Imll

ATTACK & DBTECT FIDVFINCB PROCESS
INJECTION TECHNVIGUES MINI-COURSE

e
& B

By- CyberWarFare Labs Team

© CyberWarFare R&D Pvt. Ltd.

Attack & Detect Advance Process Injection Techniques

Process Injection Mindset
Classic Process Injection
APC Code Injection
Section Mapping

Module Stomping

Process Hollowing

Process Doppelganging
Transacted Hollowing
Process Herpaderping
Process Ghosting

VO NOO AW

—
o

PRE-REQUISITES

e Vmware/VirtualBox
e Windows 10 x64
o Lab version: Windows 10 version 22H2 (x64bit)
e Any IDE or Editor (Visual studio 2022 is preferred)
e System Informer, PE-bear, CFF Explorer, x64dbg

e Microsoft ATP for Event Analysis or any event analysis environment that you
prefer
o Work Email is required to register in Microsoft ATP
e Programming Language:
o C/C++

https://systeminformer.sourceforge.io/nightly.php
https://hshrzd.wordpress.com/pe-bear/
https://ntcore.com/files/ExplorerSuite.exe
https://x64dbg.com/
https://www.microsoft.com/en-in/security/business/threat-protection/endpoint-defender

Basic Mindset for Process Injection (remote)

> Injecting PE/DLL/shellcode (malicious) into
another process’ address space

To hide from the AV products ey e

€ To hide from the naked eye of the analyst

€ Sometimes, to access the resources (network,

memory, files etc.) owned by another process T . h
- When performing process injection, we need ™ | —C
to have the following queries in our mind -
€ How can we access the remote process?
€ How can we send our malicious code to the ¥ executing

remote process?
€ How can we execute our malicious code which is
inside the remote process?

Process Injection - Access Remote Process

> Getting Access to Remote Process
€ Obtain a handle to the remote process

e Handle is value given to the user-mode processes when they fry to access some object (process,
thread, file, etc) from user-land

> Obtaining the handle
€ Opening a executing process

e Win32 API: OpenProcess
e NT API: NtOpenProcess
€ Creating a new legitimate process
e Win32 API: CreateProcessA
e NT API: NtCreateProcessEx, NtCreateUserProcess
€ Duplicating existing process handle from another process

e Win32 API: DuplicateHandle
e NT API: NtDuplicateObject

Process Injection - Sending Malicious Code

> Many ways to send malicious code to remote process, but few queries to

have in our mind
€ Do we have enough privilege to write code into the remote process?
e PROCSS_VM_OPERATION, PROCESS_VM_WRITE
€ Can we locate the address of the malicious code in the remote process that we just sent?
€ Is the memory region in remote process has enough memory access rights to write &

execute code in that memory region?
e Commonly we look for writable (W) & executable (X) memory region

o Butinmodern OS because of security reason memory region is usually either writable or executable (W*X).

Process Injection - Sending Malicious Code

> Usually sending/injecting malicious code in remote process involves

€ Allocating new memory region with READ, WRITE & Execute access in remote process
e Win32 APT: VirtualAllocEx
e NT API: NtAllocateVirtualMemory
e Access Rights: PAGE_READWRITE, (PAGE_READWRITE | PAGE_EXECUTE)
€ Writing payload into the memory
e Win32 API: WriteProcessMemory
e NT API: NtWriteVirtualMemory

-> Additionally, changing memory protection also involves in this stage

€ Usually, memory protection PAGE_READWRITE is changed to PAGE_EXECUTE_READ and vice

versa.
e Win32 APT: VirtualProtectEx
e NtAPI: NtProtectVirtualMemory

Process Injection - Execute the Malicious code

> Common ways to perform execution

€ Create a new thread in target process

e Win32 API: CreateRemoteThread

e NT API: NtCreateThreadEx, RtlCreateUserThread
€ Queuing APC in alertable thread

e Win32 API: QueueUserAPC

e NT API: NtQueueUserAPC
€ Hijacking the executing thread

e Win32 API: SetThreadContext

e NT API: NtSetContextThread

-> Last phase of the injection
€® Some APIs that are used in this stage are heavily monitored by the AV/EDR products

