
Incident Handling & Response: SOC 3.0 Operations & Analytics

Effectively Using Splunk (Scenario 1)

Effectively Using Splunk
(Scenario 1)

LAB 8

Scenario
The organization you work for (Wayne Enterprises) is using
Splunk as a SIEM solution to enhance its intrusion detection
capabilities. The SOC manager informed you that the
organization has been hit by an APT group. He tasked you with
responding to this incident by heavily utilizing Splunk and
all the data that it ingested.

The data that Splunk has ingested consist of Windows event
logs, Sysmon logs, Fortinet next-generation firewall logs,
Suricata logs, etc.

Note: This lab is based on the Boss Of The SOC (BOTS) v1
dataset released by Splunk. Credits to Ryan Kovar, Dave
Herrald and John Stoner for sharing the Splunk detection tips
this lab covers with the public, through this dataset.

Learning Objectives
The learning objective of this lab is to not only get
familiar with Splunk's architecture and detection

https://www.splunk.com/
https://www.splunk.com/
https://github.com/splunk/botsv1
https://github.com/splunk/botsv1
https://twitter.com/meansec
https://twitter.com/daveherrald?lang=el
https://twitter.com/daveherrald?lang=el
https://twitter.com/stonerpsu

capabilities but also to learn effective Splunk search
writing.

Specifically, you will learn how to use Splunk's capabilities
in order to:

● Have better visibility over a network

● Respond to incidents timely and effectively

● Proactively hunt for threats

Introduction To Splunk
Splunk's creators describe it as a solution to aggregate,
analyze and get answers from machine data. Splunk can be used
for Application Management, Operations Management, Security &
Compliance, etc.

When it comes to security, Splunk can be used as a log
management solution but most importantly as an
analytics-driven SIEM. Splunk can fortify investigations of
dynamic, multi-step attacks with detailed visualizations and
even enhance an organization's detection capabilities through
User Behavior Analytics.

Splunk can literally ingest almost any data from almost any
source, through both an agent-less and a forwarder approach.

Splunk Architecture Overview:

Splunk's architecture (at a high level) consists of the:

● Forwarder component

● Universal Forwarders collect data from remote sources
and send them to one or more Splunk Indexers. Universal
Forwarders are separate downloads that can be installed
on any remote source, with little impact on network or
host performance.

● Heavy Forwarders also collect data from remote sources,
but they are typically used for heavy data aggregation
tasks, from sources like firewalls or data

routing/filtering passing points. According to
Splexicon, unlike other forwarder types, heavy
forwarders parse data before forwarding them and can
route data based on criteria such as source or type of
event. They can also index data locally while forwarding
the data to another indexer. Heavy Forwarders are
usually run as "data collection nodes" for API/scripted
data access, and they are only compatible with Splunk
Enterprise.

Note: HTTP Event Collectors (HECs) also exist to collect
data directly from applications, at-scale, through a
token-based JSON or raw API way. Data are sent directly to
the Indexer level.

● Indexer component

The Indexer processes machine data, storing the results in
indexes as events, enabling fast search and analysis. As the
indexer indexes data, it creates a number of files organized
in sets of directories by age. Each directory contains raw
data (compressed) and indexes (points to the raw data).

● Search Head component

The Search Head component allows users to use the Search
language to search for indexed data. It distributes user
search requests to the Indexers and consolidates the results
as well as extracts field value pairs from the events to the
user. Knowledge Objects on the Search Heads can be created to
extract additional fields and transform the data without
changing the underlying index data. It should be noted that
Search Heads also provide tools to enhance the search
experience such as reports, dashboards, and visualizations.

Splunk Apps and Technology Add-ons (TAs):

Splunk Apps are designed to address a wide variety of use
cases and to extend the power of Splunk. Essentially, they

https://docs.splunk.com/Splexicon:Heavyforwarder
https://docs.splunk.com/Splexicon:Heavyforwarder

are collections of files containing data inputs, UI elements,
and/or knowledge objects. Splunk Apps also allow multiple
workspaces for different use cases/user roles to co-exist on
a single Splunk instance. Ready-made apps are available on
Splunkbase (splunkbase.com).

Splunk Technology Add-ons abstract the collection
methodology and they typically include relevant field
extractions (schema-on-the-fly). They also include relevant
config files (props/transforms) and ancillary scripts
binaries.

You can think of a Splunk App as a complete solution, that
typically uses one or more Technology Add-ons.

Splunk Users and Roles:

Splunk users are assigned roles which determine their
capabilities and data access. Out of the box, there are three
main roles:

● admin: This role has the most capabilities assigned to
it.

● power: This role can edit all shared objects (saved
searches, etc.) and alerts, tag events, and other
similar tasks.

● user: This role can create and edit its own saved
searches, run searches, edit its own preferences, create
and edit event types, and other similar tasks.

Splunk's Search & Reporting App:

You will spend most of your time inside Splunk's Search &
Reporting.

Data Summary can provide you with hosts, sources or
sourcetypes on separate tabs.

Finally, this is how Events will look like.

Splunk's Search Processing Language (SPL):

According to Splunk, SPL combines the best capabilities of
SQL with the Unix pipeline syntax allowing you to:

● Access all data in its original format

● Optimize for time-series events

● Use the same language for visualizations

SPL provides over 140 commands that allow you to search,
correlate, analyze and visualize any data.

The below diagram represents a search, broken down to its
syntax components.

Searches are made up of five basic components.

1. Search terms, where you specify what you are looking
for. Search terms contain keywords, phrases, Booleans,
etc.

2. Commands, where you specify how you want to manipulate
the results. For example, create a chart, compute
statistics, etc.

3. Functions, where you specify how exactly do you want to
chart, compute or evaluate the results.

4. Arguments, in case there are variables you want to apply
to a function.

5. Clauses, where you specify how exactly do you want to
group or rename the fields in the results.

As you write searches, you will notice that some parts of the
search string are automatically colored. The color is based
on the search syntax. Example:

Something else to consider while submitting searches is
Splunk's search modes.

There are three search modes:

● Fast Mode: Field discovery off for event searches. No
event or field data for stats searches.

● Smart Mode: Field discovery on for event searches. No
event or field data for stats searches.

● Verbose Mode: All event & field data.

It is recommended to start searching with Smart and then go
from there.

We strongly suggest you spend time studying the] Exploring
Splunk [e-book before proceeding to the lab's tasks.
Especially Chapter 4, as that covers the most commonly used
search commands.

Various Search aspects are also nicely documented, in the
following resource.

https://docs.splunk.com/Documentation/Splunk/7.2.4/Search/Get
startedwithSearch

Recommended tools

https://www.splunk.com/goto/book
https://www.splunk.com/goto/book
https://docs.splunk.com/Documentation/Splunk/7.2.4/Search/GetstartedwithSearch
https://docs.splunk.com/Documentation/Splunk/7.2.4/Search/GetstartedwithSearch

● Splunk

Network Configuration &
Credentials

Recommended tools

● Splunk

● Use Firefox browser to connect to Splunk's web interface
(http://demo.ine.local:8000)

Throughout this lab, we will split attacker actions based on
the Cyber Kill Chain.

Tasks

Task 1: Identify any reconnaissance
activities against your network through
Splunk searches

Using Splunk's capabilities, try to identify any
reconnaissance activities performed by the APT group. Your
organization's website is imreallynotbatman.com.

Hints:

● Focus on the stream:http sourcetype and identify the
source IPs that are responsible for the majority of the
traffic. Then, validate your findings using the suricata
sourcetype.

https://www.lockheedmartin.com/en-us/capabilities/cyber/cyber-kill-chain.html

● Move the investigation deeper by analyzing all important
fields and sourcetypes

Task 2: Identify any weaponization activities
on your network

Using Open Source Intelligence (OSINT), try to identify any
weaponization activities performed by the APT group.

Hints:

● Identify any IP addresses tied to domains that are
pre-staged to attack Wayne Enterprises

● Try to understand the associations between IP addresses
and domains among other things

● Do the same as above to associate attacker emails with
infrastructure on the internet

Task 3: Identify any delivery activities on
your network

Using OSINT, try to identify any delivery activities
performed by the APT group. Specifically, try to identify
malware associated with the attacker infrastructure you have
previously uncovered.

Hints:

● Submit any attacker-related IP address to open sources
such as ThreatMiner, VirusTotal and Hybrid Analysis

Task 4: Identify any exploitation activities
on your network through Splunk searches

Using Splunk's capabilities, try to identify any exploitation
activities performed by the APT group.

Hints:

● Focus on the stream:http and iis sourcetypes and
identify which of your servers is the target as well as
the Content Management System it uses

● Focus on the stream:http sourcetype and identify the
source of a brute force attack

● Move the investigation deeper by analyzing all important
fields and sourcetypes

Task 5: Identify any installation activities
on your network through Splunk searches

Using Splunk's capabilities, try to identify any installation
activities performed by the APT group.

Hints:

● Focus on the stream:http and suricata sourcetypes to
identify any uploaded executables

● Leverage Sysmon logs to identify additional information
about any uploaded executables

Task 6: Identify any command and
control-related activities on your network
through Splunk searches

Using Splunk's capabilities, try to identify any Command and
Control (C2)-related activities performed by the APT group.

Hints:

● Focus on the stream:http, fgt_utm, and stream:dns
sourcetypes to identify any domains acting as Command
and Control.

SOLUTIONS
Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy, which
may be different from the one explained in the following lab.

Kali Machine

Task 1: Identify any reconnaissance
activities against your network through
Splunk searches

Once you are logged into Splunk's web management interface,
click the Search & Reporting application that resides on the
Apps column on your left. You should see something similar to
the below.

In order to test if Splunk can successfully access the
ingested/loaded data, first change the time range picker to
All time and then, submit the following search.

index="botsv1" earliest=0

You should see the number of events growing as time
progresses.

Now that we know everything worked as expected, let's
identify any reconnaissance activities against Wayne
Enterprises. As a reminder, the organization's website is
imreallynotbatman.com.

The first thing we should do is determine the sourcetypes to
search. Specifically, we should first determine the
sourcetypes that are associated with imreallynotbatman.com.
We can do so by changing the time range picker to All time
and submitting the following Splunk search.

index=botsv1 imreallynotbatman.com

You should see something similar to the below.

To determine the sourcetypes, simply click on sourcetype
(red rectangle above). You should see the following.

Let's also identify all source addresses. We can do so
through the previous search, but this time we will scroll
down and click on the src field, as follows.

Since we are interested in identifying reconnaissance
activities, it would be better to focus on the stream:http
sourcetype. (Stream is a free app for Splunk that collects
wire data and can focus on a number of different protocols
including smtp, tcp, ip, http and so on.)

index=botsv1 imreallynotbatman.com sourcetype=stream:http

If we do so, the sources will be narrowed down to two,
40.80.148.42 and 23.22.63.114. 40.80.148.42 is associated
with ~95% of the http traffic, so let's focus on this one for
the time being.

An alternative way to identify all sources is the following.

index=botsv1 imreallynotbatman.com sourcetype=stream* | stats
count(src_ip) as Requests by src_ip | sort - Requests

So far, we can only assume that 40.80.148.42 was the IP from
where the APT group performed its reconnaissance/scanning
activities. We can validate this finding, by checking with
Suricata, as follows.

index=botsv1 imreallynotbatman.com src_ip=40.80.148.42
sourcetype=suricata

We see Suricata logs related to 40.80.148.42, but no
signature field. We can see the signatures by scrolling down,
clicking on more fields and choosing signature. If we do so,
the signature field will be visible under the SELECTED
FIELDS column.

From the Suricata signatures that were triggered, we can
conclude that 40.80.148.42 was actually scanning
imreallynotbatman.com.

We are also interested in knowing our adversary's level of
sophistication. So the question that arises is, did the APT
group use known or sophisticated scanning techniques? Let's
take a look at the submitted requests to answer that.

index=botsv1 src_ip=40.80.148.42 sourcetype=stream:http

The detailed request information can be found inside the
src_headers field.

The APT group utilized an instance of the reputable Acunetix
vulnerability scanner.

We could have also identified the usage of this tool by
looking for uncommon user agents.

https://www.acunetix.com/

We can easily identify which server was the target through
the same search and the dest field.

The target was obviously 192.168.250.70.

If we want to have a closer look at what has been requested
by the APT group, we can do that as follows.

index=botsv1 dest_ip=192.168.250.70 sourcetype=stream:http

The URLs being requested can be found inside the uri field.

We are also interested in successful page loads. We can
identify them, as follows.

index=botsv1 dest_ip=192.168.250.70 sourcetype=stream:http|
timechart count by uri limit=10

We could have achieved similar results through the iis
sourcetype, as follows. (This time we are using a
transformational search command called stats that will allow
us to count the number of events grouped by URI.)

index=botsv1 sourcetype=iis sc_status=200 | stats
values(cs_uri_stem)

You may be wondering why we aren't specifying
192.168.250.70. This is because if we submit the below and
check the host field, we will find only one host, we1149srv.
This host's IP address is 192.168.250.70

index=botsv1 sourcetype=iis

Below are our findings so far.

Task 2: Identify any weaponization activities
on your network

At this point, we need to understand that Splunk is not
panacea. During our investigations, not every answer can be

found within the SIEM. There will be times when we will need
to pivot from the SIEM to other internal or open sources to
find answers.

We are interested in identifying domains that are pre-staged
to attack Wayne Enterprises.

We gave the 40.80.148.42 IP address a good look through
Splunk. Let's do the same for 23.22.63.114 but through open
sources since Splunk doesn't contain too much information
about it.

If we go to an open source like http://www.robtex.com and
submit the 23.22.63.114 IP, we will come across the
following.

As we can see, this IP has a number of other domain names
associated with it. These domain names are most probably
phishing domains since their name is similar to the
organization we work for, Wayne Enterprises.

http://www.robtex.com/

Open sources like https://threatcrowd.org and
https://www.virustotal.com can provide us with additional
information.

For example, through threatcrowd.org, we identified
additional domains associated with the APT group we are
dealing with by simply submitting the 23.22.63.114 IP.

Remember when we talked about whois information and how
attackers leverage them for targeted attacks? Well, let's
give attackers a taste of their own poison, by checking the
whois information of every associated domain.

https://threatcrowd.org/
https://www.virustotal.com/
https://www.virustotal.com/

While checking the whois information of wayncorpinc.com we
come across the following.

We can then proceed to reverse email searches and possibly
identify additional infrastructure associated with the APT
group. Find an example of a reverse email search below.

https://www.threatcrowd.org/email.php?email=LILLIAN.ROSE@PO1S
0N1VY.COM

Here are our findings so far:

https://www.threatcrowd.org/email.php?email=LILLIAN.ROSE@PO1S0N1VY.COM
https://www.threatcrowd.org/email.php?email=LILLIAN.ROSE@PO1S0N1VY.COM

Task 3: Identify any delivery activities on
your network

We need to know as much as possible about this APT group's
TTPs and used malware, so let's dig deeper through open
sources.

https://www.threatminer.org has a great capability of
including related malware samples when searching for
information about an IP address. This is what we will come
across while searching for information about 23.22.63.114 on
threatminer.org.

We can then submit these MD5 hashes to open sources like
threatminer, VirusTotal or hybrid-analysis.com to identify
additional metadata about the sample(s).

https://www.threatminer.org/

The APT group may create mutants, so hashes may not prove
useful. We should note down that filename though in case they
keep that.

Below are our findings so far.

Task 4: Identify any exploitation activities
on your network through Splunk searches

It is about time we go back to Splunk to identify any
exploitation activities. Let's start by identifying source IP
addresses that are associated with the largest number of http
events. We can do that, as follows.

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70"
http_method=POST

The src field contains what we are looking for. We specified
that we are interested in POST requests since logins are
usually performed through POST requests (more on that in a
bit).

Let's take a look at those POST requests made by
40.80.148.42

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70"
http_method=POST src_ip="40.80.148.42"

The form_data field contains information that we want to
check when dealing with POST requests.

Nothing to justify successful exploitation activities. Let's
check 23.22.63.114.

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70"
http_method=POST src_ip="23.22.63.114"

It looks like 23.22.63.114 is brute forcing the web server's
authentication.

Let's make sure, as follows.

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70"
http_method=POST form_data=*username*passwd* | stats count by
src_ip

Indeed 23.22.63.114 performed a brute force attack against
the web server's authentication.

We are quite interested in knowing if the brute force attack
was successful. We can determine that, as follows.

index=botsv1 sourcetype=stream:http
form_data=*username*passwd* dest_ip=192.168.250.70 | rex
field=form_data "passwd=(?<userpassword>\w+)" | stats count
by userpassword | sort - count

The search above extracts every user password and counts the
times it has been seen/used. If a password is seen more than
one time, this probably means that attackers got a hit and
used the password again to log in. This is why we are sorting
on count.

If we want to get an idea of the time of the compromise and
the URI that was targeted, we can do that as follows.

index=botsv1 sourcetype=stream:http
form_data=*username*passwd* dest_ip=192.168.250.70

src_ip=40.80.148.42 | rex field=form_data
"passwd=(?<userpassword>\w+)"| search userpassword=* | table
_time uri userpassword

Finally, if we want to view the two successful logins we can
do so, as follows.

index=botsv1 sourcetype=stream:http | rex field=form_data
"passwd=(?<userpassword>\w+)" | search userpassword=batman |
table _time userpassword src_ip

Below are our findings so far.

Task 5: Identify any installation activities
on your network through Splunk searches

As far as the installation phase of the cyber kill chain is
concerned, we are mostly interested in identifying any
malware being uploaded.

We can identify that through various sourcetypes,
specifically, stream:http and Suricata.

index=botsv1 sourcetype=stream:http dest_ip="192.168.250.70"
*.exe
The part_filename{} field contains the information we want
to check. It won't be visible by default, so add it.

index=botsv1 sourcetype=suricata (dest=imreallynotbatman.com
OR dest="192.168.250.70") http.http_method=POST .exe

The fileinfo.filename field contains the information we want
to check.

3791.exe must be the uploaded malware.

The source from where the file was uploaded can easily be
identified, as follows.

index=botsv1 sourcetype=suricata dest_ip="192.168.250.70"
http.http_method=POST .exe

It would be great if we could also identify the hash of the
uploaded file. But what sourcetype should we use? Let's find
out, as follows.

index=botsv1 3791.exe

Sysmon is a good candidate since it logs information such as
MD5, SHA1 and SHA256 hashes of files.

index=botsv1 3791.exe
sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operationa
l

The important fields, in this case, are Hashes, CommandLine
and ParentCommandLine. You will have to add the last two
ones since they are not visible by default.

Before analyzing the results, let's narrow things down a
little bit.

index=botsv1 3791.exe
sourcetype=XmlWinEventLog:Microsoft-Windows-Sysmon/Operationa
l EventCode=1

The search above includes EventCode 1 since this EventCode is
related to process creation events. Unfortunately, to get the
MD5 hash of the uploaded file, we need to narrow things down
even further. Specifically, we will need to search for
3791.exe inside the command line field, since this field
captures the process starting.

So, the final search is the following.

index=botsv1 3791.exe CommandLine=3791.exe | stats
values(md5)

Below are our findings so far.

Task 6: Identify any command and
control-related activities on your network
through Splunk searches

As far as the Command and Control phase of the cyber kill
chain is concerned, we are mostly interested in identifying
any domain used for command and control purposes.

We have a powerful ally inside Splunk to assist us in
answering such questions. This ally is the stream.dns
sourcetype. Since we already know that 23.22.63.114 is of
concern, we can utilize Splunk and the stream.dns sourcetype
to identify DNS events where 22.23.63.114 was the answer.

index=botsv1 sourcetype=stream:dns 23.22.63.114 | stats
values("name{}")

If you look carefully enough, you will identify that the
prankglassinebracket.jumpingcrab.com domain has been used by
attackers to deface the web server. Give it a try...

References:

1. https://www.slideshare.net/Splunk/splunk-data-onboarding
-overview-splunk-data-collection-architecture

2. https://www.splunk.com/en_us/training.html

Effectively Using Splunk (Scenario 2)

Effectively Using Splunk
(Scenario 2)

LAB 8

https://www.slideshare.net/Splunk/splunk-data-onboarding-overview-splunk-data-collection-architecture
https://www.slideshare.net/Splunk/splunk-data-onboarding-overview-splunk-data-collection-architecture
https://www.splunk.com/en_us/training.html

Scenario
The organization you work for (Wayne Enterprises) is using
Splunk as a SIEM solution to enhance its intrusion detection
capabilities. Wayne Enterprises went through a red team
exercise and the red team provided you with technical details
about some of their exploitation activities (a.k.a Tactical
Threat Intelligence). Your SOC manager tasked you with first
trying to identify successful exploitation attempts on your
own through Splunk. He then tasked you with translating the
provided TTPs into Splunk searches, once the initial
investigation is complete.

