
 WSTG (Web
 Application Security

 Testing) OWASP -
 Mind Map

 Project

 Information Gathering

 Configuration and Deployment
 Management Testing

 https://github.com/OWASP/wstg/tree/
 master/document/4-Web_Application_
 Security_Testing

 https://owasp.org/www-project-web-
 security-testing-guide/latest/

 Search Engine Recon

 Use a search engine to search for
 potentially sensitive information. This may
 include:

 network diagrams and configurations;

 archived posts and emails by
 administrators or other key staff;

 logon procedures and username formats;

 usernames, passwords, and private keys;

 third-party, or cloud service configuration
 files;

 revealing error message content; and

 development, test, User Acceptance
 Testing (UAT), and staging versions of
 sites.

 Fingerprint web

 Techniques used for web server
 fingerprinting include banner grabbing,
 eliciting responses to malformed requests,
 and using automated tools to perform
 more robust scans that use a combination
 of tactics. The fundamental premise by
 which all these techniques operate is the
 same. They all strive to elicit some
 response from the web server which can
 then be compared to a database of known
 responses and behaviors, and thus
 matched to a known server type.

 Web Server Metafile

 Identify hidden or obfuscated paths and
 functionality through the analysis of
 metadata files.

 Extract and map other information that
 could lead to better understanding of the
 systems at hand.

 Enumerate Applications on Webserver

 Enumerate the applications within scope
 that exist on a web server.

 Review Webpage Content for Information
 Leakage

 Review webpage comments, metadata,
 and redirect bodies to find any information
 leakage.

 Gather JavaScript files and review the JS
 code to better understand the application
 and to find any information leakage.

 Identify if source map files or other front-
 end debug files exist.

 Identify Application Entry Points
 Identify possible entry and injection points
 through request and response analysis.

 Map Execution Paths Through Application

 Fingerprint Web Application Framework

 Map Application Architecture

 Map the target application and understand
 the principal workflows.

 Fingerprint the components being used by
 the web applications.

 Understand the architecture of the
 application and the technologies in use.

 Tools

 https://github.com/S3cur3Th1sSh1t/
 Pentest-Tools

 https://github.com/enaqx/awesome-
 pentest

 https://github.com/arch3rPro/
 PentestTools

 Web App PenTest Checklist
 Prepared by: Tushar Verma

 - **Recon Phase**

 - [] Identify web server, technologies
 and database

 - [] Subsidiary and Acquisition
 Enumeration

 - [] Reverse Lookup

 - [] ASN & IP Space Enumeration and
 Service Enumeration

 - [] Google Dorking

 - [] Github Recon

 - [] Directory Enumeration

 - [] IP Range Enumeration

 - [] JS Files Analysis

 - [] Subdomain Enumeration and
 Bruteforcing

 - [] Subdomain Takeover

 - [] Parameter Fuzzing

 - [] Port Scanning

 - [] Template-Based Scanning(Nuclei)

 - [] Wayback History

 - [] Broken Link Hijacking

 - [] Internet Search Engine Discovery

 - [] Misconfigured Cloud Storage

 - **Registration Feature Testing**

 - [] Check for duplicate registration/
 Overwrite existing user

 - [] Check for weak password policy

 - [] Check for reuse existing usernames

 - [] Check for insufficient email
 verification process

 - [] Weak registration implementation-
 Allows disposable email addresses

 - [] Weak registration implementation-
 Over HTTP

 - [] Overwrite default web application
 pages by specially crafted username
 registrations. => After registration, does
 your profile link appears something as [
 www.tushar.com/](http://www.chintan.
 com/chintan)tushar?

 a. If so, enumerate default folders of
 web application such as /images, /
 contact, /portfolio

 b. Do a registration using the username
 such as images, contact, portfolio

 c. Check if those default folders have
 been overwritten by your profile link or
 not."

 - **Session Management Testing**

 - [] Identify actual session cookie out
 of bulk cookies in the application

 - [] Decode cookies using some
 standard decoding algorithms such as
 Base64, hex, URL, etc

 - [] Modify cookie.session token value
 by 1 bit/byte. Then resubmit and do the
 same for all tokens. Reduce the amount of
 work you need to perform in order to
 identify which part of the token is actually
 being used and which is not

 - [] If self-registration is available and
 you can choose your username, log in with
 a series of similar usernames containing
 small variations between them, such as A,
 AA, AAA, AAAA, AAAB, AAAC, AABA, and
 so on. If another user-specific data is
 submitted at login or stored in user
 profiles (such as an email address)

 - [] Check for session cookies and
 cookie expiration date/time

 - [] Identify cookie domain scope

 - [] Check for HttpOnly flag in cookie

 - [] Check for Secure flag in cookie if
 the application is over SSL

 - [] Check for session fixation i.e. value
 of session cookie before and after
 authentication

 - [] Replay the session cookie from a
 different effective IP address or system to
 check whether the server maintains the
 state of the machine or not

 - [] Check for concurrent login through
 different machine/IP

 - [] Check if any user pertaining
 information is stored in cookie value or not
 If yes, tamper it with other user's data

 - [] Failure to Invalidate Session on (
 Email Change,2FA Activation)

 - **Authentication Testing**

 - [] Username enumeration

 - [] Bypass authentication using
 various SQL Injections on username and
 password field

 - Lack of password confirmation on

 - [] Change email address

 - [] Change password

 - [] Manage 2FA

 - [] Is it possible to use resources
 without authentication? Access violation

 - [] Check if user credentials are
 transmitted over SSL or not

 - [] Weak login function HTTP and
 HTTPS both are available

 - Test user account lockout mechanism
 on brute force attack

 Variation : If server blocks instant
 user requests, then try with time throttle
 option from intruder and repeat the
 process again.

