
Windows Post Exploitation
Kyle Avery

Introduction

Class Scope

• What we will not cover:
• Every possible technique in each category we discuss

• Anything involved with initial compromise (See Joff’s and Michael’s classes!)

• Anything cloud related

• Anything Linux related

• 0days or undocumented techniques

• Many existing courses and online resources focus on performing TTPs,
this course will help you build a process for evaluating Windows
systems to find opportunities to use that knowledge
• Don’t worry, we’ll go over specific techniques as well!

Lab Environment

• You should have received instructions on how to set up a
development environment for this course – if not, send a message in
Discord ASAP!

• The VM you created will be used to connect to an Active Directory lab
hosted in AWS

• We will use Sliver for labs and demos, but you could use a different C2
framework if you prefer

So, you popped a shell,
now what?

Cyber Attack Lifecycle

• What is involved in a red team exercise or adversary simulation?

• Steps we will cover:
• Enumeration

• Persistence

• Privilege Escalation

• Lateral Movement

Image Credit: IACP Cyber Center

https://www.iacpcybercenter.org/resource-center/what-is-cyber-crime/cyber-attack-lifecycle/

What is “OPSEC”?

• Operational Security or OPSEC in this context refers to the impact a
tactic, technique, or procedure has in an environment

• This impact is gauged on how likely it is to be detected by a network
administrator or defensive security professional

• It is very difficult to rate the OPSEC of any offensive capability because
it largely depends on the environment

What is “OPSEC”?

• It is best to assume that every environment is a “Non-Permissive
Environment” (NPE) until you know otherwise

• Each capability overview will include a list of OPSEC-related risks for
you to consider

• Since it would be impractical to write your entire toolset, it is
important to review and understand the impact of tools you run

Potential Risks

• There are five primary host detection capabilities that are either built
into Windows or very common in enterprise networks
• Antivirus

• AMSI

• ETW

• Sysmon

• Endpoint Detection and Response (EDR)

• We will talk about each of these briefly to put the rest of our OPSEC
decisions in the context of these potential risks

Potential Risks - Antivirus

• Antivirus is a signature-based scanner that looks specifically at files on
disk

• Many environments use Defender as it is free and comparable to paid
alternatives, but this is not always the case

Potential Risks - AMSI

• The Anti Malware Scan Interface is a component of Windows that
allows applications to scan arbitrary text or files for known malicious
strings

• AMSI can also be used to perform URL reputation checks

• Several built-in components of the Windows OS integrate with AMSI
• PowerShell (version 4 and above)
• VBScript and JScript
• VBA and XLM Macros
• Certain components of the .NET framework >=4.8

• AMSI can be patched to bypass these checks in a few different ways,
but it can also be avoided entirely with sufficient obfuscation

Potential Risks - ETW

• Event Tracing for Windows is a kernel-mode feature of the operating
system that traces and then logs system events

• ETW can be used to detect the names of .NET methods that are called
• This can be used for strings detection on known-bad method names

• CompileAssemblyFromSource() or Assembly.Load() can be flagged for
dynamic code execution

• FromBase64String() combined with P/Invoke calls such as VirtualAlloc() and
CreateThread() could be a sign of shellcode execution

Potential Risks - Sysmon

• Sysmon is a free tool from Microsoft that is made of up two
components: a Windows service and a device driver

• This tool can be used monitor process creation and relationships,
library loads, network activity, and file creations and modifications

• SwiftOnSecurity’s sysmon-config and Olaf Hartong’s sysmon-modular
are commonly used, often without much modification

https://github.com/SwiftOnSecurity/sysmon-config
https://github.com/olafhartong/sysmon-modular

Potential Risks - EDR

• Endpoint detection and response is a term used to refer to various
paid products that provide several defensive capabilities to the
Windows operating system

• EDR products will typically implement many of the same capabilities
as Sysmon, as well the following features
• API hooking – Known suspicious API calls can be intercepted and inspected to

detect malicious behavior

• Memory scanning – Suspicious regions of memory such as RWX sections, large
RX private commit sections, or even odd DLL loads such as unmanaged
processes loading the CLR

Potential Risks - SIEM

• Mature security programs will have a “Security Incident and Event
Management” tool or procedure that allows them to aggregate logs
from each of these sources

• Rules can be created that correlate events from any number of log
sources, improving detection capabilities dramatically

• Examples include Splunk, Elastic Security, and AlienVault

• It could also be a combination of a log aggregator such as Splunk or an
Elastic Stack and a ticket management system such as Jira or Service
Now

Potential Risks - Sigma

• Generic signatures that can be converted to multiple SIEM platforms

• Formatted as YAML, Sigma rules define a log source as well as various
conditions that must be met for the rule to trigger

Potential Risks - Elastic Detection
Rules

• Elastic-specific detection rules aren’t as widely applicable as Sigma,
but they still give us good insight into the types of queries defenders
are using

https://github.com/elastic/detection-rules

Enumeration Intro

• Why should you perform (some) enumeration before persistence?

• The steps immediately following your initial shell are the most critical
in the engagement

• Any action you take on a compromised system poses a certain level of
risk

Enumeration Intro

• All we know initially is the potential reward for an action and the logs
it could create

• In order to make an informed decision, we need to know the level of
risk and compare it to the potential reward

• The amount of risk you are willing to accept depends on the type of
engagement

Types of Implants

• Stage-0 – Shellcode execution cradle, no features beyond
downloading and executing code

• Stage-1 – Minimal functionality, typically provides recon capabilities
and the ability to kick off a C2 implant
• Typically implements a long wait between beacons with a considerable

amount of jitter to evade network defenses

• Fully-Featured C2 – Traditional commodity frameworks such as Sliver
and Cobalt Strike

Questions to Answer

• Is the host you’re on in scope?

• What time of day is the user active?

• What applications does the user tend to use?

• What security products exist on the host?

• What privileges do you have?

• Are there network security products that we can identify?

Understanding the Environment

• Understanding what security products exist on the endpoint is key to
avoiding detection
• Before performing any risky actions, we will enumerate the services and

processes to find host security software

• In addition, we can check \windows\system32\drivers and
\windows\sysnative\drivers for installed EDR products

• Most AV vendors write to the root\SecurityCenter and root\SecurityCenter2
WMI namespaces

Actions to Avoid

• Writing to disk

• Any PowerShell commands

• Suspicious API calls

• Network traffic

• Spawning new processes (even fork-n-run!)

• Commonly Abused Windows Commands
• dir, net, ping, tasklist, ipconfig, systeminfo, whoami

Core C2/Stage-2 Implant Functionality

• Basic recon capabilities – list processes, read files, read registry values

• Utility functions – file write, registry write, upload/download

• Dynamic code execution – RDI, shellcode execution, process injection,
.NET assembly execution

Popular TTPs

• The latest and greatest LOLBin, process injection method, or other
technique may not always be great if we are interested in avoiding
detection

• Security product vendors are incentivized disproportionally to catch
more popular TTPs and increase the “number of attacks” they can
detect and prevent (think MITRE ATT&CK percentage)

Inline Execution

• Cobalt Strike has a built-in feature to execute object files without
spawning an additional process (Best option)

• Covenant offers inline C# execution, but this can be monitored with
ETW and AMSI

• Most frameworks provide a way to perform reflective DLL injection
which uses some risky API calls but at least won’t create any new
processes

Useful Aggressor Scripts and BOFs

• If you have access to Cobalt Strike, great!
• If not, consider porting these scripts to an open-source framework you like

• EDR.cna – Checks the \windows\sysnative\drivers file for EDR drivers

• FindObjects-BOF – Enumerates processes loading specific modules
• Can be used to find existing process that load the .NET runtime!