Note: This lab is based on the Boss Of The SOC (BOTS) v1
dataset released by Splunk.

Learning Objectives
The learning objective of this lab, is to learn effective
Splunk search writing and how to translate attacker TTPs into
Splunk searches.

Specifically, you will learn how to use Splunk's capabilities
in order to:

● Have better visibility over a network

● Respond to incidents timely and effectively

● Proactively hunt for threats

Recommended tools

● Splunk

https://www.splunk.com/
https://www.splunk.com/
https://github.com/splunk/botsv1
https://github.com/splunk/botsv1

● Use a Chrome or Firefox browser to connect to Splunk's
web interface (http://demo.ine.local:8000)

Tasks

Task 1: Try to identify a successful
exploitation attempt without consulting with
the provided TTPs

As already mentioned the red team provided you with technical
details about some of their exploitation activities. Your SOC
manager tasked with first trying to identify a successful
exploitation attempt on your own leveraging Splunk.

The red team performed a plethora of exploitation activities.
Identifying one is enough to complete this task.

Hints:

● Start your investigation by focusing on the stream:dns
sourcetype. Then, keep following leads until you
identify what actually happened. Curious-looking domain
names are always of interest.

Task 2: Translate the provided red team TTPs
into Splunk searches

The red team informed you that they used the following TTPs
during the exercise.

1. Malicious USB

2. Computer-generated domain names (to speed the domain
generation process up)

3. Malicious VBS

4. Mature Ransomware

5. Code Obfuscation

Translate the provided red team TTPs into Splunk searches.

Hints:

1. Removable media can be identified by the existence of
drive letters in Sysmon logs or the existence of the
string friendlyname in Windows registry logs

2. https://www.splunk.com/blog/2017/11/03/you-can-t-hyde-fr
om-dr-levenshtein-when-you-use-url-toolbox.html

3. The CommandLine field of Sysmon logs can help you with
that

4. Mature ransomware in addition to attempting to disable
system restore try to delete everything stored in the
VSC using the Volume Shadow Copy Service (VSS)

5. Obfuscated code usually involves the execution of an
overly long command

SOLUTIONS
Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy (which
may be different from the one explained in the following lab.

Kali Machine

https://www.splunk.com/blog/2017/11/03/you-can-t-hyde-from-dr-levenshtein-when-you-use-url-toolbox.html
https://www.splunk.com/blog/2017/11/03/you-can-t-hyde-from-dr-levenshtein-when-you-use-url-toolbox.html

Task 1: Try to identify a successful
exploitation attempt without consulting with
the provided TTPs

Once you are logged into Splunk's web management interface,
click the Search & Reporting application that resides on the
Apps column on your left. You should see something similar to
the below.

Before starting your investigation change the time range
picker to All time.

Always identify the available sourcetypes before you begin
your investigation. You can do that as follows.

| metadata type=sourcetypes index="botsv1"

You should see the below.

As you can see, Splunk has ingested Windows event logs,
Sysmon logs, Fortigate UTM logs, Suricata logs etc.

If you want better granularity regarding the available
sourcetypes, submit the search below.

| metadata type=sources index="botsv1"

Notice that searches leveraging metadata are executed almost
instantaneously.

You should now see something similar to the below.

The results between the last two searches are the same. The
second search will provide you with a little more detail
about the available sourcetypes.

If you look carefully enough you will notice that the
firstTime, lastTime and recentTime entries follow the epoch
time representation. To convert epoch time to a human
understandable representation submit the following search.

| metadata type=sources index="botsv1" | convert
ctime(firstTime) as firstTime | convert ctime(lastTime) as
lastTime | convert ctime(recentTime) as recentTime

You should see the following.

In case you want to identify all the available hosts in the
dataset before you start your investigation, you can do that
through the following search.

| metadata type=hosts index="botsv1" | convert
ctime(firstTime) as firstTime | convert ctime(lastTime) as
lastTime | convert ctime(recentTime) as recentTime
You can sort the above by total count to gain a better
understanding.

A great sourcetype to start with is stream:dns.

index=botsv1 sourcetype=stream:dns | fieldsummary

The results of the search above may be difficult to read, so
create a table that will contain field and values entries
only. You can that by submitting the following search.

index=botsv1 sourcetype=stream:dns | fieldsummary | table
field values

You should see something similar to the below.

You now need to determine which of the available fields is
more important. dest could provide you with useful
information, but the most interesting field in these results
is query{}, since it can provide you with information related
to interactions with remote (and possibly malicious) servers.

To better analyze DNS query information, submit the following
search.

index=botsv1 sourcetype=stream:dns | stats count by query{} |
sort count
You should see something similar to the below.

Going through all queries you will spot some curious-looking
domain names. Such a domain name is
cerberhhyed5frqa.xmfir0.win

You can look into this curious-looking domain, as follows.

index=botsv1 sourcetype=stream:dns
query{}=cerberhhyed5frqa.xmfir0.win | table _time src_ip
dest_ip query{}

You will see the following results.

In the results (sorted by time) above you can see the
192.168.250.100 host making a DNS query to 192.168.250.20.
192.168.250.20 in turn makes a number of external DNS
queries. From this behavior you can assume that
192.168.250.20 is a DNS server and 192.168.250.100 is
probably a compromised machine.

Based on the time included in the results above, you can give
192.168.250.100 a look as follows.

index=botsv1 sourcetype=stream:dns src_ip=192.168.250.100
earliest=08/24/2016:0:0:0 | table _time src_ip dest_ip
query{} | dedup query{}

You should see the following.

Notice that the earliest events are located at the bottom of
the table.

The possibly compromised 192.168.250.100 system is looking
for isatap and wpad right after visiting the curious-looking
cerberhhyed5frqa.xmfir0.win domain. isatap is related to
IPv6 tunneling and wpad to proxying. This is quite
suspicious...

What you should do next is investigate the behavior of the
possibly compromised 192.168.250.100 system, by analyzing
other logs for approximately the same period of time as
above. Sysmon logs are perfect for this.

First, change the time range picker as follows and click
Apply.

Then, submit the following search.

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
SourceIp="192.168.250.100"
You should see something similar to the below.

Those two spikes are certainly suspicious.

An important field to check is app.

● The fact that osk.exe is in around 83% of the values is
certainly suspicious

● osk.exe is usually related to on screen keyboard. The
known osk.exe though doesn't reside in the
C:\\Users\\\\AppData\\Roaming\\ directory. This is also
suspicious.

● Notice a user named Bob Smith, who is a possible attack
victim

You could have also identified this application, as follows.

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
SourceIp="192.168.250.100" | stats count by app

osk.exe definitely looks suspicious. So, give it a closer
look by simply clicking on it.

You should see something similar to the below.

By inspecting the dest_port field. You will be presented
with the below.

● That's an awful lot of network traffic for an
application like on screen keyboard. This is suspicious.

● Port 6892 corresponds to bit torrent and windows live
messenger file transfer, something also suspicious.

There is only one communication on port 80, click on it to
learn more. You should see the below.

There's a destination IP in the result 54.148.194.58, which
is worth checking, but since user Bob Smith is most probably
a victim of an attack, consult with the available Sysmon logs
to identify what else is running on his machine. You can do
that as follows.

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
app="C:\\Users\\bob.smith.WAYNECORPINC*"
Inspect the app field once again. You should see the
following.

Notice the existence of another curious looking application
C:\Users\bob.smith.WAYNECORPINC\AppData\Roaming\121214.tmp.
Give it a look by clicking on it. You should see the
following.

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
app="C:\\Users\\bob.smith.WAYNECORPINC*"
app="C:\\Users\\bob.smith.WAYNECORPINC\\AppData\\Roaming\\121
214.tmp"

Nothing curious-looking in the results, but there are
important fields that could be added to assist your
investigation, such as the CommandLine or the
ParentCommandLine one.

Submit the following search to see all the occurrences of
121214.tmp in the Sysmon logs and also any entry/log that
contains ParentCommandLine or CommandLine entries.

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
"121214.tmp" AND (ParentCommandLine=* OR CommandLine=*) |
table _time process process_id ParentProcessId ParentImage
CommandLine ParentCommandLine
You should see the following.

The earliest events are at the bottom of the table. If you
start from the first (earliest) event you will see that
wscript.exe (parent) called cmd.exe (child). In addition to
that, you can see from ParentCommandLine that wscript.exe
executed 20429.vbs.

You can identify more about 20429.vbs by submitting the
following search.

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
"20429.vbs" AND (ParentCommandLine=* OR CommandLine=*) |
table _time process process_id ParentProcessId ParentImage
CommandLine ParentCommandLine

You should see the following.

This is clearly obfuscated code. User Bob Smith is definitely
victim of an attack.

Sysmon logs also contain MD5 hashes. If you would like to
learn more about that 121214.tmp file you saw earlier,
change time range picker to All time, submit the following
search and inspect the md5 field.

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
"121214.tmp"

You will come across the following.

If you submit the EE0828A4E4C195D97313BFC7D4B531F1 hash on a
search engine, you will identify that you are dealing with
Cerber ransomware.

Task 2: Translate the provided red team TTPs
into Splunk searches

1. Identify a malicious USB

Removable media can be identified through the following
Splunk searches.

index=botsv1
sourcetype="xmlwineventlog:microsoft-windows-sysmon/operation
al" "d:\\" | stats count by Computer,CommandLine

You will have to include all possible drive letters. The
search above is to test the existence of a D: drive only.

index=botsv1 sourcetype=winregistry friendlyname | table host
object data

1. Identify computer-generated domain names

The following search may uncover computer-generated domain
names.

index=botsv1 sourcetype=stream:dns | table query{} | lookup
ut_parse_extended_lookup url as query{} | search
ut_domain!=None NOT (ut_domain_without_tld=microsoft OR
ut_domain_without_tld=msn OR ut_domain_without_tld=akamaiedge
OR ut_domain_without_tld=akadns OR ut_domain=nsatc.net OR
ut_domain=quest.net OR ut_domain=windows.com OR
ut_domain=arin.net) | `ut_shannon(ut_subdomain)` | stats
count by query{} ut_subdomain ut_domain ut_domain_without_tld
ut_tld ut_shannon | sort - ut_shannon

1. Identify malicious VBS

The following search may identify malicious VBS files

index=botsv1
source="WinEventLog:Microsoft-Windows-Sysmon/Operational"
"*.vbs" AND (ParentCommandLine=* OR CommandLine=*) | table
_time process process_id Parent rocessId ParentImage
CommandLine ParentCommandLine

1. Identify mature ransomware activity

The following search can possibly identify mature ransomware
activity.

index="botsv1"
source="wineventlog:microsoft-windows-sysmon/operational"
EventCode=1 process=*\\vssadmin.exe | search
CommandLine="*vssadmin*" CommandLine="*Delete *"
CommandLine="*Shadows*"

1. Identify code obfuscation

The following search can possibly identify attackers using
code obfuscation.

index="botsv1"
source="wineventlog:microsoft-windows-sysmon/operational" |
eval len=len(CommandLine) | table User, len, CommandLine |
sort - len

Effectively Using the ELK Stack

Effectively Using ELK

LAB 9

Scenario
The organization you work for is evaluating a customized ELK
stack as a SIEM solution to enhance its intrusion detection
capabilities. The SOC manager tasked you with getting

https://www.elastic.co/elk-stack
https://www.elastic.co/elk-stack

familiar with the ELK stack and its detection capabilities.
He also tasked you with translating common attacker behavior
into ELK searches.

Note: Credits to Teymur Kheirkhabarov for the dataset this
lab uses and some of the detection techniques covered.

Learning Objectives
The learning objective of this lab, is to get familiar with
ELK stack's architecture and detection capabilities.

Introduction To ELK
Elastic's ELK is an open source stack that consists of three
applications (Elasticsearch, Logstash and Kibana) working in
synergy to provide users with end-to-end search and
visualization capabilities to analyze and investigate log
file sources in real time.

ELK's architecture, at a high level, is the following.

On demanding/data-heavy environments, ELK's architecture can
be reinforced by Kafka, RabbitMQ and Redis for buffering and
resilience and by ngnix for security.

https://twitter.com/HeirhabarovT
https://www.elastic.co/

Let's dive into all of ELK's components.

● Elasticsearch is a NoSQL database based on the Lucene
search engine and built with RESTful APIs. It is
essentially the index, store and query application of
the ELK stack. It provides users with the capability to
perform advanced queries and analytics operations
against the log file records processed by Logstash.

● Logstash is the tool responsible for the collection,
transformation and transport of log file records. The
great thing about Logstash is that it can unify data
from disparate sources and also normalize them. Logstash
has three areas of function.

● Process input of the log file records from remote
locations into a machine understandable format. Logstash
can receive records through a variety of ways such as
reading from a flat file, reading events from a TCP
socket or directly reading syslog messages. When
Logstash completes processing input it proceeds to the
next function.

● Transform and enrich log records. Logstash provides
users with numerous methods to make changes to the

https://www.elastic.co/guide/en/logstash/current/input-plugins.html
https://www.elastic.co/guide/en/logstash/current/filter-plugins.html

format (and even content) of a log record. Specifically,
filter plugins exist that can perform intermediary
processing on an event (most of the times based on a
predefined condition). Once a log record is transformed
Logstash processes it.

● Send log records to Elasticsearch by utilizing any of
the output plugins.

● Kibana is the tool used for visualizing the
Elasticsearch documents. Through Kibana users can view
the data stored in Elasticsearch and perform queries
against them. It also facilitates the understanding of
query results through tables, charts and custom
dashboards.

Note: Beats is an additional download that should be
installed in every remote location for its logs to be shipped
to the Logstash component.

ELK's Search:

As incident responders, chances are that we will spend the
majority of our ELK-time inside Kibana. For this reason, we
will focus on submitting searches through Kibana.

https://www.elastic.co/guide/en/logstash/current/output-plugins.html

● [x] Kibana searches are usually formatted as
FieldName:SearchTerm. Fields and search terms are case
sensitive.

● [x] Boolean operators like AND, OR are supported (and
are sometimes implied).

● [x] Wildcards and free text searches can be used, but
use sparingly.

In this lab's context, we will focus on basic Kibana
operations and searches that will help you to better organize
and analyze what ELK has ingested.

Recommended tools

● ELK

● Use a Firefox browser to connect to Kibana
http://demo.ine.local:5601

http://demo.ine.local:5601/
http://demo.ine.local:5601/

Tasks

Task 1: Add any fields you see fit to enhance
your understanding of the data

Once you connect to Kibana you will notice that you are
presented with a documents table that consists of two columns
only. Add any fields you consider helpful so that you gain a
better understanding of the events gathered.

Task 2: Create an actionable visualization

Experiment with Kibana's visualizations. First, identify all
users included in the dataset and then try to create a
visualization that will enable you to quickly identify
suspicious or anomalous behavior. Choose any behavior you
want to detect.... (for which you have data of course).

Task 3: Create a search to identify files
that are named like system processes

It is a known fact that attackers try to blend in by naming
their malware like legitimate Windows processes. Create an
ELK search to identify this behavior.

Hint: Obviously such files will not reside where their
legitimate counterparts are located, but elsewhere.

Task 4: Create a search to identify
suspicious services interacting with an
executable from the Windows folder

The addition of a new service is something worth analyzing.
Attackers oftentimes leverage Windows services for both
exploitation and persistence purposes.

It is not uncommon to see attacker-derived services
interacting with an executable from the Windows folder.
Create an ELK search to identify this behavior.

Hint: Identify Windows Security Log Event IDs and Windows
Event IDs related to service creation. Check the following
too.
https://github.com/palantir/windows-event-forwarding/tree/mas
ter/AutorunsToWinEventLog

Task 5: Create a search to identify
suspicious code injection

Attackers are known for performing code injection against
running processes for exploitation or evasion purposes.
Create an ELK search to identify this behavior, leveraging
the available data.

Hint: Carefully go through the following resource (especially
the detection part)
https://attack.mitre.org/techniques/T1055/. Combine what you
read in the aforementioned resource with one related Sysmon
Event ID.

Task 6: Create a search to identify possible
privilege escalation via weak service
permissions

It is not uncommon in Windows environments to see services
running with SYSTEM privileges. It is also not uncommon to
see such services having lax permissions. Specifically,
oftentimes untrusted groups (or users) have privileged access
to a service or permissions over the folder where the binary
of the service is stored.

Attackers are known to leverage such lax service permissions
to escalate their privileges.

https://github.com/palantir/windows-event-forwarding/tree/master/AutorunsToWinEventLog
https://github.com/palantir/windows-event-forwarding/tree/master/AutorunsToWinEventLog
https://github.com/palantir/windows-event-forwarding/tree/master/AutorunsToWinEventLog
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/techniques/T1055/

Hints:

1. Focus on the sc executable (which is related to
creating, configuring and deleting Windows services) and
the start or sdshow options (used when an attacker wants
more granular details about a service's permissions)

2. To launch their own executable (with higher privileges)
attackers will have to tamper with another sc option.
Try to think which option is that...

Task 7: Create a search to identify possible
Windows session hijacking

By design, a privileged Windows user who can perform command
execution with SYSTEM-level privileges can hijack any
currently logged in user's RDP session, without being
prompted to enter his/her credentials. This behavior and its
root cause are described in the following resource
http://www.korznikov.com/2017/03/0-day-or-feature-privilege-e
scalation.html.

Create a search to identify possible Windows session
hijacking through the behavior described above.

Hint: The Windows executable that attackers leverage to
perform the above is tscon.

Task 8: Create a search to identify the
whoami command being executed with System
privileges

When attackers gain access to a system they usually execute
commands such as whoami to identify their level of access.
You can leverage this attacker routine to detect intrusions.

http://www.korznikov.com/2017/03/0-day-or-feature-privilege-escalation.html
http://www.korznikov.com/2017/03/0-day-or-feature-privilege-escalation.html
http://www.korznikov.com/2017/03/0-day-or-feature-privilege-escalation.html

Create a search to detect the whoami command being executed
with SYSTEM-level privileges.

Task 9: Create a search to identify LSASS
loading a library not signed by Microsoft

By the time a user logs in to a Windows system the Local
Security Authority Subsystem Service (LSASS) process's memory
is filled with user and other credentials. As you can
imagine, the LSASS process is a process worth monitoring.

Create a search to identify LSASS loading a library not
signed by Microsoft.

Hint: Sysmon contains an Event ID that can assist in
monitoring the DLLs being loaded by a specific process.

SOLUTIONS
Kali Machine

Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy (which
may be different from the one explained in the following lab.

Task 1: Add any fields you see fit to enhance
your understanding of the data

Once you are connected to Kibana, first change the time
picker to Last 5 years and then submit an empty search. You
should come across the following.

As we can see, the documents (or events if you like) table
consists of two columns only. We can enhance our
understanding of the gathered events by adding more fields.
To do so, we simply click on Available Fields and then click
the add button that appears next to each field upon mouse
hover.

A good start would be adding the event_id field and the
computer_name field. Then, the results will look like the
ones depicted below.

Go through each available field and experiment with how
documents/events are presented until you feel comfortable
enough to start your analysis.

At any time, you can remove an added field simply by hovering
over it and pressing the remove button that appears.

Task 2: Create an actionable visualization

To identify all users included in the dataset you can start
by submitting an empty search, expanding Available Fields
and then inspecting the event_data.User field. If you do you
so will come across the below.

Do you notice that 500 records message? This is because, by
default, results are limited to 500 records. You can change

that by going to the Management tab and then clicking
Advanced Settings, but let's create a visualization instead.

To do so, click on the Visualize tab and press the button
with the cross.

Then, click on Data Table.

Now, click on the logstash-* index...

and submit the search below.

event_data.User:*

The search above can be translated as
winlog.event_data.User:"exists". This means that it will
provide us with all the documents that contain the specified
field. To identify all users, we need to create an
aggregation. To create one, click the Split Rows tab and
choose Terms from the Aggregation drop-down menu. On the
Field drop-down menu choose winlog.event_data.User.keyword.
Finally, click the play button on your upper right.

You should now see the below

These results above do not contain all users, but only five
of them. Why so? This is because of the default Size of the
aggregation we created being five. To see all users we can

specify a larger size like fifty (50) and then press the play
button once again.

You can save this visualization if you like by pressing Save
on your upper right and specifying a name.

If we would like a more actionable visualization we can
focus, for example, on the Windows Security Log Event ID 4776
and the Windows Security Log Event ID 4625 events. Both of
them can be used to identify unsuccessful logins.

Suppose that we want to be able to see when unsuccessful
login attempts occurred.

First we have to create the appropriate ELK search.

One viable search is the below.

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4776
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4625

(event_id:4776 AND -keywords:"Audit Success") OR
event_id:4625
Event ID 4625 is related solely to unsuccessful login
attempts, but Event ID 4776 is related to computers
attempting to validate the credentials for an account. When a
successful login attempt occurs the corresponding Event ID
4776 document will contain an "Audit Success" keyword and an
Error Code "0x00" (see below).