 - [] Bypass rate limiting by
 tampering user agent to Mobile User agent

 - [] Bypass rate limiting by
 tampering user agent to Anonymous user
 agent

 - [] Bypass rate liniting by using null
 byte

 - [] Create a password wordlist using
 cewl command

 - Test Oauth login functionality

 - OAuth Roles

 - [] Resource Owner → User

 - [] Resource Server → Twitter

 - [] Client Application → [
 Twitterdeck.com](http://twitterdeck.com/)

 - [] Authorization Server → Twitter

 - [] client_id → Twitterdeck ID (
 This is a public, non-secret unique
 identifier_

 - [] client_secret → Secret Token
 known to the Twitter and Twitterdeck to
 generate access_tokens

 - [] response_type → Defines the
 token type e.g (code, token, etc.)

 - [] scope → The requested level
 of access Twitterdeck wants

 - [] redirect_uri → The URL user is
 redirected to after the authorization is
 complete

 - [] state → Main CSRF protection
 in OAuth can persist data between the user
 being directed to the authorization server
 and back again

 - [] grant_type → Defines the
 grant_type and the returned token type

 - [] code → The authorization
 code twitter generated, will be like ?
 code= , the code is used with client_id and
 client_secret to fetch an access_token

 - [] access_token → The token
 twitterdeck uses to make API requests on
 behalf of the user

 - [] refresh_token → Allows an
 application to obtain a new access_token
 without prompting the user

 - Code Flaws

 - [] Re-Using the code

 - [] Code Predict/Bruteforce and
 Rate-limit

 - [] Is the code for application X
 valid for application Y?

 - Redirect_uri Flaws

 - [] URL isn't validated at all: ?
 redirect_uri=https://attacker.com

 - [] Subdomains allowed (
 Subdomain Takeover or Open redirect on
 those subdomains): ?redirect_uri=https://
 sub.twitterdeck.com

 - [] Host is validated, path isn't
 �Chain open redirect): ?redirect_uri=
 https://twitterdeck.com/callback?
 redirectUrl=https://evil.com

 - [] Host is validated, path isn't (
 Referer leakages): Include external
 content on HTML page and leak code via
 Referer

 - [] Weak Regexes

 - [] Bruteforcing the URL encoded
 chars after host: redirect_uri=https://
 twitterdeck.com§FUZZ§

 - [] Bruteforcing the keywords
 whitelist after host (or on any whitelist
 open redirect filter): ?redirect_uri=https://
 §FUZZ§.com

 - [] URI validation in place: use
 typical open redirect payloads

 - State Flaws

 - [] Missing State parameter? (
 CSRF)

 - [] Predictable State parameter?

 - [] Is State parameter being
 verified?

 - Misc

 - [] Is client_secret validated?

 - [] Pre ATO using facebook
 phone-number signup

 - [] No email validation Pre ATO

 - Test 2FA Misconfiguration

 - [] Response Manipulation

 - [] Status Code

 - [] Manipulation

 - [] 2FA Code Leakage in Response

 - [] 2FA Code Reusability

 - [] Lack of Brute-Force Protection

 - [] Missing 2FA Code Integrity
 Validation

 - [] With null or 000000

 - **My Account (Post Login) Testing**

 - [] Find parameter which uses active
 account user id. Try to tamper it in order
 to change the details of the other accounts

 - [] Create a list of features that are
 pertaining to a user account only. Change
 Email Change Password -Change account
 details (Name, Number, Address, etc.) Try
 CSRF

 - [] Post login change email id and
 update with any existing email id. Check if
 its getting validated on server side or not.
 Does the application send any new email
 confirmation link to a new user or not?
 What if a user does not confirm the link in
 some time frame?

 - [] Open profile picture in a new tab
 and check the URL. Find email id/user id
 info. EXIF Geolocation Data Not Stripped
 From Uploaded Images.

 - [] Check account deletion option if
 application provides it and confirm that
 via forgot password feature

 - [] Change email id, account id, user id
 parameter and try to brute force other
 user's password

 - [] Check whether application re
 authenticates for performing sensitive
 operation for post authentication features

 - **Forgot Password Testing**

 - [] Failure to invalidate session on
 Logout and Password reset

 - [] Check if forget password reset link/
 code uniqueness

 - [] Check if reset link does get expire
 or not if its not used by the user for certain
 amount of time

 - [] Find user account identification
 parameter and tamper Id or parameter
 value to change other user's password

 - [] Check for weak password policy

 - [] Weak password reset
 implementation Token is not invalidated
 after use

 - [] If reset link has another param such
 as date and time, then. Change date and
 time value in order to make active & valid
 reset link

 - [] Check if security questions are
 asked? How many guesses allowed? -->
 Lockout policy maintained or not?

 - [] Add only spaces in new password
 and confirmed password. Then Hit enter
 and see the result

 - [] Does it display old password on the
 same page after completion of forget
 password formality?

 - [] Ask for two password reset link and
 use the older one from user's email

 - [] Check if active session gets
 destroyed upon changing the password or
 not?

 - [] Weak password reset
 implementation Password reset token sent
 over HTTP

 - [] Send continuous forget password
 requests so that it may send sequential
 tokens

 - **Contact Us Form Testing**

 - [] Is CAPTCHA implemented on
 contact us form in order to restrict email
 flooding attacks?

 - [] Does it allow to upload file on the
 server?

