
SURICATA FOR
INCIDENT RESPONSE

AND THREAT HUNTING

Tatyana Shishkova

Track 0

Introduction

Intro – Overview

● About your trainer

● Course roadmap

● Course structure

In this track you will learn:

About your trainer

TATYANA SHISHKOVA

Lead Security Researcher
Global Research & Analysis Team (GReAT)

7+ years of experience in network traffic analysis

Regular speaker at cybersecurity conferences, including PHDays,
SuriCon, SAS

The course – Main focus

● NIDS: Understanding what it is and how to use it

● Writing Suricata rules for different protocols

● Utilizing tips & tricks to create fast and efficient rules

● Learning about typical network attacks

● Analyzing suspicious traffic and recognizing traffic anomalies

● Learning how to identify and fix a false alarm

● Learning how to use Suricata for threat hunting

● Gaining new skills through a practical challenge in a virtual environment

The course – Target audience

● Incident Response Specialists

● SOC Analysts

● Security Analysts

● Security Administrators

● Malware Researchers

The course – Structure

● 9 tracks

● video lessons, virtual lab exercises and solutions

● quizzes

The course – The disclaimer

● We will not cover configuration and deployment
of Suricata in your network, just the basics

● There is no single correct way to write NIDS rules

● Malware analysis & reverse engineering are often
helpful, but in this course, we only care about
traffic

● The examples in this course are real-life cases

● The workflow displayed is how we do it

Track 1

Suricata basics

Suricata basics – Overview

• Review basic information about network protocols

and learn:

• What is NIDS, the principle of their work, and main
functions

• Most popular NIDS and the difference between them

• Useful tools for network traffic analysis

In this track you will practice:

• How to run Suricata in a virtual lab

In this track you will:

Suricata basics – Network basics

OSI Model

User programs

Data translation and encryption

Exchanges between systems

TCP and UDP

Internet Protocol (IP)

Data transfers between two nodes

Wires, radios, and optics

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

Suricata basics – Network basics

OSI Model

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP Model

Application Layer

Transport Layer

Network Layer

Internet Layer

Suricata basics – Network basics

OSI Model

Application Layer

Presentation Layer

Session Layer

Transport Layer

Network Layer

Data Link Layer

Physical Layer

TCP Model

Application Layer

Transport Layer

Network Layer

Internet Layer

TCP,
UDP

HTTP,
DNS,
FTP, …

Suricata basics – Network basics

Tcp

Sender Receiver

SYN

ACK

SYNACK

Udp

Sender Receiver

REQUEST

RESPONSE

RESPONSE

RESPONSE

Suricata basics – Network basics

Tcp Udp

• Slower but more reliable transfer
• Typical Applications

• File Transfer Protocol (FTP)
• WebBrowsing
• Email

• Faster but not guaranteed
transfers («best effort»)

• Typical Applications

• Live Streaming
• Online Games
• VoIP

Unicast Unicast Multicast Broadcast

Udp

Tcp

Suricata basics – About NIDS

Network Intrusion Detection System

Suricata basics – About NIDS

Monitor network traffic for intrusion

“Detection” – provides alerts (can spoof RST)

“Prevention” – takes immediate actions (usually, part of NGFW)

Features:

!

List of inspected (”understood”) protocols/applications

User and network visibility

Integration with external TI Integration

with external AM-engines SSL/TLS

Inspection

Embedded bypass

~ 100% known evil

Automatic

Endpoint protection

< 100% known evil

Automatic + Check

Endpoint detection
& response

Unknown evil Degree of uncertaintly

Manual

Prevent

Prevention
systems

Detect

Detection
systems

Find

Threat
hunting

DETECTION

Signature-based – has DB of known ‘bad’

fail to detect new attacks,

low FP

Statistical anomaly – build models of ‘normal’

activity, alert on profile deviation,

can detect new attacks,

huge FP

If possible automatically prevent...

If possible automatically detect...

Suricata basics – About NIDS

snort.org

suricata-ids.org

zeek.org

Suricata basics – Most popular open-source NIDSs

• Created in 1998 by Martin Roesch (Sourcefire)

• Now – Cisco

• A ‘standard’ of signature-based IDS

Suricata basics – Snort

• Created in 2009 by OISF

• A high performance Network IDS, IPS and Network
Security Monitoring engine

• Supports inline/IPS mode, IP reputation, Lua, file
extraction

• Compatible with Snort syntax

Suricata basics – Suricata

• Formerly named Bro

• Created in 1994 by Vern Paxson

• A passive, open-source network traffic analyzer (NTA)

• Signature & anomaly-based

Suricata basics – Zeek

Suricata basics – Benefits of using Suricata

• Deep packet inspection

• IP reputation

• IDS, IPS, IDPS

• Lua scripting

• Automatic protocol detection

• GeoIP

• File Extraction (from SMTP, HTTP, etc.)

• Multi-threading

Suricata basics – Signatures

• Look for known malicious patterns (like words, bytes, regex and field values)

• Or suspicious behavior (such as downloading a PE file when requesting a picture,
not common port for a given protocol or too many login attempts per minute)

How do signatures work?

Suricata basics – IDS engine

• Gets packets

• Parses IP/TCP headers

• {some processing stuff}

• Parses app layer data

• Processes with detection engine

• Generates alert if something was found

How does Suricata work with traffic?

Suricata basics – suricata.yaml

Suricata basics – suricata.yaml

Suricata basics – suricata.yaml

Suricata basics – suricata.yaml

Suricata basics – eve.json output

Suricata basics – Rules file

Suricata basics – Wireshark

• World-famous network protocol
analyzer

• GUI tool for Windows, Linux and
MacOS

• Can be used to capture and analyze
network traffic

• Deep inspection of protocols

• View, parse and filter network packets

Suricata basics – Wireshark

Suricata basics – Wireshark

Suricata basics – tshark

• A powerful command line dump and network traffic
analysis tool

• Can be used for both capturing and analyzing data

• Good preprocessing engine for IR to drill down huge
pcap files

• Can be used in conjunction with other Linux
commands like awk to filter data

Suricata basics – More useful tools

• mergecap
Command line tool to combine pcap files into one

• Suriwire
Lua script to parse eve.json

• file2pcap
Command line tool to create a pcap showing that file being
transferred between hosts

• CyberChef
Web app for encryption, encoding, compression and data
analysis

• Arkime (formerly Moloch)
Open source network forensic tool to capture and analyze
network data

Suricata basics – What about executables?

● Actually, we mostly care about
traffic

● Run malicious file in a sandbox
environment -> get traffic dump ->
try to write a rule

● No traffic – no signature

● Lots of SB: Cuckoo, Hybrid Analysis,
etc

Suricata basics – Where to get rules?

● Free feeds (e.g. Emerging Threats, Cisco Talos)

● Paid feeds

● Perimeter protection solutions with built-in rules

● Write your own!