Forking Execution

• Dynamic execution features of many C2 implants involves a form of
process spawning and injection

• Cobalt Strike uses fork-n-run for many features such as execute-
assembly (as does Sliver for the equivalent module)

• Fork-n-run execution involves spawning a new process, writing code
to it, and then executing that code

• The executable you choose to hollow has a large impact on the
likelihood of being detected
• Werfault is a good option as it is commonly spawned as a subprocess

.NET Execution

• .NET is a library and programming standard for developing new
languages

• PowerShell and C# are the two most popular .NET languages, but
there are others

• Many post exploitation tools we will use in this course are written in
PowerShell or C#, we will focus primarily on C# tools

• Most C2 frameworks can execute .NET in memory by spawning a new
process

.NET Obfuscation

• There are many tools to obfuscate .NET assemblies, but the most
popular today is probably ConfuserEx

• ConfuserEx is very simple to use, it includes a GUI and CLI

• One problem with CEX is that it replaces existing values such as
method names with random characters which increases the entropy
of the assembly quite a bit

• Consider creating your own obfuscator with DNLib or Roslyn to
replace values with dictionary words instead of random values
• Samuel Wong’s blog post on building an obfuscator is a great reference to get

started with DNLib

• @Flangvik has a set of videos on creating RosFuscator

https://github.com/mkaring/ConfuserEx
https://github.com/0xd4d/dnlib
https://github.com/dotnet/roslyn
https://www.xanthus.io/post/building-an-obfuscator-to-evade-windows-defender
https://twitter.com/Flangvik
https://github.com/Flangvik/RosFuscator

C# Tool Pipeline

• Obfuscation of strings and other values is a great way to get around
signatures… until your new file gets signatured

• Consider creating an automated process to build the tools you use
and then obfuscate them on some interval
• In DevOps/AppSec, this process is referred to as a CI/CD pipeline and is very

common

• There are already talks about basic C# tool pipelines if you are
interested in automating this process
• Dominic Chell (MDSec) - Offensive Development

• Will Schroeder (SpecterOps) - OffSecOps

https://www.youtube.com/watch?v=GHmOJhpMw_o
https://www.youtube.com/watch?v=XaICChBJMck

Seatbelt

• Seatbelt from SpecterOps is an AMAZING tool for performing “Safety
Checks” before ANY step in your engagement

• Once we have determined what process to host our .NET assembly in,
we’ll use Seatbelt to gather more information

• Most of the OPSEC considerations for Seatbelt are common to all .NET
assemblies

https://github.com/GhostPack/Seatbelt

Seatbelt

• Several modules are useful for initial enumeration:
• AV products, Defender exclusions

• PowerShell audit logging information

• .NET and PowerShell versions

• LSA settings (PPL, CredentialGuard, WDigest)

Seatbelt

• Seatbelt also includes modules for identifying user behavior:
• ChromiumBookmarks and ChromiumHistory, IEFavorites and IEUrls,

FirefoxHistory and FirefoxPresense

• ExplorerMRUs, ExplorerRunCommands, PowerShellHistory

• LogonEvents

• MappedDrives

• PuttyHostKeys and PuttySessions, RDPSavedConnections, FileZilla

• SlackDownloads and SlackWorkspaces

Potential Improvements to Seatbelt

• Each time you execute Seatbelt, you are loading every available
module into memory and then only calling the specified components

• In addition to your normal obfuscation, consider adding multiple
projects to the Seatbelt solution file that each only include the
modules you plan to run together

• This will further differentiate your assembly from the original

Seatbelt OPSEC

• SilkETW Rule:

• Obfuscation will fix this!

WMIEnum

• WMIEnum is a tool I wrote last year to perform local and remote host
enumeration with pure WMI

• This tool never spawns a process (besides the .NET host), accesses the
registry, or writes to disk

• Provides a way to find and read files on the system without running
OS commands or using typical API calls

Why WMIEnum?

• WMIEnum is not significantly stealthier than performing the same
queries with various APIs, but it is a different way of enumerating a
system
• Again, the most popular technique is not always the stealthiest one

• WMI enumeration can be very difficult to detect in some
environments, as many IT inventory products use similar queries to
pull information for administrators

Network Enumeration

• Once we have a solid understand of the security measures on the
host, we can begin to enumerate the network for security products
and other endpoints we might be interested in

• Determine operating system with a single ping by checking TTL
• Windows: 128

• Linux: 64

• Others may be networking equipment, Solaris machines, etc.

DNS Record Gathering

• DNS on Windows has verbose logging capabilities

• Hostname lookups can be performed entirely through LDAP

• This can be done with the following AD PowerShell module command
• Get-ADComputer -properties ipv4address | ? {$_.IPV4address}

• It is also possible to query DNS records with adidnsdump over SOCKS
proxy
• There is also an equivalent .NET project SharpAdidnsdump

Identifying Network Services by SPN

• A Service Principal Name (SPN) is a unique identifier for each instance
of a service running in an Active Directory environment

• Some network services can be identified using SPNs instead of port
scanning hosts (Including IIS, RDP, and MSSQL)

• We can list all SPNs to find the IP and port of each of these service
instances in the domain

• Rubeus can already do this, but not without also requesting tickets for
each SPN

https://github.com/GhostPack/Rubeus/

LAB: Sliver Connection and
Initial Enumeration

Building a Stage-1 Implant

• Although .NET may not be the best OPSEC choice, it abstracts much of
the required code for networking and can be converted to other
payloads such as VBScript very easily
• Pieces of Seatbelt or even WMIEnum can be implemented directly in the

implant to provide specific enumeration capabilities

• An LDAP DNS query can also be used to get a picture of what hosts exist on
the network

• A list of SPNs from the DC could be retrieved as well, providing a map of some
potential services in the environment

• The next step would be to add a simple shellcode loader to execute
your stage-2 implant!

Building a Stage-1 Implant

• I have provided boilerplate code with some recon checks in the “labs”
directory on your test VM

• Together, we will implement another one of the Seatbelt safety checks
into our implant

• From here, I encourage you to extend the project with your preferred
enumeration capabilities and add networking to make it a usable
implant

LAB: Building Stage-1 Implant
Enumeration Components

Loading a Stage-2 Implant

• The endpoint monitoring software on the host will also have an
impact on how we move forward
• If the endpoint is only using Defender/AMSI, we can test our payloads locally

to ensure they will not be detected

• Many other AV products have a free trial or very affordable licenses that can
be used for testing as well

• Mr. Un1k0d3r has a great repo of which API functions are hooked by various
AV and EDR vendors, providing a list of exactly which functions you should
avoid or find an alternative execution method (direct syscalls/DInvoke)

https://github.com/Mr-Un1k0d3r/EDRs

Loading a Stage-2 Implant

• Now that initial recon data has been collected, we can choose an
optimal method for loading our fully-featured C2 agent

• Various Windows configuration settings will guide our decisions
• If PowerShell version two is available, this makes post-exploitation potentially

very easy as there are almost no introspection capabilities for defenders

• Similarly, .NET 3.X and .NET 4.0-4.7.2 do not include AMSI functionality,
making execution of assemblies safer (but still detectable with ETW!)

• AppLocker and ASR policies are also very important to consider as they can
block arbitrary executables or certain Office macro capabilities

• Defender exclusions can be very useful, for example sending the victim a
stage-0 payload that downloads/writes a binary to that path and then starts a
new process targeting it

Day 2: Persistence

Persistence Intro

• Persistence ensures access to a system, environment, or privilege
level is not lost in the event of implant termination

• There are many things to consider when choosing data storage and
persistence methods
• Security products

• Administrator or regular user

• UAC and integrity level

• Roaming profiles

Persistence Intro

• Environmental factors will have a huge impact on the persistence
method you choose

• Any opportunity to hijack or backdoor existing methods of data
storage and/or execution is typically preferable to creating a new and
potentially abnormal instance

• Persistence can be handled in many ways, but the best is always
however defenders in the target environment are least likely to notice
it

Registry Payload Storage

• Storing data in the registry is a very common method among threat
actors and red teams

• Reading and writing from the registry is very common for most
applications, making it hard for defenders to filter out the noise

• You could create a new path or even add a key to an existing registry
location for a known application in the environment

• It is always best to avoid using CLI tools such as reg
• When possible, consider writing to the registry with an API call or even WMI

NTFS File Attribute Payload Storage

• Various properties of a file on NTFS formatted partitions can store
data.

• Alternate Data Streams (ADSs) are probably the most popular, but you
could also write to the Extended Attributes (EA) of a file

• Each of these locations can store arbitrary data or complete files

• There is a great GitHub gist from api0cradle with various examples of
storing data in ADSs and executing payloads stored there

https://gist.github.com/api0cradle/cdd2d0d0ec9abb686f0e89306e277b8f

WMI Custom Property Payload
Storage

• We will talk more about WMI later today, but for now it is important
to know that it is essentially a large repository of data about the
system

• Unprivileged users can create custom data sets in this repository with
arbitrary names and properties

• These data sets can be created and written to remotely for lateral
movement as well

Enumerating Persistent Execution
Opportunities

• Seatbelt isn’t just for initial enumeration! It will come in handy for
many steps in the attack lifecycle
• LastShutdown – Last time the system powered off

• PoweredOnEvents – Reboot timings for the last week

• WMIEventFilter/WMIFilterBinding/WMIEventConsumer – Existing WMI event
subscribers

• AutoRuns – Existing startup executors

• ScheduledTasks – Existing scheduled tasks

• Services – Existing services running on the machine

U Scheduled Tasks

• Scheduled tasks are a basic, but potentially valuable, persistence
method

• Backdooring existing scheduled tasks can be more difficult to detect
than creating new tasks

• There is an API call that can be used to create scheduled tasks
• FireEye released a tool for persistence that includes a C# example of

backdooring existing scheduled tasks

https://github.com/fireeye/SharPersist/blob/master/SharPersist/SchTaskBackdoor.cs

U Scheduled Tasks

U Backdoored LNK File

• Shortcuts on Windows are
inconsistent when compared to other
methods, but can be very difficult to
detect

• The “Target” attribute of an LNK file
can be modified to execute some
other binary with arguments before
calling the intended executable

• Harmj0y wrote a PowerShell script
that will backdoor an existing LNK file,
which could be easily ported to C#

https://github.com/HarmJ0y/Misc-PowerShell/blob/master/BackdoorLNK.ps1

LAB: LNK Backdoor Program

U Registry Keys

• There are also registry keys that can be used for execution!