 - [] Blind XSS

 - **Product Purchase Testing**

 - Buy Now

 - [] Tamper product ID to purchase
 other high valued product with low prize

 - [] Tamper product data in order to
 increase the number of product with the
 same prize

 - Gift/Voucher

 - [] Tamper gift/voucher count in the
 request (if any) to increase/decrease the
 number of vouchers/gifts to be used

 - [] Tamper gift/voucher value to
 increase/decrease the value of the
 voucher in terms of money. (e.g. $100 is
 given as a voucher, tamper value to
 increase, decrease money)

 - [] Reuse gift/voucher by using old
 gift values in parameter tampering

 - [] Check the uniqueness of gift/
 voucher parameter and try guessing other
 gift/voucher code

 - [] Use parameter pollution
 technique to add the same voucher twice
 by adding same parameter name and value
 again with & in the BurpSuite request

 - Add/Delete Product from Cart

 - [] Tamper user id to delete
 products from other user's cart

 - [] Tamper cart id to add/delete
 products from other user's cart

 - [] Identify cart id/user id for cart
 feature to view the added items from other
 user's account

 - Address

 - [] Tamper BurpSuite request to
 change other user's shipping address to
 yours

 - [] Try stored XSS by adding XSS
 vector on shipping address

 - [] Use parameter pollution
 technique to add two shipping address
 instead of one trying to manipulate
 application to send same item on two
 shipping address

 - Place Order

 - [] Tamper payment options
 parameter to change the payment method.
 E.g. Consider some items cannot be
 ordered for cash on delivery but tampering
 request parameters from debit/credit/
 PayPal/net banking option to cash on
 delivery may allow you to

 place order for that particular item

 - [] Tamper the amount value for
 payment manipulation in each main and
 sub requests and responses

 - [] Check if CVV is going in
 cleartext or not

 - [] Check if the application itself
 processes your card details and then
 performs a transaction or it calls any third-
 party payment processing company to
 perform a transaction

 - Track Order

 - [] Track other user's order by
 guessing order tracking number

 - [] Brute force tracking number
 prefix or suffix to track mass orders for
 other users

 - Wish list page testing

 - [] Check if a user A can add/
 remote products in Wishlist of other user
 B’s account

 - [] Check if a user A can add
 products into user B’s cart from his/her (
 user A’s) Wishlist section.

 - Post product purchase testing

 - [] Check if user A can cancel orders
 for user B’s purchase

 - [] Check if user A can view/check
 orders already placed by user B

 - [] Check if user A can modify the
 shipping address of placed order by user B

 - Out of band testing

 - [] Can user order product which is
 out of stock?

 - **Banking Application Testing**

 - Billing Activity

 - [] Check if user 'A' can view the
 account statement for user 'B'

 - [] Check if user 'A' can view the
 transaction report for user 'B'

 - [] Check if user 'A' can view the
 summary report for user 'B'

 - [] Check if user 'A' can register for
 monthly/weekly account statement via
 email behalf of user 'B'

 - [] Check if user 'A' can update the
 existing email id of user 'B' in order to
 retrieve monthly/weekly account summary

 - Deposit/Loan/Linked/External
 Account Checking

 - [] Check if user 'A' can view the
 deposit account summary of user 'B'

 - [] Check for account balance
 tampering for Deposit accounts

 - Tax Deduction Inquiry Testing

 - [] Check if user 'A' with it's
 customer id 'a' can see the tax deduction
 details of user 'B' by tampering his/her
 customer id 'b'

 - [] Check parameter tampering for
 increasing and decreasing interest rate,
 interest amount, and tax refund

 - [] Check if user 'A' can download
 the TDS details of user 'B’

 - [] Check if user 'A' can request for the
 cheque book behalf of user ‘B’.

 - Fixed Deposit Account Testing

 - [] Check if is it possible for user 'A'
 to open FD account behalf of user 'B'

 - [] Check if Can user open FD
 account with the more amount than the
 current account balance

 - Stopping Payment on basis of cheque/
 date range

 - [] Can user 'A' stop the payment of
 user 'B' via cheque number

 - [] Can user 'A' stop the payment on
 basis of date range for user 'B’

 - Status Enquiry Testing

 - [] Can user 'A' view the status
 enquiry of user 'B'

 - [] Can user 'A' modify the status
 enquiry of user 'B'

 - [] Can user 'A' post and enquiry
 behalf of user 'B' from his own account

 - Fund transfer testing

 - [] Is it possible to transfer funds to
 user 'C' instead of user 'B' from the user 'A'
 which was intended to transfer from user '
 A' to user 'B'

 - [] Can fund transfer amount be
 manipulated?

 - [] Can user 'A' modify the payee
 list of user 'B' by parameter manipulation
 using his/her own account

 - [] Is it possible to add payee
 without any proper validation in user 'A' 's
 own account or to user 'B' 's account

 - Schedule transfer testing

 - [] Can user 'A' view the schedule
 transfer of user 'B'

 - [] Can user 'A' change the details
 of schedule transfer for user 'B’

 - Testing of fund transfer via NEFT

 - [] Amount manipulation via NEFT
 transfer

 - [] Check if user 'A' can view the
 NEFT transfer details of user 'B’

 - Testing for Bill Payment

 - [] Check if user can register payee
 without any checker approval

 - [] Check if user 'A' can view the
 pending payments of user 'B'

 - [] Check if user 'A' can view the
 payment made details of user 'B'