Suricata basics – Class materials

● VM: Ubuntu 20.04 LTS Desktop

● Suricata 6.0.10

● Wireshark 4.0.3

● Cyberchef 9.55.0

● Pcap files in /Labs directory

Track 2

Rule writing basics

Rule writing basics – Overview

● Structure and syntax of Suricata
rules

● Basic keywords

In this track you will practice:

● Selecting good options for a rule

In this track you will learn:

Rule writing basics – Example of malicious traffic

Dinihou Worm

Rule writing basics – Example of malicious traffic

Dinihou Worm

Unofficial HTTP port

Rule writing basics – Example of malicious traffic

Dinihou Worm

Relative address specific to malware

Rule writing basics – Example of malicious traffic

Dinihou Worm

Custom User-Agent field value

Rule writing basics – Suricata rule

alert http $HOME_NET any -> $EXTERNAL_NET 81

(msg:"Dinihou Worm";

flow:to_server,established;

http.method; content:"POST";

http.uri; content:"/is-ready"; endswith;

http.user_agent; content:"|3c 7c 3e|nan-

av|3c 7c 3e|";

reference:url,threats.kaspersky.com/en/threa

t/Worm.VBS.Dinihou/;

classtype:trojan-activity;

sid:1000001; rev:1;)

Rule writing basics – Suricata rule line by line

alert http $HOME_NET any -> $EXTERNAL_NET 81

• Rule action and header (required in each Suricata rule)

Rule writing basics – Suricata rule line by line

• Rule action (almost always – alert)

• Protocol:

• Basic (Snort-compatible): tcp, udp, icmp, ip

• App layer: http, ftp, tls (incl. ssl), smb, dns, smtp and more

• Source/dest IPs (IP ranges)

• Source/dest ports (port ranges)

• Direction (both ways – <>)

alert http $HOME_NET any -> $EXTERNAL_NET 81

Rule writing basics – Suricata rule line by line

• Rule action (almost always – alert)

• Protocol:

• Basic (Snort-compatible): tcp, udp, icmp, ip

• App layer: http, ftp, tls (incl. ssl), smb, dns, smtp and more

• Source/dest IPs (IP ranges)

• Source/dest ports (port ranges)

• Direction (both ways – <>)

alert http $HOME_NET any -> $EXTERNAL_NET 81

Rule writing basics – Suricata rule line by line

• Rule action (almost always – alert)

• Protocol:

• Basic (Snort-compatible): tcp, udp, icmp, ip

• App layer: http, ftp, tls (incl. ssl), smb, dns, smtp and more

• Source/dest IPs (IP ranges)

• Source/dest ports (port ranges)

• Direction (both ways – <>)

alert http $HOME_NET any -> $EXTERNAL_NET 81

Rule writing basics – Suricata rule line by line

• Rule action (almost always – alert)

• Protocol:

• Basic (Snort-compatible): tcp, udp, icmp, ip

• App layer: http, ftp, tls (incl. ssl), smb, dns, smtp and more

• Source/dest IPs (IP ranges)

• Source/dest ports (port ranges)

• Direction (both ways – <>)

alert http $HOME_NET any -> $EXTERNAL_NET 81

Rule writing basics – Suricata rule line by line

• Rule action (almost always – alert)

• Protocol:

• Basic (Snort-compatible): tcp, udp, icmp, ip

• App layer: http, ftp, tls (incl. ssl), smb, dns, smtp and more

• Source/dest IPs (IP ranges)

• Source/dest ports (port ranges)

• Direction (both ways – <>)

alert http $HOME_NET any -> $EXTERNAL_NET 81

Rule writing basics – Suricata rule line by line

• Message (meta-setting – info about the possible
attack; not required but used almost always)

• Flow (optional):

• established / not_established

• direction:

• to_client = from_server

• from_client = to_server

msg:"Dinihou Worm"; flow:to_server,established;

Rule writing basics – Suricata rule line by line

• Message (meta-setting – info about the possible
attack; not required but used almost always)

• Flow (optional):

• established / not_established

• direction:

• to_client = from_server

• from_client = to_server

msg:"Dinihou Worm"; flow:to_server,established;

Rule writing basics – Suricata rule line by line

• Content (optional) – matching on bytes:

• Printable characters

• Hexadecimal notation:

• content:"|0D 0A|"

• content:"http|3A|//"

• Content keywords (optional)

http.method; content:"POST";
http.uri; content:"/is-ready"; endswith;
http.user_agent; content:"|3c 7c 3e|nan-av|3c
7c 3e|";

Rule writing basics – Suricata rule line by line

http.method; content:"POST";
http.uri; content:"/is-ready"; endswith;
http.user_agent; content:"|3c 7c 3e|nan-av|3c 7c
3e|";

• Content (optional) – matching on bytes:

• Printable characters

• Hexadecimal notation:

• content:"|0D 0A|"

• content:"http|3A|//"

• Content keywords (optional)

Rule writing basics – Content keywords

• Sticky buffers: related to all contents that go after

http.method; content:"POST";

http.response_line; content:"403";
content:"Forbidden";

• Content modifiers (legacy variant): related to the
previous content

content:"POST"; http_method;

* Use contents with content modifiers first, then with
sticky buffers

Rule writing basics – More content modifiers…

• nocase; – makes content case-insensitive

• fast_pattern; – specifies the content which should
be the first to check

• startswith; – matching exactly at the start of a buffer

• endswith; – matching exactly at the end of a buffer

* Snort-compatible

Rule writing basics – More content modifiers…

• depth:1; – how many bytes from the beginning of the
payload will be checked

• offset:2; – from which byte to start checking

• distance:3; – from which byte to start checking after
the previous match (relative keyword)

• within:4; – how many bytes will be checked after the
previous match (relative keyword)

Rule writing basics – More keywords…

• dsize:12; (dsize:>24; dsize:12<>24;) – the size of the
packet payload

• pcre:"/^[a-z0-9]{5}\.php$/U"; – regular expression

• threshold: type <threshold|limit|both>, track
<by_src|by_dst>, count <N>, seconds <T>; – to control
alert frequency

Rule writing basics – There are even more keywords…

• We mentioned the most popular keywords which will be
used during the training

• No need to remember all of them, just open
https://suricata.readthedocs.io/en/latest/rules/index.html

https://suricata.readthedocs.io/en/latest/rules/index.html

Rule writing basics – Suricata rule line by line

• Reference (optional) – url, md5, cve, etc

• /etc/suricata/reference.config

• Classtype (optional) – info about threat classification

• /etc/suricata/classification.config

• Signature ID

• Rule revision (optional)

• Starts from 1

reference:url,threats.kaspersky.com/en/threat/
Worm.VBS.Dinihou/;
classtype:trojan-activity; sid:1000001; rev:1;)

Rule writing basics – Suricata rule line by line

reference:url,threats.kaspersky.com/en/threat/
Worm.VBS.Dinihou/;
classtype:trojan-activity; sid:1000001; rev:1;)

• Reference (optional) – url, md5, cve, etc

• /etc/suricata/reference.config

• Classtype (optional) – info about threat classification

• /etc/suricata/classification.config

• Signature ID

• Rule revision (optional)

• Starts from 1

Rule writing basics – Suricata rule line by line

reference:url,threats.kaspersky.com/en/threat/
Worm.VBS.Dinihou/;
classtype:trojan-activity; sid:1000001; rev:1;)

• Reference (optional) – url, md5, cve, etc

• /etc/suricata/reference.config

• Classtype (optional) – info about threat classification

• /etc/suricata/classification.config

• Signature ID

• Rule revision (optional)

• Starts from 1

Rule writing basics – Suricata rule line by line

reference:url,threats.kaspersky.com/en/threat/
Worm.VBS.Dinihou/;
classtype:trojan-activity; sid:1000001; rev:1;)