• Hexacorn keeps a running list of many registry run keys on his blog

• These locations have the potential to be heavily monitored by host
security products

https://www.hexacorn.com/blog/2017/01/28/beyond-good-ol-run-key-all-parts/

U Registry Keys

U Registry Keys

U Modifying the Registry with WMI

• In addition to modifying
the registry with regedit
and API calls, WMI can be
used to create new keys
with the “StdRegProv”
class

• This could be used as a
lateral movement
technique as well if WMI
can be accessed remotely!

U Word WLL Add-ins

• Word references multiple “Trusted Locations” by default which can be
enumerated at the following registry location
• HKEY_CURRENT_USER\Software\Microsoft\Office\16.0\Word\Security\Truste

d Locations

• Placing a wll file in any of these directories will grant code execution,
typically the following will work
• %APPDATA%\Microsoft\Word\Startup

• Any DLL can be renamed with this extension and placed in a “Trusted
Location” without modification!

• There is a similar feature in Excel but execution of the equivalent xll
file type is disabled by default and requires a registry change to
enable

U Word WLL Add-ins

U Excel XLA/XLAM Add-ins

• Excel can execute code at startup without a registry modification by
creating a new Excel spreadsheet, adding a new VBA module, and
then saving with type “Excel Add-in”

• These files must also be saved to a “Trusted Location”, typically in the
following directory
• %APPDATA%\Microsoft\Excel\XLSTART

• There is a similar feature in PowerPoint, but execution of the
equivalent ppa or ppam file types is disabled by default and requires a
registry change to enable

U Excel XLA/XLAM Add-ins

U Office Document Templates

• Instead of creating an add-in for Word and Excel documents, we can
also create a default template that all new documents will be based
on

• The templates for Word and Excel are as follows
• %APPDATA%\Microsoft\Templates\Normal.dotm

• %APPDATA%\Microsoft\Excel\XLSTART\PERSONAL.XLSB

• It is important to note that wll and xll blocking via GPO will not stop
document templates

U Outlook Rules

• The Outlook client offers the ability to perform any of several actions
when an email is received if it meets a certain criteria

• One of these actions is “start application” and can be used to execute
a .exe, .bat, or .vbs
• An important note is that Outlook Rules cannot execute PowerShell scripts

• XRulez from FSecureLABS can be used to add a rule to the current
users Outlook profile that will trigger on any emails received with a
specific keyword in the subject field

• This tool only works if Outlook is currently open on the system

https://github.com/FSecureLABS/XRulez

Office Persistence OPSEC

• The most obvious point of detection for most of these techniques is
the file write to a Trusted Location

• Any files written to one of these locations should be more heavily
scrutinized

• Monitoring process relationships for subprocesses of Word and Excel
is also important, and can be used to watch for initial code execution
as well

COM Background

• COM is a standard for programmers to create software components
that are exposed as an ABI

• This feature is language-independent and object-oriented, making
these components and the methods they expose reusable by any
program on the system

• Many built-in components of Windows have COM interfaces, and can
be identified by a globally unique Class ID (CLSID)

COM Background

• There are three pieces to a COM component
1. Interface - Defines the expected behavior of a component

2. Class - Implements any number of interfaces, exists on disk as a DLL or EXE

3. Object - An instance of a class

• COM classes and interfaces are (typically) defined in the registry at
HKCR\CLSID and HKCR\Interface

https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Warner-Sirr-Network-Defender-Archeology-An-NSM-Case-Study-In-Lateral-Movement-With-DCOM-wp.pdf

https://i.blackhat.com/eu-18/Thu-Dec-6/eu-18-Warner-Sirr-Network-Defender-Archeology-An-NSM-Case-Study-In-Lateral-Movement-With-DCOM-wp.pdf

U COM Hijacking

• Typically, COM class implementations are defined in HKLM

• These implementations can be overridden by writing to the same
path in HKCU as it is higher than HKLM in the COM search order

• This means that any user can “hijack” existing COM classes by creating
an entry in the HKCU registry hive

U COM Hijacking

WMI

• WMI is an interface available locally and remotely (through DCOM or
WinRS) for administering Windows systems

• Provides information about the system through a query language
• Hostname and domain

• Running processes

• All services and their status

• Local and remote system drives

• Active network interfaces

• AV products

• Directory and file contents

• And much more!

WMI Queries

• Queries are written in WMI Query Language (WQL)

• C# example:

var session = CimSession.Create("127.0.0.1");
var query = session.QueryInstances(@"root\cimv2", "WQL", "SELECT * FROM Win32_NetworkAdapter");

foreach (CimInstance item in query)
{

Console.WriteLine("{0}", item.CimInstanceProperties["Name"].Value);
}

• This will return every instance of the class Win32_NetworkAdapter

WMI

• Allows a user to create “event subscribers” which listen to system
events and perform actions in response
• Opening a certain type of file

• Creating a process

• User logon

• Insertion of removable media

• Timer

• Event subscribers are only stored on disk in the WMI repository, in a
proprietary binary format

A WMI Event Subscribers

• Every event has the same general structure:
• Filter - The thing an event responds to

• Consumer - The action taken by an event

• Binding - A connection between filter and consumer

• There are two types of events: local and permanent
• Local events are temporary and reside in a specific process, permanent events

persist across reboots and run as SYSTEM

• We will be focusing on permanent WMI event subscriptions

A WMI Event Subscribers

A Port Monitors

• The print spooler service on Windows can be interacted with through
an API that contains several functions

• One of these functions, AddMonitor, can be used to inject an arbitrary
DLL into the spooler process at startup
• The DLL must be placed in the System32 directory

• The port monitor must be registered and can be easily done in C/C++

• All port monitors are listed at the following registry key
• HKLM\SYSTEM\CurrentControlSet\Control\Print\Monitors\

• Once configured, the DLL will run at boot as the SYSTEM user

A Port Monitors

U/A DLL Hijacking

• In Windows environments, there is a uniform search order that all
applications use to resolve libraries

• There are a couple different ways to use DLL hijacking for persistence

• DLL hijacking attacks are difficult to detect, especially if non-public
opportunities are used

• The most vulnerable part of the process from an offensive point of
view is the binary file written to disk

U/A DLL Hijacking

1. Misconfigured Directory Permissions
• If an application loading a system DLL has

a writeable directory, a malicious DLL can
be placed in the application folder and
will be called first

2. Missing DLLs
• DLLs that are not present on the system

(more common than you’d think) can be
placed in a directory listed in the user’s
path

U/A DLL Hijacking

LAB: DLL Hijacking

Domain-Level Persistence

• Depending on our objectives, it may be required to establish
persistence as a privileged user in the domain

• There are multiple ways to go about this, some louder than others

• This is not always necessary, but could eliminate the need for host
artifacts on sensitive machines

DA Golden Ticket

• Even after domain administrator access is obtained, we could lose our
domain privilege if we do not establish persistence

• There is an account in every domain called krbtgt which is used to sign
tickets in Kerberos authentication

• If the NTLM hash of this account is obtained, we can create new
tickets allowing us to authenticate to any service as any user in the
domain without credentials

• There are multiple ways to obtain the NTLM hash of krbtgt:
• LSASS on a Domain Controller
• NTDS.dit
• DCSync

DA Retrieving the krbtgt Hash:
LSASS on a DC

• Accessing LSASS is typically best to avoid, especially if there is an EDR
on the target system

• The krbtgt hash is accessible on any domain controller in the memory
of LSASS

• Depending on your level of access and whether defenders appear to
be focusing on host vs network defenses, this may be a viable option

DA Retrieving the krbtgt Hash:
NTDS.dit

• NTDS.dit is the database of all user credentials in the AD environment

• Stored at C:\Windows\NTDS\NTDS.dit

• This file is always locked by the operating system, but there are still a
few ways it can be accessed
• Specifically, a volume shadow copy can be created a few different ways,

