowledge
workers will increasingly become managers of agents. They will be assigning tasks to multiple
agents and manage them, check if any of agents need help or require approval to proceed,
use the output of specific agents to start new tasks, monitor execution of long running tasks
to review and steer them in the right direction. Novel user interfaces to allow this type of
virtual team management will emerge to allow orchestration, monitoring and managing a
multi-agent system with agents performing tasks, calling (or even creating) other agents.

Google Agentspace aims at providing this type of experience and allow to:

•	 Create new agents by using a no/low code interface or a full code framework to
implement both specialized assistants and automation agents

•	 Configure and manage the agents access for company administrators

•	 Invoke the right agents when appropriate

•	 Monitor, manage, and orchestrate multiple agents in a UI suited for team management

Agents Companion

February 2025 40

Google Agentspace

Google Agentspace29 offers a suite of AI-driven tools designed to elevate enterprise
productivity by facilitating access to pertinent information and automating intricate,
agentic workflows. It harnesses the advanced reasoning capabilities of Gemini, the power
of Google's search infrastructure, and secure access to enterprise data, irrespective of its
physical location.

Agentspace directly addresses the limitations inherent in traditional knowledge management
systems, which frequently fall short in areas such as personalization, automated answer
generation, contextual comprehension, and comprehensive information retrieval. It
empowers employees with efficient information access by consolidating disparate content
sources, generating grounded and personalized responses, and streamlining operational
workflows. Key functionalities include the capacity to ingest a wide variety of data formats,
synchronize data from Software-as-a-Service (SaaS) platforms, deliver access-controlled
search results and AI-generated answers, and integrate AI assistance and intelligent agents
into cohesive workflows.

The architecture of Agentspace Enterprise is founded upon several core principles.
Paramount among these is built-in trust, which prioritizes security, explainability, and
governance through features such as single sign-on (SSO) authentication, an integrated
permissions model, and user-level access controls. Google's advanced intelligence is
leveraged to discern user behavior and content patterns through machine learning, resulting
in the delivery of highly relevant results via semantic understanding, knowledge graphs,
and LLMs. Universal connectivity is achieved by connecting to a diverse array of enterprise
systems with on-demand and automated data refreshes, thereby eliminating information
silos. Enterprise-level customization and user-level personalization are facilitated through
granular controls for search functionality, recommendations, LLMs, and knowledge graphs,
providing tailored experiences based on individual user roles, permissions, and search

Agents Companion

February 2025 41

history. Real-time feedback and adaptation mechanisms enable the continuous refinement
of results through machine learning and user input. Blended Retrieval Augmented Generation
(RAG) allows for customizable data blending, powering generative AI applications grounded
in enterprise data. Finally, scalability is a critical design consideration, with the system
engineered to accommodate growth across geographical regions, languages, and peak
usage demands.

Security is always top of mind. Google Agentspace is built on the Google Cloud secure-by-
design infrastructure, giving you the peace of mind to confidently deploy AI agents across
your organization. It provides granular IT controls, including role-based access control
(RBAC), VPC Service Controls, and IAM integration, ensuring your data remains protected
and compliant at all times.Security is a foundational principle of Agentspace. Built upon the
secure infrastructure of Google Cloud, it provides a robust environment for the deployment
of AI agents. Granular IT controls, encompassing role-based access control (RBAC),
Virtual Private Cloud (VPC) Service Controls, and Identity and Access Management (IAM)
integration, guarantee data protection and regulatory compliance. These security measures
are essential for the safeguarding of sensitive information and give users the peace of mind
to confidently deploy AI agents across their organization.

NotebookLM Enterprise

NotebookLM30 is a research and learning tool designed to streamline the process of
understanding and synthesizing complex information. It empowers users to upload various
source materials, including documents, notes, and other relevant files, and leverages the
power of artificial intelligence to facilitate deeper comprehension. Imagine researching a
multifaceted topic; NotebookLM allows you to consolidate all your scattered resources into

Agents Companion

February 2025 42

a single, organized workspace. In essence, NotebookLM functions as a dedicated research
assistant, accelerating the research process and enabling users to move beyond mere
information collection to genuine understanding.

Figure 11: NotebookLM Enterprise30 configured with a few mock earning reports.

NotebookLM Plus builds upon this foundation, offering a premium tier with enhanced
features and capabilities. While the core functionality of uploading sources, asking questions,
and generating summaries remains, NotebookLM Plus typically adds features like increased
storage for source materials, enabling work with larger and more complex projects. It

Agents Companion

February 2025 43

may also include more sophisticated AI-powered analysis tools, such as more nuanced
summarization options, enhanced question-answering capabilities, or the ability to identify
connections and relationships between different sources more effectively.

Building upon the foundation of NotebookLM Plus, NotebookLM Enterprise30 brings these
powerful capabilities to the enterprise environment, streamlining how employees interact
with and derive insights from their data. This enterprise-grade version enables users to not
only upload and synthesize information, but also to uncover hidden patterns and engage with
data in innovative ways. A prime example is the AI-generated audio summary feature, which
enhances comprehension and facilitates efficient knowledge absorption by allowing users to
"listen" to their research.

Technically, NotebookLM, both in its consumer and enterprise forms, employs LLMs to
process uploaded documents, extract key concepts, and generate summaries. The audio
summary feature uses text-to-speech (TTS) technology incorporating advanced prosody
control to ensure clarity and naturalness. Critically, NotebookLM Enterprise incorporates
enterprise-grade security and privacy features, ensuring that sensitive company data is
handled with the utmost care and protected in accordance with organizational policies.̀

Google AgentSpace Enterprise

Google Agentspace furnishes employees with a unified, company-branded, multimodal
search agent that serves as the definitive source of enterprise information. Drawing upon
Google's extensive search capabilities, Agentspace offers unparalleled conversational
assistance. Employees get answers to complex queries, proactive recommendations,
and unified access to information from any source. This functionality extends to both
unstructured data, such as documents and emails, and structured data, like tables.
Integrated translation capabilities ensure comprehensive understanding, regardless of

Agents Companion

February 2025 44

the original language of the information. Pre-built connectors for widely used third-party
applications, including Confluence, Google Drive, Jira, Microsoft SharePoint, ServiceNow,
and others, empower employees to seamlessly access and query relevant data sources,
facilitating more informed decision-making.

