SYN'&RESS®

4 FREE BOOKLETS JUEKE

YOUR SOLUTIONS MEMBERSHIP /

Asterisk
Hacking

Turn Your Phone System Into a Samurai Sword—for Attack or Defense
« Asterisk Live CD (SLAST) Contains All the Tools in the Book Ready to Boot!

- Understand the Threats to Asterisk: Denial-of-Service, VoIP Service Disruption, Call
Hijacking and Interception, H.323-Specific Attacks, and SIP-Specific Attacks

- Complete Coverage of Interfacing Asterisk with Hardware: Security Cameras,
Electronic Door Locks, and Card Readers

Ben Jackson aka Black Ratchet
Champ Clark Il aka Da Beave

Johnny Long Technical Editor
Larry Chaffin Technical Editor

VISIT US AT

wWww.syngress.com

Syngress is committed to publishing high-quality books for IT Professionals and deliv-
ering those books in media and formats that fit the demands of our customers. We are
also committed to extending the utility of the book you purchase via additional mate-
rials available from our Web site.

SOLUTIONS WEB SITE

To register your book, visit www.syngress.com/solutions. Once registered, you can access
our solutions@syngress.com Web pages. There you may find an assortment of value-
added features such as free e-books related to the topic of this book, URLs of related
Web sites, FAQs from the book, corrections, and any updates from the author(s).

ULTIMATE CDs

Our Ultimate CD product line offers our readers budget-conscious compilations of some
of our best-selling backlist titles in Adobe PDF form. These CDs are the perfect way to
extend your reference library on key topics pertaining to your area of expertise,
including Cisco Engineering, Microsoft Windows System Administration, CyberCrime
Investigation, Open Source Security, and Firewall Configuration, to name a few.

DOWNLOADABLE E-BOOKS

For readers who can’t wait for hard copy, we offer most of our titles in downloadable
Adobe PDF form. These e-books are often available weeks before hard copies, and are
priced affordably.

SYNGRESS OUTLET
Our outlet store at syngress.com features overstocked, out-of-print, or slightly hurt
books at significant savings.

SITE LICENSING

Syngress has a well-established program for site licensing our e-books onto servers in
corporations, educational institutions, and large organizations. Contact us at sales@
syngress.com for more information.

CUSTOM PUBLISHING

Many organizations welcome the ability to combine parts of multiple Syngress books, as
well as their own content, into a single volume for their own internal use. Contact us at
sales@syngress.com for more information.

SYNGRESS®

SYN'ERESS®

Asteris
Hackin

Toolkit and LiveCD

Benjamin Jackson
Champ Clark 1l
Larry Chaffin and Johnny Long Technical Editors

Elsevier, Inc., the author(s), and any person or firm involved in the writing, editing, or production (collectively
“Makers”) of this book (“the Work™) do not guarantee or warrant the results to be obtained from the Work.

There is no guarantee of any kind, expressed or implied, regarding the Work or its contents. The Work is sold AS IS
and WITHOUT WARRANTY.You may have other legal rights, which vary from state to state.

In no event will Makers be liable to you for damages, including any loss of profits, lost savings, or other incidental or
consequential damages arising out from the Work or its contents. Because some states do not allow the exclusion or
limitation of liability for consequential or incidental damages, the above limitation may not apply to you.

You should always use reasonable care, including backup and other appropriate precautions, when working with
computers, networks, data, and files.

Syngress Media®, Syngress®, “Career Advancement Through Skill Enhancement®,” “Ask the Author UPDATE®,”
and “Hack Proofing®,” are registered trademarks of Elsevier, Inc. “Syngress: The Definition of a Serious Security
Library” ™, “Mission Critical™,” and “The Only Way to Stop a Hacker is to Think Like One™?” are trademarks of
Elsevier, Inc. Brands and product names mentioned in this book are trademarks or service marks of their respective
companies.

KEY SERIAL NUMBER
001 HJIRTCV764
002 POY873D5FG
003 829KMSNJH2
004 BAL923457U
005 CVPLQ6WQ23
006 VBP965T5T5
007 HJJJ863WD3E
008 2987GVTWMK
009 629MP5SDJ T
010 IMWQ295T6T

PUBLISHED BY
Syngress Publishing, Inc.
Elsevier, Inc.

30 Corporate Drive
Burlington, MA 01803

Asterisk Hacking

Copyright © 2007 by Elsevier, Inc. All rights reserved. Printed in the United States of America. Except as permitted
under the Copyright Act of 1976, no part of this publication may be reproduced or distributed in any form or by
any means, or stored in a database or retrieval system, without the prior written permission of the publisher, with
the exception that the program listings may be entered, stored, and executed in a computer system, but they may
not be reproduced for publication.

Printed in the United States of America
1234567890
ISBN: 978-1-59749-151-8

Publisher: Amorette Pedersen Project Manager: Anne B. McGee
Acquisitions Editor: Andrew Williams Page Layout and Art: Patricia Lupien
Technical Editors: Johnny Long and Larry Chaftin Copy Editor: Michael McGee
Cover Designer: Michael Kavish Indexer: Richard Carlson

For information on rights, translations, and bulk sales, contact Matt Pedersen, Commercial Sales Director and

Rights, at Syngress Publishing; email m.pedersen@elsevier.com.

Co-Authors

Benjamin Jackson (Black Ratchet) is a jack of all trades computer guy
from New Bedford, MA. Ben holds a BS in Computer Engineering
Technology from Northeastern University and spends his days developing
applications and doing database administration for the Massachusetts Cancer
Registry. By night, he toys with Asterisk, develops security tools, and gener-
ally breaks things.

Ben is a co-founder of Mayhemic Labs, an independent security
research team, and has lectured at various hacker and professional confer-
ences regarding VoIP and Open Source Software. He has also contributed
code to the Asterisk source tree and other open source projects. One of the
last true phone phreaks, he also enjoys playing on the Public Switched
Telephone Network and spends far too much time making long distance
phone calls to far flung places in the world.

Champ Clark III (Da Beave) has been involved in the technology
industry for 15 years. Champ is currently employed with Vistech
Communications, Inc. providing network support and applications develop-
ment. Champ is also employed with Softwink, Inc. which specialized in
security monitoring for the financial industry. Champ is one of the
founding members of “Telephreak”, an Asterisk hobbyist group, and the
Deathrow OpenVMS cluster. When he’s not ripping out code or writing
papers, he enjoys playing music and traveling.

Vi

Technical Editors

Larry Chaffin is the CEO/Chairman of Pluto Networks, a worldwide
network consulting company specializing in VoIP, WLAN, and security. An
accomplished author, he contributed to Syngress’s Managing Cisco Secure
Networks (ISBN: 1931836566); Skype Me! (ISBN: 1597490326); Practical
1oIP Security (ISBN: 1597490601); Configuring Check Point NGX IV'PN-
1/FireWall-1 (ISBN: 1597490318); Configuring Juniper Networks NetScreen
and SSG Firewalls (ISBN: 1597491187); and Essential Computer Security:
Everyone’s Guide to Email, Internet, and Wireless Security (ISBN: 1597491144).
He is the author of Building a VoIP Network with Nortel’s MS5100 (ISBN:
1597490784), and he has coauthored or ghostwritten 11 other technology
books on VoIP, WLAN, security, and optical technologies.

Larry has over 29 vendor certifications from companies such as Nortel,
Cisco Avaya, Juniper, PMI, isc2, Microsoft, IBM, VMware, and HP. Larry has
been a principal architect designing VolP, security, WLAN, and optical net-
works in 22 countries for many Fortune 100 companies. He is viewed by
his peers as one of the most well respected experts in the field of VoIP and
security in the world. Larry has spent countless hours teaching and con-
ducting seminars/workshops around the world in the field of voice/VoIP,
security, and wireless networks. Larry is currently working on a follow-up
to Building a VoIP Network with Nortel’s MCS 5100 as well as new books on
Cisco VoIP networks, practical VoIP case studies, and WAN acceleration
with Riverbed.

Johnny Long Who’s Johnny Long? Johnny is a Christian by grace, a family
guy by choice, a professional hacker by trade, a pirate by blood, a ninja in
training, a security researcher and author. His home on the web is
http://johnny.ithackstuft.com.

Contents

Chapter 1 What Is Asterisk and Why Do You Need It?... 1

Introduction 2
What Is Asterisk? 3
What Isa PBX? 3
What Is VoIP? o 4
The History of Asterisk 5
Asterisk Today 6
What Can Asterisk Do forMe? 7
Asterisk as a Private Branch Exchange 7
Advantages over Traditional PBXes 8
Features and Uses 10
Asterisk as a VoIP Gateway 12
The Possibilities of VoIP 13
Asterisk as a New Dimension for Your Applications15
Who’s Using Asterisk? 16
Summary 17
Solutions Fast Track 18
Links to Sites 19
Frequently Asked Questions 20
Chapter 2 Setting Up Asterisk. 21
Introduction 22
Choosing Your Hardware 22
Picking the Right Server 22
Processor Speed 23

RAM .. 23
Storage Space L 23
Picking the Right Phones 24
Soft Phones L. 24

Hard Phones 25
Configuring Your Network 28
Installing Asterisk L 30
Using an Asterisk Live CD o ... 30
SLAST .o 31

vii

viii Contents

Installing Asterisk froma CD 36
Getting trixboxX 36
Booting trixbox 37
Configuring trixbox 40
trixbox’s Web Interface 41

Installing Asterisk from Scratch 45
The Four Horsemen 46
Asterisk Dependencies 46
Getting the Code 47
Gentlemen, Start Your Compilers! 47

Installing Asterisk with Binaries 52

Installing Asterisk on Windows 52
Getting AsteriskWin32, 53
Installing AsteriskWin32 53
Starting AsteriskWin32 57

Starting and Using Asterisk 58

Starting Asterisk 58

Restarting and Stopping Asterisk 59

Updating Configuration Changes 60

Checklist 60
Summary 61
Solutions Fast Track 61
Links to Sites 62
Frequently Asked Questions 63
Chapter 3 Configuring Asterisk. 65
Introduction 66
Figuring Out the Files 66
ConfiguringYour Dial Plan 69

Contexts, Extensions, and Variables! Oh My! 70
Contexts 70
Extensions 70
Variables 73
Tying It All Together 74

Configuring extensions.ael 82
Using AEL to Write Your Extensions 82

Configuring Your Connections 85

Connections, Connections, Connections! 85

Configuration File Conventions 86

Contents ix

Configuration File Common Options 87
Users, Peers,and Friends 87
Allowing and Disallowing Codecs 87
Including External Files 88
Configuring SIP Connections 89
General SIP Settings 89
Connecting to an SIP Server 91
Setting Up an SIP Server 93
Configuring IAX2 Connections 94
Connecting to an IAX2 Server 94
Setting Up an IAX2 Server 95
Configuring Zapata Connections 96
Setting Up a Wireline Connection 96
Configuring Voice Mail 98
Configuring Voice-Mail Settings 99
Configuring Mailboxes 99
Leaving and Retrieving Messages 100
Provisioning Users 101
DecisionTime 102
Configuring Phone Connections 102
Configuring Extensions 102
Configuring Voice Mail 103
Finishing Upo 103
Configuring Music on Hold, Queues, and Conferences . ..103
Configuring Musicon Hold 103
Music on Hold Classes 104
Music on Holdand MP3s 105
Configuring Call Queues 105
Setting Up a Call Queue 105
Getting Fancy with Call Queues and Agents 106
Configuring MeetMe 108

Its All about Timing 108
Setting Up a Conference 109
Checklist 109
Summary 110
Solutions Fast Track 111
Links to Sites 113

Frequently Asked Questions 113

Contents

Chapter 4 Writing Applications with Asterisk 115
Introduction 116
Calling Programs from within the Dial Plan 116

Calling External Applications from the Dial Plan 116
Example: The World’s Largest Caller ID Display117
Writing Programs within the Dial Plan 120
Using the Asterisk Gateway Interface 120
AGI Basics 120
STDIN, STDOUT, and STDERR 121
Commands and Return Codes 121

A Simple Program Lo L 123
Interacting with the Caller 126
Input to the Seript L. 126
Output from the Script 127
Setting Up Your Scriptto Run 129

Using Third-Party AGI Libraries 130
Asteriskc:AGL ..o o 130

A Simple Program, Simplified with Asterisk::AGI . . .130
Example: IMAP by Phone 131
PhpAGIL ... 134

A Simple Program, Simplified with phpAGI 134
Example: Server Checker 135

Using Fast, Dead, and Extended AGIs 138
FastAGL 138
Setting Up a FastAGI Server with Asterisk::FastAGI 138
DeadAGIL 140
EAGI ... 141
Checklist 141
Summary 142
Solutions Fast Track 142
Links to Sites 144

Frequently Asked Questions 145

Contents xi
Chapter 5 Understanding and

Taking Advantage of VoIP Protocols................ 147
Introduction 148
Your Voice to Data 148
Making Your Voice Smaller 149
Session Initiation Protocol 150
Intra-Asterisk eXchange IAX2) 154
Getting in the Thick of IAX2 155
Capturing the VoIP Data 156
Using Wireshark 156

Extracting the VoIP Data
with Wireshark (Method # 1) 158

Extracting the VoIP Data
with Wireshark (Method #2) 162
Getting VoIP Data by ARP Poisoning 165
Maninthe Middle 169
Using Ettercap to ARP Poison 170
Summary 179
Solutions Fast Track 179
Frequently Asked Questions 181
Chapter 6 Asterisk Hardware Ninjutsu.............. 183
Introduction 184
Serial 184
Serial “One-Way” AGIL 184
Dual Serial Communications 190
MoOtION . .« ot 196
The Idea behind the Code 198
Modems 203
Fun with Dialing 206
War Dialing 206
iWar with VoIPo oo 218
All Modems Are Not Alike 220
Legalitiesand Tipso 220
WhatYou Can Find 221
Summary 222
Solutions Fast Track 222
Frequently Asked Questions 224

xii Contents

Chapter 7 Threats to VolP Communications Systems . . 225

Introduction 226
Denial-of-Service or VoIP Service Disruption 226
Call Hijacking and Interception 233

ARP Spoofing 236
H.323-Specific Attacks 241
SIP-Specific Attacks 242
Summary 243

Chapter 1

What Is

Asterisk and Why

Do You Need It?

Solutions in this chapter:

m What Is Asterisk?
m What Can Asterisk Do for Me?
m Who's Using Asterisk?

M Summary
M Solutions Fast Track

M Frequently Asked Questions

2 Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

Introduction

For years, telephone networks were run by large companies spending billions of dol-
lars to set up systems that connected to one another over wires, radios, and
microwaves. Large machines, filling entire buildings, allowed people to talk to each
other over great distances. As the computer revolution progressed, the machines got
smaller and more efticient, but still they were almost exclusively the domain of a
small sect of companies.

Enter Asterisk... Asterisk has taken the power of the open-source software move-
ment and brought it to the land of telephony. Much like how open source has
proven that users don’t need to rely on commercial companies for software, Asterisk
has proven that users don’t need to rely on commercial telephone companies for
telephone systems. Open-source software allows you to be free of vendor lock-in,
save money on support, use open standards, and change the software to suit your
unique problems if the need arises. Looking at the “traditional” Private Branch
Exchange (PBX) market, vendor lock-in is all too common, vendors charge exorbi-
tant fees for support, and all too often the PBX you buy is a cookie-cutter solution
with little to no customization options. It is common for people to think that their
PBX is a black box that handles telephone calls. In reality, it is a bunch of computing
equipment running a highly specialized software package. Open-source software can
replace that customized software just as easily as it can replace any other software.

Asterisk is a veritable Swiss Army knife of telephony and Voice over Internet
Protocol (VoIP). Designed to be a PBX replacement, Asterisk has grown to be all
that and more. It boasts the ability to store voice mail, host conference calls, handle
music on hold, and talk to an array of telephone equipment. It is also scalable, able to
handle everything from a small five-telephone office to a large enterprise with mul-
tiple locations.

Thanks to Asterisk and VoIP, it is possible to run a telephone company out of a
basement, handling telephone calls for people within a neighborhood, a city, or a
country. Doing this only a few years ago would have required buying a large
building, setting up large racks of equipment, and taking out a second mortgage. But
today, everyone is jumping on the Asterisk bandwagon: hobbyists, telephone compa-
nies, universities, and small businesses, just to name a few. But what exactly is
Asterisk? And what can it do? Let’s find out.

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 3

What Is Asterisk?

Asterisk is an open-source PBX that has VoIP capabilities. However, this hardly

explains what Asterisk is or what it does. So let’s delve a little more deeply into
PBXes, VoIP, and Asterisk.

What Is a PBX?

Asterisk, first and foremost, is a Private Branch Exchange. A PBX is a piece of equip-
ment that handles telephone switching owned by a private business, rather than a
telephone company. Initially in the United States, PBXes were for medium-to-large
businesses that would create a lot of telephone traftic starting from, and terminating
within, the same location. Rather than having that traftic tie up the switch that han-
dles telephones for the rest of the area, PBXes were designed to be small switches to
handle this traffic. Thus, the PBX would keep the internal traffic internal, and also
handle telephone calls to and from the rest of the telephone network.

In the United States, thanks in part to the Bell System breakup of 1984, and to
the computer revolution shrinking PBXes from the size of a couch to the size of a
briefcase, PBXes flooded the market. Hundreds of companies started making PBXes
and thousands wanted them. New features started coming into their own: voice mail,
interactive menus, call waiting, caller ID, three-way calling, music on hold, and so on.
The telecommunications industry grew by leaps and bounds, and the PBX industry
kept up. However, with every silver lining comes a cloud. With the proliferation of
digital telephone systems, each vendor had a specific set of phones you could use
with their PBX. Company X’s phones would often not work with Company Y’s PBX.
Plus, as with almost every technology, all too often a vendor would come in, set up
the telephones, and never be heard from again, leaving the customer to deal with the
system when it didn’t work.

PBXes are one of the key pieces of hardware in businesses today, ranging from
small devices the size of shoeboxes that handle a few lines to the telephone network
and five phones in a small office, to a large system that interconnects ten offices
across a campus of buildings. However, today’s PBXes, when boiled down, all do the
same things as their predecessors: route and handle telephone calls, and keep unnec-
essary traffic oft the public switched telephone network.

Asterisk is a complete PBX. It implements all the major features of most com-
mercially available PBXes. It also implements, for free, features that often cost a lot in

www.syngress.com

4 Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

a commercial installation: Conference calling, Direct Inward System Access, Call
Parking, and Call Queues, just to name a few.

Out of the box, Asterisk can be configured to replicate your current PBX install.
There have been numerous installs where a company’s existing PBX is taken down
on a Friday, an Asterisk server is installed and configured on Saturday, wired and
tested on Sunday, and is handling calls on Monday. The users only notice a different
voice when they grab their voice mail.

What Is VolP?

Voice over Internet Protocol is one of the new buzzwords of the media today. While
VoIP has been around in one incarnation or another since the 1970s, the market and
technology has exploded over the past three years. Companies have sprouted up
selling VoIP services and VoIP software, and instant messaging services are starting to
include VoIP features.

But what exactly is VoIP? VoIP is a method to carry a two-way conversation over
an Internet Protocol-based network. The person using Vonage to talk to her
neighbor down the street? That’s VoIP. The person in the United States using
Windows Messenger to talk to his extended family in Portugal? That’s VoIP. The 13-
year-old playing Splinter Cell on his Xbox and talking to his teammates about how
they slaughtered the other team? That’s VoIP, too.

VoIP has exploded for a number of reasons—a major one being its ability to use
an existing data network’s excess capacity for voice calls, which allows these calls to
be completed at little to no cost. A normal call that uses the standard telephone net-
work compression coder—decoder algorithm (codec), p-Law, will take up 64 kilobits
per second of bandwidth. However, with efficient compression schemes, that can be
dropped dramatically. In Table 1.1, we list certain commonly supported codecs, and
how many simultaneous calls a T1 can handle when using that codec.

Table 1.1 VolP Codec Comparison Chart

Simultaneous Calls

Codec Speed over a T1 Link (1.5 Mbps) Notes

p-Law 64 Kbps 24

G.723.1 5.3/6.3 Kbps 289/243

G.726 16/24/32/40 Kbps 96/64/48/38

G.729 8 Kbps 192 Requires license

Continued

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 5

Table 1.1 continued VolP Codec Comparison Chart

Simultaneous Calls

Codec Speed over a T1 Link (1.5 Mbps) Notes

GSM 13 Kbps 118

iLBC 15 Kbps 102

LPC-10 2.5 Kbps 614

Speex 2.15 to 44.2 Kbps 714 to 34 “Open” codec

The savings of bandwidth comes at a cost though; the more compression placed
on a conversation, the more the voice quality degrades. When using LPC10 (one of
the most efficient compression codecs), the conversation, while intelligible, often
sounds like two whales making mating calls. If you have no other alternative, it will
be sufficient, but it’s not a good choice for a business environment.

The other major benefit of VoIP is the mobility. Phone calls can be sent and
received wherever a data connection is available, whether it is a residential broadband
connection, the office network, or a WiFi connection at a local drinking establish-
ment. This mobility has a many benefits: a company’s sales force can be scattered
across the country yet have a phone in their home office that is an extension of the
company’s PBX. They can enjoy a voice mail box, an extension oft the company’s
main number, and all the other features as if they all were in the same building.

[t 1s important to make the distinction that VoIP is not exclusive to Asterisk.
There is a growing market of software-based PBXes that tout VoIP as a major fea-
ture. Some traditional PBXes are starting to include VoIP features in them, and local
phone companies are offering VoIP packages for customers. As a result, the advan-
tages of VoIP have begun to catch the attention of the entire telecom industry.

The History of Asterisk

Mark Spencer, the creator of Asterisk, has created numerous popular open-source
tools including GAIM, the open-source AOL Instant Messaging client that is
arguably the most popular IM client for Linux, 12tpd, the L2TP tunneling protocol
daemon, and the Cheops Network User Interface, a network service manager. In
1999, Mark had a problem though. He wanted to buy a PBX for his company so
they could have voice mail, call other oftices without paying for the telephone call,
and do all the other things one expects from a PBX system. However, upon
researching his options, he realized all the commercial systems cost an arm and a leg.

www.syngress.com

6 Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

Undaunted, he did what every good hacker would: he set to writing a PBX suitable
to his needs.

On December 5, 1999, Asterisk 0.1.0 was released. As the versions progressed,
more and more features were added by developers, gathering a following of users,
conventions, and everything short of groupies along the way. Asterisk’s first major
milestone was reached on September 23, 2004, when Mark Spencer released Asterisk
1.0 at the first Astricon, the official Asterisk user and developer’s conference. Asterisk
1.0 was the first stable, open-source, VoIP-capable PBX on the market. Boasting an
impressive set of features at the time, it included a complete voice conferencing
system, voice mail, an impressive ability to interface into analog equipment, and the
ability to talk to three different VoIP protocols reliably.

Development didn’t stop there though. Asterisk continued to grow. On
November 17, 2005, Asterisk 1.2 was released, which addressed over 3000 code revi-
sions, included major improvements to the core, more VoIP protocols, and better
scalability. Also, this release introduced Digium’s DUND1 (Distributed Universal
Number Discovery) protocol, a peer-to-peer number discovery system designed to
simplify interconnecting Asterisk servers across, and in between, enterprises.

The latest release of Asterisk, Asterisk 1.4, was released December 27, 2006. This
release featured major changes in the configuration process, optimized applications,
simplified the global configuration, and updated the Call Detail Records for billing
purposes. Also new in this version was better hardware support, an improved ability
to interface with legacy equipment, and better interfacing with Cisco’s SCCP VoIP
protocol. Also, as with any software project, this update addressed the bugs and issues
found since the 1.2 release.

Asterisk Today

Today, Asterisk is one of the most popular software-based VoIP PBXes running on
multiple operating systems. Asterisk handles most common PBX features and incor-
porates a lot more to boot. It works with numerous VoIP protocols and supports
many pieces of hardware that interface with the telephone network. Asterisk is cur-
rently at the forefront of the much talked-about “VoIP revolution” due to its low
cost, open-source nature, and its vast capabilities.

The company Mark Spencer wrote his PBX for is now known as Digium, which
has become the driving force behind Asterisk development. Digium sells hardware
for interfacing computers into analog telephone lines and Primary Rate Interface
(PRI) lines. Digium also offers Asterisk Business Edition, an Enterprise-ready version

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 7

of Asterisk, which includes commercial text-to-speech and speech recognition
product capabilities, and has gone through stress testing, simulating hundreds of thou-
sands of simultaneous phone calls. Finally, Digium ofters consulting for Asterisk
installations and maintenance, and trains people for its Digium Certified Asterisk
Professional certification.

Notes from the Underground...

Digi-wha?
Many companies spend millions of dollars with marketing firms to create a
new name for their company. When Bell Atlantic and General Telephone and
Electric (GTE) merged in 2000, they thought long and hard about their new
name, and when they revealed it, millions scratched their head and said
“What is a Verizon?” Thankfully, not all companies have this problem.
Digium (Di-jee-um) is the company that maintains most of the Asterisk
source tree, and tries to show how Asterisk can provide solutions to the gen-
eral public. According to legend, Digium got its curious sounding name when
one of its employees pronounced paradigm as “par-a-did-jem.” This became a
meme, and “par-a-did-jem” evolved into “did-jem,” which then further
evolved into “Digium.” Just think how much money Fortune 500 companies
pay advertising executives to come up with a new name when companies
merge.

What Can Asterisk Do for Me?

Asterisk is so multifaceted it’s hard to come up with a general catchall answer for
everyone asking what Asterisk can do for them. When a friend and I tried to think
up an answer that would fit this requirement, the closest thing we could come up
with was “Asterisk will do everything except your dishes, and there 1s a module for
that currently in development.”

Asterisk as a Private Branch Exchange

Asterisk 1s, first and foremost, a PBX. Some people seem to constantly tout Asterisk’s
VoIP capabilities, and while that is a major feature, they seem to forget that Asterisk

www.syngress.com

8 Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

doesn’t need VoIP at all to be a PBX. But even without VoIP, Asterisk has many
advantages over traditional hardware-based PBXes.

Advantages over Traditional PBXes

Asterisk has numerous advantages over “traditional” PBXes. These advantages can
benefit both larger and smaller businesses. Let’s talk about two difterent scenarios,
with two different problems, but one common solution.

Notes from the Underground...

Is Asterisk Right for Me?

Whether they’re an individual interested in VoIP or a group of business heads
wondering if they should drop their expensive PBX, people frequently ask “Is
Asterisk right for me?” The answer, almost always, is a resounding “YES!”
Asterisk is many things to many people, and it is malleable enough to be a per-
fect fit for your setup, too.

Asterisk in a Large Business Environment

Suppose you are the newly hired IT Director for a medium-sized oftice. While get-
ting a tour of the server room, you happen across the PBX. What you see disturbs
you: a system, which handles approximately 200 people, is about the size of two mini
fridges, requiring its own electrical circuit separate from the servers, and producing
enough heat it has to be tucked in a corner of the server room so as not to overload
the air conditioning system. It also seems to be stuck in the early 1990s: The system
has abysmal voice-mail restrictions, no call waiting, and no caller ID. Being the go-
getter you are, you attempt to “buy” these features from the vendor, but the quote
you receive almost gives your purchase officer a heart attack. As if this wasn’t enough,
you also have a dedicated “PBX Administrator” who handles adding phones to the
system, setting up voice-mail boxes, making backups of the PBX, and nothing else.
Asterisk is made for this kind of situation. It can easily fit within a server envi-
ronment, and will cut costs instantly since you no longer have to cool and power a
giant box that produces massive amounts of heat. Also, dedicated PBX administrators,
while possibly still necessary for a large environment, can be easily replaced by other

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 9

administrators, provided they know how to administrate a Linux box. A competent
Linux user can be taught how to administer an Asterisk PBX easily. Finally, as stated
repeatedly, Asterisk is open source, which really cuts the software upgrade market oft
at the knees. Plus, if Asterisk lacks a feature a company needs, there are more than a
few options available to the firm: they can code it themselves, hire someone to code
it for them, or use Asterisk’s fairly active bounty system (available at
http://www.voip-info.org).

Asterisk in a Small Business Environment

Asterisk provides advantages for small businesses as well. Suppose you are a consultant
to a small company that has you come in a few hours every week to fix computer
problems. This company has a small, ten-phone PBX that was installed by another
vendor before you came into a picture. After a while, one of the phones—the
owner’s, of course—will no longer work with the voice-mail system. When you dial
his extension, it rings his phone, and then drops you to the main voice-mail prompt
instead of going directly to his voice-mail box. When he dials his voice mail from his
phone, it prompts him for a mailbox rather than taking him directly to his. The
vendor no longer returns phone calls, and the owner begs you to take a look at it.
You bang your head against the wall for several hours trying to figure the system out.
Besides the basic “How to use your phone” info, no documentation is available, there
are no Web sites discussing the system, and diagnostic tools are non-existent. Even if
you do figure out the problem, you have no idea how to correct it since you don’t
know how to reprogram it. In other words, you're licked.

Asterisk will fix most of the issues in this situation as well. Documentation, while
admittedly spotty for some of the more obscure features, is widely available on the
Internet. Asterisk debugging is very complete; it can be set up to show even the most
minute of details. Also, in a typical Asterisk installation, vendor tie-in wouldn’t be an
issue. If the owner’s phone was broken, a replacement phone could have been easily
swapped in and set up to use the PBX—no vendor needed (see Figure 1.1).

www.syngress.com

10

Chapter 1 ¢ What Is Asterisk and Why Do You Need It?
Figure 1.1 Asterisk Can Be as Verbose, or as Quiet, as You Want

&% Asterisk Console on 'miina’ (pid 8137)

SIP Listening on 0.0.0.0:5060

Using SIP TO5: lowdelay

Parsing "fetc/asterisk/sip_notify.conf': Found

Registered channel type ‘SIP' (Session Initiation Protocol {(SIP))

Registered application "SIPDtmfMode’

Registered application "SIPAddHeader’

Registered custom function S5IP_HEADER

Registered custom function S5IPPEER

Registered custom function SIPCHANINFO

Registered custom function CHECKSIPDOMAIN

Manager registered action S5IPpeers

Manager registered action SIPshowpeer
chan_sip.so =» (Session Inmitiation Protocol {5IP))
Asterisk Ready.
*CLI> [Dec 29 19:03:56] NOTICE[E8145]: chan_mgcp.c:3382 mgcpsock_read: Got respon
se¢ back on [dlinkgw] for transaction 2 we aren't sending?
[Dec 29 19:03:57] HOTICE[8163]: chan_sip.c:11811 handle_response_peerpoke: Peer
"fromratchet® 1s now Reachable. (345ms / 2000ms)
[Dec 29 19:03:57] HOTICE[8163]: chan_sip.c:11811 handle_response_peerpoke: Peer
'fromzap®' 15 now Reachable. {(342m=s / 2000ms)
[Dec 29 19:03:57] HOTICE[8163]: chan_sip.c:11811 handle_response_peerpoke: Peer
'6200" 15 now Reachable. (344m=s / 2000ms)

saved useragent "Cisco-CP7960G/7.5%" for peer 6200

saved useragent "Cisco-CP7960G/7.5%" for peer fromzap

£

Features and Uses

As previously stated, Asterisk has numerous features, some common to almost all
PBXes, and some only found in very high-end models. Let’s highlight a few. This is
by no means a complete list, but just a sampling of the many features Asterisk has to

offer.
Conference Calls

Asterisk’s conference calling system, called “MeetMe,” is a full-featured conferencing
system. All the features you would expect in a conferencing system are included, such
as protecting conferences with PINs so only approved users can attend, moderating
conferences to allow only certain people to speak to the group, recording confer-
ences so you can have a record of it, and playing music before a conference begins so
users don’t have to wait in silence.

MeetMe is a huge feature for Asterisk, as the price of commercial conferencing
services isn’t cheap. Let’s look at a simple example: We want to conduct an hour-long
conference call with ten members of the press concerning our new Asterisk book. A
certain reputable conferencing service costs 18 cents per minute per participant. So,
doing the math, 13 users talking for 60 minutes at a cost of 18 cents/minute would
cost us $140.40. Let’s compare that with Asterisk. Using Asterisk, MeetMe, and an

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 1

average VoIP toll-free provider whose rates are 2.9 cents per minute per call, the
same conference would cost us $22.62. That’s a savings of $117.78!

Toice Mail

Voice mail has become critical to business in today’s market. Many people have
developed a reflexive tendency to check the “Message Waiting” indicator on their
phone when first entering their workspace. Technically, voice mail is quite simple. It
is simply audio files stored on some kind of storage medium, such as a hard drive or
flash storage, on your PBX. Some vendors think a two-hour voice-mail storage card,
otherwise known as a 128 MB Smart Media card, should cost over $200. Asterisk,
considering it’s run on a PC, affords you an amazing amount of storage space for
your company’s voice mail. Since it’s not locked into a specific storage media, you
can add an extra hard drive, flash card, or network share if you have the need to
expand.

Asterisk’s voice mail also incorporates almost every feature one would expect
from a voice-mail system: a complete voice-mail directory, forwarding, and the ability
to play different outgoing messages depending on whether the user doesn’t pick up
their phone, is already on the phone, or is out for a long period of time. Some of the
more advanced features include the ability to send the voice mail as an attachment to
an e-mail address. This is useful if you are on the road and do not have a phone avail-
able to you, but do have access to e-mail. It’s also very handy when you have a
voice-mail account you do not monitor regularly.

Call Queues

While everyone might not know what a call queue is, almost everyone has experi-
enced one. When dealing with some kind of customer service department, it’s not
uncommon to wait on hold while a disembodied voice tells you that all the repre-
sentatives are currently helping other people. That is a call queue. It is used for han-
dling large volumes of calls with a set amount of people answering the phones.
When the amount of calls (“callers”) exceeds the amount of people answering the
phones (“answerers”), a queue forms, lining up the callers till an answerer can attend
to each. When one of the answerers becomes available, the first caller in line gets
routed to that answerer’s phone. Call queues are essential in any kind of call center
environment. Asterisk supports both queues in the traditional sense of a call center
tull of people, and also a virtual call center in which the call agents call in from
home and sit on the phone in their house. It supports ringing all agents at once, a

www.syngress.com

12

Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

round-robin system, or a completely random ring pattern. Asterisk also can assign
priorities to callers when they enter a queue. For example, this is commonly done in
cell phone companies. Have you ever wondered how when you visit a cell phone
store and they call up customer service, they get answered in about 30 seconds? They
call a separate number and are thus assigned a higher priority than if you called from
your home. Another use of this is if you run a helpdesk and want to assign problems
with mission-critical applications a higher priority than others. Users calling the tele-
phone number for the mission-critical applications would thus receive a higher pri-
ority than users that call the general helpdesk number.

Asterisk as a VolP Gateway

Asterisk’s biggest and most talked about feature is its VoIP capabilities. Thanks to the
expansion of Broadband into almost every company and an ever-increasing number
of residences, VoIP has taken oft in the past few years. Asterisk has turned out to be a
tool no one really knew they needed, but realized what they were missing once they
started using it.

Notes from the Underground...

PSTN Termination and PSTN Bypassing

Don’t worry, PSTN termination has nothing to do with the PSTN becoming self
aware and sending robots after us. PSTN termination providers are companies
that allow third parties to transition their VoIP call between the Internet and
the PSTN, or vice versa. These companies don't force users to invest in equip-
ment to connect Asterisk to a phone line and are often much cheaper than
what a telephone company would charge.

Of course, the cheapest phone call is the one that's free. The Internet
Telephony Users Association, a non-profit organization, runs e164.org, which
allows users to publish telephone numbers that can be reached directly via
VolP. This allows other VolIP users to dial a regular number and have Asterisk
route it over the Internet rather than the PSTN letting the user save money
without making an effort.

People have started using Asterisk to augment, and sometimes even replace, their
existing telephone setup. Thanks to Asterisk, an abundance of cheap Internet-to-

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 13

PSTN-termination providers, and organizations such as e164.org, Asterisk has
allowed people to choose the cheapest path to their destination when placing a
phone call. Companies with multiple oftices can save money on phone calls that are
long distance from the originating office but local to one of the other oftices by
using Asterisk to route them over the Internet to the remote office and having the
Asterisk server dial the remote phone line, thus saving them an expensive long-dis-
tance bill.

The Possibilities of VolP

Looking at various trade magazines and Web sites, it is easy to get the feeling that
pundits always rant and rave about VoIP, but companies and end users either have no
interest in it or do have an interest but no idea what to do with it. Asterisk and VoIP
provide many possibilities for both the end user sitting at home and the company
looking to cut costs.

Virtual Call Centers and Offices

Before VoIP, when running a call center, the company either needed to pay for a
large building to house all the employees, or pay the cost of forwarding the incoming
phone calls to the employee’s houses. With the advent of VoIP, a third option has
emerged: using the employee’s broadband connections to handle telephone calls over
VoIP.

Thanks to Asterisk, it is possible to run a call center out of a back pocket. The
only physical presences the call center needs are servers to handle the routing of the
calls, and some way to terminate the incoming phone calls, such as a VoIP provider
or PRI(s). The people answering the calls can either use their computer with a soft-
phone and a headset, or some kind of Analog Telephone Adapter to hook up a VoIP
connection to a physical phone (more on these later). Agents can then sign into the
call queue without tying up their phone line or costing them money. They can also
work anywhere a broadband connection is available.

This benefit isn’t limited to call centers either. Would you like to save some
money on your road warrior’s cell phone bills? Or, would you like to have an option
for your employees to work from home for a few days a week, but still have the
ability to be contacted by phone like they were in their office? The same concept
applies. Once a phone signs into Asterisk, it doesn’t matter if it’s in the office, down
the street, or half a continent away, it becomes an extension on your PBX, with all
the features and benefits.

www.syngress.com

14

Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

Bypassing the ‘Telephone Companies

Another way people have been using Asterisk is to set up their own “VoIP only”
telephone network over the Internet. Suppose you have a group of friends you never
talk to. With Asterisk, you can essentially set up your own virtual telephone com-
pany. After setting up Asterisk and then arranging the connections between your
servers, you can establish a telephone network without even touching the PSTN.
Plus, thanks to MeetMe, you can conduct conference calls with ease.

Also, while the media and most of the public associate “VoIP” with “phone calls
over the Internet” this is only partly the truth. The “IP” in VoIP means “Internet
Protocol,” and Internet Protocol is Internet Protocol no matter where it is. If your
company has data links between buildings, campuses, or regions, but not voice links,
Asterisk can be used to send voice conversations over your data links as opposed to
the phone lines, saving money and allowing your phone lines to remain free for
other purposes.

One of the best hobbyist roll-your-own examples we’ve seen to highlight
Asterisk’s ability to act as an inexpensive gateway for telephones over large geographic
areas is the Collector’s Net at http://www.ckts.info. Founded in 2004, the Collector’s
Net is a group of telephony bufts who have, over time, collected old telephone
switching equipment. For years, this equipment sat in basements and garages collecting
dust until one owner had the bright idea of using Asterisk and VoIP to interconnect
the gear over the Internet. And so Collector’s Net was born. It is growing monthly
and now boasts an Asterisk backbone connecting more than a dozen switches over
two continents. While it may seem trivial or downright odd to some, this highlights
the ability of Asterisk to provide a connection between a group of people who would
have hardly spoken to each other had they not set up this network.

Being Your Own 'lelephone Company

Asterisk can save money, but it can make money as well. It’s also simpler than you
think. NuFone, one of the first PSTN termination providers that supported Asterisk’s
Inter-Asterisk eXchange (IAX) VoIP protocol, started as a computer and a Primary
Rate Interface (PRI), sitting in the owner’s apartment. It’s now one of the more pop-
ular PSTN termination providers on the Internet.

However, don’t start wearing your monocle and lighting cigars with $20 bills just
yet. In years past, termination providers were largely flying under the radar of the
various regulatory agencies. However, this golden age is rapidly coming to a close,
and VoIP providers are slowly becoming more and more regulated. Today, VoIP

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 15

providers must provide 911 services, are required to contribute to the Federal gov-
ernment’s “Universal Service Fund,” must handle taps by law enforcement agencies,
and are subject to all kinds of regulations.

Asterisk as a New
Dimension for Your Applications

The Internet has grown by leaps and bounds over the past ten years. Most companies
have mission-critical applications, applications to monitor the applications, and appli-
cations to monitor the applications that monitor the applications, ad nauseam. There
are also information systems designed to provide important information to the gen-
eral public. These systems all have something in common: they require the use of a
computer.

Computers, while common, aren’t used by everyone. People constantly talk about
the “digital divide,” referring to people who are unable to afford computers. Plus, siz-
able portions of the populations, for one reason or another, still treat the computer
with apprehension.

Phones, however, are very much ubiquitous. Almost every home has a land-based
telephone 1n it, and with pre-paid mobile phones finally showing up in the United
States, mobile phones are further penetrating the market. Despite this large market,
developing voice-aware applications has always been costly and time-consuming,
making them less common and less functional than their Web-based counterparts.

Asterisk can be a bridge between the world of text and the world of speech.
Thanks to programs like Sphinx (a program that translates speech to text), Festival (a
program that translates text to speech), and Asterisk’s own application interface, pro-
grams can be written by any competent programmer. Asterisk’s interface 1s simple to
learn yet extremely powerful, allowing programs for it to be written in almost any
language. Asterisk can be the conduit for taking your applications out of the text that
is the Internet and letting them cross over into the voice arena that is the Public
Switched Telephone Network (PSTN)

A great example of how telephone-aware systems can benefit the general public
is Carnegie Mellon University’s “Lets Go!” bus dialog system. It has been developed
to provide an interactive telephone program that allows people in Pittsburgh to
check the schedule of buses that run in the city. The system has become such a suc-
cess that the bus company has had its main phone number forward calls to the appli-
cation during oft-hours, allowing callers to access transportation schedules despite the

www.syngress.com

16

Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

office being closed. Asterisk can also be used to build similar systems with the same
tools used by CMU.

Who's Using Asterisk?

Asterisk really started to make a splash on the Internet in late 2003 when it became
fairly stable and early adopters started to pick up on VoIP. Since most early adopters
were hard-core technophiles who were looking for a program that was free or cheap,
and could be easily configured to do everything from the simple and the mundane
to the downright odd, Asterisk was in the right place at the right time. To say it
caught on like wildfire is a bit of an understatement.

Today, Asterisk s still very active within the hobbyist’s realm. Small groups are
setting up Asterisk servers for both public and private use, one of them being the
Collector’s Net previously mentioned. There are also groups of phone phreaks—
people who hack on the telephone network—who are taking the leap into the dig-
ital realm, setting up projects such as Bell’s Mind (http://www.bellsmind.net) and
Telephreak (http://www.telephreak.org). For phone phreaks, the ability to run a tele-
phone system in the privacy of one’s own home is just as exciting as when the first
personal computers became available to computer hackers.

Not only is Asterisk actively thriving in the hobbyist scene, it 1s also making
beachheads into the Enterprise realm. A university in Texas recently replaced their
1600-phone strong mix of Nortel PBXes and Cisco Call Manager installations with
Asterisk. The reasons for this were both the cost of licensing each phone to Cisco,
and security concerns due to the fact they ran on Windows 2000. A town in
Connecticut recently deployed a 1500-phone Asterisk system, where each depart-
ment customized it for its own needs, such as the school department’s automated
cancellation notification system.

Not only is Asterisk making it easy for companies to replace their existing tele-
phone systems, it is making it easy for telephone companies to have the ability to
handle VoIP. Numerous Competitive Local Exchange Carriers (CLECs) are jumping
onto the VoIP bandwagon and setting it up to handle VoIP from the consumer side
(or handle it internally) for either a value-added service or a cost-saving measure.

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 17

Summary

PBXes and VoIP have been around for decades: PBXes since the early part of the
century, and VoIP since the 1970s. However, despite the vast market and the fact that
they are used by almost every business, PBXes not only still cost thousands of dollars,
but one vendor’s equipment is often incompatible with another vendor’.

Asterisk, created in 1999 because Mark Spencer found commercial PBXes
hideously expensive, has put the power of telephony in the hands of the masses. It
can be many things to many people, and can be configured to fit into many roles in
an Enterprise. From saving money on telephone calls, to making voice-enabled appli-
cations, Asterisk can be configured to fit in where it’s needed.

Asterisk can augment, or entirely replace an existing telephone system, whether
the user is a hobbyist with a single telephone line, or an executive running a large
call center with multiple PRIs. An existing PBX installation can be swapped out
with ease, and most, if not all functionality can be retained. Asterisk also has
numerous advantages over traditional PBXes in the areas of cost, reliability, usability,
and hardware support.

Asterisk is not only a traditional PBX, but can also handle Voice over IP tele-
phone calls. This allows users to take advantage of the numerous advantages VoIP
provides: low-cost telephone calls, the ability to communicate with remote offices
using the Internet rather then the PSTN, or using existing data links instead of con-
necting buildings with telephone lines.

Asterisk also allows you to integrate existing applications into the world of tele-
phony. Users can interact with existing applications over telephones, rather than their
current interface—such as a Web page or a data terminal. This has advantages in both
usability and flexibility.

In the current market, Asterisk is being utilized by both large and small compa-
nies. It lets small companies find a PBX that won'’t tie them down to a vendor and
incur a hefty initial investment, while large companies see a way of leveraging their
existing infrastructure that saves them money by not having to rely on the telephone
company.

www.syngress.com

18 Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

Solutions Fast Track

What Is Asterisk?

M Asterisk is an open-source Private Branch Exchange that replicates, for free,
many expensive features found in expensive high-end PBXes.

M Created in 1999 by Mark Spencer, it was initially made because commercial
PBXes were far too expensive for his company. Today, his company is the
driving force behind Asterisk.

M Asterisk’s current version, 1.4, boasts a load of new features over its
predecessors.

What Can Asterisk Do for Me?

M Asterisk can be fit into both the large and small business environment, saving
time and money in the workplace. It can also be useful to the hobbyist.

M Asterisk can replace your traditional hardware PBX and replicate most of its
features. It can also bring many new features to the table to replace other
telephony services you currently use.

M Thanks to the advantages provided by VolIP, Asterisk allows you to run
virtual call centers and bypass the telephone company for phone calls. It also
lets you be your own telephone company.

M With the ubiquity of voice communication channels, Asterisk lets you bring
a whole new dimension to your current suite of applications.

Who’s Using Asterisk?

M Asterisk took the market by storm by being in the right place at the right
time, and by also being free.

M Hobbyists are using Asterisk to set up their own private telephone playlands,
complete with voice conferences, voice-mail systems, and voice bulletin

boards.

www.syngress.com

What Is Asterisk and Why Do You Need It? ¢ Chapter 1 19

M Companies both large and small are using Asterisk to replace their current
PBX systems and are saving themselves both time and money in the process.

Links to Sites

m Asterisk (http://www.asterisk.org) Here, you can download the source,
keep up-to-date on Asterisk-related news, read developer weblogs, and gen-
erally get your daily dose of Asterisk scuttlebutt.

m Digium (http://www.digium.com) These folks are the driving force
behind Asterisk. Get trained, buy hardware, and find out about developer
programs.

m Collector’s Net (http://www.ckts.info) This is an inventive group of
old Bell System workers and telephone system collectors who have hooked
together their antique equipment using Asterisk. Not as much Asterisk stuff
here, but a cool enough group of people that warrant a mention, and it
shows that Asterisk can be used to do almost anything.

= Bell’s Mind (http://www.bellsmind.net) A project that provides infor-
mation regarding various telephone systems, and a PBX for public use.

m Telephreak (http://www.telephreak.org) Telephreak is a free voice-mail
and conferencing service run for phone phreaks and computer hackers by
phone phreaks and computer hackers.

www.syngress.com

20

Chapter 1 ¢ What Is Asterisk and Why Do You Need It?

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

What is Asterisk?

Asterisk is an open-source PBX. Built by Digium Incorporated and developers
across the globe, it 1s at the forefront of VoIP usage.

: How much does Asterisk cost?

: While Asterisk itself is completely free, the cost of a complete install depends

greatly upon your existing installation, what you want to use Asterisk for, and
what kind of hardware 'you are willing to invest in. As always, your mileage may
vary.

: I currently have a PBX] what advantage is there for me to move to Asterisk?

: Asterisk has a lot of features that your eurrent PBX"likely does not have. It also

has numerous advantages over a “traditional”’ PBX, such as the support of open
standards, not being tied down to a specific vendor, and the common advantages
of being open source.

: Do I need to move to VoIP to use Asterisk?

: No. Asterisk supports numerous hardware devices, allowing you to use both

analog phones and analog telephone lines with the system.

: What companies can most benefit from Asterisk?

: There is no right kind of company for an Asterisk setup. Safe to say, if you have a

PBX already, you can, and probably should, run Asterisk.

www.syngress.com

Setting Up Asterisk

Solutions in this chapter:

s Choosing Your Hardware
= Installing Asterisk

m Starting and Using Asterisk

Related Chapters: 3, 7

M Summary
M Solutions Fast Track

M Frequently Asked Questions

Chapter 2

21

22

Chapter 2 ¢ Setting Up Asterisk

Introduction

Setting up and installing any kind of PBX server isn’t easy. Adding Asterisk to the
mix does simplify some areas, but further complicates others. Asterisk is flexible, but
this flexibility creates many options that can overwhelm a novice. Everything from
picking out a server, picking a phone setup, to picking an install method can leave
you in awe of the options available. Let’s not sugarcoat it: Asterisk is hard.

Choosing hardware is a key decision and not one that can be taken lightly,
because if something goes wrong with the server or the phones, productivity is lost.
Making the proper decision on a server, choosing phones for the users, and selecting
the network configuration can mean the difference between a happy user base and a
group of angry users outside your office with pitchforks and torches.

Even choosing a method to install Asterisk is filled with options, such as Live
CDs, Asterisk Linux distributions, binaries for your operating system, or compiling
from scratch. And there is no “correct” option either. Each method has benefits and
drawbacks, and each one suits certain situations differently than others. Making sure
you choose the right method of installing can save you a lot of heartburn later.

If you're scared right now, don’t be. While Asterisk isn’t easy, it is nowhere near
impossible. While Asterisk may have a high learning curve, once you become familiar
with its intricacies, everything suddenly starts to make sense.

Choosing Your Hardware

One of the first things to do when setting up Asterisk is to figure out your hardware
needs. Hardware is a bit of a catch-all term and refers to the server, the phones, and
the connections between them. There is no standard ratio for Asterisk that dictates
“To support A calls over a B period of time, you need a server with X megabytes of
RAM, a processor faster than Y, and a hard drive bigger than Z” or that “If you are
in a call-center environment, X brand phones is the best choice.” To figure out what
is the correct fit for your situation, research is required.

Picking the Right Server

Picking the right server is a key decision when running Asterisk. The last thing a
company wants to hear is that their phone system is down. Asterisk can run on obso-
lete hardware, but you will get what you pay for. Reliable, capable equipment is the
foundation for any reliable, capable PBX system.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 23

Processor Speed

Processor speed is the most important feature when looking at a server to run
Asterisk. The more processing power, the more responsive the system will be when it
is placed under heavy call loads. Asterisk runs well on any modern processor, han-
dling moderate call loads without any issue. However, this does depend on how the
system is configured to handle calls.

Transcoding and Protocol Translation

Transcoding is when the server is handling a conversation that is coming in with one
codec and coverts it on-the-fly to another. This happens a lot more than thought, as
most VoIP telephones transmit in p-Law, which is the standard codec for telephone
conversations. If the server is using the GSM codec for outbound calls, it needs to
“transcode” the conversation and convert it from p-Law to GSM. This, by itself, is
pretty simple; however, when the server starts having to transcode multiple conversa-
tions simultaneously, more processing time is required. If a performance bottleneck
develops, the conversations will start to exhibit delays in the conversation, more com-
monly referred to as “lag.”’