Pentest Lab has a great blog detailing various methods

DA Retrieving the krbtgt Hash:
DCSync

• DCSync is a technique from by Benjamin Delpy and Vincent Le Toux
where an attacker poses as a Domain Controller and then requests
account password data from a legitimate DC (Directory Replication
Services MS-DRSR)

• By default, any DA or DC* account can run DCSync, but only two
permissions are required
• DS-Replication-GetChanges, DS-Replication-Get-Changes-All

• DCSync can be performed using Mimikatz or SharpKatz

Silver Ticket

• If you can acquire hashes for a machine account and an associated
service account, these can be used to create a Silver Ticket
• All you need to get this information is an elevated shell on the target host

• Many organizations prioritize and more closely monitor logs on
domain controllers

• This technique never hits a DC directly, so event logs will only exist on
the target servers

• Silver tickets can be detected a few different ways, but none seem to
be very reliable
• Inspecting account logon event logs for empty fields such as “Account

Domain”
• Searching for computer accounts with a pwdlastset date >= 30+lastlogon

DA Active Directory ACLs

• AD Access Control Lists can be used as a difficult to detect domain-
wide persistence method

• Auditing in a domain is often configured to alert if someone is added
to a privileged group, less often on high-privilege entries being added
to an object

• ACL rights for password resets, DCSync, or many other more creative
rights can be assigned

• We will talk about ACLs more in the privilege escalation section

• SharpView can be used to modify ACLs with the Add-ObjectACL
method

https://github.com/tevora-threat/SharpView

DA Active Directory AdminSDHolder

• One thing you may notice when modifying ACLs is that some do not
persist for longer than about an hour

• The reason for this is a process called SDProp which will compare the
ACLs of users with a value of 1 for the “AdminCount” property with a
template, located in an object called AdminSDHolder

• We can modify this template with SharpView as well, effectively
backdooring every privileged account in the domain

• This sounds great, but is easier to detect as it only requires
monitoring ACL modifications to a single account

Other Persistence Considerations

• When establishing your environment-wide persistence, consider
multiple forms of C2
• Multiple “spot instances” that call back relatively quickly at different privilege

levels

• A small number of “long-haul” backup channels that use different protocols
and domains, and are only used if all other access is lost

Day 3: Privilege Escalation

User Hunting Intro

• After gaining some awareness about the environment and
establishing persistence, much of what you have left to do will be
driven by “User Hunting”

• This is the process of finding which users are logged in to which
computers so that you can attempt to gain access to those machines
and escalate privileges

• You may need to escalate privileges on your host in order to gain the
access necessary to move laterally

• This location of higher-value user sessions is key to escalating
privileges in an Active Directory environment

Background Information

• “Pass-the-hash” is a technique that allows an attacker to use the
NTLM hash of a user instead of their password when authenticating
to other systems in the network

• Local administrators on any Windows computer can retrieve plaintext
passwords or NTLM hashes of logged on users

• There are prevention mechanisms that make this more difficult, but a
determined adversary can bypass most of these protections and
acquire the same or equivalent information

Automating User Hunting

• BloodHound was created to be the most efficient user hunting tool,
and it still is!

• BH performs queries against a graph database to help you find the
shortest path between two objects

• Defenders caught on to this as well, and have since created many
signatures for BH host and network activity

• Updates to Windows have restricted a key API call that made the
original usage possible

Automating User Hunting

• PowerView has a built-in method called “Invoke-UserHunter” that
automates this process by querying the DC for all computer objects
and then enumerates logged on users with Get-NetSession

• Making this many requests and interacting with RPC on every
computer object in the domain is very easy to detect

• Many articles recommend “Invoke-UserHunter –Stealth” which only
interacts with the DC and then a handful of what it determines to be
“high-traffic machines” such as SMB shares

• If time is not an issue, is it much better to perform this analysis
manually and slowly

Manual User Hunting

• To understand how we might manually perform “User Hunting”, let’s
look at what exactly Invoke-UserHunter does
1. Query the domain for all users of the Domain Admins group

2. Query the domain for all machines

3. Performs a Get-NetSession and Get-NetLoggedOn against every host and
returns a list of computers where a DA has a session or is logged on

• We can also look at how InvokeUserHunter -Stealth works
1. Query the domain for all users of the Domain Admins group

2. Uses Get-NetFileServers and Get-NetDomainControllers

3. Performs a Get-NetSession and Get-NetLoggedOn against every host and
returns a list of computers where a DA has a session or is logged on

Manual User Hunting

• Get-NetSession uses the NetSessionEnum RPC API
• Returns active network sessions, for example a file share connection or

mounted home drive

• Get-NetLoggedOn uses the NetWkstaUserEnum RPC API
• More precise than NetSessionEnum

• Returns actively logged on users

• Requires local admin on the target

Manual User Hunting

• Get-NetFileServers is an LDAP query to the DC
• Returns a list of “likely fileservers”

• Looks for all users in the domain with a non-null homedirectory, scriptpath, or
profilepath

• Any server names found in these fields are considered fileservers and
returned

• Get-NetDomainControllers does not make any LDAP queries
• Gets the domain name using the System.DirectoryServices.ActiveDirectory

namespace

• No network traffic generated!

Manual User Hunting

• We can use these same API calls to manually perform the same
analysis in customized environments and introduce separation
between components
• Security tools often flag on a combination of TTPs within a short amount of

time or from a single process or workstation

• Manual user hunting allows us to perform actions from different machines in
different user contexts at different times to minimize correlations

Customized Environments

• Another problem with something like PowerView is that it always
looks for Domain Administrators

• Many environments either don’t use the DA group or neuter it and
have custom delegated groups
• For example, Workstation Admins and Server Admins that have local admin on

the respective computer classifications

• Fortunately for us, customized delegation typically leads to more
mistakes and privilege escalation opportunities – they’re just harder
to find with automated tools

Old Manual User Hunting Steps

1. Get access on a system and consider escalating privileges

2. Define a list of machines
• You could use hostnames to determine this list from DNS over LDAP

enumeration, find “likely fileservers”, or include all computer objects in the
domain

3. Query all users in all groups
• This information will be used for filtering later

4. Find all local admins*
• Requires local admin due to new protections on Windows 10/Server 2016

Old Manual User Hunting Steps

5. Enumerate all sessions on those machines
• NetSessionEnum API if we do not have local administrator on the remote

machine (most of the time)

• NetWkstaUserEnum API to return actively logged on users

6. Look for computers where a member of the target group is logged in

7. If you are a local admin on one of these hosts, move to it and dump
credentials
• If not, pick a group or user that is local admin on one of these hosts and

repeat steps 5-7

Modern User Hunting

• Now that we can’t query local admins across all machines, there are
a couple ways to proceed
• GPOs are a very common way to provision local admins, but this is difficult to

automate because of the varied naming and ability to filter out machines

• In addition, there are some quality-of-life improvements we can
make to BloodHound
• There is a public repo of custom Cypher queries maintained by hausec that

provides many helpful
• Another potentially useful method was presented by Tom Porter at WWHF

2017 where he extends BloodHound by adding the “wave” component to
track new access resulting from each action in the network
• This method requires a forked version of BH that has not been updated in

some time

Local Admin GPOs with PowerView

1. Resolve a target user or group SID
2. Build a list of SIDs that the target is a member of

• TokenGroups attribute stores this information and can be queried from the DC

3. Use Get-DomainGPOLocalGroup
• Enumerates all GPOs with a single LDAP query (Get-NetGPO)
• For each GPO:

• Checks if “Restricted Groups” are set (Looks for a file called GptTmpl.inf in SYSVOL)
• Looks for a Groups.xml file in the SYSVOL share and parses it for groups set that way

• The information from both files contains all GPOs that set any kind of local group
membership in the domain

4. Match the lists from 2 and 3 to find all GPOs the target is applied to
5. Enumerate all OUs/sites and applicable GPO GUIDs
6. Queries for all computers in target OUs

Local Admin GPOs with BloodHound

• SharpHound makes this quite easy:
• SharpHound.exe --CollectionMethod GPOLocalGroup --NoSaveCache --

RandomizeFileNames --EncryptZip --SkipPortScan

• SharpHound must write output to disk so we use the NoSaveCache,
RandomizeFileNames, and EncryptZip flags to make detections more
difficult

• Since we know the DC will be up, we will also use the SkipPortScan
flag

• I’ve found that I often must run this more than once to get all
necessary information, so I typically run it on a couple different
machines at different times

Modern User Hunting - Custom
Cypher Queries

• Adding new Cypher queries to BloodHound is very easy

• The repo from hausec provides many queries and the following
apply to many environments:
• Find all Kerberoastable Users
• Find users that can be AS-REP roasted
• Find machines Domain Users can RDP into
• Find all active Domain Admin sessions
• Find computers that allow unconstrained delegation that AREN’T domain

controllers.
• Find computers with constrained delegation permissions and the

corresponding targets where they allowed to delegate
• Find if any domain user has interesting permissions against a GPO

Modern User Hunting - Stealth Data
Collection

• BloodHound is useless if we don’t feed data into it!