Figure 12: Agentspace29 customized for Cymbal bank, connected to several data stores.

Much more than just information retrieval, agents can take actions in the real world, manage
async tasks and workflows, and help employees get work done. A gallery of agents can be
configured based on an organization's unique needs and will help with deep research, idea
generation and merit based refinement, creative asset generation, data analytics and more.

Agents Companion

February 2025 45

Agentspace Enterprise Plus facilitates the creation of custom AI agents tailored to specific
business functions. This platform enables the development and deployment of contextually
aware generative AI agents, empowering employees across departments—marketing,
finance, legal, engineering, and more—to conduct more effective research, rapidly generate
content, and automate repetitive tasks, including multi-step workflows. A centralized
interface streamlines the discovery and access of these specialized agents, promoting
scalable AI adoption. Custom agents will connect with internal and external systems and
data, be tailored to company domain and policies, and potentially even utilize machine
learning models trained on proprietary business data. The platform provides builders tools
for agent development, deployment, and lifecycle management.

Agents Companion

February 2025 46

From agents to contractors
The common interface to define AI agents across various tools and platforms today is very
simple, and usually includes specifying the goal, some textual instructions, the tools that the
agent can use, and a set of examples. While this might be sufficient to prototype demos, it
leads to potentially underspecified definitions, and might be one of the leading reasons that
AI agents can struggle to get from prototype-to-production.

We propose to evolve the Agent interface to evolve them into ”Contract adhering agents”
which are aimed at solving complex tasks using AI Agents, more specifically in contexts
where stakes are high.

Contracts

The key idea of contractors is to specify and standardize the contracts between the
requester and the agents, making it possible to:

1.	 Define the outcomes as precisely as possible, similarly to what we would do in a
real world scenario when agreeing on a service with a company we are contracting to
do something for us. This allows the agent (contractor) to validate against the desired
outcomes and iterate until the desired objective is achieved.

2.	 Make it possible to negotiate the task as well as clarifying and refining it, in order
to avoid any ambiguity in the definition, and fill any gap in common understanding of
the goals.

3.	 Define the rules for the contractors to generate new subcontracts needed to solve the
bigger one in a standard fashion (cf. section below on subcontracts).

Agents Companion

February 2025 47

4.	

Table 3: An example data model for the contracts.

Contract, initial definition

Fields Description Required

Task/Project
description

Provide a detailed description of what we expect the
contractor to achieve. It should be as specific and as
unambiguous as possible.

Yes

Deliverables &
Specifications

Describe precisely the expected outcomes and
deliverables from the contractor's task, including a list of
specifications clarifying what makes the deliverable
acceptable as outcome and details on how to verify that
the deliverable is fulfilling the expectation.

Yes

Scope

Clarify the scope of the tasks that the contractor is
responsible for completing, going into separate detail
about every aspect of the task. Also used to clarify what is out
of scope.

No

Expected Cost
Gives expectation in terms of cost for the task completion.
This is usually a function of the complexity of the task
combined with what tools will be used.

Yes

Expected Duration Gives expectation in terms of duration for the task completion. Yes

Input Sources
Specify what input sources can be used and considered to be
useful to complete the task.

No

Reporting and
Feedback

Specifies how the feedback loop should look like: how often we
expect updates on the progress, and what mechanism/surface
is used to provide feedback (emails, APIs, etc.).

Yes

Agents Companion

February 2025 48

Table 4: An example data model for the iteration of messaging between contractors.

Contract Iteration: Feedback & Negotiation

Fields Description Required

Underspecification
Highlight aspects that are underspecified or
need clarification from the task initiator.

No

Cost negotiation Cost considered too high to complete the task. No

Risk Highlights potential risks in fulfilling the contract. No

Additional input
needed

Express the kinds of additional data or information that would
be useful to fulfill the contract.

No

Agents Companion

February 2025 49

Contract Lifecycle

The following illustration shows the lifecycle of defining, negotiating and executing the
contract:

Figure 13: A diagram of the agent as contractor lifecycle from Agentspace.

Contract execution

This requires the contractor runtime to be able to fulfill the contracts and solve the
tasks behind contracts according to their defined specifications. Prioritizing quality and
completeness over latency enables to fully leverage the capabilities of LLMs, for example

Agents Companion

February 2025 50

by generating different solutions, and reviewing, scoring, and evolving them. An example of
this methodology is shown below in the Co-Scientist study. The engine can iterate and self-
validate the results and deliverables based on the provided expectations, and can improve
and self-correct until the validators are fulfilled. The ability to concretely validate a solution
against a set of objective criteria has proven to work extremely well in the context of AI and
has been at the core of successful AI systems such as for example Alpha-Code.

Contract Negotiation

One core hypothesis behind contracts in the context of automation agents specifically is that
many tasks in the enterprise world can draw significant benefit from leveraging the power of
LLMs when used in a less-constrained manner (latency and cost wise).

Being able to tackle more and more complex tasks and making it possible for customers to
be able to rely on and trust the results of contractors will ensure real value for companies.
Even that being said, we need to have a notion of relative priority in order to make sure that
tasks are appropriately prioritized as well as resources fairly allocated. We thus introduce a
notion of cost (typically relative per customer or contract initiator) which can be discussed
and negotiated between the contract initiator and the contractor, in order to make sure that
the contract receives the adequate resources relative to the other contracts initiated by the
contract initiator. The contractors can also negotiate other aspects of the contracts, for
example in terms of specification and deliverables (cf. also section below on feedback).