 - **Open Redirection Testing**

 - Common injection parameters


         ```markup

         /{payload}

         ?next={payload}

         ?url={payload}

         ?target={payload}

         ?rurl={payload}

         ?dest={payload}

         ?destination={payload}

         ?redir={payload}

         ?redirect_uri={payload}

         ?redirect_url={payload}

         ?redirect={payload}

         /redirect/{payload}

         /cgi-bin/redirect.cgi?{payload}

         /out/{payload}

         /out?{payload}

         ?view={payload}

         /login?to={payload}

         ?image_url={payload}

         ?go={payload}

         ?return={payload}

         ?returnTo={payload}

         ?return_to={payload}

         ?checkout_url={payload}

         ?continue={payload}

         ?return_path={payload}

         ```


 - [] Use burp 'find' option in order to
 find parameters such as URL, red, redirect,
 redir, origin, redirect_uri, target etc

 - [] Check the value of these parameter
 which may contain a URL

 - [] Change the URL value to [www.
 tushar.com](http://www.chintan.com/)
 and check if gets redirected or not

 - [] Try Single Slash and url encoding

 - [] Using a whitelisted domain or
 keyword

 - [] Using // to bypass http blacklisted
 keyword

 - [] Using https: to bypass //
 blacklisted keyword

 - [] Using \\ to bypass // blacklisted
 keyword

 - [] Using \/\/ to bypass // blacklisted
 keyword

 - [] Using null byte %00 to bypass
 blacklist filter

 - [] Using ° symbol to bypass

 - **Host Header Injection**

 - [] Supply an arbitrary Host header

 - [] Check for flawed validation

 - Send ambiguous requests

 - [] Inject duplicate Host headers

 - [] Supply an absolute URL

 - [] Add line wrapping

 - [] Inject host override headers

 - **SQL Injection Testing**

 - Entry point detection

 - [] Simple characters

 - [] Multiple encoding

 - [] Merging characters

 - [] Logic Testing

 - [] Weird characters

 - Use SQLmap to identify vulnerabile
 parameters

 - [] Fill form in browser GUI submit it
 normally

 - [] Go to history tab in burpsuite
 and find the relevent request

 - [] Right click and select the option "
 copy to file"

 - [] Save file as anyname.txt

 - [] SQLmap command to run

 - [] python [sqlmap.py](http://
 sqlmap.py/) r ~/Desktop/textsqli.txt
 proxy= [http://127.0.0.1:8080](http://127.0.
 0.1:8080/)

 - [] Run SQL injection scanner on all
 requests

 - Bypassing WAF

 - [] Using Null byte before SQL query

 - [] Using SQL inline comment
 sequence

 - [] URL encoding

 - [] Changing Cases (uppercase/
 lowercase)

 - [] Use SQLMAP tamper scripts

 - Time Delays


         ```markup

               Oracle        dbms_pipe.receive_
 message(('a'),10)

               

               Microsoft    WAITFOR DELAY '0:0:
 10'

               

               PostgreSQL    SELECT pg_sleep(10)

               

               MySQL        SELECT sleep(10)

         ```


 - Conditional Delays


         ```markup

               Oracle        SELECT CASE WHEN (
 YOUR-CONDITION-HERE) THEN 'a'||dbms_
 pipe.receive_message(('a'),10) ELSE NULL 
 END FROM dual

               

               Microsoft    IF (YOUR-CONDITION-
 HERE) WAITFOR DELAY '0:0:10'

               

               PostgreSQL    SELECT CASE 
 WHEN (YOUR-CONDITION-HERE) THEN pg_
 sleep(10) ELSE pg_sleep(0) END

               

               MySQL        SELECT IF(YOUR-
 CONDITION-HERE,sleep(10),'a')

         ```


 - **Cross-Site Scripting Testing**

 - [] Try XSS using QuickXSS tool by
 theinfosecguy

 - [] Upload file using '"><img src=x
 onerror=alert(document.domain)>.txt

 - [] If script tags are banned, use <h1>
 and other HTML tags

 - [] If output is reflected back inside
 the JavaScript as a value of any variable
 just use alert(1)

 - [] if " are filtered then use this
 payload /><img src=d onerror=confirm(/
 tushar/);>

 - [] Upload a JavaScript using Image file

 - [] Unusual way to execute your JS
 payload is to change method from POST
 to GET. It bypasses filters sometimes

 - Tag attribute value

 - [] Input landed -<input type=”text”
 name=”state” value=”INPUT_FROM_ USER”>

 - [] Payload to be inserted -“
 onfocus=”alert(document.cookie)"

 - [] Syntax Encoding payload “%
 3cscript%3ealert(document.cookie)%3c/
 script%3e"

 - XSS filter evasion

 - [] < and > can be replace with html
 entities < and >

 - [] You can try an XSS polyglot.Eg:-
 javascript:/*-></title></style></
 textarea></script></xmp><svg/
 onload='+/"/+/onmouseover=1/+/[*/[]/+
 alert(1)//'>

 - XSS Firewall Bypass

 - [] Check if the firewall is blocking
 only lowercase

 - [] Try to break firewall regex with
 the new line(\r\n)

 - [] Try Double Encoding

 - [] Testing for recursive filters

 - [] Injecting anchor tag without
 whitespaces

 - [] Try to bypass whitespaces using
 Bullet

 - [] Try to change request method

 - **CSRF Testing**

 - [] Validation of CSRF token depends
 on request method

 - [] Validation of CSRF token depends
 on token being present

 - [] CSRF token is not tied to the user
 session

 - [] CSRF token is tied to a non-session
 cookie

 - [] Validation of Referer depends on
 header being present

 - **SSO Vulnerabilities**

 - [] If internal.company.com Redirects
 You To SSO e.g. auth.company.com, Do
 FUZZ

 On Internal.company.com

 - [] If company.com/internal Redirects
 You To SSO e.g. Google login, Try To Insert

 public Before internal e.g. company.
 com/public/internal To Gain Access
 Internal

 - [] Try To Craft SAML Request With
 Token And Send It To The Server And
 Figure

 Out How Server Interact With This

 - [] If There Is
 AssertionConsumerServiceURL In Token
 Request Try To Insert Your

 Domain e.g. http://me.com As Value To
 Steal The Token

 - [] If There Is
 AssertionConsumerServiceURL In Token
 Request Try To Do FUZZ

 On Value Of
 AssertionConsumerServiceURL If It Is Not
 Similar To Origin

 - [] If There Is Any UUID, Try To Change
 It To UUID Of Victim Attacker e.g. Email Of

 Internal Employee Or Admin Account etc

 - [] Try To Figure Out If The Server
 Vulnerable To XML Signature Wrapping
 OR Not?