• There are a few different ways to collect data for BloodHound:
• SharpHound.ps1 – PowerShell v2 compatible script that reflectively loads

and executes SharpHound, only an option if version two is available on the
system

• SharpHound.exe – .NET assembly for use with execute-assembly to execute
without writing to disk, all the typical .NET execution considerations apply

• BloodHound.py – Python script based on Impacket that can be run over
SOCKS proxy if you have a user's password or NTLM hash but does not offer
the full functionality of SharpHound, only network considerations apply

BloodHound Collection Execution
OPSEC

• BloodHound.py is a port of SharpHound that currently does not
provide GPO data collection

• Consider retrieving at least one user password or hash and then
running BloodHound.py through a SOCKS proxy to collect most of
the data necessary.

• Since the Python script doesn’t run on an endpoint, consider
introducing significant wait time in between queries (30 minutes or
more)

BloodHound Collection Execution
OPSEC

• Use SharpHound.exe to collect the missing GPO information
• GPO data collection only queries the DC and should be a single query, no

need to add a delay

• Consider trimming down SharpHound to only include the code required for
the GPO collection method to further reduce the likelihood of detection

• SharpHound must write output to disk, so we use the NoSaveCache,
RandomizeFileNames, and EncryptZip flags to make detections more difficult

• Since we know the DC will be up, we can use the SkipPortScan flag

BloodHound LDAP Query OPSEC

• BloodHound can also be detected at the network level, or with event
logging on domain controllers
• Microsoft put out a blog with guidance on performing these detections

https://techcommunity.microsoft.com/t5/microsoft-defender-for-endpoint/hunting-for-reconnaissance-activities-using-ldap-search-filters/ba-p/824726

BloodHound LDAP Query OPSEC

BloodHound LDAP Query OPSEC

Non-BH LDAP Query OPSEC

Recon tool Filter

enum_ad_user_comments (Metasploit)
(&(&(objectCategory=person)(objectClass=user))(|(description=*pass*)(comment=*pass*))
)

enum_ad_computers (Metasploit) (&(objectCategory=computer)(operatingSystem=*server*))

enum_ad_groups (Metasploit) (&(objectClass=group))

enum_ad_managedby_groups (Metasploit)
(&(objectClass=group)(managedBy=*)),
(&(objectClass=group)(managedBy=*)(groupType:1.2.840.113556.1.4.803:=2147483648))

Get-NetComputer (PowerView) (&(sAMAccountType=805306369)(dnshostname=*))

Get-NetUser (Powerview) (&(samAccountType=805306368)(samAccountName=*)

Get-NetUser (Powerview) (&(samAccountType=805306368)(servicePrincipalName=*)

Get-DFSshareV2 (Powerview) (&(objectClass=msDFS-Linkv2))

Get-NetOU (PowerView) (&(objectCategory =organizationalUnit)(name=*))

Get-DomainSearcher (Empire) (samAccountType=805306368)

https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/modules/post/windows/gather/enum_ad_user_comments.rb#L31
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/modules/post/windows/gather/enum_ad_computers.rb#L52
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/modules/post/windows/gather/enum_ad_groups.rb#L49
https://github.com/rapid7/metasploit-framework/blob/76954957c740525cff2db5a60bcf936b4ee06c42/modules/post/windows/gather/enum_ad_managedby_groups.rb#L53
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Recon/PowerView.ps1#L4029
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Recon/PowerView.ps1#L2602
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Recon/PowerView.ps1#L2605
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Recon/PowerView.ps1#L6007
https://github.com/PowerShellMafia/PowerSploit/blob/c7985c9bc31e92bb6243c177d7d1d7e68b6f1816/Recon/PowerView.ps1#L4747
https://github.com/EmpireProject/Empire/blob/24adb55b3404e1d319b33b70f4fd6b7448ca407c/data/module_source/credentials/Invoke-Kerberoast.ps1#L57

BloodHound LDAP Query OPSEC

• There isn’t a whole lot you can to do get around these detections
besides writing your own BloodHound data collector

• The best approach would be to skip checks for sessions, and perform
other checks at different times, from different endpoints, and/or
targeting different domain controllers

LAB: Modifying and Using
SharpHound

Escalation Intro

• Each user on a Windows machine has a defined set of permissions
associated with their account on that specific host

• When a user authenticates, they are granted an access token which
describes the user's privileges and other contextual security
information

• Privileges granted to the current user are not the only factor when
looking to escalate privileges

• One of the other pieces of information in a user’s token is their
integrity level, we will talk specifically about escalating integrity later
in this section

PowerUp / SharpUp

• PowerUp is a PowerShell script that
looks for common misconfigurations
on a system that could lead to privilege
escalation

• It can also automatically exploit these
vulnerabilities

• SharpUp is a C# port of some PowerUp
functionality

• SharpUp hasn’t been touched since
2018, it’s probably not going to change
anytime soon

Seatbelt, Again!

• Seatbelt is great at finding potential privilege escalation
opportunities as well
• Hotfixes, OSInfo, MicrosoftUpdates

• Autoruns, EnvironmentPath, EnvironmentVariables, ScheduledTasks,
Services

• InstalledProducts, InterestingProcesses

• TokenGroups

File Permission Misconfigurations

• Services – Service binaries may be stored in locations that you can
write to, and typically run as SYSTEM

• Scheduled Tasks – Tasks may target a script or executable that we
can modify, and often run as a high privilege user or service account

• Autoruns – The ability to write to a users’ startup directory or the
“all users” startup directory will give us code execution next time
they log in

Unquoted Service Paths

• Each service points to a service binary on disk that will be executed
when the service is started

• If there are spaces in a service path and it is not enclosed in quotes,
we may be able to escalate our privileges

• Example of a potentially vulnerable unquoted service path which
would be secure if it were surrounded in quotes:
• C:\Corp\Secure Software\service.exe

• If we have write access C:\Corp, we can create a file called
Secure.exe which will be execute before the directory is followed by
Windows

AlwaysInstallElevated

• Windows includes a feature to allow low-privilege users to install
.msi files without providing administrator credentials

• The “AlwaysInstallElevated” value at the following registry keys can
be used to find out if this was enabled
• HKLM\SOFTWARE\Policies\Microsoft\Windows\Installer

• HKCU\SOFTWARE\Policies\Microsoft\Windows\Installer

Installation Files

• Sysprep can use hardcoded credentials for system setup and are
sometimes left behind by system administrators

• Answer files for Sysprep are often left behind for unattended installs as
well
• C:\Windows\sysprep\sysprep.xml
• C:\Windows\sysprep\sysprep.inf
• C:\Windows\sysprep.inf
• C:\Windows\Panther\Unattended.xml
• C:\Windows\Panther\Unattend.xml
• C:\Windows\Panther\Unattend\Unattend.xml
• C:\Windows\Panther\Unattend\Unattended.xml
• C:\Windows\System32\Sysprep\unattend.xml
• C:\Windows\System32\Sysprep\Panther\unattend.xml

UAC

• UAC is a feature of Windows that defines token integrity levels for
each user

• We are specifically interested in the Medium and High integrity
levels
• Medium - Normal user
• High - Administrator

• If you are in a medium integrity context, you will be restricted from
certain abilities (such as reading the memory of LSASS) even if you
are a local administrator

• “UAC is not a security feature. It’s a convenience feature that acts as
a forcing function to get software developers to get their act
together.”