Protocol translation is the same problem as transcoding, except instead of con-
verting the audio codec, it needs to translate the protocol used. This is also common
with VoIP providers who only offer access to their networks via specific protocols.

RAM

RAM usage on Asterisk is pretty low. Asterisk can easily fit within a 64MB footprint
even on a fairly large install. Since Asterisk is modular, trimming RAM consumption
is as easy as removing modules from the startup sequence. A bare bones Asterisk
startup can fit within a memory footprint of fewer than 30MB.

Storage Space

Storage space is probably one of the least important choices when choosing a server
for Asterisk. Hard drives keep getting larger and cheaper with each passing month,
allowing even a low-end computer to have massive amounts of space. Asterisk, by
itself, hardly takes up any room; however, when voice prompts for Interactive Voice
Response (IVR) menus and voice mail start being added to the system, Asterisk’s
footprint starts growing. Hard drive size needs to be determined by the amount of
users on the system and the amount of voice mail expected.

www.syngress.com

24

Chapter 2 ¢ Setting Up Asterisk

For example, a sound file encoded with p-Law takes up about a megabyte a
minute. While this may not seem like a lot at first, consider that a person can average
about five voice mails a day in a busy oftice. If each of those messages is about a
minute each, and there are 100 people in the oftice, that’s 500MB of storage per day!
When you calculate the math per year, we're talking almost 13GB! Plus, other factors
exist as well. Let’s say a team leader sends a five-minute group message to his or her
team of ten people. That 5SMB message just copied across the system into ten separate
mailboxes consumes 50MB. Also, don’t forget to factor in saved messages, people on
extended absences, and group mailboxes that may be accessed by the public.

Asterisk, like any high-demand server application, benefits from Redundant
Arrays of Independent Disks (RAIDs). RAIDs are very important in any kind of
high-availability environment. They are a system in which multiple disks are grouped
together in a redundant fashion, allowing the computer to write data across all the
disks at once. The upside of this is that it allows for one disk to fail within the group
but let the computer still function. Using a RAID allows Asterisk to continue to
handle phone calls and voice mails despite one of the server’s hard drives no longer
functioning.

Picking the Right Phones

Phones are arguably the most important part of a PBX setup. This is how most users
interface with the PBX system. Picking the proper phone is key to a successtul PBX
deployment. There have been instances where users were ready to give up on
Asterisk solely because they hated their phones. Thankfully, changing phones is easy
and these users quickly changed their opinions once new phones were installed.

Soft Phones

The easiest phone to set up with Asterisk is a soft phone. A soft phone is a computer
program that emulates a phone on your PC. Soft phones are easy to set up and can
be configured in a matter of minutes. They’re usually very easy to use, often dis-
playing a telephone-like interface on the screen. Soft phones utilize the computer’s
sound card for transmitting and receiving audio, or optionally a “USB phone,” which
is a phone-like device that plugs into the computer’s USB port. Soft phones are
inexpensive (often free) and USB phones generally cost less than $50. Figure 2.1
shows iaxComm.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2

Figure 2.1 iaxComm, an IAX2-Compatible Soft Phone

[iaxComm |;”§|g|
File Options Help

MIC| |

L
SPK =
W

State Remote
1
2

Extension Account

R |
e
QUG |
|
|

l Speaker l

Hold l Transfer Hangup

7
lﬁﬁl I

Ewvent (tvpe 110 for a non-existant session, Dropping

Soft phones have the advantage in price and ease of setup and configuration, but
that’s about it. It’s common to see people preferring some kind of physical device
rather than a program that runs on a PC. USB phones sometimes can help, but they
usually aren’t geared for a business environment. In addition, these users are tethered
to a PC. If the PC crashes, no phone calls.

Soft phones are handy though if a user wants to make VoIP calls while on the
road without wanting to lug another device with them. Simply install and configure
the soft phone on the user’s laptop with a headset and they’re ready to go—all they
need is an Internet connection. However, soft phones are not fit for most tasks
common to a business environment.

Hard Phones

The alternatives to soft phones are hard phones—the phones we’ve used the past
125+ years: a physical device that sends and receives telephone calls. Hard phones are
on the opposite side of the spectrum from soft phones: they’re expensive and often
harder to set up than their software counterparts. However, most users prefer a hard
phone; it’s what they’re accustomed to.

The most common hard phones include IP phones: analog phones connected to
an Analog Terminal Adapter (ATA) and analog phones connected via interface cards.

www.syngress.com

25

26 Chapter 2 ¢ Setting Up Asterisk

Each of these has their advantages and disadvantages, which we’ll discuss in the fol-
lowing sections.

IP Phones

IP phones are one of the most common solutions you’ll see for VoIP in a business
environment. They plug in to an Ethernet connection and emulate a regular analog
phone. They’re made by numerous companies, including Cisco Systems, Polycom,
Aastra, and Siemens, just to name a few. The price and quality of these phones run
the gamut, but the general rule of “you get what you pay for” applies here. In today’s
market, a good IP phone will cost you at least $150 per unit, like the Cisco 7960 1P
Phone shown in Figure 2.2.

Figure 2.2 A Cisco 7960 IP Phone

,,,,,,,,,,

Ly
Cisco Su :
Copuriaht

@Confiauring IF

Analog Telephone Adapters

ATAs are the bridge between the world of analog telephones and the world of VoIP.
They are small devices, usually in the form of a small plastic cube, with a power port,
one or more telephone jacks, and an Ethernet port. An analog phone connected
through an ATA can participate in phone calls on a VoIP network.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 27

ATAs are cheaper then IP phones, mainly because they are slightly simpler. ATAs
are often oftered by the same companies that make IP phones and range in price
from $50 to $100 depending on the protocols they support, the number of ports,
and, of course, the number of features. Some ATAs have both a port for a phone and
a port for an outside phone line, allowing a quick and easy way to interface Asterisk
with both your phone and the public switched telephone network.

ATAs work with most phones, the exceptions being proprietary phones from
digital PBXs and older rotary dial phones. Digital phones are nearly impossible to
support due to their complexity and the differences between one manufacturer and
another. Rotary phones aren’t supported by most ATAs because most developers
consider, somewhat correctly, that pulse dialing is an obsolete protocol. Figure 2.3
shows a D-Link analog telephone adapter controlling two older analog phones.

Figure 2.3 A D-Link Analog Telephone Adapter Controlling Two Older Analog
Phones

www.syngress.com

28

Chapter 2 ¢ Setting Up Asterisk

Interface Cards

Analog phones do not always need an ATA. Asterisk supports multiple interface cards
that allow analog phones to connect directly to an internal port on the server.
Digium sells numerous cards supported by its Zaptel drivers. These cards support
anywhere from 1 to 96 phones depending on how they are configured. There are
also other cards that support anywhere from a single phone line to an entire PRI.

PRIs can be attached to a device called a “channel bank,” which will split the
PRI’s 24 channels into 24 separate interfaces, allowing a single interface card to sup-
port up to 24 phones. Cards also aren’t limited to a single PRI interface, either. And
some cards out there can support four simultaneous PRIs.

Digium also sells cards that sustain up to four modular sockets that can either
support telephone lines or telephones depending on the modules purchased. While
these are rather pricey, they are cheaper than PRI cards and will allow you to avoid
purchasing a channel bank on top of a card.

Sadly, interface cards do not support digital phones either. Another issue when
considering these is that there needs to be wiring run between the phones and the
cards, which can be difficult in an existing server setup. The good news is that most
of these cards support pulse dialing, allowing older equipment to interface into the

system.

Configuring Your Network

A network 1s like a car.You can use it every day and not notice it until the day it
breaks down. This is even truer when the network is also the phone system’s back-
bone. For most folks, phone service is much more important than Internet access.

When looking at it from a network management standpoint, VoIP conversations
using the p-Law codec are 8KB/s data transfers that run for the duration of the calls.
While this amount of traffic is negligible if designing a network for an office of ten
people, it starts to add up quickly when designing the network for a voicemail server
serving 10,000 people. For example, if there are 2500 simultaneous phone calls con-
necting to and from the server, that would be a constant stream of 20 megaBYTES
per second being transferred across the network.

When designing networks for VoIP, virtual local area networks (VLANS) are a big
help. VLANS are a software feature in networking switches that allow managers to set
up virtual partitions inside the network. For example, you can set up a switch to have
even-numbered ports on VLAN A and odd-numbered ports on VLAN B. When

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 29

plugging networking equipment into the switch, equipment on VLAN A won’t be
able to connect to equipment on VLAN B, and vice versa, allowing the two VLANs
to be independent of one another. VLANs help immensely for a VoIP network since
they keep voice and data traftic separate from each other. The last thing you want is a
giant multicast session DoS-ing your phones. By keeping the computers on separate
VLANS, computer traftic will not interfere with voice traftic, allowing a user to make
a large file transfer and not see any degradation of the voice quality on their phone.

Notes from the Underground...

Who's Listening to Your Phone Calls?

VLANSs not only help immensely with traffic management, but also with secu-
rity. Much like how attackers can sniff your existing traffic via ARP poisoning
and other attacks, they can do the same with your VolIP traffic. Automated
tools such as VOMIT and Cain and Abel allow attackers to sniff and record all
voice traffic they intercept.

The most secure solution to this is to set up a second Ethernet network or
VLAN on your network and limit the connections to the phones only. While
this is not a completely foolproof solution, since attackers on the network can
spoof MAC addresses, thus bypassing the restrictions, this will keep random
script kiddies from recording the boss’s phone calls to his mistress.

WAN links are another part of the chain. WAN links can vary from a simple
DSL connection to a massive Optical Carrier connection, but they each have some-
thing in common, they are a link to the outside world. When thinking about setting
up a WAN connection or making changes to your current one, you need to figure
out what the current bandwidth consumption is, and how much more bandwidth
will be consumed by adding VoIP to the equation. If the link’s free bandwidth
during lunch is under 100Kb/s, it will be able to support one p-Law encoded VoIP
call during that timeframe without running into issues. If there are usually five simul-
taneous telephone calls during that timeframe, that’s a major issue.

While with WANS it’s impossible to have a VLAN, it is possible to shape the
bandwidth. Bandwidth shaping is when a device, called the bandwidth shaper, gives
certain traffic priority over others. Numerous ways exist to do this, the most
common being to dedicate a portion of bandwidth exclusively to VoIP, or giving pri-

www.syngress.com

30

Chapter 2 ¢ Setting Up Asterisk

ority to VoIP traffic. Each has their pluses and minuses: dedicating a portion of the
bandwidth to VoIP allows you to guarantee there will always be a set amount of
bandwidth for telephone calls. While this may seem desirable, this is inefficient; if
there is no voice traffic but the data portion is at 100-percent utilization, the voice
portion will sit idle while the data portion sufters. The alternative, giving priority to
VoIP traftic, allows the WAN link to fluctuate how much bandwidth is being used
for data and how much is being used for voice. This allows data to use 100 percent of
the bandwidth if there is no voice traffic, but still permits voice traffic to get through
if the need arises. This is accomplished by letting the bandwidth shaper dynamically
allocate bandwidth for the voice traftic when a conversation starts: if a voice packet
and a data packet reach the bandwidth shaper at the same time, the bandwidth shaper
gives the priority to the voice packet over the data packet. This does have a downside
though: in certain shaping schemes, if voice packets keep reaching the bandwidth
shaper faster than it can send data packets, the data packets will take longer and
longer to get through. This will result in the data connections timing out and failing.

Installing Asterisk

So, you’ve purchased your server, installed an operating system, and you're ready to
plunge head first into Asterisk. Determining the “right way” to install Asterisk
depends on your situation. If you just want to try Asterisk out and are worried about
messing up an existing system, the Live CD would likely be your best route. If you
are not too familiar with Linux installation, but are looking to set up a dedicated
Asterisk system, you may want to look at a CD distribution of Asterisk. If you are an
experienced Linux administrator and want to configure Asterisk to fit into a custom
environment, you'll likely just want to compile it from scratch. Finally, if you are
either a Mac OS X or Microsoft Windows user, and you just want to use your
existing operating system for an Asterisk install, you’ll likely just want to use the
packages for your operating system.

Asterisk’s ability to be customized isn’t just limited to the final setup; it starts at the
installation phase of the system.You can easily make it fit almost any environment.

Using an Asterisk Live CD

Live CDs are bootable CDs that contain a complete operating system. After booting,
your machine will run the operating system from the CD without installing it to the
hard drive. If something goes wrong, you can turn off the computer, eject the CD,

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 31

reboot, and boot back to the operating system installed on your hard drive. Although
this installation method is not recommended for most production environments, it is
a perfect way for a novice user to try out the features of an operating system without
altering the boot machine in any way. In this section, we’ll take a look at one of the
more popular live Asterisk CDs: SLAST.

SLAST

SLAST (SLax ASTerisk) is an Asterisk-ready version of the Slackware-based SLAX
Live CD. Maintained by the Infonomicon Computer Club, SLAST was designed to
help educate people about the advantages of Asterisk and allow them to set up a
simple Asterisk server in the easiest way possible.

Getting SLAST

SLAST is available at http://slast.org. The ISO image is available from their down-
load page. The download size comes in at just a bit over 100MB, so any broadband
connection should make quick work of the download. Once the ISO is downloaded,
the disk image can be burned to a CD using the “image burn” feature of most pop-
ular CD recording programs.

Booting SLAST

Booting SLAST is as simple as inserting the CD into an Intel-based machine, and
rebooting. Depending on how your machine is configured, you may need to press a
key during startup to instruct the machine to boot from a CD. Once the CD is
booted, the SLAST screen is displayed, as shown in Figure 2.4.

Once SLAST loads the system into memory, the login screen is displayed. The
login screen has a quick “cheat sheet” of sorts showing file locations of Asterisk con-
figuration files, Asterisk sounds, Asterisk modules and the SLAST documentation.
The root password is also displayed. Log in with the username roof and the password
toor, and you will be presented with a root shell, as shown in Figure 2.5.

www.syngress.com

32 Chapter 2 ¢ Setting Up Asterisk

Figure 2.4 The SLAST Splash Screen Booting SLAST

Helcome to the Slast Live CD.

Hit Enter to continue booting, press F1-F2 for help or F3 to contribute
To load Slast into RAM type "slast copyZ2ram”

Figure 2.5 The SLAST Login Screen

Slast, now wWwith rore Asterisk 1.4

Username-Password.
root » toor <--change this to something good

Useful ComHands:

mcedit This is your text editor, for editing config files
asterisk -cvwuwd& Starts Asterisk 1.4

asterisk -r The Asterisk CLI, only works after ypou start asterisk
setup_sshd Setup 55H Remote Access

configure_network .. Configure Network Script

Useful File Locations:

setcrasterisk L L. Asterisk configuration files
svar-libsasterisk/sounds Sounds for Asterisk to use
suserslibsasterisk-modules ... Asterisk modules

Saving Your Changes:

slast login:

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 33

Configuring the Network

While a network connection isn’t specifically required for Asterisk, unless the target
system has hardware to connect it directly to a phone, some kind of network con-
nection will likely be necessary if you want to connect to something besides the
local computer. SLAST, as with most live distributions, does a pretty good job at
detecting any and all hardware on the target system. If everything is plugged in and
turned on, SLAST should have no issues setting up the hardware. However, SLAST,
like other Live CDs, may have trouble detecting networks settings. If you’re running
a DHCP server, Asterisk should automatically configure your settings. However, if
manual intervention is required to configure these settings, you may need to rely on
ifconfig, the InterFace Configurator.

Running ifeonfig without any arguments will display any configured network
interfaces on the system. Ethernet interfaces will be shown labeled by their abbrevia-
tions ethX, where X is a number starting at O for the first interface. Next to the name
will be fields for the IP address labeled as “inet addr,” the broadcast address labeled as
“Becast,” the network mask labeled as “Mask,” along with various statistics regarding
the interface. See Figure 2.6.

Figure 2.6 Running the ifconfig Utility to See Your Configured Network
Interfaces

3

slast login: root
PassuHord: xsess

root@slast:"# ifconfig
ethAd Link encap:Ethernet HHaddr BB:BC:29:95:4D:4E
inet addr:192.168.248.132 Bcast:192.168.248.255 Mask:255.255.255.48
UP BROADCAST NOTRAILERS RUNNING MULTICAST MTU:1588 Metric:1
Rx packets:4 errors:8 dropped:8 overruns:8 frame:8
TX packets:3 errors:8 dropped:B8 overruns:B carrier:8
collisions:8 txqueuelen:1888
RX bytes:888 (888.8 b) TX bytes:1248 (1.2 RiB)
Interrupt:11 Base address:Bx1488

lo Link encap:Local Loopback
inet addr:127.8.8.1 Mask:255.8.8.8
UP LOOPBACKR RUMMING MTU:16436 Metric:1
Rx packets:B errors:8 dropped:B overruns:B frame:B8
TX packets:B errors:8 dropped:B8 overruns:B carrier:8
collisions:B8 txqueuelen:B
RX bytes:B (B.8 b) TX bytes:8 (B.8 b)

root@slast:"# _

www.syngress.com

34

Chapter 2 ¢ Setting Up Asterisk

If the Ethernet connection is not displayed when running ifonfig without argu-
ments, it 1s either not configured, or it has not been detected on your system. To
determine this, run the command ifconfig eth0. This will show the first Ethernet inter-
face on the system, configured or not. If no text is displayed, SLAST has not found
your Ethernet card and it will need to be manually set up. However, if text is dis-
played similar to the preceding figure, but missing the text regarding the IP address,
the Ethernet interface is set up, just not configured with an address. SLAST provides
a script to perform this configuration.

The configure_network script allows the system’s network interface to be configured
with minimal user interaction. The user can run the script by entering configure_network
at the prompt and pressing Enter. The script will execute, prompting you for infor-
mation regarding your desired network configuration, as shown in Figure 2.7.

Figure 2.7 Running the configure_network Script to Configure Your Network
|

root@slast:"# configure_network

Configure Networking on Slast

Hhat network device do you want to configure?
ethd

Hhat is the ip address you want to use?
192.168.248.42

Hhat is your subnet mMask?

255.255.255.8

Hhat is your gateway IP?

192.168.248.1

Hhat is your primary DNHS Server?

4.2.2.1_

The configure_network script first prompts for the name of the interface you are
looking to configure. This will most likely be the first Ethernet interface, ethO. In
case the system has multiple Ethernet interfaces, this could be ethl or eth2,
depending on which card was detected first and how many Ethernet interfaces are
installed. After entering the desired interface, configure_network will prompt you for the
desired IP address, followed by the network’s subnet mask. These are very important

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 35

to configure correctly since entering incorrect values would at best cause the system
to be unable to access the network, and at worst cause the entire network to be
taken offline! The next piece of information configure_network needs is the network’s
gateway [P address. If the system is on a standalone network—that is, a network
without a connection to the Internet—Ileave this blank. Finally, configure_network will
prompt for the network’s DNS primary and secondary DNS servers.

After entering the entire network configuration, the script will prompt you to
confirm all the settings entered. If the network settings are correct, the script will
apply the changes. Otherwise, it will return you to the root prompt. This script can
be run later, allowing you to change any of the information, and it can be aborted at
any time by pressing Ctrl + C.

Saving Your Changes

One major advantage of a Live CD i1s that they do not make any permanent changes
to your system, allowing you to undo any changes simply by rebooting your com-
puter. This, while handy if you mess something up, can become a problem in certain
situations: if the computer restarts for any reason, all the configuration changes are
lost. SLAST, because it is based on SLAX, has two utilities that address this problem:
configsave and configrestore. These utilities allow a user to back up and restore any changes
they made. One of the more interesting ways to save the changes is to do so to a
USB memory stick. This way, you can easily carry around the bootable CD and any
configuration changes made to it, allowing you to essentially take your Asterisk server
with you in your pocket.

To save your configuration changes, use the command configsave, followed by the
name of a file to save to. For example, to save to a USB memory stick, run the com-
mand configsave /mnt/sdal/asteriskconfigs.mo. SLAST will then save any changed file from
the /var, /etc, /home, and /root directories.

To restore your changes, use configrestore with the same syntax. If you saved your
configurations to a USB memory stick, as in the preceding example, you can restore
them by booting SLAST, inserting the memory stick, and then running configrestore
/mnt/sdal/asteriskconfigs.mo. This will restore the files saved in the file. Remember, after
you restore your files, if you make changes, you will need to run configsave again.

www.syngress.com

36

Chapter 2 ¢ Setting Up Asterisk

Installing Asterisk from a CD

Four Linux distributions focus on Asterisk: PoundKey, a Linux distribution supported
by Digium; Evolution PBX, a distribution made for small businesses with commer-
cial support; Elastix, a distribution supported by a commercial company; and trixbox.

trixbox was released in 2005 as “Asterisk@Home,” a simple and easy way to
install Asterisk on a computer. Self contained within a bootable CD, Asterisk@Home
focused on ease of use and ease of install, allowing someone with little to no Linux
experience to start playing with Asterisk. In 2006, Asterisk@Home was acquired by
Fonality, a California-based VoIP services firm, who renamed the new version of
Asterisk@Home to “trixbox.” Today, trixbox is one of the leading Asterisk Linux dis-
tributions. With over 30,000 downloads a month, it takes its place among the “heavy
hitters” of Asterisk distributions.

The trixbox CD contains numerous add-ons to Asterisk: freePBX, a Web-based
configuration manager; HUDLite, a cross-platform operator panel; and SugarCR M, a
complete Customer Relationship Manager suite. All of these are configured to run
out of the box with trixbox, allowing a complete suite of tools for managing and
maintaining your Asterisk installation.

Getting trixbox

trixbox 1s available at www.trixbox.org. The most up-to-date version at the time of
this writing is trixbox 2.0 which contains Asterisk 1.2.13.The download size clocks
in at a hefty 550MB, so you may want to put on a pot of coffee before you start
downloading. Like the live CD’s discussed earlier, the downloaded image can be
burned with the “image burn” function of any standard CD recording program.

Tools & Traps...

Getting Messed Up by Old Asterisk Versions

It's common to think “Hmmmm... You know, | don’t NEED the latest version of
Asterisk” if you're looking at installing it from a binary package or an installer
CD. However, watch out. Sometimes the differences between the versions are
pretty big, and while what this book covers will work in Asterisk 1.4, it may
not work in earlier versions.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 37

Booting trixbox

After burning the trixbox CD, use it to boot the machine you will be installing to.
Again, as mentioned in the earlier “Booting SLAST” section, the computer may need
some kind of setting changed to boot from a CD. Once the CD is booted, the
trixbox boot screen is displayed, as shown in Figure 2.8.

Figure 2.8 trixbox Booting

tribo)

Asterisk up and running in one hour

— To install trixbox, press the <ENTER> key.

Marning: This will format ypour hard drive and destroy
all existing data on your computertt

— Type advanced if you want to set up the disk partitions yourself
— Use the function keys listed below for more information.

boot: _

Tools & Traps...

Behold trixbox, Destroyer of Data

The trixbox CD is an Installer CD, not a Live CD. Installing trixbox onto a system
will wipe out all existing data. If you are using a current system, it would be
wise to make sure it has no data you want to keep, or that you have good
backups of that data. The alternative is to use someone else’s system, prefer-
ably someone you do not like.

www.syngress.com

38

Chapter 2 ¢ Setting Up Asterisk

After about five seconds, the CentOS installer will start loading up, as shown in

Figure 2.9.

Figure 2.9 Anaconda, the CentOS Installer, Loading Drivers for SCSI Hardware
kelcome to CentDS-4 i386

Loading SCSI driver

Loading mptsas driver...

{Tab>-<{Alt-Tab> between elements | <Space> selects | <F12> next screen

After all the system’s hardware is detected, the installer will start prompting you
for questions regarding keyboard layouts and time zones. Answer these as appropriate
to your system. Once done with that, it will prompt you for a root password. Once
enough information is gathered, the installer will start formatting your hard drive and

the installation will begin, as shown in Figure 2.10.

Tools & Traps...

Excuse Me... Your Users Are Showing....

trixbox, allows Secure Shell (SSH) by default. This by itself is not much of a
security issue, but root access is allowed from remote terminals. This means
that if your trixbox system is publicly accessible on the Internet, anyone can

Continued
www.syngress.com

Setting Up Asterisk ¢ Chapter 2 39

log in to your system if they guess your root password. This may seem unlikely,
but it's common for script kiddies to scan entire networks looking for badly
configured servers that allow root access and have common root passwords.
So, either have an excellent root password, keep your system behind a firewall
that disallows inbound port 22 traffic, or read up on how to disable root logins
via SSH.

Figure 2.10 trixbox Installing CentOS Packages to the System
Cent05-4 i386 Released wia the GPL

| Package Installation |

Name : filesystem-2.3.8-1-1386
Size : 468k
Summary: The basic directory layout for a Linux system.

94

Packages
Total : 381
Completed: b
Remaining: 375

{Tab>/<Alt-Tab> between elements i <Space’ zelects i <F12> next screen

The trixbox installer will copy files, reboot, and begin to install specific packages
on the system (see Figure 2.11).

After installation, trixbox will reboot one last time and display a login prompt.
Log in with the username roof and the password you specified in the setup process
and you will be presented with a root shell. After logging in, the URL of the Web
management interface will be displayed, as shown in Figure 2.12.

www.syngress.com

40

Chapter 2 ¢ Setting Up Asterisk

Figure 2.11 trixbox Installing the trixbox Packages

Installing trixbox

This can take some time...
System will reboot when installation in complete

Installing trixbox...

Sun Feb 18 16:84:26 EST 2887

=# install addon

Adding group asterisk...
adding user asterisk...

warning: svarstrixbox_load-rpms-slame-3.96.1-4.el4.rf.i386.rpm: U3 DSA signature:
HOKEY, key ID 6b8d79e6

Preparing packages for installationmn...

lame-3.96.1-4.el4.rf

Figure 2.12 Logging In to trixbox

Cent0S release 4.4 (Final)
Kernel 2.6.9-34.8.2.EL on an i686

asteriskl login: root
Password:
Last login: Sun Feb 18 17:168:38 on ttyZ

Welcome to trixbox

For access to the trixbox web GUI use this URL
http:s-192.168.18.129

For help on trixbox commands you can use from this
command shell type help-trixbox.

[rootPasteriskl " 1# _

Configuring trixbox

trixbox, like SLAST, should configure its network automatically if there is a DHCP
server on the network. If it didn’t, or if the DHCP address is not the address you

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 41

want for the server, you can run the netconfig utility to manage network settings, as
shown in Figure 2.13.

Figure 2.13 The Main netconfig Screen
metconfig B.8.21 (C) 1999 Red Hat, Inc.

] Configure TCP~-IP |

Please enter the IP configuration for this machine. Each
item should be entered as an IP address in dotted-decimal
notation (for example, 1.2.3.4).

[1 Use dynamic IP configuration (BOOTF-DHCP)

IP address: 192.168.18.188__
Netmask: 255.255.255.8__
Default gateway CIP)Y: pReFameiit: i U NS
Primary nameserwver:

<Tah>/<Alt-Tah> hetuween elements <Space> selects | <F12> next =creen

netconfig will prompt you for the IP address, netmask, gateway, and nameserver
of your network. Enter these as appropriate for the system. After confirming these
settings, the utility will exit. Reboot the system, and the new network settings will
take eftect.

trixbox’s Web Interface

One of trixbox’s nicer features is a Web interface that allows you to manage the
system through a Web browser. It uses PHPConfig Asterisk config editor, which
allows you to edit the files directly, in addition to using freePBX, which is a stan-
dardized interface for managing certain Asterisk features.

www.syngress.com

42 Chapter 2 ¢ Setting Up Asterisk

Tools & Traps...

The Danger with Frameworks

freePBX is an amazing system for simplifying the Asterisk configuration pro-
cess. However, as with any framework, you are constrained by what the frame-
work supports. Trying to go beyond what the framework supports is often a
tedious process. So, while freePBX lowers the bar for learning Asterisk, you
can grow out of it quickly.

By entering the system’s IP address into your Web browser, you’ll be greeted
with trixbox’s home page.You'll see links for the system’s Asterisk Recording
Interface which manage the ability to record audio conversations on Asterisk, scripts
to manage Asterisk’s recordings, voice mail, and call monitoring recordings; the
MeetMe management system, a system to manage MeetMe conferences; Flash
Operator Panel, a phone operator panel for Asterisk written in Flash; and SugarCRM
customer relationship management software. In the upper right, you’ll see a link to
switch into “Maintenance” mode. Clicking the link will prompt you for a username
and password. Log in with the username maint and the password password.

Tools & Traps...

| See What You Did There...

trixbox doesn’t use an SSL-encrypted Web session when maintaining the
system. This means anyone sniffing the network can see exactly what you are
doing on the Web page, including any usernames and passwords you may
enter.

The trixbox management system is very full featured, and a book could be
written on these two systems alone, so let’s just take a (very) quick tour of the two
major configuration editors on the system: The PHPConfig Asterisk config editor
and the freePBX system. Figure 2.14 shows the trixbox system default page.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 43

Figure 2.14 The trixbox System Default Page

¥ trixbox - User Mode - Mozilla Firefox

File Edit w History Bookmarks Tools Help

@ - m - @ !@: = W4 hitp:f192. 16810, 100user/ |~ | G-

;r.gﬁd_-l Qt:{ User made [suitch |

Home ARI MeetMe FOP SugarCRM

What is trixbox"?

trizhoy is the world's most popular Asterisk-hased distribution. trizbox enables even the novice user to quickly set up
a voice over IP phone systern and other necessary applications such as mysagl, sugarcrm and more, trikbox can be
configured to handle a single phone line for a home user, several lines for a small office, or several T1s for a million
minute a month call center.

Getting Started
trixhox is a distribution of a number of other applications, Each of these applications help you manage some portion
of your trizbor deployment, Below is a brief description of some of the leading applications within trixboz;

Voicemail and Recordings
This is the Asterisk Recording Interface, It provides a user friendly web interface to voicemail and call monitor
recordings. As well, it provides access to user settings in Asterisk,

Web MeetMe
This application helps you manage the web based conferencing ability of trizbox,

FOP
Similar to HUDlite, FOP is an operator and call-control software. FOP runs inside your web browser using Flash, vs.
HUDlite which runs on your Windows %P, Mac or Linux desktop,

SugarCRM

This is an open source contack center software, great for manaaging your contacks online, scheduling and most
importantly sales force automation,

T — an

freePBX

freePBX is accessed by clicking the Asterisk link of the main menu, and then clicking
the freePBX link. freePBX will greet you with a welcome screen and a list of menu
options on the top. From here you can access the setup options, system tools, call
activity reports, Flash Operator Panel, and the Asterisk recording interface. Clicking
Setup will take you to the setup main page. The main page has a list of options on
the left, which will allow you to administer user accounts, extensions, and general
Asterisk settings; configure dial plans; and set up and control inbound and outbound
trunks. See Figure 2.15.

www.syngress.com

44

Chapter 2 ¢ Setting Up Asterisk

Figure 2.15 Setting Up an SIP Account in freePBX

%2 trixbox - Admin Mode - Mozilla Firefox

Fle Edt View Hstory Bookmarks Tooks Help

Qf - l@ i - J, (@) - VA hitp:if192.168,10. 100jmaint 2Frazpbx | | G- o

Do) T .

Home Forum Packages Asterisk System Settings

| | Tools| Reports| Panel| Recordings |

e oo
Apply Configuration Changes Language: English | Setup

Adrninistrators

SretrrzEl Sy Please select your Device below then click Submit

Qutbound Routes
Trunks

Inbound Routes

Device

Generic ZAP Device
Other (Custorn) Device

Submit

PHPConfig

PHPConfig is a great way to edit configuration files without having to deal with a
shell terminal. It allows you to edit files just like they were in a text editor, but
without having to learn how to use a Linux shell. It provides the best of both worlds.
PHPConfig can be accessed by clicking the Asterisk link on the maintenance home
page and then clicking the Config Edit link. Afterward, PHPConfig lists all the files
in the Asterisk configuration directory. Clicking the name of one of these files brings
the file up in an edit window. To the left of the edit window, PHPConfig lists all the
sections it reads from that file, allowing you to quickly jump to and edit the section
you wish to work on. When finished editing, click the Update button below the
edit window. PHPConfig will then write the file to disk. The changes are not imme-
diately reflected in Asterisk though.To reload all the configs, you will need to click
the Re-Read Configs link at the top of the page. This tells Asterisk to perform a
“reload” command that will reload all the configuration files. If there are no errors,
PHPConfig will then display “reset succeeded.” See Figure 2.16.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 45

Figure 2.16 Editing extensions.conf in PHPConfig

% trixbox - Admin Mode - Mozilla Firefox

File

@

Edit Wiew History

Cow

Bookmarks

- (=) @5+ VA hip: 192,168, 10, 100maink fZconfigEdic

Tools Help

.|>-

extensions.cont
Header

from-trunk

from-pstn
from-did-direct
macro-dial
MACro-exten-ym
MACTO-YT
macro-simple-dial
macro-get-ymeontext
macro-fixcid
MACro-rg-group
macro-outisousy
macro-hangupcall
macro-faxreceive
macro-dialout
macro-dialout-default
macro-dialout-trunk
macro-agent-add
macro-agent-cel
macro-dialaut-enum
macro-record-enable
macro-dumpyars
macru-user—\ugnn
Macro-user-logoff
macro-systemrecording
macro-user-callerid
macro-outhound-callerid
MACIo-privacy-mgr
from-sip-external
from-internal
bad-numpber

i ol

Edit: extensions.conf

exten => 5,22,G0tolf ($[4{HuntMembers} >= 1]730) ; if this is from rg-group, don't strip prefix
(Returning there are no members left in the hunt group to ring)

.30, Set (HuntMember=Hunt Member §{ HuntLoaop})

,31,Gotolf ($[4["9{CALLTRACE HUNT:" '= ""] g $["§{RingGroupMethod;" =
,32,5et (CT_EXTEN=${CUT{ARG3, , $[§{HuntLoop: + 1])})
,33,5et (DB (CALLTRACE/ ${ CT_EXTEN!)=${ CALLTRACE HUNT})

s,34,Goto (s, 42)

"hunt" 1]732:35)

mwmom

5,35,G0tolf (§[$["§{CALLTRACE HUNT}™ != *" | g $["§{RingGroupMethod} " =
5,36,53et (CTLoop=0)

5,37,Gotolf($[${CTLoop} > ${HuntLoop}]?42 |} : if this is from rg-group,
5,38, 5et (CT_EXTEN=3{CUT(ARG3,, $[$¢CTLoop: + 1111)
s,39,5et (DB (CALLTRACE/${CT_EXTEN})=${CALLTRACE HUNT})

5,40, 8et [CTLoop=§[1 + §{CThoopil)

3,41,Goto(3,37)]

Mfremoryhunt™ 1723

don't strip pre

exten => s,42,Dial (${${HuntMerber}}i{dst) :; dialparties will set the priority to 20 if $ds is no|
exten =>"s,43,5ec (Buntloonsi[1.+ S(HuAtLoop} 1)

=> =,44,Set (HuntMember==§ [§{HuntMerbers} - 1]}

=> 5,45,Goto (s, 22)

B e LR RS T R

n => 3,51,Goto(s,42)

; maks sure hungup calls go here so that proper cleanup occurs from call confirmed calls and the
exten => h,1,Macro{hangupcall)

: Ring an extenzion,
; to voicemail

<

if the extension is busy or there i3 no answer send it

Installing Asterisk from Scratch

Before there were live CDs and distributions, there was source code. Asterisk’s avail-

ability of source code is one of its biggest features, allowing anyone to “poke under

the hood,” see the internal workings, and rewrite portions if needed. Compiling

Asterisk from its sources gives you the greatest amount of control as to what files are

installed, and where they are installed. Unneeded options can be removed entirely,

allowing a leaner Asterisk install. However, as always, there is a downside. Compiling

anything from source is intimidating if you aren’t used to doing it. However, it’s ter-

ribly once you figure it out.

www.syngress.com

46

Chapter 2 ¢ Setting Up Asterisk

The Four Horsemen

When compiling Asterisk from source, there are four major pieces to the puzzle:
LibPRI, Zaptel, Asterisk-Addons, and Asterisk.

Asterisk is, you guessed it, the PBX itself. This package contains the code for
compiling the PBX and all its modules. You aren’t going to get far compiling Asterisk
without this package.

LibPRI is a library for handling the PRI signaling standard. The PRI standard
was created by the Bell System back in the 1970s and is now an ITU standard.
LibPRI is a C implementation of the standard. This package may be required
depending on the hardware installed on the system.

Asterisk-Addons is a package that contains certain optional “bells and whistles,”
such as an MP3 player so Asterisk can handle sound files encoded in MP3, and mod-
ules for logging calls to a MySQL database. While these modules are completely
optional, they are good to have, especially the MP3 player, and the resources they
take up are minimal. Installing them is recommended.

Zaptel 1s the package that contains the driver and libraries for Asterisk to talk to
Zapata telephony hardware, which are the telephone interface cards discussed earlier.
This is a handy package to install, even if there is no Zaptel hardware on the system,
since the conferencing software requires it for timing purposes.

Asterisk Dependencies

Before you start compiling Asterisk, you must make sure you have all the require-
ments satistied. First off is the compiler. If you don’t have a compiler like GNU C
Compiler (gcc) installed, you aren’t going to get very far compiling the source code.
Next, make sure you have the libraries required to compile, otherwise you will likely
have some kind of odd error at compile time. Asterisk has three dependencies:
ncurses (wWww.gnu.org/software/ncurses/), a library for text-based “graphical” dis-
plays; OpenSSL (www.openssl.org/), an open-source library of the TLS and SSL pro-
tocols; and zlib (www.zlib.net/), a data compression library.

Asterisk requires both the library itself and the associated include files. These are
included automatically if you compile from source. However, if you install the
libraries from a binary repository, you will need to include the development packages
as well. For instance, you would need to get both zlib and zlib-devel.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 47

Getting the Code

Links to all of the Asterisk code are available at http://www.asterisk.org. Clicking the
Downloads tab will take you to a page with links to grab all the necessary files. The
links to get Asterisk provide options for downloading either Asterisk 1.2 or Asterisk
1.4 directly, or visiting the source archive. Grabbing Asterisk directly only downloads
the Asterisk package, so you’ll want to download the LibPRI, Zaptel, and Asterisk-
Addons separately. The latest versions of each package should end in -current. Since
there are multiple source archives, it is best to put all of them in a common subdirec-
tory wherever the system’s source code directory is located (for example:
/usr/local/src/asterisk/). See Figure 2.17.

Figure 2.17 Getting the Source Archives via wget

£ 192.168.0.252 - PuTTY M=1E3

hbj@miina:z/fusr/local /src/asterisk$ wget http://Fftp_.digium. com/pubsasterisk/aster ~
isk-1.4-current.tar.gz
—-20:30:14-- http://ftp.digium. cumfpuhjaster1sk[aster1sk 1.4-current.tar.gz
=» "“asterisk-1l.4-current_tar_gz
Resolwing ftp.digium.com... 216.27.40.102, 69.16.138.164
onnecting to ftp.digium.com|216.27.40. 102| g0... connected.
HTTP request sent, awaiting response... 200 OK
Length: 10,965,233 (10M) [application/x-gzip]

====================================3] 10,965,233 52.23K/s ETA 0O0:00
20:33:23 (56.66 KB/s) - “asterisk-1.4-current.tar.gz’ saved [10965233/10965233]

bbj@miina:/usr/local /src/asterisk$ wget http://ftp.digium.com/pub/Tibpri/1ibpri-
1.4-current.tar.gz

——20:33:51-- http FSiftp.digium. cum/puh/11hpr1/11hpr1 -1.4-current.tar.gz
=» "libpri-1i.4-current.tar.gz

Resolving ftp.digium.com... 216.27.40.102, 69.16.138.164

onnecting to ftp.digium.com|216.27_40. 102| 80... connected.

HTTP request sent, awaiting response... 200 0K

Length: 80,021 (78K) [application/x-gzip]

70% [========================3 1 56,160 88.60K/s [=
W

Gentlemen, Start Your Compilers!

Compiling is simpler than one might think. Often, all that’s required is three com-
mands: . /configure, make, and make install. Once you have these three commands memo-
rized, you’ll do fine.

Compiling LibPRI
The first step is to compile LibPRI. This is required if you have a PRI interface
hooked into the system, but optional if you do not. First, expand the archive.

tar xvzf libpri-1.4-current.tar.gz

www.syngress.com

48 Chapter 2 ¢ Setting Up Asterisk

This will expand the source archive into a directory. At the time of this writing, it
is 1ibpri-1.4.0/. After the file is done expanding, change to the LibPRI directory.

cd libpri-1.4.0/

LibPRI doesn’t have a configuration command yet, so the only two steps are to
compile it via the make command, wait until it finishes, and then run make install.

It is important to run the make install command as a root user, otherwise the
library will not be installed correctly due to permission errors. Once everything is
done, you can exit the LibPRI directory.

cd ../

Compiling Zaptel
Compiling Zaptel more or less follows the same steps that compiling LibPRI did.
However, there are a few changes. First though, expand the archive.

tar xvzf zaptel-1l.4-current.tar.gz

Next, enter the Zaptel directory:

cd zaptel-1.4.0/

This 1s where things change from LibPRI. Zaptel is a bit more complicated than
LibPRI, so it includes a configuration script. (See Figure 2.18.) You can run this by
executing

. /configure

Figure 2.18 The Zaptel Configure Script

£*192.168.0.252 - PuTTY

checking for egrep... /bin/fgrep -E ~
checking for ANSI C header files... yes |
checking for sys/types_.h... yes
checking for sys/stat.h... yes
checking for stdlib.h... yes
checking for string.h... yes
checking for memory.h... yes
checking for strings.h... yes
checking for inttypes.h... yes
checking for stdint.h... yes
checking for unistd.h... yes
checking for initscr in -lcurses... yes
checking curses.h usability... ryes
checking curses.h presence... yes
checking for curses.h... yes
checking for initscr in -lncurses... yes
checking for curses.h... (cached) yes
checking for newtBell in -Tnewt... no
checking for usb_init in -lusb... no
configure: creating ./config.status
config.status: creating build_tools/menuselect-deps
config.status: creating makeopts
configure: *** Zaptel build successfully configured ***
Jbbj@miina:/usr/local /src/asterisk/zaptel-1.4.0%
—

www.syngress.com

<

Setting Up Asterisk ¢ Chapter 2 49

The configure script will make sure all the dependencies are fulfilled and that
Zaptel knows where to look for all the libraries. Once the configure script is done,
the next step is to run the following command:

make menuselect

This will compile and execute the menuselect utility. menuselect is a new feature
in Asterisk 1.4 that allows you to choose which modules to compile and install, per-
mitting you to “trim the fat” of any software not required in your particular situa-
tion. For example, if you do not have a Digium TDM400, you can deselect the wctdm
module during menuselect and that module will not be compiled or installed. See
Figure 2.19.

Figure 2.19 The Initial Zaptel menuselect Menu

£ 192.168.0.252 - PuTTY M=l
.

ER R

Zaptel Module Selection

ER R

Press "h" for help.

[| ———> 1. Kernel Modules
2. WMilities

You can navigate through menuselect with the arrow keys—up and down scroll
through the menu, left exits to the previous menu. Pressing Enter or the Spacebar
will select/deselect a module or enter a menu. F8 will select all the modules, and F7
will deselect all the modules. To save and quit, press X, and to quit without saving,
press q. If you forget any of the keys, press h and the help screen will be displayed, as
shown in Figure 2.20.

www.syngress.com

50

Chapter 2 ¢ Setting Up Asterisk

Figure 2.20 The Zaptel Kernel Module Menu

& 192.168.0.252 - PuTTY BX
Y

Tttt Erittttt ittt td ittt btk AR R R R A A A

Zaptel Module Selection

thEttkkitttt bttt itttk t kbt k kbbb bbb R

Press "h" for help.

[*] 1. pciradio
[*] 2. tor2
[*] 3. torisa

4. wcfxo

5. wctlxxp

6. wctdxxp

7. wctdm

8. wctdm24xxp
9. wctellxp
10. wcush

11. xpp_ush

L]

LI I)

Wildcard T100P / E100P

|

Menuselect lists a description at the bottom of the screen that explains which
module supports which card.You can safely deselect any cards your system does not
have installed. If a dependency is broken, menuselect will inform you of this and
allow you to correct the configuration.

Once you are done trimming modules from the menu, exit and save. This will
bring you back to the shell. Next, compile the Zaptel modules. This is done in one
of two ways. If the system is running a 2.4.X kernel, simply run:

make

However, if the system is running a 2.6.X kernel, run:

make linux26

After the modules are done compiling, regardless of the system kernel version,
run the installation command as a root user:

make install

And so the Zaptel modules will install. Finally, once everything is done com-
piling, move back up to the asterisk subdirectory:
cd ../

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 51

Compiling Asterisk

Believe it or not, Asterisk is just as easy to compile as LibPRI and Zaptel. Despite the
menuselect system being more complex and the compile taking a bit longer, com-
piling the code more or less follows the same process as Zaptel. First, expand the
archive:

tar xvzf asterisk-1l.4-current.tar.gz

Next, enter the Asterisk directory:

cd asterisk-1.4.0/

Asterisk has a configure script, same as Zaptel. Run it by issuing the same com-
mand:

. /configure

Next, compile and execute the menuselect utility:

make menuselect

The Asterisk menuselect is fairly more involved than the Zaptel one because the
amount of options available for Zaptel pale in comparison to those for Asterisk. You
can poke around and see if there are things you want to skip, but remember to be
careful about choosing what modules to include. As the old saying goes “It is better
to have it and not need it, then need it and not have it.”

Once you are done with the menuselect process, start compiling Asterisk:

make

Compile time varies from system to system. Once completed, the next step is to
install Asterisk onto the system.

make install

Sample programs, demos, and configuration references can then be (optionally)
installed.

make samples

Finally, move back up into the source subdirectory.

cd ../

www.syngress.com

52

Chapter 2 ¢ Setting Up Asterisk

Compiling Asterisk-Addons

Same steps, difterent package. First, expand the archive:

tar xvzf asterisk-addons-1.4-current.tar.gz

Next, enter the Asterisk directory:

cd asterisk-addons-1.4.0/

Run the configure script:

. /configure

Next, compile and execute the menuselect utility:

make menuselect

Once you done with the menuselect process, start the compile.

make

And, finally, install:

make install

Installing Asterisk with Binaries

Another option available for Linux users is to install Asterisk via an installer package.
Installer packages are files that install software packages onto a Linux distribution.
Installer packages vary from distribution to distribution: For example, a Debian’s
DPKG format will not install on a Fedora system, nor will Fedora’s RPM format
install correctly on a Debian system.

Asterisk installer packages exist in various forms for the various distributions of
Linux, Windows, and Mac OS X. While these packages are maintained by third par-
ties, and are sometimes not completely up-to-date, these provide an almost com-
pletely painless way to install Asterisk.

Installing Asterisk on Windows

AsteriskWin32 is a version of Asterisk compiled for Windows. Created by Patrick
Deurel, it 1s currently the only real option for running Asterisk on Windows.
However, AsteriskWin32 suffers from the same issues as Asterisk on Mac OS X,
namely, the inability to keep up with Asterisk development. While the current ver-
sion of Asterisk at the time of this writing is currently at Version 1.4.0,

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 53

AsteriskWin32 is at 1.0.10, being two major revisions behind. However, it has the
advantage of being the only game in town, so it can choose its own pace.

Getting AsteriskWin32

The installer package is available for download in the download section of
http://www.asteriskwin32.com/. The latest version is 0.56 which is based on
Asterisk 1.0.10.

Installing Asterisk Win32

After downloading the installer package, locate the downloaded file and execute it.
Click Next, as shown in Figure 2.21.

Figure 2.21 Welcome Window to AsteriskWin32 Setup

* Setup - AsteriskWin32 The Open Source PBX for Windows |Z|' "_-E|

Welcome to the AsteriskWin32
PBX Setup Wizard
This will install AsteriskWin32 0.56 on your computer.

It is recommended that you close all other applications before
continuing.

Click Meot to continue, or Cancel to exit Setup.

www.asterskewind2.com [MNeat =][Cancel]

Scroll through the license agreement (Figure 2.22), read it carefully (You always
read the license agreements carefully, right?) and click Next. After an “Information”
screen that further disclaims the author from any issues his program may cause, the
installer prompts you to choose a directory for it to install its files to.

www.syngress.com

54 Chapter 2 ¢ Setting Up Asterisk

Figure 2.22 License Agreement

* Setup - AsteriskWin32 The Open Source PBX for Windows

License Agreement A
Please read the following important information before continuing. 1“"' A

Please read the following License Agreement. You must accept the terms of this
agreement before continuing with the installation.

|16

GMNU GEMERAL PUBLIC LICENSE
Version 2, June 1991

Copyright (C) 1989, 1591 Free Software Foundation, Inc.

59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
Ewveryone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

|

(®) | accept the agreement
() | do not accept the agreement

www asteriskewind?.com [< Back “ Next > J[Cancel]

Since this version of Asterisk is compiled with Cygwin (a Windows port of many
popular Linux commands), the main install directory is c:\cygroot. Asterisk will be
installed as a subdirectory within this directory. See Figure 2.23.

Figure 2.23 Selecting Destination Location

Setup - AsteriskWin32 The Open Source PBX for Windows

Select Destination Location A
Where should AsteriskWin32 PBX be installed? 1""‘ 2

‘_J Setup will install AsteriskWin32 PBX into the following folder.

To continue, click Nexd. f you would like to select a different folder. click Browse.

At least 3.4 ME of free disk space is required.

www asteriskwin32.com < Back ” Nexd >][Cancel

WWw.syngress.com

Setting Up Asterisk ¢ Chapter 2 55

Unless the system has a working Asterisk configuration installed on it already, it is

best to keep both options selected, as shown in Figure 2.24. The sample configuration

files guarantee that Asterisk will find everything it needs to start itself up correctly.

Figure 2.24 Additional Tasks Selection
E

Setup - AsteriskWin32 The Open Source PBX for Windows |Z| 3] g|
Select Components A
Which components should be installed? -1*"’ AL

Select the components you want to install; clear the components you do not want to
install. Click Mext when you are ready to continue.

I Full installation v
Configs Files 02MB

Curmrent selection requires at least 36.6 MB of disk space.

www asteriskwin32.com [< Back " Mext >][Cancel]

Next, the installer will prompt you as to whether to create a shortcut to the PBX

console on your desktop, as shown in Figure 2.25.

Figure 2.25 Components Installation Selection

* Setup - AsteriskWin32 The Open Source PBX for Windows

Select Additional Tasks

Select the additional tasks you would like Setup to perform while instaling AsterskWin32
PBX. then click Nexd.

Additional icons:

Create a desktop icon

Which additional tasks should be peformed? 1““’ i

www asteriskwind2 com < Back " Next > J[Cancel

]

WWW.syngress.com

56 Chapter 2 ¢ Setting Up Asterisk

Choosing this option is purely personal preference. The installer will create a
group under Start | Programs that will have all the necessary shortcuts. Click
Next. AsteriskWin32 will start to copy files over. Finally, Asterisk will be installed

(Figures 2.26 and 2.27). Pat yourself on the back. Wasn’t that easy?