 - [] Try To Figure Out If The Server
 Checks The Identity Of The Signer OR Not?

 - [] Try To Inject XXE Payloads At The
 Top Of The SAML Response

 - [] Try To Inject XSLT Payloads Into
 The Transforms Element As A Child

 Node Of The SAML Response

 - [] If Victim Can Accept Tokens Issued
 By The Same Identity Provider That
 Services

 Attacker, So You Can Takeover Victim
 Account

 - [] While Testing SSO Try To search In
 Burp Suite About URLs In Cookie Header e.
 g.

 Host=IP; If There Is Try To Change IP To
 Your IP To Get SSRF

 - **XML Injection Testing**

 - [] Change the content type to text/
 xml then insert below code. Check via
 repeater


     ```markup

     <?xml version="1.0" encoding="ISO 8859 
 1"?>

     <!DOCTYPE tushar [

     <!ELEMENT tushar ANY

     <!ENTITY xxe SYSTEM "file:///etc/
 passwd" >]><tushar>&xxe;</

     <!ENTITY xxe SYSTEM "file:///etc/
 hosts" >]><tushar>&xxe;</

     <!ENTITY xxe SYSTEM "file:///proc/self/
 cmdline" >]><tushar>&xxe;</

     <!ENTITY xxe SYSTEM "file:///proc/
 version" >]><tushar>&xxe;</

     ```


 - [] Blind XXE with out-of-band
 interaction

 - **Cross-origin resource sharing (CORS)**

 - [] Errors parsing Origin headers

 - [] Whitelisted null origin value

 - **Server-side request forgery (SSRF)**

 - Common injection parameters


         ```markup

         "access=", 

         "admin=", 

         "dbg=", 

         "debug=", 

         "edit=", 

         "grant=", 

         "test=", 

         "alter=", 

         "clone=", 

         "create=", 

         "delete=", 

         "disable=", 

         "enable=", 

         "exec=", 

         "execute=", 

         "load=", 

         "make=", 

         "modify=", 

         "rename=", 

         "reset=", 

         "shell=", 

         "toggle=", 

         "adm=", 

         "root=", 

         "cfg=",

         "dest=", 

         "redirect=", 

         "uri=", 

         "path=", 

         "continue=", 

         "url=", 

         "window=", 

         "next=", 

         "data=", 

         "reference=", 

         "site=", 

         "html=", 

         "val=", 

         "validate=", 

         "domain=", 

         "callback=", 

         "return=", 

         "page=", 

         "feed=", 

         "host=", 

         "port=", 

         "to=", 

         "out=",

         "view=", 

         "dir=", 

         "show=", 

         "navigation=", 

         "open=",

         "file=",

         "document=",

         "folder=",

         "pg=",

         "php_path=",

         "style=",

         "doc=",

         "img=",

         "filename="

         ```


 - [] Try basic localhost payloads

 - Bypassing filters

 - [] Bypass using HTTPS

 - [] Bypass with [::]

 - [] Bypass with a domain redirection

 - [] Bypass using a decimal IP
 location

 - [] Bypass using IPv6/IPv4 Address
 Embedding

 - [] Bypass using malformed urls

 - [] Bypass using rare address(short-
 hand IP addresses by dropping the zeros)

 - [] Bypass using enclosed
 alphanumerics

 - Cloud Instances

 - AWS


             ```markup

             http://instance-data

             http://169.254.169.254

             http://169.254.169.254/latest/user-
 data

             http://169.254.169.254/latest/user-
 data/iam/security-credentials/[ROLE 
 NAME]

             http://169.254.169.254/latest/
 meta-data/

             http://169.254.169.254/latest/
 meta-data/iam/security-credentials/[
 ROLE NAME]

             http://169.254.169.254/latest/
 meta-data/iam/security-credentials/
 PhotonInstance

             http://169.254.169.254/latest/
 meta-data/ami-id

             http://169.254.169.254/latest/
 meta-data/reservation-id

             http://169.254.169.254/latest/
 meta-data/hostname

             http://169.254.169.254/latest/
 meta-data/public-keys/

             http://169.254.169.254/latest/
 meta-data/public-keys/0/openssh-key

             http://169.254.169.254/latest/
 meta-data/public-keys/[ID]/openssh-key

             http://169.254.169.254/latest/
 meta-data/iam/security-credentials/
 dummy

             http://169.254.169.254/latest/
 meta-data/iam/security-credentials/
 s3access

             http://169.254.169.254/latest/
 dynamic/instance-identity/document

             ```


 - Google Cloud


             ```markup

             http://169.254.169.254/
 computeMetadata/v1/

             http://metadata.google.internal/
 computeMetadata/v1/

             http://metadata/
 computeMetadata/v1/

             http://metadata.google.internal/
 computeMetadata/v1/instance/hostname

             http://metadata.google.internal/
 computeMetadata/v1/instance/id

             http://metadata.google.internal/
 computeMetadata/v1/project/project-id

             ```


 - Digital Ocean


             ```markup

             curl http://169.254.169.254/
 metadata/v1/id

             http://169.254.169.254/metadata/
 v1.json

             http://169.254.169.254/metadata/
 v1/ 

             http://169.254.169.254/metadata/
 v1/id

             http://169.254.169.254/metadata/
 v1/user-data

             http://169.254.169.254/metadata/
 v1/hostname

             http://169.254.169.254/metadata/
 v1/region

             http://169.254.169.254/metadata/
 v1/interfaces/public/0/ipv6/address

             ```


 - Azure


             ```

             http://169.254.169.254/metadata/
 v1/maintenance

             http://169.254.169.254/metadata/
 instance?api-version=2017-04-02

             http://169.254.169.254/metadata/
 instance/network/interface/0/ipv4/
 ipAddress/0/publicIpAddress?api-version=
 2017-04-02&format=text