UACME

• UACME is a public collection of known UAC bypasses for fully
patched Windows

• The “akagi” executable can be used to perform any of the techniques
by specifying its number

• To minimize potential signatures, it’s better to pick a single method,
put that code in a separate project, and execute it reflectively

https://github.com/hfiref0x/UACME

UACME

https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES/tree/master/Privilege%20Escalation

https://github.com/sbousseaden/EVTX-ATTACK-SAMPLES/tree/master/Privilege%20Escalation

Service Accounts - Utilizing a Potato
Technique

• At BlackHat 2015, James Forshaw presented a talk that led to the
development of RottenPotato, a local privilege escalation from
Windows service accounts to SYSTEM

• This tool influenced the creation of several other tools, including
RottenPotatoNG, Juicy Potato, and SweetPotato

• Juicy Potato and SweetPotato currently work on Windows 10 and
Server 2019, the biggest difference between the two is that one is
unmanaged, and the other is a .NET assembly

https://www.youtube.com/watch?v=QRpfvmMbDMg
https://github.com/foxglovesec/RottenPotato
https://github.com/breenmachine/RottenPotatoNG
https://github.com/ohpe/juicy-potato
https://github.com/CCob/SweetPotato

Types of Hashes

• NTLM – Used for NTLM (non-Kerberos) authentication, passable
• Modified MD4, Hashcat mode 1000

• b4b9b02e6f09a9bd760f388b67351e2b

• NetNTLM – Challenge/response for authentication to services in a
domain
• V1: DES, Hashcat mode 5500

• u4-netntlm::kNS:338d08f8e26de93300000000000000000000000000000000:9526fb8c23a90751cdd619b6cea564742e1e4bf33006ba41:cb8086049ec4736c

• V2: MD5, Hashcat mode 5600
• admin::N46iSNekpT:08ca45b7d7ea58ee:88dcbe4446168966a153a0064958dac6:5c7830315c7830310000000000000b45c67103d07d7b95acd12ffa11230e0000000052920b85f78d013c31cdb3b92f5

d765c783030

• DCC – Used for offline domain user authentication
• V1: MD4 of NTLM and username, Hashcat mode 1100

• 4dd8965d1d476fa0d026722989a6b772:3060147285011

• V2: SHA1 of NTLM and username, Hashcat mode 2100
• $DCC2$10240#tom#e4e938d12fe5974dc42a90120bd9c90f

LSASS Overview

• The Local Security Authority Subsystem Service verifies
authentication attempts and creates access tokens

• Credentials such as plaintext passwords and NTLM hashes are stored
in the LSASS process memory

• SeDebugPrivilege is required to read the memory of LSASS and
retrieve credentials

• Some environments will remove SeDebugPrivilege entirely, making
this technique seemingly impossible
• Fortunately, the SYSTEM account always has this permission

Windows Credentials

• Whenever a user successfully authenticates to a Windows machine,
a logon session is created

• Credentials are more than LSA memory
• Logins from service accounts to perform NetNTLM collection/relay attacks

• “NewCredentials” or “ExplicitLogonEvents” mean plaintext creds may be
somewhere on the host

• PowerShell, Sysmon, and process creation event logs

• DPAPI Credentials

• Keystroke capture, clipboard hooks

Seatbelt Credential Commands

• Opportunities:
• CloudCredentials

• CredEnum, SecPackageCreds,
WindowsVault

• DpapiMasterKeys,
WindowsCredentialFiles

• InterestingFiles, SearchIndex

• InterestingProcesses

• LogonSessions, LogonEvents,
ExplicitLogonEvents

• PowerShellEvents, PowerShellHistory

• ProcessCreationEvents

• SysmonEvents

• WindowsAutoLogon

• Restriction:
• CredGuard

• LSASettings

• NTLMSettings

• SecurityPackages

Bypassing PPL

• There are a few kernel-mode
PPL bypasses floating around,
but they tend to be impractical
or at least difficult to use
operationally

• @itm4n recently released
PPLDump, a user-mode utility
to dump the memory of a PPL
process

https://twitter.com/itm4n
https://github.com/itm4n/PPLdump

Getting Hashes without LSASS

• Accessing the memory of LSASS is often scrutinized heavily or
blocked entirely with PPL/CredGuard

• We can attempt to use InternalMonologue to retrieve NetNTLMv1
hashes by making a local procedure call on the system
• Note: NetNTLMv1 may be disabled in favor of NetNTLMv2, but

InternalMonologue will attempt to perform a downgrade attack (requires
local admin)

• If you can retrieve these hashes, they can be converted to NTLM
hashes with crack.sh!

https://github.com/eladshamir/Internal-Monologue
https://crack.sh/

Local Administrator Password Solution

• LAPS is the official Microsoft product for managing local
administrator passwords in an environment

• Domain admins (and anyone they delegate permissions to) can read
the ms-Mcs-AdmPwd computer object attribute with the GUI or
PowerShell cmdlet included with LAPS

• LAPSToolkit can list LAPS enabled computer objects and the users
who were delegated permissions to read passwords

• SharpLaps is a similar tool written in C#, but it can only retrieve all
LAPS passwords

https://github.com/leoloobeek/LAPSToolkit
https://github.com/swisskyrepo/SharpLAPS

Data Protection API

• DPAPI is a feature available to programmers that provides encrypt
and decrypt functions for arbitrary data

• This allows Windows features and third-party applications to store
data without managing encryption keys

• Many popular applications use DPAPI, including saved file share/RDP
credentials, Chromium cookies and credentials, and KeePass

Data Protection API

• Any data stored in Credential Manager can be retrieved by the
owner without knowing their logon credentials
• Saved RDP and file share creds are the most common findings

• Local administrators can retrieve DPAPI keys stored by any user on
that system

• Domain administrators can retrieve the domain DPAPI backup key
and use it to decrypt data stored by any domain user on any system

SharpDPAPI and SharpChromium

• SharpDPAPI is a C# tool that can be used to retrieve RDP (and other)
credentials stored for the local user

• SharpChrome is a subproject of SharpDPAPI that can retrieve
credentials and cookies from Chrome or the new Edge browser

• SharpChromium is a similar tool that can retrieve credentials from
any Chromium based browser

https://github.com/GhostPack/SharpDPAPI
https://github.com/djhohnstein/SharpChromium

LAB: Accessing Saved Edge
Credentials

ChromeTap

• ChromeTap is a Cobalt Strike BOF that will inject into a currently
running Google Chrome instance and sniff all input from the user

• YARA rules are used to filter this output to find usable credentials

• The repo currently includes rules for Google and Outlook, but the
YARA format allows for easy development of new filters

https://github.com/bats3c/ChromeTools/tree/main/chrometap
https://blog.malwarebytes.com/security-world/technology/2017/09/explained-yara-rules/

NTLM Relaying

• NTLM relay attacks take advantage of environments where SMB signing is
disabled

• The traditional attack vector, using Responder and ntlmrelayx.py requires
a rooted Linux machine on the network to collect credentials

• This attack can be performed with local administrator on a Windows
machine, using a combination of SharpRelay, and InveighZero

• SharpRelay requires a single file to be written to disk, a signed driver used
for packet redirection

• These two tools can be used to listen for traffic and SMB forward packets
through a port forward to allow for relaying over proxychains from an
operator’s machine

https://github.com/lgandx/Responder
https://github.com/SecureAuthCorp/impacket/blob/master/examples/ntlmrelayx.py
https://github.com/pkb1s/SharpRelay
https://github.com/Kevin-Robertson/InveighZero

DHCPv6 Spoofing

• Although less commonly discussed than traditional NTLM relay
attacks, mitm6 with ntlmrelayx.py works very well in situations
where you’ve compromised a machine on a subnet with limited
users

• DCHPv6 spoofing takes advantage of the fact that the default
Windows configuration enables and prefers IPv6 over IPv4

• An attacker will send out router advertisements (RA) and then
announce itself as the DNS server

• This attack also typically requires a rooted Linux machine on the
network, but may be possible using ntlmrelayx.py over proxychains,
SharpRelay, and InveighZero

https://github.com/fox-it/mitm6

NTLM Relay and DHCPv6 Spoof
OPSEC

• Many relay detections are specific to Responder and LLMBR/NBTNS
poisoning

• Disabling the LLMNR and NBTNS features of InveighZero should
evade most detections

• Microsoft does not include the WinDivert driver in their
recommended block list yet, and detections for this file do not seem
very common

https://github.com/basil00/Divert
https://docs.microsoft.com/en-us/windows/security/threat-protection/windows-defender-application-control/microsoft-recommended-driver-block-rules

HTTP NetNTLM Credential Gathering

• The process of harvesting and relaying NetNTLM credentials is very
common on internal network penetration tests

• This approach can be useful, but listening on port 445 (SMB)
typically requires administrative privileges

• Fortunately, credentials can also be collected by hosting an HTTP
server and this service can run on any port

• There are a few caveats to this approach, mainly that the server
must be hosted on a device in the victim’s “Local Intranet Zone”

• This can most easily be achieved by hosting the listener in the same
internal network as the victim using that host’s NetBIOS name

Creating NetNTLM HTTP Listener

• Farmer from MDSec is a .NET assembly that quickly spins up an HTTP
server on a target port for a defined period

• Before using this tool, we need to find a port that is allowed inbound
traffic through the host firewall
• Seatbelt is perfect for this!