• Reference (optional) – url, md5, cve, etc

• /etc/suricata/reference.config

• Classtype (optional) – info about threat classification

• /etc/suricata/classification.config

• Signature ID

• Rule revision (optional)

• Starts from 1

Rule writing basics – SIDs allocation

• 1000000-1999999 reserved for local use

• 2000000-2099999 Emerging Threats open rulesets

• 2100000-2103999 forked ET Versions of the Original
Snort GPL Signatures

• And so on:
https://doc.emergingthreats.net/bin/view/Main/SidAll
ocation

https://doc.emergingthreats.net/bin/view/Main/SidAllocation

Rule writing basics – Suricata rule for Dinihou worm – v.1

alert http $HOME_NET any -> $EXTERNAL_NET 81

(msg:"Dinihou Worm"; flow:to_server,established;

http.method; content:"POST";

http.uri; content:"/is-ready"; endswith;

http.user_agent; content:"|3c 7c 3e|nan-av|3c 7c

3e|";

reference:url,threats.kaspersky.com/en/threat/Wo

rm.VBS.Dinihou/;

classtype:trojan-activity; sid:1000001; rev:1;)

Rule writing basics – Suricata rule for Dinihou worm – v.2

alert http $HOME_NET any -> $EXTERNAL_NET 81

(msg:"Dinihou Worm"; flow:to_server,established;

http.method; content:"POST";

http.request_line; content:"/is-ready HTTP";

http.user_agent; content:"|3c 7c 3e|nan-av|3c 7c

3e|";

reference:url,threats.kaspersky.com/en/threat/Wo

rm.VBS.Dinihou/;

classtype:trojan-activity; sid:1000002; rev:1;)

Track 3

Writing rules for HTTP protocol

Writing rules for HTTP protocol – Overview

● Specific keywords for the HTTP protocol

● How to write a rule step-by-step

In this track you will practice:

● Writing rules for HTTP protocol for a given
traffic dump

In this track you will learn:

Writing rules for HTTP protocol – Content keywords (Again)

• Sticky buffers: related to all contents that go after

http.method; content:"POST";

http.response_line; content:"403";
content:"Forbidden";

• Content modifiers (legacy variant): related to the
previous content

content:"POST"; http_method;

* Use contents with content modifiers first, then with
sticky buffers

Writing rules for HTTP protocol – HTTP content keywords

● Request keywords

http.uri

http.uri.raw

http.method

http.request_line

http.request_body

http.header

http.header.raw

http.cookie

http.user_agent

http.host

http.host.raw

http.accept

http.accept_lang

http.accept_enc

http.referer

http.connection

http.content_type

http.content_len

http.start

http.protocol

http.header_names

Writing rules for HTTP protocol – HTTP content keywords

● Response keywords

http.stat_msg

http.stat_code

http.response_line

http.header

http.header.raw

http.cookie

http.response_body

http.server

http.location

http.content_type

http.content_len

http.start

http.protocol

http.header_names

Writing rules for HTTP protocol – HTTP content keywords

● Content modifiers (legacy): request

http_uri (http_raw_uri)

http_method

http_client_body

http_header
(http_raw_header)

http_cookie

http_user_agent

http_host
(http_raw_host)

* Snort-compatible

Writing rules for HTTP protocol – HTTP content keywords

• Content modifiers (legacy): response

http_header
(http_raw_header)

http_cookie

http_stat_msg

http_stat_code

http_server_body

* Snort-compatible

Writing rules for HTTP protocol – HTTP content keywords

• Sticky buffers (legacy): request

http_request_line

http_accept

http_accept_lang

http_accept_enc

http_referer

http_connection

http_content_type

http_content_len

http_start

http_protocol

http_header_names

* Snort-compatible?
None of them.

Writing rules for HTTP protocol – HTTP content keywords

• Sticky buffers (legacy): response

http_response_line

file_data

http_content_type

http_content_len

http_start

http_protocol

http_header_names

* Snort-compatible

Writing rules for HTTP protocol – Formbook (Noon) bot

● Powerful stealer

● Widespread, Malware-as-a-Service model

● A lot of anti-analysis tricks

● …Doesn’t change its communication with C&C significantly for years

Writing rules for HTTP protocol – Formbook (Noon) bot

● Generic silent rule for intercepted traffic

alert http $HOME_NET any -> $EXTERNAL_NET any
(msg:"Probably Formbook Checkin";
flow:to_server,established;
http.method; content:"GET";
http.uri; content:"/?id="; fast_pattern;
pcre:"/^\/[a-zA-Z0-9/]+\/\?id\=/";
http.header_names; content:"Host";
classtype:unknown; sid:1000003; rev:1;)

Writing rules for HTTP protocol – Formbook (Noon) bot

● Avoiding false alarms

http.host; content:"www."; startswith;

http.header_names; content:!"Accept"; content:!"User-Agent";

Formbook

False alarm

Negation for a content that is not present

Writing rules for HTTP protocol – Formbook (Noon) bot

● Exact rules for intercepted traffic

Writing rules for HTTP protocol – Formbook (Noon) bot

● Exact rules for intercepted traffic

Specific URL format

Writing rules for HTTP protocol – Formbook (Noon) bot

● Exact rules for intercepted traffic

Connection: close
string

Writing rules for HTTP protocol – Formbook (Noon) bot

● Exact rules for intercepted traffic

Certain order of
HTTP headers

Writing rules for HTTP protocol – Formbook (Noon) bot

● Exact rules for intercepted traffic

alert http $HOME_NET any -> $EXTERNAL_NET any
(msg:"Formbook Checkin"; flow:to_server,established;
http.method; content:"GET"; http.uri; content:"/?id="; fast_pattern;
pcre:"/^(\/[a-zA-Z0-9]{2,5})+\/\?id\=[a-zA-Z0-9\/.&+=_-]+$/";
http.host; content:"www."; startswith;
http.connection; content:"close";
http.header_names; content:"|0D 0A|Host|0D 0A|Connection|0D 0A 0D 0A|"; startswith;
classtype:trojan-activity; sid:1000004; rev:1;)

Writing rules for HTTP protocol – Formbook (Noon) bot

● More Formbook versions…

Writing rules for HTTP protocol – Formbook (Noon) bot

● One rule to catch them all!

alert http $HOME_NET any -> $EXTERNAL_NET any
(msg:"Formbook Checkin";
flow:to_server,established;
http.method; content:"GET";
http.uri; pcre:"/^(\/[a-zA-Z0-9]{2,})+\/\?[a-zA-Z0-9\-_]{2,}\=[a-zA-Z0-9\/.&+=_-]+$/";
http.host; pcre:"/^(www\.)?[a-z0-9\-]{2,}\.[a-z]{2,}$/";
http.connection; content:"close";
http.header_names;
content:"|0D 0A|Host|0D 0A|Connection|0D 0A 0D 0A|"; startswith;
classtype:trojan-activity; sid:1000004; rev:2;)

Writing rules for HTTP protocol – CopperStealer spy

● Password and cookie stealer with a downloader
function

● Uses a Domain Generation Algorithm (DGA) in order
to generate new command and control servers on a
daily basis

https://www.proofpoint.com/us/blog/threat-insight/now-you-see-it-now-
you-dont-copperstealer-performs-widespread-theft

https://www.proofpoint.com/us/blog/threat-insight/now-you-see-it-now-you-dont-copperstealer-performs-widespread-theft