Figure 2.26 Installation of AsteriskWin32

* Setup - AsteriskWin32 The Open Source PBX for Windows

Installing A
Please wait while Setup installs AsteriskWin32 PBX on your computer. 1““' i

Extracting files..
c\cygroottastersk \war'lib\sounds“demo-4nstruct gsm

[IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII

www asteriskwindZ.com Cancel

Figure 2.27 AsteriskWin32 Setup completion

EH

Setup - AsteriskWin32 The Open Source PBX for Windows |z| O

Completing the AsteriskWin32
PBX Setup Wizard

Aste rl S k Setup has finished instaling AsterskWin32 PBX on your
c

amputer. The application may be launched by selecting the
installed icons.

Click Finish to exit Setup.

View readme rtf

www asteriskwind2.com

WWw.syngress.com

Setting Up Asterisk ¢ Chapter 2 57

Starting Asterisk Win32

AsteriskWin32 has three difterent “consoles”: The PBX Manager & Console, the
AsteriskWin32 Console, and AsteriskWin32 GUI. All of these serve the same pur-
pose: to start, run, and manage the Asterisk server. However, each of these has slightly
different abilities and caveats.

The AsteriskWin32 Console can be started by choosing Start | Programs |
AsteriskWin32 | AsteriskWin32 Console. This is the standard Asterisk console
that is part of every Asterisk install. You’ll be met with the same exact console if you
start up Asterisk in Linux. When executed, the Asterisk process starts up and never
goes into the background, leaving the console up on the screen. From here, you can
interact with Asterisk just as you would anything else. However, when that console is
closed, Asterisk does not continue running. Because it never put itself in the back-
ground, it will exit when the console closes.

Another option is AsteriskWin32’s GUI. This 1s a GUI frontend to the Asterisk
CLI. While it behaves similarly to the CLI console, it has the advantage of being able
to minimize itself to the system tray, keeping itself running while not having to be
up on your screen. However, just like the CLI console, if the window is closed, the
server will stop running.

Finally, AsteriskWin32 has its own PBX manager, which is designed to automate
the starting and stopping of the Asterisk process. This is available under Start |
Programs | AsteriskWin32 | PBX Manager & Console. When the console
starts, it will try to connect to Asterisk. If Asterisk is running on the system, it will
connect and display “Connected to Asterisk” and start displaying system messages in
the main window. However, if Asterisk isn’t running, it will display “Unable to con-
nect to remote Asterisk” in the main window. To start Asterisk, select PBX Tools |
Start and the console will start the Asterisk GUI minimized to your system tray.
After the server is started, it will connect to it.

Key difterences exist between the PBX managers and the consoles. The biggest
difference is that when the manager is closed, the server process continues to run
separately, be it in the form of the GUI or the CLI console. There are also some
rudimentary options for controlling voice-mail boxes, loaded modules, call parking,
and the call manager system. While these do simplify the process, and let you avoid
editing the configuration files directly, they only hit on the basic options and do not
let you configure the advanced capabilities.

www.syngress.com

58

Chapter 2 ¢ Setting Up Asterisk

Starting and Using Asterisk

Congratulations, you are the proud owner of a full-fledged Asterisk installation. Feel
free to pass out cigars in the office. If you’re under 18, make sure they’re candy

cigars. After Asterisk is installed, the next step is to start it. Thankfully, if you installed
the sample configuration files, Asterisk should run out of the box without any addi-

tional changes.

Starting Asterisk

Starting asterisk is easy, just run asterisk -vvve, which will execute the server. These
options tell the server not to run in the background and to run at a verbosity level of
three, which means all the important messages will be displayed and enough less
important ones so as to not overwhelm and that the user will see all diagnostic mes-
sages. While many messages will quickly scroll by on the screen, most of these are
simple initialization messages that can be ignored. If any fatal errors occur, Asterisk
will stop and exit so the message remains on the screen. Asterisk will display
“Asterisk Ready” when it has successfully run, as shown in Figure 2.28.

Figure 2.28 Congratulations! You're Running Asterisk!

Added extension '6BB° priority 1 to demo
Added extension '6HB’ priority 2 to demo
Added extension '6BB' priority 3 to demo
Added extension '6BB’ priority 4 to demo
Added extension '85HB' priority 1 to demo
Added extension '8588° priority 2 to dermo
Registered extension context 'default’
Including context 'demo’ in context ‘default’
pbx_config.so => (Text Extenzion Configuration)
Parsing 'setcs/asterisksdundi.conf’: Found
Using TOS bits B
DUNDi Ready and Listening on B.8.8.8 port 4528
Registered custom function DUNDILOOKUP
pbx_dundi.so => (Distributed Universal Hunber Discowvery (DUNDiJ)
pbx_loopback.so => (Loopback Switch)
pbx_realtime.so => (Realtime 3Switch)
Pbx_spool.so => (Outgoing Spool Support)

Registered application 'DeadAGI’

Registered application 'EAGI’

Registered application 'AGI’
res_agi.so => (Asterisk Gateway Interface (AGIJ)
res_clioriginate.so => (Call origination from the CLI)
res_convert.so =» (File format conversion CLI comMand)
Asterisk Ready. [|
*CLI>

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 59

The other way to run Asterisk is to start the daemon by running the asterisk com-
mand without any arguments at the command prompt. This will start the server in
the background. Starting in the background as opposed to the foreground has advan-
tages and disadvantages. While the server won'’t tie up a terminal or exit when the
terminal 1s closed, it will not display any diagnostic messages to the terminal during
startup either. Running Asterisk in the background is the most common way to run
Asterisk since normally an Asterisk process would be running at all times. One
would want to run Asterisk in the foreground if diagnosis information is needed.

To connect to an already running Asterisk process, run the command asterisk -vvvr.
This will duplicate the verbosity settings to the above asterisk -vvve command, except it
will not start the server process, only attempt to connect to an existing one.

Restarting and Stopping Asterisk

Every beginning has an ending. Asterisk can be stopped and restarted many ways,
from the immediate and abrupt stop, to the slow and graceful shutdown. While stop-
ping and restarting is usually not required in the normal course of operation, occa-
sionally it is required.

The ways to stop and restart Asterisk are syntactically similar. You can issue the
stop or restart command to Asterisk in three ways. When issuing the restart or stop com-
mand, you can tell Asterisk to do it now, gracefully, or when convenient. These control how
the server will go about shutting down.

now 1s the proverbial “neck snap” when shutting down or restarting. The server
process is shut down immediately, without any concerns for activity. Any active calls
are terminated and all active threads are killed. This is not normally the way to shut
down the server in a production environment. However, if the server needs to be
quickly downed, this is the command to issue.

gracefully 1s a much cleaner way to shut down or restart. After the command is
issued, Asterisk stops answering all new calls. However, unlike now, Asterisk does not
terminate calls currently in process. While this is much better in a production envi-
ronment, this can also be undesirable since it leaves calls unanswered.

Stopping or restarting when convenient solves this problem. After issuing this com-
mand, Asterisk continues functioning normally, the server restarts or stops when there
are no active calls within the system. While this is the best when talking in terms of
lost productivity, if the system constantly has active calls on it, the system will never
stop or restart.

www.syngress.com

60 Chapter 2 ¢ Setting Up Asterisk

Updating Configuration Changes

Configuration changes are one of those day-to-day changes Asterisk faces. Users are
added, voicemail boxes are deleted, extensions change. Every time you edit one of
the configuration files, the changes aren’t immediately reflected by the system.
Restarting Asterisk allows these changes to be loaded, but on a high-traffic system,
this will either stop phone calls, or possibly wait a long time. reload fixes that. Rather
than shut down the Asterisk process and restart it, reload reloads all the configuration
files on-the-fly without interrupting system activity.

Checklist

m Make sure voice and data networks are separated either physically or by
VLANSs. VLANSs allow you to control both reliability and security. If the
voice and data networks are not separated, it is possible for an attacker to
monitor all telephone calls on the network.

= Make sure that trixbox is isolated from the public Internet or that root
logons are disabled from remote hosts via SSH.

m Ensure that precautions are taken when entering passwords for trixbox’s Web
management software since these passwords will go over the wire in plain
text.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2 61

Summary

Setting up Asterisk is a tedious process. Servers need to be designed to handle the
expected call load. Figuring this out requires figuring out if the calls must be
transcoded or have protocol translation, along with storage space for the voice
prompts and voice mail. In addition to the server, networks also must be redesigned
in order to provide reliability and security for the phone conversations.

Installing Asterisk can be done one of many ways. Live CDs are the easiest way
to try Asterisk, just boot a CD and the system is running Asterisk. Installation CDs
allow you to install Asterisk onto a clean system and set up a working system.
Compiling Asterisk permits you to have maximum flexibility as to how Asterisk is
set up and installed. Binaries can allow you to set up a system quickly and easily,
but that system may be a few versions behind. How you set up Asterisk depends on
your situation.

Starting and using Asterisk is mostly done through the command-line interface.
The CLI allows you to start and stop Asterisk, along with reloading the configura-
tions. Different options on the shutdown and restart commands let you control exactly
when and how the system will shut down or restart.

Asterisk isn’t an easy system to learn, but once you get the hang of it, it’s a breeze
to work with.

Solutions Fast Track

Choosing Your Hardware

M Choosing a reliable server for a PBX is important, because if the server goes
down, the telephones go down.

M Choosing the proper RAM and processing speed will allow a server to
handle multiple calls without overtaxing the processor, including situations
where transcoding and protocol translation are required.

M Two types of phones are in use today: soft phones, which are software-based
telephones; and hard phones, which are physical hardware devices or
interfaces that emulate an analog phone system.

M VLANSs are important for both security and network management reasons

www.syngress.com

62 Chapter 2 ¢ Setting Up Asterisk

4]

Difterent types of bandwidth management have both their pros and cons.

Installing Asterisk

4]

4]

There are numerous ways to install Asterisk, Live CDs, Asterisk distributions,
binaries, and compiling from scratch.

Live CDs, such as SLAST, are great if you want a system where you can try
out Asterisk without fear of screwing something up.

Asterisk Linux distributions, such as trixbox, provide a simple and easy way
to install Asterisk on a new system. trixbox also comes with numerous bells
and whistles such as CRM software and a Web-based configuration editor.

Compiling from scratch permits you to take the most control over the
installation of Asterisk, allowing you to determine what modules are
compiled and installed.

Binaries allow you to set up Asterisk easily and quickly, but you are at the
mercy of the package maintainer.

Starting and Using Asterisk

4]

4}

4}

Asterisk has both a debug and a remote console, allowing you to run it in
the foreground when needed and keep it in the background when it is
running.

You can start and stop an Asterisk server in three ways: now, gracefully, and when

convenient. Each method controls when Asterisk will restart.

Reloading Asterisk lets you reread configuration files without restarting the
system.

Links to Sites

http://slast.org — The SLAST home page.

www.infonomicon.com — The Infonomicon Computer Club, maintainers of

SLAST.

www.trixbox.org — The trixbox home page.

www.syngress.com

Setting Up Asterisk ¢ Chapter 2

m www.centos.org — CentOS, the Linux distribution trixbox is based upon.

® www.gnu.org/software/ncurses/ — The NCurses home page, a dependency
of Asterisk.

m www.openssl.org/ —The OpenSSL project, a dependency of Asterisk.
m www.zlib.net/ —The ZLib compression library, a dependency of Asterisk.
m www.asteriskwin32.com/ — The AsteriskWin32 home page.

® www.imgburn.com/ — A free ISO burner for Microsoft Windows.

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q: What is the best way for me to install Asterisk?

A: There is no “best way” to install Asterisk. It depends heavily on your situation.
Different methods are better for different situations. If you want to just test the
waters, however, perhapsruse=a;Live CD on your personal workstation. If you
want to task an existing server, to store voice mail for your company, you might
want to consider compiling Asterisk, from scratch.

Q: How much should I spend on phones?

A: Phones follow the “you get what you pay for’2rule. If you’re cheap when it
comes to phones, you will get'cheap phones. A good VoIP phone should cost
about $150.

Q: I have Windows. How can I burn an ISO?

A: The Windows XP CD burning system does not support burning ISOs to disk.
However, there is a freeware utility that will burn ISOs called ImgBurn, which is
available at http://www.imgburn.com/.

www.syngress.com

64 Chapter 2 ¢ Setting Up Asterisk

Q: How can [make my computer boot from a CD?

A: This depends greatly on your computer. Certain BIOSes, in order to get the
computer to boot from a CD, may need a special key pressed during startup, or a
setting may need to be configured within the BIOS itself.

Q: Is there a disadvantage to running Asterisk 1.0 versus Asterisk 1.4?

A: Yes! Asterisk 1.4 has many major bug fixes and feature additions. Plus, since this

book is based on Asterisk 1.4, certain descriptions in the book may not work on
Asterisk 1.0.

www.syngress.com

Chapter 3

Configuring Asterisk

Solutions in this chapter:

= Figuring Out the Files

= Configuring Your Dial Plan

m Configuring Your Connections
= Configuring Voice Mail

m Provisioning Users

m Configuring Music on Hold, Queues, and
Conferences

Related Chapters: 1, 2

M Summary
M Solutions Fast Track

M Frequently Asked Questions

65

66

Chapter 3 ¢ Configuring Asterisk

Introduction

Installing Asterisk is only half the battle. The other half is configuring it. Asterisk
configuration can be just as difficult as installing the program, so don’t think you're
in for an easy ride. Configuring Asterisk depends heavily on how exactly you want
your PBX to function and what features you want available to users.

Configuring Asterisk can be somewhat of an adventure. Asterisk, like many Unix
utilities, has many small configuration files all interconnected to one another. This has
its pros and cons: While it adds a level of complexity to the system by requiring you
to remember what feature is in which specific file, it allows you to make a mistake in
one file and not have the entire proverbial house of cards come crashing down.

The plus about configuring Asterisk is that once you get the hang of it, you can
easily start flying through configuration files and tackle larger and more complex
problems. Asterisk’s configuration files have a certain way of doing things and once
you figure it out, picking up the advanced stuff is easy.

Figuring Out the Files

If you enter into your Asterisk configuration directory, /etc/asterisk, you’ll see 62
files by default. If you’re taking over a previous installation administered by someone
else, you may see more than that. Looking at the file names, you'll see they have
cryptic labels like rtp.conf, or file names that seem to be the same thing, like
asterisk.adsi and adsi.conf. When trying to configure your system, finding the right file to
edit can be like unearthing the proverbial needle in a haystack. (See Table3.1 for
information on what each file controls.)

Table 3.1 Asterisk Configuration Files

Filename Role

adsi.conf Controls Asterisk Analog Display Services Interface set-
tings

adtranvofr.conf Contains settings related to Voice over Frame Relay and
AdTran equipment

agents.conf Contains settings for call agents that work call queues

alarmreceiver.conf Contains settings for the Alarm Receiver application

alsa.conf Contains settings for the CLI sound system if using ALSA

sound drivers

Continued

www.syngress.com

Configuring Asterisk ¢ Chapter 3 67

Table 3.1 continued Asterisk Configuration Files

Filename

Role

amd.conf

asterisk.adsi
cdr.conf
cdr_custom.conf

cdr_manager.conf

cdr_odbc.conf
cdr_pgsql.conf
cdr_tds.conf

CODECGs.conf
dnsmgr.conf

dundi.conf
enum.conf
extconfig.conf
extensions.ael

extensions.conf
Features.conf
festival.conf

followme.conf
func_odbc.conf

gtalk.conf
h323.conf

Contains settings for answering machine detection on
outbound calls

Asterisk Analog Display Services Interface script
Contains settings for Call Detail Records (CDRs)
Contains settings for custom Call Detail Record mappings

Contains settings for sending CDRs to the Asterisk
Management Interface

Contains settings for storing your CDRs into a database
connected via ODBC

Contains settings for storing your CDRs into a PostgreSQL
SQL database

Contains settings for storing your CDRs into a FreeTDS
database

Contains CODEC settings

Contains settings about Domain Name System (DNS)
lookups done by Asterisk

Controls Distributed Universal Number Discovery connec-
tions and settings

Controls Telephone Number Mapping/E164 connections
and settings

Contains mappings for external database connections for
configuration settings

Contains the dial plan settings, written in Asterisk
Extension Language

Contains the dial plan settings
Contains settings for call parking

Contains settings for the connection between Asterisk
and the Festival TTS Engine

Contains settings for the FollowMe application

Contains settings for template-based SQL functions
accessed via ODBC

Controls Google Talk connections and settings
Controls H323 Protocol connections and settings

Continued

www.syngress.com

68

Chapter 3 ¢ Configuring Asterisk

Table 3.1 continued Asterisk Configuration Files

Filename Role

http.conf Contains settings for Asterisk’s integrated HTTP server

iax.conf Controls Inter Asterisk eXchange Protocol Connections
and Settings

iaxprov.conf Contains settings for IAXy provisioning

indications.conf

jabber.conf
logger.conf
manager.conf
meetme.conf
mgcp.conf

misdn.conf

modem.conf
modules.conf

musiconhold.conf
muted.conf
osp.conf

oss.conf

phone.conf
privacy.conf
queues.conf
res_odbc.conf

res_snmp.conf
rpt.conf

rtp.conf

Contains settings for the system’s Ring, Busy, Reorder, and
Special Information tones

Controls Jabber Protocol connections and settings
Contains settings about where and what to log

Contains settings for the Asterisk Management Interface
Contains settings for the MeetMe conferencing system

Controls Media Gateway Control Protocol connections
and settings

Controls Integrated Serial Digital Networks (ISDNs) con-
nections and settings

Controls ISDN modem settings

Controls which applications and modules are loaded
when the server is started

Contains Music on Hold settings
Contains settings for the Mute Daemon

Controls settings and connections for the Open
Settlement Protocol

Contains settings for the CLI sound system if using OSS
sound drivers

Contains settings for Linux Telephony devices
Contains settings for the PrivacyManager application
Contains settings for call queues

Contains settings for external database connections for
configuration settings

Contains Simple Network Management Protocol settings
for the SNMP application

Controls settings of the app_rpt application, which
enables radio systems to be linked via VolP

Contains Real-time Transport Protocol settings

www.syngress.com

Continued

Configuring Asterisk ¢ Chapter 3 69

Table 3.1 continued Asterisk Configuration Files

Filename Role
say.conf Contains string settings for the various say_* applications
sip.conf Controls Session Initiation Protocol (SIP) connections and

sip_notify.conf
skinny.conf

sla.conf
smdi.conf

telcordia-1.adsi
udptl.conf

users.conf

voicemail.conf
vpb.conf
zapata.conf

settings
Contains settings for SIP’s NOTIFY command

Controls Skinny Client Control Protocol connections and
settings

Controls Shared Line Appearance connections and set-
tings

Contains settings for the Simplified Message Desk
Interface

Default Telcordia Analog Display Services Interface script

Contains settings for UDPTL, one of the transports for
Faxing over IP Networks

A file that controls a combination of settings, allowing
for easier user maintenance

Contains voice mail settings and mailbox details
Contains settings for VoiceTronix hardware
Controls settings for Zapata hardware

To say Asterisk has a lot of settings would be an understatement of mammoth

proportions. While this is a plus when you want to tweak Asterisk to fit your needs
exactly, it is a bit overwhelming. However, don’t fret. Certain configuration files can
be ignored if you don’t have certain hardware, and other files can be ignored if you
do not need to enable certain features of Asterisk.

Configuring Your Dial Plan

The dial plan is the logic behind how phone calls are routed through your Asterisk
installation. Asterisk runs every incoming call, every outgoing call, and every call in
between extensions through the dial plan logic in order to determine where it
should go and whether or not it should be completed. The dial plan is contained in
extensions.conf, and therefore it can be said that extensions.conf is easily the most important
configuration file in Asterisk. Removing extensions.conf is similar to removing a traffic

www.syngress.com

70

Chapter 3 ¢ Configuring Asterisk

light at a complicated intersection; cars will want to enter and cars will want to leave,
but there will be no way to direct them.

extensions.conf 1s a bit more complicated than a typical configuration file. On top of
the usual sections and settings, there is a logical flow similar to a program. Essentially,
extensions.conf 1s one giant script. The sooner you keep this in mind, the easier it will be
for you to write a good dial plan.

Contexts, Extensions, and Variables! Oh My!

extensions.conf can be broken down into three major parts: contexts, extensions, and
variables. Each has their own unique and important function and needs to work
together for a good dial plan to function.

Contexts

To put it simply, contexts are the fences that keep your extensions from getting tan-
gled up in a big mess. A context is a simple way for grouping extension commands
based on what the user has dialed. To begin a context, put the name of a context by
itself in square brackets. Each context then contains a list of commands. In
extensions.conf there are two special contexts called [general] and [globals] in which cer-
tain settings can be set.

general has a few special settings that define how extensions.conf behaves. First oft is
the static setting. This, can be set to either yes or no, but for some reason, only yes has
been implemented. This will eventually control Asterisk from rewriting the exten-
sions.conf every time an extension is added or deleted. The next setting is writeprotect.
This can also be set to either yes or no, and this controls the ability of someone at the
CLI to rewrite your dial plan via the save dialplan command. This may seem handy, but
doing so will delete all comments in the file.

Each extension follows a similar syntax. exten => EXTENSION,PRIORITY, COM-
MAND(ARGS). exten => precedes every extension. This is a directive that tells Asterisk
to define an extension, as opposed to a context. The next three parts of an extension
are EXTENSION, PRIORITY, and COMMAND(). Let’s cover these three portions.

Extensions

Extensions can be broken down into three types: a constant extension, a wildcard
extension, and a special extension. A constant extension is an extension that when
coded to a literal constant is the dial plan. A wildcard extension is a context that uses

www.syngress.com

Configuring Asterisk ¢ Chapter 3 71

wildcards to match multiple possibilities for the extension. Wildcards can be either
internal Asterisk wildcards or RegEx-like patterns (see Table 3.2).

Table 3.2 Extension Wildcards Used in Asterisk

Wildcard Patterns Matched

[0126-9] Any digit within the pattern. (In this case: 0,1,2,6,7,8, and 9).

X Any number 0 through 9. The equivalent of [0-9].
z Numbers between 1 through 9. The equivalent of [1-9].
N Numbers between 2 through 9. The equivalent of [2-9]. This scheme

is used most commonly in Area Code and Prefix assignments.
Any number, one or more times.

So with Wildcard extensions, it is simple to reroute numerous extensions with
one line of code. Let’s say a department in your building, the ever-important widget
department, have moved to another division and wanted to leave a message at their
old extensions informing callers that they had moved. They previously occupied
Extensions 300 through 329 on your PBX. Rather than rewrite 30 lines; you can add
a single extension of

exten => 3[0-2]X,1,Playback (WidgetDeptHasMoved)

This will have any caller dialing the department’s former extensions greeted by a
message informing them of the move. Playback is a command that plays back a
sound file stored on the system; we’ll cover it and its counterparts later.

In addition to wildcard and literal extensions, there are also special extensions that
correspond to special events in the dial plan (see Table 3.3).

Table 3.3 Special Extensions Used in Asterisk

Extension Name Description

S Start Used when a caller is put in a context before
dialing a number.

I Invalid Used when a caller dials an extension not defined
in the current context.

H Hangup Used when a caller hangs up.

T Time Out Used when a caller does not respond within the

response timeout period

Continued

www.syngress.com

72

Chapter 3 ¢ Configuring Asterisk

Table 3.3 continued Special Extensions Used in Asterisk

Extension Name Description

T Absolute Used when a caller does not respond within the
Time Out about timeout period

0] Operator

Extensions do not necessarily need to be numbers either. They can be made with
any type of text. While extensions like “fuzzybunnydept” cannot be dialed by a caller
if included in your context, it can be used internally by your dial plan. We’ll see how
this can come in handy later in the chapter.

Priorities

PRIORITY controls the flow in which commands are executed. For each extension,
this 1s either controlled by an increasing number or a special n syntax. The n syntax
tells Asterisk to execute the extension one line after the other:

[incomingcall]

exten => s,1,Answer ()

exten => s,n,Playback (mainmenu)

exten => s,n,Hangup ()

In this example, any call being routed to the “incomingcall” extension in Asterisk
would have its call answered, a menu would then play, and then the call would be
terminated. After Asterisk finishes executing one line, the next line would be exe-
cuted. Numbering the steps provides greater flexibility with the dial plan since it is
possible to control the flow logically rather than line by line. For example, the exten-
sion shown earlier could be rewritten with a numbered sequence
[incomingcall]
exten => s,2,Playback (mainmenu)
exten => s,1,Answer ()

exten => s,3,Hangup ()

Asterisk still answers, plays the menu, and hangs up because it executes by line
number rather than by the order in which the lines appear. It executes step 1, fol-
lowed by steps 2, and then 3. These steps could be scattered throughout the context
and intertwined with hundreds of extensions. As long as they are numbered correctly,
Asterisk will execute them in order for that context.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 73

Dial Plan Commands

The commands are the heart of any dial plan. They are what actually cause Asterisk
to answer the call, ring the phone, transfer the call, play the menu, and do numerous
other things. See Table 3.4 for a look at some of the more common ones.

Table 3.4 Common Commands in Asterisk

Command Description

Dial(CHANNEL) Dials a channel

Answer() Answers a ringing channel
Playback(FILE) Plays a sound file in the foreground

Background(FILE) Plays a sound file in the background, while waiting for the
user to input an extension

Hangup() Hangs up the call
SayDigits(NUMBER) Says a number, digit by digit

Notes from the Underground...

Channels vs. Extensions

It's easy to get confused when people start tossing around terms like “exten-
sions” and “channels” when the two words seem interchangeable.
Sometimes, people do use them as if they are identical, but don’t be one of
these people. Channels and extensions are two separate and completely dif-
ferent things. Extensions are the physical numbers assigned to a device, while
channels, on the other hand, are the connections to the devices themselves.
For example, you can have a phone at your desk set up to ring on three sepa-
rate extensions; however, each of these extensions will ring the same
channel—namely, your phone.

Variables

Variables in extensions.cont are nothing special. They act like variables in any other
language. Variables are set via the Set() command and are read via the variable name
encased in ${}:

www.syngress.com

74

Chapter 3 ¢ Configuring Asterisk

[example]
exten => s,1,Set (TEST=1)
exten => s,2,NoOp (${TEST})

Variables are common in simple dial-plan applications and Asterisk uses certain
variables for internal functions, but their use is somewhat uncommon in regular dial
plan usage.

Tying It All Together

All of these pieces of dial plans make little to no sense when thinking about them in
the abstract, so you may be scratching your head right now. Let’s take a look at how
all of these would be used in an everyday environment, by looking at a simple exten-
sions.conf:

Example 3.1 A Very Simple extensions.conf

[default]
exten => s,1,Answer ()
exten => s,2,Background (thank-you-for-calling-conglomocorp)
exten => s, 3,Background (conglomocorp-mainmenu)

exten => s,4,Hangup ()

exten => 100,1,Dial (SIP/10)
exten => 200,1,Dial (SIP/20)

When a call enters the [default] context, it is answered by Asterisk. Asterisk then
starts playing the mainmenu sound file while waiting for the caller to enter digits. At
this point, the caller can either enter 100 and be connected to the channel SIP/10 or
20 and be connected to the channel SIP/20. If the menu finishes playing and the
user has not entered any digits, the call will be hung up on.

Using Special Extensions

Now, hanging up on your caller if they wait to listen to the whole menu seems kind
of rude, doesn’t it? So let’s take the file we had before and use some special exten-
sions to have the menu replay if the user hasn’t entered an extension and inform
them if the extension they entered is invalid.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 75

Example 3.2 A Very Simple extensions.conf with Special Extensions

[default]
exten => s,1,Answer ()
exten => g,2,Background (thank-you-for-calling-conglomocorp)

exten => s,3,Background (conglomocorp-mainmenu)

exten => t,1,Goto(s,2)

exten => 1i,1,Playback(sorry-thats-not-valid)

exten => 1i,2,Goto(s,?2)

exten => 100,1,Dial (SIP/10)
exten => 200,1,Dial (SIP/20)

That’s much nicer. Now the behavior of the dial plan is the same, up until the
main menu ends. At that point, the menu repeats. Also, now if the caller dials an
incorrect extension, the dial plan will play a menu that informs them the extension
they entered is not valid.

Creating Submenus

Normally, most small to medium-sized companies only require a single menu, but
let’s say your boss wants to have a support menu that allows customers to direct their
questions to the appropriate support group. We can accomplish this by creating a
second context that contains the appropriate menu and extensions. Let’s build on the
previous example again and add a second menu that allows callers to be connected
to the Blivet, Widget, or Frob support lines.

Example 3.3 Creating Submenus in extensions.conf

[default]
exten => s,1,Answer ()
exten => s,2,Background (thank-you-for-calling-conglomocorp)

exten => g,3,Background (conglomocorp-mainmenu)
exten => t,1,Goto(s,?2)

exten => 1i,1,Playback(sorry-thats-not-valid)

exten => i,2,Goto(s,?2)

www.syngress.com

76 Chapter 3 ¢ Configuring Asterisk

exten => 3,1,Goto(s, 1, supportment)
exten => 100,1,Dial (SIP/10)
exten => 200,1,Dial (SIP/20)

[supportmenul

exten => s,1,Background (conglomocorp-supportmenu)

exten => 1,1,Dial (SIP/blivetsupportline)
exten => 2,1,Dial (SIP/widgetsupportline)
exten => 3,1,Dial (SIP/frobsupportline)
exten => #,1, Goto(s,2,default)

exten => t,1,Goto(s,1)

exten => i,1,Playback(sorry-thats-not-valid)

exten => 1,2,Goto(s,1)

In this example, we’ve added a third option to the main menu. If a caller dials 3,
they are connected to the [supportmenu| context with a Goto() statement. Goto() can
be called many difterent ways.You can jump between priorities in the same exten-
sion by just specifying Goto(priority) or you can jump between extensions in the same
context by specitying Goto(priority,extension). Lastly, you can switch contexts by speci-
tying Goto(context, extension, priority).

Tools & Traps...

Watch Your Spaces!

Goto() is a bit finicky with its syntax and whitespace. For example: Goto(sup-
portmenu,s,1) will behave differently than Goto(supportmenu, s, 1). In the
first example, Goto will behave as expected and jump to the “s” extension, pri-
ority 1. However, in the second example, Goto will jump to the “s” extension,
priority 1. Note how there is a space that precedes the “s”. This can be a source
of frustration if you don’t know to look for it.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 77

Including Other Contexts within the Current One

[t’s important to note that when creating another context, the settings and extensions
from one context do not propagate to another. Setting up these extensions over and
over again can be tedious and will lead to a duplication of code and effort.
Thankfully, Asterisk permits other contexts to be joined together via the include =>
directive. This allows other contexts to be include-ed into the current context and act
as one glant context.

Let’s go back to our example. The ¢ and i context are duplicated in both the
[default] and [supportmenu] contexts. With a couple of small changes, we can make a sep-
arate context with just the t and i extensions and include => them into both contexts.

Example 3.4 Using includes in extensions.conf

[default]
include => specialextensions
exten => s,1,Answer ()
exten => g,2,Background (thank-you-for-calling-conglomocorp)

exten => s,3,Background (conglomocorp-mainmenu)

exten => 3,1,Goto(supportmenu, s, 1)
exten => 100,1,Dial (SIP/10)
exten => 200,1,Dial (SIP/20)

[supportmenu]
include => specialextensions

exten => g,1,Background (conglomocorp-supportmenu)

exten => 1,1,Dial (SIP/blivetsupportline)
exten => 2,1,Dial (SIP/widgetsupportline)
exten => 3,1,Dial (SIP/frobsupportline)

exten => #,1,Goto(s,?2)

[specialextensions]

exten => t,1,Goto(s,1)

exten => 1i,1,Playback(sorry-thats-not-valid)

exten => i,2,Goto(s,1)

www.syngress.com

78

Chapter 3 ¢ Configuring Asterisk

Okay, pop quiz time. Did you notice the difference between this example and the
previous one? Don’t worry if you didn’t, it’s pretty subtle. Because we are including
the same r and i context between two files, the same code will be executed between
both. Namely, they will be going to step 1 of the s extension in both contexts.
Previously in the [default] context, the ¢ and i extension went to step 2 of the s exten-
sion, bypassing the Answer() command. What does this change? Not a single thing.
Technically, you're adding an extra step every time a caller times out or enters an
invalid extension, which may affect performance if this happens repeatedly in a very
high-traffic environment, but, in the grand scheme of things this extra step will not
be perceptible. Answer() only answers the call if the call is in an unanswered state. It
ignores being called if the call is already in answered.

Writing Macros

include-ing (other contexts within the current one is a handy way to save lines of code
and duplication of code. Another easy way to increase efficiency and decrease code
duplication is through Asterisk’s macro abilities. Macros can be described as special
contexts that accept arguments. They allow for more flexibility than contexts, and
allow common tasks to be automated and not repeated.

In our previous examples, if someone dialed an extension, it rang a channel. It
would continue ringing the channel until someone picked up, or the call terminated.
What happens if we want to have that extension drop to voice mail playing the user’s
“I'm not here” message after 20 seconds of ringing, or playing the user’s “I'm cur-
rently on the phone” message if the phone line is busy?

Example 3.5 Creating Voice Mail Support for Existing Extensions without the Use
of Macros

[default]
include => specialextensions
exten => s,1,Answer ()
exten => s,2,Background (thank-you-for-calling-conglomocorp)

exten => s,3,Background (conglomocorp-mainmenu)

exten => 3,1,Goto(supportmenu,s, 1)

exten => 100,1,Dial(SIP/10,20)

exten => 100,2,Goto(s-100-${DIALSTATUS}, 1)
exten => s-100-NOANSWER,1,Voicemail (ul00)
exten => s-100-NOANSWER, 2, Hangup ()

www.syngress.com

Configuring Asterisk ¢ Chapter 3 79

exten => s-100-BUSY,1,Voicemail (b100)
exten => s-100-BUSY, 2,Hangup ()

exten => s-.,1,Goto(s-100-NOANSWER, 1)
exten => 200,1,Dial (SIP/20)

exten => 200,2,Goto(s-200-${DIALSTATUS}, 1)
exten => s-200-NOANSWER,1,Voicemail (u200)
exten => s-200-NOANSWER, 2, Hangup ()

exten => s-200-BUSY,1,Voicemail (b200)
exten => s-200-BUSY, 2,Hangup ()

exten => s-.,1,Goto(s-200-NOANSWER, 1)

[supportmenu]
include => specialextensions

exten => s,1,Background (conglomocorp-supportmenu)

exten => 1,1,Dial (SIP/blivetsupportline)
exten => 2,1,Dial (SIP/widgetsupportline)
exten => 3,1,Dial (SIP/frobsupportline)

exten => #,1,Goto(s,?2)

[specialextensions]

exten => t,1,Goto(s,1)

exten => 1i,1,Playback(sorry-thats-not-valid)

exten => 1i,2,Goto(s,1)

Yikes. That got complicated quickly. Can you imagine having to set that up for
multiple extensions? A single typo in the various extensions could suddenly have
people’s voice mails intended for one person wind up in someone else’s voice-mail
box. Plus, the various extensions would get out of hand very quickly; your
extensions.conf could start topping over thousands of lines of code. Let’s insert a Macro
to tame this beast. The macro, macro-stdexten, is included in Asterisk by default for this
exact reason.

Example 3.6 Creating Voice Mail Support for Existing Extensions with the Use of
Macros

[default]
include => specialextensions

exten => s,1,Answer ()

www.syngress.com

80 Chapter 3 ¢ Configuring Asterisk

exten => s,2,Background (thank-you-for-calling-conglomocorp)

exten => s,3,Background (conglomocorp-mainmenu)

exten => 3,1,Goto(supportmenu,s, 1)
exten => 100,1,Macro(stdexten,10,SIP/10)
exten => 200,1,Macro (stdexten,20,SIP/20)

[supportmenul
include => specialextensions

exten => s,1,Background (conglomocorp-supportmenu)

exten => 1,1,Dial(SIP/blivetsupportline)
exten => 2,1,Dial (SIP/widgetsupportline)
exten => 3,1,Dial (SIP/frobsupportline)

exten => #,1,Goto(s,?2)

[specialextensions]

exten => t,1,Goto(s,1)

exten => i,1,Playback(sorry-thats-not-valid)

exten => 1i,2,Goto(s,1)

[macro-stdexten]

exten => s,1,Dial (${ARG2},20)

exten => s,2,Goto(s-${DIALSTATUS},1)
exten => s-NOANSWER,1,Voicemail (u${ARG1})
exten => s-NOANSWER, 2,Hangup ()

exten => s-BUSY,1,Voicemail (b${ARG1})
exten => s-BUSY, 2,Hangup ()

exten => _s-.,1,Goto(s-NOANSWER, 1)

Using the macro allowed us to write a single piece of code that would duplicate
the function of the code in the previous example. It’s also modular, allowing for the
easy addition of extra extensions and extra voice-mail boxes. The stdexten macro takes
two arguments: The first being the channel to ring, and the second being the voice-
mail box to send the call to if the channel is busy or does not answer. The macro
rings the channel for 20 seconds and then sends it to voice mail telling voice mail to
use the unavailable message. If the channel is busy, it immediately sends the caller to
voice mail, telling voice mail to use the busy message if the user has one. If there 1is

www.syngress.com

Configuring Asterisk ¢ Chapter 3 81

some other condition on the call, like if the phone cannot be found on the network,
the macro sends it to voice mail with the unavailable message.

The Macro() command takes at least one argument, the macro name.You can also
pass multiple arguments to the macro by calling the Macro() command with additional
arguments. In our example, macro- stdexten takes two arguments: the channel to ring,
and the voice-mail box to call. Upon calling the macro, the macro is executed like a
normal context, with the exception of extra variables ${ARGX}, where X is 1
through the number of variables you passed to the macro.

This takes care of incoming calls, but what about phones on the inside dialing
out? Setting these up is as simple as setting up another context. Each time you set up
a connection, you need to specify which context calls coming from that connection
will go into. Setting up a context in which calls can use your outside line and then
assigning all internal phones into that context will allow the phones to send calls via
the outside lines. Continuing our example, let’s set up a context for internal calls:
[internall
exten => _1617NXXXXXX,1,Dial (Zap/1/${EXTEN})
exten => 1310454XXXX,1,Dial (IAX2@/mass:Sk5S@cali.conglomocorp.com/$ {EXTEN})
exten => 1NXXNXXXXXX,1,Dial (IAX2/conglomocorplogin@IAXProvider/${EXTEN})
exten => 011X.,1,Dial(SIP/SIPProvider/${EXTEN})
exten => 100,1,Macro(stdexten,10,SIP/10)
exten => 200,1,Macro (stdexten,20,SIP/20)

Let’s go over what each line accomplishes. Each one shows a different way of
composing a dial command. The first line tells Asterisk that if a user dials a telephone
number in the 617 area code, it will match the _1617NXXXXXX wildcard and the
phone call will be sent out via the fist Zaptel device. The next line matches anything
within the 310-454 prefix and will connect to a server called
“cali.conglomocorp.com” with the username “mass” and the password “Sk5S” and
send the phone call through them. This is an explicit connection created in
extensions.conf. It a user dials a U.S. telephone number that isn’t in 617 or 310-454, it
will match the ITNXXNXXXXXXX wildcard, and will be sent via the
[AXProvider connection, which would be created in iax.conf. Finally, if a user dials an
international number beginning with 011, it will match the “_011X.” wildcard and
be sent via the SIPProvider connection, which would be created in sip.conf. Also, the
user can dial either of the two extensions on the system and be connected to them
directly. These extensions would already be connected in sip.conf.

www.syngress.com

82

Chapter 3 ¢ Configuring Asterisk

[t is important to note that if we placed the _ INXXNXXXXXXX wildcard
above the _1617NXXXXXX wildcard or the _1310454XXXX wildcard, anything
below the 1NXXNXXXXXX wildcard would never be used since the
_INXXNXXXX XXX wildcard would match everything. Asterisk reads lines from
the top down and will match the first line it sees. Remembering this can save you a
lot of headaches, and depending on your setup, possibly some money.

Configuring extensions.ael

The alternative to extensions.conf is extensions.ael. extensions.ael 1s extensions.conf written
in a scripting language called Asterisk Extensions Language (AEL). AEL is language
maintained by Digium solely for writing dial plans in Asterisk. While it is function-
ally equivalent to extensions.conf, AEL is syntactically much more powerful and allows
for greater flexibility in simple scripting and logical operations. If you're familiar with
scripting in other languages, AEL can often be easier to pick up than the regular
extensions.conf syntax.

extensions.ael can be used as a replacement for extensions.conf or have both used
side by side. extensions.ael is not in widespread use in today’s installations. However,
due to its greater functionality, it would not be surprising to see extensions.conf depre-
ciated in future versions of Asterisk in favor of extensions.ael.

Using AEL to Write Your Extensions

Everything that can be written in extensions.conf can be rewritten in extensions.ael.
Let’s take our simple example from Example 3.1 and rewrite it into AEL.

Example 3.7 Rewriting Example 3.1 into AEL

context default {
s => {
Answer () ;
Background (thank-you-for-calling-conglomocorp) ;
Background (conglomocorp-mainmenu) ;

Hangup () ;

100 => Dial(SIP/10);
200 => Dial(SIP/20);

i

www.syngress.com

Configuring Asterisk ¢ Chapter 3 83

Execution-wise this does the same exact thing Example 3.1 did. Asterisk answers
the call, starts playing the mainmenu sound file while waiting for the caller to enter
digits. The caller can then either enter 100 and be connected to the channel SIP/10
or 200 and be connected to the channel SIP/20.The caller is then hung up on when
the menu stops playing.

Notice how, despite being mixed up a bit, there are still contexts, extensions, and
variables. In this case, however, the exten =>
EXTENSION,PRIORITY, COMMAND(ARGS) syntax is completely scrapped. In exten-
sions.ael, the exten => is removed, along with any use of priorities. extension.ael fol-
lows more of a line-by-line execution pattern the way extensions.conf executes when
the n priority is used. While this simplifies things so you don’t have to worry about
making sure every extension has the right priority, it provides a lack of flexibility in
execution order and Goto() statements. Let’s see what happens when we rewrite the
code in Example 3.2.

Example 3.8 Rewriting Example 3.2 into AEL

context default {
s => {
Answer () ;
restart:
Background (thank-you-for-calling-conglomocorp) ;
Background (conglomocorp-mainmenu) ;

Hangup () ;

100 => Dial (SIP/10);

200 => Dial (SIP/20);

t => { goto s|restart;}

Playback (sorry-thats-not-valid) ;

goto s|restart;

Because we can’t specify the exact step to jump into in the s context, we need to
create a label in the s extension to tell the Goto() statement where to enter. The restart:
label in the s context is the where the ¢ and i extensions jump to when they are

www.syngress.com

84

Chapter 3 ¢ Configuring Asterisk

done executing. This label needs to be explicitly specified within the s context
because there are no steps numbered within the context.

Macros also function much in the same way they do in extensions.conf. They are
set up as if contexts, but have extra variables that can be passed to them. In AEL,
variables passed to the macro are not referred to as ${ARG1} through ${ARGX}. In
AEL you can assign them local variables names, which cuts down on the confusion
factor when trying to remember which values are assigned to a certain variable.
Another difterence in AEL is that the Macro() command is not used when calling a
macro. Instead, the macro’s name has an ampersand added in front of it. Let’s add the
std-exten macro to our AEL example to see how it fits in.

Example 3.9 A Macro in AEL

context default ({
s => {
Answer () ;
restart:
Background (thank-you-for-calling-conglomocorp) ;
Background (conglomocorp-mainmenu) ;

Hangup () ;

100 => &std-exten("10","SIP/10");
200 => &std-exten("20","SIP/20");

o
Il
\%

goto s|restart;}

—_~~ o~

"
Il
\2

Playback (sorry-thats-not-valid) ;

goto s|restart;

Vi
macro std-exten (vmb, channel) {
Dial (${channel},20) ;
switch (${DIALSTATUS) ({
case BUSY:
Voicemail (b${vmb}) ;
break;
case NOANSWER:
Voicemail (u${vmb}) ;
Vi
catch a {
VoiceMailMain (${vmb}) ;

www.syngress.com

Configuring Asterisk ¢ Chapter 3 85

return;

AEL is a very powerful language that allows for a much cleaner dial plan. It is still
in heavy development, and may change in future Asterisk revisions, so it may not be
quite ready for production yet. However, it is a very good idea to learn the
mechanics of it because Asterisk may move toward it in the future.

Configuring Your Connections

Connections are what make Asterisk useful. If there are no connections to Asterisk,
you wouldn’t be able to connect a phone or use a link to the outside, which really
limits the things you can do with it. Asterisk, when first installed, actually has a con-
nection to a demonstration server hosted by Digium. This connection shows how
calls can be transferred via VoIP to a completely difterent server as easily as dialing a
number, and gives you a taste of what can be accomplished. This connection, how-
ever, is a nice demonstration, but doesn’t really have any use besides showing oft
what can be done with Asterisk. If you want to actually accomplish tasks, you will
need to set up your own connections with the outside world.

Connections, Connections, Connections!

Numerous files control the various protocols for Asterisk. Some protocols are com-
monly used in today’s VoIP setups, while some are quite vestigial and are likely not
to be used unless you have specialty hardware. Let’s take a look at the various proto-
cols supported by Asterisk (see Table 3.5).

Table 3.5 VolIP Protocols Supported by Asterisk

Protocol Name Notes

SIP Session Initiation Most common VolIP protocol. Used in
Protocol numerous devices.

IAX Inter Asterisk Used primarily in connections between
eXchange Protocol Asterisk servers.

SCCP Skinny Client Used in Cisco devices.

Control Protocol

Continued

www.syngress.com

86

Chapter 3 ¢ Configuring Asterisk

Table 3.5 VolIP Protocols Supported by Asterisk

Protocol Name Notes

MGCP Media Gateway Used in some VolIP devices, notably D-Link.
Control Protocol

H323 H.323 Protocol Used in some older VolP devices.

Each protocol is controlled by a different file. Multiple connections can be set
up in a single file, or the files can be broken down and linked via include state-
ments. What you opt to do is a choice of personal preference. Each file has certain
specific configuration options that are used only for the protocol the file governs,
and they also have options that are common across all files. Let’s go over some of
the conventions:

Configuration File Conventions

All Asterisk configuration files have certain conventions that run throughout them.
We went through some of them when we were talking about extensions.conf. However,
some differences exist in the terminology and layout when comparing extensions.conf to
another file.

Much like how extensions.conf is broken down into contexts, most configuration
files are broken down into sections. Context and sections have the same syntax—
namely, that the headers are surrounded by brackets, as shown in the following
example.

Example 3.10 extensions.conf Context Compared to an jax.conf Section

[default]
exten => s,1,Answer ()
exten => s,2,Background (thank-you-for-calling-conglomocorp)

exten => s,3,Background (conglomocorp-mainmenu)

[my iax server]
type=peer
auth=md5
notransfer=yes
host=10.0.23.232
disallow=all

allow=ulaw

www.syngress.com

Configuring Asterisk ¢ Chapter 3 87

Each configuration file often has a [general] section as well, which functions more
or less the same way as the [general] section in extensions.conf: settings in that section are
applied to each section unless they are overridden within the specific section.

Configuration File Common Options

Each protocol has its own specific options, but they share a number of options
common across files. Let’s go over a few common tasks and the options that control
them that you’ll likely run into when editing configuration files.

Users, Peers, and Friends

Asterisk uses some peculiar classifications for its VoIP connections. They are classified
by the type= setting, which is either set to user, friend, or peer. These are often accompa-
nied by little to no explanation, which is a shame because they’re actually quite
simple.

A user 1s a connection that will be used to make telephone calls to the local
server; a peer 1s a connection that will be used to make telephone calls from the local
server; and a friend 1s a connection that will be used to make telephone calls both to,
and from, the local server.

These classifications are most commonly used in IAX2 and SIP connections.
However, using them in SIP connections is actually starting to become redundant
due to how SIP connections are normally set up. We will cover that later in the
chapter.

Allowing and Disallowing Codecs

Asterisk supports numerous codecs for audio. Codecs can save bandwidth and allow
for more simultaneous phone calls on a data link. For a big list of the codecs Asterisk
supports, refer to the table in Chapter 1.

Codecs are configured via the allow and disallow directives. Disallow can be
used to explicitly deny use of specific codecs, or it can be used in conjunction with
allow to grant the use of only specific codecs. Confused yet? Let’s look at a
common situation:

Say your shiny new Asterisk server has a connection to your telephone provider
via the IAX2 protocol. However, whenever a phone call is made through the
provider, the GSM codec is used, rather than the ulaw codec that is used when you

www.syngress.com

88

Chapter 3 ¢ Configuring Asterisk

call between extensions in the office. This needs to be fixed. So opening up the
iax.conf configuration file you add the following line to the section controlling the
connection:

disallow=gsm

Then issue a reload command to Asterisk. Problem solved, right? Not necessarily.
While yes, this will disallow use of the GSM codec, the behavior that results might
not be the one expected. The added line tells Asterisk not to use GSM; however, it
still has the option of picking from all the other codecs it supports. The correct way
to ensure ulaw is used as the codec would be to add the following lines to iax.conf.
disallow=all

allow=ulaw

Now, if you're scratching your head at the disallow=all statement, don’t worry.
While, yes, that directive essentially tells Asterisk to disallow every codec from being
used, it 1s followed by the allow=ulaw statement, which tells Asterisk that ulaw is okay
to use. Essentially, those two lines are the same as typing out disallow statements for
every codec Asterisk supports except the one you want to use. When receiving a
phone call, Asterisk will check each allow and disallow statement to see which
codecs it can and cannot use. It will first see the disallow=all statement, stopping the
use of all codecs, but then it will allow the ulaw codec once it reads the allow=ulaw
statement.

This can be expanded to work with multiple codecs as well. If you wanted to
allow both ulaw and alaw, ulaw’s European equivalent, the same steps would be fol-
lowed, except this time there would be two allow lines, allowing both ulaw and alaw.

Including External Files

Asterisk’s configurations files support the inclusion of other files into the “current”
one. This can be important when setting up a large installation and wishing to spread
the configuration over many files rather than maintain a large single file.

Including other files is accomplished through the #include statement. For
example, if you wanted to split three departments in your extensions.conf between
three files, just add the following lines to extensions.conf:

#include </etc/asterisk/extensions/departmentl.conf>

#include </etc/asterisk/extensions/department2.confs>

#include </etc/asterisk/extensions/department3.conf>

www.syngress.com

Configuring Asterisk ¢ Chapter 3 89

You can then add extension contexts to department1.conf, department2.conf, or
department3.conf as if they were extensons.conf themselves. Asterisk will read these at
runtime and interpret them the same as if they were all joined together in
extensions.conf.

[t is recommended you store your included files somewhere other than the root
Asterisk configuration directory. That way it will be unlikely there will be a naming
conflict between an existing configuration file and a file you create.

Configuring SIP Connections

SIP is the most common VoIP protocol in use today. It is an ofticial Internet standard
and 1s supported by almost every VoIP device and service on the market. SIP is a
very complex and involved protocol and has its fair share of shortcomings, but often
is the only game in town when dealing with devices or VoIP providers. Let’s look at
how to set up connections, too, from a server.

SIP connections are configured in the sip.conf file in the system’s configuration
directory, usually /etc/asterisk.

General SIP Settings

General SIP settings are contained within the [general] section.

SIP Firewalls, and Network Address Translation

SIP was created before Network Address Translation (NAT) use was widespread.
Therefore, it never really took into account the possibility of one of the sides of the
conversation not having a publicly routable IP address. Today, it is very common to
see a residential broadband connection without a cheap router doing NAT for the
connection. This is related to another problem with SIP and firewalls: the two do not
get along, period.