• The “WindowsFirewall” command will return information about the default
policy and exceptions

• @NinjaParanoid also recently discovered that port 80 can often be
used without administrative privileges if
“/Temporary_Listen_Addresses/” is added to the specified URL

https://github.com/mdsecactivebreach/Farmer
https://twitter.com/NinjaParanoid/status/1265187842889744384

Forcing Authentication with Outlook

• Once you have an HTTP listener running, all that’s left to do is force
authentication and capture the credential

• Sigwhatever from NCC Group can be used to insert a 1x1px image
into a user’s signature block

• This image is a reference to a file hosted on your HTTP listener

• Once a user’s signature is backdoored, you can either immediately
send an email as that user with the same tool or wait for the
targeted user to send out an email themselves

https://github.com/nccgroup/nccfsas/tree/main/Tools/Sigwhatever

Forcing Authentication with Word

• Word documents can be injected with a new hyperlink which points
to a file on the HTTP server created earlier

• Fertiliser from MDSec can be used to quickly poison existing Word
documents

• They point out that this could be easily expanded to other Office
document types

https://github.com/mdsecactivebreach/Farmer/tree/main/fertiliser

Forcing Authentication with Misc. File
Types

• MDSec also provides a list of multiple other files that can be abused
for this technique
• Shortcuts (.lnk)

• URL files (.url)

• Library files (.library-ms)

• Search Connectors (.searchConnector-ms)

• The Crop tool from their Farmer toolkit can create any of these file
types

https://github.com/mdsecactivebreach/Farmer/tree/main/crop

Forcing Authentication with LNK Files

• One option would be pointing the LNK execution target to our
WebDav server, but this requires the user to open the file

• A better option would be to modify the “icon location” attribute
which is automatically parsed by Explorer when the containing folder
is opened

• Creating a new LNK file with this attribute and placing it in a widely
used file share would return many NetNTLM hashes for offline
cracking
• Better yet, modify an existing LNK file’s icon location to limit suspicion from

defenders!

Group Policy

• Group Policy is a collection of configuration settings that defines user
and computer access in a domain.

• Group Policy Objects (GPO) are applied to Organizational Units (OU)
• An OU is a collection of AD users, groups, and computers

• Each GPO can be linked to zero or more OUs by Domain
Administrators (or anyone else they delegate permissions to)

• Users that can create, link, or modify GPOs can potentially elevate
privileges in an environment

Group Policy

• PowerView can be used to find users that can create new GPOs:
• Get-DomainObjectAcl -SearchBase

"CN=Policies,CN=System,DC=domain,DC=local" -ResolveGUIDs | ? {
$_.ObjectAceType -eq "Group-Policy-Container" }

• ConvertFrom-SID

• Identify users that can manage GpLinks for a given OU
• Get-DomainOU | Get-DomainObjectAcl -ResolveGUIDs | ? {

$_.ObjectAceType -eq "GP-Link" -and $_.ActiveDirectoryRights -match
"WriteProperty" }

• Identify users that can modify a specific GPO
• Get-DomainGPO | Get-DomainObjectAcl -ResolveGuids | ? {

$_.ActiveDirectoryRights -match "WriteProperty|WriteDacl|WriteOwner" -
and $_.SecurityIdentifier -match "<DOMAIN_SID>-[\d]{4,10}" }

Other Group Policy Object
Misconfigurations

• Group Policy Preferences and Startup Scripts
• Gci –recurse \\dc01.domain.local\SYSVOL\domain.local\policies -filter *.xml

| Select-String –pattern “cpass”

• Gci –recurse \\dc01.domain.local\SYSVOL\domain.local | Select-String -
pattern “pass”

• Write Access to Logon scripts in file shares

Access Control

• In addition to GPOs, all principles in AD have a set of access control
entries (ACEs) in a Discretionary Access Control List (DACL)

• A DACL is typically applied to an OU and inherited by all children

• Certain privileges principles may have privileges such as
ForceChangePassword that can be used for escalation

Abuseable Access Control Entries

• AllExtendedRights – Add user to group, reset user password, read
LAPS passwords

• ForceChangePassword – Change a user password

• GenericAll – All ACEs on target object

• GenericWrite – Write ability to an object, add a logon script

• Self – Add yourself to any group

• WriteDACL – Modify a principle’s ACEs

• WriteOwner – Change owner of an object

Day 4: Lateral Movement

Lateral Movement Intro

• The technique you choose for lateral movement depends heavily on
the environment you are in
• What permissions do we have on the remote host? Local admin is required for

most
• What techniques do administrators in the environment use to manage remote

machines?

• .NET tools are great as they can use an existing session, but they
create more artifacts and detection opportunities on the endpoint

• The Impacket toolkit can be useful for developing lateral movement
capabilities

• The downside of using something like Impacket is that you must have
a set of credentials

https://github.com/SecureAuthCorp/impacket/blob/master/examples/ntlmrelayx.py

Lateral Movement Intro

• Seatbelt is once again a valuable tool!

• Many queries can be used to gather information before deciding to
move laterally.
• ScheduledTasks and WMI can be ran against the remote host to find hijacking

opportunities

• WindowsFirewall on the local host and remote host will notify us of any
network traffic restrictions we should know about

• LogonSessions will tell us who is logged into a machine and what logon
session type they have, specifically if they have network or non-network logon
types

Lateral Movement Intro

• In addition, attempt to mount a share on the remote system to ensure
your credentials are valid and have the necessary permissions

• It is important to note that you will typically need to be a local admin
on the remote host to access it remotely

• This information helps us decide what lateral method to use and if it’s
even worth moving to a certain machine

PSExec

• PSExec can be a horrible OR an amazing lateral movement technique!

• Many system administrators are using PSExec in their environment to
manage endpoints
• If you see this, use the same PSExec they are!

• On the flip side, PSExec from sysinternals creates some obvious
indicators
• A new service named PSEXECSVC

• An executable is written to the host with SMB

PSExec

PSExec.py

• PSExec.py from Impacket uses the RemCom service instead of
creating PSEXECSVC

• This service is a known binary, and while not exclusively malicious,
could be marked as bad if not known in the environment

• PSExec.py is probably best avoided unless you write a custom
RemCom alternative or investigate obfuscating the binary

https://github.com/SecureAuthCorp/impacket/blob/master/examples/psexec.py

PSExec.py

SMBExec.py

• SMBExec.py is another commonly used Impacket script for lateral
movement through SMB

• Like PSExec.py, a new service is created, but in this implementation
the binary path is overwritten with the entered command

• Unfortunately, it creates many artifacts on the remote system that are
easily detected

• Each command you run will create a batch script file on the remote
host with your command and then call it with %COMSPEC% /Q /c.

• You could change the script to use something besides cmd.exe, but it
will still be writing files to disk

https://github.com/SecureAuthCorp/impacket/blob/master/examples/smbexec.py

SMBExec.py

SMBExec.py

SCShell

• SCShell is an alternative method of using services to execute code on
a remote host

• Instead of creating a new service, SCShell looks for an existing service,
modifies the binary path name, and starts the service

• The binary path name can be set to cmd.exe with arguments, such as
executing a binary locally, from another host in the environment, or
from the Internet

SCShell

https://www.unh4ck.com/detection-engineering-and-threat-hunting/lateral-movement/detecting-lateral-movement-via-service-configuration-manager

https://www.unh4ck.com/detection-engineering-and-threat-hunting/lateral-movement/detecting-lateral-movement-via-service-configuration-manager

Manipulating Services with WMI

• WMI offers a Win32_Service class in the default namespace that can
be used to create and start services on an endpoint

• There are actually a few different classes that offer the same
functionality, Win32_BaseService can be used to change the footprint
even more

PowerShell Remoting

• WinRM was built as a successor to DCOM for remote operations

• The protocol is a SOAP API that goes across TCP/5985 or TCP/5986

• PowerShell Remoting (among other things) uses WinRM as a
transport

• Not the best form of lateral movement in many scenarios but can be
very valuable if administrators are already using PowerShell Remoting
in the environment!