             ```


 - [] Bypassing via open redirection

 - **File Upload Testing**

 - [] upload the malicious file to the
 archive upload functionality and observe
 how the application responds

 - [] upload a file and change its path to
 overwrite an existing system file

 - [] Large File Denial of Service

 - [] Metadata Leakage

 - [] ImageMagick Library Attacks

 - [] Pixel Flood Attack

 - Bypasses

 - [] Null Byte (%00) Bypass

 - [] Content-Type Bypass

 - [] Magic Byte Bypass

 - [] Client-Side Validation Bypass

 - [] Blacklisted Extension Bypass

 - [] Homographic Character Bypass

 - **CAPTCHA Testing**

 - [] Missing Captcha Field Integrity
 Checks

 - [] HTTP Verb Manipulation

 - [] Content Type Conversion

 - [] Reusuable Captcha

 - [] Check if captcha is retrievable with
 the absolute path such as

 [www.tushar.com/internal/captcha/
 images/24.png](http://www.chintan.com/
 internal/captcha/images/24.png)

 - [] Check for the server side validation
 for CAPTCHA.Remove captcha block from
 GUI using firebug addon and submit
 request to the server

 - [] Check if image recognition can be
 done with OCR tool?

 - **JWT Token Testing**

 - [] Brute-forcing secret keys

 - [] Signing a new token with the
 “none” algorithm

 - [] Changing the signing algorithm of
 the token (for fuzzing purposes)

 - [] Signing the asymmetrically-signed
 token to its symmetric algorithm match (
 when you have the original public key)

 - **Websockets Testing**

 - [] Intercepting and modifying
 WebSocket messages

 - [] Websockets MITM attempts

 - [] Testing secret header websocket

 - [] Content stealing in websockets

 - [] Token authentication testing in
 websockets

 - **GraphQL Vulnerabilities Testing**

 - [] Inconsistent Authorization Checks

 - [] Missing Validation of Custom
 Scalars

 - [] Failure to Appropriately Rate-limit

 - [] Introspection Query Enabled/
 Disabled

 - **WordPress Common Vulnerabilities**

 - [] XSPA in wordpress

 - [] Bruteforce in wp-login.php

 - [] Information disclosure wordpress
 username

 - [] Backup file wp-config exposed

 - [] Log files exposed

 - [] Denial of Service via load-styles.
 php

 - [] Denial of Service via load-scripts.
 php

 - [] DDOS using xmlrpc.php

 - **Denial of Service**

 - [] Cookie bomb

 - [] Pixel flood, using image with a
 huge pixels

 - [] Frame flood, using GIF with a huge
 frame

 - [] ReDoS (Regex DoS)

 - [] CPDoS (Cache Poisoned Denial of
 Service)

 - **Other Test Cases (All Categories)**

 - Check for security headers and at least

 - [] X Frame Options

 - [] X-XSS header

 - [] HSTS header

 - [] CSP header

 - [] Referrer Policy

 - [] Cache Control

 - [] Public key pins

 - Testing for Role authorization

 - [] Check if normal user can access
 the resources of high privileged users?

 - [] Forced browsing

 - [] Insecure direct object reference

 - [] Parameter tampering to switch
 user account to high privileged user

 - Blind OS command injection

 - [] using time delays

 - [] by redirecting output

 - [] with out-of-band interaction

 - [] with out-of-band data
 exfiltration

 - [] Command injection on CSV export (
 Upload/Download)

 - [] CSV Excel Macro Injection

 - [] If you find phpinfo.php file, check
 for the configuration leakage and try to
 exploit any network vulnerability.

 - [] Parameter Pollution Social Media
 Sharing Buttons

 - Broken Cryptography

 - [] Cryptography Implementation
 Flaw

 - [] Encrypted Information
 Compromised

 - [] Weak Ciphers Used for
 Encryption

 - Web Services Testing

 - [] Test for directory traversal

 - [] Web services documentation
 disclosure Enumeration of services, data
 types, input types boundaries and limits

 Information Gathering

 Domain Name

 Subdomain

 Google Hacking

 GHDB - Google Hack Database

 SearchDiggity - SearchDiggity 3.1 is the
 primary attack tool of the Google Hacking
 Diggity Project

 Katana - A Python Tool For google Hacking

 uDork - uDork is a script written in Bash
 Scripting that uses advanced Google
 search techniques to obtain sensitive
 information in files or directories, find IoT
 devices, detect versions of web
 applications, and so on.

 Pagodo - pagodo (Passive Google Dork) -
 Automate Google Hacking Database
 scraping and searching .

 Github

 GitHacker - 🕷 A Git source leak exploit
 tool that restores the entire Git repository,
 including data from stash, for white-box
 auditing and analysis of developers' mind.

 GitGraber - gitGraber is a tool developed
 in Python3 to monitor GitHub to search
 and find sensitive data in real time for
 different online services.