The reason for these problems is because SIP phone calls rely on two different
protocols: SIP for the setup and takedown of the connection, and Realtime Transport
Protocol (RTP) for the voice stream. When SIP receives a notification for an
incoming phone call from a remote server, it sets up an RTP listener on a port and
waits for the RTP stream. This is all fine and dandy, unless you have a firewall that
blocks incoming connections. If you do, the phone calls will set up, but the audio
path will not be carrying audio.

NAT suffers from the same problem, but with difterent issues. When the call is
set up, if one side of the connection tells the other to connect to a nonpublic IP

www.syngress.com

920

Chapter 3 ¢ Configuring Asterisk

address, the connecting side will not know where to connect to send the RTP
stream, and so the audio path isn’t set up correctly. There have been attempts to
address this issue, notably in RFC3581 — “An Extension to the Session Initiation
Protocol (SIP) for Symmetric Response Routing,” but with all the existing hardware
currently in use, not all devices support the newer features,

Thankfully, despite the protocol not really addressing these issues, solutions can be
found for these problems—mnot necessarily good solutions, but solutions none the
less. To address the firewall issue, you need to open up the firewall to allow connec-
tions from external sources to the Asterisk server on a massive amount of ports. This
1s a bit of an issue if the server is accepting connections from all over the Internet
since there is no way to lock the access down to specific address blocks. A way to
limit the amount of ports you need to open up is to edit rtp.conf in the Asterisk con-
figuration directory:

Example 3.11 A Typical rtp.conf

: RTP Configuration

lgeneral]

i RTP start and RTP end configure start and end addresses
;tpstart=10000

rtpend=20000

The two settings rtpstart and rtpend are the ports that RTP will try to use when it
sets up a connection with another server. Adjusting these variables will give you con-
trol over which ports you need to open up in your firewall settings.

To address the NAT issue, there are kludges built into Asterisk to work around
the problem. In sip.conf, there are three settings: the externip setting, the localnet setting,
and the nar setting. The nar setting determines whether or not the server is behind a
NAT. This can be set to four different settings: yes, no, never, and route. The yes setting is
the straightforward setting. It informs Asterisk that we are behind a NAT and it
should assume so whenever it sends SIP messages. The no setting is a bit more com-
plicated than “No, the server is not behind a NAT.” The no setting tells Asterisk it
should use RFC3581 to determine whether or not there is a NAT between the local
server and the remote server. The next setting, route, is a bit of a kludge to help NAT

www.syngress.com

Configuring Asterisk ¢ Chapter 3 91

work with certain phones that do not completely support RFC3581; you likely will
never use this, and hopefully this behavior will be moved to another setting in future
versions. Finally, there is never, which informs Asterisk to never think the server is
behind a NAT.

Now, localnet and externip are settings used when Asterisk is using NAT function-
ality—mnamely, when nat is set to something else other than never. They give the
system information regarding what is behind the NAT and what isn’t, along with
what IP the NAT is using for an external IP. For example, let’s say we have a server
at our office on a 196.168.42.0/24 network that is NATed behind a gateway with an
external IP address of 118.23.45.76.This is how we would make our NAT settings:
[generall
nat:yes
externip=118.23.45.76
localnet=192.168.42.0/24

If you have extra networks behind the NAT with you, but that are on separate IP
segments, you can add additional localnet statements to list those networks as well.

Connecting to an SIP Server

Most VoIP service providers support SIP over IAX, so connecting to an SIP server is
a common task when setting up a new provider. Thankfully, it’s fairly simple. In this
example, we’ll assume there are preexisting settings in the [general] section pertaining
to whether or not the server has a NAT address and what codecs the server will be
using. These are normally set up in the [general] settings since they don’t vary
between connections.

Registering Your Connection

Most providers do not have your account tied to a specific IP address since it’s
becoming less and less common to have static IP addresses in most situations and it’s
less of a hassle for you to come to them. So how do we let the provider know where
to route the incoming calls? We register with them. Registering is a way of checking
in with a remote server, letting them know where to route calls and that the local
server 1s still alive. A typical register line in sip.conf would look like this:

register => mgaribaldi:peekaboo@voip.defuniactelephone.com/3115552368

In which, after a reload, we would be registering the phone number “311-555-
2368” with the server voip.defuniactelephone.com using the username mgaribaldi and the

www.syngress.com

92

Chapter 3 ¢ Configuring Asterisk

password peekaboo. Once we registered with the remote server, it would know to
send any phone calls for 311-555-2368 to our local server. Please note that all of
these would be assigned by the provider. If we tried to register with another phone
number, the server would, at best, not send us any phone calls, or at worst, likely
reject our registration.

All register statements need to go under the [general] section. If you are registering
to multiple providers, all that must be done is just have multiple register statements.
Registration depends on your provider. If you have a static IP address that your
provider automatically sends phone calls to, registration is unnecessary. However, this
1s highly uncommon.

Tools & Traps...

Passwords, Plaintext, and Privacy

This seems like as good a time as any to mention it, but when storing your
passwords in your configuration files, you're storing them in plaintext. Also,
these configuration files are world-readable by default. Put these together
and you're stuck in a bit of a security nightmare. Asterisk doesn’t have any
security on its configuration files by default, so before you add any sensitive
information, you may want to make sure the file permissions are locked down
enough that the only nonprivileged user that can read them is the user
Asterisk is running under.

Setting Up Outbound Settings

Registering lets the remote server know where we are. Thus, it will start sending
telephone calls to us. By default, Asterisk will use the settings specified in the [general]
section of sip.conf. This will work fine, unless we want to apply special settings to
phone calls coming from a specific connection. We can also provide connection-spe-
cific options, such as usernames and password, so we do not have to specify the user-
name and password in the dial string.

Using our DeFuniac Telephone example, let’s create a section that will route
incoming telephone calls from them to their own special context in your dial plan
and allow the Dial() command to omit the username and password.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 93

[defuniactelephone]

type=peer

secret=peekaboo

username=mgaribaldi
host=voip.defuniactelephone.com
fromuser=mgaribaldi
fromdomain=voip.defuniactelephone.com

context=incoming defuniac

After you add this, issue a reload command. What this specifically does is create an
account on the system for the connection. This account will match any phone calls
coming into the server voip.defuniactelephone.com with the username mgaribaldi and the
password peekaboo, and route those phone calls into the context incoming_defuniac in
your dial plan.

This account also allows us to use the Dial application without specifying a user-
name and password like this:

exten => 1NXXNXXXXXX,1,Dial (SIP/defuniactelephone/${EXTEN})

This saves a bit of typing and allows us to quickly adjust usernames and passwords
should they ever change.

Setting Up an SIP Server

Setting the server up to accept a SIP client is pretty easy. In fact, it has much in
common with connecting to an SIP server. The only real difference is that you don’t
need to register, and the account type is set to friend rather than peer.
Let’s jump in head first and set up an account in our sip.conf:
[sipclient]
type=friend
context=internal
username=sipclient
secret=password
mailbox=201
host=dynamic
callerid="SIP Client" <3115552368>
dtmf=inband

What this does is set up an account for a channel called “sipclient” that is identi-
fied via the username “sipclient” and the ultra-secure password “password”. We
specify it is a dynamic host, which means the client can connect from anywhere so it

www.syngress.com

94

Chapter 3 ¢ Configuring Asterisk

will be registering with us. The client will sit in the internal context where the
appropriate dial strings should be. Also, we assign the voice-mail box 201 to the
client so they can be notified about waiting messages. We also specify that outbound
calls from the client will have the caller ID string SIP CLIENT <3115552368>.

Notes from the Underground...

DTMF and SIP

SIP has three settings for DTMF: inband, info, and rfc2833. SIP, because of the
separate connections used for the audio and signaling path, has trouble
relaying information about DTMF. inband sends the DTMF over the audio path
like a regular telephone call would. This is the simplest way to do things; how-
ever, certain codecs mangle the audio enough that the called party cannot
pick the DTMF signal up. info and rfc2833 send signals across the stream so the
called party can translate them back into DTMF, but these are not supported
by some providers.

That’s it. After a reload, the system is now ready to accept an SIP client connec-
tion. Point an SIP phone to the server with the correct username and password and
you will be ready to dial away.

Configuring IAX2 Connections

[IAX2 (Inter-Asterisk eXchange version 2) is the protocol designed to connect
Asterisk servers between each other. Designed by Digium as an alternative to SIP, it
is not an official standard, but is instead an open protocol with a freely available pro-
tocol library. It is well supported in Asterisk, and is starting to make inroads into
other devices and programs. It is less common to find soft phones and devices that
support IAX2, but it is not as surprising at it once was.

Everything in IAX2 is controlled by the file iax.conf in your asterisk configura-
tion directory. This is set up similarly to sip.conf.

Connecting to an IAX2 Server

Connecting to an IAX2 server is a lot like connecting to an SIP server. A lot of the
options are the same and the methodology is identical. So let’s take a look.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 95

Registering Your Connection

Registering is not just a SIP-only thing. The same problems affect IAX2 as well.
Thankfully, the same command applies:

register => mgaribaldi:peekaboo@voip.defuniactelephone.com

The main difference between the SIP register command and the IAX2 register
command is that there is no phone number appended to the end of the IAX2 ver-
sion. This is because IAX2 is designed to be a trunking protocol (a protocol that can
carry numerous telephone lines at once), as opposed to SIP, which is designed more
to carry one telephone line at one time.

Setting Up Outbound Settings

Much like in SIP, we can specify the outbound settings in iax.conf to allow the con-
nection to have special settings and connect to a different context other than the one
specified in the [general] section. Let’s set up this provider:

[defuniactelephone]

type=peer

secret=peekaboo

username=mgaribaldi

host=voip.defuniactelephone.com

context=incoming defuniac

As you can see, the settings are very similar to the SIP version. The only difter-
ence is that some of the SIP-specific directives have been trimmed out. This will
accomplish the same thing its SIP counterpart did: incoming calls will be routed to
the incoming _defuniac context, which will allow us to use a shortened Dial() string:

exten => 1NXXNXXXXXX,1,Dial (IAX2/defuniactelephone/${EXTEN})

Setting Up an [AX2 Server

Much like how connecting to an IAX2 server is similar to connecting to an SIP
server, becoming an IAX2 server is a lot like becoming an SIP server.

[iaxclient]

type=friend

username=iaxclient

secret=password

host=dynamic

callerid="SIP Client" <3115552368>

context=internal

www.syngress.com

96

Chapter 3 ¢ Configuring Asterisk

This sets up an IAX client with a username of iaxclient and a password of
password. Again, the host is dynamic, so the client will have to register with the server
and the client will be assigned to the “internal” context. While in this example the
client has an assigned caller ID string, IAX2 can support sending its own Caller ID
string. This can be handy if there are multiple lines coming across a connection, or if
you just want to give the client an ability to send its own Caller ID string. This
ability does have some security ramifications, but we’ll talk more about that later in

the book.

Configuring Zapata Connections

Zapata telephony devices are what the majority of Asterisk systems employ if they
want a physical connection to the outside world. They come in single line models all
the way up to quadruple T1 models that have 96 channels.

Setting Up a Wireline Connection

Wired telephone connections are what most of us are used to when we think of a
telephone: pieces of copper wire molded into an RJ-11 jack that we plug into our
telephone. However, the physics behind the connections are a tad more complicated.

There are two basic types of signaling telephones with wired connections. FXO
signaling 1s used by a telephony device to receive signals from the telephone net-
work, while FXS signaling is used by a telephone switch to send signals to a tele-
phony device. This means that the type of card you should have depends on what
you want to accomplish.

Configuring a Zapata Card

This assumes you have a Zapata card installed and the drivers compiled and loaded. If
you don’t have the drivers compiled, flip back to Chapter 2 and follow the instruc-
tions there. In this example, we are going to assume you have installed a four-port
Zapata card with two FXO modules installed in slots 1 and 2, and two FXS modules
installed in ports 3 and 4.

The first step is to open up the Zaptel configuration that is independent of
Asterisk. This is located in /etc/zaptel.conf. This is a very well-documented file with lots
of examples, so if you don’t have the card in this example, you should be able to
tfollow along and configure your own setup.

There are no sections in here, so you’ll be able to toss directives wherever you
want. It’s common to put them with the commented out examples so you’ll know

www.syngress.com

Configuring Asterisk ¢ Chapter 3 97

where to look if you need to make changes. The first step is to tell the modules
which signaling methods to use:

fxsks=1-2

fxoks=3-4

This instructs modules 1 and 2 to use the FXS KewlStart protocol and modules 3
and 4 to use the FXO KewlStart protocol. KewlStart is a newer method of telephone
signaling that is used by a majority of telephone equipment today. Other protocols
are available as well, such as Ground Start and Loop Start, but unless you have very
old equipment, KewlStart is the way to go.

Now, I'm sure some of you are feeling rather smug that you’ve picked up a typo
in the book. I just said that modules 1 and 2 are FXO modules but we told them to
use FXS signaling, and vice versa for modules 3 and 4. Nope. They are supposed to
be that way. We are specifying what signaling the modules should be receiving, which
for FXO modules connected to the PSTN is FXS from the switch. For FXS mod-
ules driving telephones, they should receive FXO signaling from the phone. This is
rather confusing at first, but makes sense when you think about it.

If you aren’t in the United States, you may want to scroll down to the loadzone
options and comment out the loadzone = us line and uncomment the line appropriate
to your country. This will allow proper ring and busy tones to be sent to the devices
connected.

Now that we are done with that, exit out of the file and load the appropriate
module for your card. In this example, we would run:

modprobe wctdm

This will load the module into the kernel and configure the hardware modules
on the card. The next step is to open up zapata.conf in the Asterisk configuration
directory. Unfortunately, zapata.conf is a bit arcane even by Asterisk’s standards. The
file duplicates a lot of information we already entered into zaptel.conf. This may seem
silly, but the files serve two separate purposes: zaptel.conf sets up the modules, while
zapata.conf tells Asterisk how to talk to them. Here’s how we would create zapata.conf
in our example:

[channels]
usecallerid=yes
echocancel=yes
echocancelwhenbridged=no

echotraining=800

www.syngress.com

98

Chapter 3 ¢ Configuring Asterisk

signalling=fxs ks
group=0
context=fromzap

channel=1-2

signalling=fxo ks
group=1
context=internal

channel=3-4

It’s important to know that Asterisk reads zapata.conf from top to bottom.
Options that are set are applied to all channels below it unless unset at a later point.
In this option, we set up the cards to use echo cancellation with a moderate setting
(800). We then configure channels 1 and 2 for PSTN operation and put them in the
“fromzap” context. After that, we configure channels 3 and 4 for telephones and put
them in the “internal” context.

From here, we’ll open up extensions.conf and add the specific contexts we need:
[internall
exten => 1NXXNXXXXXX,1,Dial (Zap/G0/${EXTEN})

[fromzap]

exten => s,1,Dial (Zap/3&Zap/4)

This will accomplish two things. The two telephones we have connected to
channels 3 and 4 will be able to dial U.S. telephone numbers, which will be dialed
out on the first available FXO channel, either 1 or 2. The “G” in the Zap/GO refers
to group 0, of which channels 1 and 2 are members. If a phone call comes in on
either channel 1 or 2, the server will then ring both channels 3 and 4 until someone
picks one of the telephones up or the call terminates.

At this point, we need to start or restart Asterisk. Zapata configuration changes
do not get read with a reload command, so the entire system must be restarted. Once
the system 1is restarted, the Zapata modules should be functioning as expected and
ready to receive and dial telephone calls.

Configuring Voice Mail

Voice mail has played a key role in business over the past 20 years. The case can be
made that it is more important than e-mail for some people. Voice-mail settings are
listed within voicemail.conf in the Asterisk configuration directory.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 99

Configuring Voice-Mail Settings

There are a lot of bits to configure in voice mail, such as time zone settings, voice
mail to e-mail settings, and options on how to pronounce time, among others. Unless
you want to get fancy, most of the defaults should work fine. A common option that
may need to be adjusted is the maxmsg option which limits the number of messages a
user can have in their mailbox. Another option that may need to be adjusted is the tz
option that controls what time zone the messages will be based in. This is commonly
used if the server’s time zone is difterent than the time zone the company is based in.
The tz option, by default, can only be set to options specified in the [zonemessages]
section, which by default is set to the following:

[zonemessages]

eastern=America/New York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' g 'digits/at' H N 'hours'
military=Zulu|'vm-received' g 'digits/at' H N 'hours' 'phonetic/z_p'

european=Europe/Copenhagen| 'vm-received' a d b 'digits/at' HM

The syntax for this is

ZONENAME=TIMEZONE | DATESTRING

where ZONENAME is the name you want to give the setting, TIMEZONE is
the Linux time-zone name you want the system to use for the setting, and DAT-
ESTRING is a string of Unix date variables and sound files. Not the most elegant
solution, but it is very customizable. Let’s say we wanted to add a Pacific time zone,
we would just add the following line:

pacific=America/Los_Angeles|'vm-received' Q 'digits/at' IMp

which would make a pacific zone based on the America/Los_Angeles time zone
and would play the standard voice-mail envelope string.

Configuring Mailboxes

Mailboxes are in the [default] section. A typical run-of-the-mill mailbox for Joe
would look like this:

867 => 5309,Steve Example, steve@example.net

This sets up mailbox 867 for Steve Example, with a password of 5309. Any mes-
sages left in the mailbox would be attached to an e-mail sent to steve(@example.net,

www.syngress.com

100

Chapter 3 ¢ Configuring Asterisk

allowing him to listen to the message without calling the server. This setup is suitable
for most users; however, there are other options as well. Asterisk has the ability to
send a second message without the attachment that is more suitable for text messages
or mobile phone e-mail as well:

867 => 5309,Steve Example, steve@example.net,3115552368@defuniactelephone.com

This 1s handy since it allows the user to receive a notification on their mobile
device about a voicemail message without having to download a possibly large audio
file over a slow mobile data link.

You can also specity per-user settings on the mailbox line as well. Let’s say Steve
doesn’t have a cell phone, and has dial up so he doesn’t want to attach the voice-mail
messages to the e-mail messages, but still wants to receive a notification. This is done
with the attach option:

867 => 5309,Steve Example, steve@example.net,, |attach=no

Also, notice the blank “pager e-mail” field since Steve doesn’t need a notification
to a cell phone he doesn’t have.You can also attach multiple options separated by the
pipe character. Let’s say Steve is in a separate time zone from the company and wants
to have his mailbox say the time in the Central time zone. We would then adjust the
mailbox like this:

867 => 5309,Steve Example,steve@example.net,, |attach=no|tz=central

Options can be tacked on as needed until each mailbox is configured as you, or
the user, want.

Leaving and Retrieving Messages

All of the voice-mail functions are contained in two applications: Voicemail(), which
handles the portions of a user leaving a message on the system; and VoicemailMain(),
which handles the users of the PBX to access their voice mail. We briefly touched
upon loiceMail() earlier when we were talking about dial plans, but let’s take a
slightly more in-depth look now:

[default]

exten => s,1,Answer ()

exten => s,2,Background (thank-you-for-calling-conglomocorp)

exten => s,3,Background (conglomocorp-mainmenu)

exten => 100,1,Voicemail (ul00)

exten => 200,1,Voicemail (b200)

www.syngress.com

Configuring Asterisk ¢ Chapter 3 101

exten => 300,1,VoicemailMain ()

exten => 400,1,VoicemailMain (${CALLERID (num) })

This example has four different voice-mail extensions that do four different
things. Extension 100 sends you to voice mail to leave a message for mailbox 100.
The u preceding the mailbox number tells Asterisk to use that mailbox’s “unavail-
able” greeting. Extension 200 does the same thing, except this time the b preceding
the mailbox number tells Asterisk to use that mailbox’s “busy” greeting. Besides the
greetings, both of these do the same thing: they take a message for the mailbox they
are given.

Extension 300 sends you to the voicemail system as if you are a user of the
system. In this case, the system will prompt you for a mailbox number and password
and if you give it valid credentials, it will let you listen to messages for that mailbox.
Extension 400 does the same thing, except it attempts to find a mailbox corre-
sponding to the caller’s caller ID number. If it does, it will prompt just for the pass-
word. If it does not, it will behave as if there was no number given to it.

Moving around the voice-mail system is just like navigating a regular voice-mail
system. The default keys are “1” to play messages, “6” to skip to the next message, “4”
to go to the previous message, and “7” to delete the current message. There are also
options to forward messages to other users and save the messages into difterent folders.
The keys are not customizable unless you want to recode the mail application.

Provisioning Users

Configuring IAX2 and SIP connections, as well as dial plans in an abstract sense,
gives you a good sense of how their respective configuration files work, but really
doesn’t give you a sense in how all the configuration files tie together in a typical
Asterisk installation. When provisioning a user, all the configuration files seem less
separate and more like pieces that function as part of a whole. Let’s walk through a
typical user provision and see how everything fits together.

Let’s say you are the new administrator of a medium-sized business’s Asterisk
PBX system. Your boss walks in and tells you that a new employee, Joe Random
PBXUser, 1s starting next week and you need to have everything ready to go on
Monday.

www.syngress.com

102

Chapter 3 ¢ Configuring Asterisk

Decision Time

The first step is to figure out what the new user is going to use for a phone. Is he
going to use a new phone or an existing one? Has the phone already been provi-
sioned? In this example, we are going to assume the user needs a new phone and
that, thankfully, you have one right at your desk just waiting to be configured.

Next, you need to check what extension the new user should get. This depends
on how the existing extensions are configured. In this example, you’ve consulted
your chart and extension 221 is open, so the user will get that one. Now, let’s get to
work.

Configuring Phone Connections
The phone you have is SIP, so let’s add the following to sip.conf:

[jrpbxuser]

type=friend

context=internal

username=jrpbxuser

secret=s3krltp@ss

mailbox=221

qualify=yes

host=dynamic

callerid="Joe Random PBX User" <3115550221>
dtmf=inband

It’s important to note we already assigned Joe a voice-mail box, but we haven’t
set it up yet. We’ll do that later. Next, issue a reload command to the Asterisk CLI
and configure the phone to use these settings. If the phone syncs up to the server
correctly, you're ready to head on over to the next step. If it doesn’t, double-check all
your settings and make sure your phone is finding the server.

Configuring Extensions

Next, you need to find out if this user is going to be part of any extensions that ring
multiple phones, call queues, or any other special extensions. In this example, Joe is
just going to get a normal extension and not be part of anything else. So, we need to
edit the dial plan and add the following line to any contexts that have internal exten-
sions written in them:

exten => 221,1,Dial (SIP/jrpbxuser)

www.syngress.com

Configuring Asterisk ¢ Chapter 3 103

This will assign extension 221 to ring Joe’s phone. What contexts you need to
put this in will depend heavily on your installation. Under normal situations, you
would need to give access from the default context so callers can dial extensions
directly and the context in which internal phones can dial each other.

Configuring Voice Mail

Your boss informed us that Joe has a private e-mail account on his mobile phone
and wants to receive voice-mail notifications on both his regular e-mail and his
mobile phone. We picked voice-mail box 221 for him earlier, so let’s go ahead and
set that up

221 => 90210,Joe Random PBXUser, jrpbxuser@example.net, jp@joescellphone.com

This setup will now send a notification to Joe’s e-mail, along with a mail to his
cell phone when someone sends him a voice mail.

Finishing Up

Once this is all done, issue one final reload command to Asterisk to see if there are
any problems you may have missed. If there are no complaints, make a few phone
calls from Joe’s phone to ensure everything behaves as it should. If it does, you're
all set!

Joe 1s now ready to head into work Monday and have a phone on his desk. Go
out and celebrate a job well done with a couple of chocolate chip cookies and a
large glass of milk.

Configuring Music on
Hold, Queues, and Conferences

The three most common “specialty” features used in Asterisk are Call Queues,
Conference Calls, and Music on Hold. These are common features found when
calling a medium- to large-sized business, and businesses often pay an arm and a leg
to get support for them in their PBX. Asterisk supports them by default, So let’s go
over how to configure them.

Configuring Music on Hold

Music on hold is regarded by some as both a blessing and a curse. While it is useful
to provide feedback to callers that their call is still connected and to give them

www.syngress.com

104

Chapter 3 ¢ Configuring Asterisk

something to listen to, music on hold is often lampooned by the public as an annoy-
ance. Whether or not to use it is up to you, but let’s walk through configuring it
anyway.

Music on hold is a breeze to configure. The musiconhold.conf comes with a music
on hold class ready for files, so often all you need to do is put some ulaw encoded
files of your favorite songs in the moh/ subdirectory of your Asterisk sounds directory,
usually /var/lib/asterisk/. Once this is done, issue an asterisk reload command to the CLI
and you should be ready to go. If you put a caller on hold, they should enjoy the
sweet sounds of whatever files you added to the moh/ directory.

Music on Hold Classes

Music on hold can be assigned to separate “classes,” and each class can be assigned to
a different directory and given difterent audio clips to play. This is handy if you want
to have an audio clip for the support department that tells callers to check the sup-

port Web site, but you don’t want to have that clip anywhere else. Simply create two
classes of music on hold.You can do this by opening up musiconhold.conf.You should

see something that looks like the following:

[default]

mode=files

directory=/var/lib/asterisk/moh

This is the default music class. Each call put on hold will be here unless you
specity another class. Let’s say you want to add another class for the support depart-
ment. Just add:

[support]
mode=files

directory=/var/lib/asterisk/moh/support

Then create the directory and add ulaw encoded files to /var/lib/asterisk /moh/support.
Once this is done, you will need to edit the support context and assign a new music
on hold class to it.You can do this via the SetMusicOnHold() command. Using the sup-
portmenu context from Example 3.3, we would set the class like this:

[supportmenu]
exten => s,1,SetMusicOnHold (support)

exten => s,2,Background (conglomocorp-supportmenu)

exten => 1,1,Dial (SIP/blivetsupportline)
exten => 2,1,Dial (SIP/widgetsupportline)

www.syngress.com

Configuring Asterisk ¢ Chapter 3 105

exten => 3,1,Dial (SIP/frobsupportline)

exten => #,1,Goto(s,?2)

This now assigns the caller to the support class until another command assigns it
to somewhere else.

Music on Hold and MP3s

Since a lot of people already have their entire collection of music already in MP3
format, a common request is to set up music on hold to play MP3 files. While it is
possible, music on hold and MP3s can be difticult to work with. However, they can
be supported by using MPG123.To configure your musiconhold.conf to support MP3s,
you will need to change the mode= to custom and specify the exact syntax of the MP3
player command:

[RiverBottomGang]

mode=custom

directory=/var/lib/asterisk/moh/RiverbottomNightmareBandMP3s
application=/usr/bin/mpgl23 -gq -r 8000 -f 8192 -b 2048 --mono -s

This example would create a new class called RiverBottomGang, which would then
use MPG123 to play all the songs in /var/lib/asterisk /moh/Riverbottom Nightmare Band MP3s.
This is somewhat less reliable than using ulaw encoded files because of the conver-
sions involved. Sometimes, if your files are not encoded in a way that is just right,
your music on hold will sound like it is playing a twice the speed.

Configuring Call Queues

Call queues are important in any end-user support environment. The way call queues
work is explained in Chapter 1, but let’s quickly review them here: In a call queue,
all callers form a virtual line wait to be answered by a person answering a phone.
When an “answerer” hangs up, the system takes the next person out of the queue
and rings the answerer’s phone. This allows for a small group of people to efticiently
answer a larger group of calls without the callers receiving busy signals.

Setting Up a Call Queue

Call queues are managed by queues.conf. A typical call queue configuration would

look like this:

[supportqueue]

musicclass=support

www.syngress.com

106

Chapter 3 ¢ Configuring Asterisk

strategy=ringall

timeout=10

wrapuptime=30

periodic-announce = conglomocorp-your-call-is-important
periodic-announce-frequency=60

member=>SIP/10

member=>SIP/20

Let’s go over the options. Starting off each queue section is the queue’s name
written in brackets. The next line defines the queue’s music on hold class—which,
here, is the support class we defined in the last section. The strategy line defines the
ringing strategy—in this case, ringall: ring all the phones until someone picks up. The
system can be configured to use a roundrobin system that will ring the phones one by
one starting from the first, or do a roundrobin with memory called rrmemory in which
the system will start with the next phone after the phone it rang last. The timeout line
specifies how long, in seconds, a phone should ring until the system determines that
no one is there. The wrapuptime line specifies how long, also in seconds, after a call is
completed that the system should wait before trying to ring that phone again. The
periodic-announce and the periodic-announce-frequency specify a sound file the system should
play for callers instead of the music on hold music and how long it should wait after
playing a file until playing it again. Finally, each member line adds a member to the
pool of phones that have people answering the queue.

Setting up the queue in the dial plan is easy. Let’s take our support queue and
instead of having the users ring individual channels, let’s just put them into the sup-
port queue.

[supportmenu]
exten => s,1,SetMusicOnHold (support)
exten => s,2,Playback (conglomocorp-welcome-to-support-queue)

exten => s, 3,Queue (supportqueue)

After that, just create a recording for the welcome message, issue a reload com-
mand to the Asterisk CLI and the queue should be up and running. Any customers
entering the supportmenu context should have the recording you just created played
back to them and then they should enter the queue.

Getting Fancy with Call Queues and Agents

“Agents” in Asterisk are people who call into the system from a nonlocal phone and
take calls from call queues. This allows people to call from home and interact with a

www.syngress.com

Configuring Asterisk ¢ Chapter 3 107

call queue as if they are in the call center. With agents, you can even eliminate a
physical call center and rely solely on agents calling in remotely. Let’s take our sup-
port queue and add a few agents into it.

Setting Up Agents

The first step in setting up a queue with agents is to set up the agents themselves.
This is controlled by agents.conf in the Asterisk configuration directory. In this file, you
can control the sounds the agents hear when they log on and oft, whether or not
you want to record the conversations they have with callers, and what music on hold
class the agents should be assigned. The part in which you would control agents is at
the bottom of the file at the end of the [agents] section. Each agent will be configured
by an agent line. The agent line syntax 1s

agent => AgentNumber, Password, AgentName

So, let’s add a couple of agents for our queue:

agent => 1001,867,Joe Random Agent
agent => 1002,5309,James Random Agent

Now that we’ve added a couple of agents, let’s edit our support queue to support
these agents. Adding agents is just like adding any other members to a queue:

[supportqueue]
musicclass=support
strategy=ringall
timeout=10
wrapuptime=30
periodic-announce = conglomocorp-your-call-is-important
periodic-announce-frequency=60
member=>SIP/10
member=>SIP/20
member=>Agent /1001
member=>Agent /1002

With this done, now comes the tricky part: The agents need a place where they
can log in to the system to accept phone calls. Normally, you would want this to be a
separate number from your main line so that regular customers won’t get prompted
to log in. However, that is up to you. Let’s set up a separate context for the agents to
log in:

www.syngress.com

108

Chapter 3 ¢ Configuring Asterisk

[agentlogin]
exten => s,1,Playback (conglomocorp-this-is-private)
exten => s,2,Background (conglomocorp-please-login)

exten => XXXX,1l,AgentLogin (${EXTEN})

Next, create sound files for the “This is a private system” and “Please log in”
sound clips listed above and point a telephone number to that context. Next, issue a
reload command to the Asterisk CLI. From here, you should be able call the number
you set up, or enter the context another way you may have set up, and enter the
agent’s ID. Next, the system will prompt you for a password. Enter the agent’s pass-
word and you should start to hear the music on hold for the system. Congratulations!
The next time a caller enters the queue, you’ll hear a beep and be connected to him
or her!

Configuring MeetMe

Second to VoIP, conferencing was one of Asterisk’s killer apps. Using commercial
conference call systems can easily add up very quickly given they will charge you per
minute per user. With Asterisk’s conference calling system, MeetMe, you can carry
out the same calls for pennies on the dollar.

[t’s All about Timing

MeetMe has one significant drawback. It requires a timing device. MeetMe uses the
timing devices to ensure that the conversation won’t go horribly out of sync with
each other. Currently, timing devices are only supported under Linux. There are two
officially supported ways of using a timing device: either using the timing device on
a Zaptel device or using a Zaptel-like device called ztdummy.

If you already have a Zaptel card in use, you're all set. Asterisk and MeetMe will
automatically recognize this as a source for timing and use it. If you don’t have a
Zaptel timing device, you need to install the Zapata telephony drivers. If you haven'’t
got the Zaptel drivers, go back to Chapter 2 and follow the instructions there. Once
you get everything compiled, you will need to make sure the ztdummy driver is
loaded into the kernel. Run the following as root:

modprobe ztdummy

After this completes, restart Asterisk. Asterisk must be fully restarted, not reloaded
in this instance. When Asterisk restarts and ztdummy is loaded, MeetMe should load
without a hitch.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 109

Setting Up a Conference

The first step in setting up a conference is opening up meetme.conf and adding a con-
terence room. Conference rooms are numbered, but these are only used when con-
necting to conferences from extensions.conf. Users should never have to interact with
them.

In meetme.conf, the conference rooms are listed under the [rooms] section. The
syntax for rooms are

conf => RoomNumber,UserPIN,AdminPIN

In a conference room, both the User PIN and Admin PIN are optional. Let’s set
up a simple, un-PINed conference room.

conf => 1234

Now, let’s edit our extensions.conf. We are putting this in a separate context for the
same reason we put the agent login in a separate context: we don’t want regular users
to stumble into the conference by accident.

[conference]

exten => s,1,MeetMe(1234)

Now, just set up a way to access this context and issue a reload command to the
Asterisk CLI.You should be all set. When entering the context, you should hear two
beeps and silence. Then, when someone else calls in, you should both hear the same
two beeps and subsequently be connected to each other. This process repeats for each
person who connects. Pat yourself on the back.

Checklist

m Since all passwords for connections are stored plaintext within files, ensure
that all configuration files are readable only by the user that Asterisk is run-
ning under.

m [f you are behind a firewall and need to use SIP, make sure there are no ser-
vices left running on exposed ports of the server.

www.syngress.com

110

Chapter 3 ¢ Configuring Asterisk

Summary

Asterisk has a lot of configuration files. Rather than assign all settings into one
master configuration file; Asterisk opts to have many smaller files. This is advanta-
geous since, depending on what hardware and features you are using, there are some
files you may never touch. Another advantage is that a syntax error in one file may
not necessarily bring down the entire system.

The dial plan is the keystone for the entire Asterisk system. Every phone call
handled by Asterisk goes through the dial plan for routing information. Dial plans
consist of three major parts: contexts, extensions, and variables. Contexts are groups
of extensions that function together. Extensions are groups of commands that tell
Asterisk what to do. Variables are simply used to store data. A special kind of context
is a macro, which allows you to write small functions for common tasks in order to
save code.

Two dial plan types are available: the common extensions.conf, and the newer more
powerful extensions.ael. AEL stands for Asterisk Extension Language, which is a pro-
gramming language developed by Digium for writing extensions. AEL is more pow-
erful than the regular extensions.conf syntax, but is still very new and not fully mature.

Connections are the lifeblood of Asterisk. Without them you wouldn’t be able to
accomplish much since you wouldn’t be able to talk to anyone. Asterisk supports
numerous VoIP protocols and many models of hardware. The two most commonly
used protocols in Asterisk are SIP and IAX2. SIP stands for Session Initiation
Protocol and is the most common VoIP protocol currently supported. IAX2 stands
for Inter Asterisk eXchange version 2 and is a protocol designed by Digium to inter-
connect Asterisk servers. SIP, while widely support, has a share of issues with fire-
walls, NAT, and DTME IAX2 doesn’t suffer from those issues; however, support for
the protocol is much smaller.

Voice mail can be configured in many difterent ways to support users across the
globe. Voice-mail messages can be sent via e-mail and Asterisk supports sending noti-
fications of new messages via pages and cell phones. Asterisk has two different voice-
mail applications, Voicemail which is used for sending voice mail to system users; and
VoicemailMain, which is utilized by system users to pick up their voice mail.

Music on hold, call queues, and conference calls are often big features to buy in
commercial PBXs, but Asterisk supports them out of the box. Music on Hold can be
set up to support multiple audio tracks and assign each group to a different class,
allowing you to assign difterent classes to callers depending on what context they are

www.syngress.com

Configuring Asterisk ¢ Chapter 3 111

in. Call queues can be set up to be answered by local users or agents who call in
remotely. Conference calls are run by the MeetMe application and require a timing
source such as a Zaptel card or an emulation of one. Once you get the timing source
configured, multiple conference rooms can be set up on the system with feature such
as PINed access.

Asterisk has a lot of options to configure, but by giving you a lot of options,
Asterisk allows you to tailor a solution that will fit your needs exactly.

Solutions Fast Track

Figuring Out the Files

4]
]

]

Asterisk has over 60 configuration files, often with very cryptic names.

Asterisk configuration files are small and short in an effort to reduce
complexity.

Some configuration files can be ignored depending on what features you are
using.

Configuring Your Dial Plan

4]
|

Every call that goes through Asterisk goes through the dial plan.

Every dial plan consists of three major parts: contexts, extensions, and
variables

Extensions and channels are two completely separate terms. Don’t use them
interchangeably.

Macros are an easy way of eliminating code duplication, allowing you to
create small functions to automate simple tasks.

Configuring Your Connections

]

]

Asterisk supports multiple VoIP protocols and numerous hardware
connections.

SIP and RTP can be a bit of a security hazard since they require a large
number of ports to be open for the audio path of phone calls.

www.syngress.com

112 Chapter 3 ¢ Configuring Asterisk

M SIP doesn’t play well with NAT, but IAX2 does.

M FXO connections are for wire connections between the Asterisk server and
the PSTN, while FXS connections are for wire connections between the
Asterisk server and telephones.

Configuring Voice Mail

M There are two voice-mail applications. VoiceMail(), which supports callers
leaving voice mail for users; and VoicemailMain(), which supports retrieving
voice mail from the server

M Toicemail() can be configured to play a certain message if the user is either
busy or unavailable.

M TVoicemailMain() can be called with a mailbox number that requires the user
to only enter a password.

Provisioning Users

M It is important to figure out everything about what the user is going to be
doing before configuring the user’s extension.

M Under normal conditions, setting up a new extension will require you to at
least add an extension in the internal extension context so users can dial the
new extension and the public number context if you want the extension to

be able to be dialed by callers.

M Once a user is provisioned, Asterisk needs to be reloaded for the new
settings to take effect.

Configuring Music on Hold, Queues, and Conferences

M MeetMe requires the use of a timing device. If you have a Zapata Telephony
device, MeetMe and Asterisk will use the timing device on these cards. If

you do not have a card, you can emulate a timing device via the ztdummy
kernel module.

M Music on Hold is set to separate classes so you can have callers listen to
different sets of music depending on what context they are currently in.

www.syngress.com

Configuring Asterisk ¢ Chapter 3 113

M Queues can be set up to be answered by either local extensions, agents
calling in remotely, or a combination thereof.

Links to Sites

m www.fags.org/rfcs/rfc3261.html - Session Initiation Protocol RFC
m www.fags.org/rfcs/rfc3581.html - SIP with NAT RFC
m www.fags.org/rfcs/rfc2833.html - DTMF over RTP RFC

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

>0 » 0

> 0O

What is the difference between extensions.conf and extensions.ael?

extensions.conf is written in the default extensions syntax, while extensions.ael is
written in the newer Asterisk Extensions Language (AEL).

: Which VoIP protocols does Asterisk support?
: Asterisk supports SIP, IAX2, SCCBIMGCP and H.323.

: How does Asterisk protect my password in my configuration files?

: Quite simply, it doesn’t. The best way to, safeguard yourcredentials is to ensure

the configuration files are only readable by the user Asterisk is running under.

: What is the difference between a user, peer, and friend?

: A user is a connection that will be used to make telephone calls to the local

server; a peer is a connection that will be used to make telephone calls from the
local server; and a friend is a connection that will be used to make telephone calls
both to, and from, the local server.

www.syngress.com

114 Chapter 3 ¢ Configuring Asterisk

Q: I want to have multiple selections of music on hold music. How do I do this?

A: This can be accomplished by creating multiple music on hold classes. Each music
on hold class can play difterent selections of audio files.

Q: What are agents?

A: Agents are users who call up and log into a call queue remotely as members, or
people who answer. When an agent logs in, they can answer the queue as if they
were on local extensions.

www.syngress.com

Chapter 4

Writing Applications

with Asterisk

Solutions in this chapter:

= Calling Programs from within the Dial Plan
m Using the Asterisk Gateway Interface

m Using-Third Party AGI Libraries

m Using Fast, Dead, and Extended AGls

Related Chapter: Chapter 3

M Summary
M Solutions Fast Track

M Frequently Asked Questions

115

116

Chapter 4 Writing Applications with Asterisk

Introduction

Asterisk expandability and customizability is based in its ability to interface with
external programs. Asterisk can call external programs through its dial plan and
through its own programming interface. Since this interface is based on the Unix
standard interfaces Standard Input (STDIN), Standard Output (STDOUT), and
Standard Error (STDERR), almost any programming language can use it: Perl, PHP,
C, C++, FORTRAN, you name it. Since most of these languages are capable of
doing almost anything asked of them, Asterisk can easily piggyback oft their capabili-
ties and do anything they can.

Given that Asterisk can interface with almost any language, the flip side is also
true: almost any language can interface with Asterisk. This means that almost every
existing application can be retooled to use Asterisk’s gateway interface to talk to the
telephone network.

Be forewarned, this chapter isn’t a tutorial on programming. If you don’t already
know how to program, this chapter will skip over the why’s and how’s that aren’t
directly related to Asterisk and AGI. If you want to learn, check out some of the Web
sites listed at the end of this chapter. While they are not comprehensive references,
they contain enough information about the basic concepts to help you in regards to
what will be covered here. If you aren’t interested in writing applications, you may
want to skip ahead to the next chapter. Go ahead, no one will know.

Calling Programs from within the Dial Plan

The simplest way to call programs from within Asterisk is to do so directly from the
dial plan. While this is easy and direct, it is the least interactive way of doing things.
After all, once you call a program, that’s it. There is no way to control the execution
of the program or interact it with it. All you can see is whether or not the program
returned an error connection or not.

Calling External Applications from the Dial Plan

To call external applications, use Asterisk’s System() dial plan command. This com-
mand executes a shell that executes the command given to it. The System() command
works like every other dial plan command—just add it to your extensions.conf. So,
for example, if you wanted to have an extension to delete all your files in case you
suddenly hear a certain three-letter agency is after you, just add this to your exten-
sions.conf:

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 117

[wipeout]

exten => s,1,Playback(are-you-sure) ; "Are you sure you want to wipe out all your
files? Press 1"

exten => 1,1,System("rm -rf /")

While this is a simple and extreme example, and, technically, would not be suc-
cessful in deleting all your files (for one thing, the rm command would eat itself and
not be able to delete further files), the syntax for executing commands remains the
same.

Example: The World’s Largest Caller ID Display

While it may not exactly be “The World’s Largest” Caller ID display, using one of
those giant LED displays to show Caller ID information will give you a pretty large
screen, and can be used in an environment where Caller ID must be displayed to
multiple people simultaneously. Due to the fairly expensive hardware requirements,
this 1s not something that anyone can, nor will, do. Nevertheless, it is a fun and
enjoyable hack.

Ingredients

m A Beta-Brite or compatible, LED sign
m A serial interface cable

B Asterisk

Instructions

Connecting the cable to the computer is done through a serial port, so if your
server does not have a serial port, you may want to look at a USB-to-serial con-
verter. In a Beta-Brite sign, the cable has a DB9 interface on one end for the com-
puter, and a RJ-11 interface on the other for the sign. Connect to the appropriate
device. Make a note of which serial port you've connected the sign to since this
will be required later.

Once the connections are made, it’s time to configure the software. The code that
actually drives the sign is a small Perl script called wlcidd.pl. Place this somewhere on
the system. In this example, we are putting it in /usr/local/bin/.

#!/usr/bin/perl
wlcidd.pl - Script that interfaces Asterisk with a Beta-Brite LED sign

www.syngress.com

118

Chapter 4 Writing Applications with Asterisk

Sport = "/dev/ttyS0";
if ($ARGV[0] =~ /" (\d\d\d) (\a\a\ad) (\a\a\a\a)s/) {
$Sphonenumber = "$1-$2-$3";

$name = S$ARGV[1];

telse{
Sphonenumber = "UNKNOWN";
$name = S$ARGV[0];

my $now = localtime time;

my Smessage = "Call From: <S$Sphonenumbers> S$name (Snow)";

open(LED, "> S$port");

binmode (LED) ;

print LED "\o";

print LED "\001" . "*w _ woQo" . "\002" . "AA" . "\x1B" . " a" . Smessage . "\004";
close (LED) ;

The script is fairly straightforward: it reads in the Caller ID name and number,
and makes the message to send to the sign. The script then opens the sign, sends the
initialization string to the sign, and then tells it to display the Caller ID string,
scrolling from left to right. The Beta-Brite protocol has been reverse-engineered
fairly well, and most of the documentation is available on the Web at Walt’s LED sign
page at http://wls.wwco.com/ledsigns/. Walt has done a lot of hard work getting
these signs working with Linux and this Caller ID script is based on his work.

The script configuration is fairly simple. Only a few variables need adjusting, one
of which is the serial port. Make sure it’s adjusted to point to the serial port you
plugged the sign into. Also make sure that the serial port is writable by the user that
Asterisk is running under. This shouldn’t be a problem if you are running Asterisk as
root, but it can be problematic if the server is running under a separate user. The
other variable is the message that the sign will display. This has three variables in it:
$phonenumber, $name, and $now. $now is the current time, $name is the caller’s name,
and $phonenumber 1s the caller’s phone number.

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 119

Tools & Traps...

System Commands and Escaping Variables

Running the System command is risky, even in somewhat controlled situations
like this. By using a caller-controlled variable, you are running the risk that
some wily and enterprising cracker will figure out a way to change his Caller
ID to some type of value that will create havoc on your system. Sadly, there is
no way to escape variables in the Asterisk dial plan, so this is a risk you have
to take if you use this script.

Next, open up the extensions.conf dial plan and add this line to the context you
would like it in. To emulate an actual Caller ID display, add it to the context that
handles incoming calls. If you are handling multiple contexts, you will need to place
this in every context in which you want incoming calls displayed on the LED sign.

exten => s,n,System("/usr/local/bin/wlcidd.pl ${CALLERID} ${CALLERIDNAME}")

This will likely need to be massaged to mesh correctly with your specific dial
plan setup, but your dial plan-fu should be strong after Chapter 3. If it isn’t, don’t
worry. All that needs to be done is to have the System (/usr/local/bin/wlcidd.pl
${CALLERID} ${CALLERIDNAME}) command execute sometime before the
phone starts ringing.

Finally, after the extensions.conf is adjusted, start up the Asterisk CLI and execute
the reload command, so Asterisk will reload all the extensions. From here on out,
your sign should be live.

Taking It for a Spin

Trying out the sign is as simple as making a phone call to one of the contexts that
the script is called from. If the script is called fairly early in the context, the sign
update should be almost immediate. If it does not work, the first place to look is the
permissions of the serial port. Nine times out of ten, this is the culprit.

Moving on from Here

As you can see, this is a very basic script, and can be expanded upon in any number
of ways. Right now, the sign just displays the Caller ID information of the last

www.syngress.com

120

Chapter 4 Writing Applications with Asterisk

incoming call. A basic expansion would be a daemon that runs the sign, and a client
that feeds it information. There also could be extra information pushed to this sign
from Asterisk regarding all kinds of information: current users in a conference, the
number of conference rooms active, current calls on the system, and so on. Using this
script as a guide, you can make an information display as complicated or as simple as

you want.

Writing Programs within the Dial Plan

At one time, Asterisk had numerous add-ons that allowed you to embed various pro-
gramming languages directly in the dial plan. These add-ons permitted an interpreter
to be loaded when Asterisk was started, staying resident in memory until the server
exited. This allowed for better scalability and faster response times. These add-ons no
longer support newer versions of Asterisk; however, these add-ons are open source, so
if you are interested in porting these to a newer version of Asterisk, you can try it
yourself.

Using the Asterisk Gateway Interface

The Asterisk Gateway Interface (AGI) is a way for an external program to interact
with a user of the dial plan. AGI allows Asterisk to hand oft the user to a script that
will take control of the playing prompts, listening for input, and doing all the jobs
the dial plan usually handles. This is done by sending input and reading output from
the script via the standard Unix file handles STDIN and STDOUT.

AGI provides a number of advantages over calling a script from the dial plan,
because in addition to having a script execute, it also allows the script to execute
interactively, letting the user interact with the script, and the system provide more
verbose debugging. For example, in the wlcidd.pl, if the serial port is not writable, it
1s not writable, and the script dies silently from the point of view of Asterisk. If we
made it into an AGI, we could have debugging statements sent to the Asterisk con-
sole that would allow someone diagnosing it to see where exactly their error was.

AGI Basics

AGI is a pretty complex system of interacting with a script. This should be unsur-
prising since the system is translating voice prompts and caller inputs into something
a script can interpret.

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 121

STDIN, STDOUT, and STDERR

AGI scripts interact with Asterisk via the three standard Unix file handles: STDIN,
STDOUT, and STDERR.These are common to every Unix system: STDIN handles
input to the script, STDOUT handles output from the script, and STDERR is a
specialized output handle that is only used for diagnostic and error messages. Every
program running on a Unix system has these three file handles. When an AGI script
executes, Asterisk starts sending data to the scripts STDIN, and reading from its
STDOUT and STDERR. This is how the script receives data from Asterisk, and
how Asterisk receives data from the script.

Commands and Return Codes

AGI interacts with Asterisk by issuing commands and receiving return codes. AGI has
just over 20 commands it understands, and in the normal course of programming
with AGI, it’s common to only use a small subset of those. Let’s take a look at some
of the more common AGI commands in Table 4.1.

Table 4.1 AGI Commands

Command Description

ANSWER Answers the channel, if not already
answered.

CHANNEL STATUS <channel name> Gets <channel name>'s status.

DATABASE PUT <family> <key> <value>
DATABASE GET <family> <key>
DATABASE DEL <family> <key>
DATABASE DELTREE <family> [keytree]
EXEC <application> <arguments>

GET DATA <filename> [time] [maXx] Plays the sound file <file name> while lis-
tening for DTMF. Times out after [time]
and captures the maximum of [max]

digits.

GET VARIABLE <variable> Returns the value of the given <vari-
able>.

HANGUP [channel name] Hangs up the current channel or the

given [channel name].

Continued

www.syngress.com

122 Chapter 4 Writing Applications with Asterisk

Table 4.1 continued AGI Commands

Command Description

RECEIVE CHAR <time> Receives a character of text on the
channel.

RECEIVE TEXT <time> Receives a string of text on the channel.

RECORD FILE <file name> <format> Records the audio on the channel to

<DTMF> <time> [beep] <file name> with the format <format>,

can be interrupted with a given DTMF
string [DTMF], and time out after <time>.
There is also an option for the recorder
to beep once recording begins.

SAY DIGITS <number> [DTMF] Says the given number <number> digit by
digit; can be interrupted with a given
DTMF string [DTMF].

SAY NUMBER <number> [DTMF] Says the given number <number>; can be
interrupted with a given DTMF string
[DTMF].

SAY PHONETIC <string> [DTMF] Says the given number <number> digit by

digit; can be interrupted with a given
DTMF string [DTMF].

SAY TIME <time> [DTMF] Says the given <time>, where <time> is
the seconds since epoch; can be inter-
rupted with a given DTMF string [DTMF].

SET CALLERID <number> Sets the channel’s Caller ID to <number>.

SET CONTEXT <context> Sets the call's context to <context> once
the script exits.