• WinRM is typically associated with PowerShell execution, and most
tools that perform WinRM execution are using the protocol to execute
PS commands or scripts

Evil-WinRM

• Evil-WinRM is a Ruby tool that can be used to interact with hosts
through a SOCKS proxy

• This tool also has many other convenience features including loading
DLLs and .NET assemblies in memory on the target and built-in
upload/download commands

• This tool uses the WinRM library which utilizes the raw WinRS layer,
totally avoiding PowerShell logging

https://github.com/Hackplayers/evil-winrm
https://github.com/WinRb/WinRM

CrackMapExec WinRM

• CrackMapExec is a post-exploitation tool that “helps automate
assessing the security” of AD networks

• CME uses Impacket for many features, but the WinRM functionality
comes from the pypsrp library

• The execute_cmd function of this library also uses the raw WinRS
layer

https://github.com/byt3bl33d3r/CrackMapExec
https://github.com/jborean93/pypsrp

SharpWSManWinRM and
WSManWinRM.vbs

• The WSMan-WinRM project includes several examples, including a C#
and even VBS POC for execute commands on a remote host using raw
WinRS

• These are the only examples which can be used with currently
credentials in memory, and do not require a proxy into the
environment

https://github.com/bohops/WSMan-WinRM

PowerShell Remoting

LAB: .NET WinRS Lateral
Movement

Remote Desktop Protocol

• RDP can be used to move laterally, and can be used without creating a
remote desktop session with SharpRDP

• There isn’t an Impacket RDP execution script, but you could use
rdesktop or even SharpRDP over proxychains

• SharpRDP does this by writing to a specific registry key which can be
heavily monitored

https://github.com/0xthirteen/SharpRDP

Remote Desktop Protocol

DCOM Execution

• Distributed COM is a way for software running on an endpoint to
expose functionality over the network using RPC

• Code execution using DCOM will occur in the context of the process
hosting the exposed interface

• This MMC COM object provides a method called
ExecuteShellCommand that we can take advantage of

• A service on the host will spawn the executable
• svchost.exe > EXE OR svchost.exe > dllhost.exe > DLL

• An alternative is the ShellBrowserWindow method which makes
explorer.exe the parent process

DCOMExec.py

• DCOMExec.py offers
three different methods
of code execution

• Each uses MMC DCOM
methods, making them
easier to signature

DCOMExec.py

DCOM Execution in .NET

• The SharpSploit library provides great example of remote code
execution in .NET and includes multiple examples of various DCOM
execution methods

• This implementation can take plaintext credentials or the current user
session
• There is also a “pth” branch of SharpSploit that can use a hash!

• SharpSploit has four DCOM examples, including an ExcelDDE option
that is different than Impacket’s method but only works on older
versions of Office

https://github.com/cobbr/SharpSploit

LAB: .NET DCOM Lateral
Movement

DCOM Execution

Excel XLM Macros

• Excel features an alternative to VBA macros called Excel 4.0 or XLM
macros

• This language has historically been more difficult for AV solutions to
scan, and did not integrate with AMSI until recently

• XLM can be used to make Windows API calls and can be accessed with
a DCOM interface called “ExecuteExcel4Macro”

• The C# tool SharpExcel4-DCOM from rvrsh3ll combines these two
features to execute shellcode on a remote host

https://github.com/rvrsh3ll/SharpExcel4-DCOM
https://twitter.com/424f424

Excel XLM Macros

https://outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/

https://outflank.nl/blog/2018/10/06/old-school-evil-excel-4-0-macros-xlm/

Excel XLM Macros

Type ComType = Type.GetTypeFromProgID("Excel.Application", computername);
object RemoteComObject = Activator.CreateInstance(ComType);

var memaddr = Convert.ToDouble(RemoteComObject.GetType().InvokeMember("ExecuteExcel4Macro",
BindingFlags.InvokeMethod, null, RemoteComObject, new object[] { "CALL(\"Kernel32\",\"VirtualAlloc\",\"JJJJJ\","
+ lpAddress + "," + shellcode.Length + ",4096,64)" }));

int count = 0;
foreach (var mybyte in shellcode)

{

var charbyte = String.Format("CHAR({0})", mybyte);

var ret = RemoteComObject.GetType().InvokeMember("ExecuteExcel4Macro", BindingFlags.InvokeMethod, null,
RemoteComObject, new object[] { "CALL(\"Kernel32\",\"WriteProcessMemory\",\"JJJCJJ\",-1, " + (memaddr +
count) + "," + charbyte + ", 1, 0)"});

count = count + 1;

}

RemoteComObject.GetType().InvokeMember("ExecuteExcel4Macro", BindingFlags.InvokeMethod, null, RemoteComObject,
new object[] { "CALL(\"Kernel32\",\"CreateThread\",\"JJJJJJJ\",0, 0, " + memaddr + ", 0, 0, 0)"});

Excel4DCOM OPSEC

• Publicly available tools like SharpExcel4-DCOM and Invoke-
Excel4DCOM.ps1 both make a sequence of suspicious API calls
• VirtualAlloc, WriteProcessMemory, and CreateThread

• Shellcode executed this way will reside in the Excel process, so
monitoring for abnormal process generating network traffic could be
effective

• All these techniques use COM to execute code so they will have the
DCOMLaunch service as a parent process
• Additionally, remotely instantiated DCOM objects will have a socket listening

on a high port
• Office applications will have the “-Embedding” or “/automation -Embedding“

command line flags

WMI Execution

• Several WMI classes can be used to execute code in one way or
another, but all of them require some file on disk to be called

• Typically, cmd.exe is used, but it would be better to call our payload
directly by hosting it on a file share

• Another popular combination is msbuild.exe with a project xml
hosted on a file share
• Popular != Stealthy

WMIExec.py

• WMIExec.py is another Impacket script that can be used to execute
commands using the Win32_Process WMI class

• All processes will have wmiprvse.exe as a parent

• This script also has some OPSEC issues
• Still uses cmd.exe /Q /c

• Writes to disk twice for each command! Once for input command and once
for output command

https://github.com/SecureAuthCorp/impacket/blob/master/examples/wmiexec.py

WMIExec.py

WMIExec.py

WMI Execution in .NET

• The SharpSploit library also provides multiple examples of various
WMI execution methods

• This implementation can take plaintext credentials or the current user
session

• There is also a “pth” branch of SharpSploit that can use a hash instead
of plaintext creds

• The WMIExecute method implements many of the improvements we
discussed for WMIExec.py

https://github.com/cobbr/SharpSploit

WMI Execution in .NET

LAB: .NET WMI Lateral
Movement

WMI Execution in .NET

DLL Hijacking

• DLL hijacking is a powerful persistence technique, but it can also be
used for lateral movement by utilizing any remote file-write method
• SMB is probably the easiest

• We’ve already learned how to perform hijacking using Koppeling

• MDSec wrote a blog last year about using WMI and DCOM to invoke
nonexistent DLLs on a remote system

https://www.mdsec.co.uk/2020/10/i-live-to-move-it-windows-lateral-movement-part-3-dll-hijacking/

DLL Hijacking with WMI

• Whenever a WMI connection is initiated on a remote host, the
wmiprvse.exe executable is spawned to handle the connection

• You can make any simple query, or even just authenticate to the remote
host to start this process
• Valid credentials are not necessary to trigger this process!

• Many nonexistent DLLs will be called by the WMI provider host

• Each of these will be running as “NETWORK SERVICE” but we already know
that this can be translated to SYSTEM access with SweetPotato

DLL Hijacking with DCOM

• The process for DLL hijacking with DCOM is very similar to that of
WMI, but there are quite a few more possibilities in this scenario

• Depending on the COM object you instantiate, different applications
will execute on the system which call different nonexistent DLLs

Remote DLL Hijacking OPSEC

• @Cyb3rWard0g made a great
infographic describing the
associated event IDs

• Playing with the timing of these
events and the source of each
component would make
detections much more difficult

• Execution of DCOM would require
additional detection methods, as
the executable and DLL loads
would be more dynamic

https://twitter.com/Cyb3rWard0g

Remote DLL Hijacking OPSEC

• The publicly available Sigma and
Elastic rules can detect more
examples, but they are limited to
specific DLLs mentioned in the
MDSec blog post

• Like hijacking for persistence,
using undocumented DLLs for this
technique is the key to not being
detected

Low Privilege Lateral Movement

• If you need to move to a host but don’t have a local admin on that
machine, you’ll have to get creative with your execution method

• Look for file shares where you can backdoor commonly opened files
• Adding macros to frequently opened documents, especially those that already

have embedded scripts can be very useful
• In addition, backdooring or creating new LNK files in shared directories,

combined with a traditional NTLM relay or even Farmer-style hash harvest can
be useful as well

• Inspect other applications running on Windows servers for known
vulnerabilities that can be used to execute code on those machines

• If all else fails, consider going back to domain priv-esc, looking for
stored credentials on the host or open file shares

Blogs and Future Resources

• New offensive and defensive capabilities come out daily, use the
following blogs and Discord servers to keep up with the latest
• https://www.mdsec.co.uk/knowledge-centre/insights/
• https://posts.specterops.io/
• https://discord.gg/mTvPzuT - RedTeamSec
• https://discord.gg/QFekvYn - Hack the Planet
• https://discord.gg/sEkn3aa - Porchetta Industries

• Twitter is another amazing place to keep up with the latest
techniques, but there are too many great accounts to list them all
here!
• I highly recommend following the creators of any tools you use, as well as

those active in these Discord servers

https://www.mdsec.co.uk/knowledge-centre/insights/
https://posts.specterops.io/
https://discord.gg/mTvPzuT
https://discord.gg/QFekvYn
https://discord.gg/sEkn3aa