Agents Companion

February 2025 51

Contract Feedback

Contracts give a vehicle to provide feedback and in particular resolve ambiguities. As tasks
become more and more complex, it is critical to be able to raise ambiguities or other issues
related to the tasks specifications as early as possible. Contractors can give feedback on the
contract just after having received the contract (initial contract assessment), and then at a
frequency predefined in the contract.

This feedback will contain clarification requests, or other types of feedback about the
underspecification or misspecification of tasks (inconsistencies, conflicting specs,
clarification, etc.).

Subcontracts

Although not part of the contract definition and specification directly, the ability to
decompose a task into subtasks by generating subcontracts is a core concept that will be
used to power the contractors’ engine.

When a task is considered too complex to be tackled directly, contractors can decide to
decompose the task into smaller and easier tasks, which will be added to the execution
queue for solving. This is made possible only through the contract formalization described
above, which makes it possible for the contractors to generate, process and manipulate
other contracts in a uniform and standardized way.

Agents Companion

February 2025 52

Google's Co-Scientist: A Case Study in
Multi-Agent Intelligence
Google's AI co-scientist is a prime example of a multi-agent LLM system applied to scientific
research. This system utilizes a team of specialized agents, each with its own role and
expertise, to accelerate the pace of scientific discovery. These agents collaborate to
generate, evaluate, and refine hypotheses, mirroring the iterative process of scientific inquiry.

The co-scientist system employs a "generate, debate, and evolve" approach, drawing
inspiration from the scientific method. This approach involves generating diverse hypotheses,
critically evaluating their potential, and refining them through ongoing feedback and analysis.
The system leverages the strengths of different LLMs, each specializing in a particular aspect
of the research process, to achieve a more comprehensive and robust outcome.

For instance, in a study on liver fibrosis treatments, the co-scientist not only identified
existing drugs but also proposed new mechanisms and promising drug candidates,
demonstrating its potential to generate novel insights. Some of its major components are:

•	 Data Processing Agents: aggregate and structure large volumes of experimental data.

•	 Hypothesis Generators: propose potential explanations based on existing research and
new findings.

•	 Validation Agents: run simulations and verify results before presenting them
to researchers.

•	 Collaboration Agents: communicate findings across different research teams, enhancing
interdisciplinary cooperation.

Agents Companion

February 2025 53

Figure 14: A process diagram of the AI co-scientist system31

This approach exemplifies how multi-agent architectures move beyond static AI interactions,
instead fostering dynamic, evolving intelligence capable of handling sophisticated tasks in
research, enterprise automation, and knowledge management.

Agents Companion

February 2025 54

Automotive AI: Real World Use of
Multi-Agent Architecture
To illustrate how multi-agent concepts manifest in practice, let's examine a comprehensive
multi-agent system designed for automotive conversational AI, where several specialized
agents collaborate to provide an intuitive and seamless in-car experience.

First, we’ll look at some examples of specialized agents, followed by some common patterns
for combining them to form a multi-agent system.

Specialized Agents

Let’s first look at some examples of specialized agents.

Conversational Navigation Agent

The Conversational Navigation Agent is specialized in helping users find locations, suggest
places, and navigate using APIs like Google Places and Maps. This agent understands
navigation intents like "Find me a sushi restaurant nearby," queries the Places API for relevant
results, re-ranks these results based on user preferences and historical data, and sends
navigation commands to the car's built-in system.

Agents Companion

February 2025 55

Example Interaction:

User: "I need to take a break for lunch. What are good restaurants on my route
to Munich?"

Navigation Agent: "I found three well-rated restaurants along your route on the A9. In 25
kilometers, there's 'Gasthaus Alte Mühle' at the Ingolstadt exit with 4.5 stars - reviewers
praise their traditional Bavarian dishes and beer garden. In 45 kilometers, 'La Strada' at
the service area has 4.1 stars with good reviews for quick Italian meals. Or if you can wait
70 kilometers, 'Zeitlos' near Allershausen has 4.7 stars - it's a bit fancier with farm-to-table
cuisine. Which one interests you most?"

User: "The Bavarian place sounds good. Is there convenient parking there, and how far is
it from the motorway?"

Navigation Agent: "Gasthaus Alte Mühle has a dedicated parking area with about 40
spaces. It's only 1.2 kilometers from the A9 exit at Ingolstadt-Nord - about a 2-minute drive.
They're known for their Schweinebraten and homemade dumplings. It gets busy around
noon, but it's currently showing moderate occupancy. Would you like me to set this as your
destination and guide you there? You'll arrive around 12:15 if we head there now."

Conversational Media Search Agent

The Conversational Media Search Agent is specialized in helping users find and play music,
audiobooks, and podcasts. This agent retrieves media from local databases or streaming
services, uses web search for additional content when necessary, suggests media based on
contextual factors like mood, weather, and time of day, and handles voice commands such
as "Play a relaxing playlist for my drive." It also identifies similar artists or content when users
ask questions like "Who sounds like John Coltrane?"

Agents Companion

February 2025 56

Example Interaction:

User: "Play something upbeat to help me stay alert on this long motorway drive."

Conversational Media Search Agent: "I'll play an upbeat driving playlist to help keep
you energized. Starting with 'Don't Stop Me Now' by Queen, followed by some Daft
Punk and Stromae tracks. I've added some popular European radio hits that match your
preferences. I've adjusted the volume for optimal road awareness. Just say 'next' if you
want to skip a song."

Message Composition Agent

The Message Composition Agent is specialized in helping users draft, summarize, and send
messages or emails while driving. This agent parses voice commands like "Tell Alex I'm
running late," uses natural language models to compose contextually appropriate messages,
offers draft previews with user modification options, and integrates with various messaging
apps including SMS, WhatsApp, and email.

Example Interaction:

User: "There's heavy traffic on the E40. Let my team know I'll be 20 minutes late to the
morning standup."