Writing rules for HTTP protocol – CopperStealer spy

Writing rules for HTTP protocol – CopperStealer spy

HTTP POST request

URL begins with “/info”

Writing rules for HTTP protocol – CopperStealer spy

DGA is used
Top-level domain is “.xyz”

Writing rules for HTTP protocol – CopperStealer spy

HTTP request body has a pattern

Writing rules for HTTP protocol – CopperStealer spy

Writing rules for HTTP protocol – CopperStealer spy – v.1

alert http $HOME_NET any -> $EXTERNAL_NET any
(msg:"CopperStealer Spy"; flow:to_server,established;
http.method; content:"POST";
http.uri; content:"/info"; startswith;
http.host; content:".xyz"; endswith; bsize:20;
pcre:"/^[a-f0-9]{16}\.xyz$/";
http.request_body; content:"info="; startswith;
content:"~"; endswith;
reference:url,https://www.proofpoint.com/us/blog/threat-
insight/now-you-see-it-now-you-dont-copperstealer-
performs-widespread-theft/;
classtype:trojan-activity; sid:1000005; rev:1;)

Writing rules for HTTP protocol – CopperStealer spy – v.2

alert http $HOME_NET any -> $EXTERNAL_NET any
(msg:"CopperStealer Spy"; flow:to_server,established;
http.method; content:"POST";
http.uri; content:"/info"; startswith;
http.host; content:".xyz"; endswith; bsize:20;
pcre:"/^[a-f0-9]{16}\.xyz$/";
http.request_body; content:"info="; depth:5;
content:"~"; distance:0; isdataat:!1,relative;
reference:url,https://www.proofpoint.com/us/blog/threat-
insight/now-you-see-it-now-you-dont-copperstealer-
performs-widespread-theft/;
classtype:trojan-activity; sid:1000006; rev:1;)

Writing rules for HTTP protocol – HQWar Android dropper

● Malware-as-a-Service

● Used mostly by banking trojans and ransomware

● Doesn’t drop the encrypted APK but loads the
code

Writing rules for HTTP protocol – HQWar Android dropper

Most popular payloads:

● Faketoken
● Anubis
● Asacub
● Marcher
● Svpeng
● Gustuff
● Ginp

Writing rules for HTTP protocol – HQWar Android dropper

Anubis

Faketoken

Writing rules for HTTP protocol – HQWar Android dropper

Ginp

Writing rules for HTTP protocol – HQWar Android dropper

Gustuff

Writing rules for HTTP protocol – HQWar Android dropper

Anubis communication

Writing rules for HTTP protocol – HQWar Android dropper

Faketoken communication

Writing rules for HTTP protocol – HQWar Android dropper

Ginp communication

Writing rules for HTTP protocol – HQWar Android dropper

Gustuff communication

Writing rules for HTTP protocol – HQWar Android dropper

Track 4

Writing rules for DNS, TCP and SSL/TLS
protocols

Writing rules for DNS, TCP and SSL/TLS protocols – Overview

● Basic information about DNS, TCP and SSL/TLS protocols

● Keywords and tips for writing rules for these protocols

In this track you will practice:

● Writing rules for DNS, TCP and SSL/TLS protocols for a given traffic dump

In this track you will learn:

DNS protocol

Browser

DNS Server

WebServer

http://www.examle.com/

DNS protocol

Writing rules for DNS protocol – Example

example.com

alert udp $HOME_NET any -> any 53
(msg:"example.com DNS query";
content:"|01 00 00 01 00 00 00 00 00 00|";
depth:10; offset:2;
content:"|07|example|03|com|00|"; nocase;
distance:0; fast_pattern;
classtype:unknown; sid:1000008; rev:1;)

Snort-compatible syntax

Writing rules for DNS protocol – Example

To match exactly on example.com:

alert udp $HOME_NET any -> any 53
(msg:"example.com DNS query";
content:"|01 00 00 01 00 00 00 00 00 00
07|example|03|com|00|";
nocase; depth:23; offset:2;
classtype:unknown; sid:1000008; rev:1;)

Writing rules for DNS protocol – Example

example.com

alert dns any any -> any any
(msg:"example.com DNS query";
dns.query; content:"example.com"; endswith;
classtype:unknown; sid:1000009; rev:1;)

• Older variant: dns_query

To match exactly on example.com:

dns.query; content:"example.com"; bsize:11;

Suricata syntax

Writing rules for DNS protocol – Example

To not match on abcexample.com:

dotprefix – prepends a . character to help facilitate concise domain checks

"example.com" dns.query buffer becomes ".example.com"

alert dns any any -> any any
(msg:"example.com DNS query";
dns.query; dotprefix;
content:".example.com"; endswith;
classtype:unknown; sid:1000010; rev:1;)

Writing rules for DNS protocol – Datasets

● Allows for alerts on Indicators of Compromise (IoCs), such as malicious
domains and IPs, without creating a rule for each IoC

● Datasets use a simple CSV format where data is per line in the file

● Data type: string, md5, sha256 (base64 for string, hex notation for
md5/sha256)

● Sets can be declared from the rule syntax or can optionally be defined in
the main config

● More information:
https://suricata.readthedocs.io/en/latest/rules/datasets.html

https://suricata.readthedocs.io/en/latest/rules/datasets.html

Writing rules for DNS protocol – Datasets

alert dns any any -> any any
(msg:"DNS query to bad domain";
dns.query; dataset:isset,bad-domains,
load /etc/suricata/rules/bad-domains.list,
type string;
classtype:bad-unknown; sid:1000010; rev:1;)

Writing rules for DNS protocol – Phishing

accounts.google.com.notecia.inf.br – phishing domain

alert dns any any -> any any
(msg:"accounts.google.com phishing DNS query";
content:!"|08|accounts|06|google|03|com|00|";
dns.query; content:"accounts.google.com";
startswith;
classtype:social-engineering; sid:1000011; rev:1;)

Writing rules for DNS protocol – DNS Tunneling

● Request the URL Y3VyaW9zaXR5.example.com to be resolved

● The DNS server looks for ‘.com’, then ‘example.com’, but fails to find ‘Y3VyaW9zaXR5.example.com’ in its database

● The DNS server forwards the request to example.com

● example.com is expected to return the appropriate IP; but it can return an arbitrary string, including C&C instructions

DNS tunneling exploits DNS protocol to tunnel some data through a client-server model in DNS queries and
responses

Writing rules for DNS protocol – DNS Tunneling

● Look for unusual (long) DNS queries

● Usually high frequency

● Often FPs – make anti-FPs

Dump of Backdoor.Win32.Denis traffic

TCP protocol

● Low-level protocols: where to look for malicious
patterns?