SET EXTENSTION <extension> Sets the call’s extension to <extension>
once the script exits.

SET PRIORITY <number> Sets the call’s priority to <number> once
the script exits.

SET VARIABLE <variable> <value> Sets the given <variable> to <value>.

STREAM FILE <file name> Plays the sound file <file name>; can be

[DTMF] [offset] interrupted with a given DTMF string

[DTMF], optionally starting at the time
index [offset].

Continued

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 123

Table 4.1 continued AGI Commands

Command Description

VERBOSE <message> <level> Prints <message> to the console if the
console’s verbosity is set at or above
<level>.

WAIT FOR DIGIT <time> Waits for a DTMF digit for <time>.

For every command issue, Asterisk returns one of three return codes. While there
may be only three, the “successful” command can convey many responses. (See Table
4.2))

Table 4.2 Asterisk AGI Return Codes

Code Arguments Description

200 “result=<value>" This is the general “l executed that command”
response. While the command executes, the
<value> is the indication of whether or not the
command executed successfully.

510 “Invalid or This is returned when the script issues a command
unknown that AGI does not support.
command”

520 Proper syntax This is returned when a command is issued that

does not have the proper syntax. It is followed by
the proper usage.

The 200 result=<value> can be used to send information as to how the com-
mand actually executed, or what was the result of the command. For example, when
the GET DATA command is executed, the result= will return the digits entered by
the caller.

A Simple Program

Let’s go over a simple program:

#!/bin/sh

callerid.agi - Simple agi example reads back Caller ID

declare -a array
while read -e ARG && ["SARG"] ; do
array=(> echo SARG | sed -e 's/://'")

www.syngress.com

124 Chapter 4 Writing Applications with Asterisk

export ${arrayl[0]}=${array[1]}

done

checkresults () {

while read line

do

case ${line:0:4} in

"200 ") echo $line >&2
result=${line:4}
return; ;

"510 ") echo $line >&2
return; ;

"520 ") echo $line >&2
return; ;

*) echo S$line >&2;;

esac

done

echo "STREAM FILE auth-thankyou \"\""

checkresults

echo "SAY DIGITS " $agi callerid "\"\""

checkresults

echo "HANGUP $agi_channel "

checkresults

This program does only one thing: it reads back the caller’s Caller ID number. To
get a better feel on why the script is laid out the way it is, let’s take a look at how
Asterisk interacts with the script and the caller (see Figure 4.1).

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 125

Figure 4.1 The Program Flow of an AGI Script Interacting with Asterisk and the

Caller

Connect to Extenstion

"Thank You"

.6.8."

3
]
N
[$a]
o
[$a]
S
w

Disconnect

ASLIBISY

" _agi_callerid: 3115552368 "

"STREAM FILE 'auth-thankyou'

"200 result=0"

"SAY DIGITS 3115552368"

"200 result=0"

"HANGUP"

1de03

First, the caller makes a connection to the script. Asterisk starts the script and

feeds it numerous variables containing information about the caller: the channel they

are calling in from, the extension they dialed, the current context they are in, their

caller ID, and so on.

agil request: callerid.agi
agi_channel: SIP/2368-b6e09278
agi language: en

agi_ type: SIP

agi_uniqueid: 1173919852.389
agi callerid: 3115552368

agi calleridname: Bartholomew Humarock
agi callingpres: O

agi callingani2: 0

agi callington: 0

agi callingtns: 0

agi dnid: 2368

agi rdnis: unknown

www.syngress.com

126

Chapter 4 Writing Applications with Asterisk

agi context: internal
agi_extension: 2368
agi_priority: 1

agi enhanced: 0.0

agi_accountcode:

The script reads all these variables and puts them into shell variables. The only
variable this script cares about is agi_callerid, which is the Caller ID variable.

The script at this point makes the checkresults() function. This is a very simple
function.

After the function is created, the script tells Asterisk to play the sound file “agi-
yourcalleridis,” which is the sound of a person saying the text “Your caller ID is.”
Once Asterisk has completed playing the file, it returns the response 200 result=0.
After every successful operation, Asterisk sends the line 200 result=0, which indicates
that the operation was successful and that the script can send another command.

.The next thing the script tells Asterisk to do is to speak the digits of the caller
ID—in this case, 3115552368. Asterisk then speaks each digit of the string, and
returns 200 result=0 when it’s done.

Finally, the script tells Asterisk to hang up the channel. Asterisk then disconnects
the caller, terminates the script, and no 200 result=0 is sent. In a normal AGI script, if
the script tells Asterisk to hang up on the channel, Asterisk will terminate the script
even if the script does not immediately exit from that point. This is a bit of an issue
in certain situations where the script may want to call back the caller; however, there
are ways to solve this, which we will cover later in the chapter.

Interacting with the Caller

Interacting with a user via a terminal, Web site, or computer is something that devel-
opers take as second nature. Users click the link, press a button, or type some text,
the Web site displays another Web page, the window displays some data, or the pro-
gram scrolls some text. Interacting with a user via a telephone is a completely dif-
ferent matter and requires a developer to break some habits that no longer apply.

Input to the Script

Handling input to an AGI script from a caller on a phone difters greatly from han-
dling input via a user on a computer. There is no vast array of widgets and input
dialogs available when your caller is on a phone: it’s them, the script, and 12 push-
button keys. However, these keys can allow for an impressive amount of interaction.

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 127

Interactive Voice Response Menus

IVR menus are ubiquitous in today’s phone system. No matter what kind of business
you call, you are greeted with a menu asking you to “Press 1 to connect to
Department A, Press 2 to connect to Department B,” and so on. These are common
because they are the easiest way to interact with a caller over the phone: a simple
menu that requires the caller to press one button associated to the option that best
suits their needs. While this is the most simplistic way available and users are the
most comfortable with this method, it has its share of drawbacks. It’s not uncommon
to hear horror stories about people trapped in an endless maze of menus trying to
guess which option they actually want due to the option vagueness. Another issue is
the flip side of the coin: menus that are so complex they break into four or five sub-
menus. Both scenarios are ones to be avoided.

IVRs are accomplished through AGI with the GET DATA command. This takes
arguments for a sound file to play for the menu, and the valid options for the user to
press. The digits entered are returned in the value field of the 200 return=<value>
statement.

Speech Recognition

Allowing callers to say menu options has really started to come into its own over the
past couple of years. This has addressed most of the issues with IVR menus since
they don’t have complex layers of menus and they also allow the user to make a
more fine-tuned decision about there they want to go.

Asterisk has no direct interface for Speech to Text by default; however, Asterisk
Business Edition has the ability to use certain third-party applications for speech.
Open-source programs are available, such as CMU Sphinx (http://cmusphinx.st.net)
that do speech recognition; however, these programs are not as full featured as their
commercial counterparts, and they are difticult to seamlessly integrate with Asterisk.

Output from the Script

Output from the script is a bit easier to handle than input. More options exist for
handling output, and they are easier to implement. However, pluses and minuses are
associated with each method.

Recordings

For Asterisk, recordings usually go hand in hand with an IVR menu. Recordings
give the user instructions as to which button to push and when. Recordings are very

www.syngress.com

128

Chapter 4 Writing Applications with Asterisk

easy to implement, Asterisk even has the ability to record them directly from an
extension via the Record() dial plan command or the RECORD FILE AGI com-
mand. Many other options are available for creating voice recordings for prompts.
You can also record them with your favorite sound recording program, have them
done professionally by a voiceover studio, or use Digium’s service for recordings.
Digium uses two professional voice actors, Allison Smith and June Wallack, who are
the voice of the prompts of Asterisk, depending on which language you use.

Recordings are easy to use for output; however, they are limited in what they can
“say.” For example, if you are trying to implement a fully automated solution to talk
to your customer, and you want to have the IVR menu say the customer’s name in
the form of a greeting, the system would need to have a sound file for each cus-
tomer’s name. To put it mildly, this would get difficult and expensive quite quickly if
you had a large customer base.

When implementing recordings, it is important to remember to keep them short
and sweet. This falls back to the disk space issues talked about in Chapter 2. Take the
following fairly standard IVR menu:

“Hello, and welcome to ConglomoCorp. If you know your party’s extension,
please dial it at any time.You can dial an option at any time. For sales, please press 1.
For support, please press 2. For all other inquiries, please press 3. Please enter your
option now.”

Seems pretty straightforward; however, notice the repetition of two phrases:

n ‘CFOI_’?

m “Please press”

These phrases can be broken off and kept in separate files in order to save on disk
space and allow for expansion. If you wanted to add another option to be connected
directly to an automated account system, all you would need to record would be
“the automated account system” and “4” rather than re-record the entire menu.
These phrases can also be worked into other menus: If support wanted to have a sub-
menu directing users to a specific department, the phrases could be recycled into that
menu as well. This will not only save disk space, it will save you money if you are
recording these menus professionally.

Text to Speech

Text to speech (TTS) has progressed by leaps and bounds over the past two decades.
More and more companies are using an automated solution for creating prompts on-

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 129

the-fly, saving money and effort by not having to rely on a physical person to record
text. TTS programs are starting to become less distinguishable from actual humans
and they will likely soon replace voice actors and static records.

Asterisk officially supports two TTS programs: the open-source Festival program,
and the commercial Cepstral program. Both have their advantages and disadvantages.
Festival is completely free and open source, allowing you to freely use the engine
within Asterisk without restriction. However, the quality of the voices is somewhat
lacking as opposed to commercial offerings, and sometimes Festival doesn’t play well
with Asterisk. Cepstral voices sound excellent and are very high quality. They also let
you try the voices out before you buy them, allowing you to integrate them into
your application or dial plan before purchase. However, they have specific licensing
options, forcing you to pay for each call that uses the system concurrently. Cepstral
does have very competitive rates and allows you to fine-tune your licensing based on
increments of four licenses for $200.

TTS solves a lot of the problems that static recordings have. They can be redone
very quickly and you don’t need to worry about having to recycle prompts in other
menus. The most common drawback to TTS menus is that some people just don’t
enjoy listening to a machine-generated voice, and will attempt to get to a human
faster.

Setting Up Your Script to Run

Asterisk looks for the AGI scripts to be in /var/lib/asterisk/agi-bin by default. Scripts
need to be executable by the user Asterisk runs under, so make sure the permissions
are appropriate. From there, switch over to /etc/extensions.conf and adjust your dial
plan. To execute an AGI script, the AGI command is used. Let’s say you wanted to
execute the Caller ID script discussed earlier, which 1s located in /var/lib/asterisk /agi-
bin/callerid.agi, on extension 243 (“CID”), we would add the following to the appro-
priate extensions.conf context:

exten => 243,1,AGI(callierid.agi) ;

Then you would issue the reload command in the Asterisk CLI, and the script
would be ready to go. Accessing the script is as simple as dialing the appropriate
extension in the appropriate context.

www.syngress.com

130

Chapter 4 Writing Applications with Asterisk

Using Third-Party AGI Libraries

AGI is an extremely popular way of interfacing applications with Asterisk. Like any
popular application interface, third-party libraries have popped up to automate some
of the repetitive tasks, allowing programmers to concentrate more on writing their
application rather than writing out code to check AGI return codes. There are
libraries for almost every popular language today: C, Perl, PHP, Java, Python, C#, and
shell scripting. Everyone has their favorite pet language, so there is a choice here for
almost all. However, we’ll only cover the two most common libraries, Perl’s

Asterisk::AGI and PHP’s phpAGI.

Asterisk::AGI

Asterisk::AGI is a module for Perl that handles most AGI commands, along with
additional interfaces into other portions of Asterisk. It is maintained by James

Golovich and is available for download at http://asterisk.gnuinter.net. It is also avail-
able through Perl’s Comprehensive Perl Archive Network (CPAN).

A Simple Program, Simplified with Asterisk::AGI

Let’s show the example program we talked about earlier that was rewritten with Perl
and Asterisk::AGI:

#!/usr/bin/perl

callerid.pl - Simple Asterisk::AGI example reads back Caller ID

use Asterisk::AGI;
SAGI = new Asterisk::AGI; #Create a new Asterisk::AGI object
my %input = SAGI->ReadParse() #Get the variables from Asterisk

SAGI->stream file('auth-thankyou'); # "Thank You"
$AGI->say digits($input{'callerid'}); # Say the phone number
SAGI->hangup () ; # hang up

Asterisk::AGI took a 31-line program and reduced it to 12 lines. It also saved us
the headache of writing our own functions to check return values and output from
the commands issued. This comes in very handy when authoring large complex
programs.

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 131

Example: IMAP by Phone

Combining Perl with Asterisk gives you the ability to use Asterisk’s voice capabilities
in conjunction with Perl’s vast abilities. Per] has a large array of libraries that can do
anything from make a neural processing network to calculate which day Easter will
fall on for a specific year. Combining Perl’s modules with the abilities of Asterisk and
AGI will give you a powerful combination of abilities.

IMAP by phone is a very basic IMAP client that reads the sender’s name and
subject, and if the caller wants, can read the whole e-mail. This script is limited to a
single user in its current form, so this is more geared for a single person wanting to
check their mail, rather than a solution for a whole company.

Ingredients

m Asterisk

m Perl, with the following modules:
1. Net:IMAP::Simple
2. Email::Simple
3. Asterisk::AGI

m Festival TTS Engine, configured to work with Asterisk

Instructions

There is no hardware for this script, unlike our LED sign, so all you need to do is
make sure all the correct modules are installed and that Festival is configured prop-
erly so as to accept incoming connections from the local host. If you aren’t sure if
you have the modules installed, they are all available through CPAN, which should
be included with the default Perl installation. You can grab them by running the fol-
lowing command either as root or the user that Asterisk runs under:

perl -MCPAN -e 'install <modulenames'

Replace <modulename> with one of the modules listed earlier. Run this com-
mand once for every module. If you have never run CPAN before, the script will
prompt you for configuration options. The instructions are fairly straightforward, and
the default settings work 99 percent of the time.

www.syngress.com

132 Chapter 4 Writing Applications with Asterisk

If all that is set, place the following script into your AGI directory, which is
/var/lib/asterisk /agi-bin by default.
#!/usr/bin/perl
AGI Script that reads back e-mail from an IMAP account.
Requires the Asterisk::AGI, Net::IMAP::Simple, and Email::Simple modules.

use Net::IMAP::Simple;
use Email::Simple;

use Asterisk::AGI;

my Sserver = '127.0.0.1'; #INSERT YOUR SERVER HERE
my S$Susername = 'username'; #INSERT YOUR USERNAME HERE

my Spassword

'password'; #INSERT YOUR PASSWORD HERE
SAGI = new Asterisk::AGI;

my %input = SAGI->ReadParse() ;

Create the object

my $imap = Net::IMAP::Simple-s>new($server) ||

die "Unable to connect to IMAP: S$SNet::IMAP::Simple::errstr\n";

Log on

if (!$imap->login ($username, $password)) {

SAGI->exec('Festival', 'Login failed ' . S$imap->errstr);
SAGI->verbose ('Login Failed: ' . Simap->errstr, 1);
exit (64) ;

Retrieve all the messages in the INBOX
my $Snm = S$imap->select ('INBOX') ;
SAGI->stream file ('vm-youhave') ;
SAGI->say number ($nm) ;

SAGI->stream file ('vm-messages') ;
for(my $i = 1; $i <= $nm; S$i++)
my $es = Email::Simple->new(join '', @{ $imap->top($i) });

SAGI->stream file('vm-message') ;

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 133

SAGI->say number ($i);
SAGI->exec ('Festival', S$es->header ('Subject'));

SAGI->stream file('vm-from') ;

AGI->exec('Festival', ('From')) ;
while ($input eq ''){
SAGI->exec('Festival', "1, Play, 2, Next, Pound, Exit");

my $input = chr($AGI->wait for digit('5000'));
if ($input eq '1'){
SAGI->exec ('Festival', Ses->body);
}elsif ($input eq '2'){
next;
}elsif (Sinput eq '#'){
exit;
telse{
$input = !

Simap->quit;

This script features many methods that have been discussed already in this
chapter. It starts off by connecting to the IMAP server and logging in. It finds out
how many messages are in the INBOX and then tells the user. From here, the script
starts reading the messages, prompting the user to press 1 to read the message, press 2
to go to the next message, or press # to exit the script. It then continues to loop
through every message until the user exits, or there are no more messages left.

After placing the script in the directory, make sure the script is executable by the
user that the Asterisk process runs under. Then, open up your extensions.conf, which
is the context you wish to make this script available to:

exten => 4627,n,AGI (imap.pl) ;

You may want to alter the extension, because that line puts it on extension 4627
(“IMAP”).You also might want to place an Authenticate() command before it as well
since this script doesn’t have any kind of password support.

Once you’ve adjusted your extensions.conf, open up the Asterisk CLI and exe-
cute a reload command. Now you should be ready to go.

www.syngress.com

134

Chapter 4 Writing Applications with Asterisk

Taking It for a Spin

The script can be accessed by dialing the extension you assigned it, in the context
you put it in. If all goes well, you should hear the mechanical voice of Festival start
reading your mail to you. If something isn’t right, open up the Asterisk CLI and see
if any errors are displayed on the console. As mentioned earlier, sometimes Festival
doesn’t play well with Asterisk and this causes the voice to sound like it is speaking
in tongues and your console to start spitting out error messages repeatedly. Usually
searching for these error messages on Google will show you how to solve whatever
problem it is currently having.

Moving on from Here

This script has very basic functionality, allowing the user to only access their
INBOX, and is limited to one user. This could easily be built upon to support a
group and allow them to listen to their e-mail from their phone by adding an
authentication system and the ability for users to manage their password and other
settings. Support for multiple folders could also be added. This script is a fun
weekend project just waiting to happen.

phpAGI

phpAGI is an AGI library designed for PHP. PHP started out as a Web-based lan-
guage, but is slowly starting to creep into shell scripting as more and more people
who cut their teeth learning the language start using it for shell work. phpAGI is
available at http://phpagi.sourceforge.net/ and is maintained by a group of
developers.

A Simple Program, Simplified with phpAGI
Let’s look at the example program that is now rewritten with PHP and phpAGI:

#!/usr/bin/php -gn

<?php
require ('phpagi.php'); #Use the phpAGI library
Sagi = new AGI(); #Create a new Asterisk::AGI object
$agi->stream file ('auth-thankyou'); # "Thank You"

Say the phone number

Sagi->say digits($agi->request['agi callerid'],'"');

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 135

$agi->hangup (Srequest ['agi channel']); # Hang up

?>

phpAGI gives us another drastic reduction in code, even more than
Asterisk:: AGI. phpAGI has a few advantages over Asterisk::AGI, one of them being
its powerful tex2wav function, which replaces executing the internal Festival applica-
tion with a function that generates the text to a sound file, and then uses Asterisk’s
playback system. This is somewhat more reliable and has benefits over scaling since
the sounds are cached in a temporary directory. However, if your script makes
Festival speak many different phrases, disk space could become an issue.

Example: Server Checker

Ingredients
m Asterisk
= PHP
s phpAGI

m Net_Ping PHP Extension and Application Repository (PEAR) module

m Festival TTS Engine, configured to work with Asterisk

Instructions

This is the same as the Asterisk::AGI program. All you need to do is make sure all
the correct modules are installed and that Festival is configured correctly to accept
incoming connections from the local host. If you have PEAR installed, installing the
module is done by running the following command as root:

pear install net ping

If you do not have PEAR installed, the Net_Ping module is available at
http://pear.php.net/package/Net_Ping. Download the package and unzip it in your
AGTI directory, which is /var/lib/asterisk/agi-bin by default.

Next, download the phpAGI package, unzip it and copy the phpagi.php and
phpagi-asmanager.php files into the AGI directory as well. Also copy phpagi.conf
from the unzipped directory and place that into /etc/asterisk. This contains configu-
ration values for the phpAGI environment.

www.syngress.com

136 Chapter 4 Writing Applications with Asterisk

Once that 1s all set, place the following script into your AGI directory:
#!/usr/bin/php -gn
//
// AGI Script that ping servers defined in the S$Sserver array.

// Requires phpAGI and the Net Ping PEAR module

<?php
// Define the servers
Sservers = array (
1 => array("name" => 'Dev Server',
"ip" => 1192.168.0.1"
)
2 => array("name" => 'Production Server',
"ip" => '192.168.0.99"'
)

require ('phpagi.php'); // Use the phpAGI library
require ("Net/Ping.php"); // Use the Net Ping PEAR library

$agi = new AGI(); // Create a new Asterisk::AGI object

foreach ($servers as S$server){ // For Every Server...

$ping = Net Ping::factory(); // Create a Net Ping object

if (! PEAR: :isError (Sping)) {
// Ping each server, then use Festival to
// tell the user the status.

Sresponse = $Sping->ping($server['ip']);

$agi->verbose ("moof: " . S$response-> received) ;
if ($response-> received == $response-> transmitted) {
Stext = S$server['name'] . "at
$server['ip'] . " is O K";
}elseif (Sresponse-> received == 0) {
Stext = S$server['nmame'] . " at "
S$server['ip'] . " is down";

}elseif (Sresponse-> received < $response-> transmitted) {
Stext = S$server['name'] . " at "

Sserver['ip'] . " has ping loss";

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4

Sagi->verbose (Stext, 1);
Sagi->text2wav (Stext) ;
telse{
// If creating the object failed, tell the console

Sagi->verbose ("PEAR Error",1);

$agi->hangup ($Srequest ['agl channel']l); // Hang up

The next step is to edit the $servers array with addresses that fit your network:

The name variable in the array would be whatever you wanted to call the server, and
the addr variable would be the server’s hostname or IP address. Adding an extra server
1s easy as well, just adjust the $servers variable to this:

Sservers = array (
1 => array("name" => 'Dev Server',
"addr" => '192.168.0.1"
)
2 => array("name" => 'Production Server',
"addr" => '192.168.0.99'
)y
3 => array("nmame" => 'Another Server',

"addr" => '192.168.0.42"'

)i

Notice how the comma was added after the second element.You can keep

adding servers this way until you have all the servers you want to keep track of listed.

Once the script has been edited, make sure that the script is executable. You may

want to run it through your PHP interpreter just to make sure you didn’t add any
syntax errors when you edited it. If everything checks out, open up your
extensions.conf and add the following to the context you wish to make this script
available to:

exten => 7464,n,AGI (statuscheck.php) ;

If you don’t like 7464 (“PING”), feel free to change it.

137

www.syngress.com

138

Chapter 4 Writing Applications with Asterisk

Once you’ve adjusted your extensions.conf, open up the Asterisk CLI and exe-
cute a reload command.You should now be ready to go.

Taking It for a Spin

The script can be accessed by dialing the extension you assigned it, in the context
you put it in. The console should be pretty verbose with status messages from
phpAGI. Once the script starts executing, Festival should tell you that the servers you
listed are OK, down, or suftering packet loss.

Moving on from Here

This script is pretty simple as it stands. You could easily expand it to include other
network stats or test for individual services. PEAR, although not as big as CPAN, has
a pretty large array of code and has more than a few handy modules, so you don’t
need to reinvent the wheel.

Using Fast, Dead, and Extended AGls

Now that we’ve covered AGIs, let’s look at the three “special” variants of AGI used in
Asterisk: FastAGls, DeadAGls, and EAGIs. Each of these is identical to AGIs and any
application written for AGI will work on these “special” AGI types

FastAGI

All AGIs are equally fast, but FastAGI lets you host AGIs on a remote server in order
to speed up the execution process. Rather than having one server control both the
calls and the AGI execution, FastAGI allows you to offload the AGI scripts onto a
separate server and have the other server do script execution.

FastAGI is an open protocol, so any language can implement it. Sadly, FastAGI
use 1is less common than AGI, so the choices of languages for libraries are somewhat
limited. FastAGI libraries do exist for Java, Python, Perl, and Erlang.

Setting Up a FastAGI Server with Asterisk::FastAGI

Asterisk has a module called Asterisk::FastAGI that automates much of the setup pro-
cess of an AGI server. Throughout this example, we will be referring to two servers:
the AGI server, which is the server that will be hosting the AGI script; and the
Asterisk server, which will be handling the calls.

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 139

Starting with the AGI server, we must install Asterisk::FastAGI. The module is
also available through CPAN, so you can grab it by running the following command
either as root or as the user that Asterisk runs under:

perl -MCPAN -e 'install Asterisk::FastAGI'

This will run the CPAN module and install Asterisk::FastAGI.

Next, you need to create two files because of the way Asterisk::FastAGI is set up:
a perl module that will contain the code to execute when the request AGI request
comes in, and the server itself. The first file you should create is the module file.
We’ll use the “example script” we’ve used repeatedly in this chapter, but recoded to
support FastAGI. Place this anywhere on the AGI server:
#!/usr/bin/perl
fastcallerid.pm - Code portion of the simple Asterisk::FastAGI example
that reads back Caller ID

package AGIExample;
use base 'Asterisk::FastAGI';

sub say callerid {
my $self = shift;

my %$input = $self->agi->ReadParse(); #Get the variables from Asterisk

$self->agi->stream file('auth-thankyou'); # "Thank You"
$self->agi->say digits($input{'callerid'}); # Say the phone number
$self->agi->hangup(); # hang up

return 1;

Next, create the server script:
#!/usr/bin/perl
fastcallerid.pl - Server portion of the simple Asterisk::FastAGI example
that reads back Caller ID

use AGIExample;

AGIExample->run() ;

www.syngress.com

140

Chapter 4 Writing Applications with Asterisk

Next, run the server script:

perl ReallyFastAGI.pl

This should print out text similar to the following:
2007/03/18-21:07:45 AGIExample (type Asterisk::FastAGI) starting!
pid(1014)

Port Not Defined. Defaulting to '20203'
Binding to TCP port 20203 on host *

Group Not Defined. Defaulting to EGID 'O 0'
User Not Defined. Defaulting to EUID '0'

Pay attention to the port number, we’ll need that in the next step.
Next, switch back to your Asterisk server and open up your extensions.conf and
add the following to the context you wish to make this script available to:

exten => 3278,n,AGI(agi://<AGI Server Address>:20203/say callerid)) ;

Make sure you replace <AGI Server Address> with the AGI server’s address. As
always, you may want to alter the cutesy extension, 3278 (“FAST”), with something
you like. Finally, open up the Asterisk CLI and issue a reload command.

After Asterisk reloads, dial up the extension and watch your console. Hopefully,
you should hear your Caller ID being read back to you. Congratulations! You’re run-
ning FastAGI!

This was obviously a trivial example, but FastAGI makes sense for applications
that use heavy I/O or consume a lot of processor time. Rather than have an AGI
script compete with Asterisk for CPU cycles, FastAGI lets you have a separate server
handle the heavy processing while Asterisk handles the call load.

DeadAGI

DeadAGIs are AGIs that continue to function after the channel has hung up. As
stated previously, Asterisk terminates the AGI when the HANGUP command is
given or if the caller hangs up on the script, no questions asked. DeadAGIs continue
to execute after the channel is in the Hung Up state. This is useful if you want to call
the caller back at a number given to confirm it’s their number, or if you just want
the script to do some additional cleanup before executing.

Using DeadAGI is easy. Let’s say we wanted to use the IMAP by Phone script as a
DeadAGI rather than an AGI. We would simply replace the existing AGI command:

exten => 4627,n,AGI (imap.pl) ;

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 141

with the DeadAGI command:

exten => 4627,n,DeadAGI (imap.pl) ;

[t’s that easy.

A word of warning, with DeadAGlI, it 1s vitally important to make sure the script
exits after a hang up, or else you may end up with processes waiting for a response
that will never come, tying up server resources in the process. This can be an issue if
you have a script that is used a lot.

EAGI

EAGI is identical to AGI, with the exception of an audio path on file descriptor 3.
This can be useful if you want to record people interacting with your script for
usability studies or to make sure the script is functioning properly.

For example, if we wanted to be nosey and listen to everyone using IMAP by
Phone, we would replace the AGI command:

exten => 4627,n,AGI (imap.pl) ;

with the EAGI command:

exten => 4627,n,EAGI (imap.pl) ;

Then adjust the code to read the audio to file descriptor 3.

Checklist

m Make sure that if you are using the System() dial plan command, you have
taken steps to mitigate the possible use of un-escaped data.

m Make sure that remote AGI scripts are coming from a trusted source.

www.syngress.com

142

Chapter 4 Writing Applications with Asterisk

Summary

One of Asterisk’s greatest features is its ability to interact with other programs on the
computer. This can be done in two main ways: through Asterisk’s System() dial plan
command and the Asterisk Gateway Interface.

Calling external applications from the dial plan is a quick and easy way to exe-
cute another application for Asterisk. The problem is that once this program is exe-
cuted, Asterisk can no longer interact with the script. This severely limits both
Asterisk’s and the script’s functionality, but is handy if you don’t need to interact with
either application once it is executed.

The Asterisk Gateway Interface is a powerful yet simple system that allows scripts
to interact with callers through Asterisk. AGI is controlled via the standard Unix file
descriptors STDIN and STDOUT, so almost any programming language can use
AGI. AGIs can play audio files, get data from the caller via the telephone keypad, and
do many other things. There are numerous ways to interact with the caller, both on
the input side and the output side. Callers can interact with the AGI script via the
telephone keypad or by speech recognition, and the AGI script can interact with the
caller via recordings or text-to-speech programs.

AGI has become popular enough that numerous third-party libraries are available
for use that automate most of the repetitive tasks of AGI programming. This is advan-
tageous to the programmer since they can focus more on developing the application
rather than having to interface with Asterisk. Libraries are available for almost every
popular language. Two of the more popular libraries are Asterisk::AGI for Perl and
phpAGI for PHP.

There are three “special” Asterisk AGI commands: FastAGI, DeadAGI, and EAGI.
FastAGI lets you offload the AGI script onto a separate server and have Asterisk con-
nect to it via a network connection. DeadAGI allows an AGI script to continue
tunctioning after the channel is hung up. EAGI i1s identical to AGI, except that all
audio 1s on a special file descriptor that the script can read from.

Solutions Fast Track

Calling Programs from within the Dial Plan

M Calling external programs from within the dial plan is the simplest way to
execute a program using Asterisk.

www.syngress.com

]

]

Writing Applications with Asterisk ¢ Chapter 4 143

Once the program is forked, there is no way to control the execution of the
program or interact with it in any other way.

At one time, Asterisk had numerous add-ons that let you embed various
programming languages directly in the dial plan; however, they do not
support the newer versions of Asterisk.

Using the Asterisk Gateway Interface

]

AGI lets Asterisk hand off the user to a script that will take control of

playing prompts, listen for input, and do all the jobs the dial plan usually
handles.

AGI is supported by any programming language that can handle STDIN and
STDOUT.

In normal AGI operation, once a channel is hung up, the script will be
terminated.

You can get input from your caller to your script in two ways: Interactive
Voice Response menus and Speech recognition. IVR menus are much easier
to implement, but often have usability issues. Speech recognition is harder
and will cost extra; however, it is generally easier to use from the user’s
standpoint.

You can get output from your script to your users in two ways as well:
recordings and text to speech. Recordings sound better, but are fairly limited
as to what they can say. Text to speech can sound less life-like, but it can say
text that is dynamic.

Using Third-Party AGI Libraries

]

4]

4]

Third-party AGI libraries automate most of the repetitive tasks of AGI
programming, allowing the programmer to focus more on the application
rather than the interface with Asterisk.

Libraries exist for almost every popular language today: C, Perl, PHP, Java,
Python, C#, and shell scripting.

Two of the more popular ones—Asterisk::AGI for Perl and phpAGI for
PHP—are commonly used in Asterisk today.

www.syngress.com

144 Chapter 4 Writing Applications with Asterisk

Using Fast, Dead, and Extended AGIs

M FastAGI allows you to host AGIs on a separate server in order to save
overhead in executing the scripts on the same server that is handling the
calls.

M DeadAGIs let you continue to execute the script after the channel has gone
into a hung up state.

M EAGIs allow you to record audio on the channel through a special file
descriptor.

Links to Sites

m www.perl.com/pub/a/2000/10/begperll.html — perl.com’ “Introduction
to Perl.” It’s a bit old, but still on-topic.

m http://user.it.uu.se/~matkin/documents/shell/ — A good guide on the
basics of shell programming.

m http://wls.wwco.com/ledsigns/ — Walt’s LED Sign page, a great resource if
you have a LED sign that you want to hook up to a computer.

m www.digium.com/en/products/voice/ — Digium’s IVR recording service.
m http://asterisk.gnuinter.net/ — Asterisk::AGI homepage.
m http://phpagi.sourceforge.net/ — phpAGI library homepage.

www.syngress.com

Writing Applications with Asterisk ¢ Chapter 4 145

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

Q:
A:

What are my options for developing my own application with Asterisk?

Numerous options are available to you.You can use the Asterisk Gateway
Interface, which allows you to interact with Asterisk and callers with an external
application, or you can call an external application with the System() dial plan
command, which will limit your ability to interact with the caller.

: What can I accomplish using the System() dial plan command?

: Not much. Calling a program from the System() dial plan command allows you to

tork a program from the dial plan. Other than that, it executes autonomously.

: What can I accomplish through the use of AGI?

1 AGI gives the ability to/be fully inféractive with the script. The caller can enter

data, the script can act upon this data;and the script can be used to interact with
external data.

: What programming languages does AGI support?
: Almost anything that supports Unix file descriptors. AGI operates over STDIN,

STDOUT, and STDERR. Any programming language that works on
Unix/Linux should support these.

: How can I have my AGI call me back once I hang up?
: Use the DeadAGI dial plan command rather than the AGI dial plan command.

DeadAGI allows the script to continue executing past hang up.

Are there any libraries for AGI?

Yes. Libraries are available for almost every popular language today: C, Perl, PHP,
Java, Python, C#, and shell scripting. Everyone has their favorite pet language, so

www.syngress.com

there 1s a choice here for most everyone.

Chapter 5

Understanding and

Taking Advantage
of VoIP Protocols

Solutions in this chapter:

m Understanding the Basic Core of VolP
Protocols
= How Compression in VolP Works

= Signaling Protocols

M Summary

=

Solutions Fast Track

M Frequently Asked Questions

147

148

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Introduction

Understanding how to install and configure Asterisk is important, but for the
“hacking” side, it’s also important to understand the “core” of how VoIP works. This
doesn’t only deal with Asterisk, but VoIP in general. Asterisk uses a standard set of
protocols to communicate with remote systems—be it Asterisk or other types of
VoIP systems and hardware.

Knowing how these VoIP protocols function will not only give you a clear pic-
ture of how Asterisk deals with VoIP, but show you how other systems work as well.
Many VoIP systems deal with standardized protocols for interoperability.

Your Voice to Data

In order for your voice to travel across the wires, routers, and “tubes” of the Internet
(as Senator Ted Stevens so amusingly put it), several conversions and protocols are
used. The back-end protocol for SIP and H.323, the one where your voice is actually
stored in data packets, is known as the Real Time Protocol, or RTP.

Other protocols are used to get your call from one side of the Internet to the
other. These are known as “signaling” protocols. We’ll discuss these protocols later,
but it’s important to understand how and why RTP is used to transfer your voice.
RTP uses the User Datagram Protocol (UDP), which is part of the TCP/IP suite.

Upon first glance, UDP may sound like a terrible thing to use if you’re not
familiar with it. It is a stateless protocol, which means UDP doesn’t ofter any guar-
antee the packet will even make it to its destination. It also doesn’t guarantee the
order in which the packet will be received after it’s sent. This reduces the size of the
packet “headers,” which describe how the packet should get to its destination. Within
the UDP header, all that is sent is the length, source, destination, and port numbers.
The actual data is stored in what is known as a UDP datagram. This is where the
short snippets of your digitized voice or other data are stored.

Since UDP is stateless and can be broken down into small packets, the band-
width and timing overhead is low—which is a good thing. Let’s now compare this
to using TCP for VoIP. TCP provides verification on packet delivery and the order
it was received. If a TCP packet is “out of order,” it simply reassembles it in the
correct order. Though this sounds like a good idea, it actually causes some prob-
lems in real-time/time-sensitive applications like VoIP. For example, with TCP, if a
packet 1s “dropped,” the packet will be re-sent at the receiver’s request. Considering
that we are dealing with real-time VolIP, by the time the TCP packet with our

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 149

voice snippet is retransmitted, it’s too late to put it into our audio stream! Minor
network issues could render a VoIP conversation useless due to retransmissions and
the reordering of packets.

Since UDP doesn’t ensure packet delivery or their order, if there’s a minor net-
work “hiccup,” the VoIP stream can recover. Thus, you might notice a minor “skip”
or “chop” in a conversation, but it may still be able to recover. Basically, if a UDP
packet is sent and it makes it, it makes it. Otherwise, it might be discarded and the
conversation will continue with minor interruptions. If TCP was used, however, your
conversation might never recover since TCP attempts to resequence and resend
packets.

RTP/UDP is only part of the overall picture of how VoIP works. It’ll place snip-
pets of your voice within a datagram and get it across the Internet, but it doesn’t help
you place a call to your intended target. That’s where other “signaling” protocols, like
SIP, come into play.

Making Your Voice Smaller

When the “audio” data of a VoIP call is placed into an RTP packet, a codec
(enCOder/DECoder) is used. This is the method of how the “audio” data is placed
within the UDP datagram. Information about what codec to use is between the sys-
tems and is negotiated during the call setup (signaling).

Some codecs use compression, while others do not. Compressed codecs will be
able to cram more data into the RTP packet, but there is always a trade-oft. With
compressed codecs, your CPU will work harder at cramming data into the UDP
datagram.You’ll also lose a bit of quality in the audio. However, less network band-
width will be used to send the information. With noncompressed codecs, the audio
data will be placed in the UDP datagram in a more “raw”-like form. This requires
much less CPU time, but necessitates more network bandwidth. There’s always a
trade-oft of CPU power versus bandwidth when using compressed and noncom-
pressed codecs.

Currently, Asterisk supports ADPCM (Adaptive Difterential Pulse Code
Modulation), G.711 (A-Law and p-Law), G.723.1 (pass through), G.729, G.729,
GSM, iLBC, Linear, LPC-10, and Speex. G.711 is a commonly used uncompressed
codec. Within the United States, G.711 u-law (pronounced mu-law—the “u” is
greek) 1s typically used. In Europe and elsewhere, G.711 a-law is used. G.711 creates
a 64-kbit/second stream that is sampled at a fairly standard 8kHz. This means, the

www.syngress.com

150

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

CPU doesn’t have to work very hard encoding/decoding the RTP packets, but for
each channel/call, 64 kbit/second will be used. This could be a problem if you're
limited on bandwidth by your provider and wish to make several calls simultaneously.

For example, some DSL providers will limit your upstream bandwidth. If you're
making several concurrent calls at one time, you might run into problems. In these
situations, increasing your bandwidth or using a codec that employs compression
might be a good idea. G.729 does an excellent job at compressing the data. When
using G.729, rather than creating a 64-kbit/second stream, utilizing compression will
reduce bandwidth usage to 8 kbit/second. The trade-oft is that your CPU will be
working harder per channel to compress that data. The CPU usage might limit you
to the number of calls you can place, and the call quality won’t be as good since
you’re using a compressed codec. In some situations, the quality loss might not be a
huge issue. Typical person-to-person conversations might be fine, but with applica-
tions like “music on hold,” compression might introduce slight chops.

It should be noted that in order to use the G.729 commercial environment,
proper licensing is required. It can be used without licensing in noncommercial envi-
ronments. For noncommercial usage, check out
www.readytechnology.co.uk/open/ipp-codecs-g729-¢723.1.

A popular, more “open,” compressed codec is GSM. While it doesn’t accomplish
the same compression as G.729, it does a good job in trading bandwidth for com-
pression. It’s also free to use in both commercial and noncommercial environments.
Quality ranges with different codecs. For example, LPC10 makes you sound like a
robot but tightly compresses the data. Plus, it’s important to understand codecs since
some providers only support certain kinds. It’s also important to be knowledgeable in
this area during certain types of attacks.

Session Initiation Protocol

At this time, Session Initiation Protocol (SIP) is probably the most commonly used
VoIP signaling protocol. SIP does nothing more than set up, tear down, or modify
connections in which RTP can transfer the audio data. SIP was designed by Henning
Schulzrinne (Columbia University) and Mark Handley (University College of
London) in 1996. Since that time, it’s gone through several changes. SIP is a
lightweight protocol and is similar in many ways to HTTP (Hyper-Text Transport
Protocol). Like HTTP, SIP is completely text-based. This makes debugging easy and
reduces the complexity of the protocol. To illustrate SIP’s simplicity, let’s use HTTP
“conversation” as an example.

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 151

At your workstation, fire up your favorite Web browser. In the URL field, type
http://www.syngress.com/Help/Press/press.cfm. Several things happen
between your Web browser and the Syngress Web server. First oft, your local
machine does a DNS (Domain Name Service) lookup of www.syngress.com. This
will return an IP address of the Syngress Web server. With this IP address, your
browser and computer know how to “contact” the Syngress Web server. The browser
then makes a connection on TCP port 80 to the Syngress Web server. Once the
connection is made, your Web browser will send a request to “GET” the
“/Help/Press/press.ctm” file. The Syngress Web server will respond with a “200 OK”
and dump the HTML (Hyper-Text Markup Language) to your Web browser and it’ll
be displayed. However, let’s assume for a moment that the “press.cfm” doesn’t exist.
In that case, the Syngress Web server will send to your browser a “404 Not Found”
Message. Or, let’s assume that Syngress decided to move the “press.cfm” to another
location. In that case, your Web browser might receive a “301 Moved Permanently”
message from Syngress’s Web server, and then redirect you to the new location of
that file.

The 200, 404, and 301 are known as “status codes” in the HTTP world. Granted,
the HTTP example is a very basic breakdown, but this is exactly how SIP works.
When you call someone via SIP, the commands sent are known as “SIP Methods.”
These SIP methods are similar to your browser sending the GET command to a
remote Web server. Typically, these SIP methods are sent on TCP port 5060. See
Table 5.1.

Table 5.1 SIP Methods

INVITE Invite a person to a call.

ACK Acknowledgment. These are used in conjunction with INVITE
messages.

BYE Terminates a request

CANCEL Requests information about the remote server. For example,

“what codecs do you support?”

OPTIONS This “registers” you to the remote server. This is typically used if
your connection is DHCP or dynamic. It's a method for the
remote system to “follow you” as your IP address changes or
you move from location to location.

Continued

www.syngress.com

152 Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Table 5.1 continued SIP Methods

REGISTER This “registers” you to the remote server. This is typically used if
your connection is DHCP or dynamic. It's a method for the
remote system to “follow you” as your IP address changes or
you move from location to location.

INFO This gives information about the current call. For example,
when “out-of-band” DTMF is used, the INFO method is used to
transmit what keys where pressed. It can also be used to
transmit other information (Images, for example).

As stated before, response codes are similar and extend the form of HTTP/1.1

response codes used by Web servers. A basic rundown of response codes is shown in
Table 5.2.

Table 5.2 Response Codes

Code Definition

100 Trying

180 Ringing

181 Call is being forwarded

182 Queued

183 Session in progress

200 oK

202 Accepted: Used for referrals

300 Multiple choices

301 Moved permanently

302 Moved temporarily

305 Use proxy

380 Alternate service

400 Bad request

401 Unauthorized: Used only by registrars. Proxies should use Proxy
authorization 407.

402 Payment required (reserved for future use)

403 Forbidden

404 Not found (User not found)

405 Method not allowed

Continued

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 153

Table 5.2 continued Response Codes

Code Definition

406 Not acceptable

407 Proxy authentication required

408 Request timeout (could not find the user in time)

410 Gone (the user existed once, but is not available here any more)

413 Request entity too large

414 Request-URI too long

415 Unsupported media type

416 Unsupported URI scheme

420 Bad extension (Bad SIP protocol extension used. Not understood
by the server.)

421 Extension required

423 Interval too brief

480 Temporarily unavailable

481 Call/transaction does not exist

482 Loop detected

483 Too many hops

484 Address incomplete

485 Ambiguous

486 Busy here

487 Request terminated

488 Not acceptable here

491 Request pending

493 Undecipherable (could not decrypt S/MIME body part)

500 Server internal error

501 Not implemented (The SIP request method is not implemented
here.)

502 Bad gateway

503 Service unavailable

504 Server timeout

505 Version not supported (The server does not support this version

of the SIP protocol.)

Continued

www.syngress.com

154

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Table 5.2 continued Response Codes

Code Definition

513 Message too large

600 Busy everywhere

603 Decline

604 Does not exist anywhere
606 Not acceptable

Intra-Asterisk eXchange (IAX2)

Inter-Asterisk eXchange (IAX) is a peer-to-peer protocol developed by the lead
Asterisk developer, Mark Spencer. Today, when people refer to IAX (pronounced
eeks), they most likely mean IAX2, which is version 2 of the IAX protocol. The orig-
inal IAX protocol has since been depreciated for IAX2. As the name implies, IAX2 is
another means to transfer voice and other data from Asterisk to Asterisk. The pro-
tocol has gained some popularity, and now devices outside of Asterisk’s software sup-
port the IAX2 protocol.

The idea behind IAX2 was simple: build from the ground up a protocol that is
full featured and simple. Unlike SIP, IAX2 uses one UDP port for both signaling and
media transfer. The default UDP port is 4569 and is used for both the destination
port and the source port as well. This means signaling for call setup, tear down, and
modification, along with the UDP datagrams, are all sent over the same port using a
single protocol. It’s sort of like two protocols combined into one! This also means
that IAX2 has its own built-in means of transferring voice data, so RTP is not used.

When IAX was being designed, there where many problems with SIP in NAT
(Network Address Translation) environments. With SIP, you had signaling happening
on one port (typically TCP port 5060) and RTP being sent over any number of
UDP ports. This confused NAT devices and firewalls, and SIP proxies had to be
developed. Since all communications to and from the VoIP server or devices happen
over one port, using one protocol for both signaling and voice data, [AX2 could
easily work in just about any environment without confusing firewalls or NAT-
enabled routers.

This alone is pretty nifty stuft, but it doesn’t stop there! IAX2 also employs var-
ious ways to reduce the amount of bandwidth needed in order to operate. It uses a
different approach when signaling for call setup, tear down, or modification. Unlike

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 155

SIP’s easy-to-understand almost HTTP-like commands (methods) and responses,
[AX2 uses a “binary” approach. Whereas SIP sends almost standard “text” type com-
mands and response, IAX2 opted to use smaller binary “codes.” This reduces the size
of signaling.

To further reduce bandwidth usage, “trucking” was introduced into the protocol.
When “trunking” is enabled (in the iax.conf, “trucking=yes”), multiple calls can be
combined into single packets. What does this mean? Let’s assume an office has four
calls going on at one time. For each call, VoIP packets are sent across the network
with the “header” information. Within this header is information about the source,
destination, timing, and so on. With trunking, one packet can be used to transfer
header information about all the concurrent calls. Since you don’t need to send four
packets with header information about the four calls, youre knocking down the
transmission of header data from 4 to 1.This might not sound like much, but in VoIP
networks that tend to have a large amount of concurrent calls, trunking can add up
to big bandwidth savings.

[AX2 also supports built-in support for encryption. It uses an AES (Advanced
Encryption Standard) 128-bit block cipher. The protocol is built upon a “shared
secret” type of setup. That is, before any calls can be encrypted, the “shared secret”
must be stored on each Asterisk server. [AX2’s AES 128-bit encryption works on a
call-by-call basis and only the data portion of the message is encrypted.

Getting in the Thick of TAX?2

As mentioned before, IAX2 doesn’t use RTP packets like SIP. Both the signaling and
audio or video data is transferred via UDP packets on the default port 4569. In the
1ax.conf file, the port can be altered by changing the “bindport=4569” option; how-
ever, you'll probably never need to change this. In order to accomplish both signaling
and stufting packets with the audio data of a call, IAX2 uses two different “frame”
types. Both frame types are UDP, but used for different purposes.

“Full Frames” are used for “reliable” information transfer. This means that when a
full frame is sent, it expects an ACK (acknowledgment) back from the target. This is
useful for things like call setup, tear down, and registration. For example, when a call
1s made with IAX2, a full frame requesting a “NEW?” call is sent to the remote
Asterisk server. The remote Asterisk server then sends an ACK, which tells the
sending system the command was received.

www.syngress.com

156

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

With Wireshark, full frame/call setup looks like the following:

.270389 10.220.0.50 -> 10.220.0.1 IAX2 IAX, source call# 2, timestamp 17ms NEW

.321155 10.220.0.1 -> 10.220.0.50 IAX2 IAX, source call# 1, timestamp 4ms ACCEPT

B

0

.320787 10.220.0.1 -> 10.220.0.50 IAX2 IAX, source call# 1, timestamp 17ms ACK
0
0

.321864 10.220.0.50 -> 10.220.0.1 IAX2 IAX, source call# 2, timestamp 4ms ACK

Full frames are also used for sending other information such as caller ID, billing
information, codec preferences, and other data. Basically, anything that requires an
ACK after a command is sent will use full frames. The other frame type is known as
a “Mini Frame.” Unlike the Full Frame, the Mini Frame requires no acknowledg-
ment. This is an unreliable means of data transport, and like RTP, either it gets there
or it doesn’t. Mini Frames are not used for control or signaling data, but are actually
the UDP datagram that contains the audio packets of the call. Overall, it works sim-
ilar to RTP, in that it is a low overhead UDP packet. A Mini Frame only contains an
F bit to specify whether it’s a Full or Mini Frame (F bit set to O == Mini Frame),
the source call number, time stamp, and the actual data. The time stamps are used to
reorder the packets in the correct order since they might be received out of order.

Capturing the VolP Data

Now that you understand what’s going on “behind the scenes” with VoIP, this infor-
mation can be used to assist with debugging and capturing information.

Using Wireshark

Wireshark is a “free” piece of software that is used to help debug network issues. It’s
sometimes referred to as a “packet sniffer,” but actually does much more than simple
packet sniffing. It can be used to debug network issues, analyze network traffic, and
assist with protocol development. It’s a powerful piece of software that can be used in
many difterent ways. Wireshark is released under the GNU General Public License.
In some ways, Wireshark is similar to the tcpdump program shipped with many
different Unix-type operating systems. tcpdump is also used for protocol analysis,
debugging, and sniffing the network. However, tcpdump gives only a text front-end
display to your network traffic. Wireshark comes with not only the text front-end,
but a GUI as well. The GUI layout can assist in sorting through different types of
packet data and refining the way you look at that data going through your network.
While tcpdump is a powerful utility, Wireshark is a bit more refined on picking
up “types” of traffic. For example, if a SIP-based VoIP call is made and analyzed with

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 157

tcpdump, it’ll simply show up as UDP traffic. Wireshark can see the same traffic and
“understand” that it’s SIP RTP/UDP traftic. This makes it a bit more powerful in
seeing what the traftic is being used for.

Both tcpdump and Wireshark use the “pcap” library for capturing data. pcap is a
standardized way to “capture” data off a network so it can be used between multiple
applications. PCAP (libpcap) is a system library that allows developers not to worry
about how to get the network packet information oft the “wire,” and allows them to
make simple function calls to grab it.

We’ll be using pcap files. These are essentially snapshots of the network traffic.
They include all the data we’ll need to reassemble what was going on in the net-
work at the time. The nice thing with pcap dump files is that you can take a snap-
shot of what the network was doing at the time, and transfer it back to your local
machine for later analysis. This is what we’ll be focusing on. The reason is, while
Wireshark might have a nice GUI for capturing traffic, this doesn’t help you use it
with remote systems.

