
1. Code review: Conduct thorough manual reviews of your smart contract code to identify potential vulnerabilities.
2. Static analysis: Use automated tools to analyze your smart contract code for common security issues.
3. Dynamic analysis: Execute your smart contract in a controlled environment to identify vulnerabilities during 

runtime.
4. Formal verification: Prove the correctness of your smart contract using mathematical methods.
5. Fuzz testing: Use random inputs to test the robustness and resilience of your smart contract.
6. Reentrancy attack testing: Ensure your smart contract is resistant to recursive function calls that could drain 

funds.
7. Integer overflow/underflow testing: Test your smart contract for potential integer overflow or underflow issues.
8. Gas limit testing: Ensure your smart contract functions do not exceed gas limits, causing transactions to fail.
9. Race condition testing: Identify potential race conditions that could lead to unintended consequences.
10. Front-running testing: Test for vulnerabilities that could allow malicious actors to manipulate transaction 

orderings.
11. Access control testing: Verify that only authorized users have access to critical functions in your smart contract.
12. Time manipulation testing: Ensure your smart contract is resistant to time-based attacks, like manipulating block 

timestamps.
13. Randomness testing: Verify that the randomness used in your smart contract is secure and unpredictable.
14. Upgradeability testing: Ensure your smart contract can be safely upgraded without compromising security or 

functionality.
15. Contract termination testing: Check if your smart contract can be safely terminated without unintended 

consequences.
16. Function visibility testing: Ensure that functions are correctly marked as private, public, internal, or external as 

required.
17. ERC standards compliance testing: Verify that your smart contract complies with the appropriate Ethereum 

standards (e.g., ERC20, ERC721).
18. Data storage testing: Check if your smart contract securely stores sensitive data and prevents unauthorized 

access.
19. Error handling testing: Test your smart contract's error handling and ensure it behaves as expected in case of 

failures.
20. Denial of service testing: Ensure your smart contract is resistant to denial-of-service attacks that could render it 

unusable.
21. Sybil attack testing: Test your smart contract's resilience to Sybil attacks, where an attacker creates multiple fake 

identities.
22. User input validation: Ensure your smart contract properly validates user input to prevent injection attacks.
23. Oracles testing: Test the reliability and security of any third-party data sources (oracles) used by your smart 

contract.
24. Inter-contract communication testing: Test interactions between your smart contract and other contracts to 

ensure proper communication and prevent vulnerabilities.
25. Auditing: Have your smart contract audited by independent security experts to identify potential vulnerabilities 

and ensure the overall security of your blockchain environment.

Blockchain and Smart Contract Testing Security

https://www.linkedin.com/in/joas-antonio-dos-santos

https://www.linkedin.com/in/joas-antonio-dos-santos

	Slide 1