● Reversing the malware can be helpful: look for
specific bytes transferred

● Not a reverse engineer? Just compare several traffic
dumps in order to find a pattern

Writing rules for TCP protocol – Miner

Writing rules for TCP protocol – Miner

alert tcp any 1024: -> any 1024:
(msg:"Miner activity";
flow:to_server,established;
dsize:12; content:"StartProgram"; classtype:coin-mining;
sid:1000012; rev:1;)

Writing rules for TCP protocol – Xaparo backdoor

Writing rules for TCP protocol – Xaparo backdoor

Writing rules for TCP protocol – Xaparo backdoor – v.1

alert tcp any any -> any any
(msg:"Xaparo backdoor";
flow:established;
content:"|a0 93 d2 ee|"; depth:4;
content:"|b5 45 f2|"; offset:5; depth:3;
classtype:trojan-activity; sid:1000013;
rev:1;)

Writing rules for TCP protocol – Xaparo backdoor – v.2

alert tcp any any -> any any
(msg:"Xaparo backdoor";
flow:established;
content:"|a0 93 d2 ee|"; depth:4;
content:"|b5 45 f2|"; distance:1; within:3;
classtype:trojan-activity; sid:1000014;
rev:1;)

SSL/TLS protocol

● SSL – Secure Sockets Layer – a cryptographic protocol designed to provide
communication security over a computer network, developed by Netscape
Communications

● TLS – Transport Layer Security – an updated, more secure, version of SSL

● SSL is still a more commonly used term, we will use “SSL/TLS” in this section

● HTTPS – Hyper Text Transfer Protocol Secure – an extension of the Hypertext Transfer
Protocol (HTTP) used for secure communication over a computer network. The
communication protocol is encrypted using SSL/TLS.

SSL/TLS protocol

SSL/TLS protocol

How to detect encrypted traffic?

● By fields of SSL/TLS certificate

● Use mitmproxy (man-in-the-middle)
and send decrypted traffic to NIDS

Writing rules for SSL/TLS protocol – Andromeda backdoor

Writing rules for SSL/TLS protocol – Andromeda backdoor

alert tcp $EXTERNAL_NET 443 -> $HOME_NET any
(msg:"Andromeda SSL certificate";
flow:from_server,established;
content:"|09 00|"; content:"|55 04 06|"; distance:0;
content:"|02|US"; distance:1; within:3;
content:"|55 04 08|"; distance:0;
content:"|06|Denial"; distance:1; within:7; fast_pattern;
content:"|55 04 07|"; distance:0;
content:"|0b|Springfield"; distance:1; within:12;
content:"|55 04 0a|"; distance:0;
content:"|03|Dis"; distance:1; within:4;
classtype:trojan-activity; sid:1000010; rev:1;)

Snort-compatible syntax

Writing rules for SSL/TLS protocol – Andromeda backdoor

alert tls $EXTERNAL_NET any -> $HOME_NET any
(msg:"Andromeda SSL certificate";
flow:from_server,established;
tls.cert_subject; content:"C=US, ST=Denial,
L=Springfield, O=Dis";
classtype:trojan-activity; sid:1000011;
rev:1;)

* Older variant: tls.subject
Suricata syntax

https://suricata.readthedocs.io/en/latest/rules/tls-keywords.html

https://suricata.readthedocs.io/en/latest/rules/tls-keywords.html

Writing rules for SSL/TLS protocol – JA3

● ja3.hash – matches on JA3 hash (md5)

● ja3.string – matches on JA3 string

● ja3s.hash – matches on JA3S hash (md5)

● ja3s.string – matches on JA3S string

Older variants: ja3_hash, ja3_string

Quick way to create SSL/TLS sigs: use JA3, a method
for creating SSL/TLS client fingerprints

https://github.com/salesforce/ja3

https://github.com/salesforce/ja3

Writing rules for SSL/TLS protocol – JA3

Enable ja3 fingerprinting in suricata.yaml:

Writing rules for SSL/TLS protocol – JA3

Hint: get values from eve.json

Writing rules for SSL/TLS protocol – Andromeda backdoor

alert tls any any -> any any
(msg:"Andromeda JA3 fingerprint v1";
ja3.hash; content:"2201d8e006f8f005a6b415f61e677532";
classtype:trojan-activity; sid:1000012; rev:1;)

alert tls any any -> any any
(msg:"Andromeda JA3 fingerprint v2";
ja3.string; content:"769,47-53-5-10-49171-49172-
49161-49162-50-56-19-4,65281-0-5-10-11,23-24,0";
classtype:trojan-activity; sid:1000013; rev:1;)

Track 5

Advanced Suricata features

Advanced Suricata features – Overview

● Advanced rule options that aren’t always necessary

but can help a lot in some cases

In this track you will practice:

● Selecting best options for a rule

● Writing rules for a given traffic dump

In this track you will learn:

Advanced Suricata features – Overview

● Flowbits

● Xbits

● Threshold

● Base64 decoding

● Byte operations

● Transforms

● Lua scripting

● IP reputation

● File extraction

Advanced Suricata features – Flowbits

● Create a chain of several rules for multiple packets that belong to one flow

(e.g. request-response)

● If the first rule fires, a "flag" is set

● Check the flag in subsequent rules

Advanced Suricata features – Flowbits

● flowbits:set,<name>;

● flowbits:isset,<name>;

● flowbits:toggle,<name>;

● flowbits:unset,<name>;

● flowbits:isnotset,<name>;

● flowbits:noalert;

Advanced Suricata features – Flowbits

Advanced Suricata features – Flowbits

Advanced Suricata features – Flowbits

Rule 1:

alert http $HOME_NET any -> $EXTERNAL_NET any (msg:"Android Trojan-Spy";

flow:to_server,established;

http.method; content:"GET";

http.uri; bsize:11; content:"/index.html"; fast_pattern;

http.user_agent; content:"Android";

http.host; pcre:"/^\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}/";

flowbits:set,SomeSpy.1000012;

flowbits:noalert;

classtype:trojan-activity; sid:1000012; rev:1;)

Advanced Suricata features – Flowbits

Rule 2:

alert http $EXTERNAL_NET any -> $HOME_NET

any

(msg:"Android Trojan-Spy";

flow:from_server,established;

flowbits:isset,SomeSpy.1000012;

http.stat_code; content:"200";

http.stat_msg; content:"OK";

http.response_body; content:"<div

id=\"WS\">";

pcre:"/^(\d{1,3}\.\d{1,3}\.\d{1,3}\.\d{1,3}

)?<\/div>/R";

flowbits:unset,SomeSpy.1000012;

classtype:trojan-activity; sid:1000013;

rev:1;)

Advanced Suricata features – Xbits

● Similar concept to flowbits, but for the same IP pair, the same session is not needed

(“global flowbits”)

● Includes a timeout feature

● Note: Multi-threading could make the order of sets and checks slightly unpredictable

Advanced Suricata features – Xbits

● To drop any traffic to/from a compromised system after successful exploitation

● To detect Metasploit traffic with multiple streams

● To detect any style of communication that require multiple streams

Examples of usage:

https://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-
languages.html

https://www.cipherdyne.org/blog/2013/07/crossing-the-streams-in-ids-signature-languages.html

Advanced Suricata features – Xbits

● xbits:set,<name>,track
<ip_src|ip_dst|ip_pair>[,expire <seconds>];

● xbits:isset,<name>,track
<ip_src|ip_dst|ip_pair>[,expire <seconds>];

● xbits:toggle,<name>,track
<ip_src|ip_dst|ip_pair>[,expire <seconds>];

● xbits:unset,<name>,track
<ip_src|ip_dst|ip_pair>[,expire <seconds>];

● xbits:isnotset,<name>,track
<ip_src|ip_dst|ip_pair>;

● xbits:noalert;

Advanced Suricata features – Threshold

● Per rule

● Global

Controlling alert frequency:

Advanced Suricata features – Rule Threshold

threshold: type <threshold|limit|both>, track
<by_src|by_dst|by_rule|by_both>, count <N>, seconds
<T>