Message Composition Agent: "I've prepared a message to your work team: 'Stuck in
traffic on the E40. Will be about 20 minutes late to our morning standup. Please start
without me.' Should I send this to your 'Work Team' chat group, or would you like to edit
it first?"

Agents Companion

February 2025 57

Car Manual Agent

The Car Manual Agent is specialized in providing answers to car-related questions by
leveraging a Retrieval-Augmented Generation (RAG) system. This agent retrieves relevant
sections from the car manual based on user queries, summarizes and contextualizes this
information using an LLM, and links users to detailed documentation or instructional videos
when appropriate.

Example Interaction:

User: "How do I turn off the lane-keeping assist feature in this Volkswagen?"

Car Manual Agent: "To turn off lane-keeping assist in your Volkswagen, press the
button with the car-and-lane icon located on the left side of your steering wheel. You'll
see a confirmation in the driver display when it's deactivated. You can also disable
it permanently in the infotainment system under Settings > Driver Assistance > Lane
Keeping. Would you like me to walk you through the settings menu instead?"

General Knowledge Agent

The General Knowledge Agent is specialized in answering factual questions about the world,
history, science, culture, and other general topics. This agent accesses a broad knowledge
base to answer factual questions, provides biographical information about people, offers
contextual explanations of concepts and phenomena, maintains grounding in factual
information while avoiding hallucinations, and responds to follow-up questions by maintaining
contextual awareness.

Example Interaction:

User: "Tell me an interesting fact about Salzburg."

Agents Companion

February 2025 58

General Knowledge Agent: "Salzburg, Austria is the birthplace of Mozart, one of
history's most famous composers. Beyond that well-known fact, Salzburg's old town is a
UNESCO World Heritage site, and parts of the beloved musical 'The Sound of Music' were
filmed there in 1964. The Salzburg Festival, one of the world's most prestigious music and
drama festivals, has been held there annually since 1920."

Patterns in Use

Let’s look at the some common ways used to combine these agents.

Hierarchical Pattern

A central Orchestrator Agent classifies queries and routes them to specialized agents. For
example, when a user asks "Find me a sushi restaurant nearby," the Orchestrator detects
this as a navigation request and routes it to the Navigation Agent, which handles location
searches and interaction with maps APIs.

Figure 15. Hierarchical pattern.

Agents Companion

February 2025 59

The Orchestrator Agent is specialized in routing queries to the most appropriate specialized
agents and managing the overall conversation flow. This agent analyzes user queries to
determine domain and intent, directs requests to the most suitable specialized agent,
maintains conversation context across multiple turns, and manages fallback strategies when
specialized agents cannot provide satisfactory responses.

Example Interaction:

First Turn:

User: "Is there a service area ahead with clean toilets?"

Orchestrator Agent: [internally routes to Navigation Agent]

Navigation Agent: "There's a service area 20 kilometers ahead on the E19. It's Aire
de Waremme, which was renovated last year and has good ratings for facilities and
cleanliness. It also has a Paul bakery and a quick-service restaurant."

Second Turn:

User: "Will it rain at my destination this evening?"

Orchestrator Agent: [recognizes weather query and routes to Weather
Information Agent]

Weather Information Agent: "At your destination in Brussels, the forecast shows a 60%
chance of light rain in the evening, starting around 19:00. Temperatures will be around
14°C. I'd recommend bringing an umbrella if you plan to be outdoors."

Agents Companion

February 2025 60

Diamond Pattern

In this variation of the hierarchical pattern, responses from specialized agents pass
through a central moderation agent before reaching the user. For instance, the Navigation
Agent generates a factual response about a nearby restaurant, which then goes through
a Rephraser Agent that adjusts the tone and style based on user preferences before
text-to-speech synthesis.

The Rephraser Agent is specialized in adapting the tone, style, and presentation of responses
to match user preferences and context. This agent transforms technical information into
conversational language, adjusts response length based on driving conditions and urgency,
personalizes communication style to match user preferences, and formats complex
information for easier comprehension while driving.

Example Interaction:

[Raw response from Car Manual Agent before rephrasing]: "In the event of a tire
pressure monitoring system alert, the vehicle has detected that one or more tires have
fallen below the recommended inflation pressure of 2.2 bar. The affected tire's pressure is
approximately 1.8 bar, which is 18.75% below recommended levels. This does not constitute
an immediate safety hazard, but prolonged driving with underinflated tires can lead to
decreased fuel efficiency, reduced tire longevity, and potentially compromised handling
characteristics. It is advisable to proceed to a service station at your earliest convenience
to reinflate the tire to proper specifications."

Rephraser Agent: [Adapts for driving context, adjusts information density and urgency]

Final Response to User: "Your front right tire is a bit low - down to 1.8 bar. It's safe to
keep driving, but you'll want to add some air at the next petrol station. Low tire pressure
can affect your fuel economy and make the tire wear out faster. I can help you find a
nearby place to fill up if you'd like."

Agents Companion

February 2025 61

Figure 16. Diamond pattern.

Example transformation:

Initial Response (factual & neutral): "I found a highly-rated sushi restaurant nearby. It's
called Sakura Sushi, located at 123 Main Street. It has a 4.7-star rating and is open until 10
PM. Would you like me to start navigation?"

After rephrasing (playful style): "Sushi craving? Say no more! Head over to Sakura Sushi
at 123 Main Street, where the fish is fresh and the soy sauce flows freely! Rated 4.7 stars,
open till 10 PM. Ready for an umami adventure?”

Agents Companion

February 2025 62

Peer-to-Peer

Agents can hand off queries to one another when they detect that the orchestration
made a routing mistake. This creates a more resilient system that can recover from
initial misclassifications.

Figure 17. Peer-to-peer.

Example scenario:

1.	 User asks: "Find a place to eat sushi nearby"

2.	 The Orchestrator correctly routes this to the Conversational Navigation Agent, which
provides information about nearby sushi restaurants.