Obviously we want those out, hence the AND -keywords:"Audit
Success" part of the search.

To create such a visualization we click Visualize, we press
the button with the cross and we choose Area

Then, we click on the logstash-* index, we submit the search
above and we click on X-Axis.

There, we choose Date Histogram on the Aggregation drop-down
menu, @timestamp on the Field drop down menu and Monthly on

the Interval drop-down menu. If you do so and press the play
button, you should see the following.

Task 3: Create a search to identify files
that are named like system processes

The important fields to focus on are event_data.Image and
event_data.TargetFilename.

A viable search to detect files that are named like
legitimate Windows processes but are located in a path other
than the expected one is the below.

(event_data.Image:("*\\rundll32.exe" "*\\svchost.exe"
"*\\wmiprvse.exe" "*\\wmiadap.exe" "*\\smss.exe"
"*\\wininit.exe" "*\\taskhost.exe" "*\\lsass.exe"
"*\\winlogon.exe" "*\\csrss.exe" "*\\services.exe"
"*\\svchost.exe" "*\\lsm.exe" "*\\conhost.exe"
"*\\dllhost.exe" "*\\dwm.exe" "*\\spoolsv.exe"
"*\\wuauclt.exe" "*\\taskhost.exe" "*\\taskhostw.exe"
"*\\fontdrvhost.exe" "*\\searchindexer.exe"

"*\\searchprotocolhost.exe" "*\\searchfilterhost.exe"
"*\\sihost.exe") AND -event_data.Image:("*\\system32*"
"*\\syswow64*" "*\\winsxs*")) OR (
event_data.TargetFilename:("*\\rundll32.exe" "*\\svchost.exe"
"*\\wmiprvse.exe" "*\\wmiadap.exe" "*\\smss.exe"
"*\\wininit.exe" "*\\taskhost.exe" "*\\lsass.exe"
"*\\winlogon.exe" "*\\csrss.exe" "*\\services.exe"
"*\\svchost.exe" "*\\lsm.exe" "*\\conhost.exe"
"*\\dllhost.exe" "*\\dwm.exe" "*\\spoolsv.exe"
"*\\wuauclt.exe" "*\\taskhost.exe" "*\\taskhostw.exe"
"*\\fontdrvhost.exe" "*\\searchindexer.exe"
"*\\searchprotocolhost.exe" "*\\searchfilterhost.exe"
"*\\sihost.exe") AND
-event_data.TargetFilename:("*\\system32*" "*\\syswow64*"
"*\\winsxs*"))

AND -event_data.Image is excluding the expected paths.

event_data.TargetFilename is used in case the file included
in the event_data.Image field interacted with another file.
For example, if PowerShell downloaded a file named 65536.exe
you would see the below.

​event_data.Image:
C:\Windows\SysWOW64\WindowsPowerShell\v1.0\powershell.exe

​event_data.TargetFilename:
C:\Users\PhisedUser\AppData\Local\Temp\65536.exe

If you submit the search above, you should see 6 hits.

If you are not able to see the exact same result
representation, you can add the respective fields by
following the steps mentioned in task 1.

Task 4: Create a search to identify
suspicious services interacting with an
executable from the Windows folder

When it comes to suspicious service detection the Windows
Security Log Event ID 4697 and the Windows Event ID 7045
events will prove useful. The same applies for Autoruns logs.

A viable search to identify suspicious services interacting
with an executable from the windows folder is the following.

(event_id:("4697" "7045") OR (log_name:Autoruns AND
event_data.Category:Services)) AND
event_data.CommandLine.keyword:/.*%[s|S][y|Y][s|S][t|T][e|E][
m|M][r|R][o|O][o|O][t|T]%\\[^\\]*\.exe/ AND
-event_data.CommandLine:(*paexe* *psexesvc* *winexesvc*
remcomsvc)

event_id:("4697" "7045") is used to identify services being
installed.

https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4697
https://docs.microsoft.com/en-us/windows/security/threat-protection/auditing/event-4697
https://logrhythm.com/blog/detecting-rogue-processes-in-the-services-session/

log_name:Autoruns AND event_data.Category:Services is used
to identify auto-start services detected by the Autoruns MS
tool. [event_data.Category:Services is used to limit the
Autorun-derived documents to those only related to services]

-event_data.CommandLine:(*paexe* *psexesvc* *winexesvc*
remcomsvc) excludes services that interact with expected
Windows executables inside the Windows folder.

If you submit the search above, you should see 7 hits.

Task 5: Create a search to identify
suspicious code injection

Sysmon contains a CreateRemoteThread event (Event ID 8) that
detects when a process creates a thread in another process.
Malware usually do that so that the target process can load a
malicious DLL (whose path is written in the virtual address
space of the target process) or a malicious portable
executable.

https://docs.microsoft.com/en-us/sysinternals/downloads/autoruns

It should be noted that remote threads can be created on a
Windows system for legitimate purposes as well. Such an
example is EtwpNotificationThread, which is related to
threads (thread entry points actually) being "created" in the
context of a process, so that certain tasks can be performed
on behalf of the kernel.

To conclude the task, a viable search to identify suspicious
code injection (based on Sysmon's Event ID 8) is the
following.

event_id:8 AND source_name:"Microsoft-Windows-Sysmon" AND
-(event_data.SourceImage:"*\\VBoxTray.exe" AND
event_data.TargetImage:"*\\csrss.exe") AND
-(event_data.StartFunction:EtwpNotificationThread AND
event_data.SourceImage:"*\\rundll32.exe")
If you submit the search above, you should see 53 hits.

If you are not able to see the exact same result
representation, you can add the respective fields by
following the steps mentioned in task 1.

wce that you see on the event_data.SourceImage field is a
known Credential Dumping tool that targets the Local Security
Authority Subsystem Service (LSASS) process (whose memory
contains a variety of credentials).

Task 6: Create a search to identify possible
privilege escalation via weak service
permissions

As mentioned in this task's description attackers will
interact with the sc Windows executable in order to identify
if a service has weak permissions and if they have any kind
of privileged access over it.

If they have enough privileges, attackers may also attempt to
specify an executable of their own to be executed by the
insufficiently secure service. This can be done again through
the sc executable and the config option (binPath = will go
next).

https://www.ampliasecurity.com/research/wcefaq.html
https://attack.mitre.org/techniques/T1003/

We can search for possible privilege escalation via weak
service permissions as follows.

event_data.Image:"*\\sc.exe" AND
(event_data.CommandLine:(*start* *sdshow*) OR
(event_data.CommandLine:*config* AND
event_data.CommandLine:*binPath*)) AND
event_data.IntegrityLevel:Medium
event_data.IntegrityLevel:Medium ensures that we don't get
results from privileged users (such as admins) performing
legitimate service tasks.

If you submit the search above, you should see 3 hits.

If you are not able to see the exact same result
representation, you can add the respective fields by
following the steps mentioned in task 1.

Task 7: Create a search to identify possible
Windows session hijacking

As already mentioned in this task's description we can focus
on any tscon invocation. More specifically, we are interested
in any tscon invocation with SYSTEM-level privileges.

A viable search to identify possible Windows session
hijacking via the described attacker technique is the below.

event_data.Image:"*\\tscon.exe" AND event_data.User:"NT
AUTHORITY\\SYSTEM"

Alternatively, you can use the following search.

event_data.Image:"*\\tscon.exe" AND (event_data.LogonId:0x3e7
OR event_data.SubjectLogonId:0x3e7 OR event_data.User:"NT
AUTHORITY\\SYSTEM")
If you submit any of the searches above, you should see 1
hit.

If you are not able to see the exact same result
representation, you can add the respective fields by
following the steps mentioned in task 1.

Task 8: Create a search to identify the
whoami command being executed with System
privileges

It is quite trivial to create a search to detect the whoami
command being executed with SYSTEM-level privileges.

A viable search is the following.

event_data.Image:"*\\whoami.exe" AND
(event_data.LogonId:0x3e7 OR event_data.SubjectLogonId:0x3e7
OR event_data.User:"NT AUTHORITY\\SYSTEM")
The LogonIds used in this and the previous tasks are usually
met when SYSTEM-level access is involved.

If you submit the search above, you should see 4 hits.

If you are not able to see the exact same result
representation, you can add the respective fields by
following the steps mentioned in task 1.

Task 9: Create a search to identify LSASS
loading a library not signed by Microsoft

Sysmon's Event ID 7: Image loaded can be used to monitor the
DLLs being loaded by a specific process. Thankfully this
event contains information about the library's signature in
its data (Signature entry).

A viable search to identify LSASS loading a library not
signed by Microsoft is the following.

event_id:7 AND event_data.Image:"*\\lsass.exe" AND
-event_data.Signature:*Microsoft*
If you submit the search above, you should see 54 hits.

If you are not able to see the exact same result
representation, you can add the respective fields by
following the steps mentioned in task 1.

The DLL being loaded (wceaux.dll) is the one the credential
dumping tool you identified in task 5 uses to gather or alter
credentials.

Additional Resources:

1. https://speakerdeck.com/felipead/elasticsearch-workshop

2. https://drive.google.com/file/d/0B2S_IOa0MiOHWndxWFRiUHN
oNW8/view

Incident Handling & Response: Network Traffic & Flow
Analysis

Suricata Fundamentals

https://speakerdeck.com/felipead/elasticsearch-workshop
https://drive.google.com/file/d/0B2S_IOa0MiOHWndxWFRiUHNoNW8/view
https://drive.google.com/file/d/0B2S_IOa0MiOHWndxWFRiUHNoNW8/view

LAB 4

Scenario
The organization you work for is considering to deploy
Suricata to enhance its traffic inspection capabilities. The
IT Security manager tasked you with thoroughly analyzing
Suricata's capabilities.

A test instance of Suricata has already been set up and is
waiting for you!

Learning Objectives
The learning objective of this lab is to get familiar with
the detection capabilities and features of Suricata.

Specifically, you will learn how to leverage Suricata's
capabilities in order to:

● Have better visibility over a network

● Respond to incidents timely and effectively

● Proactively hunt for threats

Introduction To Suricata
Suricata is a high-performance Network IDS, IPS, and Network
Security Monitoring engine. It is open source and owned (as
well as developed) by a community-run non-profit foundation,
the Open Information Security Foundation (OISF).

Suricata inspects all traffic on a link for malicious
activity and can extensively log all flows seen on the wire,

https://suricata-ids.org/
https://suricata-ids.org/

producing high-level situational awareness and detailed
application layer transaction records. It needs specific
rules (holding instructions) to tell it not only how to
inspect the traffic it looks at but also what to look for.
Suricata was designed to perform at very high speeds on
commodity and purpose-built hardware.

The most important Suricata features and capabilities are:

● Deep packet inspection

● Packet capture logging

● Intrusion Detection

● Intrusion Prevention

● IDPS Hybrid Mode

● Network Security Monitoring

● Anomaly Detection

● Lua scripting (You can use the Lua programming language
to write custom scripts that will be executed when a
particular rule or signature triggers an alert)

● Rust (Allows Suricata to fail in a safe mode)

● GeoIP

● Multitenancy

● File Extraction (from protocols like SMTP, HTTP, etc.)

● Full IPv6 and IPv4 support

● IP Reputation

● JSON logging output

● Advanced protocol inspection

● Multi-threading

Suricata has four operation modes:

1. Intrusion Detection System (IDS) [Passive way of
deployment]

● Passive in terms of prevention and impact on information
systems, Suricata passively listens and inspects the
traffic to detect attacks when deployed as an IDS. It
doesn't offer any kind of protection, just increased
visibility and reduction in response time.

● A process should be implemented to monitor, handle and
act upon the generated alerts, logs and data.

● Intrusion Prevention System (IPS) [Active way of
preventing threats]

● Active in terms of prevention and impact on information
systems, traffic passes through Suricata and will reach
the internal network only if Suricata allows it to do
so; this means that Suricata can prevent/block attacks
before they reach the intranet when deployed as an IPS.

● Suricata's deployment and setup as an IPS are demanding,
not only because an understanding of the whole intranet
is required beforehand (so that legitimate traffic is
not blocked/dropped) but also because the rules to be
enabled require a lot of testing and verification.

● Note that traffic needs to be inspected first and that
will add latency.

● Intrusion Detection Prevention System [IDPS] [Hybrid
between the first two]

● A hybrid mode where Suricata is deployed as an IDS (it
passively listens to traffic via a port mirror or
something similar), but it actually does have the
capability to send RST packets, if it notices that
something is not right.

● Having low latency is of great importance in this case
since Suricata packets need to reach out to targets
first. In this mode, it offers limited active

protection.

● Network Security Monitoring (NSM) [No traffic
inspection, only logging]

● Suricata will not perform any active or passive
inspection of traffic, and it will not prevent any kind
of attack. It will just listen and log everything it
sees. HTTP requests and responses, SMTP interactions,
TLS, SSH, DNS, NFS traffic, etc. will be logged.

● This kind of deployment produces vast amounts of data,
but this level of verbosity will be useful during an
investigation.

Suricata is typically used as an IDS and for offline PCAP
analysis (unix-socket-mode)

Suricata Inputs

1. Offline Input (Essentially reading PCAP files)

2. PCAP file input allows for the processing of previously
captured packets in the LibPCAP file format. This type
of input is useful not only for offline analysis of
previously captured data but for experimenting with
various configurations and rules as well.

3. Live Input

○ (Live) LibPCAP (Packets are read from network
interfaces) [Passive IDS mode]

4. LibPCAP can also be used for live packet analysis.
LibPCAP works on all platforms and supports most link
types. On the other hand, there is no load balancing
limiting the input of packets to a single thread and

performance is not so great either.

5. Inline (If the hardware is appropriately set up,
Suricata can not only read packets but also drop
packets for prevention purposes) [Active IPS mode]

NFQ is an inline IPS mode for Linux that works with IPTables
to send packets from kernel space into Suricata for
inspection. It is often used inline, and it requires the use
of IPTables to redirect packets to the NFQUEUE target which
allows Suricata to inspect the traffic. Drop rules will be
required in order for Suricata to drop packets.

AF_PACKET is the recommended input on Linux. It offers better
performance than LibPCAP. In addition to IDS mode, AF_PACKET
can also be used in IPS mode (inline) by creating an Ethernet
bridge between two interfaces (copying packets between those
two interfaces, processed by Suricata along the way).
AF_PACKET cannot be used inline if the machine must also
route packets (such as a Linux machine performing Network
Address Translation). It supports multiple threads. The only
con is that it is not available in older Linux distributions.

Note that other (less popular or more advanced) inputs also
exist.

Suricata Outputs

● Outputs are all Suricata logs and alerts along with
additional information, such as network flows and DNS
requests. Probably the most important Suricata output is
EVE. EVE is a JSON output format that keeps track (logs)
of almost all event types (Alert, HTTP, DNS, TLS
metadata, Drop, SMTP metadata, Flow, Netflow, etc.).
Note that it is also consumable by tools such as
Logstash.

Notes:

● You may come across a Unified2 Suricata output. Unified2
is a Snort binary alert format. As you can imagine, this
output is used for integrating with other software that
uses Unified2. Any Unified2 output can be read using
Snort's u2spewfoo tool.

Recommended tools

● Suricata

● Wireshark

● EveBox

● jq

Tasks

Task 1: Get familiar with Suricata
configuration and configure custom rules

After Suricata is deployed, certain default configurations,
rules, and logs are applied. As an incident responder, you
should know how to apply your own Suricata configurations,
rules, and log locations, in order to make the best out of
it.

The most common Suricata-related locations/directories are:

/etc/suricata/rules/ <- Default directory containing Suricata
rule files
/etc/suricata/suricata.yaml <- Default location of Suricata's
configuration file

First, get familiar with how rule files look.

https://suricata-ids.org/
https://evebox.org/
https://stedolan.github.io/jq/

Then, as an exercise, configure Suricata to load signatures
from the customsig.rules file residing in the /root/Desktop
directory.

Task 2: Get familiar with Suricata inputs

Suricata can receive data in multiple formats. Familiarity
with input types is important to grasp Suricata's
capabilities fully.

Experiment with Suricata inputs by running Suricata with the
appropriate options/flags for each input.

Hint: suricata -h can help you in identifying the
appropriate options/flags.

Task 3: Get familiar with Suricata outputs

Suricata can output data in multiple formats. Understanding
the different output formats is equally important if you'll
be using Suricata to generate logs for investigation
purposes.

Experiment with Suricata outputs, first by analyzing the
eve.json, fast.log and stats.log files residing in the
/var/log/suricata directory. Then, inspect the suricata.yaml
config file and enable additional outputs.

Task 4: Effectively analyze Suricata output

Not all Suricata outputs can be easily read or parsed to
extract specific information. A good example of such a
complex output is eve.json. Try using the jq and EveBox
tools to effectively parse the Suricata output and extract
important information.

It is time to exercise.

SOLUTIONS
Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy (which
may be different from the one explained in the following lab.

Task 1: Get familiar with Suricata
configuration and configure custom rules

You can list all Suricata rule files by executing the below.

ls -lah /etc/suricata/rules/

You should see something similar to the following.

To see how a rule file looks, execute the below.

more /etc/suricata/rules/emerging-trojan.rules

You should see something similar to the following.

Press the Space key multiple times, and you will be presented
with something similar to the below.

The first rule above is commented out; this means that it
won't be loaded. This could happen if a new version of this
rule has surfaced or if the threat related to this rule has
become obsolete etc.

If you carefully look at the next rule, you will notice
certain variables such as $HOME_NET and $EXTERNAL_NET. This
rule will look for traffic from the IPs specified in the
$HOME_NET variable towards IPs specified in the
$EXTERNAL_NET variable.

These variables are defined inside the suricata.yaml
configuration file.

more /etc/suricata/suricata.yaml

You can configure those variables according to your
environment, after Suricata is installed, and even define
your own variables. Inspect the whole configuration file in
order to get familiar with it!

Notes:

1. Suricata performs automatic protocol detection. The
*_PORTS variables are needed for compliance rules (for
example, to verify that http traffic happens only on
port 80). If you would like to check and alert
specifically for "non-compliance/anomaly" traffic you
could use some ideas from the below
https://redmine.openinfosecfoundation.org/projects/suric
ata/wiki/Protocol_Anomalies_Detection

2. In case Suricata is sniffing between clients and a
proxy, the proxy's address should be part of
EXTERNAL_NET for malicious traffic between clients and
the Internet to be detected. You can also enable XFF
inside suricata.yaml to get more info.

Now, if you wanted to configure Suricata to load signatures
from the customsig.rules file residing in the
/home/elsanalyst directory, you should execute the
following.

vim /etc/suricata/suricata.yaml
Enter /rule-path and press the Enter key
Press Shift + i
Change default-rule-path: from /etc/suricata/rules to
/root/Desktop
Change rule-files: from - emerging-malware.rules to -
customsig.rules
Press the Esc key
Enter :wq and then, press the Enter key

Task 2: Get familiar with Suricata inputs

1. Offline Input (Essentially reading PCAP files)

To try Suricata with offline input, execute the following.

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Protocol_Anomalies_Detection
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Protocol_Anomalies_Detection
https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Protocol_Anomalies_Detection
https://github.com/OISF/suricata/blob/master/suricata.yaml.in

suricata -r /root/Desktop/PCAPs/eicar-com.pcap

You should see the following.

Suricata will create various logs (eve.json, fast.log, and
stats.log) inside the /var/log/Suricata directory.

Alternatively, you can execute the following to not check
checksums (-k) and to log in a different directory (the
current one in this case).

suricata -r /root/Desktop/PCAPs/eicar-com.pcap -k none -l .

You should see the below.

1. Live Input

a. To try Suricata's (Live) LibPCAP mode, execute the
following.

ifconfig <- To identify the network interface Suricata will
listen on.
suricata --pcap=ens5 -vv

You should see interface you working with after ifconfig.

Output after --pcap command will be

Alternatively, you can execute the following.

ifconfig
suricata -i ens5 -vv

Try it; scroll down and you will see the following.

The -i option of Suricata chooses the best input option (for
Linux the best input option is AF_PACKET). If you need pcap
mode, it is better to use the --pcap option.

(Live) LibPCAP can be configured via the suricata.yaml file.
The available configurations include buffer size, BPF or
tcpdump filters, checksum validation, threads, promiscuous
mode, snap length, etc.

b. To try Suricata in Inline (NFQ) mode, execute the
following (a security engineer should have executed iptables
-I FORWARD -j NFQUEUE first).

suricata -q 0

You should see something similar to the below.

