
Smart
Contract
Security –
Overview PT.1

Joas A Santos

https://www.linkedin.com/in/j
oas-antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos
https://www.linkedin.com/in/joas-antonio-dos-santos


Smart Contract Techniques

• Smart contract hacking techniques involve exploiting vulnerabilities in the 
code of a smart contract to gain unauthorized access or manipulate the 
contract's behavior. Here are some common smart contract hacking 
techniques:

• Reentrancy Attacks: This attack exploits a vulnerability that allows a 
malicious actor to re-enter the same function multiple times before the 
previous execution is complete. This can result in the malicious actor 
withdrawing more funds than they should be able to.

• Integer Overflow/Underflow: Smart contracts often use integer values to 
store data such as balances or timestamps. If the integer is not properly 
validated or has insufficient bounds checking, it can be manipulated by an 
attacker to overflow or underflow, resulting in unexpected behavior.



Smart Contract Techniques

• Unchecked External Calls: Smart contracts can call other contracts or external 
services. If the called contract is malicious or vulnerable, it can cause unexpected 
behavior in the calling contract.

• Denial of Service (DoS): A DoS attack can occur if an attacker exploits a 
vulnerability in a smart contract to consume resources such as gas or 
computational power, causing the contract to become unresponsive.

• Front-Running: Front-running involves exploiting the time delay between a 
transaction being submitted to the blockchain and its inclusion in a block. An 
attacker can place their own transaction in the blockchain to take advantage of 
information contained in another user's transaction.

• Malicious Libraries: Smart contracts may rely on external libraries or 
dependencies. If a malicious actor can modify or replace these libraries, they can 
introduce vulnerabilities or manipulate the behavior of the contract.



Cryptography in Blockchain

• Cryptography is a fundamental aspect of blockchain technology, providing the necessary security 
and privacy features that enable trust and authenticity in a decentralized network. Here are some 
key cryptographic techniques used in blockchain:

1. Hash Functions: Hash functions are used to convert input data of arbitrary length into fixed-size 
outputs, known as hashes. Hashes are used to identify and verify the integrity of data, as any 
change to the input data results in a different hash output. Blockchain uses hash functions to 
store transaction data and create a tamper-proof record of transactions.

2. Public Key Cryptography: Public key cryptography, also known as asymmetric cryptography, uses a 
pair of keys – a public key and a private key – to encrypt and decrypt data. Each user in the 
blockchain network has a public key that is shared with others, while the corresponding private 
key is kept secret. Public key cryptography is used to ensure secure communication and 
authentication in the blockchain network.

3. Digital Signatures: Digital signatures are used to provide authenticity and integrity to messages or 
transactions. A digital signature is generated using a private key and can be verified using the 
corresponding public key. In blockchain, digital signatures are used to prove ownership of assets 
and ensure that transactions are authorized by the correct parties.



Cryptography in Blockchain

Merkle Trees: Merkle Trees are used to efficiently store and verify large 
amounts of data in a blockchain. A Merkle Tree is a binary tree 
structure where each leaf node represents a hash of a piece of data, 
and each non-leaf node represents a hash of its children nodes. Merkle 
Trees allow for quick verification of data integrity without needing to 
store the entire blockchain.

Zero-Knowledge Proofs: Zero-knowledge proofs are cryptographic 
techniques that allow a user to prove knowledge of a secret value 
without revealing the value itself. This is useful in blockchain for 
providing privacy and anonymity, while still allowing for the validation 
of transactions or data.



Types of Blockchain and Different Blockchain 
technologies
• There are three main types of blockchain: public, private, and 

consortium. Each type has its own unique characteristics and use 
cases.

1. Public Blockchain: A public blockchain is a decentralized network 
where anyone can join and participate without any restrictions. 
Transactions are validated and recorded by a distributed network of 
nodes, and the blockchain is maintained by a community of users. 
Public blockchains are highly transparent, immutable, and censorship-
resistant, making them well-suited for use cases such as 
cryptocurrencies and decentralized applications.

• Examples: Bitcoin, Ethereum, Litecoin, etc.



Types of Blockchain and Different Blockchain 
technologies
2.Private Blockchain: A private blockchain is a closed network where access is 

restricted to a select group of users or organizations. Transactions are validated 
and recorded by a pre-approved group of nodes, and the blockchain is 
maintained by a central authority or organization. Private blockchains offer more 
control, privacy, and scalability than public blockchains, making them well-suited 
for enterprise use cases.