3.	 User follows up: "How big is New York's Central Park?"

4.	 The Orchestrator might initially route this to the Conversational Navigation Agent again
(based on the previous navigation-related conversation).

Agents Companion

February 2025 63

5.	 However, the Conversational Navigation Agent recognizes this as a general knowledge
question rather than a navigation request, and hands it off to the General Knowledge
Agent, which can provide factual information about Central Park's size.

Advantages of peer-to-peer hand-off compared to centralized orchestration:

1.	 Resilience to misclassification: Even if the central orchestrator makes an error in
routing, specialized agents can recognize when a query falls outside their domain and
redirect appropriately.

2.	 Domain expertise in routing: Specialized agents often have better understanding of the
boundaries of their own domains. The Media Search Agent knows exactly what kinds of
music-related queries it can handle better than a general orchestrator would.

3.	 Reduced orchestration complexity: The central orchestrator doesn't need perfect
accuracy in initial routing, reducing the complexity of its decision-making logic.

Collaborative Pattern

The Collaborative Pattern involves multiple agents working on complementary aspects of
the same task, with a Response Mixer Agent that combines elements from different agent
responses to create a comprehensive answer. This approach recognizes that different agents
contribute valuable pieces to a complete solution based on their specialized expertise. The
pattern is particularly valuable when:

1.	 Different aspects of a query require different types of expertise (e.g., technical
specifications, practical advice, and conceptual explanations)

2.	 No single agent has complete information to fully address the user's needs

3.	 The user would benefit from multiple perspectives on the same question

Agents Companion

February 2025 64

4.	 Different specialized agents have access to distinct knowledge bases or
reasoning capabilities

Unlike the competitive approach where responses compete, the collaborative pattern
assumes that responses from different agents are complementary rather than redundant.
The Response Mixer Agent identifies the most valuable information from each source and
synthesizes it into a cohesive answer that leverages the unique strengths of each specialist.

For example, when asked about handling hydroplaning, the Car Manual Agent contributes
vehicle-specific safety system information, the Driving Tips Agent provides practical driving
techniques, and the General Knowledge Agent explains the physics behind the phenomenon.
Together, they create a more complete and useful response than any single agent could
provide alone.

Agents Companion

February 2025 65

Figure 18. Collaborative pattern.

Agents Companion

February 2025 66

Response Mixer Agent

The Response Mixer is specialized in picking the best responses from multiple agents
and merging them when needed. This agent evaluates answers based on their accuracy
and relevance, removes incorrect information, and combines useful parts from different
responses to create the most helpful answer for the user.

Example Interaction:

User: "How do I handle aquaplaning?"

[Behind the scenes, multiple agents generate responses:]

Car Manual Agent Response: "Your Audi is equipped with Electronic Stability Control
(ESC) and Anti-lock Braking System (ABS) which help prevent aquaplaning by maintaining
traction control." [Confidence score: 71%]

General Knowledge Agent Response: "Aquaplaning occurs when your tires lose contact
with the road surface due to water buildup between the tires and the road." [Confidence
score: 65%]

Safety Tips Agent Response: "If you experience aquaplaning, ease off the accelerator,
avoid sudden braking or steering, and gently steer in the direction you want to go until you
regain traction." [Confidence score: 94%]

Response Mixer Agent: [Picks the most relevant parts and merges them into one
complete answer]

Final Response to User: "If you experience aquaplaning, which happens when your
tires lose contact with the road due to water buildup, ease off the accelerator, avoid
sudden braking or steering, and gently steer in the direction you want to go until you
regain traction. Your Audi's Electronic Stability Control and ABS systems will help maintain
control, but proper driving technique is still essential."

Agents Companion

February 2025 67

This competitive approach ensures that critical safety information isn't missed due to
misrouting, and the user receives the most helpful possible response even when their query
has multiple valid interpretations.

Adaptive Loop Pattern

The Adaptive Loop Pattern involves iterative refinement through repeated attempts,
progressively improving results until they meet desired criteria.

The Conversational Navigation Agent can implement a loop pattern to iteratively improve
search results when initial queries don't yield satisfactory outcomes.

Example Interaction:

1.	 User asks: "Find a nice Italian restaurant that serves vegan options"

2.	 The Navigation Agent queries Places API with these parameters

3.	 The agent evaluates the results and finds no restaurants meeting all criteria

4.	 Instead of returning "no results," the agent automatically reformulates the query:

•	 First loop: Searches for "Italian restaurants with vegetarian options"

•	 Second loop: Broadens to "Italian restaurants" and then filters for those mentioning
plant-based options

•	 Third loop: If still unsuccessful, searches for "vegan restaurants" and filters for
Italian-influenced cuisine

5.	 The agent presents the best matches from these progressive searches, explaining how
they relate to the original request

Agents Companion

February 2025 68

This looping behavior enables more robust search capabilities that adapt to availability and
context, providing useful results even when exact matches aren't available.

Advantages of Multi-Agent Architecture for Automotive AI

Multi-agent systems bring powerful advantages to automotive AI by breaking down complex
tasks into specialized roles. Think of it as assembling a team of experts rather than relying on
one generalist.

In this approach, each agent specializes in what it does best. The Navigation Agent focuses
solely on finding locations and planning routes. The Media Search Agent becomes an
expert in music and podcasts. The Car Manual Agent specializes in vehicle features and
troubleshooting. By focusing on specific domains, each agent develops deeper capabilities in
its area.

This specialization makes the entire system more efficient. When an agent handles a
narrower set of tasks, it becomes simpler to optimize its performance. The result is higher
quality responses delivered more quickly and at lower computational cost. Performance
improves because the system can match the right resources to each task. Simple requests
use minimal processing power, while complex questions tap into more powerful resources
only when needed.