 GitMiner - Tool for advanced mining for
 content on Github.

 Gitrob - Reconnaissance tool for GitHub
 organizations.

 SVN

 svnExploit - Support for SVN source code
 disclosure of full version and Dump it.

 SvnHack - SvnHack is a SVN folder
 disclosure exploit.

 Port Scan

 Nmap | Zenmap - Free and open source
 utility for network discovery and security
 auditing

 Masscan - TCP port scanner, spews SYN
 packets asynchronously

 Ports - Common service ports and
 exploitations

 Goby - Attack surface mapping

 Goscan - Interactive Network Scanner

 NimScan - 🚀 Fast Port Scanner 🚀

 RustScan - 🤖 The Modern Port Scanner
 🤖

 OSINT

 theHarvester- E-mails, subdomains and
 names Harvester - OSINT

 SpiderFoot - SpiderFoot automates OSINT
 for threat intelligence and mapping your
 attack surface.

 FOCA - Tool to find metadata and hidden
 information in the documents.

 Amass - In-depth Attack Surface Mapping
 and Asset Discovery

 Censys-subdomain-finder - Perform
 subdomain enumeration using the
 certificate transparency logs from Censys.

 EmailHarvester - Email addresses harvester

 Finalrecon - The Last Web Recon Tool You'
 ll Need.

 LittleBrother - Information gathering (
 OSINT) on a person (EU)

 Phishing

 gophish - Open-Source Phishing Toolkit

 AdvPhishing - This is Advance Phishing
 Tool ! OTP PHISHING

 SocialFish - Educational Phishing Tool &
 Information Collector

 Zphisher - An automated phishing tool
 with 30+ templates. This Tool is made for
 educational purpose only ! Author will not
 be responsible for any misuse of this
 toolkit !

 Nexphisher - Advanced Phishing tool for
 Linux & Termux

 Vulnerability Analysis

 Fuzzing

 Vulnerability Scanner

 Struts-Scan - Struts2 vulnerability
 detection and utilization tools

 Nikto - Nikto is an Open Source (GPL) web
 server scanner which performs
 comprehensive tests against web servers
 for multiple items

 W3af - Web application attack and audit
 framework, the open source web
 vulnerability scanner

 Openvas - The world's most advanced
 Open Source vulnerability scanner and
 manager

 Openvas Docker

 Archery - Open Source Vulnerability
 Assessment and Management helps
 developers and pentesters to perform
 scans and manage vulnerabilities

 Taipan - Web application vulnerability
 scanner

 Arachni - Web Application Security
 Scanner Framework

 Web Applications

 CMS & Framwork Identification

 AngelSword - CMS vulnerability detection
 framework

 WhatWeb - Next generation web scanner

 Wappalyzer - Cross-platform utility that
 uncovers the technologies used on
 websites

 Whatruns - A free browser extension that
 helps you identify technologies used on
 any website at the click of a button (Just
 for chrome)

 WhatCMS - CMS Detection and Exploit Kit
 based on Whatcms.org API

 CMSeeK - CMS Detection and Exploitation
 suite - Scan WordPress, Joomla, Drupal
 and over 180 other CMSs

 Online Tools

 Yunsee - Online website for to find the
 CMS footprint

 Bugscaner - A simple online fingerprint
 identification system that supports
 hundreds of cms source code recognition

 WhatCMS online - CMS Detection and
 Exploit Kit website Whatcms.org

 Tscan - A online tool to get the
 informathion of website

 TideFinger - Fingerprinter Tool from
 TideSec Team

 Web Applications Proxies

 Burpsuite - Burpsuite is a graphical tool for
 testing Web application security

 ZAP One of the world’s most popular free
 security tools

 Mitmproxy - An interactive TLS-capable
 intercepting HTTP proxy for penetration
 testers and software developers.

 Broxy - An HTTP/HTTPS intercept proxy
 written in Go.

 Web Crawlers & Directory Brute Force

 Dirbrute - Multi-thread WEB directory
 blasting tool (with dics inside)

 Dirbuster - DirBuster is a multi threaded
 java application designed to brute force
 directories and files names on web/
 application servers

 Docker Scanners

 Fuxi-Scanner - open source network
 security vulnerability scanner, it comes
 with multiple functions.

 Xunfeng - The patrol is a rapid emergency
 response and cruise scanning system for
 enterprise intranets

 WebMap - Nmap Web Dashboard and
 Reporting

 Test Network Infrastructure Configuration

 Review the applications' configurations set
 across the network and validate that they
 are not vulnerable.

 Validate that used frameworks and
 systems are secure and not susceptible to
 known vulnerabilities due to unmaintained
 software or default settings and
 credentials.

 Test Application Platform Configuration

 Ensure that defaults and known files have
 been removed.

 Validate that no debugging code or
 extensions are left in the production
 environments.

 Review the logging mechanisms set in
 place for the application.

 Test File Extensions Handling for Sensitive
 Information

 Dirbust sensitive file extensions, or
 extensions that might contain raw data (e.
 g. scripts, raw data, credentials, etc.).

 Validate that no system framework
 bypasses exist on the rules set.

 Review Old Backup and Unreferenced Files
 for Sensitive Information

 Find and analyse unreferenced files that
 might contain sensitive information.

 Enumerate Infrastructure and Application
 Admin Interfaces

 Identify hidden administrator interfaces
 and functionality.

 Test HTTP Methods

 Enumerate supported HTTP methods.

 Test for access control bypass.

 Test XST vulnerabilities.

 Test HTTP method overriding techniques.

 Test HTTP Strict Transport Security Review the HSTS header and its validity.

 Test RIA Cross Domain Policy Review and validate the policy files.