Process Injection - Common APIs

Query Process/Thread

CreateToolhelp32Snapshot, NtQuerySystemInformation, NtQueryInformationProcess,
NtQueryInformationThread

Open Process/Thread

NtOpenProcess, NtOpenThread, ZwDuplicateObject

Reading Process Memory

ReadProcessMemory, NtReadVirtualMemory

Write to Process Memory

WriteProcessMemory, NtWriteVirtualMemory, ZwMapViewOf Section

Execute Code

RtlCreateUserThraed, CreateRemoteThread, NtCreate ThreadEx, QueueUserAPC,
NtQueueUserAPC, SetThreadContext

Classic Process Injection - steps

e Obtain Handle to a target process
o CreateToolHelp32Snapshot, OpenProcess, NtQuerySystemInformation
e Allocate new memory region at tfarget process
o VirtualAllocEx, NtAllocateVirtualMemory
e Write payload into newly allocated memory
o WriteProcessMemory, NtWriteVirtualMemory
e Create new remote thread
o CreateRemoteThread, NtCreateThreadEx

Classic Process Injection

Malware Process Legitimate
(injector) Process

&

NN NN NN N

NN NN

e thread Executing

Classic Process Injection

Malware Process Legitimate
(injector) Process

C
S

NN

Injects \

NN N

NN NN

NN NN NN N

c thread Executing

Classic Process Injection

Malware Process Legitimate
(injector) Process

~A C v
A ~rA

Injects \

NN NN N

NN NN N

c thread Executing

Classic Process Injection - APT calls

-> Kernel32.dll:

@ CreateToolHelp32Snapshot, Process32First, Process32Next, Thread32First,
Thread32Next, OpenProcess, WriteProcessMemory, VirtualProtectEx, OpenThread

= Ntdll.dll:
® NtQuerySystemInformation,NtAllocateVirtualMemory, NtWriteVirtualMemory

APC Code Injection

N0 20 20K 2 2

APC stands for Asynchronous Procedure Call

APC functions execute asynchronously in context of a particular thread
In this techniques our shellcode is placed in APC Queue of the thread.
The payload will get executed when the thread goes to alertable state

Wait routines puts thread in alertable state, such as:
® SleepEx()

& \WaitForSingleObjectEx()

¢ WaitForMultipleObjectEx()

APC Code Injection - Steps

e 2

e 2

Find the process to inject our payload
€ CreateToolHelp32Snapshot, NtQuerySystemInformation

Find all the threads in that process
€ Thread32First, Thread32Next

Allocate memory in that process
€ VirtualAllocEx, NtAllocateVirtualMemory

Write the payload into that allocated memory
€ WhriteProcessMemory, NtWriteVirtualMemory

Put the APC function in the queue for all threads
€ QueueUserAPC, NtQueueUserAPC

APC function here points to our shellcode

APC Code Injection

Malware Process
(injector)

Legitimate
Process

—— thread |

NN NN NN

NN NN PN N N NP

SleepEx(_.true)

APC Code Injection

Malware Process
(injector)

Legitimate
Process

ApcFunction

~N N NN
~N A NN

C Executing

APC Code Injection - APT calls

-> Kernel32.dll:

@ CreateToolHelp32Snapshot, Process32First, Process32Next, Thread32First,
Thread32Next, OpenProcess, WriteProcessMemory, VirtualProtectEx, OpenThread,
QueueUserAPC

= Ntdll.dll:
® NtQuerySystemInformation,NtAllocateVirtualMemory, Nt WriteVirtualMemory

Section Mapping

e Block of memory that can be shared between multiple processes [1]
e In memory, each section has corresponding views, which are parts of the

section that are visible to processes.
o Act of creating a view for a section is known as mapping a view of the section [1]

e In this technique a section is created and view of section is mapped to
both local & target process with different page protection