Speed matters in a vehicle, and multi-agent systems deliver where it counts. Critical
functions like adjusting climate controls or opening windows run on fast, on-device
agents for immediate response. Meanwhile, less urgent tasks like finding restaurant
recommendationscan use cloud-based agents with more extensive knowledge. This
separation ensures that essential vehicle controls remain responsive regardless of what else
the system is doing.

Agents Companion

February 2025 69

This design also creates natural resilience. If internet connectivity drops the essential
functions running on on-device agents continue working. You might temporarily lose
restaurant recommendations, but climate control and basic media playbacks still
function perfectly.

Agent Builder
Vertex AI Agent Builder is a collection of products and services for developers. We have
put together a comprehensive platform for you to build and connect agents. The engineering
excellence and security from Google Cloud, the AI research from Google Deepmind, and the
best practices of AgentOps. Google Cloud is building our own agents on top of this platform,
and now you can too. Expect many more exciting announcements 2025 targeting developers
of agents.

Vertex AI Agent Engine streamlines development, relying on Google engineering managed
integrations with popular open source agent libraries. It provides a managed autoscaling
runtime and many services agents will need (eg: session, examples, trace, evals). This is the
very low effort and high value way to safely deploy agents you have written in any framework.

Vertex AI Eval Service provides all of the evaluation tools discussed in this whitepaper, and
more. LLMs, RAG, and Agent evals are stable and scalable via the Vertex AI Eval Service, with
convenient integrations into monitoring and experimentation offerings.

A large portfolio of agent tools, with more to watch out for:

•	 Retrieval via Vertex AI Search26 or RAG Engine28.

•	 Non-search based retrieval from DBs via Gen AI Toolbox for Databases32

Agents Companion

February 2025 70

•	 Application integrations33 with hundreds of APIs supporting full ACLs

•	 Turn any API into a managed, enterprise ready tool with Apigee Hub34

And of course the best LLMs for agents, with access to Vertex AI Model Garden35 and also
the Gemini family of models36 which will power the agentic era.

Summary
This whitepaper (a companion to our earlier whitepaper on Agents) has explored the rapidly
evolving landscape of generative AI agents, from their fundamental architecture to advanced
evaluation techniques and the transformative potential of multi-agent systems.

Key Takeaways for Developers:

1.	 AgentOps is Essential: Building successful agents goes far beyond the initial proof-
of-concept. Embrace AgentOps principles, integrating best practices from DevOps and
MLOps, but also focusing on agent-specific elements like tool management, orchestration,
memory, and task decomposition.

2.	 Metrics Drive Improvement: Start with business-level KPIs (like goal completion, user
engagement, or revenue) as your "north star." Then, instrument your agents to track
granular metrics related to critical tasks, user interactions, and agent actions (traces).
Human feedback (👍👎, user surveys) is invaluable.

3.	 Automated Evaluation is Key: Don't rely solely on manual testing. Implement automated
evaluation frameworks that assess agent capabilities, trajectory (the steps taken), and the
final response. Leverage techniques like exact match, in-order match, precision/recall for
trajectory evaluation, and autoraters (LLMs as judges) for final response quality.

Agents Companion

February 2025 71

4.	 Human-in-the-Loop is Crucial: Automated metrics are powerful, but human evaluation
provides essential context, especially for subjective aspects like creativity, common sense,
and nuance. Use human feedback to calibrate and validate your automated evaluation
methods. Don’t outsource the domain knowledge.

5.	 Multi-Agent Systems Offer Advantages: Consider multi-agent architectures for
complex tasks. They can improve accuracy, efficiency, scalability, and fault tolerance.
Understand different design patterns (sequential, hierarchical, collaborative, competitive)
and choose the right one for your application.

6.	 Agentic RAG Improves Relevance: Move beyond traditional RAG by incorporating
agents that actively refine search queries, evaluate retrieved information, and adapt to
evolving knowledge. This leads to more accurate and contextually relevant responses.

7.	 Search Optimization is Foundational to RAG: Before diving into complex agentic RAG,
optimize your underlying search engine. Techniques like semantic chunking, metadata
enrichment, fine-tuning embedding models, and using rankers can significantly improve
retrieval quality.

8.	 Agent and Tool Registries are Important: As the number of Agents or Tools you
are using grow, a registry to manage the capabilities, ontology, and performance
becomes essential.

9.	 Security is Paramount: When deploying agents, especially within an enterprise, prioritize
security. Leverage platforms like Google Agentspace that offer built-in security features
like RBAC, VPC Service Controls, and IAM integration.

10.	Efficient use of developer cycles: The classic build vs buy design choices remain front
of mind, as the industry of gen AI agents is rapidly evolving. Consider platforms and
products as alternatives to building everything from scratch. This will buffer some of the
churn of a fast changing industry and allow you to focus on your data, domain, and users.

Agents Companion

February 2025 72

11.	Agents in the enterprise: Agents are transforming the way we work by making us much
more productive, and the way automation can be accomplished. Knowledge workers will
increasingly be managing fleets of agents and novel UX will emerge. Google Agentspace
is a powerful tool allowing to put Enterprise Search, AI and AI Agents on top of company’s
data and workflows

Future Directions for Agent Research and Development: The field of AI agents is
undergoing rapid evolution. Key areas of ongoing research and development include:

•	 Advanced Evaluation Methods: Developing more robust and scalable evaluation
techniques, including process-based evaluation (focusing on reasoning), AI-assisted
evaluation, and standardized benchmarks.

•	 Multi-Agent Coordination: Improving the coordination and communication mechanisms
within multi-agent systems to enable more effective collaboration, task handling,
and reasoning.

•	 Real-World Adaptation: Creating agents that can adapt and learn in dynamic,
unpredictable real-world environments. Production systems like automotive AI
illustrate how agents must balance between on-device performance for critical
functions and cloud-based capabilities for complex tasks, often adapting to changing
connectivity conditions.