 Test File Permission
 Review and identify any rogue file
 permissions.

 Test for Subdomain Takeover

 Enumerate all possible domains (previous
 and current).

 Identify forgotten or misconfigured
 domains.

 Test Cloud Storage

 Assess that the access control
 configuration for the storage services is
 properly in place.

 Testing for Content Security Policy

 Review the Content-Security-Policy
 header or meta element to identify
 misconfigurations.

 References

 Apache

 Apache Security, by Ivan Ristic, O’reilly,
 March 2005.

 Apache Security Secrets: Revealed (
 Again), Mark Cox, November 2003

 Apache Security Secrets: Revealed,
 ApacheCon 2002, Las Vegas, Mark J Cox,
 October 2002

 Performance Tuning

 Lotus Domino

 Lotus Security Handbook, William Tworek
 et al., April 2004, available in the IBM
 Redbooks collection

 Lotus Domino Security, an X-force white-
 paper, Internet Security Systems,
 December 2002

 Hackproofing Lotus Domino Web Server,
 David Litchfield, October 2001

 Microsoft IIS

 Security Best Practices for IIS 8

 CIS Microsoft IIS Benchmarks

 Securing Your Web Server (Patterns and
 Practices), Microsoft Corporation, January
 2004

 IIS Security and Programming
 Countermeasures, by Jason Coombs

 From Blueprint to Fortress: A Guide to
 Securing IIS 5.0, by John Davis, Microsoft
 Corporation, June 2001

 Secure Internet Information Services 5
 Checklist, by Michael Howard, Microsoft
 Corporation, June 2000

 Red Hat’s (formerly Netscape’s) iPlanet

 Guide to the Secure Configuration and
 Administration of iPlanet Web Server,
 Enterprise Edition 4.1, by James M Hayes,
 The Network Applications Team of the
 Systems and Network Attack Center (
 SNAC), NSA, January 2001

 WebSphere

 IBM WebSphere V5.0 Security, WebSphere
 Handbook Series, by Peter Kovari et al.,
 IBM, December 2002.

 IBM WebSphere V4.0 Advanced Edition
 Security, by Peter Kovari et al., IBM, March
 2002.

 General

 Logging Cheat Sheet, OWASP

 SP 800-92 Guide to Computer Security
 Log Management, NIST

 PCI DSS v3.2.1 Requirement 10 and PA-DSS
 v3.2 Requirement 4, PCI Security
 Standards Council

 Generic:

 CERT Security Improvement Modules:
 Securing Public Web Servers

 Cirt: Default Password list

 FuzzDB can be used to do brute force
 browsing admin login path

 Common admin or debugging parameters

 Authentication Testing

 Testing for Default Credentials

 Determine whether the application has any
 user accounts with default passwords.

 Review whether new user accounts are
 created with weak or predictable
 passwords.

 Testing for Bypassing Authentication
 Schema

 Ensure that authentication is applied
 across all services that require it.

 Testing for Vulnerable Remember
 Password

 Validate that the generated session is
 managed securely and do not put the user'
 s credentials in danger.

 Testing for Browser Cache Weaknesses

 Review if the application stores sensitive
 information on the client-side.

 Review if access can occur without
 authorization.

 Input Validation Testing

 https://github.com/OWASP/wstg/tree/
 master/document/4-Web_Application_
 Security_Testing/07-Input_Validation_
 Testing

 Testing for Reflected Cross Site Scripting

 Identify variables that are reflected in
 responses.

 Assess the input they accept and the
 encoding that gets applied on return (if
 any).

 Testing for Stored Cross Site Scripting

 Identify stored input that is reflected on
 the client-side.

 Assess the input they accept and the
 encoding that gets applied on return (if
 any).

 Testing for SQL Injection

 Identify SQL injection points.

 Assess the severity of the injection and the
 level of access that can be achieved
 through it.

 Testing for SSI Injection
 Identify SSI injection points.

 Assess the severity of the injection.

 Testing for Code Injection

 Identify injection points where you can
 inject code into the application.

 Assess the injection severity.

 Testing for Server-side Template Injection

 Detect template injection vulnerability
 points.

 Identify the templating engine.

 Build the exploit.

 Testing for Server-Side Request Forgery

 Identify SSRF injection points.

 Test if the injection points are exploitable.

 Asses the severity of the vulnerability.

 Testing for Command Injection
 Identify and assess the command injection
 points.

 Testing for Improper Error Handling
 Identify existing error output.

 Analyze the different output returned.

 Client-Side Testing

 Testing for DOM-Based Cross Site Scripting

 Identify DOM sinks.

 Build payloads that pertain to every sink
 type.

 Testing for JavaScript Execution
 Identify sinks and possible JavaScript
 injection points.

 Testing for HTML Injection
 Identify HTML injection points and assess
 the severity of the injected content.

 Testing for Client-side URL Redirect

 Identify injection points that handle URLs
 or paths.

 Assess the locations that the system could
 redirect to.

 Testing for CSS Injection
 Identify CSS injection points.

 Assess the impact of the injection.

 Testing for Clickjacking

 Understand security measures in place.

 Assess how strict the security measures
 are and if they are bypassable.

 Testing WebSockets

 Identify the usage of WebSockets.

 Assess its implementation by using the
 same tests on normal HTTP channels.

 Testing Web Messaging

 Assess the security of the message's origin.

 Validate that it's using safe methods and
 validating its input.

 Testing for Cross Site Script Inclusion

 Locate sensitive data across the system.

 Assess the leakage of sensitive data
 through various techniques.

 Testing for Client-side Resource
 Manipulation

 Identify sinks with weak input validation.

 Assess the impact of the resource
 manipulation.