Unfortunately, not all pcap files are the same. While Wireshark can read tcp-
dump-based pcap network files, characteristics of that traffic might be lost. For
example, if you create a pcap file of SIP RTP traftic with tcpdump and then transfer
that “dump” back to your computer for further analysis, tcpdump will have saved that
traffic as standard UDP traffic. If created with Wireshark, the pcap files a “note” that
the traffic is indeed UDP traffic, but that it’s being used for VoIP (SIP/RTP).

As of this writing, Wireshark can only understand SIP-based traftic using the
G.711 codec (both ulaw and alaw). The audio traffic of a VoIP call can be captured
in two difterent ways. In order to capture it, you must be in the middle of the VoIP
traffic, unless using arp poisoning.You can only capture data on your LAN (or
WAN) if you are somehow in line with the flow of the VoIP traffic. For these exam-
ples, we’ll be using the command-line interface of Wireshark to capture the traftic.
The reason for this is that in some situations you might not have access to a GUI on
a remote system. In cases like this, the text-only interface of Wireshark is ideal. You’ll
be able to fire up Wireshark (via the command tethereal or twireshark) and store all the
data into a pcap file which you can then download to your local system for analysis.

To start off, let’s create an example pcap file. In order to capture the traffic, log in
to the system you wish to use that’s in line with the VoIP connection.You’ll need
“root” access to the system, because we’ll be “sniffing” the wire. We’ll need more
than normal user access to the machine to put the network interface in promiscuous
mode. Only “root” has that ability.

www.syngress.com

158

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Once the network device is in promiscuous mode, we can capture all the net-
work traftic we want. Running Wireshark as “root” will automatically do this for us.
To begin capturing, type

tethereal -i {interface} -w {output file}

So, for example, you might type

tethereal -i ethO0 -w cisco-voip-traffic.pcap

Unfortunately, this won’t only capture the VoIP traftic but everything else that
might pass through the eth0 interface. This could include ARP requests, HTTP, FTP,
and whatever else might be on the network. Fortunately, the tethereal program with
Wireshark works on the same concept as tcpdump. You can set up “filters” to grab
only the traffic you want. So, if we know our VoIP phone has an IP address of
192.168.0.5, we can limit what we grab by doing the following:

tetheral -i ethO -w cisco-voip-traffic.cap host 192.168.0.5

Once fired up, you should then see Capturing on eth0. As packets are received, a
counter is displayed with the number of packets recorded.You can further reduce the
traffic by using tcpdump type filters. Depending on the amount of calls, we might
need to let this run for a while.

Extracting the VoIP Data with Wireshark (Method # 1)

Once you’ve captured the data, you’ll need to get it to a workstation so you can do
further analysis on it. This may require you transferring it from the target system
where you created the pcap file to your local workstation. Once you have the data in
hand, start Wireshark and load the pcap.To do this, type

$ wireshark {pcap file name}

You’ll no longer need to be “root” since you won’t be messing with any network
interfaces and will simply be reading from a file. Once started and past the Wireshark
splash screen, you’ll be greeted with a screen similar to Figure 5.1

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 159

Figure 5.1 pcap Wireshark

Fle Edt Wiew Go Capture Analyze Statistics Help
[a
=@ @ & ® EERRE
S eces 8 xa&8 * 2 E
L
Eﬁker:' - | o Expression.. |b§lear| o gpplyl
No. . |Time | Source | Destination |Prote:ol| Info 3
428 7.932603 10. 220. 0. 160 10.220.0.1 SIP/SDF Request: INVITE sip: 602@1l0.220.0.1, with session
429 7.933680 10.220.0.1 10. 220. 0. 160 sSIP Status: 100 Trying J
430 8.379134 10.220.0.1 10.220.0.128 SSH Encrypted response packet len=720
431 8. 384003 10. 220.0.128 10.220.0.1 TCP 3351 > ssh [ACK] Seq=0 Ack=2544 Wir=80ll1 Ler=0 TS
432 9.115290 10.220.0.1 10.220.0. 160 SIP/SDF Status: 200 OK, with session description
433 9.134601 66.0.156. 50 10.220.0.128 SSH Encrypted response packet ler=112
4347195137999 1022070128 66785156558 TGP, 4411 8=rsshi FACK] ZSeq=0rAc k=112 W 1ir=B011% ler= 015 TSY
435 9. 209067 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
436 9.229099 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
437 9.236328 10. 220. 0. 160 10.220.0.1 SIP Request: ACK sip: 602@10.220.0.1: 5060
438 9.249194 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
439 9.272691 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
440 9. 289118 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
441 9.309077 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, £
442 9.329081 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
443 9.349135 10. 220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
444 9 369160 10. 220. 0. 160 10.220.0.1 RTP Pavload type=ITU-T G.711 PCMU. SSRC=3911583784, ¢ LI
(<1 | I
P Frame 434 (66 bytes on wire, 66 bytes captured) el
P Ethernet II, Src: Agere_6d:d3:41 (00:02:2d:6d:d3:41), Dst: EagleTec_66:11:99 (00:80: 29: 66: 11: 99)
P Internet Protocol, Src: 10.220.0.128 (10.220.0.128), Dst: 66.0.156.50 (66.0.156.50) —
b Tranemizsinn Cantral Pratacal See Pact: 4411 (4471711 Net Part: =ch (221 San: A ark: 112 lan A =l
0000 00 80 29 66 11 99 00 02 2d 6d d3 41 08 00 45 10 D § -m. A _E. E
0010 00 34 2d d2 40 00 40 06 23 54 Oa dc 00 20 42 00 .4-.@.@. #T....B.
0020 9¢c 32 11 3b 00 16 5 df Sf 0d 84 78 97 b9 20 10 alifeass aas x. ...
0030 1f 4b ac ed 00 00 01 01 ©8 0a 01 8d 29 ba dl 66 Koo, sessdesf -
0040 11 de .- _I
-
File: "call2-cisco-7940.pcap” 1058 KB 00:00:47 I P: 3392 D: 3392 M: O A

If you look closely at the example screen, you’ll notice things like “SSH” traftic.
We now need to filter out all the unwanted traffic, since we’re only interested in
UDP/RTP/VoIP traftic. So, the first thing we need to do is “Filter” the traftic. Note
the “Filter” option at the top left-hand corner. This allows you to enter the criteria
used to filter the packet dump. For example, you could enter “tcp” in this field and
it’ll only show you the TCP packets. In this case, we’ll filter by RTP, as shown in
Figure 5.2.

After entering RTP and clicking the Apply button, Wireshark removes all other
TCP/IP packet types and only leaves you with RTP (UDP) type packets. In this
case, the Source of 10.220.0.160 1s my Cisco 7940 IP phone using the SIP.The
Destination is my in in-house Asterisk server. Also notice the Info field. This tells us
the payload type of the RTP packet. In this case, it’s G.711.

www.syngress.com

160

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Figure 5.2 Filter by RTP

Fle Edt View Go Capture Analyze Statistics Help
Sdes R xRE ResoF L2IEFE QQ
Elter: "rtp LI =ﬂ= Expression |b-.(_:lear v Appfy|

Destination

[]

Source

I SSRC=3911583784, 4

436 9.229099 10.220. 0. 160 10. 220. RTP Payload type=ITU-T

0.1 G.711 PCMU, SSRC=3911583784, ¢
438 9. 249194 10.220. 0. 160 10.220.0.1 RTP Payload type=sITU-T G.711 PCMU, SSRC=3911583784, ¢
439 9. 272691 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, <
440 9 289118 10.220. 0. 160 10.220.0.1 RTP Payload type=sITU-T G.711 PCMU, SSRC=3911583784, <
441 9 309077 10.220. 0. 160 10.220.0.1 RTP Payload type=sITU-T G.711 PCMU, SSRC=3911583784, <
442 9 329081 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, <
443 9. 349135 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
444 5 369160 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
445 9 3895094 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
446 9. 409147 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
447 9. 429123 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
448 9. 449126 10. 220. 0. 160 10.220.0.1 RTP Fayluad type=ITU-T G. 711 PCMU, SSRC=3911583784, ¢
449 9. 469194 10.220. 0. 160 10.220.0.1 RTP Fayluad type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
450 9.489068 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
451 9.509095 10.220. 0. 160 10.220.0.1 RTP Payload type=ITU-T G.711 PCMU, SSRC=3911583784, ¢
452 9 529135 in 220 0 1RO 1in 22a A1 RTP Pavl azmd tvne=TTII-T 6 711 PCMII SSRC=239115R37R4 ¢ _ﬂ
[«] | 2]
P Frame 435 (214 bytes on wire, 214 bytes captured) =
P Ethermnet IT, Src: Cisco_08:26:e9 (00:0d: 28:08:26: e9), Dst: EagleTec_66:11:99 (00:80: 29: 66:11: 99)
P Internet Protocol, Src: 10.220.0.160 (10.220.0.160), Dst: 10.220.0.1 (10.220.0.1)
B llcar Nataaram Prataral Src Part: 1G1AA (1Q1AAY Nt Part- 17720 (177200 ;]
0000 00 80 29 66 11 99 00 Od 28 08 26 9 08 00 45 b8 SF o (L& E —
0010 00 c8 16 d4 00 00 40 11 4c 41 Oa dc 00 al Oa dc co.... @ LALL. ...
0020 00 01 4a 9c 45 42 00 b4 00 00 80 80 10 al OO0 Oa ..J.EB.. ...
0030 eb S50 e9 26 08 28 79 78 f4 fb 75 f6 fe 75 f5 ff P& (yx ..u..u
0040 7d fc 78 7c f8 75 72 f3 T7c 73 f9 fe 76 fc 7f 7a Fxlour, |s..v..z
e Al b S A= I o il S S S 4]

IFile; "call2-cisco-7940.pcap” 1058 KB 00:00:47 EI P: 3392 D: 2821 M: 0

Now that we’re only looking at RTP-type packets, this might be a good time to
browse what’s left in our filtered packet dump. Wireshark will also record what
phone pad buttons (DTMF) were pressed during the VoIP session. This can lead to
information like discovering what the voicemail passwords and other pass codes are
that the target might be using.

To get the audio of the VoIP conversation, we can now use Wireshark’s “RTP
Stream Analysis.” To do this, select Statistics | RTP | Stream Analysis.

Afterward, you should see a screen similar to Figure 5.3.

www.syngress.com

Understanding and Taking Advantage of VoIP Protocols ¢ Chapter 5 161

Figure 5.3 Wireshark RTP Stream Analysis

shark: RTP Stream Analysis

Forward Direction | Reversed Direction |

Analysing stream from 10.220.0.160 port 19100 to 10.220.0.1 port 17730 SSRC = 3911583784
Packet . | Sequence | Delta (ms) I Jitter (ms) l|= BW l'ld:ps* Marker Status I i|
435 4257 0.00 0.00 1.60 SET [0ok]
436 4258 20.03 0.00 3.20 [Ok]
438 4259 2010 0.01 4.80 [Ok]
439 4260 23.50 0.23 6.40 [ok]
440 4261 16.43 0.44 8.00 [ok]
441 4262 19.96 0.41 9.60 [Ok]
442 4263 20.00 0.39 11.20 [Ok]
443 4264 20.05 0.36 12.80 [Ok]
444 4265 20.02 0.34 14.40 [ok]
445 4266 19.93 0.33 16.00 [ok]
446 4267 20.05 0.31 17.60 [Ok]
447 4268 19.98 0.29 19.20 [Ok]
448 4269 20.00 0.27 20.80 [Ok]
449 4270 20.07 0.26 22.40 [0ok]
450 4271 19.87 0.25 24.00 [ok] j
ac aAnTA Aan An ~nAa ~e rn r AL
Max delta = 0.023497 sec at packet no. 439
Total RTP packets = 1558 (expected 1554) Lost RTP packets = -4 (-0.26%) Sequence errors = 4

Save payload... Save as CSV... 68 Refresh Q) Jurnp to Graph Next non-Ok | X Close |

From here, it’s as simple as selecting Save Payload.You should then be greeted
with a menu that looks similar to Figure 5.4.

Figure 5.4 Wireshark Save Payload

. Wirsshark: Save Payload As.... =0 X
New Folder Ddete File | Rename File
fhomel/champ/data & |
- a
Folders I — | Ales R
A
Format: (®) raw O .au

Channels: o forward O reversed @ both

Selection: fhome/champ/data

3¢ cancel | &QK |

www.syngress.com

162

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

bl

Before saving, look at the “Format” radio box. I typically change this from "raw
(the default) to au.” The reason is because it’s an older audio format for Unix that
was produced by Sun Microsystems. Conversion from the .au format to other for-
mats is trivial and well supported. Under the “Channels” field, you’ll probably want
to leave this set to “both.” With “both” enabled, you’ll save the call as it was recorded
with both sides of the conversation. The “forward” and “reversed” allows you to save
particular channels of the conversation. This might be useful in certain situations, but
most of the time you’ll probably want the full conversation recorded to the .au file as
it happened.

Once your .au file is recorded, conversion to other formats is trivial; using sound
utilities like “sox” (http://sox.sourceforge.net/) is trivial. At the Unix command line
with “sox” installed, you’d type: sox {input}.au {output}.wav.

Extracting the VoIP Data with Wireshark (Method # 2)

As of Wireshark version 0.99.5, VoIP support has improved a bit and will probably
get even better. Wireshark versions before 0.99.5 do not contain this method of
extracting and playing the VoIP packet dump contents.

To get started, we once again load Wireshark with our pcap file:

$ wireshark {pcap file name}

After the Wireshark splash screen, you’ll be greeted with a screen similar to that
from Figure 5.1. This time, the menu options we’ll select are Statistics | VoIP Call.

Unlike before, we won’t need to filter by “RTP” packet. Wireshark will go
through the packet dump and pull out the VoIP-related packets we need.You should
see a screen similar to Figure 5.5.

In this example, the packet dump contains only one VoIP call. Like the previous
example, this packet dump is from my Cisco 7940 VoIP phone using SIP
(10.220.0.160) to my Asterisk server (10.220.0.1). If multiple calls were present, this
screen would show each call. Since there is only one call, we’ll select that one. Once
chosen, the Player button should become available. Upon selecting the Player button,
you should see something similar to Figure 5.6.

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5

Figure 5.5 VolIP Calls Packet

Wireshark: \olP_ Calls

Detected 1 VoIP Call. Selected 0 Calls.

Start Time . | Stop Time | Inttial Speaker | From

To Protocol | Packets | State
7.93 39.78 10.220.0.160 sip:Line-1@10.220.0.1 sip:602@10.220.0.1 SIP

6 COMPLETE

Select one call

Total: Calls: 1 Start packets: 0 Completed calls: 1 Rejected calls: 0

Figure 5.6 Wireshark RTP Player

Wireshark: RTP Player

Jitter buffer [ms] |50 I: Decode

X Close

Select the Decode button. The Wireshark RTP player should then appear,
looking something like the one in Figure 5.7.

www.syngress.com

163

164 Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Figure 5.7 Decoded Wireshark RTP Player

L) L) L] L] L] L) L)
1 12 13 14 15 L 17
| I |
[[] From 10.220.0.1:17730 to 10.220.0.160:19100 Duration:29.65 Drop by Jitter Buff:0{0.0%) Out of Seq 0(0.0%)
Ao +
T T T T T T T
10 1 12 13 14 15 16
a | 2
D Frorm 10.220.0.160:19100 to 10.220.0.1:17730 Duration:30.66 Drop by Jitter Buff:25(1.6%) Out of Seq 31(2.0%)
|itter buffer [ms] |50 = Decode X Close

From here, select the stream to listen to and then click Play. It’s as easy as that.
The only disadvantage at this time is that you can’t save the audio out to a file.
That’ll probably change as Wireshark supports more VoIP options.

This method also has a nice “Graph” feature, which breaks down the call into a
nice, simple format. To use this, we perform the same steps to get to the Player
button, but rather than selecting Player, we click Graph. Clicking the Graph button
should generate a screen similar to that in Figure 5.8.

This breaks down the VoIP communication data. Note that timestamp 16.111
shows that the DTMF of “#” was sent. This type of information can be useful in
determining what DTMF events happened. This can lead to revealing pass codes,
voice-mail passwords, and other information.

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5

Figure 5.8 VoIP Graph Analysis

Time

7.933

7.934

9.115

9.209

9.236

10.136
16.091
16.091
16.111
16.111
16,131
16.132
16.151
16.151
16.171
16.171
16.191
16.192
16.211
16.211
16.231
16.231
16.251
16.252
16.271
16.271
16.291

dl

Graph. Analysis T

10.220.0.160 10.220.0.1
IMUITE SOF { belephone event)
(5060); 1(5060)
' 10D Tnna !
(SUWI' llSOSO)
200 0K SOF [telephone suentt
(5060)™ 1(5060)
¢ RIR{@TUIL)
[191003. lt‘l??.’rOl
' ATk]
(5060); *1(5060)

' RTP (71110 '
"9100]_"?7 30)

RTP (telephone event) OTMF gsnd' M
(19100); (17730)
' RTP(aT1IU) i

RTP
(19100) ;%177 30)
C RTP{aTII) 1

(19100) "(17730)
ETF (felephons susnt) DTMF Pound s
(19100)} W17730)

! RTF a7 11l .
"91”]~"?7 30)

RTF (elephone susnt) OTMF B&""‘l s
(19100); (17730)

' RTF (2711 !
(19100) et (12730

RTP (flephone suent) OTMF Bund s
['9100)%"7? 30)

C O RIPG@@TUIL
(19100) ll"??-’vo]
RTP (felephone svent OTHF Paund s

"91°°’l—l“?? 30)

" RTF (a7 11L0) g
"91001—'“?7 50]

RTF (klephone suent) O MF W’ M
(19100)5 (17730)
C O REIRGETIIL

(17730)

RTF (hlephone suent) OTMF 83"'"" u
(19100); (17730)
© o RIP[@RUIL
RTF (telephone suent) OTMF Bound &
(19100)§ W17730)
© O RIRGaTUIIL
(18100) (17730)

RTF (felephons susntl DTMF Paund s
(19100); =(17230)

Areaaan

Comment

SIP From: sip:Line 1(310.220.0.1 To:sip:602@10.220.0.1

SIP Status
SIP Stufus

RTP Mum packets: 344 Durafion:6.8625 ssrc:3911583784

SIP Request

RTP Mum packets: 1263 Durafion: 29,6385 ssrc 1765793941

RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP Mum packets:1
RTP Num packets:1
RTP Mum packets:1
RTP Num packets:1
RTP Num packets:1
RTP Num packets:1
RTP MNum packets:1
RTP Num packets:1
RTP Num packets:1
RTP Mum packets:1
RTP Num packets:1

RTP Mum packets:1

[»] L«

Duration:0,0003 s5rc: 3911583784
Durafion:0.0003 s5rc: 3311583784
Duration:0.0005 ssrc:3311553754
DOuration:0.0005 ssrc:39115583754
Duration:0.000s ssrc: 33115835784
Duration:0.000s ssrc:3911583784
Duration:0.000s ssrc: 3911583784
Duration:0.000s ssrc: 39115583754
Durafion:0.000s ssrc:3311583784
Durafion:0,0005 ssrc: 3311583784
Durahion:0,00035 s5rc: 3911583784
Duration:0.0005 55rc: 3911583784
Durafion:0.0003 s5rc: 3911583784
Durafion:0.0005 s5rc: 3311583784
Duration:0.0005 s5rc: 3911553754
Duration:0.0005 s5rc:3911583754
Duration:0.000s ssrc: 3911583784
Ourafion:0.0005 ssrc: 39115583784
Duration:0.0005 ssrc:39115535754
Durafion:0.000s ssrc: 3911583784

Duration:0.000s ssrc: 3911553754

m SaveAs

Getting VolP Data by ARP Poisoning

ARP (Address Resolution Protocol) is used to located equipment within a LAN by
the hardware MAC (Media Access Control). A MAC address is a preassigned to the

2~

165

www.syngress.com

166

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

network hardware. It uses a 48-bit address space, so there is plenty of room to grow.
The 48-bit address space is expressed as 12 hexadecimal digits. The first six are
assigned to the manufacture of the network device. For example, on my home Linux
workstation, the Ethernet card MAC address is 00:04:61:9E:4A:56. Obtaining your
MAC address depends on what operating system youre running. Under Linux, an
ifconfig -a will display the various information, including your MAC address. On
BSD-flavored systems, a netstat -in will usually do it. The output from my workstation
is shown in Figure 5.9.

Figure 5.9 The MAC Address of the Author’s Workstation

chiarnpi

L= Workstation: -

Etermn Font Background Terminal

evil-lorkstation ifconfig —a eth

ethi) Lirk encapiEthernet HiWadde 00:04:61:3E:4A:56
inet addr:l0,220,0,20 Boast:10,220,0,200 Mask:200,200,255,0
ineth addr: fefi::204:61FF:fede4ab6/54 Scope:link
JF EROADCAST RUMMWING MULTICAST MTU:1R00 HMetric:l
B¥ packets:22434330 errorzi0 dropped:il overrunz:i(frame:l
T# packet=s:18314858 errors:0 dropped: overruns:0 carcier:0
collizions:0 txgueuslend 1000
FY bytes:2GEE222027T (24473.5 Mb) TH bytes:3159243412 (7731,5 Hb)
Interrupt:177 Baze addressi0x2000

evil-Workstation 0

As you can see, the HWaddr field contains my MAC address. As stated earlier, the
first six digits reveal the vendor of the hardware. So how do you determine the
vendor, you ask? Well, it just so happens that the IEEE (Institute of Electrical and
Electronics Engineers) maintains a list of vendors that is freely available at
http://standards.ieee.org/regauth/oui/oui.txt. It is a flat ASCII text file of all vendors
and their related MAC prefixes. So, looking up my MAC address in that list, we see
that the 00:04:61 prefix belongs to:

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5

0-04-61 (hex) EPOX Computer Co., Ltd.
000461 (base 16) EPOX Computer Co., Ltd.
11F, #346, Chung San Rd.
Sec. 2, Chung Ho City, Taipei Hsien 235
TAIWAN TAIWAN R.O.C.
TAIWAN, REPUBLIC OF CHINA

This is the company that made my network card. While this 1s all interesting, you
might wonder how it ties in to ARP address poisoning. Well, MAC addresses are
unique among all networking hardware. With TCP/IP, the MAC address is directly
associated with a TCP/IP network address. Without the association, TCP/IP packets
have no way of determining how to get data from one network device to another.
All computers on the network keep a listing of which MAC addresses are associated
with which TCP/IP addresses. This is known as the systems ARP cache (or ARP
table). To display your ARP cache, use arp -an in Linux, or arp -en in BSD-type sys-
tems. Both typically work under Linux, as shown in Figure 5.10.

Figure 5.10 Display of ARP Cache in Linux

. chaER L-"Wiorkstation = =
Eterrn Font Background Terminal -
eVil-Workstation arp —en

Addres= Hiltype HWladdress Flagz Hask Iface
10,220,0,123 ether 00:02:20:ED:03:41 C ethl
10,220,0,1 ether 00:B0:29:66:11:99 C ethil
evil-lorkstation arp —an

7 O10,220,0,128) at 00:02:20:60:03:41 [ether] on etho
TOLL0,220,0,10 at O0:80:29:66:11:99 [ether] on ethd
evil-Workstation ping 10,220,0,160

PING 40,220,0,160 (10,220,0,160) 56(84) bytes of data,

B4 bytes from 10,220,0,160% icmp_seq=1 ttl=GB4 time=4,22 mz
B4 bytes from 10,220,0,160¢ icmp_seq=2 ttl=bd time=0,793 ms

——= 10,220,0,160 ping statiztics —

2 packets transmitted, 2 received, 0 packet lozs. time 1000ms
rtt mindavo/maxdmdey = 0, 79352, 00844, 22351.710 m=
evil-lorkstation arp —an

7oA, 220,0,128) at 00:02:20:60:02:41 [ether] on ethd
L0200, 1600 at 00:00:28:08:26:E9 [ether] on ethi
YOCA0,220,0,1) at 00:80:29:66:11:99 [ether] on ethl
evil-Workstation

www.syngress.com

167

168

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Notice that when I entered arp -en and arp -an, there were only two entries. Did
you see what happened when I sent a ping request to my Cisco phone
(10.220.0.160) and re-ran the arp -an command? It added the Cisco IP phone’s
MAC address into the ARP cache. To obtain this, my local workstation sent out
what’s known as an “ARP request.” The ARP request is a network broadcast,
meaning the request was sent networkwide. This is done because we don’t know
“where” 10.220.0.160 1s. When an ARP request is sent, a packet is sent out saying
“Who has 10.220.0.160?” networkwide. When 10.220.0.160 receives the ARP
request, it replies “That’s me. My MAC address is 00:0D:28:08:26:E9.”

The following is a Wireshark dump of an ARP request and reply:

04:04:12.380388 arp who-has 10.220.0.160 tell 10.220.0.30
04:04:12.382889 arp reply 10.220.0.160 is-at 00:0d4:28:08:26:e9

As you can see, this is literally what is happening! Now that both sides have their
TCP/IP network addresses associated with the MAC, they can start transferring data.
If 10.220.0.30 (my workstation) needs to talk to 10.220.0.160 (my Cisco IP phone),
my workstation knows to send the data to the 00:0D:28:08:26:E9 MAC address,
which is 10.220.0.160.

The underlying flaw with ARP is that in many cases it’s very “trusting” and was
never built with security in mind. The basic principle of ARP poisoning is to send an
ARP reply to a target that never requested it. In most situations, the target will
blindly update its ARP cache. Using my Cisco IP phone and Linux workstation as an
example, I can send a spoofed ARP reply to a target with the Cisco IP phone’s
TCP/IP network address, but with my workstation’s MAC address.

For this simple example, I'll use the arping2 utility
(www.habets.pp.se/synscan/programs.php?prog=arping). This utility works much like
the normal ping command but sends ARP requests and ARP replies. My target for
this simple example will be my default route, which happens to be another Linux
machine (10.220.0.1). The command I'll issue from my workstation (10.220.0.30) is

arping2 -S 10.220.0.160 10.220.0.1

This -S option tells arping? to spoof the address. So my Linux workstation will
send an ARP request to 10.220.0.1 informing it that 10.220.0.160 is my worksta-
tion’s MAC address. Figure 5.11 shows a screenshot from my Linux gateway.

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 169

Figure 5.11 Display from Author’s Linux Gateway

charnpigEetil-'Workstation .~

Eterrn Font Background Terminal

beave-firewall arp —en

Addres= Hiltype HiWladdress Flagz Haszk Iface
10,220,0,20 ether O0i04:E1:9E:4A:56 C ethl
10,220,0,128 ether O0:02:20:ED:D3:41 C ethl
10, 220,0, 160 ether O0:0D:28:08:26:E9 C ethl
beave-firewall arp —en

Addres= Hiltype Hiaddress Flagz HMask [face
10,220,0,30 ether O0:04:61:9E:4A:56 C ethl
10,220,0,128 ether O0:02:20:ED:D3:41 C ethl
10, 220,0,160 ether 00:04:61:9E:4A:56 C ethl

beave—firewall

If you look closely at the first time I issue the arp -en command, the MAC
address 1s that of the Cisco IP phone (00:0D:28:08:26:E9). This is before the arping?2
spoof command was issued. The second time arp -en is run is after I've spoofed with
arping?2. You might have noticed that the Hwaddress has changed to my Linux work-
station (00:04:61:9E:4A:56). Until the ARP tables get updated, whenever my Linux
gateway attempts to communicate with the Cisco phone, it’ll actually be sending
packets to my workstation.

This basic example is not very useful other than in causing a very basic tempo-
rary DoS (Denial of Service). While I'll be receiving packets on behalf of the Cisco
IP phone, I won'’t be able to respond. This is where the Man-in-the-Middle attack
comes 1in.

Man in the Middle

A Man-in-the-Middle (MITM) attack is exactly what it sounds like. The idea is to
implement some attack by putting your computer directly in the flow of traftic. This
can be done in several ways, but we’ll keep focused on ARP poisoning. To accom-

www.syngress.com

170

Chapter 5 ¢ Understanding and Taking Advantage of VoIP Protocols

plish a MITM and capture all the VoIP traffic, we’ll be ARP poisoning two hosts.
The Cisco IP phone (10.220.0.160) and my gateway’s ARP cache (10.220.0.1). 'l
be doing the actual poisoning from my workstation (10.220.0.30), which is con-
nected via a network switch and is not “in line” with the flow of VoIP traftic.
Considering I have a network switch, I normally shouldn’t see the actual flow of
traffic between my Cisco phone and my gateway. Basically, my workstation should be
“out of the loop.” With a couple of nifty tools, we can change that.

Using Ettercap to ARP Poison

Ettercap is available at http://ettercap.sourceforge.net/. It primarily functions as a
network sniffer (eavesdropper) and a MITM front end. It’s a fairly simple utility that
helps assist in grabbing traffic you shouldn’t be seeing. Ettercap comes with a nice
GTK (X Windows) interface, but we won’t be focusing on that. We’ll be looking
more at the command line and ncurses interfaces. One nice thing about ettercap is
that the curses interface is similar to the GUI, so moving from curses to GUI
shouldn’t be a hard transition.

I also don’t want to focus on the GUI because many times your target might not
be within your LAN. It’s much easier to use the command line or curses menu when
the network you're testing is remote. To kick things oft, we’ll look at the ncurses
front end. In order to use Ettercap for snifting and ARP poisoning purposes, you’ll
need to have “root” access. To start it up, type ettercap —curses, and you should see
something like Figure 5.12.

Figure 5.12 Ettercap Sniffing Startup

" chiang itk d b
Etetm Fonmt Background Terminal MI

Sniff Options Help

ser messagesi

[l

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 171

You’ll want to store the data you’ve captured while snifting, so you’ll need to
build a PCAP file you can later analyze.To do this, press Shift + F. Notice that the
curses menu options are almost always the Shift key and the first letter of the menu

option. To get more information about Ettercap’s menu function, see the Help (Shift
+ H) options shown in Figure 5.13.

Figure 5.13 Help Option for Ettercap’s Menu Function

- chan tic -

Eterm Font

File 5Sniff Options Help HWG-0,7.3

Output file i

SEM MESSAgES]

Type in the filename you wish to store the PCAP file as and press Enter. You’ll
now want to start snifting the network. To do this, press Shift + S for the Sniff
menu option, shown in Figure 5.14.

www.syngress.com

172 Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Figure 5.14 The Sniff Menu Option

Eterrn Font Background Terminal

File 5Sniff Optionz Help MG-0,7.3

Metwork interface :

SEF MESIAges]

I'll now ask you which Ethernet device to use. Enter the device and press
Enter. The screen should change and look something like Figure 5.15.

Figure 5.15 Ethernet Device Selection

el mEssagest
29 protocol dissectors
03 ports monitored
A7 mac wendor fingerprint
1698 tep 05 fingerprint
2183 known services

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 173

Press Shift + H to select the hosts in your network. The easiest way to populate
this list is to choose Scan for hosts. So, select this option, as shown in Figure 5.16.

Figure 5.16 Selecting Network Hosts

Start Targets Miew Mitm Filterz Logging Plugine. Help WG—0, 7,3

Hostz lizt h

Scan for hosts
Load from file,.,
Save to file,,,

zer meszages:

329 protocol dizzectors

53 portz monitored
THET mac vendor fingerprint
1683 tocp 05 fingerprint
2183 known services

The way Ettercap scans for local network hosts is that it examines your network
setup. In my case, I use a 10.220.0.0 network, with a netmask of 255.255.255.0. So,
Ettercap sends out ARP requests for all hosts. In my case, 10.220.0.1 to 10.220.0.255.
Ettercap stores all these responses in a “host list.” My host list looks like Figure 5.17.

If you press the spacebar, it’ll give you a little help, as shown in Figure 5.18.

www.syngress.com

174 Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Figure 5.17 Host List Displayed

Start Targets Hoszts Yiew HMitm Filters Logging Plugine Help

—Hozts list,,,

0,2 0,
10,220,0,10
10,220,0,53
10,220,0,111
10,220,0,1238
10,220,0,160 0000281081 26:E9

zer meszages:
1693 top 05 fingerprint

2183 known zervices

Randomizing 255 hozts for scanning...
Scanning the whole netmaszk for 255 hosts,,,
E hosts added to the hosts list,..

Figure 5.18 Help Shortcut List

enil-‘Workstation:~

Etermm Font Background Terminal

Start Targets Hoszts Yiew Mitm Filters Logging Plugine Help

—Hozts list,,,

0, A $29:66:11:93
10,220,0,10 00:06: 2559 BELER

10, 220,0,59
10,220,0,111
10,220,0,128 HELP: shortout list:
10,220, 0,160

d - to delete an hozt from the lizt
1 - to add the host to TARGET1
2 - to add the host to TARGETZ

zer meszagesi—
1693 top 05 finger
2183 known services

Randomizing 255 hozts for scanning,..
Scanning the whole netmask for 255 hosts,,,
E hosts added to the hosts list,..

-

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 175

You can press enter to exit the Help screen. Once you exit the Help screen, you

can use your up and down arrow keys to “mark” your target. To mark a target, use

the 1 or 2 keys. In this example, I'm going to select 10.220.0.1 (my gateway) as
Target 1, by pressing the numeric 1. I'll then add 10.220.0.160 (my Cisco IP phone)
to the second target list by pressing the numeric 2, as shown in Figure 5.19

Figure 5.19 Target Selection

Eterrn Font Backs

Start Targetz Hostz View HMitm Filters Logging Plugins Help

HG-0,7.3

—Hozts list,,,

10.220.0,1 00:80:23:66:11:93
10,220,0,10 00306251 3R BELEA
10,220,0,53 00305:93:EBr46:F1

0,0,111 00 :0F t6EFE:IA:3S

10,2
0,220, 0,198

190 2D:ED: 03241

10.220.0,160 0000228208 261E

e MEsEAgest
Randomizing 255 hozts for scanning,..
Scanning the whole netmask for 255 hosts,,,
E hosts added to the hosts list,,.

Hozt 10,220,0,1 added to TARGETL
Hozt 10,220,0,160 added to TARGETZ

Note that when I select a target, in the User Messages section at the bottom of

the screen it confirms my targets. Now that our targets are selected, you can double-

check your target setup by pressing Shift + T, as shown in Figures 5.20A and 5.20B.

www.syngress.com

176 Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Figure 5.20A Target Setup Check

el -"Workstation:~
Eterrn Font Background Terminal

Start Targets Hosts View Hitm Filters Logging Plugins Help

HG-0,7.3

—Lurrent target
—Target 1

—Target 2

zer messages:
Randomizing 255 hosts for scanning, ..
Scanning the whole netmask for 255 hosts,, .,
7 hoztz added to the hosts list,,,
Hozt 10,220,0,1 added to TARCETL
Hozt 10,220,0,160 added to TARGETZ

Figure 5.20B Target Setup Check

Eterrn Font Background Terminal

Start Targetz Hostz VYiew Hitm Filters Logging Plugins Help

HG-0,7.3

—Lurrent target
—Target 1

—Tlarget 2

e MESTAQEET
ARP poizoning wictims:

GROUP 1 & 10,220,0,1 00380:29:66:11:99
GROUP 2 ¢ 10,220,0,180 00:00:28:08:265E3

WWw.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 177

Now we’re ready to set up the MITM attack. To do this, press Shift + M and
select ARP poisoning, as shown in Figure 5.21.

Figure 5.21 MITM Attack Setup

Start Targetz Hostz VYiew Filters Logging Pluginz Help HG-0,7,3

—Lurrent targete———————| [gailalapR=lalgb Uyl= PO
—Tlarget 1 —Targe| lcop redirect, , .,
Fort stealing...

| e spoofing., . .

Stop mitm attackis)

e MESTAQEET
Randomizing 255 hozts for scanning,.,.
Scanning the whole netmask for 255 hosts,,,
E hosts added to the hosts list,,,

Hozt 10,220,0,1 added to TARGET1
Hozt 10,220,0,160 added to TARGETZ

Once selected, it will prompt you for “Parameters.” We want to do a full session
sniffing MITM attack, so enter remote in this field. Now press Enter. You should
see something like Figure 5.22.

Again, note the bottom of the screen. We are now ARP poisoning our targets
and sniffing the traftic! Once you’ve let it run and feel that you’ve gotten the data
you want, you can stop the MITM attack by pressing Shift + M (Stop MITM
attack). This will re-ARP the targets back to what they originally were before the
attack.You can then press Shift + S and select Exit. You should now have a PCAP
file to analyze.

www.syngress.com

178 Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

Figure 5.22 Parameters for Full Session Sniffing MITM Attack

JiL=Wiotkatatioge-
Eterm Font Background Terminal
Start Targets Hozts Yiew HMitm Filters Logging Plugine Help WG-0,7,3

—Lurrent target
—Target 1

—Target 2

zer meszages:
ARF poizoning wictims:

GROUF 1 1 10.220,0,1 00:80:239:66:11:33

GROUP 2 ¢ 10,220,0,160 00:00:23:083:265E9

As you can see, the ncurses Ettercap interface is quite nice and powerful, but we
can accomplish the exact same thing much easier! How could we possibly make it
simpler? We can do all of the preceding in one simple command line. As “root,” type

ettercap -w my.pcap --text --mitm arp:remote /10.220.0.1/ /10.220.0.160/

That’s all there is to it! The —tfext tells Ettercap we want to remain in a “text”

mode.

We don’t want anything fancy, just your basic good ol’ text. The —mitm should
be pretty obvious by now. The arp:remote option tells Ettercap we want to ARP
poison the remote targets and we’d like to “snift” the traftic. Once you capture the
traffic, you can load it into something like Wireshark or Vomit and extract the SIP or

H.323-based traffic.

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5 179

Summary

Understanding how VoIP protocols function is important. This knowledge will help
you debugging problems, assist in generating attacks in a security audit and help pro-
tect you against attacks targeting you Asterisk system. Like any other network proto-
cols, there 1s no “magic” involved but a set of guidelines. These guidelines are covered
in various RFC’s (Request for Comments) and describe, in detail, how a protocol
tunctions. Developers follow and use these RFC’s to assist in development to help
build applications. There are multiple RFCs covering various VoIP protocols. These
describe how signaling works, how audio and video data is transferred and various
other features. Reading and understanding these RFC’s can help you unlock the
“magic” of how VoIP works.

As shown in the chapter, two major functions with IAX2 and SIP is signaling
and passing the audio/video data. Signaling handles the call build up, tear down and
modification of the call. The two protocols handle passing the audio data and sig-
naling differently. While SIP is a signaling protocol in itself and uses RTP to pass the
audio/video data, IAX2 chose to build both into one protocol.

If you understand how the protocols work, building attacks becomes easier. For
example, fuzzing or looking for flaws at the SIP level (typically TCP port 5060). If
you know the SIP methods supported on a particular piece of SIP hardware, you can
probe the target with bogus or invalid requests and see how it responds.

In conjunction with other hacking techniques, like ARP poisoning, you can per-
form man in the middle attacks. These types of attacks will not only let you grab the
audio of a conversation, but other data as well. For example, authentication used
between devices during the call build up or the DTMF used to authenticate with
other devices. For example, voice mail.

Solutions Fast Track

Understanding the Core of VoIP Protocols

M VoIP data is transferred using small UDP packets.
M UDP is not time sensitive, which is good for VoIP.

M With SIP, these UDP packets are known as RTP packets. [AX2 uses a built
in method known as mini-frames.

www.syngress.com

180

Chapter 5 ¢ Understanding and Taking Advantage of VolP Protocols

How Compression in VoIP Works

4]

4]

4]

Compression can further reduce the bandwidth needed for VoIP by
compressing the UDP/VoIP packets.

Compression uses more CPU time and less bandwidth. No compression uses
more bandwidth but less CPU time.

Compression codecs come in open and closed standards. For example, GSM
and Speex is open, while G.729 requires licensing to use in corporate
environments.

Signaling Protocols

4]
4]

SIP is a signaling protocol used to setup/tear down/modification calls.

SIP uses RTP (Real Time Protocol) packets for voice data. These are small
UDP packets.

The SIP protocol 1is similar to HTTP. This makes debugging easier, but
requires a little bit more bandwidth.

[AX2 has signaling and audio transfer built into one protocol. Unlike SIP,
IAX2 does signaling via binary commands, which uses less bandwidth. VoIP
audio is sent by mini-frames (small UDP packets).

www.syngress.com

Understanding and Taking Advantage of VolIP Protocols ¢ Chapter 5

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q: Since SIP is similar to the HTTP protocol, could similar methods be used to
attack SIP and find weaknesses.

A: Yes. Fuzzing and probing equipment at the SIP level (typically port 5060) could
possibly reveal programming flaws. The basic idea would be to build bogus SIP
methods and see how the hardware responds. SIP responses to bogus or invalid
methods could also help reveal flaws

Q: Could attacks, like brute forcing passwords, reveal password?

A: A good administrator would notice this, but it is possible. For example, brute
forcing via the SIP REGISTER method would be trivial. Brute forcing is pos-
sible, but slow and might get notiged.

Q: Wouldn’t encryption help prevefit easy dropping?

A: Of course. However, many organizationsidon’t bother to implement encryption
on the LAN between the Asterisk server and the phonge equipment. It is not
always that the equipment cannot handle proteeols like SRTP (Secure RTP); it is
just rarely thought of. Between remote/satellite endpeints, using IPSec,
OpenVPN, SRTP or IAX2’s built in encryption is advised. Whatever type of
VPN you chose to use, it’ll need to be UDP based as TCP VPNs can wreak a
VoIP network.

Q: Can’t VLANs prevent ARP spoofing?

A: If properly setup, yes. The VoIP equipment should be setup on its own VLAN,
away from the typical users. The idea is that the “users” VLAN won’t be able to
ARP poison the “voip” VLAN.

www.syngress.com

181

Chapter 6

Asterisk

Hardware Ninjutsu

Solutions in this chapter:

m Serial
= Motion
= Modems

m Legalities and Tips

M Summary
M Solutions Fast Track

M Frequently Asked Questions

183

184 Chapter 6 ¢ Asterisk Hardware Ninjutsu

Introduction

With Asterisk and the flexibility it offers, you can do some truly amazing things.
With a “stock” configuration, only using what Asterisk has built in, you can build
systems that do some really nifty stuft. If you throw the power of AGIs (Asterisk
Gateway Interfaces) into the mix, you can write customized applications that might
be difficult to accomplish with other VoIP systems.

Most AGI examples are typically written to take advantage of external resources
that Asterisk itself might not have direct access to, or know how to deal with. For
example, AGIs have been written to look up ISBNs (book numbers), ANACs
(Automatic Number Announcement Circuits) that look up a telephone number
information from external sources, text-based games, and IDSs (Intrusion Detection
Systems) for monitoring.

We can take the power of AGIs a bit further to interface Asterisk with actual
hardware. For example, security cameras, electronic door locks, and card readers to
name a few. Creativity is the key.

If you can interface with the hardware externally and interact with it, odds are
you can come up with some means to write an AGI to pass that information back.

Serial

To start off, we’ll touch on serial communications—yes, that old communications
method you used with a modem to connect to the Internet. Even though it’s old,
traditional serial is used to communicate with room monitoring equipment, mag-
netic card readers, robotics, environmental control systems, and various other things.
It’s used where high-speed bandwidth isn’t important, but getting data and passing
commands is.

These examples are only meant to stir your mind so you come up with creative
ways to integrate hardware with Asterisk. While the code does function, the idea is
to plant a seed on things you might be able to do with hardware and Asterisk.

Serial “One-Way"” AGI

For the first example, we’ll be using “one-way” communication via a serial port to
the Asterisk server. “One way” means that we don’t have to send commands to the
device attached via serial. It'll send the information over the serial port automatically.
For the generic example code, we use a magnetic stripe reader like the ones that read

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 185

your credit card. The idea behind this simple code is that the user must “swipe” a
card before they are allowed to place a call. If the card information matches, the call
1s placed. If it does not, the user is notified and the call is dropped. Before we jump
into the code, we must place the AGI in line with outbound calls. That is, before the
call is completed, it must run through our routine first. To our extensions.conf, we’d

add something like:

[serial-code-1 - extensions.conf]

exten => 9.,1,agi,serial-code-1.agi

exten => 9.,2, Dial(.....)

This is a simple example, and depending on your environment and how you
make outbound calls through your Asterisk server, you’ll need to modify this. The
idea is that, if the number starts with a 9, it’ll go through this part of the
extensions.conf. If it does, before Asterisk gets to step 2 and dials out, it’ll have to
pass the serial-code-1.agi tests first.

[serial-code-1.agi perl routine]

#!/usr/bin/perl -T
#
HHAHHSHESHEH S

serial-code-1.agi

By Champ Clark - June 2007

Description: This is a simple routine that'll take data from a serial

#

#

#

#

port and respond to it. The example is something like a magstripe

reader (credit card type). This only deals with one-way communication

from the device to the AGI. We don't have to send commands to the

device, so we'll simply listen and parse the data we get and act

accordingly.

HUSHASH SRS H SRS RS S S R R R R S

use strict;

use Asterisk::AGI; # Makes working with Asterisk AGI
a bit easier

use Device::SerialPort; # Used to connect/communicate with

the serial device.

www.syngress.com

186 Chapter 6 * Asterisk Hardware Ninjutsu

Following is the string we'll be searching for from the serial port. For
this simple example, we'll hard-code in a fake driver's license
to search for. The idea is that before anyone can make an outbound
call, they must first swipe their licenses through the magstripe
reader. Of course, this is just an example and could be used for
anything.
my S$searchfor = "C000111223330"; # My fake driver's license number to
search for.
my S$device = "/dev/ttyS1"; # Serial device used.
my Swelcomefile = "welcome-serial"; # This file is played at the
beginning of the call. It
explains that some form of
authentication is needed.
my $grantedfile = "granted-serial"; # If authentication succeeds, we

play this and continue through
the extensions.conf.

my Sdeniedfile "denied-serial"; # If the authentication fails,

we'll play this.

my Stimeoutfile = "timeout-serial"; # If we don't see any action on the
serial port for Stimeout seconds,
we play this file and hang up.

my Serrorfile = "error-serial"; # This is only played in the event
of a serial error.

my $serial = Device::SerialPort->new ($device) |

die "Can't open serial port S$device: $!";

These are the settings for the serial port. You'll probably want to alter

these to match whatever type of equipment you're using.

$serial->baudrate (9600) ||

die "Can't set baud rate";

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 187

$serial->parity("none") ||

die "Can't set parity";

$serial->databits(8) ||
die "Can't set data bits";

$serial->stopbits (1) ||
die "Can't set stop bits";

$serial->handshake ("none") ||

die "Can't set handshaking";

$serial->write settings ||

die "Can't write the terminal settings";

After being prompted to "swipe their card," or do whatever you're trying
to accomplish, we give the user 30 seconds to do so.

If they don't, we play the S$timeoutfile.

my S$timeout="30";

Various other variables are used to pull this together to make it work.

my $string; # From the serial port, concatenated.
my $serialin; # What we receive from the serial port.
my $i; # Counter (keeps track of seconds passed)

my SAGI = new Asterisk::AGI;

$serial->error msg(l); # Use built-in error messages from

$serial->user msg(1l); # Device::SerialPort.

Play the welcome file and inform the user that we'll need a serial-based
authentication method (as in the example magstripe reader). Something

like "Swipe your card after the tone..."

SAGI->exec ('Background', Swelcomefile) ;

Enter the serial "terminal" loop. We now start watching the

serial port and parsing the data we get.

www.syngress.com

188 Chapter 6 ¢ Asterisk Hardware Ninjutsu

while ($i < Stimeout)

{

We sleep for a second so we don't hammer the CPU monitoring the
serial port. We also use it to increment $i, which keeps track
of how long we've been in the loop (for $timeout). To increase

polling, you might want to consider using Time::HiRes. I've

H+ H H H H

not run into any problems.

sleep(1l); S$Si++;

Do we have data?

if (($serialin = Sserial->input) ne "")
{
Append it to $string so we can search it.

Sstring = $string . $serialin;

Now, search for the magic string ($seachfor) that will let us continue.
if ($string =~ /$searchfor/i)
{
SAGI->exec ('Background', S$grantedfile);
exit 0;

}

If we receive an enter/carriage return, we'll assume the unit
has sent all the data. If that's the case, and we've not

matched anything in the above, we'll play S$deniedfile and

hang up.

if ($string =~ /\cd/ || $string =~ /\cM/)
{
S$string = "";

SAGI->exec ("Background", $deniedfile);
SAGI->hangup () ;
exit 0;

}

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 189

If there is some sort of serial error, we'll play this file to let

the user know that something isn't set up correctly on our side.

if ($serial->reset error)

{

SAGI->exec ("Background", Serrorfile);

SAGI->hangup () ;

exit 0;

}

If the user doesn't respond to our request within S$timeout, we

tell them and hang up.

SAGI->exec ("Background",

SAGI->hangup () ;

exit 0;

Stimeoutfile) ;

Before this routine will function, you’ll need to record a few prompt and

response audio files.

welcome-serial

granted-serial

denied-serial

timeout-serial

error-serial

This tells the user that they’ll need to “swipe” their card
before the call is placed. Use something like “Please
swipe your card after the tone (tone).”

Lets the user know that the card was read and accepted.
For example, “Thank you. Your call is being placed.”

Lets the user know the card was declined for the call. For
example, “I'm sorry. Your card was not accepted.” The
call will automatically terminate.

Informs the user that they didn’t swipe their card within
the allotted amount of time (via $timeout). For example,
“I'm sorry. This session has timed out due to inactivity.”

Lets the user know that there has been some sort of com-
munication error with the serial device. The call is not
placed. For example, “There has been an error communi-
cating with the card reader.” The call is automatically
hung up.

In the example, we are looking for a hard-coded string ($searchfor). You could
easily make this routine search a file or database for “good” responses.

www.syngress.com

190

Chapter 6 ¢ Asterisk Hardware Ninjutsu

Dual Serial Communications

Unlike the first example, which relies on simple serial input from a remote device,
this code “probes” (sends a command) to a serial device and parses the output for
information we want. In the example code, we’ll use an “environmental control”
system. We want to know what the “temperature” is in a particular room. If the tem-
perature goes above a certain level, we’ll have Asterisk call us with a warning.

The interesting idea behind this AGI is that it works in a circular method that
requires no addition to the extensions.conf. If the routine is called with a command-
line option, it will probe the serial port. If nothing is wrong, it will simply exit. If
something is wrong, it will create a call file that loops back to itself (without a com-
mand-line option) and notifies the administrators.

FHEFHH R R R

serial-code-2.agi #

By Champ Clark - June 2007 #
Description: This is a simple routine that serves two roles. If

called with a command-line option (any option), it will send a command to

a serial device to dump/parse the information. In this example,

it will send the command "show environment" to the serial device.

What it looks for is the "Temperature" of the room. If it's under a set
amount, nothing happens. If it's over the amount, it creates a call

file (which loops back to serial-code-2.agi).

#
#
#
#
#
#
#
#
#
#
#
That's where the second side of this routine kicks in. If not called

with a command-line argument, it acts as an AGI. This simply lets

the administrator know the temperature is over a certain amount.

FHE A R R R

use Asterisk::AGI; # Simply means to pass Asterisk AGI
commands.

use Device::SerialPort; # Access to the serial port.

We check to see if the routine was called with a command-line argument.
If it was (and it really doesn't matter what the argument was),

we can safely assume we just need to check the serial port and

H+ HF H H

parse the output (via cron). If the routine was called without

a command-line argument, then the routine acts like a

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 191

traditional perl AGI.

if (SHARGV eq "-1") { &agi(); exit 0; }

my Sdevice = "/dev/ttyS1"; # Serial device to check
my S$timeout = "ion; Timeout waiting of the
serial device to respond.
If it doesn't respond
within this amount of

seconds, we'll assume

H O oH H O H O H H

something is broken.