Extra (not-related exclusively with 1 or 2 above)

To try Suricata in IDS mode with AF_PACKET input, execute the
following.

suricata -i ens5
suricata -af-packet=ens5

Task 3: Get familiar with Suricata outputs

As already mentioned, Suricata outputs various logs inside
the /var/log/suricata directory, by default. You need
root-level access to edit or use them.

1. eve.json <- Suricata's recommended output

2. fast.log

3. stats.log <- Human-readable statistics log

4. eve.json

Inside the /var/log/suricata directory, you will find a file
named eve.json.

You can start inspecting it, by executing the following.

cd /var/log/suricata
less eve.json

or

cd /var/log/suricata
less eve.json.1

You should see something similar to the below.

eve.json obviously contains JSON objects. These JSON objects
contain information such as a timestamp, flow_id, event_type,
etc. For example, the first entry has an event type of DNS
and contains information about a DNS query.

If one wanted to filter out only alert events, he/she could
use the jq command-line JSON processor, as follows.

cat eve.json | jq -c 'select(.event_type == "alert")'

If you do so, you will see something similar to the below
screenshot.

Notes:

flow_id can help you correlate one event with other events
that happened on the same flow. pcap_cnt indicates the number
of the packet that triggered the alert (so you can inspect it
further with a tool like Wireshark).

If you want a prettier representation, execute the following.

cat eve.json | jq 'select(.event_type == "alert")'

If you do so, you will see the below.

Similarly, to filter out any TLS events, execute the
following.

cat eve.json | jq -c 'select(.event_type == "tls")'

You should see the below.

It should be noted that eve.json logs most of the event
types. If you want a more targeted approach, you can disable
EVE and enable specific outputs. Take for example HTTP
events. The http-log has become obsolete with the
introduction of EVE. You can still enable it though, as
follows.

vim /etc/suricata/suricata.yaml
Enter /http-log and press the Enter key
Press Shift + i
Change enabled: from no to yes
Press the Esc key
Enter :wq and then, press the Enter key

Now, a new log http.log will be visible in each Suricata run
(if any HTTP events occurred of course). To see this in
action, execute the following after you enable the http-log.

suricata -r /root/Desktop/PCAPs/tls-suricata-ids-org.pcap
ls /var/log/suricata

You will see something similar to the below.

As a quick exercise, try enabling the file-log and
file-store outputs. Then, run Suricata against the
eicar-com.pcap file that resides inside the PCAPs folder. If
you configured Suricata properly, the eicar test file will be
stored inside the /var/log/Suricata/files directory. Hint:
enable force-filestore as well.

Finally, in case you use Suricata in IPS mode, try enabling
the drop output to have a more targeted look at the dropped
packets. Of course, drop rules should be active in order for
packets to be dropped by Suricata.

1. fast.log

fast.log follows a text-based format (Snort users are
familiar with it). It is enabled by default and logs alerts
only.

Inside the /var/log/suricata directory, you will find a file
named fast.log.

You can start inspecting it by executing the following.

cat fast.log

You should see the below.

1. stats.log

As previously mentioned fast.log is a human-readable
statistics log.

Inside the /var/log/suricata directory, you will find a file
named stats.log

You can start inspecting it, by executing the following.

less stats.log

You should see the below.

This output will prove handy while debugging Suricata
deployments.

Other important Suricata outputs, which you can try enabling,
are :

● pcap-log <- Logs all packets to PCAP files (full packet
capture)

● alert-debug

Task 4: Effectively analyze Suricata output

Let's continue analyzing the Suricata output and make the
best out of it. As always, let's start by taking another look
at eve.json

What if one wanted to extract all the event types out of
eve.json and sort them as well as aggregate them at the same
time? This can be done as follows.

cat /var/log/suricata/eve.json | jq -c
'.event_type'|sort|uniq -c|sort -nr

If one wanted to extract the latest alert out of eve.json, it
can be done as follows.

cat /var/log/suricata/eve.json | jq -c 'select(.alert)'| tail
-1 | jq .

What if one wanted to extract the latest HTTP event out of
eve.json? This can be done as follows.

cat /var/log/suricata/eve.json | jq -c 'select(.http)'| tail
-1 | jq .

Try the same for the latest DNS and TLS event...

Going through and analyzing thousands (if not millions) of
lines of data using jq is a tedious, not to mention
ineffective, approach. Thank god EVE output is consumable by
solutions like the ELK Stack and Splunk.

That being said, there is yet another convenient way to
analyze Suricata output, EveBox.

To analyze eve.json through EveBox, execute the below.

evebox oneshot /var/log/suricata/eve.json

You will come across the following.

You will be presented with a web browser as shown.

You will notice that EveBox parsed the whole eve.json and
presented it to you in a much more organized way. Feel free

to look around and get familiar with EveBox's layout and
capabilities.

Let's see an example of EveBox's analysis capabilities.

Try the following... First, list all HTTP events.

Then, choose the third entry.

Finally, click on the Flow ID.

You will notice, that everything has been filtered based on
the Flow ID you have just clicked! This is a great capability
and "view" while performing an investigation.

Additional Resources:

1. https://suricata.readthedocs.io/en/latest/output/eve/eve
-json-examplesjq.html?highlight=jq

2. https://stedolan.github.io/jq/manual/

Effectively Using Suricata

LAB 5

Scenario

https://suricata.readthedocs.io/en/latest/output/eve/eve-json-examplesjq.html?highlight=jq
https://suricata.readthedocs.io/en/latest/output/eve/eve-json-examplesjq.html?highlight=jq
https://stedolan.github.io/jq/manual/

The organization you work for is considering deploying
Suricata to enhance its traffic inspection capabilities. The
IT Security manager provided you with some Suricata rules to
get familiar with their structure. He also provided you with
PCAP files containing malicious traffic so that you can
experiment with writing Suricata detection rules.

A test instance of Suricata has already been set up and is
waiting for you!

Learning Objectives
The learning objective of this lab is not only to get
familiar with the detection capabilities of Suricata but also
to learn effective rule writing of Suricata rules.

Specifically, you will learn how to use Suricata's
capabilities in order to:

● Have better visibility over a network
● Respond to incidents timely and effectively
● Proactively hunt for threats

Introduction To Suricata Rules

What is a Suricata rule

Rules are essentially instructions to the Suricata engine to
look for specific markers in network traffic that we want to
be notified about if they are seen.

Rules are not always oriented towards detecting malicious
traffic. Rules can also be written to provide blue team
members with actionable and/or contextual information
regarding activity that is occurring on a network.

https://suricata-ids.org/
https://suricata-ids.org/

Rules can be as specific or as broad as we want them to be.
Finding the perfect balance is important in order, for
example, to be able to detect variations of a given malware
but also avoid false positives. They can be seen as a big AND
statement (multiple contents are specified, and the rule will
trigger an alert if and only if all of these contents are
seen in the passing traffic).

Threat intelligence and infosec communities usually offer
critical information based on which rules are developed.

Each active rule consumes some of the host's CPU and memory.
Specific guidelines exist to assist effective Suricata rule
writing.

action protocol from_ip port -> to_ip port (msg:"we are under
attack by X"; content:"something"; content:"something else";
sid:10000000; rev:1;)

Header (action - port part): This rule portion includes what
action we want the rule to have along with the protocol
Suricata should expect this rule to be found in. It also
includes IPs and ports, as well as an arrow indicating
directionality.

Rule message & Contents [(msg -else";) part]: The rule
message is the message we want the analysts (or our self) to
be presented with, whereas the contents are the portions of
the traffic that we have deemed critical in order to detect
activity that we want to be informed of.

Rule metadata [(sid - 1;) part]: This rule portion mainly
helps to keep track of rule modifications. Sid is a unique
rule identifier.

Let's dive into the Header.

action tells the Suricata engine what to do should the
contents are matched. It can be:

● Alert <- Generate alert and log matching packets, but
let the traffic through

● Log <- Log traffic (no alert)

● Pass <- Ignore the packet and allow it through

● Drop <- If in IPS mode, drop the packet

● Reject <- IDS will send TCP RST packet(s)

protocol can be: tcp, udp, icmp, ip, http, tls, smb, dns

Then, we need a way to declare the directionality of the
traffic; this can be done through:

● Rule Host Variables. We have seen those variables when
analyzing the suricata.yaml file. As a reminder,
$HOME_NET refers to internal networks specified in the
suricata.yaml file and $EXTERNAL_NET usually refers to
whatever is not included in the $HOME_NET variable.

● Rule Direction. Between the 2 IP-Port pairs an arrow
exists. This arrow tells the Suricata engine the
direction in which the traffic is flowing. Examples:

○ Outbound traffic $HOME_NET any -> $EXTERNAL_NET any

○ Inbound traffic $EXTENRAL_NET any -> $HOME_NET any

○ Bidirectional traffic $EXTENRAL_NET any <>
$HOME_NET any

Rule Ports declare the port(s) in which traffic for this
rule will be evaluated. Examples:

● alert tcp $HOME_NET any -> $EXTERNAL_NET 4444

● alert tcp $HOME_NET any -> $EXTERNAL_NET $FTP_PORTS

● port variables configurable in suricata.yaml

● alert tcp $HOME_NET any -> $EXTERNAL_NET !80

● alert tcp $HOME_NET [1024:] -> $EXTERNAL_NET
[80,800,6667:6680,!6672]

Now, let's suppose you were required to create a header based
on the PCAP below.

The rule header should be alert dns $HOME_NET any -> any any

any was used instead of $EXTERNAL_NET because some networks
include internal DNS resolvers and you don't want to rule out
that traffic.

Let's now dive into Rule message & Contents.

Rule Message. Arbitrary text that appears when the rule is
triggered. For better understanding, it would nice if the
rule messages you create contain malware architecture,
malware family and malware action.

● Flow. Declares the originator and the responder.
Remember while developing rules that you want to have
the engine looking at "established" tcp sessions.
Examples:

○ flow:,;

■ from_server, from_client can also be used
○ alert tcp $HOME_NET any -> $EXTERNAL_NET 4444

■ flow:established,to_server;
○ If the protocol is UDP

■ flow:to_server;
● Dsize. Allows matching using the size of the packet

payload (not http, only tcp, and udp). It is based on
TCP segment length, NOT total packet length (Wireshark
filter: tcp.len). Examples:

○ dsize:312;

○ dsize:300<>400;

Rule Content. Values that identify a specific network
traffic or activity. Suricata matches this unique content in
packets for detection. Note that for certain characters, the
use of hex is required. Examples:

content:"some thing";

content:"some|20|thing";

content:"User-Agent|3a 20|";

● Rule Buffers. For some protocols, we have many buffers
that we can use so that we don't search the entire
packet for every content match. Using those buffers we
can speed things up and also save resources. Refer to
the following for more details:
https://suricata.readthedocs.io/en/latest/rules/http-key
words.html

Consider the below rule content.

https://suricata.readthedocs.io/en/latest/rules/http-keywords.html
https://suricata.readthedocs.io/en/latest/rules/http-keywords.html
https://suricata.readthedocs.io/en/latest/rules/http-keywords.html

​content:"POST"; content:"/trigger.php";
content:"DetoxCrypto";

​content:"publickey";

By using buffers it will be transformed to the below.

​content:"POST"; http_method; content:"/trigger.php";
http_uri;

​content:"DetoxCrypto"; http_user_agent;
content:"publickey"; http_client_body;

● Rule Options. Additional modifiers to assist detection.
They can help the Suricata engine in finding the exact
location of contents.

● nocase. Helps rules to not get bypassed through case
changes. Example:

○ content:"DetoxCrypto"; nocase; http_user_agent;

○ offset. Informs the Suricata engine about the
position inside the packet where is should start
matching. This option is used in conjunction with
"depth". Examples:

■ content:"whatever"; offset:5;

■ content:"|00 03|"; offset:3; depth:2;

■ Content of hex |00 03| will be found 3
bytes in and 2 bytes deep

● distance. Informs the Suricata engine to look for the
specified content n bytes relative to the previous
match. This option is used in conjunction with "within".
Examples:

○ content:"whatever"; content:"something";
distance:5;

○ content:"whatever"; content:"something";
distance:0;

○ content:"|00 03|"; offset:3; depth:2;

● content:"whatever"; distance:0; nocase; within:30;

Here are some additional examples to better comprehend what
we covered so far.

● content:"whatever"; nocase; depth:9;
content:"some|20|thing"; distance:0;

● We are looking for the string "whatever" (with nocase
enabled) in the first 9 bytes of the packet. An offset
of 0 is implied. Then, we are looking for the string
"some thing" occurring anywhere after the first match of
"whatever".

● alert tcp $HOME_NET any -> $EXTERNAL_NET any
(msg:"Malicious"; flow:established,to_server; dsize:45;
content:"suspicious"; offset:33;

● We are looking for outbound TCP traffic on any port with
a size of 45 bytes. The string "suspicious" should start
33 bytes in the packet. 33+12=45. Essentially, we are
looking for the string at the last 12 bytes.

Finally, let's dive into Rule metadata.

● reference. This is the first rule metadata field we
usually come across. It indicates where the initial
information to develop this rule came from. Example:

○ reference:url,securingtomorrow.mcafee.com/2017-11-
20-dridex;

● sid. This is the signature ID number. It is a unique
number given by the rule writer. Example:

○ sid:10000000;
● revision. This field informs about the version of the

rule. Example:

○ rev:5;

Note: To conclude covering Suricata rules, let's talk about
PCRE (Pearl Compatible Regular Expression). PCRE is a very
powerful ally while developing rules. One can use PCRE
through the pcre statement (followed by a regular
expression). Note that PCRE must be wrapped in leading and
trailing forward slashes and any flags will go after the last
slash. Examples:

● pcre:"/something/flags";

● pcre:"/^\/[a-z0-9]{6}\.php$/Ui";

● We are looking for 6 alphanumeric characters followed by
.php and nothing after (the lowercase i indicates a case
insensitive match, ^ indicates the start and $ indicates
the end)

Note that anchors go after and before wrapped slashes and
certain characters need to be escaped with a backslash.
Additionally, never write a PCRE-only rule.

Managing Suricata Rules

● Suricata rules can be downloaded from:

● https://rules.emergingthreats.net/open/

https://rules.emergingthreats.net/open/

● https://github.com/EmergingThreats/et-luajit-scripts

● https://github.com/ptresearch/AttackDetection

● Other Sources

● The best way to manage Suricata rules is by using:
https://github.com/OISF/suricata-update
(https://suricata.readthedocs.io/en/latest/rule-manageme
nt/suricata-update.html)

● You can study more on Suricata rules on the official
documentation site
https://suricata.readthedocs.io/en/latest/rules/index.ht
ml

Recommended tools

● Suricata

● Wiresharkhttp://manpages.ubuntu.com/manpages/trusty/man1
/xxd.1.html

Tasks

Task 1: Analyze the provided Suricata rules
and describe what they look for

Armed with the knowledge you obtained from section 3.
INTRODUCTION TO SURICATA RULES above, analyze the two
Suricata rules below and describe what they look for.

Rule 1:

https://github.com/EmergingThreats/et-luajit-scripts
https://github.com/ptresearch/AttackDetection
https://github.com/OISF/suricata-update
https://github.com/OISF/suricata-update
https://suricata.readthedocs.io/en/latest/rule-management/suricata-update.html
https://suricata.readthedocs.io/en/latest/rule-management/suricata-update.html
https://suricata.readthedocs.io/en/latest/rules/index.html
https://suricata.readthedocs.io/en/latest/rules/index.html
https://suricata.readthedocs.io/en/latest/rules/index.html
https://suricata-ids.org/
http://manpages.ubuntu.com/manpages/trusty/man1/xxd.1.html
http://manpages.ubuntu.com/manpages/trusty/man1/xxd.1.html

alert dns $HOME_NET any -> any any (msg:"TROJAN X Rogue DNS
Query Observed"; dns_query; content:"searchcdn.gooogle.com";
isdataat:!1,relative;
reference:url,threatintelprovider.com/trojanx;
classtype:trojan-activity; sid:1; rev:1;)

Rule 2:

alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"TROJAN Z
malicious SSL Cert"; flow:established,to_client;
tls_cert_subject; content:"CN=uniquestring";
classtype:trojan-activity; sid:1; rev:1;)

Task 2: Analyze the provided PCAP files and
develop your own rules (Level: Beginner)

Now it's time to develop your own rules. Analyze the
Sofacy.pcap, Qadars.pcap, 7ev3n.pcap and
Malicious_document.pcap PCAP files using Wireshark. Then,
try to identify how you can instruct a Suricata sensor in
order to detect the malicious traffic they contain and
ultimately, develop a Suricata rule for each case.

Task 3: Analyze the provided PCAP files and
develop your own rules (Level: Intermediate)

Things won't always be straightforward while developing
Suricata rules. Complex cases will always come up. Analyze
the DDoSClient.pcap and Adobe.pcap PCAP files using
Wireshark. Then, try to identify how you can instruct a
Suricata sensor in order to detect the malicious traffic they
contain and ultimately, develop a Suricata rule for each
case.

SOUTIONS

Below, you can find solutions for every task of this lab. As
a reminder, you can follow your own strategy, which may be
different from the one explained in the following lab.

Task 1: Analyze the provided Suricata rules
and describe what they look for

Let's start with Rule 1.

alert dns $HOME_NET any -> any any (msg:"TROJAN X Rogue DNS
Query Observed" dns_query;
content:"default27061330-a.akamaihd.net";
isdataat:!1,relative;
reference:url,threatintelprovider.com/trojanx;
classtype:trojan-activity; sid:1; rev:1;)

● This rule specifies the DNS protocol rather than UDP or
something else. dns is a Suricata protocol keyword that
allows the engine to detect DNS traffic based on the
protocol and not the port. This protocol keyword (dns)
should always be used when inspecting DNS traffic.

● The destination host is set to any. As mentioned
previously, this is because some networks include
internal DNS resolvers and we don't want to rule out
that traffic.

● The destination port is set to any as well (instead of
port 53); this is because we are using the dns protocol
keyword which will help inspect DNS traffic regardless
of the port used.

● Then, there is a typical message that will inform us
about the detected activity.

● The main content of the rule starts with the dns_query
keyword. dns_query is essentially a sticky buffer used
to inspect the value of a DNS request. Being a sticky

buffer results in all content following being included
in the buffer. So, for this rule, we first declare the
dns_query keyword and then the content, which contains
the normalized domain that was included in the request.
The dns_query buffer is normalized, so, one can use a
literal period as opposed to the hexadecimal
representation in the raw packet. Note that the DNS
buffer doesn't include the null byte after the end of
the domain. This is where the isdataat keyword comes
into play. !1,relative means that there should be no
data 1 byte relative to the previous match, which is
effectively the domain name. Basically, this is a way to
"lock" the match and avoid matching anything past the
.net part.

● The remaining part can be easily comprehended.

Let's continue with Rule 2.

alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"TROJAN Z
malicious SSL Cert"; flow:established,to_client;
tls_cert_subject; content:"CN=uniquestring";
classtype:trojan-activity; sid:1; rev:1;)
- This rule specifies the TLS protocol. tls is a Suricata
protocol keyword that allows the engine to detect TLS traffic
based on the protocol and not the port. By looking further
down the rule, we are obviously checking for the delivery of
a TLS certificate from an external server, hence the
$EXTERNAL_NET any -> $HOME_NET any directionality. Once
again, any is set for both ports since the tls keyword is
utilized.

● Then, there is a typical message that will inform us
about the detected activity.
flow:established,to_client; established is used due to
TCP and to_client due to the inbound traffic.

https://osqa-ask.wireshark.org/questions/48663/how-can-you-tell-if-a-dns-response-has-the-message-compressed-in-wireshark
https://osqa-ask.wireshark.org/questions/48663/how-can-you-tell-if-a-dns-response-has-the-message-compressed-in-wireshark

● tls_cert_subject is once again a buffer, and the rule
content is a unique string included in the TLS
certificate's CN portion.

● The remaining part can be easily comprehended

Task 2: Analyze the provided PCAP files and
develop your own rules (Level: Beginner)

Let's start with Sofacy.pcap

To learn more about Sofacy, refer to the following link
https://securelist.com/sofacy-apt-hits-high-profile-targets-w
ith-updated-toolset/72924/. We'll develop a Suricata rule
based on our analysis of the Sofacy.pcap file, considering
that what we see inside the PCAP is malicious.

By opening Sofacy.pcap in Wireshark, the first thing we
notice is two (2) DNS queries and the respective DNS
responses.