● type threshold – a minimum threshold for a rule before it
generates alerts (on the Nth time the rule matches an alert is
generated)

● type limit – alerts at most N times to make sure you’re not
getting flooded with alerts

● type both – a combination of the “threshold” and “limit”
types

detection_filter: track <by_src|by_dst|by_rule|by_both>,
count <N>, seconds <T>

● to alert on every match after a threshold has been reached

Advanced Suricata features – Rule Threshold

Example: SMB brute force

alert tcp any 445 -> any any (msg:"SMB brute force

attack";

flow:from_server,established;

content:"|fe 53 4d 42|"; offset:4; depth:4;

content:"|6d 00 00 c0|"; distance:4; within:4;

threshold: type both, track by_src, count 150, seconds

60;

reference:url,https://github.com/k8gege/Ladon;

classtype:attempted-recon; sid:1000014; rev:1;)

Advanced Suricata features – Global Threshold

/etc/suricata/threshold.config

Advanced Suricata features – Base64 decoding

Two keywords must be used in order to generate an alert:

● base64_decode:bytes <value>, offset <value>, relative;

● base64_data – sticky buffer for content matching on the data previously

decoded by base64_decode

Advanced Suricata features – Base64 decoding

Example: SMTP backdoor

Advanced Suricata features – Base64 decoding

alert smtp $HOME_NET any -> $EXTERNAL_NET any

(msg:"SMTP Backdoor"; flow:to_server,established;

content:"Content-Transfer-Encoding|3A| base64";

fast_pattern;

content:"Content-Disposition|3A| attachment\;

filename=";

content:".html|220D0A0D0A|";

base64_decode:bytes 60,relative;

base64_data; content:"Time: ";

content:"
UserName: ";

classtype:trojan-activity; sid:1000015; rev:1;)

Advanced Suricata features – Byte operations

● byte_test

● byte_jump

● byte_extract

● byte_math

Advanced Suricata features – Byte_test

byte_test:<num of bytes>, [!]<operator>, <test

value>, <offset> [,relative][,<endian>][, string,

<num type>][, dce][, bitmask <bitmask value>];

Example:

alert udp any 53 -> any any (msg:"Cobalt HackTool";

dsize:>267;

byte_test:1,&,0x80,2;

content:"|00 01 00 01|"; depth:4; offset:4;

content:"|00 10 00 01|"; distance:9;

content:"|01 00 FF|"; within:3; distance:4;

threshold:type both,track by_src,count 10,seconds

60;

classtype:trojan-activity; sid:1000016; rev:1;)

Advanced Suricata features – Byte_jump

byte_jump:<num of bytes>, <offset> [, relative][, multiplier <mult_value>][,

<endian>][, string, <num_type>][, align][, from_beginning][, from_end][,

post_offset <value>][, dce][, bitmask <value>];

Example:

alert http any any -> $HOME_NET any

(msg:"Download PE instead of image";

flow:established,from_server;

http.header; content:"Content-Type|3a|

image";

http.response_body; content:"MZ"; within:2;

byte_jump:4,58,relative,little,from_beginning;

content:"PE|00 00|"; within:4;

classtype:trojan-activity; sid:1000017; rev:1;)

Advanced Suricata features – Byte_jump

http.response_body; content:"MZ"; within:2;

byte_jump:4,58,relative,little,from_beginning;

content:"PE|00 00|"; within:4;

Advanced Suricata features – Byte_jump

http.response_body; content:"MZ"; within:2;

byte_jump:4,58,relative,little;

content:"PE|00 00|"; distance:-64; within:4;

Advanced Suricata features – Byte_extract

byte_extract:<num of bytes>, <offset>,

<var_name>, [,relative] [,multiplier <mult-

value>] [,<endian>] [, dce] [, string [,

<num_type>] [, align <align-value];

Example:

content:"beginning_of_payload";

byte_extract:2,5,size,relative;

content:"key"; distance:size; within:3;

Advanced Suricata features – Byte_math

byte_math:bytes <num of bytes>, offset

<offset>, oper <operator>, rvalue <rvalue>,

result <result_var> [, relative] [, endian

<endian>] [, string <number-type>] [, dce] [,

bitmask <value>];

Operator: +, -, *, /, <<, >>

Example:

byte_math:bytes 1,offset 5,oper *,rvalue 10,

result var;

byte_jump:2,var;

Advanced Suricata features – Transforms keywords

● strip_whitespace: strip all whitespace as considered by the isspace() call in C

● compress_whitespace: compresses all consecutive whitespace into a single space

Useful for detecting JS etc.

Advanced Suricata features – Transforms keywords

● to_md5 / to_sha1 / to_sha256: takes the buffer,

calculates the MD5 / SHA-1 / SHA-256 hash and

passes the raw hash value on

Can be used for creating sigs on sensitive data or some

unique finding that you don’t want to share (eg. with

competitors/clients/attackers)

Example:

http.request_body; content:"SomeVeryUniqueKey";

http.request_body; to_md5;

content:"|985112E6B6758CB79F43C68393528C57|";

Advanced Suricata features – Transforms keywords

● pcrexform: takes the buffer, applies the required

regular expression, and outputs the first captured

expression

pcrexform:<regular expression>;

Advanced Suricata features – Transforms keywords

Example: Ketin macOS Adware

Advanced Suricata features – Transforms keywords

alert http $HOME_NET any -> $EXTERNAL_NET any
(msg:"Ketin macOS AdWare C2 Communication"; flow:established,to_server;
http.method; content:"POST"; http.uri; content:"/squirrel-log"; bsize:13;
http.user_agent; content:"Darwin";
http.request_body; pcrexform:"_[a-z]+="; to_md5;
content:"|79C6E35B5BF924ADEBE8F0B42749FE52|"; sid:1000018; rev:1;)

md5("_iv=") =
79C6E35B5BF924ADEBE8F0B42749FE52

Example: Ketin macOS Adware

Advanced Suricata features – Transforms keywords

● url_decode: decodes url-encoded data, i.e.

replacing ‘+’ with space and ‘%HH’ with its value.

This does not decode unicode ‘%uZZZZ’ encoding

Advanced Suricata features – Lua scripting

● detection

● output

Could be used for:

● detecting CVE’s and other complex cases

● decoding encrypted payload

● providing detailed output

● etc

Lua scripting is a powerful (while not widely used) feature providing additional
capabilities for:

Advanced Suricata features – Lua detection

● function init() – registers the buffer(s) that need
inspection

● function match() – returns 1 or 0

A simple script returning true:

function init(args)
local needs = {}
return needs

end

function match(args)
return 1

end

Advanced Suricata features – Lua detection

● lua:[!]<scriptfilename>;

● luajit:[!]<scriptfilename>;

Example:

alert http $HOME_NET any -> $EXTERNAL_NET any

(msg:"Test rule with Lua script";

flow:to_server,established;

http.method; content:"GET";

lua:test_script_1.lua;

classtype:unknown; sid:1000019; rev:1;)

Advanced Suricata features – Lua output

● function init() – registers where the script hooks into

the output engine

● function setup() – does per output thread setup

● function log() – logging function

● function deinit() – clean up function

Advanced Suricata features – Lua output

A simple script printing “Hello world!”:

function init(args)
local needs = {}
needs["protocol"] = "http"
return needs

end

function setup(args)
http = 0

end

function log(args)
end

function deinit(args)
print("Hello world!");

end

Advanced Suricata features – Lua output

The lua output can be enabled in suricata.yaml:

Advanced Suricata features – IP reputation

● The ranking of IP Addresses within the Suricata

Engine

● Collects, stores, updates, and distributes reputation

intelligence on IP Addresses

● Allows sharing of intelligence regarding a vast

number of IP addresses

Can be enabled in suricata.yaml:

Advanced Suricata features – IP reputation

Mapping between a category number, short name, and long

description in a CSV file:

<id>,<short name>,<description>

Example:

1,BadHosts,Known bad hosts

2,Google,Known google host

Advanced Suricata features – IP reputation

A reputation score for hosts in the categories in a CSV file:

<ip>,<category>,<reputation score>

Example:

1.2.3.4,1,101

1.1.1.0/24,6,88

Advanced Suricata features – IP reputation

How to use in a rule:

iprep:<side to check>,<category>,
<operator>,<reputation score>

● side to check: <any|src|dst|both>

● category: the category short name

● operator: <, >, =

● reputation score: 1-127

Example:

alert ip any any -> any any (msg:"Iprep test
rule"; iprep:dst,CnC,>,30; sid:1000020; rev:1;)

Advanced Suricata features – File extraction

● Used to extract and store on disk transferred files

● Supported protocols: HTTP, SMTP, FTP, NFS, SMB, HTTP2

● Configured in suricata.yaml

Advanced Suricata features – File keywords

● filename – matches on the file name

● fileext – matches on the extension of a file name

● filemagic – matches on the information libmagic returns about a file

● filestore – stores files to disk if the signature matched

● filemd5 / filesha1 / filesha256 – matches file MD5 / SHA-1 / SHA-256 hash against list of

checksums

● filesize – matches on the size of the file as it is being transferred

Advanced Suricata features – File extraction

Example:

alert http any any -> any any (msg:"File with pdf extension"; fileext:"pdf"; filestore;

sid:1000021; rev:1;)

alert http any any -> any any (msg:"Pdf file"; filemagic:"PDF document"; filestore;

sid:1000022; rev:1;)

alert http any any -> any any (msg:"File from MD5 denylist"; filemd5:fileextraction-

chksum.list; filestore; sid:1000023; rev:1;)

Track 6

Detecting typical attacks

Detecting typical attacks – Overview

● About popular network attacks and how to detect them

In this track you will practice:

● Writing rules to detect typical attacks for a given traffic dump

In this track you will learn:

Detecting typical attacks – Overview

● Ransomware

● Phishing

● Coinmining

● Reconnaissance

● Exploits

● APTs

Detecting typical attacks – Ransomware

● One of the most dangerous and widespread types of malware over the past years

● Communication with C2 is (almost always) necessary for a successful attack

Detecting typical attacks – Ransomware

Example: Mallox ransomware

• Aka TargetCompany, Bozon, Fargo, Tohnichi

• Discovered in June 2021 and still active

• Changed encryption scheme several times

• Attacks enterprises

• Victims threatened with their data being published on a leak website if they refuse to
pay ransom

• Exfiltrates system information and sends it to the C2 server

Detecting typical attacks – Ransomware

Example: Mallox ransomware

Detecting typical attacks – Ransomware

Example: Mallox ransomware

alert http $HOME_NET any -> $EXTERNAL_NET $HTTP_PORTS (msg:"Mallox ransomware

C2 checkin"; flow:established,to_server;

http.method; content:"POST";

http.uri; content:".php"; endswith; http.request_body; content:"user=";

content:"TargetID="; content:"SystemInformation=";

content:"max_size_of_file="; content:"size_of_hdd=";

classtype:trojan-activity; sid:1000024; rev:1;)

Detecting typical attacks – Phishing

● One of the most popular attack vectors for gaining initial access

● Network traffic? Always

Ways of detecting:

● By suspicious domain name (DNS query)

● By landing webpage requesting for credentials / Success page

● By sending credentials (via POST request)

● etc

Detecting typical attacks – Phishing

Example:

Detecting typical attacks – Phishing

Example:

Detecting typical attacks – Phishing

Example:

alert http $EXTERNAL_NET any -> $HOME_NET any

(msg:"Phishing landing page"; flow:from_server,established;

http.stat_code; content:"200"; http.stat_msg; content:"OK";

http.content_type; content:"text/html";

http.response_body; content:"<input type=\"password\"";

content:"Please input Password";

classtype:social-engineering; sid:1000025; rev:1;)

Detecting typical attacks – Coinmining

● Despite cryptocurrency mining is a costly

process it still attracts even legitimate miners

● Malicious cryptominers are on the rise: there

was more than threefold growth in the number

of new variants of such programs in Q3 2022,

compared to Q3 2021

● Cybercriminals pay neither for equipment, nor

for electricity

● Cryptojacking does not require a lot of narrow

technical expertise

https://securelist.com/cryptojacking-report-2022/107898/

Number of new miner modifications

https://securelist.com/cryptojacking-report-2022/107898/

Detecting typical attacks – Coinmining

Most popular digital cryptocurrencies mined via cryptojacking:

● Monero (XMR)

● Bitcoin (BTC)

● Ethereum (ETH)

● Litecoin (LTC)

● Bit Hotel (BTH)

● Dash (DASH)

● Dogecoin (DOGE)

● Neo (NEO)

https://securelist.com/cryptojacking-report-2022/107898/

https://securelist.com/cryptojacking-report-2022/107898/

Detecting typical attacks – Coinmining

Example:

Detecting typical attacks – Coinmining

Example:

alert http $EXTERNAL_NET any -> $HOME_NET any

(msg:"Miner config";

flow:from_server,established;

http.stat_code; content:"200"; http.stat_msg;

content:"OK";

http.content_type; content:"text/html";

http.response_body; content:"\"api-bind\" : ";

content:"stratum+tcp://";

content:"\"user\" : "; content:"\"pass\" : ";

content:"\"algo\" : ";

classtype:coin-mining; sid:1000026; rev:1;)

Detecting typical attacks – Reconnaissance

● Various red team tools (can be used by attackers as well)

● Early warnings of potential malicious activity

● False positives are OK: determining targeted activity vs Internet noise can be difficult

● Detecting by uncommon requests, frequency, default User Agent, etc

Detecting typical attacks – Reconnaissance

Example: Nmap XMAS scan

alert tcp $EXTERNAL_NET any -> $HOME_NET any

(msg:"Possible Nmap XMAS scan"; flow:stateless;

dsize:0; flags:FPU; ack:0; window:1024;

threshold:type both, track by_src, count 100, seconds 60;

classtype:attempted-recon; sid:1000027; rev:1;)

Detecting typical attacks – Reconnaissance

Example: Nessus scan

alert udp any any -> any any

(msg:"Nessus scan"; dsize:<64;

content:"|00|\\|00|N|00|E|00|S|00|S|00|U|00|S|00|\\|

00|N|00|E|00|S|00|S|00|U|00|S|00|";

classtype:attempted-recon; sid:1000028; rev:1;)

Detecting typical attacks – Exploits

● Not easy to detect, but (can be) possible

● False positives are OK

● Often requires deep understanding of vulnerability

● Target the vulnerability, not the PoC

Detecting typical attacks – Exploits

Example: CVE-2021-40444 (Microsoft MSHTML Remote Code Execution Vulnerability)