This is the command we'll send to the serial device to get information

about what's going on.

my Sserialcommand = "show environment\r\n ";

my S$searchfor = "Temperature"; # The particular item from the
S$serialcommand output we're
interested in.

my Shightemp = "80"; # If the temp. is higher than this wvalue,
we want to be notified!

my Sovertemp="overtemp-serial"; This is the audio file that's played

#
when the temperature gets out of range
(or whatever # you're looking for).

This file is played if the serial device doesn't respond correctly or as

predicted. The idea is that it might not be working properly, and so the
system warns you.

my Stimeoutfile="timeout-serial";

my Salarmfile="alarm.s"; # .$S == PID

my S$alarmdir="/var/spool/asterisk/outgoing"; # where to drop the call

This tells Asterisk how to make the outbound call. You'll want to

www.syngress.com

192 Chapter 6 ¢ Asterisk Hardware Ninjutsu

modify this for your environment.
my $channel="IAX2/myusername\@myprovider/18505551212";

my $callerid="911-911-0000"; # How to spoof the Caller
ID. Will only work over
VoIP networks that allow

you to spoof it.
These should be pretty obvious...
my S$maxretries="999";
my Sretrytime="60";
my Swaittime="30";
This is how we'll communicate with the serial device in question. You
will probably need to modify this to fit the device you're communicating

with.

my $serial = Device::SerialPort->new ($device) ||

die "Can't open serial port S$device: $!";

$serial->baudrate (9600) ||

die "Can't set baud rate";

$serial->parity ("none") ||

die "Can't set parity";

$serial->databits(8) ||
die "Can't set data bits";

$serial->stopbits (1) ||
die "Can't set stop bits";

$serial->handshake ("none") ||

die "Can't set handshaking";

$serial->write settings ||

die "Can't write the terminal settings";

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 193

my $i; # Keeps track of the timer (in case of
serial failure).
my $stringin; # Concatenation of all data received on the
serial port. Used to search for our
string.
$serial->error msg(l) ; # Use built-in error messages from
$serial->user msg (1) ; # Device::SerialPort.

my SAGI = new Asterisk::AGI;

Here we send a command (via the S$serialcommand variable) to

our device. After sending the command, we'll parse out what we need.

Sserial->write($serialcommand) ;

We now enter the "terminal loop." The command has been sent,
and we are looking for the data we are interested in. If we
send the command but don't receive a response within S$timeout seconds,
we can assume the device isn't working and let the administrator know.
while ($i < S$Stimeout)
{
We sleep for a second so we don't hammer the CPU monitoring the
serial port. We also use it to increment $i, which keeps track
of how long we've been in the loop (for Stimeout). To increase
polling, you might want to consider using Time::HiRes. I've
not run into any problems.

sleep(1l); $i++;
Did we get any data from the serial port?

if (($serialin = S$serial->input) ne "")

{

We'll probably get multiple lines of data from our $serialcommand.
Every time we receive an "end of line" (carriage return or Enter)

we "clear" out the string variable and "new string" array.

www.syngress.com

194 Chapter 6 ¢ Asterisk Hardware Ninjutsu

if ($serialin =~ /\cJ/ || $serialin =~ /\cM/)
{
S$string = ""; # Clear the concatenated string.
@newstring=""; # Clear our array used by "split.™"

}

If the preceding is not true, the routine concatenates $serialin
to $string. Once S$string + S$serialin is concatenated, we look
for the ":" delimiter. This means the serial port will return

something like "Temperature: 75". We want the "Temperature"

H+ HF H H H

value and will strip out the rest.

$string = $string . $serialin;

@newstring=split /Ssearchfor:/, $string;

In this example, we check to see if the devices return a higher
temperature than what we expect. If so, we build a call file
to "alert" the administrator that the A/C might not be working!
#
if ($newstring[l] > Shightemp)
{
if (!open (ALARM, "> $alarmdir/$alarmfile"))
{
die "Can't write $alarmdir/$alarmfile!\n";

}

print ALARM "Channel: $channel\n";

print ALARM "Callerid: Temp. Alert <Scallerids>\n";
print ALARM "MaxRetries: Smaxretries\n";

print ALARM "RetryTime: Sretrytime\n";

print ALARM "WaitTime: $waittime\n";

print ALARM "Application: AGI\n";

print ALARM "Data: serial-code-2.agi\n";

print ALARM "Set: tempfile=$overtemp\n";

close (ALARM) ;

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 195

If for some reason communications with the serial device fails, we'll

also let the administrator know.

if (lopen (ALARM, "> $alarmdir/sSalarmfile"))
{

die "Can't write $alarmdir/$alarmfile!\n";

}

print ALARM "Channel: Schannel\n";

print ALARM "Callerid: Temp. Alert <Scallerids>\n";
print ALARM "MaxRetries: Smaxretries\n";

print ALARM "RetryTime: Sretrytime\n";

print ALARM "WaitTime: $Swaittime\n";

print ALARM "Application: AGI\n";

print ALARM "Data: serial-probe.agi\n";

print ALARM "Set: tempfile=$timeoutfile";

close (ALARM) ;

exit 0;
end of routine.

This subroutine acts as an AGI if the routine is called without a

command-line argument.

sub agi

{

my S$SAGI = new Asterisk::AGI;
my $AGI;

If this subroutine is called, obviously something has gone seriously
wrong. The call (via a call file) has already been placed, this just
lets the administrator know "what" went wrong.
SAGI->answer () ; # Pick up! We need to tell the user
something!

SAGI->exec ('Wait', '1'"); # Give me a warm fuzzy...

We grab the audio file we want to play from the "tempfile" variable in

www.syngress.com

196

Chapter 6 ¢ Asterisk Hardware Ninjutsu

the call file and play it.

Stempfile=$AGI->get variable ('tempfile') ;
SAGI->exec ('Background', Stempfile);
SAGI->hangup () ;

exit 0;

}

You will need to record a couple of prompt/audio files. They include the

tollowing;:

overtemp-serial This is the file that's played if the temperature (in our
example) is over the $hightemp.

timeout-serial This file is played if the serial device doesn’t respond in
$timeout. The idea is that the device might not be func-
tioning.

Since the routine is operating as an AGI, it’ll need to be copied to your AGI
directory. This is typically done by using /var/lib/asterisk/agi-bin. This way, Asterisk
will have access to the routine. To start monitoring the hardware, you’ll want to
create a cron job that would “test” every ten minutes or so. That cron entry would
look something like this:

*/10 * * * * /yvar/lib/asterisk/agi-bin/serial-code-2.agi test 2>&1 > /dev/null

Motion

Motion is open-source software that uses video camera equipment to record
“motion” in a room. It’s primarily used for security purposes, and has many features.
For example, you can take snapshots of an area every few seconds or create time-
lapse movies.

Of course, to use Motion you’ll need the proper hardware. “All weather cameras”
and video capture cards have come down in price over the years. I like to keep
things simple, so I use multiport BT848 (chipset) capture cards for my home security
system. It’s a generic chip set that works well with Linux. My particular card comes
with four onboard built-in ports, but it can support up to eight ports with an
external adapter. This means I can run up to eight cameras at a time. Considering I
use this to monitor my home (front yard, back yard, inside my office, and so on), I'm

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 197

not worried that the cameras and capture card chipset won’t produce high-definition
quality. I simply want a means to record events and watch my cameras over the
Internet.

If you have spare camera equipment around, you might want to look into how
well it’s supported under Linux. Some USB cameras require proprietary drivers to
work while others do not. The first step is to get the camera up and working under
Linux, and then configure it to work with Motion.

To obtain Motion, simply go to http://motion.sourceforge.net. Once you've
downloaded it, installation is typically at . /configure && make && make install. Some
Linux-based distributions have motion packages you might want to look into.

The motion.conf file can be quite daunting, but don’t let it scare you. It’ll prob-
ably take a bit of tweaking to get your configuration up and running and that will
largely depend on the type of hardware you use. If you’re using more than one
camera, it’s better to get one camera online first before trying to configure the rest of
them. Motion uses a “threaded” system in monitoring multiple cameras, so you’ll
actually have multiple configuration files per camera.

[tail end of a default motion.conf file]

FHEFHEHHH A R R

Thread config files - one for each camera.

However, 1f there's only one camera, you only need this config file.
If you have more than one camera, you MUST define one thread

config file for each camera in addition to this config file.
HHHSHHHHHFHH A R R R

Remember: If you have more than one camera, you must have one
thread file for each camera. Thus, two cameras require three files:
This motion.conf file AND threadl.conf and thread2.conf.

Only put the options that are unique to each camera in the

H o H O H H*

thread config files.
; thread /usr/local/etc/threadl.conf
thread /usr/local/etc/thread2.conf

; thread /usr/local/etc/thread3.conf
; thread /usr/local/etc/thread4.conf

The option we’ll be focusing on is a pre-thread configuration file, so once you
have a working configuration:

www.syngress.com

198

Chapter 6 ¢ Asterisk Hardware Ninjutsu

Command to be executed when a motion frame is detected (default: none)

; on _motion detected value

The 1dea is that when motion is detected, we can have Motion (the program) run
a routine. When I leave town for an extended period of time, I want to know if
motion is detected within my home. 'm not as concerned about outside because
false positives would drive me crazy. For example, cats or dogs that just happen to
roam through my yard, I'm not interested in.

If an event happens inside the home and I know nobody is there, then I certainly
want to know! So, with the cameras that are internal, we’ll use the on_motion_detect
option to run a routine that’ll call my cell phone and alert me to something or
someone in my house. We can do this on a per-thread configuration file basis. So, for
cameras that are outside, we won’t add the on_motion_detect option.

The Idea behind the Code

The idea behind this code is simple, but does two different jobs. One is to create the
outgoing call file to let you know when “motion” has been detected. The other is to
be an AGI so that once the call is made, Asterisk can “tell you” which camera saw
the motion. Since this routine handles all the necessary functions, you can simply
copy it to your Asterisk AGI directory (usually /var/lib/asterisk/agi-bin) and go! No
modifications are needed to Asterisk configuration files (for example,
extensions.conf).

When Motion “sees motion,” it will call the routine via the on_motion_detect
command. Within the Motion configuration files for each camera we wish to mon-
itor, we’ll pass the command to alert us if something is detected. It will look some-
thing like this:

on motion detect /var/lib/asterisk/agi-bin/alarm.agi 1

The number “1” is passed as a command-line argument. In this example, this rep-
resents camera 1. Since we are passing a command-line argument, the routine is pro-
grammed to know that this is coming from Motion. When called as an AGI from
Asterisk, no command-line argument is passed. Let’s run through the entire routine
to pull everything together.

Motion is monitoring camera 1, which we’ll say is your home oftice. Motion
detects “motion” in the room and starts recording the action, firing off the
/var/lib/asterisk/agi-bin/alarm.agi file with the command-line option of “1,” which
signifies the camera that was triggered. The alarm.agi creates a call file in the Asterisk

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 199

outgoing call directory (typically, /var/spool/asterisk/outgoing). The contents of this
file will look something like this:

Channel: IAX2/myusername@myprovider/18505551212

Callerid: Security Camera <911-911-0001>

MaxRetries: 999

RetryTime: 60

WaitTime: 30

Application: AGI

Data: alarm.agi

Set: camera=1

The Channel: is an option in the outgoing call file that gives the method of
“how” to make the outgoing call. In this example, I'm using a provider that supports
[AX2.You could easily change this to use a Zap device or SIP. Note the Applications:
AGI and Data: alarm.agi. When alarm.agi builds the call file, it creates it in such a way
that it loops back on itself. The Set: camera=1 passes the camera that recorded the
event. We attempt to spoof the Caller ID to 911-911-0001.This just shows that an
emergency has occurred on camera 1 (0001 in the Caller ID field). It will only work
if your provider allows you to modity your Caller ID (CID). On the PSTN, the
Security Camera portion will be dropped completely, even if the number is spoofed.
It'll work fine over VoIP networks, but the PSTN does a lookup of the number and
fills in the Name section of the Caller ID field. On the PSTN, that’s out of your
control.

Once the call file i1s built and saved in the Asterisk “outgoing” directory,
Asterisk will almost immediately grab this file and follow the instructions in it.
Asterisk calls via the method in the Channel: field, and then waits for the call to
supervise. Supervision 1s a term used to signify that something or someone has
“picked up” the call.

Upon supervision by you answering your phone, Asterisk executes the AGI
alarm.agi. Since Asterisk is calling the routine this time without command-line argu-
ments, the routine is programmed to act as an AGI. Upon you answering, the AGI
side of the alarm.agi kicks in and feeds Asterisk commands like the following:

ANSWER
EXEC Wait 1
GET VARIABLE camera

EXEC Background camera-1
HANGUP

www.syngress.com

200

Chapter 6 ¢ Asterisk Hardware Ninjutsu

As you can see, it’s pretty simple! Answer the call, and wait one second. Get the
contents of the variable camera. Remember that variable? It holds the numeric value
of what camera was triggered. Once that variable is obtained, we issue a
“Background” (audio playback) of the file “camera{camera variable}”. In this case,
that’ll be cameral.

This means you’ll want to record a couple of audio files to use with this routine.
In this example, we said that cameral was our home office. So we’d want to pre-
record some audio files that represent our cameras. In this case, we might have an
audio file that says, “Warning! There appears to be motion in the home office.” The
following is the standalone routine we’re using. Of course, you could take this simple
routine and modify it to do a multitude of things.

[alarm.agi]

#!/usr/bin/perl -Tw

#

H#HHHHH R R R R A
alarm.agi

By Da Beave (Champ Clark) - June 2007

Description: This routine actually serves two purposes. It acts as the
routine that creates the "call files" and that the AGI routine Asterisk
uses. When this routine is called by Motion, a command-line argument
is given to specify which camera saw the motion. If there is no
command-line argument, then the routine services as an Asterisk AGI

#
#
#
#
#
#
#
#

FHEFHHH R R R

use strict;
use Asterisk::AGI; # Makes working with Asterisk AGI a
little bit easier.

This is the name of the "sound" file to call. For example, if Motion
sees motion on camera #1, it'll send to this routine: /var/lib/asterisk/
agi-bin/alarm.agi 1. So, the file (in the /var/lib/asterisk/sounds)

"cameral" is called to inform that motion was caught on "cameral".

H+ H H H HF

This is the prefix of the file (that is, cameral, camera2, and so on).

my Scamerafile="camera";

We check to see 1f there is a command-line argument. If not, we assume

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 201

the routine needs to act like an Asterisk AGI. If it _does_ have a
command-line argument, then we assume Motion has called the

routine and given the camera information via argv....

if (SHARGV eq "-1") { &agi(); exit 0; }

Schannel contains the information about how the call is to be placed.
In this example, we'll be using IAX2. However, you could use Zap, SIP,
or other methods Asterisk supports. Replace with your method of

dialing/phone number.

my Schannel="IAX2/myusername\@myprovider/18505551212";

We spoof the Caller ID. This will only work if you're VoIP provider
allows you to modify the Caller ID information. With my VoIP carrier,

I have to supply a full ten-digit phone number. YMMV (you might be able
to get away with something shorter). So, when Motion calls me, it will

send "911-911-000" as the NPA/NXX. The last digit is the camera that has

H O oHF H O H H H

reported motion.

my Scallerid="911-911-000";

These should be fairly obvious...
my $maxretries="999";

my $retrytime="60";

my Swaittime="30";

To keep outgoing calls unique, we build call files based on their PID.

my Salarmfile="alarm.$S"; # .33 == PID
my S$alarmdir="/var/spool/asterisk/outgoing"; # where to drop the call
file.

my Stmpfile;
my S$setinfo;

my Scamera;

www.syngress.com

202

Chapter 6 * Asterisk Hardware Ninjutsu

H#HHHHHHHH R R R R R R R
This is where the actual call file is built. Remember, with Asterisk,

any call files that show up in the outgoing queue (usually /var/spool/
asterisk/outgoing) are used automatically.

FHEHH R R R

Open the outgoing queue file and feed it the commands.

if (!open (ALARM, "> sSalarmdir/Salarmfile"))
{
die "Can't write $alarmdir/$alarmfile!\n";

}

print ALARM "Channel: $channel\n";

print ALARM "Callerid: Security Camera <$ScalleridSARGV[0]>\n";
print ALARM "MaxRetries: Smaxretries\n";

print ALARM "RetryTime: S$retrytime\n";

print ALARM "WaitTime: Swaittime\n";

print ALARM "Application: AGI\n";

print ALARM "Data: alarm.agi\n";

print ALARM "Set: camera=$SARGV[0]\n";

close (ALARM) ;

H#HHHHH A R R R R
AGI section: If no command-line arguments get passed, we can

assume it's not Motion calling the routine (because Motion passes

the camera on the command line). Asterisk calls alarm.agi without

any command-line arguments, so we act as an AGI.

FHEHH R R

sub agi

{

my SAGI = new Asterisk::AGI;
my %AGI;

This pulls in our Asterisk variables. For example, S$input{camera},

which we are using to pass the camera number.

my %$input = SAGI->ReadParse() ;

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 203

Okay - now we do our song and dance for the user we called!

SAGI->answer () ; # Pick up! We need to tell the user
something!

SAGI->exec ('Wait', '1'"); # Give me a warm fuzzy...

$camera=$AGI->get variable('camera') ; # Get the "camera" variable.
Stmpfile="ScamerafileScamera";

SAGI->exec ('Background', stmpfile);

SAGI->hangup () ;

exit 0;

}

Modems

Traditional analog modems present a problem with VoIP. First off, youre probably
asking “Why the heck would you even attempt to hook up a traditional modem via
VoIP?” One practical reason is because many systems still use traditional analog
modems for communications—for example, point-of-sales equipment, TiVo, and
credit card equipment. Before attaching any devices like these to a VoIP network,
security should be considered. Equipment of this type might transmit sensitive infor-
mation. It’s less than practical to play with the PSTN network via VoIP network, dial
into old style BBS systems, use older networks that still require a dialup connection,
or “scan” for modems and telephone equipment. Scanning for modems and tele-
phone equipment is known as war dialing. The term comes from the 1984 film War
Games, but the term and technique is actually older than the movie, and is sometimes
referred to as demon dialing. The term war dialing, though, is the one that sort of
stuck in the phreaking and hacking community. In the film, our hero (played by
Matthew Broderick) dials every telephone number within an exchange searching for
interesting telephone and computer equipment owned by a fictional company
named Protovision, Inc. In real life, the idea of war dialing is the same as in the
movie and can be useful during security audits. During a security audit, you're
dialing numbers within a particular block around your target searching for things like
modems, fax machines, environmental control systems, PBXs, and other equipment
connected to the PSTN.

www.syngress.com

204

Chapter 6 ¢ Asterisk Hardware Ninjutsu

You’ll need prior permission, and checking with your local laws is advised before
war dialing!

So, why would you want this behind VoIP when you could hook up a modem
on the traditional PSTN? With VoIP, you are able to mask “where” you are calling
from. Unlike the PSTN, our ANI information, which cannot be easily spoofed, won’t
be passed. We can “spoof” things like our Caller ID. It makes it harder to track down
where the calls are coming from.

For whatever reason you’ll be using an analog modem with VolP, several things
must be considered. First off, you won’t be able to make very high-speed connec-
tions. The top speed you’ll be able to accomplish is about 4800 baud. This i1s due to
how the modem MOdulates and DEModulates (hence the term modem) the signal
and network latency. At very low speeds, like 300 baud, a simple means of
encoding the data is used, known as frequency-shift keying (FSK).The originator
of the call transmits at 1070Hz or 1270Hz. The answering side transmits at 2025Hz
or 2225Hz. This 1s well within the range and type of encoding we can do over
VoIP. A speed of 1200 baud is also achievable and stable. At that speed, a simple
encoding scheme is used, known as Phase-Shift Keying (PSK). Once you step into
higher speeds like 14.4k, 28.8k, 33.6k, and above, you get into very time-sensitive
encoding techniques, like quadrature amplitude modulation (QAM), which don’t
respond well in a VoIP world.

To keep things stable, I generally keep my rates locked at 1200 baud. Not
blinding fast, but it’s good enough to detect and look at remote systems. You might
be wondering, “Wait a minute! How come things like Fax over VoIP can handle
such higher baud rates?!” Good question!

As VoIP became more and more popular, the ITU (International
Telecommunications Union) created a protocol known as T.38, which is sometimes
referred to as FoIP (Fax over IP). Asterisk and many VoIP adapters now support T.38.
When you plug in your fax machine to a VoIP adapter, it may very well auto-detect
and support the fax under T.38. What T.38 does is it takes the fax signal and converts
it to more data-network-friendly SIP/SDP TCP/UDP packets that get transmitted
over the Internet. Since the fax signal doesn’t actually have to traverse the Internet,
greater speeds can be achieved. If your adapter or provider does not support T.38 and
the analog fax signal has to transverse the Internet, then you’ll run into similar issues
as you would with analog modem.

This might make you wonder why there isn’t a Modem over IP protocol. Well...
in truth, the I'TU has created such a standard, known as V.150.1 (also known as

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 205

V.MOIP) in 2003. It operates much like T.38 in that it takes the analog signal and
converts it to a UDP/TCP packet that can traverse the Internet easily. Unfortunately,
even fewer VoIP providers and equipment support V.150.1. This might change as
VoIP becomes more and more popular and people want to connect equipment that
would traditionally connect to the PSTN. Until that time, though, we are stuck
doing it the hard way.

[t order to test Modem over IP, you’ll obviously need an analog modem. You’ll
also need some sort of VoIP telephone adapter like the Linksys PAP2 or Cisco ATAs.
These devices are normally used to connect normal telephones to a VoIP network.
They typically have one or two RJ11 jacks on them to plug in your traditional tele-
phone. They also have an RJ45 network jack that will connect to your LAN. Rather
than plugging in a traditional telephone into the RJ11 jack, we’ll use this port to
attach our analog modem.

Configuration of the VoIP adapter largely depends on the hardware itself.
Configuration on the Asterisk side 1s typically pretty straightforward and simple. I use
a dual line Linksys PAP2, which employs SIP. Since it is a dual line (two RJ11s) con-
figuration, I have a [linksys1 | and [linksys2 | section in my Asterisk sip.conf file.
The following shows what mine looks like:

[1inksys1]

type=friend # Accept inbound/outbound
username=1linksysl

secret=mysecret

disallow=all

;allow=gsm # This will NOT work for a modem.
allow=ulaw # Works much better with a modem.
context=internal

host=dynamic

In order for Modem over IP to work, you must consider two important factors.
First: the better your network connection, the better your modem connections will
be. The lower the latency, the better. Second: you must not use any sort of com-
pressed codec! Compressed codecs, like GSM or G.729, will alter the analog
signal/encoding, which will cause connections to completely fail. You’ll want to use
the G.711 (u-law) codec. If you can accomplish these two requirements, you’ll be
much better off. If you are configuring point-of-sales equipment or some sort of’
consumer electronics (T1Vo, and so on), you’ll probably want to test a bit and play
with baud rate settings to see what you can achieve.

www.syngress.com

206

Chapter 6 ¢ Asterisk Hardware Ninjutsu

Fun with Dialing

If the modem you wish to use is attached to a computer and is not PoS/consumer
electronics gear, you can start up some terminal software and go! Under Linux, and
other Unix-like operating systems, multiple terminal software programs can be used.
Minicom is probably one of the more well known and useful terminal software pro-
grams around. It comes with most distributions, but if your system doesn’t have it,
the source can be downloaded from http://alioth.debian.org/projects/minicom/. If
Minicom doesn’t suit your tastes, check out Seyon for X Windows, which can be
obtained from ftp://sunsite.unc.edu/pub/Linux/apps/serialcomm/dialout/ (look for
the latest Seyon release). No matter which software you use, knowledge of the Hayes
AT command set is a plus. Hayes AT commands instruct the modem in “what to
do.” For example, ATDT means Dial Tone.You’ll probably want to read over your
modem’s manual to get a list of supported AT commands.

Okay, so your modem is hooked up. Now what? I like to use VoIP networks to
dial in to remote countries and play with things that might not be accessible in the
United States. For example, in France there 1s a public X.25 (packet-switched) net-
work known as Transpac that I like to tinker with. I also use VoIP with my modem
to call Russian BBSs and an X.25 network known as ROSNET. There’s a lot of nifty
stuft out there that’s not connected to the Internet and this gives me a cheap, some-
times even free, way to call foreign countries.

War Dialing

Another useful feature for a modem connection via VoIP is security audits. Rogue
modems and various telephone equipment are still a security problem in the corpo-
rate world. When hired to do a security audit for an organization, I'll suggest a
“scan” of the telephone numbers around the company to search for such rogue
equipment. It’s not uncommon for a company to not even be aware it has equipment
connected to the PSTN. The usefulness of scanning via VoIP is that I can mask
where I'm coming from. That is, I can spoof my Caller ID and I know my ANI
information on the PSTN will be incorrect—meaning I can hide better. One trick I
do is to spoof my telephone number as the number from a known fax machine. This
way, during my war dialing, if someone tries to call me back, they’ll dial a fax
machine. From there, they’ll probably think the fax machine just misdialed their tele-
phone number and forget about it.

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 207

Of course, spoofing Caller ID can be useful in other ways for security audits—
such as with social engineering. Social engineering is nothing more than presenting
yourself as someone you're not and requesting information you shouldn’t have, or
requesting someone do something they shouldn’t—for example, spoofing the Caller
ID of an Internet Service Provider (ISP) and requesting changes be done to the net-
work (change proxies so you can monitor communications) or requesting a pass-
word. This is getting oft the topic of war dialing, but it’s still useful.

[don’t particularly want to spoof every time I make a call through my Asterisk
system, so I set up a prefix I can dial before the telephone number. In my case, if [
want to call 850-555-1212 and I want to use caller ID spoofing, I'll dial 5-1-850-
555-1212.The initial “5” directs Asterisk to make the outbound call using a VoIP
provider with Caller ID spoofing enabled. My extensions.conf for this looks some-
thing like:

; Caller ID spoofing via my VoIP provider.

exten => _5.,1,Set, CALLERID (number) =904-555-7777
exten => 5.,2,monitor,wav|${EXTEN:1}
exten => _5.,3,Dial (IAX2/myusername@myprovider/${EXTEN:1})

You might be wondering why we don’t do a Set, CALLERID(name). There isn’t
really much point. Once the call hits the PSTN, the number is looked up at the tele-
phone company database and the Name field is populated. This means, once the call
hits the traditional PSTN, you can’t modify the Name field anyways. One interesting
thing you can do, if you're trying to figure out who owns a phone number is spoof
the call as that phone number to yourself. Once the call reaches the PSTN and calls
you, the telephone company will look up the spoofed number in its database and
display the name of who owns it. This is known as backspoofing and isn’t completely
related to war dialing, but can be useful in identifying who owns particular numbers.
The Monitor option lets you record the audio of the call, so you can listen later and
see if anything was found that the war dialer might have missed. It’s advised you
check your local laws regarding recording telephone calls. If you don’t wish to do
this, the option can be removed.

With our adapter set up and Asterisk configured, we are ready to war diall Now
we just need the software to send the commands to our modem and then we can
start dialing. Several programs are available, some commercial and some open source,
that’ll take over the dialing and analysis of what you find. One of the most popular is

www.syngress.com

208

Chapter 6 ¢ Asterisk Hardware Ninjutsu

the MS-DOS-based ToneLoc. While an excellent war dialer, it requires the extra
overhead of running a DOS emulator. Phonesweep 1s another option, but runs under
Microsoft Windows and is commercial. For Linux, and Unix in general, I use the
open-source (GPL) program iWar (Intelligent Wardialer). It was developed by Da
Beave from the network security company Softwink, Inc. Many of its features com-
pete with commercial products.

Some of the features iWar supports are random/sequential dialing, key stroke
marking and logging, IAX2 VoIP support (which acts as an IAX2 VoIP client), Tone
location (the same method ToneLoc uses), blacklist support, a nice “curses” console
interface, auto-detection of remote system type, and much more. It will log the
information to a standard ASCII file, over the Web via a CGI, MySQL, or
PostgreSQL database. You probably noticed the IAX2 VoIP support. We’ll touch
more on this later.

To obtain iWar, go to www.softwink.com/iwar. You can download the “stable”
version, but they suggest you check out the CVS (Conversion Version System). This
is a development version that typically has more features. To download via CVS,
you’ll need the CVS client loaded on your machine. Many distributions have CVS
preloaded or provide a package to install it. If your system doesn’t have it, check out
www.nongnu.org/cvs/ for more information about CVS.

To download iWar via CVS, type
$ CVSROOT=:pserver:anonymous@cvs.telephreak.org:/root; export CVSROOT

$ cvs login

When prompted for a password, simply press Enter (no password is required). This
will log you in to the development CVS system. To download the source code, type

$ cvs -z9 co -A iwar # -z9 is optional (for compression)

If you’re using the CVS version of iWar, it’s suggested you join the 1War mailing
list. It’s a low-volume mailing list (one or two e-mails per week) that contains infor-
mation about updates, bug fixes, and new features.

After downloading the software, installation uses the typical ./configure && make
&& make install. For MySQL or PostgreSQL support, you’ll need those libraries
preloaded on your system before compiling iWar. If you wish to compile iWar with
[AX2 support, you'll need to install IAXClient. You can locate and read about
[IAXClient at http://iaxclient.sourceforge.net/. This library allows iWar to become a
full featured IAX2 VoIP client and war dialer. For proper installation of IAXClient,
refer to their mailing list and Web page.

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 209

Of course, iWar will compile without MySQL, PostgreSQL, or IAXClient sup-
port and will work fine for our purposes with a standard analog modem. Once com-
piled, we are ready to fire it at our target!

To give you an idea of the options with everything built in (MySQL,
PostgreSQL, and IAXClient), the following is the output of iwar —help.

iWar [Intelligent Wardialer] Version 0.08-CVS-05-24-2007 - By Da Beave
(beave@softwink.com)

[iwar -help output]

usage: iwar [parameters] --range [dial rangel

-h, --help : Prints this screen

-E, --examples : Examples of how to use iWar
-s, --speed : Speed/Baud rate

[Serial default: 1200] [IAX2 mode disabled]
-S, --stopbit : Stop bits [Serial Default: 1] [IAX2 mode disables]
-p, --parity : Parity (None/Even/0dd)

[Serial default 'N'one] [IAX2 mode disabled]
-d, --databits : Data bits [Serial default: 8] [IAX2 mode disabled]
-t, --device : TTY to use (modem)

[Serial default /dev/ttyS0] [IAX2 mode disabled]
-c¢, --xonxoff : Use software handshaking (XON/XOFF)

[Serial default is hardware flow control]

[IAX2 mode disabled]

-f, --lodfile : Output log file [Default: iwar.log]

-e, --predial : Pre-dial string/NPA to scan [Optional]
-g, --postdial : Post-dial string [Optionall

-a, --tonedetect : Tone Location (Toneloc W; method)

[Serial default: disabled] [IAX2 mode disabled]

-n, --npa : NPA (Area Code - ie 212)

-N, --nxx : NXX (Exchange - ie - 555)

-A, --nonpa : Log NPA, but don't dial it (Useful for local calls)

-r, --range : Range to scan (ie - 5551212-5551313)

-x, --sequential : Sequential dialing [Default: Random]

-F, --fulllog : Full logging (BUSY, NO CARRIER, Timeouts, Skipped, etc)
-b, --nobannercheck : Disable banners check

[Serial Default: enabled] [IAX2 mode disabled]

-0, --norecording : Disable recording banner data

www.syngress.com

210

Chapter 6 * Asterisk Hardware Ninjutsu

[Serial default: enabled] [IAX2 mode disabled].

-L, --loadfile : Load numbers to dial from file.

-1, --statefile : Load 'saved state' file (previously dialed numbers)
-H, --httplog : Log data via HTTP to a web server

-w, --httpdebug : Log HTTP traffic for CGI debugging

-C, --config : Configuration file to use [Default: iwar.conf]

-m, --mysqgl : Log to MySQL database [Optionall

-P, --postgresqgl : Log to PostgreSQL database [Optionall]

-I, --iax2 : Enabled VoIP/IAX2 for dialing without debugging

(See iwar.conf)
-i, --iax2withdebug : Enabled VoIP/IAX2 for dialing with debugging

(--iax2withdebug <filenames)

1War also comes with a configuration file to set up things like your serial port,
baud rate, and various logging options. The default iwar.conf is suited to work with
most hardware, but it’s advised to tweak it to your hardware.

[default iwar.conf]

FHESHHH AR R R R R
##

iWar configuration file. Please see http://www.softwink.com/iwar for
more information. Ht

FHEFHH R R R R

HH#HHHH R R R R R R R R R
Traditional serial port information
HEHHAHHAHEHHAHH AR HAHH GRS RS SRS R R R

#

Serial port information (prt, speed, data bits, parity). Command--
line options override this, so you can use multiple modems.

#

port /dev/ttySo

speed 1200

databits 8

parity N

#
Modem INIT string. This can vary for modem manufacturers. Check your
modem's manual for the best settings. Below is a very basic_ init

string. The main objective toward making things work better is DTR

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6

hangups and dial speed. Here's what is set in this string.

El = Echo on

L3 = Modem speaker on high

M1 = Modem speaker on until carrier detect

Qo0 = Result codes sent

&C1 = Modem controls carrier detect

&D2 = DTE controls DTR (for DTR hangup!)

S11 = 50 millisecond DTMF tones. On the PSTN in my area, 45ms DTMF

works fine, and might work for you. It's set to 50ms to be safe.
My ATAs can handle 40ms DTMF, which is as fast as my modem
can go. If you're having dial problems, slow down this
setting by increasing it. For faster dialing, decrease this.
S06 = How long to "wait" for a dial tone. Modems normally set this
to two seconds or so. This is terrible if you're trying to
detect tones! This is for Toneloc-type tone location
(ATDT5551212W;) . You may need to adjust this.
S07 = Wait 255 seconds for something to happen. We set it high
because we want iWar to decide when to hang up. See

"serial timeout."

Extra things to add to the init string:

+FCLASS=1 = Want to scan for fax machines (And only fax - however,

the Zylex modems might do data/fax)

X4 = All modems support this. If you add "X4" to the init
string, your modem will detect "NO DIALTONE" and "BUSY".
X6 or X7 = Certain modems (USR Couriers, for example) can
detect remote call progression. X7 is good because
it leaves everything on (RINGING, BUSY, NO CARRIER)
except "VOICE." "VOICE" is sometimes triggered by
interesting tones. X6 leaves everything on.

This is good when you're doing carrier detection!

>
o
Il

Set the modem to blind dialing. This is good if you're into
"hand scanning." The modem doesn't attempt to detect

anything like BUSY or VOICE (it will still detect carriers).

H O HF H OH HF O H O H HF OH OH HF OH O H O HF OH OH O HF OH O H HF OH O H O HF O H OH H O H O H HF O H OH H H OH HF H O H OH

You can then use the manual keys to mark numbers.

init ATE1L3M1Q0&C1&D2S11=50S07=255

www.syngress.com

212

Chapter 6 * Asterisk Hardware Ninjutsu

H+ HF H O H H H

If your modem is not capable of doing DTR hangups, then leave this
enabled. This hangs up the modem by sending the old "+++ATH" to the
modem on connections. If your positive your modem is using DTR drops
to hang up, you can save scan time by disabling this.

If you enable this and DTR drops don't work, your line will NOT hang up

on carrier detection!

plushangup 1

plushangupsleep 4

++ H*+ H H H H H ++ H*+ HF H H*

H+ H H H H H

"This only applies to modems that support remote call progression
(for example, "RINGING"). Modems that can do this are the USR
Couriers, Multitech and mccorma modems. If your modem doesn't

support this, ignore it.

remote ring 5

If remote ring is enabled and functional, then this is the max time
we'll allow between rings with no result code (BUSY, CONNECT,

VOICE) . For example, if we receive two RINGING result codes,

but for 30 seconds see nothing else, then something picked up on the
remote side that the modem didn't register. It might be worth going back

and checking.

ring timeout 20

This is for modems that reliably detect remote "tones." This changes
the dial string from the standard ATDTS5551212 to ATDT5551212w;

(See about the ATS06=255 - wait for dial tone). When the modem
dials, it "waits" for another tone. If the iWar receives an "OK,"
then we know the end supplied some sort of tone. Most modems can't

do this. Leave this commented out if your modem doesn't support it.

tone detect 1

Banner file. Banners are used to attempt to figure out what the remote

system is.

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 213

banner file /usr/local/etc/banners.txt

Blacklist file. This file contains phone numbers that should

never be called (for example, 911).

blacklistfile /usr/local/etc/iwar-blacklist.txt

Serial connection timeout (in seconds). This is used to detect when
the modem doesn't return a result code. In that event, we'll

hang the modem up. See the ATS07 (S07) at the top of this config file.
serial_timeout 60

When connected (carrier detected), this is the amount of time to

wait (in seconds) for iWar to search for a "login banner." If

no data is received and/or there is no banner, we hang up

H+ H H H*

when this amount of time is reached.

banner timeout 20

On the off chance that we keep receiving data, and the banner timeout is
never reached, this is the amount of data we will receive before giving
up (hang up). Data sent from the remote end reset the banner timeout -

without this safe guard, the system may never hang up because it keeps

H = H =+

receiving data! Value is in bytes.

banner maxcount 2048

After connecting, this is how long we wait (in seconds) to send a
return. Some systems won't reveal their banners until they

receive several \r\r's. Value is in seconds.

banner_send_cr 10

This is the number a carriage returns to send once banner send cr

is reached.

banner cr 3

After connecting, wait this long until picking up and trying to

www.syngress.com

214

Chapter 6 * Asterisk Hardware Ninjutsu

redial out. Measured in seconds.

connect re-dial 5

How long to wait before redialing after a BUSY, NO CARRIER, or other type
of event, in seconds. On PSTN environments, you need to wait a few

seconds before dialing the next number (or it'll register as a

"flash"). On VoIP hardware-based scans, you can probably lower

this to decrease scan time. This does not affect IAX2 dialing.

redial 3

DTR re-init. Some modems (USR Couriers), when DTR is dropped, have
to re-init the modem (I assume the USR treats DTR drops like ATZ).

This will re-init after DTR drops.

dtrinit 1

Amount of time to drop DTR. Some modems require longer DTR drops to

hang up. Value is in seconds. (If possible, 0 is best!)

dtrsec 2

You can log all your information into a MySQL database. These are the
credentials to use

#

HEHFHEHHHHHHEHAHEH TSRS HE T R
MySQL Authentication H#
HEHFHEHHHH A HAHAHAHFH S H B AR A H SRS HH AR H S H S SR R S

mysgl username iwar
mysqgl password iwar
mysgl host 127.0.0.1

mysqgl_ database iwar

HEHSHEHTHHHHEH A HEHE ST R
PostgreSQL Authentiation
HAEHFHEHHHHHHAHAHAHSH S H B AR A HAHS ST HAH AR R R R

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 215

postgres username iwar
postgres password iwar
postgres host 127.0.0.1

postress database iwar

HH#EHHH R H R
HTTP Logging
HH#SHHH A HH R R R R

The following is an example URL that is based from iWar to a Web server

during HTTP logging.

http://www.example.com/cgi-bin/iWar-HTTP.cgi?NPA=850&NXX=555&Suffix=1225&
Revision=0&NumberType=2&Description=Looks%20good%21%21&Username=mynames&

Password=mypassword

If your CGI requires authentication (see earlier), then set these.

Otherwise, just leave these values alone (the remote site will ignore

H oH H OH O HF O H O H O H H O H

the values)

http username iwar

http password iwar

The web server you are logging to:

http log host www.example.com

HTTP port the Web server is running on.

http_port 80

The path of the application on the remote Web server doing the logging.

For more information, see the example iWar-HTTP.cgi.

http log path /cgi-bin/iWar-HTTP.cgi

The combination of http log host + http log path logging URL would
look something like this:

#

http://www.example.com/cgi-bin/iWar-HTTP.cgi

www.syngress.com

216

Chapter 6 * Asterisk Hardware Ninjutsu

#

The example "GET" string (at the top of "HTTP Logging") is automatically
tacked to the end of this! Ta-da!

HH#HHHHH R R R R R R
Following are IAX2 values that have no affect when serial scanning
HEHHAHHAHAFHAHHAHEFHAFHAH S HAFH A H SRS H A H SRS H S A RS RS R SR H S

IAX2 username of your VoIP provider/Asterisk server

iax2 username iwar

IAX2 password of your VoIP provider/Asterisk server. This is not

required if your Asterisk server doesn't use password authentication.

iax2 password iwar

IAX2 provider/Asterisk server. Can be an IP address or host name.

iax2 host 192.168.0.1

99.9% of the time, it's not necessary to "register" with your provider

to make outbound calls! It's highly unlikely you need to enable this!

In the event you have a strange provider that "requires" you to

H*+ HF H H*

register before making outbound calls, enable this.

#iax2_ register 1

If you're using iWar directly with a IAX2 provider, then set this

to your liking. If you're routing calls via an Asterisk server, you can
callerid spoof there. With Asterisk, this will have no

affect.

iax2 callerid number 5551212

iax2 millisleep is the amount of time to sleep (in milliseconds) between

IAX2 call tear down and start up. Probably best to leave this alone.

iax2 millisleep 1000

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6

As you can see, many options must be set and tweaked depending on your hard-
ware. With Asterisk configured to spoof the caller ID and make the outbound call
using G.711, your VoIP adapter set to communicate properly via G.711 to your
Asterisk server, your modem set up through the VoIP adapter, and iWar configured
to properly use your hardware, we are ready to launch the dialer! To do this, type

$ iwar -predial 5 -npa 904 -nxx 555 -range 1000-1100

The —predial option tells iWar to dial a “5” before the rest of the number. We do
this to let our Asterisk server know we want to spoof Caller ID and to go out our
VoIP provider. The —npa option (Numbering Plan Area) is another way to say what
area code we wish to dial. The —nxx 1s the exchange within the NPA that we’ll be
dialing, and the —vange lets iWar know we want to dial all numbers between 1000
and 1100. When 1War starts, it’ll send your modem a command that looks like
ATDT51904555XXXX. The XXXX will be a random number between and
including 1000 to 1100.The output of iWar will be stored in a flat ASCII text file
named iwar.log. By default, as iWar dials, it will record information about interesting
numbers it has found and attempt to identify remote modem carriers it runs into. If
you wanted to log the information into a MySQL database, you’d have to configure
the iwar.conft with your MySQL authentication. Then, to start iWar with MySQL
logging enabled, you'd simply add the —mysql flag.

1War is highly configurable. Once started, your screen, after a bit of dialing,
should look something like Figure 6.1.

Figure 6.1 The iWar Startup Screen

charrr'laéievil-work:

217

Eterm. Font Background Terminal
Port Info : 1200,8,N (/dev/ttyS0) [Random] CONNECT 3
Start/End Scan 3 5551000 - 5552000 [1000] NO CARRIER : 1
Pre/Post Dial : 919 / [Nonel BUSY T 4
Log File + /tmpsiwar,log [N] VOICE + 13
Status : ATDT9195551873 TONE/SILENCE : 4
Serial Idle s TIMEOUT o
Numbers Left : 963
5551894 5551383 5551187 5551102
5551710 5551623 5551810
5551803 5551443
5551830
[Terminal Window]
0K
ATHIL3
0K
ATDTI195551378
VOICE
ATDT9195551873
3

WWW.syngress.com

218

Chapter 6 ¢ Asterisk Hardware Ninjutsu

The top part of the screen gives you basic information like what serial port is
being used, where the log file is being stored and statistics on what it has found (on
the far top right). At the bottom is a “terminal window.” This allows you to watch
1iWar interact with the modem. In the middle of the screen, with all the pretty colors,
are the numbers that have been dialed. Those colors represent what iWar has found.
By looking at those colors and the number highlighted, you can tell what numbers
were busy, where modem carriers were found or numbers that gave no response. The
color breakdown for iWar is shown in the following table.

Green / A_STANDOUT Manually marked by the user

Yellow / A_BOLD BUSY

Green / A_BLINK CONNECT (modem found)!

Blue / A_UNDERLINE VOICE

White / A_DIM NO ANSWER

Magenta / A_NORMAL Already scanned (loaded from a file)
Cyan / A_REVERSE Blacklisted number (not called)

Red / A_NORMAL Number skipped by the user (spacebar)
Blue / A_STANDOUT Possible interesting number!

Cyan / A_UNDERLINE Paused, then marked (IAX2 mode only)

The idea 1War uses behind the color coding is that, at a “glance,” you can get an
idea of what has been located.

iWar with VolP

Up to now, we’ve talked about using iWar with physical hardware (a modem, a VoIP
adapter, and Asterisk). iWar does contain some VoIP (IAX2) functionality. According
to the projects Web page, it’s the “first war dialer with VoIP functionality.”

We used iWar via good old-fashioned serial because the VoIP detection engine is
still under development. That is, in VoIP mode, iWar won'’t be able to detect
modems, fax machines, and other equipment. It simply operates as a VoIP client.
With a headset, you can let iWar do the dialing and even chat with people you call
through it. According to the iWar mailing list, the addition of SIP and a detection
engine is in the works. “Proof of concept” code has been chatted about on the
mailing list for some time, but hasn’t been included. While it is interesting to let iWar
do your dialing and act as a VoIP client, you manually have to identify interesting
numbers. Until the detection engine matures, the more practical way to war dial is to

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 219

use a traditional modem. The detection engine should be added and released within
the next couple of revisions of the code.

If you do wish to bypass the hardware way of scanning and have compiled 1War
with IAX2 functionality, you can start iWar in IAX2 mode by passing the —iax2
flag. For example:

$ iwar -npa 904 -nxx 555 -range 1000-1000 -iax2

Once started, the 1War curses screen will change a little bit since we are not using
a traditional analog modem. It should look something like Figure 6.2.

Figure 6.2 The iWar Curses Screen

champ@evil-laptop:~

term Font Background Terminal

Port Info : IAX2/beavell10,220,0,1 [Random] CONMECT :+ 0
Start/End Scan : 5551000 - 5552000 [1000] MO CARRIER = (@
Pre/Post Dial ¢ 919 / [Nonel BUSY + 0
Log File : iwar,log [N] VOICE L
Status * 9195551651 TONEASILENCE : 0
Idle 2 TIMEOUT -3
Numbers Left : 376

5551119 5551112
5551052
5551219

5551823 5551165 5551214

[Terminal Window]
[A%2/beave :PASSWORDELO, 220,0,1/9195551151 [Dialing...]

5551151 - Skipped.

IAX2/beave : PASSWORDELD, 220,0,1/9195551463 [Dialing...]

5551463 - Marked - TELCOATOME [Marked (TELCO/TOME)]
EFXQ/beaUBtPRSSUURU@lO.220.0.1/9195551851 [Dialing...] F

=l
b/

—

The color coding works the same as using 1War with a serial/analog modem, but
the terminal window now shows the VoIP interaction with your provider or
Asterisk. Future versions of iWar promise to be able to detect over VoIP the same
things that a traditional modem can, and more.

www.syngress.com

220

Chapter 6 ¢ Asterisk Hardware Ninjutsu

All Modems Are Not Alike

Most people believe that all modems are created equally. This isn’t the case. Some
modems serve their basic function: to connect to another modem. Other modems are
“smarter,” and the smarter the modem, the better the results of your war dial. Most
off-the-shelf modems will connect to other modems, but only detect things like
BUSY, NO DIALTONE, and other trivial items, while smarter modems can detect
remote RINGING and VOICE. Smarter modems will also speed up your scanning

If you’re interested in scanning for fax machines and modem carriers, you’ll
probably have to make two sweeps: one to search for faxes, the other to search for
modem carriers. Not many modems can do both within a single sweep.

If you are doing a serious security audit by war dialing, test the capabilities of
your modem before throwing it into a war-dialing challenge.

The author of illar (Da Beave) suggests the U.S. Robotics Courier
(V.Everything) for the best results. You can typically find these types of modems on
eBay for around $10 to $25.You can also use iWar with multiple modems to speed
up your scanning.

Legalities and Tips

As stressed earlier in this chapter get prior permission before doing a war-dialing
attack. Also, check your state’s laws about war dialing. It might be that war dialing,
even with prior permission, isn’t legal within your state.

If you have prior consent to target a company and scan for rogue telephony-
related devices and there are no legalities in your area regarding war dialing, it doesn’t
mean you can fire off a 10,000 number scan. Many VoIP providers have a clause
against this in their terms of service. You’ll want to scan “slow and low”—that is,
instead of dialing 10,000 numbers at once, dial 50 numbers and wait for a while.

Timing is also an issue. Know the area you are dialing. For example, if the target
is a state government agency, dialing in the evening will probably be better. Also,
many state agencies have entire exchanges dedicated to them. This way, by dialing
during the evening, you won'’t upset people at work. If it’s a business that’s located in
a business district, the same applies. However, if the business is located in a suburban
neighborhood, you’ll probably want to war dial during the afternoon. The idea is that
most people won’t be at home, because they’ll be at work. If you dialed the same
exchange/area during the day, you'd likely upset many people.

War dialing is about looking for interesting things, not annoying people.

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 221

What You Can Find

There are literally thousands of difterent types of devices connected to the telephone
network. RoguePCs with PC Anywhere installed, Xyplex terminal servers,
OpenVMS clusters, SCO Unix machines, Linux machines, telco test equipment...
The list goes on and on. Some require a type of authentication, while other hardware
will let you in simply because you dialed the right number—that is, right into a net-
work that might be guarded with thousands of dialers of firewalls and Intrusion
Prevention Systems (IDSs).

www.syngress.com

222 Chapter 6 ¢ Asterisk Hardware Ninjutsu

Summary

Interfacing Asterisk with hardware can take some creativity. In these simple examples,
we're using good old-fashioned serial communications. Serial is used quite a bit, but
it’s only one means to connect to hardware. The hardware you might want to con-
nect to and write an interface for Asterisk might be connected by USB or something
you probe over a TCP/IP network. The core ideas are still the same. Connect to the
hardware, send a command if needed, and format the output so it can be used with
Asterisk. Based on the information supplied by the device, an action can be taken, if
needed. The AGI and functionality it will carry out is up to you. These examples use
perl (Practical Extraction and Report Language) since it is a common and well-doc-
umented language. As the name implies, we are using it to “extract” information
from the remote devices. perl also has some modules that assist in working with
Asterisk (Asterisk::AGI), but just about any language can be used.

Solutions Fast Track

Serial

M Serial communications are simple and well documented. Many devices use
serial to interface with hardware.

M One-way communications is data that is fed to us. Examples of this are
things like magnetic card readers.

M Two-way communications require that a command be sent to the device
beforewe can get a response. Examples of this are some environmental
control systems and robotics.

M Serial is used as the basic example, but the same ideas apply with other
communications protocols such as IR (Infrared). USB and TCP (for
example, telnet) controlled equipment.

Motion

M Motion is a very powerful tool used to monitor camera(s) and detect events
you might be concerned about. For example, if someone breaks into your
home.

www.syngress.com

Asterisk Hardware Ninjutsu ¢ Chapter 6 223

M One AGI/routine is used in conjunction with Motion and can be used to
notify you if an event occurs.

M The routine will build the necessary “call files” and alert you by telephone
if something was detected.

Modems

M Traditional analog modems are still used in point-of-sales equipment, T1Vos,
and other equipment that connect to the PSTN.

M Connections with a modem can be accomplished, but typically at lower
speeds.

M You'll need to use noncompressed codecs, and the better the network

connection, the better your modem connections will be.