Let's create a Suricata rule to detect those two (2) C2
domains.

alert dns $HOME_NET any -> any any (msg:"TROJAN Activity
Detected DNS Query to Known Sofacy Domain 1"; dns_query;

https://securelist.com/sofacy-apt-hits-high-profile-targets-with-updated-toolset/72924/
https://securelist.com/sofacy-apt-hits-high-profile-targets-with-updated-toolset/72924/
https://securelist.com/sofacy-apt-hits-high-profile-targets-with-updated-toolset/72924/
https://attack.mitre.org/techniques/T1352/

content:"drivres-update.info"; nocase; isdataat:!1,relative;
sid:1; rev:1;)
alert dns $HOME_NET any -> any any (msg:"TROJAN Activity
Detected DNS Query to Known Sofacy Domain 2"; dns_query;
content:"softupdates.info"; nocase; isdataat:!1,relative;
sid:2; rev:1;)

Put these two (2) rules inside the local.rules file residing
in the /etc/suricata/rules directory. You can do so, by
executing-

nano /etc/suricata/rules/local.rules

On the machine's Desktop, you will find a bash script
(automate_suricata.sh), by OISF's J Williams, that will
automate running Suricata with the local.rules file, logging
in a different location (/tmp/suricata), echoing the
contents of fast.log and also cleaning previous logs before
each new Suricata execution occurs.

Now before running "automate_suricata.sh" script, make sure
to check whether the following path:
/etc/suricata/rules/local.rules is added in suricata.yaml
configuration file or not, as shown in the below image.

● You can find suricata.yaml configuration file at
/etc/suricata/suricata.yaml location.

● In suricata.yaml file search for text "rule-files", and
if the given path is not present, then paste the above
mentioned path as shown in the image and save the file.

Now, it's time to test the rule above. You can do so, as
follows.

cd Desktop
./automate_suricata.sh ./PCAPs/Sofacy.pcap

You should see the following.

Let's continue with the Citi.pcap file. If you are
unfamiliar with Citi, Citi is a global bank.

By opening the Citi.pcap in Wireshark, the first thing we
notice is a phishy-looking DNS query (note that
online.citi.com is a legitimate URL).

Let's create a Suricata rule to detect such phishing-related
DNS traffic against online.citi.com.

alert dns $HOME_NET any -> any any (msg:"Possible Citi
Phishing Attempt Observed in DNS Query "; dns_query;
content:"online.citi.com"; nocase; isdataat:1,relative;
sid:3; rev:1;)
isdataat:1,relative will inform us if any data exist after
online.citi.com. There shouldn't be any data after it. If
data are identified after online.citi.com, then, we are
dealing with a phishing URL, similar to the one you can see
in the PCAP file above (inside the red rectangle)

It's time to test the rule above. You can do so, as follows.

cd Desktop
./automate_suricata.sh ./PCAPs/Citi.pcap
You should see the following.

Now, it's time to analyze the Qadars.pcap file.

To learn more about Qadars, refer to the following links:

● https://securityintelligence.com/an-analysis-of-the-qada
rs-trojan/

● https://sslbl.abuse.ch/ssl-certificates/sha1/1862c777bab
f298fe5a93406e4dc8456d718abcf/

We'll develop a Suricata rule based on our analysis of the
Qadars.pcap file, considering that what we see inside the
PCAP is malicious.

By opening Qadars.pcap in Wireshark, the first thing we
notice is a DNS query and a DNS response regarding
susana24.com. Then, we notice TLS traffic initiating.

Let's focus on the TLS certificate this time and try to
create a rule based on the CN portion of it (susana24.com).

alert tls $EXTERNAL_NET any -> $HOME_NET any (msg:"TROJAN
Activity Observed Malicious SSL Cert (Qadars CnC)";
flow:established,to_client; tls_cert_subject;
content:"CN=susana24.com"; classtype:trojan-activity; sid:4;
rev:1;)
It's time to test the rule above. You can do so, as follows.
cd Desktop

https://sslbl.abuse.ch/ssl-certificates/sha1/1862c777babf298fe5a93406e4dc8456d718abcf/
https://sslbl.abuse.ch/ssl-certificates/sha1/1862c777babf298fe5a93406e4dc8456d718abcf/

./automate_suricata.sh ./PCAPs/Qadars.pcap
You should see the following.

Now, it's time to analyze the 7ev3n.pcap

To learn more about the 7ev3n ransomware, refer to the
following link
https://www.vmray.com/cyber-security-blog/7ev3n-honet-ransomw
are-rest-us/.

We'll develop a Suricata rule based on our analysis of the
7ev3n.pcap file, considering that what we see inside the
PCAP is malicious.

By opening 7ev3n.pcap in Wireshark and filtering so that we
can see HTTP traffic only, the first thing we notice is this
curious-looking request.

Let's follow the whole stream.

https://www.vmray.com/cyber-security-blog/7ev3n-honet-ransomware-rest-us/
https://www.vmray.com/cyber-security-blog/7ev3n-honet-ransomware-rest-us/
https://www.vmray.com/cyber-security-blog/7ev3n-honet-ransomware-rest-us/

The requests above can provide us with a lot of clues on how
to develop an effective Suricata rule.

Viable rules can be found below.

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:" TROJAN
7ev3n Ransomware CnC Checkin"; flow:established,to_server;
content:"GET"; http_method; content:".php?RIGHTS="; http_uri;

content:"&WIN="; http_uri; distance:0; content:"&WALLET=";
http_uri; distance:0; content:"&ID="; http_uri; distance:0;
content:"&UI="; http_uri; distance:0;
content:"Internet|20|Explorer"; http_user_agent; depth:17;
isdataat:!1,relative; http_header_names; content:!"Referer";
content:!"Accept"; sid:5; rev:1;)
alert http $HOME_NET any -> $EXTERNAL_NET any (msg:" TROJAN
7ev3n Ransomware Encryption Activity";
flow:established,to_server; content:"GET"; http_method;
content:".php?SSTART="; http_uri; content:"&CRYPTED_DATA=";
http_uri; distance:0; content:"&ID="; http_uri; distance:0;
content:"&FILES="; http_uri; distance:0; content:"&UI=";
http_uri; distance:0; content:"Internet|20|Explorer";
http_user_agent; depth:17; isdataat:!1,relative;
http_header_names; content:!"Referer"; content:!"Accept";
sid:6; rev:1;)
depth:17; isdataat:!1,relative; is looking to see if there
are any data after the last "r" of the "Internet Explorer"
string, ensuring that the User Agent field only contains
"Internet Explorer". http_header_names; content:!"Referer";
content:!"Accept"; is leveraging the lack of usual headers
for detection purposes.

It's time to test the rule above. You can do so, as follows.

cd Desktop
./automate_suricata.sh ./PCAPs/7ev3n.pcap
You should see the following.

Finally, let's analyze the Malicious_document.pcap

Typically, malicious Office documents rely on macro
execution, embedded objects, or exploits to deliver a payload
onto the victim machine. In such cases, the URI can be so
characteristic as to be used as solid rule content. The same
applies for the User-Agent.

By opening the Malicious_document.pcap in Wireshark, the
first thing we notice is this curious-looking HTTP request.

The request above can provide us with a lot of clues on how
to develop an effective Suricata rule. A viable rule can be
found below.

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Malicious
Document Retrieving Payload"; flow:established,to_server;
content:".exe?q="; fast_pattern; content:"Microsoft BITS/";
http_user_agent; depth:15; pcre:"/\.exe\?q=[0-9]{3,5}$/U";
http_header_names; content:!"Referer"; sid:7; rev:1;)

flow:established,to_server; is used since we are dealing
with TCP and the directionality is towards the malicious
server. We won't focus on the curious-looking HEAD HTTP
method so that we can catch variations. fast_pattern; is used
so that the Suricata engine "focuses more" on the .exe?q=
content ('User-Agent:' will be a match very often, but
.exe?q= appears less often in network traffic).
pcre:"/\.exe\?q=[0-9]{3,5}$/U"; means the sensor should
match every time it observes three to five numbers after q=.
Finally, we are once again leveraging the lack of usual
headers for detection purposes.

It's time to test the rule above. You can do so, as follows.

cd Desktop
./automate_suricata.sh ./PCAPs/Malicious_document.pcap
You should see the following.

https://redmine.openinfosecfoundation.org/projects/suricata/wiki/Fast_Pattern

Task 3: Analyze the provided PCAP files and
develop your own rules (Level: Intermediate)

Let's start with DDoSClient.pcap

We'll develop a Suricata rule based on our analysis of the
DDoSClient.pcap file, considering that what we see inside
the PCAP is malicious.

By opening DDoSClient.pcap in Wireshark, the first thing we
notice is some curious-looking TCP traffic, containing
information such as OS, CPU MHZ, and CPU Architecture.

The traffic above can provide us with enough clues on how to
develop an effective Suricata rule. A viable rule can be
found below.

alert tcp $HOME_NET any -> $EXTERNAL_NET any (msg:"ET TROJAN
DDoS Client Information Checkin"; flow:established,to_server;
content:"Windows"; nocase; depth:7; content:"MHZ|00 00 00 00
00 00|"; distance:0; nocase; content:"|00 00 00 00 00
00|Win"; distance:0; nocase; classtype:trojan-activity;
sid:8; rev:1;)

Notice that we are using "Windows" and "MHZ" instead of
"Windows 7" and "1795 MHZ", to detect variations. depth:7; is
used because "Windows" is seven character's long. The first
distance:0; is used because the nulls appear right after
"Windows" (the number of nulls in the rule was chosen
randomly).

It's time to test the rule above. You can do so, as follows.

cd Desktop
./automate_suricata.sh ./PCAPs/DDoSClient.pcap
You should see the following.

Now, it's time to analyze the Adobe.pcap

We'll develop a Suricata rule based on our analysis of the
Adobe.pcap, considering that what we see inside the PCAP is
malicious.

By opening Adobe.pcap in Wireshark and filtering so that we
can see HTTP traffic only, the first thing we notice is this
curious-looking POST request. Let's follow the whole stream.

The request above can provide us with a lot of clues on how
to develop an effective Suricata rule. Try creating one on
your own...

There was another curious-looking HTTP, the following one.

What is suspicious about the portion inside the red rectangle
above, is the way in which it redirects the client elsewhere.
Typically, you would see either <META HTTP-EQUIV="refresh"
or redirection through JavaScript, not both at the same time.

This is quite uncommon, so let's make a rule out of it. A
viable rule can be found below.

alert http $EXTERNAL_NET any -> $HOME_NET any (msg:"Adobe
Phising Attempt"; flow:established,to_client; content:"200";

http_stat_code; http_content_type; content:"text/html";
nocase; file_data; content:"<META HTTP-EQUIV="; nocase;
within:100; content:"refresh"; distance:1; nocase; within:7;
content:"self.location.replace"; nocase; distance:0;
content:"window.location"; nocase; distance:0;
classtype:bad-unknown; sid:9; rev:1;)

file_data; is a buffer including what will be rendered in the
browser. within:100 means we want to see the content within
the first 100 bytes. The remaining part is easy to
comprehend.

It's time to test the rule above. You can do so, as follows.

cd Desktop
./automate_suricata.sh ./PCAPs/Adobe.pcap
You should see the following.

Suricata Resources:

1. https://www.stamus-networks.com/open-source/

2. https://resources.sei.cmu.edu/asset_files/Presentation/2
016_017_001_449890.pdf

https://suricata.readthedocs.io/en/latest/rules/http-keywords.html#file-data
https://www.stamus-networks.com/open-source/
https://resources.sei.cmu.edu/asset_files/Presentation/2016_017_001_449890.pdf
https://resources.sei.cmu.edu/asset_files/Presentation/2016_017_001_449890.pdf

3. https://blog.inliniac.net/2014/04/08/detecting-openssl-h
eartbleed-with-suricata/

4. https://www.trustwave.com/en-us/resources/blogs/spiderla
bs-blog/decoding-hancitor-malware-with-suricata-and-lua/

5. https://www.trustwave.com/en-us/resources/blogs/spiderla
bs-blog/advanced-malware-detection-with-suricata-lua-scr
ipting/

Effectively Using Zeek (Bro)
NOTE: Bro is now Zeek!

LAB 6

Scenario
The organization you work for is considering deploying Zeek
(now known as Bro) to enhance its traffic inspection
capabilities. Your IT Security manager tasked you with
thoroughly analyzing zeek's capabilities. He also provided
you with PCAP files containing malicious traffic, so that you
can experiment with writing zeek detection scripts and
signatures.

A test instance of zeek has already been set up and is
waiting for you!

Learning Objectives
The learning objective of this lab is to not only get
familiar with the detection capabilities of zeek but also to
learn effective zeek scripting.

https://blog.inliniac.net/2014/04/08/detecting-openssl-heartbleed-with-suricata/
https://blog.inliniac.net/2014/04/08/detecting-openssl-heartbleed-with-suricata/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/decoding-hancitor-malware-with-suricata-and-lua/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/decoding-hancitor-malware-with-suricata-and-lua/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/advanced-malware-detection-with-suricata-lua-scripting/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/advanced-malware-detection-with-suricata-lua-scripting/
https://www.trustwave.com/en-us/resources/blogs/spiderlabs-blog/advanced-malware-detection-with-suricata-lua-scripting/
https://www.zeek.org/

Specifically, you will learn how to use zeek's capabilities
in order to:

● Have better visibility over a network

● Respond to incidents timely and effectively

● Proactively hunt for threats

Introduction To Zeek
Zeek's creators describe it as an open-source traffic
analyzer. It is typically used to inspect all traffic on a
link (in depth) for signs of malicious or suspicious
activity. That being said, Zeek can also be used for network
troubleshooting and various measurements within a network. By
deploying Zeek, blue teams can immediately access a variety
of log files that contain all kinds of network activity, at a
high level. More specifically, those logs contain not only
detailed records of every connection on the wire but also
application-layer transcripts (for example - DNS requests and
the respective replies, whole HTTP sessions, etc.). Zeek does
a lot more than just keeping track of the aforementioned. It
is also shipped with a whole range of analysis and detection
capabilities/functions.

What is important to know is that Zeek exposes an extremely
capable scripting language to its users (to develop Zeek
scripts, the equivalent of Suricata rules). This key feature
makes Zeek a fully customizable and extensible platform,
based on which blue team members can create their own
analysis and detection logic/posture.

If we combine that fact that Zeek runs on commodity hardware
with its capable scripting language, we can easily conclude
that we are not dealing with yet another signature-based IDS.

Zeek is a platform that could also facilitate semantic misuse
detection, anomaly detection, and behavioral analysis.

The most important Zeek features and capabilities are:

● Comprehensive logging of network activity

● Analysis of application-layer protocols (regardless of
the port, covering protocols like HTTP, DNS, FTP, SMTP,
SSH, SSL, etc.)

● Ability to look into file content exchanged over
application-layer protocols

● IPv6 support

● Tunnel detection and analysis

● Ability to perform sanity checks during protocol
analysis

● IDS-like pattern matching

● Scripting Language

○ Facilitates the expression of arbitrary analysis
tasks

○ Event-based programming model

○ Domain-aware

○ Can facilitate tracking and managing network state
over time

● Interfacing

○ Outputs to well-structured ASCII logs, by default

○ Alternative backends for ElasticSearch and
DataSeries

○ External input can be integrated into analyses, in
real-time

○ External C library for exchanging Bro events with
external programs

○ Ability to trigger arbitrary external processes
from within the scripting language

Zeek operation modes:

● Fully passive traffic analysis

● libpcap interface for capturing packets

● Real-time and offline (for example, PCAP-based) analysis

● Cluster-support for large-scale deployments

Zeek architecture and events:

Zeek consists of two main components, the event engine (or
core) and the script interpreter.

● The event engine "transforms" an incoming packet stream
into a series of high-level events. In Zeek language,
these events lay any network activity out in
policy-neutral terms; this means that they inform us of
what has been spotted, but not if it requires attention
or how/why it got there in the first place. For example,
all spotted HTTP requests will be "transformed" into
http_request events. These events carry every request
detail/component, but they don't include any level of
interpretation, e.g., of whether a port corresponds to a
known port used by malware.

● Such interpretation is offered through Zeek's second
main component, the script interpreter. Under the hood,
the script interpreter executes a set of event handlers
written in Zeek's scripting language (Zeek scripts);
this is actually how a site's security policy is
expressed when Zeek is used. By security policy we mean,
for example, the actions to occur immediately after
detection.

Events generated by Zeek core are placed into an ordered
"event queue" to be handled in a first-come-first-serve
order.

Event Name Event Description

rdp_begin_encryption Generated when an RDP session
becomes encrypted

rdp_client_core_data Generated for MCS client request

rdp_connect_request Generated for X.224 client
requests

rdp_gcc_server_create_res
ponse

Generated for MCS server
responses

rdp_negotiation_failure Generated for RDP Negotiation
Failure messages

rdp_negotiation_response Generated for RDP Negotiation
Response messages

rdp_server_certificate Generated for a server
certificate section

rdp_server_security Generated for MCS server
responses

For a more comprehensive list, refer to the following
resource: https://docs.zeek.org/en/stable/scripts/base/bif/

Zeek logs:

When we use Zeek for offline analysis of a PCAP file though,
Zeek logs will be stored in the current directory.

Some known Zeek logs are:

conn.log: IP, TCP, UDP, and ICMP connection details

dns.log: DNS query/response details

http.log: HTTP request/reply details

https://docs.zeek.org/en/stable/scripts/base/bif/

ftp.log: FTP request/reply details

smtp.log: SMTP transactions, e.g., sender and receiver

If we take, for example, the http.log Bro log, it includes
numerous useful information such as:

● host: HTTP domain/IP

● uri: HTTP URI

● referrer: HTTP request referrer

● user_agent: Client user agent

● status_code: HTTP status code

Note that in its default setup, Zeek will gzip compress log
files every passing hour. The old logs will be moved into a
directory with a YYYY-MM-DD format. In the case of dealing
with compressed logs, you can use alternative tools such as
gzcat to print logs or zgrep to search in them.

For zeek examples, use cases and the basics of writing Bro
scripts, refer to the following link:
https://docs.zeek.org/en/stable/examples/index.html

For a quick start guide, refer to the following link:
https://docs.zeek.org/en/stable/quickstart/index.html

Spend time studying the resources above before proceeding to
the lab's tasks.

Recommended tools

● Zeek (Already installed on the lab setup)

https://docs.zeek.org/en/stable/examples/index.html
https://docs.zeek.org/en/stable/examples/index.html
https://docs.zeek.org/en/stable/quickstart/index.html
https://docs.zeek.org/en/stable/quickstart/index.html

Tasks

Task 1: Write a zeek script to alert you on
any RDP connection initiated by a user
different than "admin"

Consider the RDP-004.pcap file stored in the
/root/Desktop/PCAPs directory.Write a Zeek script that will
extract the username(s) that initiated the RDP connection
attempts and alert you in case a username is different than
"admin".

Hints: Locate and analyze the rdp_connect_request event.

Resources:

1. https://docs.zeek.org/en/stable/scripts/base/bif/plugins
/Bro_RDP.events.bif.bro.html

2. https://docs.zeek.org/en/stable/examples/scripting/index
.html

3. https://docs.zeek.org/en/stable/frameworks/notice.html?h
ighlight=notice

Task 2: Analyze the provided incident_1.pcap
PCAP file leveraging Zeek native
functionality and identify any suspicious or
abnormal activity

Analyze the incident_1.pcap PCAP file (stored in the
~/Desktop/PCAPs directory) leveraging Zeek native
functionality. Try to identify any abnormalities by going
through all created Zeek logs.

https://docs.zeek.org/en/stable/scripts/base/bif/plugins/Bro_RDP.events.bif.bro.html
https://docs.zeek.org/en/stable/scripts/base/bif/plugins/Bro_RDP.events.bif.bro.html
https://docs.zeek.org/en/stable/examples/scripting/index.html
https://docs.zeek.org/en/stable/examples/scripting/index.html
https://docs.zeek.org/en/stable/frameworks/notice.html?highlight=notice
https://docs.zeek.org/en/stable/frameworks/notice.html?highlight=notice

Hint: Malware can leverage unencrypted SSL components for
their nefarious purposes.

Task 3: Analyze the provided incident_2.pcap
PCAP file leveraging Zeek native
functionality and identify any suspicious or
abnormal activity

Analyze the incident_2.pcap PCAP file (stored in the
~/Desktop/PCAPs directory) leveraging Zeek native
functionality. Try to identify any abnormalities by going
through all created Zeek logs. Note that the incident_2.pcap
PCAP file was captured inside a sandbox.

Hint: Malware are known to oftentimes abuse the flexible
infrastructure of the Domain Name System (DNS); specifically,
numerous new domain names are being produced by malware
authors, and each one of them can play the role of the
botmaster, should the occasion requires so. For more
information, refer to the following link:
https://blogs.akamai.com/2017/05/spotlight-on-malware-dga-com
munication-technique.html

Task 4: Analyze the provided incident_3.pcap
PCAP file leveraging Zeek native
functionality and identify any suspicious or
abnormal activity

Analyze the incident_3.pcap PCAP file (stored in the
~/Desktop/PCAPs directory) leveraging Zeek native
functionality. Try to identify any abnormalities by going
through all created Zeek logs.