Detecting typical attacks – Exploits
Example: CVE-2021-40444 (Microsoft MSHTML

Remote Code Execution Vulnerability)

alert http $EXTERNAL_NET $FILE_DATA_PORTS

-> $HOME_NET any (msg:"Microsoft MSHTML

ActiveX control bypass attempt";

flow:from_server,established;

http.stat_code; content:"200";

http.stat_msg; content:"OK";

http.response_body;

content:"ActiveXObject("; fast_pattern;

content:"/../../"; content:"htmlfile";

nocase; content:"Script"; nocase;

content:"location"; nocase;

content:".cpl:"; nocase;

classtype:attempted-user; sid:1000029; rev:1;)

Detecting typical attacks – APTs

● Hard to find

● Hard to hunt

● Reversing is (often) a must

● Easiest rules: on a known IP/domain/port

● Domain names usually look like legitimate

● Usually communicate with C2 a lot

Detecting typical attacks – APTs

Example: GravityRAT

• Discovered in 2017, active since at least 2015

• Targets the Indian armed forces

• Originally targeted only Windows, later Android and macOS samples were found

• Distributed using social engineering

• Not the most advanced… but targeted and persistent

https://securelist.com/gravityrat-the-spy-returns/99097/

https://securelist.com/gravityrat-the-spy-returns/99097/

Detecting typical attacks – APTs

Example: GravityRAT

Traffic from Windows sample

Traffic from Android sample

Detecting typical attacks – APTs

Example: GravityRAT

Possible hunting rule:

alert http $HOME_NET any -> $EXTERNAL_NET 64443 (msg:"Possible GravityRAT C2

checkin";

flow:established,to_server;

http.method; content:"GET";

http.uri; content:".php"; endswith;

http.host; pcre:"/^[a-z]{1,2}[0-9]{1,2}\.[a-z]{9,20}\.[a-z]{2,7}$/";

classtype:trojan-activity; sid:1000030; rev:1;)

Track 7

Problem solving

Problem solving – Overview

● About typical problems when writing Suricata rules and how to
solve them

● How to check rule performance

● How to fix false positives

● How to write “good” rules

In this track you will practice:

● Solving typical problems

● Fixing false positives

In this track you will learn:

Problem solving – Overview

● Performance issues

● False alarms

● Circumvention of precise rules

● Why doesn’t my rule work?

● What if there is no traffic?

Problem solving – Performance issues

● Do not disregard manuals: they contain information on how to write good (fast) rules
and configure Suricata

● Use keywords and modifiers to specify location and order of malicious parts,
packet/buffer size, IP/port ranges, etc

● It’s always better to have a content match and make it as long as possible

● Avoid using very common patterns or regular expressions only: it’s better to
combine pcre with at least one content

● Always find ways to bail before running a pcre

Problem solving – Performance issues

Order of operations:

● IP keywords, dsize, flow, flowbits, etc

● TCP/UDP/ICMP keywords

● Applayer protocols keywords

Try to bail before doing unnecessary and expensive checks

Problem solving – Performance issues

Do not ignore “fast_pattern” keyword:

● Can be used once per rule

● Apply it to the most unique value

● The longer and more unique a content is, the less likely that rule and all of its rule
options will be evaluated unnecessarily

● If not set, Suricata will choose its own

Example:

● content:"Expl0it"; content:"Mozilla"; X

● content:"Expl0it"; fast_pattern; content:"Mozilla"; V

Problem solving – Performance issues

Rule profiling: to check rule performance

● Suricata should has been built with the --enable-profiling configure flag

● Output configured in suricata.yaml

Problem solving – Performance issues

Rule profiling: example

Problem solving – Performance issues

Engine analysis: to get information about how Suricata organizes signatures internally

● Run Suricata with --engine-analysis flag

Example: suricata -c /etc/suricata/suricata.yaml --engine-analysis -l /tmp/suricata/

Problem solving – False alarms

● In IDS mode, false positives are OK

● For threat hunting, false positives are OK

● Test your rules on a big collection of clean traffic

How to analyze alerts:

● Get artifacts

● Check IP/domain reputation

● Check alert frequency

● If false alarm – add exclusion to the rule

Problem solving – False alarms

Example: hunting rule for “/gate.php” relative address

alert http $HOME_NET any -> $EXTERNAL_NET any

(msg:"Request to gate.php";

flow:established,to_server;

http.uri; content:"/gate.php";

classtype:bad-unknown; sid:1000031; rev:1;)

Problem solving – False alarms

Example: hunting rule for “/gate.php” relative address

Capchator Android banking Trojan

Banbra Android banking Trojan

False alarm

Problem solving – False alarms

Example: hunting rule for “/gate.php” relative address

The simplest way: exclude host (for HTTP)

alert http $HOME_NET any -> $EXTERNAL_NET any

(msg:"Request to gate.php";

flow:established,to_server;

http.uri; content:"/gate.php";

http.host; content:!"ipsikorea.com";

classtype:bad-unknown; sid:1000032; rev:2;)

Problem solving – False alarms

Example: hunting rule for “/gate.php” relative address

Another option: exclude specific fields

alert http $HOME_NET any -> $EXTERNAL_NET any

(msg:"Request to gate.php";

flow:established,to_server;

http.uri; content:"/gate.php";

http.header; content:!"X-Requested-With: com.app.ipsikorea";

classtype:bad-unknown; sid:1000033; rev:2;)

Problem solving – False alarms

Example: rule to detect Gh0st RAT

content:"Gh0st"; offset:8; depth:5;

False alarm

Problem solving – False alarms

Example: rule to detect Gh0st RAT

content:"Gh0st"; offset:8; depth:5;

False alarm

Fix: content:"|00|Gh0st"; offset:7; depth:6;

Problem solving – False alarms

Compare more malware and clean traffic:

● Find fields that do not exist in malicious traffic

http.header_names; content:!"User-Agent";

● Add more conditions: request format, data

length, field order, etc

Problem solving – Circumvention of precise rules

● Make rules as generic as possible to prevent false alarms

● Easy to circumvent rules from open rulesets, but attackers do not know rules from

paid feeds (or self-written!)

● For botnets, it is not very easy for attackers to significantly change protocol in each

bot version

● Many attackers just don’t care

Problem solving – Why doesn’t my rule work?

Possible reasons:

● Incorrect variable declarations in Suricata config (suricata.yaml)

● SID is not unique (reserved for local use: 1000000-1999999)

● Problems with traffic

● PCRE is too complicated…

How to solve?

● Remove options one-by-one

● Check Suricata log in eve.json

Problem solving – What if there is no traffic?

● No traffic – no detection 

● That’s why NIDS should be used as one of the components of a wider security solution

What should be used together with NIDS?

● File AV

● Sandbox

● URL reputation

● YARA

● ML-based engines

● … and so on

Track 8

Course project

Track 9

Course summary

Course summary – Rule writing principles

● READ MANUALS

● Use keywords to make the rule more precise

● Don’t forget about performance: use fast_pattern, don’t write rules containing pcre only, etc

● Avoid using very exact patterns that can easily be changed (host name, full URI, parameter values,
etc)

● Write generic rules for hunting first, then tune them

● Don’t be afraid of false positives (but try to fix them)

● Test rules on a collection of clean traffic

● Don’t neglect new Suricata features