There are TCP/IP protocols for Fax over IP (T.38) and modems (ITU
V.150.1). Unfortunately, ITU V.150.1 (also known as V.MOIP) isn’t well
supported.

Using VoIP during security audits, you can mask where you are coming
from. The data traditionally passed over the PSTN isn’t passed over VoIP
networks.

VoIP can also be used to look up phone number information. This is known
as backspoofing.

When using a traditional modem and VoIP for scanning/war dialing, realize
that not all modems are created equal. Some are better than others.

Legalities and Tips

4]

4]

Before doing a security audit via VoIP and war dialing, check your local and
state laws!

Always get prior permission from the target before starting a security audit
via war dialing.

www.syngress.com

224

Chapter 6 ¢ Asterisk Hardware Ninjutsu

Frequently Asked Questions

The following Frequently Asked Questions, answered by the authors of this book, are
designed to both measure your understanding of the concepts presented in
this chapter and to assist you with real-life implementation of these concepts. To have
your questions about this chapter answered by the author, browse to www.
syngress.com/solutions and click on the “Ask the Author” form.

Q:
A:

Using VoIP with point-of-sales modem equipment is sort of dangerous isn’t it?

It can be. Before hooking up anything, you should first see what sort of data is
being sent. Odds are, it’s something you wouldn’t want leaked out. Proper secu-
rity measures should be in place before attaching such equipment to any VoIP
network (encryption, VLANS, and so on).

: Seriously, what can you find via war dialing?

: Many people and companies“would be surprised. Often, the organization being

targeted doesn’t even know they have hardware that is connected to the PSTN.
I've seen routers, dial-up servers,/,SCO machines, OpenVMS servers, rogue PC
Anywhere installs, Linux machifies, and muchygmuch ‘more. Some require authen-
tications, while others simply_let you_inte.the network, bypassing thousands of
dollars of network monitoring equipment.

: In the example with Motion, you use it in an environment where motion should

not be detected. I'd like to use Motion outside to detect'if people come to my
front door, walk down my driveway, and so on. Can this be done?

: Yes. With motion you can create “mask” files that will ignore motion from cer-

tain areas of the image. For instance, you can create a mask to ignore a tree in
your front yard when the wind blows, but alert you when motion is detected on
a walkway.

www.syngress.com

Chapter 7

Threats to VolP

Communications
Systems

Solutions in this chapter:

m Denial-of-Service or VolIP Service Disruption
m Call Hijacking and Interception

m H.323-Specific Attacks

m SIP-Specific Attacks

225

226

Chapter 7 ¢ Threats to VolP Communications Systems

Introduction

Converging voice and data on the same wire, regardless of the protocols used, ups the
ante for network security engineers and managers. One consequence of this conver-
gence is that in the event of a major network attack, the organization’s entire
telecommunications infrastructure can be at risk. Securing the whole VoIP infrastruc-
ture requires planning, analysis, and detailed knowledge about the specifics of the
implementation you choose to use.

Table 7.1 describes the general levels that can be attacked in a VoIP infrastructure.

Table 7.1 VoIP Vulnerabilities

Vulnerability Description

IP infrastructure Vulnerabilities on related non-VolP systems can
lead to compromise of VolIP infrastructure.

Underlying operating system VolP devices inherit the same vulnerabilities as the
operating system or firmware they run on.
Operating systems are Windows and Linux.

Configuration In their default configuration most VolP devices
ship with a surfeit of open services. The default
services running on the open ports may be vulner-
able to DoS attacks, buffer overflows, or authenti-
cation bypass.

Application level Immature technologies can be attacked to disrupt
or manipulate service. Legacy applications (DNS,
for example) have known problems.

Denial-of-Service or VolP Service Disruption

Denial-of-service (DoS) attacks can affect any IP-based network service. The impact
of a DoS attack can range from mild service degradation to complete loss of service.
There are several classes of DoS attacks. One type of attack in which packets can
simply be flooded into or at the target network from multiple external sources 1s
called a distributed denial-of-service (DDoS) attack (see Figures 7.1 and 7.2).

In this figure, traffic flows normally between internal and external hosts and
servers. In Figure 7.2, a network of computers (e.g., a botnet) directs IP traftic at the
interface of the firewall.

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 227

&
[

Figure 7.1 Typical Internet Access

|

Figure 7.2 A Distributed Denial-of-Service Attack

S

& B

S

\‘l

&
O
i

WWW.syngress.com

228

Chapter 7 ¢ Threats to VolP Communications Systems

The second large class of Denial of Service (DoS) conditions occurs when
devices within the internal network are targeted by a flood of packets so that they
fail—taking out related parts of the infrastructure with them. As in the DdoS sce-
narios described earlier in this chapter, service disruption occurs to resource deple-
tion—yprimarily bandwidth and CPU resource starvation (see Figure 7.3). For
example, some IP telephones will stop working if they receive a UDP packet larger
than 65534 bytes on port 5060.

Figure 7.3 An Internal Denial-of-Service Attack

& U

VLAN 2 VLAN 10

Neither integrity checks nor encryption can prevent these attacks. DoS or DDoS
attacks are characterized simply by the volume of packets sent toward the victim
computer; whether those packets are signed by a server, contain real or spoofed
source [P addresses, or are encrypted with a fictitious key—none of these are relevant
to the attack.

DoS attacks are difficult to defend against, and because VoIP is just another IP
network service, it is just as susceptible to DoS attack as any other IP network ser-
vices. Additionally, DoS attacks are particularly effective against services such as VoIP
and other real-time services, because these services are most sensitive to adverse net-

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 229

work status. Viruses and worms are included in this category as they often cause DoS
or DDoS due to the increased network traftic that they generate as part of their
efforts to replicate and propagate.

How do we defend against these DoS conditions (we won’t use the term attack
here because some DoS conditions are simply the unintended result of other unre-
lated actions)? Let’s begin with internal DoS. Note in Figure 7.3 that VLAN 10 on
the right is not affected by the service disruption on the left in VLAN 2. This illus-
trates one critical weapon the security administrator has in thwarting DoS condi-
tions—logical segregation of network domains in separate compartments. Each
compartment can be configured to be relatively immune to the results of DoS in the
others. This is described in more detail in Chapter 8.

Point solutions will also be effective in limiting the consequences of DoS condi-
tions. For example, because strong authentication is seldom used in VoIP environ-
ments, the message processing components must trust and process messages from
possible attackers. The additional processing of bogus messages exhausts server
resources and leads to a DoS. SIP or H.323 Registration Flooding is an example of
this, described in the list of DoS threats, later. In that case, message processing servers
can mitigate this specific threat by limiting the number of registrations it will accept
per minute for a particular address (and/or from a specific IP address). An intrusion
prevention system (IPS) may be useful in fending off certain types of DoS attacks.
These devices sit on the datapath and monitor passing traftic. When anomalous traftic
1s detected (either by matching against a database of attack signatures or by matching
the results of an anomaly-detection algorithm) the IPS blocks the suspicious traffic.
One problem I have seen with these devices—particularly in environments with high
availability requirements—is that they sometimes block normal traftic, thus creating
their own type of DoS.

Additionally, security administrators can minimize the chances of DoS by
ensuring that IP telephones and servers are updated to the latest stable version and
release. Typically, when a DoS warning 1s announced by bugtraq, the vendor quickly
responds by fixing the offending software.

NoTE

VolIP endpoints can be infected with new VolIP device or protocol-specific
viruses. WinCE, PalmOS, SymbianOS, and POSIX-based softphones are espe-
cially vulnerable because they typically do not run antivirus software and
have less robust operating systems. Several Symbian worms already have

www.syngress.com

230

Chapter 7 ¢ Threats to VolP Communications Systems

been detected in the wild. Infected VoIP devices then create a new “weak
link” vector for attacking other network resources.

Compromised devices can be used to launch attacks against other systems

in the same network, particularly if the compromised device is trusted (i.e.,
inside the firewall). Malicious programs installed by an attacker on compro-
mised devices can capture user input, capture traffic, and relay user data over
a "back channel” to the attacker. This is especially worrisome for softphone
users.

VoIP systems must meet stringent service availability requirements. Following are

some example DoS threats can cause the VoIP service to be partially or entirely

unavailable by preventing successful call placement (including emergency/911), dis-

connecting existing calls, or preventing use of related services like voicemail. Note

that this list is not exhaustive but illustrates some attack scenarios.

TLS Connection Reset It’s not hard to force a connection reset on a TLS
connection (often used for signaling security between phones and gate-
ways)—just send the right kind of junk packet and the TLS connection will
be reset, interrupting the signaling channel between the phone and call
server.

VoIP Packet Replay Attack Capture and resend out-of-sequence VoIP
packets (e.g., RTP SSRC—SSRC is an RTP header field that stands for
Synchronization Source) to endpoints, adding delay to call in progress and
degrading call quality.

Data Tunneling Not exactly an attack; rather tunneling data through voice
calls creates, essentially, a new form of unauthorized modem. By transporting
modem signals through a packet network by using pulse code modulation
(PCM) encoded packets or by residing within header information, VoIP can
be used to support a modem call over an IP network. This technique may be
used to bypass or undermine a desktop modem policy and hide the exis-
tence of unauthorized data connections. This is similar in concept to the so-
called “IP over HTTP” threat (i.e., “Firewall Enhancement Protocol” RFC
3093)—a classic problem for any ports opened on a firewall from internal
sources.

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 231

QoS Modification Attack Modify non-VolIP-specific protocol control
information fields in VoIP data packets to and from endpoints to degrade or
deny voice service. For example, if an attacker were to change 802.1Q
VLAN tag or IP packet ToS bits, either as a man-in-the-middle or by com-
promising endpoint device configuration, the attacker could disrupt the
quality of service “engineered” for a VoIP network. By subordinating voice
traffic to data traffic, for example, the attacker might substantially delay
delivery of voice packets.

VoIP Packet Injection Send forged VoIP packets to endpoints, injecting
speech or noise or gaps into active call. For example, when RTP is used
without authentication of RTCP packets (and without SSRC sampling), an
attacker can inject RTCP packets into a multicast group, each with a dif-
ferent SSRC, which can grow the group size exponentially.

DoS against Supplementary Services Initiate a DoS attack against
other network services upon which the VoIP service depends (e.g., DHCP,
DNS, BOOTP). For example, in networks where VoIP endpoints rely on
DHCP-assigned addresses, disabling the DHCP server prevents endpoints
(soft- and hardphones) from acquiring addressing and routing information
they need to make use of the VoIP service.

Control Packet Flood Flood VoIP servers or endpoints with unauthenti-
cated call control packets, (e.g., H.323 GRQ, RRQ, URQ packets sent to
UDP/1719). The attacker’s intent is to deplete/exhaust device, system, or
network resources to the extent that VoIP service is unusable. Any open
administrative and maintenance port on call processing and VoIP-related
servers can be a target for this DoS attack.

Wireless DoS Initiate a DoS attack against wireless VoIP endpoints by
sending 802.11 or 802.1X frames that cause network disconnection (e.g.,
802.11 Deauthenticate flood, 802.1X EAP-Failure, WPA MIC attack, radio
spectrum jamming). For example, a Message Integrity Code attack exploits a
standard countermeasure whereby a wireless access point disassociates sta-
tions when it receives two invalid frames within 60 seconds, causing loss of
network connectivity for 60 seconds. In a VoIP environment, a 60-second
service interruption is rather extreme.

www.syngress.com

232

Chapter 7 ¢ Threats to VolP Communications Systems

Bogus Message DoS Send VoIP servers or endpoints valid-but-forged
VoIP protocol packets to cause call disconnection or busy condition (e.g.,
RTP SSRC collision, forged RTCP BYE, forged CCMS, spoofed endpoint
button push). Such attacks cause the phone to process a bogus message and
incorrectly terminate a call, or mislead a calling party into believing the
called party’s line is busy.

Invalid Packet DoS Send VoIP servers or endpoints invalid packets that
exploit device OS and TCP/IP implementation denial-of-service CVEs. For
example, the exploit described in CAN-2002-0880 crashes Cisco IP phones
using jolt, jolt2, and other common fragmentation-based DoS attack
methods. CAN-2002-0835 crashes certain VoIP phones by exploiting
DHCP DoS CVEs. Avaya IP phones may be vulnerable to port zero attacks.

Immature Software DoS PDA/handheld softphones and first generation
VoIP hardphones are especially vulnerable because they are not as mature or
intensely scrutinized. VoIP call servers and IP PBXs also run on OS plat-
forms with many known CVEs. Any open administrative/maintenance port
(e.g., HTTP, SNMP, Telnet) or vulnerable interface (e.g., XML, Java) can
become an attack vector.

VoIP Protocol Implementation DoS Send VoIP servers or endpoints
invalid packets to exploit a VoIP protocol implementation vulnerability to a
DoS attack. Several such exploits are identified in the MITRE CVE database
(http://cve.mitre.org). For example, CVE-2001-00546 uses malformed
H.323 packets to exploit Windows ISA memory leak and exhaust resources.
CAN-2004-0056 uses malformed H.323 packets to exploit Nortel BCM
DoS vulnerabilities. Lax software update practices (failure to install CVE
patches) exacerbate risk.

Packet of Death DoS Flood VoIP servers or endpoints with random
TCP, UDP, or ICMP packets or fragments to exhaust device CPU, band-
width, TCP sessions, and so on. For example, an attacker can initiate a TCP
Out of Band DoS attack by sending a large volume of TCP packets marked
“priority delivery” (the TCP Urgent flag). During any flood, increased pro-
cessing load interferes with the receiving system’s ability to process real
traffic, initially delaying voice traffic processing but ultimately disrupting ser-
vice entirely.

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 233

m IP Phone Flood DoS Send a very large volume of call data toward a
single VoIP endpoint to exhaust that device’s CPU, bandwidth, TCP sessions,
and so on. Interactive voice response systems, telephony gateways, confer-
encing servers, and voicemail systems are able to generate more call data
than a single endpoint can handle and so could be leveraged to flood an
endpoint.

Call Hijacking and Interception

Call interception and eavesdropping are other major concerns on VoIP networks. The
VOIPSA threat taxonomy (www.voipsa.org/Activities/taxonomy-wiki.php) defines
eavesdropping as “a method by which an attacker is able to monitor the entire sig-
naling and/or data stream between two or more VoIP endpoints, but cannot or does
not alter the data itself.” Successtul call interception is akin to wiretapping in that
conversations of others can be stolen, recorded, and replayed without their knowl-
edge. Obviously, an attacker who can intercept and store these data can make use of
the data in other ways as well.

Tools & Traps...

DNS Poisoning

A DNS A (or address) record is used for storing a domain or hostname mapping
to an IP address. SIP makes extensive use of SRV records to locate SIP services
such as SIP proxies and registrars. SRV (service) records normally begin with an
underscore (_sip.tcpserver.udp.domain.com) and consist of information
describing service, transport, host, and other information. SRV records allow
administrators to use several servers for a single domain, to move services from
host to host with little fuss, and to designate some hosts as primary servers for
a service and others as backups.

An attacker’s goal, when attempting a DNS Poisoning or spoofing attack,
is to replace valid cached DNS A, SRV, or NS records with records that point to
the attacker’s server(s). This can be accomplished in a number of fairly trivial
ways—the easiest being to initiate a zone transfer from the attacker’s DNS
server to the victim’s misconfigured DNS server, by asking the victim’s DNS
server to resolve a networked device within the attacker’s domain. The victim'’s

Continued

www.syngress.com

234

Chapter 7 ¢ Threats to VolP Communications Systems

DNS server accepts not only the requested record from the attacker’s server,
but it also accepts and caches any other records that the attacker’s server
includes.

Thus, in addition to the A record for www.attacker.com, the victim DNS
server may receive a bogus record for www.yourbank.com. The innocent
victim will then be redirected to the attacker.com Web site anytime he or she
attempts to browse to the yourbank.com Web site, as long as the bogus
records are cached. Substitute a SIP URL for a Web site address, and the same
scenario can be repeated in a VolP environment.

This family of threats relies on the absence of cryptographic assurance of a
request’s originator. Attacks in this category seek to compromise the message
integrity of a conversation. This threat demonstrates the need for security services
that enable entities to authenticate the originators of requests and to verify that the
contents of the message and control streams have not been altered in transit.

In the past several years, as host PCs have improved their processing power and
their ability to process networked information, network administrators have instituted a
hierarchical access structure that consists of a single, dedicated switched link for each
host PC to distribution or backbone devices. Each networked user benefits from a
more reliable, secure connection with guaranteed bandwidth. The use of a switched
infrastructure limits the effectiveness of packet capture tools or protocol analyzers as a
means to collect VoIP traftic streams. Networks that are switched to the desktop allow
normal users’ computers to monitor only broadcast and unicast traffic that is destined
to their particular MAC address. A user’s NIC (network interface card) literally does
not see unicast traffic destined for other computers on the network.

The address resolution protocol (ARP) is a method used on IPv4 Ethernet net-
works to map the IP address (layer 3) to the hardware or MAC (Media Access Control)
layer 2 address. (Note that ARP has been replaced in IPv6 by Neighbor Discovery
[ND] protocol. The ND protocol is a hybrid of ARP and ICMP) Two classes of hard-
ware addresses exist: the broadcast address of all ones, and a unique 6 byte identifier
that 1s burned into the PROM of every NIC (Network Interface Card).

Figure 7.4 illustrates a typical ARP address resolution scheme. A host PC
(10.1.1.1) that wishes to contact another host (10.1.1.2) on the same subnet issues an
ARP broadcast packet (ARPs for the host) containing its own hardware and IP
addresses. NICs contain filters that allow them to drop all packets not destined for
their unique hardware address or the broadcast address, so all NICs but the query
target silently discard the ARP broadcast. The target NIC responds to the query

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 235

request by unicasting its [P and hardware address, completing the physical to logical
mapping, and allowing communications to proceed at layer 3.

Figure 7.4 Typical ARP Request/Reply

(1) SAM: WHO HAS 1P 10.1.1.2?

@ SALLY: 1 (AA.BB.CC.DD.EE.00) HAVEIP 10.1.1.2

10.1.1.1
AA:BB:CC:DD:EE:FF

o
Sam é‘})

10.1.1.2
AA:BB:CC:DD:EE:00
-~
N,
S

Sally

To minimize broadcast traffic, many devices cache ARP addresses for a varying
amount of time: The default ARP cache timeout for Linux is one minute; for
Windows NT, two minutes, and for Cisco routers, four hours. This value can be triv-
1ally modified in most systems. The ARP cache is a table structure that contains IP
address, hardware address, and oftentimes, the name of the interface the MAC address
1s discovered on, the type of media, and the type of ARP response. Depending upon
the operating system, the ARP cache may or may not contain an entry for its own
addresses.

In Figure 7.4, Sam’s ARP cache contains one entry prior to the ARP

request/response:
Internet Address Physical Address
10.1.1.1 AA:BB:CC:DD:EE:FF int0

www.syngress.com

236

Chapter 7 ¢ Threats to VolP Communications Systems

After the ARP request/response completes, Sam’s ARP cache now contains two

entries:

Internet Address Physical Address

10.1.1.1 AA:BB:CC:DD:EE:FF int0
10.1.1.2 AA:BB:CC:DD:EE:00 int0

Note that Sally’s ARP cache, as a result of the request/response communications,
is updated with the hardware:IP mappings for both workstations as well.

ARP Spoofing

ARP is a fundamental Ethernet protocol. Perhaps for this reason, manipulation of
ARP packets is a potent and frequent attack mechanism on VoIP networks. Most
network administrators assume that deploying a fully switched network to the
desktop prevents the ability of network users to sniff network traffic and potentially
capture sensitive information traversing the network. Unfortunately, several tech-
niques and tools exist that allow any user to snift traffic on a switched network
because ARP has no provision for authenticating queries or query replies.
Additionally, because ARP is a stateless protocol, most operating systems (Solaris is an
exception) update their cache when receiving ARP reply, regardless of whether they
have sent out an actual request.

Among these techniques, ARP redirection, ARP spoofing, ARP hijacking, and
ARP cache poisoning are related methods for disrupting the normal ARP process.
These terms frequently are interchanged and confused. For the purpose of this sec-
tion, we’ll refer to ARP cache poisoning and ARP spoofing as the same process.
Using freely available tools such as ettercap, Cain, and dsniff, an evil IP device can
spoof a normal IP device by sending unsolicited ARP replies to a target host. The
bogus ARP reply contains the hardware address of the normal device and the IP
address of the malicious device. This “poisons” the host’s ARP cache (see Figure
7.5).

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 237

Figure 7.5 ARP Spoofing (Cache Poisoning)

@ NED: I (BA:DB:AD:BA:DB:AD) HAVE [P 10.1.1.2

10.1.1.1 10.1.1.100
AA:BB:CC:DD:EE:FF BA:DB:AD:BA:DB:AD

T’
SIS

10.1.1
AA:BB: (DDEEOO

@\

SuIIy

In Figure 7.5, Ned is the attacking computer. When SAM broadcasts an ARP
query for Sally’s IP address, Ned, the attacker, responds to the query stating that the
[P address (10.1.1.2) belongs to Ned’s MAC address, BA:DB:AD:BA:DB:AD. Packets
sent from Sam supposedly to Sally will be sent to Ned instead. Sam will mistakenly
assume that Ned’s MAC address corresponds to Sally’s IP address and will direct all
traffic destined for that IP address to Ned’s MAC. In fact, Ned can poison Sam’s
ARP cache without waiting for an ARP query since on Windows systems
(9x/NT/2K), static ARP entries are overwritten whenever a query response 1is
received regardless of whether or not a query was issued.

Sam’s ARP cache now looks like this:

Internet Address Physical Address
10.1.1.1 AA:BB:CC:DD:EE:FF int0
10.1.1.2 BA:DB:AD:BA:DB:AD int0

This entry will remain until it ages out or a new entry replaces it.

ARP redirection can work bidirectionally, and a spoofing device can insert itself
in the middle of a conversation between two IP devices on a switched network (see
Figure 7.6). This is probably the most insidious AR P-related attack. By routing

www.syngress.com

238 Chapter 7 ¢ Threats to VolP Communications Systems

packets on to the devices that should truly be receiving the packets, this insertion
(known as a Man/Monkey/Moron in the Middle attack) can remain undetected for

some time. An attacker can route packets to /dev/null (nowhere) as well, resulting in
a DoS attack.

Figure 7.6 An ARP MITM Attack

@ NED TO SAM: I (BA:DB:AD:BA:DB:AD) HAVE IP 10.1.1.2
@ NED TO SALLY: I (BA:DB:AD:BA:DB:AD) HAVE [P 10.1.1.1

10.1.1.100
BA:DB:AD:BA:DB:AD

10.1.1.1
AA:BB:CC:DD:EE:FF

4 B\

S
a0

Sam

- ——

10.1.1.2
AA:BB:CC:DD:

$

Sally

m

E:00

Sam’s ARP cache:

Internet Address

Physical Address

10.1.1.1 AA:BB:CC:DD:EE:FF int0

10.1.1.2 BA:DB:AD:BA:DB:AD int0
Sally’s ARP cache:

Internet Address Physical Address

10.1.1.1 BA:DB:AD:BA:DB:AD int0

10.1.1.2 AA:BB:CC:DD:EE:00 int0

As all IP traffic between the true sender and receiver now passes through the
attacker’s device, it is trivial for the attacker to snift that traffic using freely available
tools such as Ethereal or tcpdump. Any unencrypted information (including e-mails,
usernames and passwords, and web traffic) can be intercepted and viewed.

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 239

This interception has potentially drastic implications for VoIP traftic. Freely avail-
able tools such as vomit and rtpsniff, as well as private tools such as VoipCrack, allow
for the interception and decoding of VoIP traftic. Captured content can include
speech, signaling and billing information, multimedia, and PIN numbers. Voice con-
versations traversing the internal IP network can be intercepted and recorded using
this technique.

There are a number of variations of the aforementioned techniques. Instead of’
imitating a host, the attacker can emulate a gateway. This enables the attacker to
intercept numerous packet streams. However, most ARP redirection techniques rely
on stealth. The attacker in these scenarios hopes to remain undetected by the users
being impersonated. Posing as a gateway may result in alerting users to the attacker’s
presence due to unanticipated glitches in the network, because frequently switches
behave in unexpected ways when attackers manipulate ARP processes. One unin-
tended (much of the time) consequence of these attacks, particularly when switches
are heavily loaded, is that the switch CAM (Content-Addressable Memory) table—a
finite-sized IP address to MAC address lookup table—becomes disrupted. This leads
to the switch forwarding unicast packets out many ports in unpredictable fashion.
Penetration testers may want to keep this in mind when using these techniques on
production networks.

In order to limit damage due to ARP manipulation, administrators should imple-
ment software tools that monitor MAC to IP address mappings. The freeware tool,
Arpwatch, monitors these pairings. At the network level, MAC/IP address mappings
can be statically coded on the switch; however, this is often administratively unten-
able. Dynamic ARP Inspection (DAI) is available on newer Cisco Catalyst 6500
switches. DAI is part of Cisco’s Integrated Security (CIS) functionality and is
designed to prevent several layer two and layer three spoofing attacks, including ARP
redirection attacks. Note that DAI and CIS are available only on Catalyst switches
using native mode (Cisco 10S).

The potential risks of decoding intercepted VoIP traffic can be eliminated by
implementing encryption. Avaya’s Media Encryption feature is an example of this.
Using Media Encryption, VoIP conversations between two IP endpoints are
encrypted using AES encryption. In highly secure environments, organizations should
ensure that Media Encryption is enabled on all IP codec sets in use.

DALI enforces authorized MAC-to-IP address mappings. Media Encryption ren-
ders traftic, even if intercepted, unintelligible to an attacker.

www.syngress.com

240 Chapter 7 ¢ Threats to VolP Communications Systems

The following are some additional examples of call or signal interception and
hijacking. This class of threats, though typically more difficult to accomplish than
DoS, can result in significant loss or alteration of data. DoS attacks, whether caused
by active methods or inadvertently, although important in terms of quality of service,
are more often than not irritating to users and administrators. Interception and
hijacking attacks, on the other hand, are almost always active attacks with theft of ser-
vice, information, or money as the goal. Note that this list is not exhaustive but illus-
trates some attack scenarios.

m Rogue VoIP Endpoint Attack Rogue IP endpoint contacts VoIP server
by leveraging stolen or guessed identities, credentials, and network access. For
example, a rogue endpoint can use an unprotected wall jack and auto-regis-
tration of VOIP phones to get onto the network. RAS password guessing can
be used to masquerade as a legitimate endpoint. Lax account maintenance
(expired user accounts left active) increases risk of exploitation.

m Registration Hijacking Registration hijacking occurs when an attacker
impersonates a valid UA to a registrar and replaces the registration with its
own address. This attack causes all incoming calls to be sent to the attacker.

m Proxy Impersonation Proxy impersonation occurs when an attacker
tricks a SIP UA or proxy into communicating with a rogue proxy. If an
attacker successfully impersonates a proxy, he or she has access to all SIP
messages.

m Toll Fraud Rogue or legitimate VoIP endpoint uses a VoIP server to place
unauthorized toll calls over the PSTN. For example, inadequate access con-
trols can let rogue devices place toll calls by sending VoIP requests to call
processing applications. VoIP servers can be hacked into in order to make
free calls to outside destinations. Social engineering can be used to obtain
outside line prefixes.

m Message Tampering Capture, modify, and relay unauthenticated VoIP
packets to/from endpoints. For example, a rogue 802.11 AP can exchange
frames sent or received by wireless endpoints if no payload integrity check
(e.g., WPA MIC, SRTP) is used. Alternatively, these attacks can occur
through registration hijacking, proxy impersonation, or an attack on any
component trusted to process SIP or H.323 messages, such as the proxy,
registration servers, media gateways, or firewalls. These represent non-ARP-
based MITM attacks.

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 241

= VoIP Protocol Implementation Attacks Send VoIP servers or endpoints
invalid packets to exploit VoIP protocol implementation CVEs. Such attacks
can lead to escalation of privileges, installation and operation of malicious
programs, and system compromise. For example, CAN-2004-0054 exploits
Cisco 1OS H.323 implementation CVEs to execute arbitrary code.
CSCed33037 uses unsecured IBM Director agent ports to gain administra-
tive control over IBM servers running Cisco VoIP products.

Notes from the Underground...

ANI/Caller-ID Spoofing

Caller ID is a service provided by most telephone companies (for a monthly
cost) that will tell you the name and number of an incoming call. Automatic
Number Identification (ANI) is a system used by the telephone company to
determine the number of the calling party. To spoof Caller-ID, an attacker
sends modem tones over a POTS lines between rings 1 and 2. ANI spoofing is
setting the ANI so as to send incorrect ANI information to the PSTN so that the
resulting Caller-ID is misleading. Traditionally this has been a complicated pro-
cess either requiring the assistance of a cooperative phone company operator
or an expensive company PBX system.

In ANI/Caller-ID spoofing, an evildoer hijacks phone number and the iden-
tity of a trusted party, such as a bank or a government office. The identity
appears on the caller ID box of an unsuspecting victim, with the caller hoping
to co-opt valuable information, such as account numbers, or otherwise engage
in malicious mischief. This is not a VolIP issue, per se. In fact, one of the big
drawbacks about VolIP trunks is their inability to send ANI properly because of
incomplete standards.

H.323-Specific Attacks

The only existing vulnerabilities that we are aware of at this time take advantage of
ASN.1 parsing defects in the first phase of H.225 data exchange. More vulnerabili-
ties can be expected for several reasons: the large number of differing vendor
implementations, the complex nature of this collection of protocols, problems with
the various implementations of ASN.1/PER encoding/decoding, and the fact that

www.syngress.com

242

Chapter 7 ¢ Threats to VolP Communications Systems

these protocols—alone and in concert—have not endured the same level of
scrutiny that other more common protocols have been subjected to. For example,
we have unpublished data that shows that flooding a gateway or media server with
GRQ request packets (RAS registration request packets) results in a DoS against
certain vendor gateway implementations—basically the phones deregister.

SIP-Specific Attacks

Multiple vendors have confirmed vulnerabilities in their respective SIP (Session
Initiation Protocol) implementations. The vulnerabilities have been identified in the
INVITE message used by two SIP endpoints during the initial call setup. The impact
of successful exploitation of the vulnerabilities has not been disclosed but potentially
could result in a compromise of a vulnerable device. (CERT: CA-2003-06.) In addi-
tion, many recent examples of SIP Denial of Service attacks have been reported.

Recent issues that affect Cisco SIP Proxy Server (SPS) [Bug ID CSCec31901]
demonstrate the problems SIP implementers may experience due to the highly mod-
ular architecture or this protocol. The SSL implementation in SPS (used to secure
SIP sessions) is vulnerable to an ASN.1 BER decoding error similar to the one
described for H.323 and other protocols. This example illustrates a general concern
with SIP: As the SIP protocol links existing protocols and services together, all the
classic vulnerabilities in services such as SSL, HTTP, and SMTP may resurface in the
VoIP environment.

www.syngress.com

Threats to VolP Communications Systems ¢ Chapter 7 243

Summary

DoS attacks, whether they are intentional or unintended, are the most difficult VoIP-
related threat to defend against. The packet switching nature of data networks allows
multiple connections to share the same transport medium. Therefore, unlike tele-
phones in circuit-switched networks, an IP terminal endpoint can receive and poten-
tially participate in multiple calls at once. Thus, an endpoint can be used to amplify
attacks. On VoIP networks, resources such as bandwidth must be allocated efficiently
and fairly to accommodate the maximum number of callers. This property can be
violated by attackers who aggressively and abusively obtain an unnecessarily large
amount of resources. Alternatively, the attacker simply can flood the network with
large number of packets so that resources are unavailable to all other callers.

In addition, viruses and worms create DoS conditions due to the network traffic
generated by these agents as they replicate and seek out other hosts to infect. These
agents are proven to wreak havoc with even relatively well-secured data networks.
VoIP networks, by their nature, are exquisitely sensitive to these types of attacks.
Remedies for DoS include logical network partitioning at layers 2 and 3, stateful
firewalls with application inspection capabilities, policy enforcement to limit looded
packets, and out-of-band management. Out-of-band management is required so that
in the event of a DoS event, system administrators are still able to monitor the net-
work and respond to additional events.

Theft of services and information is also problematic on VoIP networks. These
threats are almost always due to active attack. Many of these attacks can be thwarted
by implementing additional security controls at layer 2. This includes layer 2 security
features such as DHCP Snooping, Dynamic ARP Inspection, IP Source Guard, Port
Security, and VLAN ACLs. The fundamental basis for this class of attacks is that the
identity of one or more of the devices that participate is not legitimate.

Endpoints must be authenticated, and end users must be validated in order to
ensure legitimacy. Hijacking and call interception revolves around the concept of
fooling and manipulating weak or nonexistent authentication measures. We are all
familiar with difterent forms of authentication, from the password used to login to
your computer to the key that unlocks the front door. The conceptual framework
for authentication is made up of three factors: “something you have” (a key or
token), “something you know” (a password or secret handshake), or “something
you are” (fingerprint or iris pattern). Authentication mechanisms validate users by
one or a combination of these. Any type of unauthenticated access, particularly to

www.syngress.com

244

Chapter 7 ¢ Threats to VolP Communications Systems

key infrastructure components such as the IP PBX or DNS server, for example, can
result in disagreeable consequences for both users and administrators.

VoIP relies upon a number of ancillary services as part of the configuration pro-
cess, as a means to locate users, manage servers and phones, and to ensure favorable
transport, among others. DNS, DHCP, HTTP, HTTPS, SNMP, SSH, RSVP, and
TFTP services all have been the subject of successful exploitation by attackers.
Potential VoIP users may defer transitioning to IP Telephony if they believe it will
reduce overall network security by creating new vulnerabilities that could be used to
compromise non-VoIP systems and services within the same network. Effective miti-
gation of these threats to common data networks and services could be considered a
security baseline upon which a successtul VoIP deployment depends. Firewalls, net-
work and system intrusion detection, authentication systems, anti-virus scanners, and
other security controls, which should already be in place, are required to counter
attacks that might debilitate any or all IP-based services (including VoIP services).

H.323 and SIP suffer security vulnerabilities based simply upon their encoding
schemes, albeit for difterent reasons. Because SIP is an unstructured text-based protocol,
it is impossibly to test all permutations of SIP messages during development for secu-
rity vulnerabilities. It’s fairly straightforward to construct a malformed SIP message or
message sequence that results in a DoS for a particular SIP device. This may not be sig-
nificant for a single UA endpoint, but if this “packet of death” can render all the car-
rier-class media gateway controllers in a network useless, then this becomes a
significant problem. H.323 on the other hand is encoded according to ASN.1 PER
encoding rules. The implementation of H.323 message parsers, rather than the
encoding rules themselves, results in security vulnerabilities in the H.323 suite.

www.syngress.com

A
Address Resolution Protocol. See
ARP

ADPCM (Adaptive Difterential
Pulse Code Modulation), 149

AEL (Asterisk Extensions
Language), writing extensions
using, 82—85

agents, and call queues, 106—108

AGI (Asterisk Gateway Interface)

described, programming with,
120-126, 142, 143

FastAGI, DeadAGI, EAGIs,
138-141

interacting with callers, 126—129

“one-way” serial communication,
184-189

supported languages, 145

AGTI libraries, using third-party,
130-138

allowing codecs, 88

Anaconda, CentOS installer, 38

analog telephone adapters, 26—27

Analog Terminal Adapters (ATAs),
25, 25-26

ANI/Caller-ID spoofing, 241

applications, writing with Asterisk,
116, 145

ARP (Address Resolution Protocol)

described, 234

poisoning, capturing VoIP data
using, 165-169

Index

using Ettercap for poisoning,
170-178

ARP spoofing, 236241
Asterisk
compiling, 51-52
configuring. See configuration of
Asterisk
dependencies, 46
history of, 56, 18
installation. See Asterisk installation
interfacing with various hardware,

184

as PBX, 7-10

product described, 2—4, 67, 16—18

setup, 22-30

starting and using, 58—60

uses described, 7-18

versions of, 36, 64
Asterisk-Addons, 46
asterisk command, 59
Asterisk Gateway Interface. See AGI
Asterisk installation

with binaries, installer packages, 52

from CD, 36—45

from scratch, 45—52

summary, 62

using live CD, 30-36

on Windows, 52-57
Asterisk Win32, 5358, 63
Asterisk:: AGI module, 130-134, 139

ATAs (Analog Terminal Adapters),
25,25-26

245

Index

attacks

See also specific attack

against Asterisk system, 179

call hijacking, interception, 233-241

DoS (Denial of Service), 226—233

H.322-specific, 241-242

Man-in-the-Middle (MITM),
169-170

SIP-specific, 242

war dialing, 206218, 206—218,
220-221,224

Caller ID
displaying, 117-120
spoofing, 204, 217
and war dialing, 206207

callers, scripts for interacting with,
126-129

calling programs from within dial
plans, 116-120

Carnegie Mellon University, 14
CDs

booting computers from, 64

burning systems, 63
B installing Asterisk from, 36—45
Bell’s Mind, 16, 18 installing Asterisk from live, 30-36
Beta-Brite signs, 117-118 CentOS installer, 38
binaries, installing Asterisk with, 52 channel banks, 28

bogus message DoS attacks, 232 checklists, Asterisk setup and

booting configuration, 60, 109
computers from CDs, 64 Cisco
SLAST, 31-32 7960 IP phone, 26

trixbox, 37—40
brute force password attacks, 181

SCCP VoIP protocol, 6
classes, music on hold, 104—-105

businesses, Asterisk in large and small, code, downloading Asterisk, 47

8-10 codecs (enCOder/DECoders)
allowing, disallowing, 87—88
C compressed, uncompressed,
cache poisoning, 237 149-150
Cain and Abel tool, 29 Collector’s Net, 14, 16, 18
call centers, 13 commands

call hijacking, interception See also specific command

ARP spoofing, 236241 AGI, 121-123
types of, 233-236 Asterisk common, 73
call queues SIP, 151

Asterisk’s capabilities, 11-12
configuring, 105-108, 113

Competitive Local Exchange
Carriers (CLECs), 16

compiling
Asterisk, 51-52
Asterisk from source, 46
LibPRI, 4748
Zaptel, 48-50
compression codec (coder-decoder),
4,205
computers, booting from CD, 64
conference calls
Asterisk’s capabilities, 10-11
setting up, 109
configsave, configrestore utilities, 35
configuration of Asterisk
changes, updating, 60
configuration files, 66—69, 113
connections, 85—98
dial plans, 6985, 111
music on hold, queues, conferences,
103-109
provisioning users, 101-103
summary, 110-111
voice mail, 98—-101
configuring

Asterisk. See configuration of
Asterisk

call queues, 105-108, 113

dial plans, 111

extensions.ael, 82—85

IAX?2 connections, 94—96
MeetMe conference call feature,

108-109

music on hold, 103—-105, 110,
112-113

network for SLAST, 33-35
networks for Asterisk, 28—30

Index 247

SIP connections, 89—94
trixbox, 40—41

voice mail, 98—101, 110, 112
Zapata connections, 96—98

connections

configuring Asterisk, 85-98, 110,
111-112

configuring IAX2, 94-96
configuring SIP, 89-94
constant extensions, 70
contexts, and extensions, 70, 77—78
control packet flood attacks, 231
creating

macros, 78—82
submenus, 7576

D

D-Link analog telephone adapter, 27
data tunneling, 230

DDoS (distributed denial-of-service)
attacks, 226, 227

DeadAGI, 140-141, 144, 145
demon dialing, 203

Deurel, Patrick, 52

dial plans

calling programs from within,
116-120, 142-143

commands, 73
configuring, 69-85, 110, 111
System() command, 116, 119, 145
digital phones, 27
Digium, 7, 18
directory, configuration, 66—69

disallowing codecs, 88
displaying Caller ID, 117-120

248

Index

distributed denial-of-service (DDoS)

attacks, 226, 227
DNS poisoning attacks, 233—234

DoS (Denial of Service), 169,
226-233

download sites
Asterisk code, 47
Asterisk Win32, 53
Asterisk::AGI module, 130
Ettercap, 170
1War, 208
Motion, 197
phpAGI library, 134
SLAST, 31

DTME SIP settings, 94, 113

E

EAGI AGI library, 140-141, 144

easedropping, and call interception,
233-234

editing configuration files, 44—45
Elastix, 36
encryption, 42, 181

Ettercap, using for ARP poisoning,
170-178

Evolution PBX, 36
extensions, using Asterisk, 7073

extensions.ael, configuring, 82—85,
113

extensions.conf, 69-70, 113

F

FastAGI, 138—-140, 144
Fax over IP (FolP), 204
files, configuration, 66—69
FolP (Fax over IP), 204

freePBX, 36, 42, 43—44
friends, peers and users, 113
fuzzing, 179, 181

G

G.711 u-law, a-law
described, 149-150
and Wireshark, 157
gateways, Asterisk as VoIP, 12—13
Golovich, James, 130
Goto() statement, 76

GTE (Bell Atlantic and General
Telephone), 7

H

H.322-specific attacks, 241-242, 244
Handley, Mark, 150
hard phones, 25-26
hardware
choosing for Asterisk installation,
22-30, 61
modems, and Asterisk, 203—205
Motion, and Asterisk, 196—203

serial communications with
Asterisk, 184—196

hobbyists” us of Asterisk, 14, 16

HTTP (Hypertext Transport
Protocol), 150

[IAX2 (Inter-Asterisk eXchange v.2)
protocol, 94-96, 154-156, 179,
180, 208

ifconfig utility, 33-34
IMAP by phone, 131-134, 140-141
ImgBurn utility, 63

immature software DoS attacks, 232
installer packages, 52
installing
Asterisk. See Asterisk installation
Asterisk Win32, 53-56
Inter-Asterisk eXchange. See IAX
Interactive Voice Response (IVR), 23
interface cards, 28
intrusion prevention systems (IPSs),

229
invalid packet DoS attacks, 232
I[P phone flood DoS attacks, 233
I[P phones, 25-26

IPSs (intrusion prevention systems),

229
ISOs, burning to disk, 63

IVR (Interactive Voice Response),
23,127

1War, 208-219
L

lag, conversation, 23
large businesses, Asterisk in, 89
layer 2 security controls, 243

leaving messages on voice mail,
100-101

legal considerations of war dialing,
220-221

Lets Go! bus dialog system, 14

LibPRI, 46, 47-48

libraries, using third-party AGI,
130-138, 143, 145

Linux distributions focusing on

Asterisk, 36
listings, VoIP telephone, 12
literal constants and dial plan, 70

Index 249

literal extensions, 7071

local area networks, virtual. See
VLANSs

M

MAC addresses
and ARP, 165-169
spoofing, 29
macros
writing, 78—82
writing in AEL, 82—-85
mail, voice. See voice mail
mailboxes, configuring, 99-100

Man-in-the-Middle (MITM) attacks,
169-170, 238

MeetMe conference call feature,
10-11, 108-109
memory, Asterisk’s use of RAM, 23
menus
creating submenus, 75-76

IVR (Interactive Voice Response),
127

menuselect utility, 49

message tampering attacks, 240

messages, leaving, retrieving for voice
mail, 100-101

Minicom terminal software, 206

MITM attacks, 169—170, 238

modems

point-of-sale equipment, and VolIP,
224

for security auditing, 220
and VolP, 203-205, 223

war dialing, 1War with VoIP,
206219

250

Index

Motion video, and Asterisk, 196—203,
222-223

MP3 format, music on hold, 105

music on hold, configuring, 103—-105,
110, 112-113

N

NAT (Network Address Translation),
154

netconfig utility, 41

Net_Ping PHP Extension and
Application Repository (PEAR)
module, 135

Network Address Translation (NAT),
89, 154

networks
configuring for Asterisk, 2830
configuring for SLAST, 33-35
NuFone, 14

O

open-source software, 2

OpenSSL, 46, 63
P

packet injection attacks, 231
packet of death DoS attacks, 232
packet snifters, 156

passwords

attacks and, 181
protection in configuration files,

113
trixbox, 60
PBXes (Private Branch Exchanges),
3—4,7-10
PC Anywhere, 221

pcap library, 157
PCM (pulse code modulation), 230

PEAR (Net_Ping PHP Extension
and Application Repository)
module, 135

peers, users and friends, 113
Phase-Shift Keying (PSK), 204
phones

IMAP by phone, 131-134, 140-141

types, choosing for Asterisk
installation, 2428

phpAGI library, 134138

PHPConfig configuration editor, 41,
44-45

PoundKey, 36

Primary Rate Interface (PRI), 14

priorities, configuring, 72

PRIs, 28

Private Branch Exchanges (PBXes),
3—4,7-10

processor speed and Asterisk, 23

programming applications using
Asterisk, 116

programs

See also specific program

calling from within dial plans,
116-120, 142-143

protocol translation, 23
protocols
See also specific protocol
Cisco’s SCCP VolIP, 6

VoIP, supported by Asterisk, 85-86,
113,179

proxy impersonation attacks, 240
PSK (Phase-Shift Keying), 204
PSTN termination, bypassing, 12—13

pulse code modulation (PCM), 230

Q

QoS modification attacks, 231
queues
call, Asterisk’s capabilities, 11-12
configuring call, 105108

R

RAIDs (Redundant Arrays of
Independent Disks), 23

R AM, Asterisk usage, 23

R ealtime Transport Protocol (RTP),
89

Record command, 128
recordings for caller interactions,

127-128

Redundant Arrays of Independent
Disks (RAIDs), 23

registration hijacking attacks, 240
reload command, 88, 93, 129
response codes, SIP, 152—154
restarting Asterisk, 59

restoring configuration changes, 35
retrieving messages, voice mail,

100-101
return codes, AGI, 121-123
rogue VoIP endpoint attacks, 240

RTP (Realtime Transport Protocol),
148-149

S

saving configuration changes, 35
Schulzrinne, Henning, 150
scripts

and AGI, 120-121

Index 251

dial plan, and variables, 119
security

audits using modems, 206

VLANSs and, 29
serial communications

dual, 189-196

interfacing with Asterisk, 222

“one-way” AGI, 184-189
server checker program, 135
servers

choosing for Asterisk installation,

22-23

setting up IAX2, 95-96

SIP, connecting to, setting up, 92-94
Session Initiation Protocol. See SIP
setup

choosing hardware, configuring
network, 22-30

installation of Asterisk. See Asterisk
installation

shutting down Asterisk, 59
SIP (Session Initiation Protocol)
configuring connections, 89-94

VoIP signaling protocol, 150154,
179, 180

vulnerabilities, attacks, 242, 244

SLAST (SLaz ASTerisk) live CD,
31-35, 62

small businesses, Asterisk in, 9—10
sniffing networks

Ettercap and, 170

trixbox and, 42
soft phones, 24-25, 229-230
special extensions, 71-72, 74=75
speech

252

Index

recognition for menu options, 127

text to speech (TTS) support,
128-129

translating to text, 14

speech-to-text, Sphinx translation of,
14

speed, processor, and Asterisk, 23
Spencer, Mark, 6, 18
Sphinx (speech to text), 14
spoofing
ANI/Caller-1D, 241
Caller 1D, 206207, 217
MAC addresses, 29
SSH (Secure Shell) and trixbox,
38-39
starting
Asterisk, 58—60, 62
Asterisk Win32, 57
status codes, HTTP, 151

STDIN, STDOUT, STDERR, 116,
120, 121, 145

stopping Asterisk, 59
storage space, Asterisk’s usage, 23—24

submenus, creating, 75-76
System() command, 116, 119, 145

T

T.38 protocol, 204
tcpdump program, 156

telephone companies, bypassing with
Asterisk, 14

telephone listings, VoIP, 12

telephones, choosing for Asterisk
installation, 24-28

telephony

PBXes (Private Branch Exchanges).
See PBXes

phones. See phones
Telephreak, 16, 18

text to speech (TTS), Asterisk
support for, 128—129

timing device, and MeetMe, 108

TLS connection resets, 230

toll fraud, 240

transcoding, 23

trixbox, installing Asterisk from,
36—43, 60, 62

TTS (text to speech), Asterisk
support for, 128—-129

U
UDP (User Datagram Protocol),
148-149, 180

updating configuration changes, 60
USB phones, 25
User Datagram Protocol. See UDP
users

peers and friends, 113

provisioning Asterisk users, 101-103
utilities. See specific utility

Vv

V.150 (Modem over IP) protocol,
204-205

variables

caller-controlled, and System()
command, 119

in extensions.conf, 73—74
Verison, 7

video, Motion, and Asterisk, 196—203
virtual call centers, 13

virtual local area networks. See
VLANSs

viruses, 243

VLAN: (virtual local area networks)
and ARP spoofing, 181
and Asterisk configuration, 28—29

voice compression in VolP, 149-150,
180

voice mail
Asterisk’s capabilities, 11
configuring, 98101, 110, 112
Voice over Internet. See VoIP
Voicemail(), 100-101
VoicemailMail(), 100-101
VoIP data
capturing with Wireshark, 156—-165
getting by ARP poisoning, 165—169
getting using Ettercap, 170-178
VoIP gateway, Asterisk as, 12—13
VoIP packet injection attacks, 231
VoIP packet replay attacks, 230
VoIP protocol implementation

attacks, 232, 241
VoIP (Voice over Internet)
Asterisk’s use of, 2
attacks on. See specific attack
described, 4-5
1War with, 218-219
modems and, 203-205

protocols supported by Asterisk,
85-86, 113, 179

RTP/UDP, TCP protocols,
148-149, 180

signaling protocols, 150-156
telephone adapters, 205

Index

telephone listings, 12

threats to systems generally, 226,
243-244

using with point-of-sales modem
equipment, 224
voice compression, 149—-150
vulnerabilities, 226
VoMIT tool, 29

w

WAN links, and Asterisk
configuration, 29-30

war dialing, 203, 206-218, 220221,
224

Web sites, Asterisk-related, 18
wildcard extensions, 70—72
Windows
Asterisk installation on, 52-57
burning ISOs to disk, 63
wireless VoIP, attacks on, 231
wireline connections, 96—98

Wireshark, capturing VoIP data using,

156—165
worms, 243

V4

Zapata, configuring connections,
9698

Zaptel drivers, 28

Zaptel package, 46, 4850, 96

zlib data compression library, 46, 63

ztdummy, 108

253

	Asterisk Hacking
	Contents
	Chapter 1: What Is Asterisk and Why Do You Need It?
	Introduction
	What Is Asterisk?
	What Can Asterisk Do for Me?
	Who’s Using Asterisk?

	Chapter 2: Setting Up Asterisk
	Introduction
	Choosing Your Hardware
	Installing Asterisk
	Starting and Using Asterisk

	Chapter 3: Configuring Asterisk
	Introduction
	Figuring Out the Files
	Configuring Your Dial Plan
	Configuring Your Connections
	Configuring Voice Mail
	Provisioning Users
	Configuring Music on Hold, Queues, and Conferences
	Checklist

	Chapter 4: Writing Applications with Asterisk
	Introduction
	Calling Programs from within the Dial Plan
	Using the Asterisk Gateway Interface
	Using Third-Party AGI Libraries
	Using Fast, Dead, and Extended AGIs
	Checklist

	Chapter 5: Understanding and Taking Advantage of VoIP Protocols
	Introduction
	Your Voice to Data
	Making Your Voice Smaller

	Chapter 6: Asterisk Hardware Ninjutsu
	Introduction
	Serial
	Motion
	Modems
	Fun with Dialing
	Legalities and Tips

	Chapter 7: Threats to VoIP Communications Systems
	Introduction
	Denial-of-Service or VoIP Service Disruption
	Call Hijacking and Interception
	H.323-Specific Attacks
	SIP-Specific Attacks

	Index