Hint: Malware doesn't always keep a single TCP session alive
during their operation. As a matter of fact, the new age of
RATs prefers beaconing at regular intervals, rather than

https://blogs.akamai.com/2017/05/spotlight-on-malware-dga-communication-technique.html
https://blogs.akamai.com/2017/05/spotlight-on-malware-dga-communication-technique.html
https://blogs.akamai.com/2017/05/spotlight-on-malware-dga-communication-technique.html

keeping a single TCP session alive. Beaconing can help evade
certain methods of detection that are based on spotting
long-running connections.

Task 5: The incident_4.pcap PCAP file
contains traffic of a RAT that kept a single
TCP session alive during its operation.
Develop a Zeek script to detect such
long-running connections.

You knew from the beginning that the incident_4.pcap PCAP
file (stored in the ~/Desktop/PCAPs directory) is related to
a known RAT that prefers keeping a single TCP session alive
during its operation. Develop a Zeek script to detect such
long-running connections.

Task 6: The ZeroAccess.pcap PCAP file
contains malicious traffic that derives from
the notorious ZeroAccess rootkit. Leverage
Zeek's signature framework to create a
signature for this rootkit.

According to Zeek docs regarding its Signature Framework,
"Zeek relies primarily on its extensive scripting language
for defining and analyzing detection policies. Additionally,
however, Zeek also provides an independent signature language
for doing low-level, Snort-style pattern matching".

Based on the following analysis, create a Zeek signature to
detect ZeroAccess on the wire.
http://malforsec.blogspot.com/2013/02/zeroaccess-analysis-par
t-i-network.html

SOLUTIONS

https://docs.zeek.org/en/stable/frameworks/signatures.html?highlight=.sig
http://malforsec.blogspot.com/2013/02/zeroaccess-analysis-part-i-network.html
http://malforsec.blogspot.com/2013/02/zeroaccess-analysis-part-i-network.html
http://malforsec.blogspot.com/2013/02/zeroaccess-analysis-part-i-network.html

Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy (which
may be different from the one explained in the following lab.

Task 1: Write a zeek script to alert you on
any RDP connection initiated by a user
different than "admin"

Let's first set zeek's path as environment variable so that
we can access it globally. We can do so with the help of
following command -

export PATH=/opt/zeek/bin/:$PATH

NOTE: If you are closing this lab, you need to run the above
mentioned command again in order to set the zeek's path.

Now, let's introduce a script file to handle the
rdp_connect_request event, according to the requirements of
Task 1

cd ~/Desktop
mkdir zeek
cd zeek
nano test.zeek

Inside nano (in 'test.zeek'), type the below code-

@load base/protocols/rdp
event rdp_connect_request(c: connection, cookie:string)
{

print cookie;
}

In the first line, we simply imported all of the base
functionality already implemented in Zeek, regarding RDP
analysis. Then, we defined the event handler, instructing it
to only print the cookie of the request. What is important to

remember, is that the event declaration should be identical
to the one shown in the Zeek rdp_connect_request.

Now, let's execute Zeek and specify the RDP-004.pcap PCAP
file as well as the script we just created.

zeek -b -r ~/Desktop/PCAPs/RDP-004.pcap test.zeek

The -b flag is used so as to not automatically load all
scripts under base (which is the default behavior).

The -r flag is used to execute Zeek for offline analysis of a
provided traffic capture file.

Placing a Zeek script at the end of the command will load the
specified Zeek script.

You should see something similar to the following.

What if we wanted some more information from the connection
request, such as the source address and the start time (in
Unix time), all printed in one line?

We could do so, by extending our Zeek script (nano test.zeek
again), as follows.

@load base/protocols/rdp
event rdp_connect_request(c:connection, cookie:string)
{

local start_time = strftime("%Y-%m-%d %H:%M:%S",
c$start_time);

print fmt("New RDP Requst from: %s at %s by user %s",
cidorig_h, start_time , cookie);
}

Now, let's execute Zeek and specify the RDP-004.pcap PCAP
file as well as the extended script we just created.

zeek -b -r ~/Desktop/PCAPs/RDP-004.pcap test.zeek

You should see something similar to the following.

To make our Zeek script fulfill the requirements of Task 1
(alert us on any RDP connection initiated by a user different
than "admin"), we have to implement two additional things.

1. Instead of just printing the log into standard output,
we would like the Zeek output to be logged into a file
for better and more effective monitoring; this is where
Zeek's "notice" framework comes into play. The "notice"
framework is used when we want Zeek to alert us on
suspicious or malicious activity. When writing a Zeek
script, we can raise such an alert by simply calling the
NOTICE function.

2. We should also introduce functionality that compares the
observed username in the RDP connection to the username
"admin" and alerts us in case of a mismatch.

Both the above can be easily implemented, as follows (below
is the final version of our Zeek script).

● Write (Copy-Paste) the below mentioned script into your
test.zeek file.

@load base/protocols/rdp
@load base/frameworks/notice
export { redef enum Notice::Type += {Suspicious_RDP}; }
event rdp_connect_request(c: connection, cookie:string){

if (cookie != "admin"){

local start_time = strftime("%Y-%m-%d %H:%M:%S",
c$start_time);

local message = fmt("New RDP Request from: %s at %s
by user %s", cidorig_h, start_time , cookie);

NOTICE([$note= Suspicious_RDP, $msg=message]);
}

}

Finally, let's execute Zeek and specify the RDP-004.pcap
PCAP file as well as the final version of our script.

zeek -b -r ~/Desktop/PCAPs/RDP-004.pcap test.zeek

You should see nothing in the standard output, but you will
find a new Zeek log named notice.log in the current
directory.

notice.log contains the alert messages we specified in the
final version of our Zeek script.

● Run the following command -
cat notice.log

Task 2: Analyze the provided PCAP file
leveraging Bro native functionality and
identify any suspicious or abnormal activity

First, delete any previously generated logs in the current
directory.

Run -

cd ..
rm -r zeek
mkdir zeek
cd zeek

Let's start our analysis, by executing Zeek as follows.

zeek -C -r /root/Desktop/PCAPs/incident_1.pcap local

-C is used to ignore invalid TCP checksums.

You should see nothing important in the standard output, but
various Zeek logs being created, as follows.

Now run ls -l

Let's take a look at weird.log. weird.log contains
unusual/exceptional activity that can indicate malformed
connections, traffic that doesn't conform to a particular
protocol or even a malicious actor trying to evade or confuse
a sensor.

cat weird.log

You should see something similar to the below.

Nothing conclusive. Let's move on.

Let's now inspect the contents of notice.log, as follows.

cat notice.log
You should see something similar to the below.

First of all, notice that even though we see port 4433 (TCP),
Zeek was still able to identify that what it sees is SSL
traffic. Disregard 127.0.0.1, the PCAP is from a run using
local loopback.

What you should also notice, are those "self signed
certificate" messages. Unfortunately, self-signed
certificates are quite common, even nowadays. So, nothing
suspicious yet. Those "default" values on the SSL
certificates (marked in yellow) are interesting!

We should not forget that malicious actors are known for both
using self-signed SSL certificates and being lazy, so, let's
take a closer look.

SSL certificates are quite valuable when it comes to
responding to SSL-powered malware; this is because they are
transmitted unencrypted. Unfortunately, Zeek doesn't extract
every observed SSL certificate, by default. Let's configure
it, so that it does, as follows.

nano /opt/zeek/share/zeek/site/local.zeek

Inside nano, append the following at the end of the
local.zeek file. (Already present in the lab setup, just
verify it is there or not.)

@load protocols/ssl/extract-certs-pem
redef SSL::extract_certs_pem = ALL_HOSTS;

This will extract all observed SSL certificates and store
them inside a big certs-remote.pem file.

If you run zeek once again, you will notice this big
certs-remote.pem file, in the current directory.

Run -

zeek -C -r /root/Desktop/PCAPs/incident_1.pcap local
ls

Now, let's move that certs-remote.pem file in a temp
directory and split it into all the separate .pem files that
constructed it. This can be done as follows.

mkdir temp
mv certs-remote.pem temp
cd temp
awk ' split_after == 1 {close(n".pem"); n++;split_after=0}
/-----END CERTIFICATE-----/ {split_after=1} { print >
n".pem"}' <certs-remote.pem
You should be able to see something similar to the below, if
you list the temp directory.

Run-

ls

Let's continue, by inspecting 1.pem, we can do so through the
openssl binary, as follows.

openssl x509 -in 1.pem -text -noout

You should see the below.

If you go further down the certificate, you will notice an
overly large X509v3 Subject Key Identifier section.

Such an overly large X509v3 Subject Key Identifier and
subsequently such an overly large .pem file is not common.
Additionally, the whole section seems like hex values
(including NULL ones) and that 4D5A part, in the beginning,
looks scary because it is the equivalent of the MZ in ASCII
and MZ is known to be a magic value to identify a Portable
Executable file format.

Let's make sure, by executing the following.

echo "copy-paste the whole X509v3 Subject Key Identifier
section here" | sed 's/://g'
The command above will strip off any ":" characters from the
x509v3 Subject Key Identification section.

Then, take the stripped output and execute the following.

echo "copy-paste the stripped X509v3 Subject Key Identifier
section here" | xxd -r -p

You should see the following.

https://blog.kowalczyk.info/articles/pefileformat.html
https://blog.kowalczyk.info/articles/pefileformat.html

The above means that a binary was stealthily being
transferred, masked as an X509v3 Subject Key Identifier.

PCAP was taken from: https://github.com/fideliscyber/x509/

For more on the attacking technique being used, check out the
following link:
https://www.fidelissecurity.com/threatgeek/threat-intelligenc
e/x509-vulnerabilities>

Task 3: Analyze the provided incident_2.pcap
PCAP file leveraging Zeek native
functionality and identify any suspicious or
abnormal activity

First, delete any previously generated logs in the current
directory.

Run -

cd ../..
rm -r zeek
mkdir zeek
cd zeek

https://github.com/fideliscyber/x509/

Now, let's start our analysis, by executing Zeek as follows.

zeek -C -r /root/Desktop/PCAPs/incident_2.pcap local

For a summary of the connections in incident_2.pcap you can
refer to Zeek's conn.log, as follows.

cat conn.log

You should see something similar to the below.

For a more straightforward representation, we can execute the
following.

cat conn.log | zeek-cut id.orig_h id.orig_p id.resp_h
id.resp_p proto conn_state
You should see the below.

Remember that traffic was captured inside a sandbox; this is
why you see some inconsistent connection attempts on port 80.
Some of them got rejected (REJ), some of them had no reply
(S0), and others left the connection half-open (SH).

Port 80 means that HTTP traffic occurred. Let's take a closer
look by inspecting Zeek's http.log, as follows.

cat http.log | zeek-cut id.orig_h id.orig_p id.resp_h
id.resp_p host uri referrer

You should see the below.

The host field looks quite abnormal.

If we take a look at zeek's dns.log, the same story
continues.

cat dns.log | zeek-cut query

Let's now analyze the requested domains. First, let's get rid
of the TLDs, as follows.

cat dns.log | zeek-cut query | cut -d . -f1 >
stripped_domains
Now, let's calculate the length of each stripped domains, as
follows.
for i in `cat stripped_domains`; do echo "${#i}"; done

The stripped domains seems to be random strings of character
between some range.

We are most probably dealing with a DGA-equipped malware.

PCAP was taken from: http://blog.opensecurityresearch.com

Task 4: Analyze the provided incident_3.pcap
PCAP file leveraging Zeek native
functionality and identify any suspicious or
abnormal activity

First, delete any previously generated logs in the current
directory.

Run -

cd ..
rm -r zeek
mkdir zeek
cd zeek

Now, let's start our analysis, by executing Bro as follows.

zeek -C -r /root/Desktop/PCAPs/incident_3.pcap local

For a summary of the connections in incident_3.pcap you can
refer to Zeek's conn.log, as follows.

cat conn.log

You should see the below.

http://blog.opensecurityresearch.com/

We notice that Zeek identified SSL on port 80; this is quite
strange.

Let's take a look at Zeek's ssl.log as well.

cat ssl.log

You should see the following.

Of course, we notice the presence of self-signed SSL
certificates, but this is just the tip of the iceberg. If we
carefully look at the timestamps of both conn.log and
ssl.log, we notice that communication with the remote server
occurs every 5 seconds. We are most probably dealing with a
beaconing malware.

Task 5: The incident_4.pcap PCAP file
contains traffic of a RAT that kept a single
TCP session alive during its operation.

Develop a Zeek script to detect such
long-running connections.

First, delete any previously generated logs in the current
directory.

Run -

cd ..
rm -r zeek
mkdir zeek
cd zeek

Now, let's start our analysis, by executing Zeek as follows.

zeek -C -r /root/Desktop/PCAPs/incident_4.pcap local

For a summary of the connections in incident_4.pcap you can
refer to Zeek's conn.log, as follows.

cat conn.log

You should see the below.

Further down Zeek's conn.log, we can see that there are some
long-running connections with a remote machine. Find out
which, as an exercise.

A viable Zeek script to detect such long-running connections
can be found below. Create it through nano and save it in
current directory as detect-long-connections.zeek.

@load base/protocols/conn
@load base/utils/time
This is probably not so great to reach into the Conn
namespace..
module Conn;
export {
function set_conn_log_data_hack(c: connection)

{
Conn::set_conn(c, T);
}

}
Now onto the actual code for this script\...
module LongConnection;
export {

redef enum Log::ID += { LOG };
Aliasing vector of interval values as
"Durations"
type Durations: vector of interval;
##The default duration that you are locally
##considering a connection to be "long".
const default_durations = Durations(10min, 30min, 1hr,

12hr, 24hrs, 3days) &redef;
These are special cases for particular hosts or

subnets
that you may want to watch for longer or shorter
durations than the default.
const special_cases: table[subnet] of Durations = {}

&redef;
}
redef record connection += {

##Offset of the currently watched connection duration by
the long-connections script.

long_conn_offset: count &default=0;
};

event zeek_init() &priority=5
{
Log::create_stream(LOG, [$columns=Conn::Info,

$path="conn_long"]);
}

function get_durations(c: connection): Durations
{
local check_it: Durations;
if (cidorig_h in special_cases)

check_it = special_cases[cidorig_h];
else if (cidresp_h in special_cases)

check_it = special_cases[cidresp_h];
else

check_it = default_durations;
return check_it;

}
function long_callback(c: connection, cnt: count): interval

{
local check_it = get_durations(c);
if (c$long_conn_offset < |check_it| && c$duration >=

check_it[c$long_conn_offset])
{
Conn::set_conn_log_data_hack(c);
Log::write(LongConnection::LOG, c$conn);
local message = fmt("%s -> %s:%s remained alive for

longer than %s",
cidorig_h, cidresp_h,

cidresp_p, duration_to_mins_secs(c$duration));
++c$long_conn_offset;
}
Keep watching if there are potentially more thresholds.
if (c$long_conn_offset < |check_it|)

return check_it[c$long_conn_offset];
else

return -1sec;
}

event connection_established(c: connection)
{

local check = get_durations(c);
if (|check| > 0)

{
ConnPolling::watch(c, long_callback, 1, check[0]);
}

}

Let's test the script above, as follows.

zeek -C -b -r ~/Desktop/PCAPs/incident_4.pcap
detect-long-connections.zeek

You should now be able to see a new log conn_long.log
created in the current directory, with the below contents.

Indeed, those were the longest-running connections inside
conn.log. It is way better to have a Zeek script automating
this procedure for us, don't you think?

Task 6: The ZeroAccess.pcap PCAP file
contains malicious traffic that derives from
the notorious ZeroAccess rootkit. Leverage
Zeek's signature framework to create a
signature for this rootkit.

By studying the ZeroAccess analysis, we come across the
following part.

First, delete any previously generated logs in the current
directory.

Run -

cd ..
rm -r zeek
mkdir zeek
cd zeek

Now, we could easily make a Zeek signature based on this
fingerprint, as follows.

nano zeroaccess.sig

Inside nano, type the following.

signature zeroaccess {
ip-proto == udp
payload /....\x28\x94\x8d\xab.*/
event "zeroaccess"

}
nano zeroaccess.zeek

Inside nano, type the following.

@load base/frameworks/notice
@load base/frameworks/signatures/main
@load base/utils/addrs
@load base/utils/directions-and-hosts
@load-sigs ./zeroaccess.sig
redef Signatures::ignored_ids += /zeroaccess/;
module ZeroAccess;

export {
redef enum Notice::Type += {

##Raised when a host doing Bitcoin mining is found.
ZeroAccess_Client,
##Raised when a host is serving work to Bitcoin

miners.
ZeroAccess_Server

};
##Type of ZeroAccessHost which, on discovery, should

raise a notice.
const notice_zeroaccess_hosts = LOCAL_HOSTS &redef;
const notice_zeroaccess_hosts = LOCAL_HOSTS &redef;
const zeroaccess_timeout = 60 mins &redef;
global zeroaccess_tracker: set[addr];

}
event signature_match(state: signature_state, msg: string,
data: string)

&priority=-5
{

if (/zeroaccess/ !in state$sig_id) return;
if (state$conn$id$orig_h !in zeroaccess_tracker)
{

add zeroaccess_tracker[state$conn$id$orig_h];
NOTICE([$note=ZeroAccess::ZeroAccess_Client,

$msg=fmt("Probably ZeroAccess P2P Client Access:
"),

$sub=data,
$conn=state$conn,
$identifier=fmt("%s%s", state$conn$id$orig_h,

state$conn$id$resp_h)]);
}
}

Let's now put the Zeek signature and the accompanying Zeek
script to the test, as follows.

zeek -C -b -r ~/Desktop/PCAPs/ZeroAccess.pcap zeroaccess.zeek

You should now be able to find a notice.log file in the
current directory, having the following content.

Run -

cat notice.log

Credits to Liam Randall (Critical Stack) for the Zeek
script.

End of the Lab!

Effectively Using Snort

LAB 7

Scenario
The organization you work for is considering deploying Snort
to enhance its traffic inspection capabilities. Your IT
Security manager tasked you with thoroughly analyzing Snort's
capabilities. He also provided you with PCAP files containing
malicious traffic, so that you can experiment with writing
Snort detection rules.

A test instance of Snort has already been set up and waiting
for you!

https://www.snort.org/

Learning Objectives
The learning objective of this lab is to not only get
familiar with the detection capabilities of Snort but to also
learn effective writing of Snort rules.

Specifically, you will learn how to use Snort's capabilities
in order to:

● Have better visibility over a network

● Respond to incidents timely and effectively

● Proactively hunt for threats

Introduction To Snort
Snort is an open source IDS and IPS, that can also be used as
a packet sniffer or packet logger. Just like Suricata, Snort
inspects all traffic on a link for malicious activity and can
extensively log all flows seen on the wire, producing
high-level situational awareness and detailed application
layer transaction records. It needs specific rules (holding
instructions) to tell it not only how to inspect the traffic
it looks at but also what to look for. It was designed to
perform on commodity and purpose-built hardware.

The most important Snort features and capabilities are:

● Deep packet inspection

● Packet capture logging

● Intrusion Detection

● Network Security Monitoring

● Anomaly Detection

● Multitenancy

● IPv6 and IPv4 support

Common Snort operation modes:

● Inline IDS/IPS (example:
https://www.ibm.com/writeerworks/community/blogs/58e7288
8-6340-46ac-b488-d31aa4058e9c/entry/august_8_2012_12_01_
pm6?lang=en)

- Passive IDS

- NIDS

● HIDS (Snort is not a host-based IDS per se. Prefer more
specialized solutions.)

Snort high-level architecture:

https://www.ibm.com/developerworks/community/blogs/58e72888-6340-46ac-b488-d31aa4058e9c/entry/august_8_2012_12_01_pm6?lang=en
https://www.ibm.com/developerworks/community/blogs/58e72888-6340-46ac-b488-d31aa4058e9c/entry/august_8_2012_12_01_pm6?lang=en
https://www.ibm.com/developerworks/community/blogs/58e72888-6340-46ac-b488-d31aa4058e9c/entry/august_8_2012_12_01_pm6?lang=en
https://www.ibm.com/developerworks/community/blogs/58e72888-6340-46ac-b488-d31aa4058e9c/entry/august_8_2012_12_01_pm6?lang=en

For Snort to evolve from a packet sniffer into a full-fledged
IDS, some components had to be added. These components were
the Preprocessor, the Detection Engine, the Logging and
Alerting System, and the various Output modules.

● The packet sniffer (including the Packet Decoder), as
its name suggests, "sniffs" network traffic and
identifies each packet's structure (layer information).
The raw packets that have been "collected" are then sent
to the Preprocessors.