•	 Explainability and Interpretability: Making agent behavior more transparent and
understandable, allowing developers and users to gain deeper insights into their
decision-making processes.

•	 Long-Term Memory and Learning: Developing more sophisticated memory mechanisms
that allow agents to retain and utilize information over extended periods, enabling
continuous learning and adaptation.

Agents Companion

February 2025 73

•	 Agent Communication Protocols: Better defining how agents share tasks, knowledge,
and messages, especially across remote systems which are opaque.

•	 From Agents to contractors: In order for agents to get to next level of reliability and
utility, we will need to step up the definition of tasks, making them into contracts with clear
deliverables, validation mechanisms, and ability to negotiate ambiguities, similarly to how
we contract work from other companies.

Call to Action:

The future of AI is agentic. We encourage developers to embrace these concepts and
begin building the next generation of intelligent applications. Start experimenting with the
tools and techniques discussed in this whitepaper. Explore the resources available, such
as Google Agentspace, NotebookLM Enterprise, Vertex Eval Service, Cloud Observability,
and Vertex AI Search, to accelerate your development process. Dive into the provided code
examples, tutorials, and documentation to gain hands-on experience. Build, evaluate, iterate,
and contribute to the growing community of agent developers. The possibilities are limitless,
and the time to build is now! Specifically, get started with the code and Colab notebooks in
the references.

Agents Companion

February 2025 74

Endnotes

1.	 Shafran, I., Cao, Y. et al., 2022, 'ReAct: Synergizing Reasoning and Acting in Language Models'.
Available at: https://arxiv.org/abs/2210.03629.

2.	 Wei, J., Wang, X. et al., 2023, 'Chain-of-Thought Prompting Elicits Reasoning in Large Language Models'.
Available at: https://arxiv.org/pdf/2201.11903.pdf.

3.	 Wang, X. et al., 2022, 'Self-Consistency Improves Chain of Thought Reasoning in Language Models'.
Available at: https://arxiv.org/abs/2203.11171.

4.	 Diao, S. et al., 2023, 'Active Prompting with Chain-of-Thought for Large Language Models'.
Available at: https://arxiv.org/pdf/2302.12246.pdf.

5.	 Zhang, H. et al., 2023, 'Multimodal Chain-of-Thought Reasoning in Language Models'.
Available at: https://arxiv.org/abs/2302.00923.

6.	 Yao, S. et al., 2023, 'Tree of Thoughts: Deliberate Problem Solving with Large Language Models'.
Available at: https://arxiv.org/abs/2305.10601.

7.	 Long, X., 2023, 'Large Language Model Guided Tree-of-Thought'.
Available at: https://arxiv.org/abs/2305.08291.

8.	 Google. 'Google Gemini Application'. Available at: http://gemini.google.com.

9.	 Swagger. 'OpenAPI Specification'. Available at: https://swagger.io/specification/.

10.	Xie, M., 2022, 'How does in-context learning work? A framework for understanding the differences
fromtraditional supervised learning'. Available at: https://ai.stanford.edu/blog/understanding-incontext/.

11.	 Google Research. 'ScaNN (Scalable Nearest Neighbors)'.
Available at: https://github.com/google-research/google-research/tree/master/scann.

12.	 LangChain. 'LangChain'. Available at: https://python.langchain.com/v0.2/docs/introduction/.

13.	 Sokratis Kartakis, 2024, 'GenAI in Production: MLOps or GenAIOps?'. Available
at: https://medium.com/google-cloud/genai-in-production-mlops-or-genaiops-25691c9becd0.

14.	 Sokratis Kartakis, 2024 'Gen AI Ops, Operationalize Generative AI, A practical Guide'. Available at:
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a-practical-
guide-d5bedaa59d78.

https://arxiv.org/abs/2210.03629
https://arxiv.org/pdf/2201.11903.pdf
https://arxiv.org/abs/2203.11171
https://arxiv.org/pdf/2302.12246.pdf
https://arxiv.org/abs/2302.00923
https://arxiv.org/abs/2305.10601
https://arxiv.org/abs/2305.08291
http://gemini.google.com
https://swagger.io/specification/
https://ai.stanford.edu/blog/understanding-incontext/
https://github.com/google-research/google-research/tree/master/scann.
https://python.langchain.com/v0.2/docs/introduction/
https://medium.com/google-cloud/genai-in-production-mlops-or-genaiops-25691c9becd0
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a-practical- guide-d5bedaa59d7
https://medium.com/google-cloud/genaiops-operationalize-generative-ai-a-practical- guide-d5bedaa59d7

Agents Companion

February 2025 75

15.	 Cloud Trace overview. Available at: https://cloud.google.com/trace/docs/overview.

16.	 Berkeley Function-Calling Leaderboard (BFCL). Available at:
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html.

17.	 Karthik Narasimhan, et al. 2024, 'τ-bench'. Available at https://arxiv.org/abs/2406.12045.

18.	 Karthik Valmeekam, et al., 2023, 'PlanBench'. Available at: https://arxiv.org/abs/2206.10498.

19.	 Xiao Liu, et al., 2023, 'AgentBench'. Available at: https://arxiv.org/abs/2308.03688.

20.	Martin Iglesias, et al., 2025, 'DABStep' Available at: https://huggingface.co/spaces/adyen/DABstep.

21.	 LangSmith platform for agent observability.
Available at: https://docs.smith.langchain.com/evaluation/concepts#agents.

22.	Mingchen Zhuge, et al., 2024, 'Agent-as-a-Judge: Evaluate Agents with Agents'.
Available at: https://arxiv.org/abs/2410.10934.

23.	Multi-agent documentation from LangGraph.
Available at: https://langchain-ai.github.io/langgraph/concepts/multi_agent/.

24.	LangChain blog 2024, 'Multi-agent workflows'.
Available at: https://blog.langchain.dev/langgraph-multi-agent-workflows/.