• Examples: Hyperledger Fabric, Corda, Quorum, etc.

3.Consortium Blockchain: A consortium blockchain is a hybrid of public and private 
blockchains. It is a decentralized network where multiple organizations join 
together to maintain the blockchain, but access is restricted to a pre-approved 
group of participants. Consortium blockchains offer the benefits of both public 
and private blockchains, such as transparency and security, while also allowing for 
more flexibility and scalability.

• Examples: R3 Corda, IBM Blockchain Platform, etc.



Types of Blockchain and Different Blockchain 
technologies
• There are also several different blockchain technologies that are used in these different 

types of blockchains. Some of the most common blockchain technologies include:

1.Proof of Work (PoW): A consensus algorithm used in many public blockchains, where 
miners compete to solve complex mathematical puzzles to validate transactions and earn 
rewards.

2.Proof of Stake (PoS): A consensus algorithm where validators are selected based on the 
amount of cryptocurrency they hold, and the likelihood of being selected is proportional 
to their stake. PoS is more energy-efficient than PoW.

3.Delegated Proof of Stake (DPoS): A consensus algorithm where stakeholders vote on a 
group of delegates who are responsible for validating transactions and maintaining the 
blockchain.

4.Byzantine Fault Tolerance (BFT): A consensus algorithm used in many private and 
consortium blockchains, where a pre-approved group of validators must agree on the 
validity of transactions.

5.Directed Acyclic Graph (DAG): A data structure used in some blockchain technologies 
that allows for asynchronous transaction validation and scalability, without the need for 
miners or validators.



Solidity Language Programming

• Solidity is a high-level programming language used for writing smart contracts on the Ethereum blockchain. 
Smart contracts written in Solidity are compiled into bytecode, which can be executed on the Ethereum 
Virtual Machine (EVM).

• Here are some key features of Solidity smart contracts:

1. Object-Oriented Programming: Solidity supports object-oriented programming (OOP) concepts such as 
inheritance, polymorphism, and encapsulation. This allows for code reuse, modularity, and abstraction, 
making it easier to write and maintain complex smart contracts.

2. Built-In Data Types: Solidity supports various data types such as integers, booleans, strings, and arrays. It also 
supports custom data structures such as structs and mappings, which allow developers to define their own 
data types and store data in a structured way.

3. Event Logs: Solidity supports event logs, which are used to emit notifications when specific conditions are 
met in the smart contract. These events can be used to trigger external actions or provide feedback to users.

4. Ethereum Naming Service (ENS): Solidity supports the Ethereum Naming Service (ENS), which is a 
decentralized domain name system that allows users to register human-readable names for their Ethereum 
addresses. ENS names can be used in Solidity smart contracts, making it easier to create user-friendly dApps.

5. Smart Contract Standards: Solidity has several smart contract standards that are widely used on the 
Ethereum blockchain, such as ERC-20 (for fungible tokens), ERC-721 (for non-fungible tokens), and ERC-1155 
(for both fungible and non-fungible tokens).



Smart Contract Vulnerabilities & Attacks

• https://pixelplex.io/blog/smart-contract-vulnerabilities/

• https://hacken.io/discover/smart-contract-vulnerabilities/

• https://blaize.tech/article-type/9-most-common-smart-contract-
vulnerabilities-found-by-blaize/

• https://www.immunebytes.com/blog/smart-contract-vulnerabilities/

• https://github.com/kadenzipfel/smart-contract-vulnerabilities

• https://medium.com/coinmonks/smart-contracts-common-
vulnerabilities-solidity-e64c5506b7f4

https://pixelplex.io/blog/smart-contract-vulnerabilities/
https://hacken.io/discover/smart-contract-vulnerabilities/
https://blaize.tech/article-type/9-most-common-smart-contract-vulnerabilities-found-by-blaize/
https://blaize.tech/article-type/9-most-common-smart-contract-vulnerabilities-found-by-blaize/
https://www.immunebytes.com/blog/smart-contract-vulnerabilities/
https://github.com/kadenzipfel/smart-contract-vulnerabilities
https://medium.com/coinmonks/smart-contracts-common-vulnerabilities-solidity-e64c5506b7f4
https://medium.com/coinmonks/smart-contracts-common-vulnerabilities-solidity-e64c5506b7f4


