
Run, Create, and Expose Generators
• These commands use helper templates called "generators" 
• Every resource in Kubernetes has a specification or "spec" 

> kubectl create deployment sample --image nginx --dry-run -o yaml 
• You can output those templates with --dry-run -o yaml  
• You can use those YAML defaults as a starting point 
• Generators are "opinionated defaults"



Generator Examples
• Using dry-run with yaml output we can see the generators 

> kubectl create deployment test --image nginx --dry-run -o yaml 
> kubectl create job test --image nginx --dry-run -o yaml 
> kubectl expose deployment/test --port 80 --dry-run -o yaml 

• You need the deployment to exist before this works



Cleanup
• Let's remove the Deployment 

> kubectl delete deployment test



The Future of kubectl run
• Right now (1.12-1.15) run is in a state of flux 
• The goal is to reduce its features to only create Pods 

• Right now it defaults to creating Deployments (with the warning) 
• It has lots of generators but they are all deprecated 
• The idea is to make it easy like docker run for one-off tasks 

• It's not recommended for production 
• Use for simple dev/test or troubleshooting pods



Old Run Confusion
• The generators activate different Controllers based on options 
• Using dry-run we can see which generators are used 

> kubectl run test --image nginx --dry-run 
> kubectl run test --image nginx --port 80 --expose --dry-run 
> kubectl run test --image nginx --restart OnFailure --dry-run 
> kubectl run test --image nginx --restart Never --

dry-run 
> kubectl run test --image nginx --schedule "*/1 * 

* * *" --dry-run



Imperative vs. Declarative
• Imperative: Focus on how a program operates 
• Declarative: Focus on what a program should accomplish 
• Example: "I'd like a cup of coffee" 
• Imperative: I boil water, scoop out 42 grams of medium-fine 

grounds, poor over 700 grams of water, etc. 
• Declarative: "Barista, I'd like a a cup of coffee". 

(Barista is the engine that works through the 
steps, including retrying to make a cup, and is 
only finished when I have a cup)



Kubernetes Imperative
• Examples: kubectl run, kubectl create deployment, kubectl update 

• We start with a state we know (no deployment exists) 
• We ask kubectl run to create a deployment 

• Different commands are required to change that deployment 
• Different commands are required per object 
• Imperative is easier when you know the state 
• Imperative is easier to get started 
• Imperative is easier for humans at the CLI 
• Imperative is NOT easy to automate



Kubernetes Declarative
• Example: kubectl apply -f my-resources.yaml 

• We don't know the current state  
• We only know what we want the end result to be (yaml contents) 

• Same command each time (tiny exception for delete) 
• Resources can be all in a file, or many files (apply a whole dir) 
• Requires understanding the YAML keys and values 
• More work than kubectl run for just starting a pod 
• The easiest way to automate 
• The eventual path to GitOps happiness



Three Management Approaches
• Imperative commands: run, expose, scale, edit, create deployment 

• Best for dev/learning/personal projects 
• Easy to learn, hardest to manage over time 

• Imperative objects: create -f file.yml, replace -f file.yml, delete... 
• Good for prod of small environments, single file per command 
• Store your changes in git-based yaml files 
• Hard to automate 

• Declarative objects: apply -f file.yml or dir\, diff 
• Best for prod, easier to automate 
• Harder to understand and predict changes



Three Management Approaches
• Most Important Rule: 

• Don't mix the three approaches 
• Bret's recommendations: 

• Learn the Imperative CLI for easy control of local and test setups 
• Move to apply -f file.yml and apply -f directory\ for prod 
• Store yaml in git, git commit each change before 

you apply 
• This trains you for later doing GitOps (where git 

commits are automatically applied to clusters)