25.	Vectorize blog 2024, 'How I finally got agentic RAG to work right'.
Available at: https://vectorize.io/how-i-finally-got-agentic-rag-to-work-right/.

26.	Vertex AI Search, product documentation. Available at: https://cloud.google.com/enterprise-search.

27.	 Vertex AI Search Builder APIs, product documentation.
Available at: https://cloud.google.com/generative-ai-app-builder/docs/builder-apis.

28.	Vertex AI RAG Engine, product documentation.
Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/rag-overview.

29.	Agentspace product documentation.
Available at: https://cloud.google.com/agentspace/agentspace-enterprise/docs/overview.

30.	NotebookLM Enterprise product documentation.
Available at: https://cloud.google.com/agentspace/notebooklm-enterprise/docs/overview.

https://cloud.google.com/trace/docs/overview
https://gorilla.cs.berkeley.edu/blogs/8_berkeley_function_calling_leaderboard.html
https://arxiv.org/abs/2406.12045
https://arxiv.org/abs/2206.10498
https://arxiv.org/abs/2308.03688
https://huggingface.co/spaces/adyen/DABstep
https://docs.smith.langchain.com/evaluation/concepts#agents
https://arxiv.org/abs/2410.10934
https://langchain-ai.github.io/langgraph/concepts/multi_agent/
https://blog.langchain.dev/langgraph-multi-agent-workflows/
https://vectorize.io/how-i-finally-got-agentic-rag-to-work-right/
https://cloud.google.com/enterprise-search
https://cloud.google.com/generative-ai-app-builder/docs/builder-apis
https://cloud.google.com/vertex-ai/generative-ai/docs/rag-overview
https://cloud.google.com/agentspace/agentspace-enterprise/docs/overview
https://cloud.google.com/agentspace/notebooklm-enterprise/docs/overview

Agents Companion

February 2025 76

31.	 Juraj Gottweis, et al., 2025, 'Accelerating scientific breakthroughs with an AI co-scientist'. Available at:
https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/.

32.	Hamsa Buvaraghan, et al. 2025, 'Announcing public beta of Gen AI Toolbox for Databases'. Available at:
https://cloud.google.com/blog/products/ai-machine-learning/announcing-gen-ai-toolbox
-for-databases-get-started-today?e=48754805.

33.	Google Cloud Integration Connectors, product documentation.
Available at: https://cloud.google.com/integration-connectors/docs.

34.	Apigee API Hub, product documentation.
Available at: https://cloud.google.com/apigee/docs/apihub/what-is-api-hub.

35.	Vertex AI Model Garden, product documentation.
Available at: https://cloud.google.com/model-garden.

36.	Gemini family of LLMs, product documentation.
Available at: https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-models.

37.	 Get Started Evaluating Agents with the Vertex Eval Service. Available at:
https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-agents.

38.	Irina Sigler, Ivan Nardini. Jan 2025 'Introducing Agent Evaluation in Vertex AI'. Available at:
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex
-ai-gen-ai-evaluation-service?e=48754805.

39.	Review sample agent evaluation notebooks for LangGraph, CrewAI, and LangChain.
Available at: https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/evaluation/.

40.	Review many sample agents, primarily beginner and intermediate level.
Available at: https://github.com/GoogleCloudPlatform/generative-ai/.

41.	 Review many sample agents, intermediate and advanced levels.
Available at: https://github.com/GoogleCloudPlatform/applied-ai-engineering-samples.

https://research.google/blog/accelerating-scientific-breakthroughs-with-an-ai-co-scientist/
https://cloud.google.com/blog/products/ai-machine-learning/announcing-gen-ai-toolbox -for-databases-
https://cloud.google.com/blog/products/ai-machine-learning/announcing-gen-ai-toolbox -for-databases-
https://cloud.google.com/integration-connectors/docs
https://cloud.google.com/apigee/docs/apihub/what-is-api-hub
https://cloud.google.com/model-garden
https://cloud.google.com/vertex-ai/generative-ai/docs/learn/models#gemini-models
https://cloud.google.com/vertex-ai/generative-ai/docs/models/evaluation-agents
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex -a
https://cloud.google.com/blog/products/ai-machine-learning/introducing-agent-evaluation-in-vertex -a
https://github.com/GoogleCloudPlatform/generative-ai/blob/main/gemini/evaluation/
https://github.com/GoogleCloudPlatform/generative-ai/
https://github.com/GoogleCloudPlatform/applied-ai-engineering-samples

	Introduction
	AgentOps
	Agent Success Metrics

	Agent Evaluation
	Assessing Agent Capabilities
	Evaluating Trajectory and Tool Use
	Evaluating the Final Response
	Human-in-the-Loop Evaluation
	More about Agent Evaluation

	Multiple Agents & Their Evaluation
	Understanding Multi-Agent Architectures
	Multi-Agent Design Patterns and Their Business Impact
	Important components of Agents
	Challenges in Multi-Agent systems
	Multi-Agent Evaluation

	Agentic RAG: A Critical Evolution in Retrieval-Augmented Generation
	Agentic RAG and its Importance
	Better Search, Better RAG

	Agents in the enterprise
	Manager of agents
	Google Agentspace
	NotebookLM Enterprise
	Google AgentSpace Enterprise

	From agents to contractors
	Contracts
	Contract Lifecycle
	Contract execution
	Contract Negotiation
	Contract Feedback
	Subcontracts

	Automotive AI: Real World Use of Multi-Agent Architecture
	Specialized Agents
	Conversational Navigation Agent
	Conversational Media Search Agent
	Message Composition Agent
	Car Manual Agent
	General Knowledge Agent

	Patterns in Use
	Hierarchical Pattern
	Diamond Pattern
	Peer-to-Peer
	Collaborative Pattern
	Response Mixer Agent
	Adaptive Loop Pattern

	Advantages of Multi-Agent Architecture for Automotive AI

	Agent Builder
	Summary
	Endnotes