Smart Contract Vulnerabilities & Attacks

• Forcibly Sending Ether to a Smart Contract
• Insufficient Gas Griefing
• Reentrancy
• Integer Overflow and Underflow
• Timestamp Dependence
• Authorization Through tx.origin
• Floating Pragma
• Function Default Visibility
• Outdated Compiler Version
• Unchecked Call Return Value

https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/forcibly-sending-ether.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/insufficient-gas-griefing.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/reentrancy.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/overflow-underflow.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/timestamp-dependence.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/authorization-txorigin.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/floating-pragma.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/function-default-visibility.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/outdated-compiler-version.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unchecked-call-return-value.md


Smart Contract Vulnerabilities & Attacks

• Unprotected Ether Withdrawal

• Unprotected Selfdestruct Instruction

• State Variable Default Visibility

• Uninitialized Storage Pointer

• Assert Violation

• Use of Deprecated Functions

• Delegatecall to Untrusted Callee

• Signature Malleability

• Incorrect Constructor Name

• Shadowing State Variables

• Weak Sources of Randomness from Chain Attributes

• Missing Protection against Signature Replay Attacks

• Requirement Validation

https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unprotected-ether-withdrawal.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unprotected-selfdestruct.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/state-variable-default-visibility.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/uninitialized-storage-pointer.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/assert-violation.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/use-of-deprecated-functions.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/delegatecall-untrusted-callee.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/signature-malleability.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/incorrect-constructor.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/shadowing-state-variables.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/weak-sources-randomness.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/missing-protection-signature-replay.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/requirement-violation.md


Smart Contract Vulnerabilities & Attacks

• Write to Arbitrary Storage Location

• Incorrect Inheritance Order

• Arbitrary Jump with Function Type Variable

• Presence of Unused Variables

• Unexpected Ether Balance

• Unencrypted Secrets

• Faulty Contract Detection

• Unclogged Blockchain Reliance

• Inadherence to Standards

• Unprotected Callback

• Asserting EOA from Code Size

• Transaction-Ordering Dependence

• DoS with Block Gas Limit

• DoS with (Unexpected) revert

https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/arbitrary-storage-location.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/incorrect-inheritance-order.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/arbitrary-jump-function-type.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unused-variables.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unexpected-ether-balance.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unencrypted-secrets.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/faulty-contract-detection.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unclogged-blockchain-reliance.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/inadherence-to-standards.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/unprotected-callback.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/asserting-eoa-from-code-size.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/transaction-ordering-dependence.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/dos-gas-limit.md
https://github.com/kadenzipfel/smart-contract-vulnerabilities/blob/master/vulnerabilities/dos-revert.md


Smart Contract and Solidity Hacking

• https://www.cobalt.io/blog/hacking-solidity-smart-contracts

• https://www.youtube.com/watch?v=TichhHxQ0zs&ab_channel=DappUniversity

• https://www.youtube.com/watch?v=XatbwCQ_HDY&ab_channel=DappUniversity

• https://www.youtube.com/watch?v=vcd6AoTf6Wk&ab_channel=DappUniversity

• https://medium.com/hackernoon/hackpedia-16-solidity-hacks-vulnerabilities-
their-fixes-and-real-world-examples-f3210eba5148

• https://theblockchaintest.com/uploads/resources/RSA%20-
%20Advanced%20Smart%20Contract%20Hacking%20-%202019.pdf

• https://www.hackread.com/smarter-smart-contracts-defi-hacks/

• https://hackernoon.com/how-to-hack-smart-contracts-self-destruct-and-solidity

https://www.cobalt.io/blog/hacking-solidity-smart-contracts
https://www.youtube.com/watch?v=TichhHxQ0zs&ab_channel=DappUniversity
https://www.youtube.com/watch?v=XatbwCQ_HDY&ab_channel=DappUniversity
https://www.youtube.com/watch?v=vcd6AoTf6Wk&ab_channel=DappUniversity
https://medium.com/hackernoon/hackpedia-16-solidity-hacks-vulnerabilities-their-fixes-and-real-world-examples-f3210eba5148
https://medium.com/hackernoon/hackpedia-16-solidity-hacks-vulnerabilities-their-fixes-and-real-world-examples-f3210eba5148
https://theblockchaintest.com/uploads/resources/RSA - Advanced Smart Contract Hacking - 2019.pdf
https://theblockchaintest.com/uploads/resources/RSA - Advanced Smart Contract Hacking - 2019.pdf
https://www.hackread.com/smarter-smart-contracts-defi-hacks/
https://hackernoon.com/how-to-hack-smart-contracts-self-destruct-and-solidity