Section Mapping - Steps

e 2

e 2

Create a new section with full RWX page protection

€ NtCreateSection

Map a view of section to local process (injector) with RW page protection
€ NtMapViewOfSection

Map a view of section to target process with RX page protection
€ NtMapViewOfSection

Write a payload to a view mapped to a local process
€ memcpy
Create a remote thread with a base address of view mapped to remote

process
€ CreateRemoteThread, NtCreateThreadEx, RtICreateUserThread

Section Mapping

Malware Process
(injector)

Section

Legitimate
Process

C

Section Mapping

View 1
(RW)

Malware Process

(injector)

Section

Legitimate
Process

<

View 1
(RX)

Section Mapping

View 1
(RW)

Malware Process
(injector)

Legitimate
Process

Section A

<

shellcode

shellcode

View 1
(RX)

Section Mapping

Malware Process
(injector)

(RW) shellcode

Section

Legitimate
Process

GO

shellcode

View 1
(RX)

Section Mapping - APT calls

e Kernel32.dll:
o OpenProcess, CreateRemoteThread
o Ntdll.dll:

o NtCreateSection, NtMapViewOfSection, NtCreateThreadEx

Module Stomping

> This is the technique to load fresh dll into the target process and inject
the shellcode into it
No need to change memory protection in target process memory

-
> Shellcode gets executed from the legitimate dll

Module Stomping - Steps

e 2

e 2

Open a target process and get handle to the target process

€ OpenProcess, NtOpenProcess

Load the target module in the target process

€ VirtualAllocEx, WriteProcessMemory, CreateRemoteThread

Write the payload at the entrypoint address of the loaded module
& WriteProcessMemory

Create a thread to execute the payload

® CreateRemoteThread

Module Stomping

Malware Process
(injector)

Load legitimate module

Legitimate
Process

- C\..\\legit.dll |

Module Stomping

Malware Process Legitimate
(injector) Process

I

s ey e S P e Overwrite EntryPoint

P C\\.\\legit.dll

R L R TV VPV

W Shellcode

Create NewThread

Module Stomping - APT calls

-> Kernel32.dll:

® OpenProcess, ReadProcessMemory, WriteProcessMemory, VirtualAllocEx,
VirtualProtectEx, CreateRemoteThread

-> Psapi.dll:

® EnumProcessModules, GetModuleFileNameEx
- Ntdlldll:

¢ NtAllocateVirtualMemory

Process Hollowing

e 2

-
e 2

Replace executable section of the legitimate process with malicious
executable.

Replacement takes place in memory.

Malicious code executes from inside of the legitimate process thus, it
conceals its presence.

The path of the hollowed process still points to the legitimate executable
path.

Process Hollowing - Steps

Create target process in suspended mode
& CreateProcessA
Get Image Base Address of the target process
€ NtQueryInformationProcess, ReadProcessMemory
Hollow/Unmap target image
® ZwUnmapViewOfSection
Allocate new memory in tfarget process for the payload
¢ VirtualAllocEx
Copy all the payload section to the allocated memory in target process
& WriteProcessMemory
Get Context of target process
& GetThreadContext
Set the entrypoint of payload in respective context
® EAX for x86, RCX for x64
Apply the Context of target process
& SetThreadContext
Resume main thread of target process
¢ ResumeThread

A 20K 22 200K 2 R 2N 7

Process Hollowing

Malware Process Legitimate
(injector) Process
(suspended)

Create Suspended Process

NN NN NN N J

[notepad.exe]

L N o T V)

Process Hollowing

Malware Process Legitimate
(injector) Process
| (suspended)

~annn~n~nn | Hollow the target process >

R L R N N o VRV V]

Process Hollowing

Malware Process Legitimate
(injector) Process
| (suspended)

A A A A A A A A Write Payload
- >

Malware.exe

Process Hollowing

Malware Process Legitimate
(injector) Process
(Resume)

N

NN AN A A A P

NN NN NN

| Malware.exe |

Process Hollowing - APT Calls

-> Kernel32.dll:

€ CreateProcessA, ReadProcessMemory, WriteProcessMemory, GetThreadContext,
SetThreadContext, ResumeThread

= Ntdll.dll:
€ NtQueryInformationProcess, NtUnmapViewOfSection/ZwUnmapViewOf Section

Process Doppelganging

e 2

e 2

Process Doppelganging utilizes the Windows APT calls related to the
NTFS transactions.