● The Preprocessors determine the type or the behavior of
the forwarded packets. Inside Snort, there are numerous
Preprocessor plugins. An example of such a plugin is
the HTTP plugin which is responsible for identifying
HTTP-related packets. Another example is the
*sfPortscan Preprocessor that, armed with defined
protocols, types of scans and certain thresholds, can
identify a group of packets as a port scan attempt. Once
the Preprocessors cease their operations, information is

sent to the Detection Engine.

Preprocessors are configured through Snort's configuration
file snort.conf. Example:

preprocessor sensitive_data: alert_threshold 25 \
mask_output \
ssn_file ssn_groups_Jan10.csv

● The Detection Engine is responsible for comparing each
packet with each Snort rule (from a predefined rule
set). In case of a match, information is sent to the
Logging and Alerting System.

● The Logging and Alerting System as well as the various
Output modules are responsible for logging or triggering
alerts based on each rule action. Logs are stored in
different formats (most of the times syslog or unified2)
or directly into a DB. Output modules are configured
through Snort's configuration file *snort.conf.
Example:

output alert_syslog: host=192.168.2.10:514, <facility>
<priority> <options>

output alert_syslog: host=192.168.2.10:514, log_auth
log_alert log_ndelay

In the case of syslog being used, alerts will be visible in
/var/log/message.

Snort directory structure:

All Snort-related directories are usually under /opt/snort
and are structured similarly to the following.

.

|-- admin |-- bin |-- etc |-- lib |-- preproc_rules |-- rules
|-- share |-- so_rules `-- src In the context of this lab, we
will use Snort from inside a Security Onion distribution.
Security Onion has its own Snort directory structure. Snort
rules: Snort rules are very much like Suricata rules. They
consist of two major parts, the rule header, and the rule
options. Examples: action protocol src_addr src_port
direction dst_addr dst_port Options alert tcp any any -> any
21 (msg: "FTP Traffic";) The part in bold is the header
whereas the remaining part is options. Even though Snort
rules are similar to Suricata rules. Dedicate some time to
study Snort rule writing from the following resource:
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/no
de27.html The latest Snort rules can be downloaded from
snort.org or the Emerging Threats website. Remember that the
location of the rules can be specified in the snort.conf
file. Example: include $RULE_PATH/backdoor.rules

As a callout, when you download Snort rules, the filenames
contain the Snort version, so download files that are
relevant to your Snort installation. Also, note that there is
also a local.rules file where you can put your own rules in
it.

Snort logs:

Snort's default log directory is /var/log/snort, but as
previously mentioned we can instruct Snort (via a command
line switch of from inside snort.conf) to log in any
directory.

Testing Snort:

To quickly test if a Snort installation is working or not,
try executing the commands below.

sudo snort -dev -i ens5 //Runs Snort in packet dump mode
or

http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node27.html
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node27.html
http://manual-snort-org.s3-website-us-east-1.amazonaws.com/node27.html
http://rules.emergingthreats.net/open-nogpl/

sudo snort -c /etc/snort/snort.conf -l . -i ens5 //Runs Snort
in IDS mode using the specified configuration file (-c) and
logging at the specified location (-l)

Snort configuration:

The snort.conf is the main configuration file of Snort. Its
typical location is in the /opt/snort/etc directory.
snort.conf contains the following sections.

1. Set the network variables

2. Configure the decoder

3. Configure the base detection engine

4. Configure dynamic loaded libraries

5. Configure preprocessors

6. Configure output plugins

7. Customize your rule set

8. Customize preprocessor and decoder rule set

9. Customize shared object rule set

Examples of variable assignment within snort.conf:

ipvar HOME_NET [192.168.0.0/16,10.0.0.0/8,172.16.0.0/12]
ipvar EXTERNAL_NET any
ipvar DNS_SERVERS $HOME_NET
ipvar SMTP_SERVERS $HOME_NET
ipvar HTTP_SERVERS $HOME_NET
portvar HTTP_PORTS
[80,81,311,383,591,593,901,1220,1414,1741,1830,2301,2381,2809
,3037,3128,3702,4343,4848,5250,6988,7000,7001,7144,7145,7510,

7777,7779,8000,8008,8014,8028,8080,8085,8088,8090,8118,8123,8
180,8181,8243,8280,8300,8800,8888,8899,9000,9060,9080,9090,90
91,9443,9999,11371,34443,34444,41080,50002,55555]
var RULE_PATH /etc/snort/rules
var SO_RULE_PATH /etc/snort/rules
var PREPROC_RULE_PATH /etc/snort/rules

Take some time to read the comments inside the snort.conf
file, they are quite enlightening.

Another interesting Snort configuration file is the
classification.config file. This file is used to set the
priority of alerts, and it is included inside snort.conf.

Format: config classification:shortname,short
description,priority

Example: config classification: unknown,Unknown Traffic,3

Recommended tools

● Snort

All provided PCAPs are inside the /root/Desktop/PCAPs
directory.

Tasks

Task 1: Write a Snort rule that detects an
ICMP Echo request (ping) or Echo reply
message

An icmp.pcap PCAP file exists inside the /root/Desktop/PCAPs
directory that contains ICMP traffic towards the network
subnet you are protecting (192.168.1.0/24).

Introduce a Snort rule into its local.rules file that
detects an ICMP Echo request (ping) or Echo reply message
towards your organization's subnet (192.168.1.0/24).

Task 2: Analyze the provided PCAP file and
write Snort rules to detect successful buffer
overflow attacks

Now it's time to write your own Snort rules. Analyze the
eternalblue.pcap PCAP file (stored in the
/home/elsuser/PCAPs directory) using tcpdump. This PCAP file
includes network traffic of an exploitation attempt, against
a Windows 7 host, that leveraged the notorious Eternal Blue
exploit and resulted in the attacker obtaining Windows shell
access.

In plain terms, the authors of the Eternal Blue exploit
identified that the Windows SMBv1 implementation is
vulnerable to buffer overflow. The Eternal Blue exploit
received immense attention, and consequently, numerous rules
(including Snort ones) have been written to detect it on the
wire. For this reason, write a Snort rule that detects:

● The buffer overflow portion of the traffic, and

● The windows shell access that the attacker gained

Hint: Refer to the included cert_trafficwireshark.pdf
resource, "6. FOLLOW TCP STREAM" section, to see how buffer
overflow attacks look like on the wire. Specifically, notice
all those "A" characters that facilitate the buffer overflow.

Task 3: Analyze the provided PCAP file and
write a Snort rule to detect possible
Heartbleed exploitation attempts

https://blog.trendmicro.com/trendlabs-security-intelligence/ms17-010-eternalblue/
https://blog.trendmicro.com/trendlabs-security-intelligence/ms17-010-eternalblue/
https://www.coengoedegebure.com/buffer-overflow-attacks-explained/

Analyze the heart.pcap PCAP file (stored in the
/home/elsuser/PCAPs directory) using Wireshark. Then, try to
identify how you can instruct Snort to detect possible
Heartbleed exploitation attempts and finally, write a Snort
rule.

Note that exploitation of this vulnerability leaves no traces
since it takes place inside the SSL handshake negotiation.
The SSL handshake negation occurs before the listening
service receives the request. Subsequently, you won't be able
to see any revealing log in the backend. Traffic analysis is
your only choice.

Hint: Refer to the included "A technical view of theOpenSSL
Heartbleed vulnerability.pdf" resource, to learn more about
the Heartbleed vulnerability.

Task 4: Analyze the provided Snort rule and
describe what it looks for

Armed with the knowledge you obtained so far regarding Snort
rules, analyze the Snort rule below and describe what it
looks for.

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS
SMB-DS DCERPC LSASS DsRolerUpgradeDownlevelServer exploit
attempt"; flow:to_server,established;
flowbits:isset,netbios.lsass.bind.attempt; content:"|FF|SMB";
depth:4; offset:4; nocase; content:"|05|"; distance:59;
content:"|00|"; within:1; distance:1; content:"|09 00|";
within:2; distance:19; classtype:attempted-admin; sid:2514;
rev:7;)

SOLUTIONS

Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy, which
may be different from the one explained in the following lab.

Task 1: Write a Snort rule that detects an
ICMP Echo request (ping) or Echo reply
message

Snort's default snort.conf contains the 172.31.5.101/20
subnet inside the HOME_NET variable. Change it to
192.168.1.0/24 so we can use HOME_NET variable.

Updated snort.conf

Once you are connected to the deployed Snort instance, you
can introduce a new Snort rule as follows.

vim /etc/snort/rules/local.rules

Inside vim enter the following rule that is able to detect an
ICMP Echo request (ping) or Echo reply message.

alert icmp any any -> $HOME_NET any (msg: "ICMP test";
sid:1000001; rev:1; classtype:icmp-event;)
Rule Header

alert - Rule action. When the specified condition is observed
on the wire, Snort will throw an alert.

any - Source IP. Snort will consider all source addresses.

any - Source port. Snort will consider all source ports

-> - Indicates directionality.

$HOME_NET - Destination IP. We are leveraging the HOME_NET
variable specified in the snort.conf file.

any - Destination port. Snort will consider all ports of our
network.

Rule Options

msg:"ICMP test" - Message that will accompany the alert.

sid:1000001 - Snort rule ID. Remember all IDs smaller than
1,000,000 are reserved.

rev:1 - Revision number.

classtype:icmp-event - Used for rule categorization.

You can the update snort rule as follows

In previous version we needed to use a command rule-update to
update the rules but non need here.

We will be using command line, which will output any alerts
on the standard output.

cd PCAPs
snort -q -A console --daq pcap -c /etc/snort/snort.conf -r
icmp.pcap

Task 2: Analyze the provided PCAP file and
write Snort rules to detect successful buffer
overflow attacks

Let's start our analysis by executing tcpdump as follows.

cd PCAPs
tcpdump -nnttttAr eternalblue.pcap

-nn is used so that tcpdump doesn't resolve hostnames or port
names

-tttt is used so that we are provided with the maximal
human-readable timestamp output

-A is used so that tcpdump prints each packet (minus its link
level header) in ASCII

Starting from the bottom up, you should see something similar
to the below image.

The above looks quite similar to what you saw inside the
included cert_trafficwireshark.pdf resource in the 6. FOLLOW
TCP STREAM section. In this case, the buffer overflow attempt
happens over SMB (notice the 445 port). Let's use this buffer
overflow-related portion of the traffic to create our rule.

We can do that as follows.

echo "copy-paste all the As here" | wc -m

You should see the below.

It is more efficient to specify the rule content in hex.
Let's turn the above into hex as follows (A is 41 in hex).

python3 -c 'print ("41" * 1389)'

You should see the below.

Now, copy all the 41s.

Finally, create a Snort rule that will detect buffer overflow
attempts (in this case over SMB), as follows.

vim /etc/snort/rules/local.rules

Inside vim enter the below.

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"Buffer
overflow activity over SMB"; content:"|paste all 41s here|";
sid:1000002; rev:1;)

You should see something similar inside the local.rules
file.

Let's put the rule above to the test, as follows.

snort -q -A console --daq pcap -c /etc/snort/snort.conf -k
none -r eternalblue.pcap

-k is used to disable Snort's entire checksum verification
subsystem

You should see something similar to the below image.

So far, we wrote a rule that detects buffer overflow
attempts on the wire (in this case over SMB).

Let's continue our analysis by executing tcpdump as follows,
in order to search for a traffic portion that is related to
the attacker obtaining Windows shell access.

cd PCAPs
tcpdump -nnttttAr eternalblue.pcap

Starting from the bottom up, you should see something similar
to the below image.

The above is a unique enough traffic portion we can use to
write a Snort rule that can detect Windows (7) shell access

on the wire; this is actually what we see if the execute
cmd.exe inside a Windows 7 machine.

Let's create a Snort rule that will detect Window (7) shell
access on the wire, as follows.

vim /etc/snort/rules/local.rules

Inside vim enter the below.

alert tcp $EXTERNAL_NET any -> $HOME_NET any (msg:"Microsoft
shell access detected."; flow:established; content:"Copyright
|28|c|29| 2009 Microsoft Corporation"; sid:1000003; rev:1;)

Let's put the rule above to the test as follows.

snort -q -A console --daq pcap -c /etc/snort/snort.conf -k
none -r eternalblue.pcap

You should now see something similar to the below image.

Task 3: Analyze the provided PCAP file and
write a Snort rule to detect possible
Heartbleed exploitation attempts

By reading the "A technical view of theOpenSSL Heartbleed
vulnerability" resource, it is clear that we need to focus
our attention on any Heartbeat-related traffic.

Let's open heart.pcap in Wireshark and filter the traffic in
order to see only encrypted Heartbeat messages. We can do
that as follows.

ssl.record.content_type == 24

If you look carefully enough, 40 00 is the equivalent of
16384 in decimal. Specifically, the attacker specified that
the payload length is 16384 bytes, but no additional data
were actually sent. According to the Heartbleed
vulnerability, if the server is vulnerable, it should send
more data than it typically should.

This is the case because the Heartbeat response is 16384
bytes long.

We can create an unreliable Snort rule based on the
Heartbeat request above, as follows.

vim /etc/snort/rules/local.rules
Inside vim enter the below.
alert tcp $EXTERNAL_NET any -> $EXTERNAL_NET 443
(msg:"Potential Heartbleed attack";
flow:to_server,established; content:"|18 03 02 00 03 01 40
00|"; rawbytes; isdataat:!1,relative; sid:1000004; rev:1;)

Let's put the rule above to the test as follows.

snort -q -A console --daq pcap -c /etc/snort/snort.conf -k
none -r heart.pcap
You should now see something similar to the below image.

The rule above is unreliable because it is constructed to
match the exact Heartbeat request in the PCAP. The attacker
could specify a payload length different than 16384 bytes and
also use another TLS version.

For this reason, we can create a more reliable Snort rule
that detects suspiciously large Heartbeat responses, as
follows.

alert tcp $EXTERNAL_NET any -> $EXTERNAL_NET 443
(msg:"Potential Heartbleed attack - Response-based";
flow:to_server,established; content:"|18 03|"; rawbytes;
depth:2; byte_test:1, &, 3, 0, relative; byte_test:2, >, 200,
3, relative, big; sid:1000005; rev:1;)

byte_test:1, &, 3, 0, relative;

● relative: Use an offset relative to the last pattern
match

● 0: Start from the first position within the packet
(first byte)

● 1: The number of bytes to take from the position "0"
(first position)

● &: Perform a binary "bitwise AND" operation to test the
value

● 3: Value to test the converted value against

● big: Process data as big endian (default)

The first byte_test is related to the TLS version used,
whereas the second byte_test checks if the length is
suspiciously large. Refer to the below image to comprehend
which bytes are being checked. The first byte_test checks
the "02" of the TLS Version 1.1 field, whereas the second
byte_test checks the "00 03" of the Length field.

IF you run the snort command you will be asking why snort is
not showing output for any default heart bleed rule. This is
because we have don't have the destination ip of this pcap
packet on our HOME_NET that's why it's not detecting the
vulnerability.

We can now add the IP to our HOME_NET see below

Also updating our rule with HOME_NET variable

alert tcp $EXTERNAL_NET any -> $HOME_NET 443 (msg:"Potential
Heartbleed attack - Response-based";
flow:to_server,established; content:"|18 03|"; rawbytes;
depth:2; byte_test:1, &, 3, 0, relative; byte_test:2, >, 200,
3, relative, big; sid:1000005; rev:1;)

Let's put the rule above to the test as follows.

snort -q -A console --daq pcap -c /etc/snort/snort.conf -k
none -r heart.pcap
You should now see something similar to the below image (the
other alerts derive from Snort's rule set which, of course,
contains rules to detect Heartbleed).

This PCAP was taken from:
https://asecuritysite.com/forensics/snort.

Task 4: Analyze the provided Snort rule and
describe what it looks for

Let's break down the rule below.

alert tcp $EXTERNAL_NET any -> $HOME_NET 445 (msg:"NETBIOS
SMB-DS DCERPC LSASS DsRolerUpgradeDownlevelServer exploit
attempt"; flow:to_server,established;
flowbits:isset,netbios.lsass.bind.attempt; content:"|FF|SMB";
depth:4; offset:4; nocase; content:"|05|"; distance:59;
content:"|00|"; within:1; distance:1; content:"|09 00|";
within:2; distance:19; classtype:attempted-admin; sid:2514;
rev:7;)

● alert tcp $EXTERNAL_NET any -> $HOME_NET 445 describes
the action that will take place in case of a signature
match. Traffic should be TCP-based for the alert to be
triggered. The rest should be easy for you to
comprehend.

● msg:"NETBIOS SMB-DS DCERPC LSASS
DsRolerUpgradeDownlevelServer exploit attempt"; is the
message that will appear inside the alert, in case the
signature was matched.

● flow:to_server,established; only packets towards the
remote host will be taken into consideration. A

https://asecuritysite.com/forensics/snort
https://asecuritysite.com/forensics/snort

connection should, of course, be established beforehand.

● flowbits:isset,netbios.lsass.bind.attempt; *flowbits* is
Snort's way of identifying conditions that occurred in
previous traffic. In this case, a NetBIOS connection and
an attempt to connect and bind to the LSASS process
should have already occurred.

● content:"|FF|SMB"; depth:4; offset:4; nocase; instructs
Snort to match the |FF| hex value and the |SMB| value.
offset is used so that Snort knows how far into the
packet it should look for the content. In this case,
Snort will start looking after the first four bytes of
the payload. depth is used so that Snorts analyzes the
first four bytes only. nocase instructs Snort to search
regardless of capitalization.

● content:"|05|"; distance:59; Snort will start searching
for |05| 59 bytes after the previous content's (|FF|SMB)
position.

● content:"|00|"; within:1; distance:1;the same as above
but 1 byte after the position where |05| (the previous
content) was found. within means that there can be 1
byte between the previous content (|05|) and the new
content (|00|).

● content:"|09 00|"; within:2; distance:19; instructs
Snort to start looking for the specified content 19
bytes after the position where the previous content
(|00|) was found. There can also be 2 bytes between the
last two contents.

● classtype:attempted-admin; classtype is Snort's way of
categorizing attacks. In this case, the attack is
related to an attacker attempting to obtain

administrator-level access.

● sid:2514; rev:7; sid is this rule's Snort identification
number, while rev is the number of the revision this
rule has undergone.

Snort Resources:

1. http://web.archive.org/web/20121214114552/http://www.sno
rt.org/assets/173/SnortUsersWebcast-Rules_pt1.pdf

2. https://snort-org-site.s3.amazonaws.com/production/docum
ent_files/files/000/000/046/original/SnortUsersWebcast-R
ules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Cred
ential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%
2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires
=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd
554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0
a

Incident Handling & Response Overview

Enterprise-wide Incident Response
(Part 1: GRR)

LAB 2

Scenario
When it comes to responding to an incident on enterprise
environments, time to respond and visibility are everything.

http://web.archive.org/web/20121214114552/http://www.snort.org/assets/173/SnortUsersWebcast-Rules_pt1.pdf
http://web.archive.org/web/20121214114552/http://www.snort.org/assets/173/SnortUsersWebcast-Rules_pt1.pdf
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a
https://snort-org-site.s3.amazonaws.com/production/document_files/files/000/000/046/original/SnortUsersWebcast-Rules_pt2.pdf?X-Amz-Algorithm=AWS4-HMAC-SHA256&X-Amz-Credential=AKIAIXACIED2SPMSC7GA%2F20190222%2Fus-east-1%2Fs3%2Faws4_request&X-Amz-Date=20190222T230448Z&X-Amz-Expires=172800&X-Amz-SignedHeaders=host&X-Amz-Signature=2390ecd554e08833cd90e39220a74e6332f094d711ee1392d287d9197ba58d0a

There will be incidents, when waiting until an IR team is
deployed or remotely logging into each under-investigation
endpoint and issuing numerous commands, won't be the optimum
response approach.

Suppose that, multiple incidents have been declared inside a
heterogeneous enterprise network and you are called to dig
deeper and identify what is actually happening.

Luckily, the corporation has deployed GRR clients on its
endpoints and subsequently, you will be able to have both a
bird's eye view of the network and on-demand access to
crucial endpoint information.

The list of affected endpoints (which also happen to feature
a GRR client) is:

● win10-server.els-child.eLS.local

● jumpbox.els-child.eLS.local

● xubuntu

Learning Objectives
The learning objective of this lab, is to make you familiar
with GRR, in order to perform quicker and more efficient IR
activities.

Specifically, you will learn how to use GRR's capabilities in
order to:

● Have better visibility over a network

● Respond to incidents timely and effectively

https://github.com/google/grr
https://github.com/google/grr

● Remotely perform memory analysis utilizing the Rekall
framework

● Remotely acquire artifacts to investigate

● Proactively hunt for threats

During the lab you will have the opportunity to detect
(fileless) malware, stealthy persistence techniques and
privilege escalation attempts, on a heterogeneous and
enterprise-like network.