Smart Contract and Solidity Hacking

• https://solidityscan.com/

• https://medium.com/hackernoon/scanning-ethereum-smart-contracts-for-
vulnerabilities-b5caefd995df

• https://www.youtube.com/watch?v=B7sVGFc2G8A&ab_channel=SANSOffe
nsiveOperations

• https://hackernoon.com/scanning-ethereum-smart-contracts-for-
vulnerabilities-b5caefd995df

• https://makersden.io/blog/laser-cannon-hacking-smart-contracts

• https://smartcontractshacking.com/

• https://github.com/saeidshirazi/Awesome-Smart-Contract-Security

https://solidityscan.com/
https://medium.com/hackernoon/scanning-ethereum-smart-contracts-for-vulnerabilities-b5caefd995df
https://medium.com/hackernoon/scanning-ethereum-smart-contracts-for-vulnerabilities-b5caefd995df
https://www.youtube.com/watch?v=B7sVGFc2G8A&ab_channel=SANSOffensiveOperations
https://www.youtube.com/watch?v=B7sVGFc2G8A&ab_channel=SANSOffensiveOperations
https://hackernoon.com/scanning-ethereum-smart-contracts-for-vulnerabilities-b5caefd995df
https://hackernoon.com/scanning-ethereum-smart-contracts-for-vulnerabilities-b5caefd995df
https://makersden.io/blog/laser-cannon-hacking-smart-contracts
https://smartcontractshacking.com/
https://github.com/saeidshirazi/Awesome-Smart-Contract-Security


Blockchain PenTest

• https://medium.com/quillhash/blockchain-pentesting-penetration-testing-
for-blockchain-networks-e37d8c325181

• https://vapt.ee/offensive-security/penetration-testing/emerging-
technologies/blockchain-penetration-testing/

• https://audits.quillhash.com/services/blockchain-pen-testing
• https://www.arridae.com/services/Blockchain-Penetration-testing.php
• https://github.com/gokulsan/awesome-blockchain-security-platforms
• https://github.com/slowmistio/BlockChain-Security-List
• https://github.com/go-outside-labs/blockchain-hacking
• https://github.com/bobby-lin/study-blockchain
• https://github.com/brcyrr/PracticalCyberSecurityResources

https://medium.com/quillhash/blockchain-pentesting-penetration-testing-for-blockchain-networks-e37d8c325181
https://medium.com/quillhash/blockchain-pentesting-penetration-testing-for-blockchain-networks-e37d8c325181
https://vapt.ee/offensive-security/penetration-testing/emerging-technologies/blockchain-penetration-testing/
https://vapt.ee/offensive-security/penetration-testing/emerging-technologies/blockchain-penetration-testing/
https://audits.quillhash.com/services/blockchain-pen-testing
https://www.arridae.com/services/Blockchain-Penetration-testing.php
https://github.com/gokulsan/awesome-blockchain-security-platforms
https://github.com/slowmistio/BlockChain-Security-List
https://github.com/go-outside-labs/blockchain-hacking
https://github.com/bobby-lin/study-blockchain
https://github.com/brcyrr/PracticalCyberSecurityResources

	Slide 1: Smart Contract Security – Overview PT.1
	Slide 2: Smart Contract Techniques
	Slide 3: Smart Contract Techniques
	Slide 4: Cryptography in Blockchain
	Slide 5: Cryptography in Blockchain
	Slide 6: Types of Blockchain and Different Blockchain technologies
	Slide 7: Types of Blockchain and Different Blockchain technologies
	Slide 8: Types of Blockchain and Different Blockchain technologies
	Slide 9: Solidity Language Programming 
	Slide 10: Smart Contract Vulnerabilities & Attacks
	Slide 11: Smart Contract Vulnerabilities & Attacks
	Slide 12: Smart Contract Vulnerabilities & Attacks
	Slide 13: Smart Contract Vulnerabilities & Attacks
	Slide 14: Smart Contract and Solidity Hacking
	Slide 15: Smart Contract and Solidity Hacking
	Slide 16: Blockchain PenTest