Transactional NTFS brings the concept of atomic transactions to NTFS
file system, which allows app developers and administrators to handle
mistakes and maintain data integrity more easily.

Transactional NTFS allows for files and directories to be created,
modified, renamed and deleted atomically.

In a series of file operations (performed in a transaction), when all
operations complete successfully, the operation is committed. If an error
occurs, the entire operation is rolled back and fails. This is to preserve
integrity of data on disk.

Process Doppelganging - Steps

-> Steps of Doppelganging can be broken down into 4 steps:

1.

Transact : process a legitimate file into the NTFS transaction and then overwrite it with
a malicious payload file

e CreateTransaction, CreateFileTransactedA
Load: Create a memory section from the payload and load the malicious code

e NtCreateSection
Rollback: Rollback the transaction i.e., removing malicious code so that no data left on the
disk

e RollbackTransaction
Animate: Bringing Doppelganging to life. Create a process from the previously created
memory section (step 2). The memory section contains malicious code and never written
to the disk.

e NtCreateProcessEx, NtCreateThreadEx

Process Doppelganging

Malware Process
(injector)

PPN NN N

PPN NN NN

NTFS Transaction

-

File
(legit)

Process Doppelganging

Malware Process
(injector)

]

NN NN NN N

PN PN NN N N

NTFS Transaction

—

File
(malware)

Section
(MEM_IMAGE)

Process Doppelganging

Malware Process
(injector)

ISP NN N

NN NN N NN NN

NTFS Transaction

—_

File
(Rollback)

Y

Section
(MEM_IMAGE)

Process Doppelganging

Malware Process
(injector)

AN N NN

NTFS Transaction

—

| File
(Rollback)

Y

Section
(MEM_TMAGE)

Process Body

Process Doppelganging

Malware Process
(injector)

NTFS Transaction

File
(Rollback)

Section
(MEM_IMAGE)

Process Body

Process Parameters

Process Doppelganging

Malware Process
(injector)

— NTFS Transaction [

File
(Rollback)

Y Process Body
~ Section
(MEM_IMAGE)

Process Parameters

(New Thread

Process Doppelganging - API Calls

> KimW32dll:

® CreateTransaction, RollbackTransaction

- Kernel32.dll:
® CreateFileTransactedA, WriteFile

- Ntdll.dll:
® NtCreateSection, NtCreateProcessEx, NtCreateThreadEx

Process Doppelganging - Issue

- Microsoft Windows Defender is monitoring the creation of remote thread using the
routine PsSetCreate ThreadNotifyRoutine.

2

Disable Microsoft Windows Defender from Group policy.
Computer Configuration > Administrative Templates > Windows Components >

Windows Defender Antivirus > Turn off Microsoft Defender Antivirus (Enabled)
F

Turn off Microsoft Defender
Antivirus

Edit policy setting

Requirements:
At least Windows Vista

Description:
This policy setting turns off
Microsoft Defender Antivirus.

If you enable this policy setting,
Microsoft Defender Antivirus does
not run, and will not scan
computers for malware or other
potentially unwanted software.

If you disable this policy setting,
Microsoft Defender Antivirus will
run regardless of any other
installed antivirus product.