Don't get discouraged, if you are not familiar with the
attacks that you will detect during this lab. Everything will
be covered as the course progresses. Focus only on becoming
familiar with GRR's capabilities.

Recommended tools

● GRR

● xxd (Linux-based tool)

Network Configuration &
Credentials

● Incident Responder's Subnet: 172.16.66.0/24

● Under-investigation endpoints' subnet: 10.100.11.0/24

● GRR server

○ IP: 10.100.11.122

https://github.com/google/grr
http://manpages.ubuntu.com/manpages/trusty/man1/xxd.1.html

● Connection Type: VNC

○ Use a Linux or Windows VNC client
(https://www.tightvnc.com/download.php) to connect
to GRR-Server (10.100.11.122)

vncviewer 10.100.11.122 <- For Linux-based machines
tvnviewer.exe, Remote Host:10.100.11.122 <- For Windows-based
machines
A static route has been configured, so that the Incident
Responder can interact with the endpoints on the
10.100.11.0/24 subnet.]

To log into the GRR administration panel (after you connect
to the GRR > server through VNC as mentioned above):

1. Open a web browser

2. Navigate to localhost:8000

3. Submit the following credentials: admin/@nalyst

Tasks
Note: Before proceeding to incident analysis or identifying
an abnormality, some required information should be gathered
first. Such information are network interactions, listening
ports, running processes, running services, logged in users
etc. The two cheatsheets we provided you with, while studying
the first module of the IHRP course, contain the minimum
information you should gather. Feel free to extend them...

Task 1: Identify any abnormalities on the
win10-server.els-child.eLS.local endpoint,
leveraging GRR

First, utilize GRR's built-in capabilities to quickly gather
as many initial information as possible about this endpoint.
Then, try to identify anything suspicious or anything that
deviates from the norm.

Hint: During the first module of the IHRP course, we
documented the most common Windows registry locations that
can be used to trigger malware and MS Autoruns as a tool to
scrutinize them. There may be other registry locations that
can do the same though (and without being detected by
Autoruns). Be more thorough...

Task 2: Identify any abnormalities on the
jumpbox.els-child.eLS.local endpoint,
leveraging GRR

First, utilize GRR's built-in capabilities to quickly gather
as many initial information as possible about this endpoint.
Then, try to identify anything suspicious or anything that
deviates from the norm. This time, also try to identify how
the endpoint got compromised in the first place.

Hints:

1. Common Windows processes that are being misused by
attackers are notepad.exe and calc.exe. More
specifically, attackers usually spawn the aforementioned
processes and then, inject malicious code into their
memory address space. Memory analysis is required to
identify what has been loaded into a process' memory.
Luckily, GRR offers remote memory analysis, utilizing
the Rekall framework.

2. On well-secured and fully patched environments, humans
are usually the weak link in the corporation's security
chain. Search for malicious Office documents, that may
have tricked the endpoint's user into executing

https://github.com/google/rekall

malicious code.

Task 3: Identify any abnormalities on the
Xubuntu endpoint, leveraging GRR

First, utilize GRR's built-in capabilities to quickly gather
as many initial information as possible about this endpoint.
Then, try to identify anything suspicious or anything that
deviates from the norm.

Hint: Processes running with high privileges should always be
investigated carefully and/or compared to a baseline (in case
there is one).

SOLUTIONS
Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy (which
may be different from the one explained in the following
lab).

Task 1: Identify any abnormalities on the
win10-server.els-child.eLS.local endpoint,
leveraging GRR

By the time a GRR client reports to a GRR server, the
endpoint featuring the GRR client is being interrogated.
"Interrogation" is a GRR process that effectively collects a
treasure trove of endpoint information.

First things first! Once you are logged into the GRR
administration panel (information on how to do so can be
found above, in the Network Configuration & Credentials
section), you can list all the deployed GRR clients, by

clicking on the Search box and pressing nothing other than
Enter.

If you do so, you will be presented with the below:

Important: Do not start any IR activities, until all bullets
turn green! It may take some time until they do so... To
refresh, click on the GRR logo and then, once again click on
the Search box and press Enter.

To start gathering initial information about the
win10-server.els-child.eLS.local endpoint, all you have to
do is click on the first of the three lines, containing all
the deployed GRR clients.

If you do so, you will be presented with the below.

Click Full Details, for a more detailed representation of
the acquired initial information. You can also browse through
the same information collected on older dates and use this as
a baseline.

To start gathering important information about this endpoint,
such as communications with other endpoints, listening ports
etc., you can utilize GRR flows. To do so, click on Start
new flows.

For example, to list all active network connections on this
endpoint, you should go to Network -> Netstat and press
Launch

To collect the results, you should click on Manage launched
flows and then, click on the launched flow.

You will most probably be presented with two (2) pages of
results, but the most curious looking result is the below.

Interaction with another intranet endpoint (10.100.11.250)
may or may not be abnormal, but rundll32 involved with a
remote connection on port 81 is certainly strange. Keep this
finding in mind for later...

If you cannot find the result above, then, timing was bad
(the connection went inactive). Don’t worry, you can still
identify that there is something wrong with rundll32, by
clicking on Start new flows, navigating to Processes ->
ListProcesses and finally clicking Launch.

By browsing the results in the Manage launched flows area
and navigating to the second page of the results, you will
see rundll32 executing curious looking code and trying to
connect to the 10.100.11.250 intranet machine.

Feel free to navigate and "play" with all available GRR
flows, but keep in mind that some results may take a very
long time to reach the GRR server and that GRR in general can
be quirky at times.

What about the registry? Let's try and list everything under
the
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows/CurrentVersion
location (which, as mentioned in the first module, is usually
abused by attackers to trigger malware).

To do so, click on Start new flows and then navigate to
Registry -> RegistryFinder.

Now, replace what is included in the red rectangle above with
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows/CurrentVersion/
, scroll down and press *Launch**.

The results will appear in the Manage launched flows area,
as we showed you previously. It will take a while until the
results reach the GRR server...

You can inspect the results by clicking on them.

You will be taken to the Browse Virtual Filesystem, where
you can investigate further.

For example, if you wanted to investigate AccountPicture
further, the first thing you would see, is that it appears to
be empty.

It is not empty though, just not analyzed/requested yet. To
analyze/request it, all you have to do is press the refresh
button and wait.

The contents will then appear (if any exist).

While investigating all results, you will not find anything
suspicious.

If you start a new flow, and specify
HKEY_LOCAL_MACHINE/SOFTWARE/Microsoft/Windows
NT/CurrentVersion/* in RegistryFinder this time, you will
find something really suspicious in the results.

Specifically, investigate the following result (located in
the second page of the results), by clicking on it.

To investigate it further, you first locate it on the
dropdown menu on the left part of the screen, as follows.

That calc.exe entry is certainly suspicious. Investigate it
further, by first double-clicking on it and then, clicking
the refresh button as you did previously. Once the latest
results arrive, you will see the below.

Now, if you click on the MonitorProcess entry, you will see
the below.

rundll32 executing JavaScript code is something 99%
ill-intended (and this is why the endpoint was communicating
with the 10.100.11.250 intranet machine on port 81). In
addition, it looks like this is a persistence mechanism,
taking into consideration that the Windows registry has been
the go-to place to persist on an endpoint for years and the
following post
https://www.tanium.com/blog/another-persistence-method-report
ed-overnight-on-twitter-how-tanium-can-help/.

Searching through whole registry places can be tedious and
ineffective. Being engaged in various incidents over a period
of time will result in you quickly becoming familiar with the
most commonly abused registry locations and registry
persistence techniques. Tactical threat intelligence can also
flatten this learning curve.

Task 2: Identify any abnormalities on the
jumpbox.els-child.eLS.local endpoint,
leveraging GRR

https://www.tanium.com/blog/another-persistence-method-reported-overnight-on-twitter-how-tanium-can-help/
https://www.tanium.com/blog/another-persistence-method-reported-overnight-on-twitter-how-tanium-can-help/
https://www.tanium.com/blog/another-persistence-method-reported-overnight-on-twitter-how-tanium-can-help/

We assume you are now capable of collecting initial and
important endpoint information, using both the
"interrogation" feature of the GRR clients and GRR flows, so,
let's cut to the chase.

To list this endpoint's running processes, click on Start
new flows, then navigate to Processes -> ListProcesses and
finally click Launch.

You will see results similar to the below in the Manage
launched flows area (after ~10 minutes).

What looks interesting is that calc.exe is running. Of
course, it could be something benign, but attackers commonly
abuse calc.exe and notepad.exe processes to inject malicious
code in them (and make it look like a legitimate Windows
process). To inspect what has been loaded into/by calc.exe
you need a memory analysis tool. Luckily GRR offers remote
memory analysis utilizing the Rekall framework.

You can do so, by clicking Start new flows, then navigating
to Memory -> AnalyzeClientMemory and finally specifying the
Rekall plugin you want to run and some arguments, before
pressing Launch, as follows.

In this case, we specified the ldrmodules Rekall plugin,
targeted specifically at the calc.exe process. [Memory
forensics is not covered in detail in this course (our THP
course covers this subject), but it is nice to know all the
capabilities of the GRR framework]

If you do so, you will see results similar to the below in
the Manage launched flows area (after some minutes).

Now, click on Render all the data... (May take a while). You
will be presented with something similar to the below.

Finally, if you go through everything that has been loaded,
you should notice the following.

System.Management.Automation.dll is actually the DLL
responsible for every PowerShell operation. What does this
mean? It means that malicious PowerShell-based code has been
injected into calc.exe (during Part 2 of this lab, you will
learn how to identify exactly what PowerShell code has been
injected).

How this endpoint got infected in the first place, you may
ask. Give the Downloads directory a closer look, in case
something malicious has been downloaded and executed.

To do so, click on Browse Virtual Filesystem, then
double-click on fs -> os -> C: -> Users ->
Administrator.ELS-CHILD -> Downloads and finally click on
the refresh button, as you did previously.

Once the latest directory contents are returned (after some
minutes), you should see the below.

The GRR client installer and a .xlsx file are included. Let's
give this .xlsx file a closer look.

To do so, click on the .xslx file, click Download, scroll all
the way down and finally click Re-Collect from the client.

Once re-collecting is done, browse to the directory again and
simply click on Download (126305 bytes), as follows. It will
save it into the GRR server's Download directory.

What you need to now is that .xlsx files are effectively .zip
files. So, let's rename this file to .zip

Once you rename it, double-click on it. You will be presented
with the below.

Now, double-click the xl folder, then the activeX one and
finally, drag and drop activeX1.bin to the Downloads
directory.

Finally, right-click inside the Downloads directory and then
click Open Terminal Here.

You did that, so that you can inspect the activeX1.bin file
with the xxd tool.

Inside the terminal, execute:

xxd activeX1.bin | more

You will be presented with the below.

http://manpages.ubuntu.com/manpages/trusty/man1/xxd.1.html

The above means, that the .xlsx file contained a Flash
Application, something common only on malicious Office
documents that leverage Flash vulnerabilities for malicious
code execution purposes.

You most probably identified how this endpoint got infected
in the first place!

Task 3: Identify any abnormalities on the
Xubuntu endpoint, leveraging GRR

Once again, we assume you are now capable of collecting
initial and important endpoint information, using both the
"interrogation" feature of the GRR clients and GRR flows, so,
let's cut to the chase.

To list this endpoint's running processes, click on Start
new flows, then navigate to Processes -> ListProcesses and
finally click Launch.

You will see results similar to the below in the Manage
launched flows area (after ~10 minutes).

You should start your investigation, by analyzing the
processes running with high privileges. If you do so, you
will notice results similar to the below (on the second page
of the results).

This binary (bleidi), is being executed with elsuser
privileges and then, with root ones. Something is definitely
strange...

To give this binary a closer look (it has been re-collected
for you this time), click on Browse Virtual Filesystem,
navigate to fs -> os -> home -> elsuser -> Downloads, click
on the bleidi binary and finally click on HexView.

If you do so, and navigate to the sixth page of the HexView,
you will notice the below.

It looks like bleidi is a malicious binary, trying to perform
local privilege escalation and provide the attacker with a
root shell.

GRR Resources:

1. https://grr-doc.readthedocs.io/en/latest/

2. https://www.blackhat.com/docs/us-14/materials/us-14-Cast
le-GRR-Find-All-The-Badness-Collect-All-The-Things.pdf

3. https://www.youtube.com/watch?v=ren6QSvwFvg

4. https://chip-dfir.techanarchy.net/?p=395

5. https://www.osdfcon.org/presentations/2012/OSDF-2012-GRR
-Rapid-Response-Darren-Bilby.pdf

6. https://storage.googleapis.com/docs.grr-response.com/GRR
%20Hunting%20for%20meetup%20Oct%202015.pdf

Enterprise-wide Incident Response
(Part 2: Velociraptor)

LAB 3

Scenario
This lab continues from where the lab "Enterprise-wide
Incident Response (Part 1: GRR)" left off.

Another affected Windows endpoint
(WIN10.els-child.eLS.local) existed inside the same intranet
subnet (10.100.11.0/24), which was monitored not by GRR, but
by the Velociraptor IR framework.

https://grr-doc.readthedocs.io/en/latest/
https://www.blackhat.com/docs/us-14/materials/us-14-Castle-GRR-Find-All-The-Badness-Collect-All-The-Things.pdf
https://www.blackhat.com/docs/us-14/materials/us-14-Castle-GRR-Find-All-The-Badness-Collect-All-The-Things.pdf
https://www.youtube.com/watch?v=ren6QSvwFvg
https://chip-dfir.techanarchy.net/?p=395
https://www.osdfcon.org/presentations/2012/OSDF-2012-GRR-Rapid-Response-Darren-Bilby.pdf
https://www.osdfcon.org/presentations/2012/OSDF-2012-GRR-Rapid-Response-Darren-Bilby.pdf
https://storage.googleapis.com/docs.grr-response.com/GRR%20Hunting%20for%20meetup%20Oct%202015.pdf
https://storage.googleapis.com/docs.grr-response.com/GRR%20Hunting%20for%20meetup%20Oct%202015.pdf
https://github.com/Velocidex/velociraptor

Velociraptor is based on GRR, but has some additional
capabilities, such as the ability to remotely (or locally)
execute Velocidex Query Language (VQL) queries and better
event monitoring.

Your mission is still the same. You are called to identify
what is actually happening inside the
WIN10.els-child.eLS.local endpoint, but this time, you will
have to leverage the Velociraptor framework's capabilities.

Learning Objectives
The learning objective of this lab, is to make you familiar
with Velociraptor, in order to perform quicker and more
efficient IR activities.

Specifically, you will learn how to use Velociraptor's
capabilities in order to:

● Have better visibility over a network

● Respond to incidents timely and effectively

● Remotely execute Velocidex Query Language (VQL) queries
and extract critical data

During the lab you will have the opportunity to detect
fileless malware and stealthy persistence techniques, on a
heterogeneous and enterprise-like network.

Don't get discouraged, if you are not familiar with the
attacks that you will detect during this lab. Everything will
be covered as the course progresses. Focus only on becoming
familiar with Velociraptor's capabilities.

Recommended tools

https://github.com/Velocidex/velociraptor
https://github.com/Velocidex/velociraptor

● Velociraptor

Network Configuration &
Credentials

● Incident Responder's Subnet: 172.16.67.0/24

● Under-investigation endpoints' subnet: 10.100.11.0/24

● Velociraptor server

○ IP: 10.100.11.121
● Connection Type: VNC

○ Use a Linux or Windows VNC client
(https://tightvnc.com/download.html) to connect to
Velociraptor server (10.100.11.121)

vncviewer 10.100.11.121 <- For Linux-based machines
tvnviewer.exe, Remote Host:10.100.11.121 <- For Windows-based
machines

A static route has been configured, so that the Incident
Responder can interact with the endpoints on the
10.100.11.0/24 subnet.

**

Note: Change the system's date back to 15 Jan 2019 (use
7hwAJc3l as the password to unlock and then lock the calendar
that will appear)

https://github.com/Velocidex/velociraptor

To log into the Velociraptor administration panel (after you
connect to the Velociraptor server through VNC as mentioned
above):

1. Open a web browser
2. Navigate to localhost:8889
3. Submit the following credentials: admin/analyst

Tasks
Note: Before proceeding to incident analysis or identifying
an abnormality, some required information should be gathered
first. Such information are network interactions, listening
ports, running processes, running services, logged in users
etc. The two cheatsheets we provided you with, while studying

the first module of the IHRP course, contain the minimum
information you should gather. Feel free to extend them...

Task 1: Identify any abnormalities on the
win10.els-child.eLS.local endpoint,
leveraging Velociraptor

First, utilize Velociraptor's built-in capabilities to
quickly gather as many initial information as possible about
this endpoint. Then, try to identify anything suspicious or
anything that deviates from the norm.

Note that the endpoint features PowerShell ScriptBlock
Logging.

Hints:

1. Persistence can also be achieved by creating malicious
services

2. Try to extract PowerShell-related logs through the
Velociraptor client

SOLUTIONS
Below, you can find solutions for every task of this lab.
Remember though, that you can follow your own strategy (which
may be different from the one explained in the following
lab).

Task 1: Identify any abnormalities on the
win10.els-child.eLS.local endpoint,
leveraging Velociraptor

https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/
https://blogs.msdn.microsoft.com/powershell/2015/06/09/powershell-the-blue-team/

By the time a Velociraptor client reports to a Velociraptor
server, the endpoint featuring the Velociraptor client is
being interrogated. "Interrogation" is a Velociraptor process
that effectively collects initial endpoint information.

First things first! Once you are logged into the Velociraptor
administration panel (information on how to do so can be
found above, in the Network Configuration & Credentials
section), you can list all the deployed Velociraptor clients,
by clicking on the Search box and pressing nothing other
than Enter.

If you do so, you will be presented with the below:

Important: Do not start any IR activities, until the bullet
turns green! It may take some time until it does so... To
refresh, click on the Velociraptor logo and then, once again
click on the Search box and press Enter.

To start gathering initial information about the
win10.els-child.eLS.local endpoint, all you have to do is
click on the first line, containing the deployed Velociraptor
client (see figure above).

If you do so, you will be presented with the below.

To start gathering important information about this endpoint,
such as communications with other endpoints, newly created
services etc., you can utilize Velociraptor flows. To do so,
click on Start new flows.

For example, to list all newly-created services on this
endpoint, you should go to Collectors -> Artifact Collector,
[add] Windows.Events.ServiceCreation and finally, scroll all
the way down and press Launch.

To collect the results, you should click on Manage launched
flows and then, click on the launched flow (it may show a
message that the flow failed, disregard it, the flow was
executed successfully).

Now, if you carefully look at the results, you will notice
some curious looking ones.

Specifically, once again you come across rundll32 executing
malicious JavaScript code. This time, persistence is achieved
through the creation of a malicious service. If you scroll to
the right, you will also see that the malicious service's
name is Log_Aggregator.

You were also told, that this machine features PowerShell
ScriptBlock Logging. Let's extract and inspect those logs by
executing a Velocidex Query Language (VQL) query.

You can do so, by clicking on Start new flows, navigating to
Collectors -> VQL Collector and specifying the query below
(refer to
https://docs.velociraptor.velocidex.com/blog/html/2018/11/09/
event_queries_and_endpoint_monitoring.html for more
information).

SELECT EventData, System.TimeCreated.SystemTime from
parse_evtx(filename=
'c:/windows/system32/winevt/logs/Microsoft-Windows-PowerShell
%4Operational.evtx')

The results will appear in the Manage launched flows area,
as we showed you previously.

The results are certainly interesting! Specifically, the ones
below (output excerpt).

https://docs.velociraptor.velocidex.com/blog/html/2018/11/09/event_queries_and_endpoint_monitoring.html
https://docs.velociraptor.velocidex.com/blog/html/2018/11/09/event_queries_and_endpoint_monitoring.html
https://docs.velociraptor.velocidex.com/blog/html/2018/11/09/event_queries_and_endpoint_monitoring.html

The first two logs, clearly indicate that the hacking tool
Inveigh, was loaded into the endpoint's memory, through
PowerShell. The third PowerShell ScriptBlock Logging log
[above], clearly indicates an obfuscated PowerShell script
being loaded into the endpoint's memory, that tries to
download something and execute it from a remote location
(refer to the PowerShell Attack Resource below for more
information).

Velociraptor Resource:

1. https://www.velocidex.com/blog/

PowerShell Attacks Resource:

https://github.com/Kevin-Robertson/Inveigh
https://github.com/Kevin-Robertson/Inveigh

1. https://www.symantec.com/content/dam/symantec/docs/secur
ity-center/white-papers/increased-use-of-powershell-in-a
ttacks-16-en.pdf

https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf
https://www.symantec.com/content/dam/symantec/docs/security-center/white-papers/increased-use-of-powershell-in-attacks-16-en.pdf