If you de not configure this

SRRt

V22 Allauss antimshaare canic

Setting State 4}
[] Network Inspection System

(] Quarantine

("] Real-time Protection

[] Remediation

["] Reporting

[Scan

[Security Intelligence Updates

[Threats

|iz] Allow antimalware service to startup with normal priority Not configured

B Turn off Microsoft Defender Antivirus Enabled

=] Configure Tocal administrator merge behavior for lists Not configured
2] Turn off routine remediation Not configured
\iz| Define addresses to bypass proxy server Not configured
\iz] Define proxy auto-config (.pac) for connecting to the netwo... Not configured
\iz| Define proxy server for connecting to the network Not configured
iz Randomize scheduled task times Not configured
\iz] Configure detection for potentially unwanted applications Not configured

atn remain rinnina shasiee Nat Fanfinnrad

Transacted Hollowing

> Hybrid of Process Hollowing and Process Doppelganging
> This technique solves the issues of both techniques

E] notepad.exe (3484) Properties

General Statistics Performance Threads Token Modules Memory Environment Handles WMI

e |

Base address Type Size Protect... Use
Vv 0x340000 Private 24kB RWX
0x340000 Private: Commit 24kB RWX
> 0xf60000 Mapped 32MB NA

! notepad.exe (3484) (0x340000 - 0x346000)

Process Hollowing

00000000 Ed Sa 90 00 03 00 00 00 04 00 00 00 ££f ££ 00 00 MZ
00000010 b3 00 00 00 00 00 00 00 40 00 00 00 00 00 00 00
00000020 00 00 00 00 00 00 00 00 00 00 00 00 00 0O 00 00
00000030 00 00 00 00 00 00 00 0O 00 00 00 00 £8 00 00 00
00000040 Oe 1f ba Oe 00 b4 09 cd 21 b8 01 4c cd 21 54 &8

A~ AA WA Aa

> 0x7ff5d94b0000 Mapped 4kB R
> 0x7ff5d94c0000 Mapped 140kB R
~ Ox7f168f690000 Image 2BKB WCX
Image: Commit 4kB R
Image: Commit 4kB RX
Image: Commit 4kB R
Image..Commit, SkBWC
! (3584) (Ox 7ff68f6 - Ox7ff68f6
00000000 4d Sa 90 00 03 00 00 00 00 00 ££
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00
00 00 00 00 00 00 00 00 00 00

Normal/ Process Doppelganging

Transacted Hollowing - Steps

A 20K 22 200K 2 R 2N 7

Create NTFS fransaction object
€ CreateTransaction

Open/Create target file for transaction
& CreateFileTransactedA

Create an image section from transacted file
& NtCreateSection

Rollback the transaction
® RollbackTransaction

Create a new target process in suspended mode
@ CreateProcessA

Map an image section into the target process
2 NtMapV/ewOfSect/on

Upda‘re entrypoint in target process with payload entrypoint

GetThreadContext, SetThreadContext

Upda‘re image base address at target process PEB with newly mapped image base address

® NtQueryInformationProcess, WriteProcessMemory

Resume the thread
® NtResumeThread

Transacted Hollowing

Malware Process
(injector)

I

PPN NN N

PSP NN NN

— NTFS Transaction

-

File
(legit)

Transacted Hollowing

Malware Process
(injector)

]

NN NN NN N

PN PN NN N N

NTFS Transaction

—

File
(malware)

Section
(_MEM_IMAGE)

Transacted Hollowing

Malware Process
(injector)

AN NSNS PPN N

NTFS Transaction

_

File
(Rollback)

Y

Section
(MEM_IMAGE)

Transacted Hollowing

Malware Process
(injector) []

NTFS Transaction

File
(Rollback)

A

Section
(MEM_IMAGE)

Legitimate
Process |:

Map

Transacted Hollowing

Malware Process
(injector)

NTFS Transaction

File
(Rollback)

Section
(MEM_IMAGE)

Legitimate
Process
(Resume)

Map

Transacted Hollowing - APT Calls

-> Kernel32.dll:

€ CreateFileTransactedW, WriteFile, CreateProcessW, ResumeThread, Get ThreadContext,
SetThreadContext, ResumeThread

= Ntdlldll:

€ NtQueryInformationProcess, NtCreateTransaction, NtCreateSection,
NtRollbackTransaction, NtMapViewOf Section

Process Herpaderping

e 2

2R

In this technique the file on-disk is modified after the image has been
mapped

The modification is done before creating an initial thread

Temporary file on-disk act as a decoy

At this point the file on-disk is different from the one executed
In-memory

Process Herpaderping - Steps

Create a femp/decoy file
® CreateFileA
Write payload into that file (do not close the temp file handle after writing payload into it)
& WriteFile
Create an image section from that file
€ NtCreateSection
Create a process using the newly created section
€ NtCreateProcessEx
Modify the temp file
€ SetFilePointer, WriteFile
Setup process parameters
® RtlCreateProcessParametersEx
Create new thread
& NtCreateThreadEx
Close temp file handle
® C(CloseHandle

\ I T 2 20 2R 2 2B

Process Herpaderping

Malware Process
(injector)

]

File
(decoy)

Create

NN NN

NN NN

Process Herpaderping

Malware Process
(injector)

File
(payload)

Write

NN

AN PN P

Process Herpaderping

Malware Process
(injector)

File
(payload)

Write

Create

Section
(MEM_IMAGE)

Process Herpaderping

Malware Process
(injector) e

(payload)

Process Body

Section >
(MEM_IMAGE)

Process Herpaderping

Malware Process
(injector) pie

(modified)

NP P

PSP PP P

Process Body
Section
(MEM_IMAGE)

Process Herpaderping

Malware Process
(injector)

NN NN NN NN

File
(modified)

PSP P

Process Body

Section 3 I
(MEM_IMAGE)

Process Parameters

Process Herpaderping

Malware Process
(injector)

File
(modified)

L L L L PN N VPV

PP P

- Process Body

ection >

(MEM_IMAGE) '
Process Parameters

< New Thread

Process Herpaderping - APT Calls

- Kernel32.dll:
& CreateFileW, WriteFile, SetFilePointer,CloseHandle
- Ntdll.dll:

€ NtOpenFile, NtSetInformationFile, NtCreateSection, NtCreateProcessEx,
NtCreateProcessParametersEx NtCreate ThreadEx

Process Ghosting

-
e 2

Similar to process doppelganging

However, the section is created using delete-pending file instead of
transaction.

Puts a file in delete-pending state which makes antivirus tools difficult to
scan or delete it.

Before creating the process the file is completely vanished and we're lef+t
out with file-less section.

Process Ghosting - Steps

Open/Create new dummy file
® CreateFileA

Put the file into delete-pending state using API NtSetinformationFile
€ FileDispositionInformation information class is used here
Write payload buffer into delete-pending file
& WriteFile
Create an image section with the delete-pending file
¢ NtCreateSection
Close delete-pending file handle
® CloseHandle
Create a process with newly created image section using APT NtCreateProcessEx
Update/fix process parameters
® RtiCreateProcessParametersEx

Create a new thread
@ NtCreateThreadEx

S 2 20 25 20 2 2 2

Process Ghosting

Malware Process
(injector)

NN NN

File
(dummy)

Create

Process Ghosting

delete-pending

Malware Process
(injector)

NN NN NN N

File
(dummy)

Process Ghosting

Malware Process
(injector)

NN

NN

delete-pending

File
(payload)

Y

Section
(MEM_IMAGE)

Process Ghosting

Malware Process
(injector)

.

Close Handle

__——"'/

NN NN NN N

NN

®

Y

Section
(MEM_IMAGE)

Process Ghosting

Malware Process
(injector)

—

NN NN N A

NN NN

®

Section
(MEM_IMAGE)

Process Body

Process Ghosting

Malware Process
(injector) @

NN NN

NN NN NN

Process Body
~ Section .
(MEM_IMAGE) .
Process Parameters

Process Ghosting

Malware Process
(injector) @

NN NN N NN

NN NN NN N NN

Process Body
Section
(MEM_IMAGE)
Process Parameters

Process Ghosting - API Calls

- Kernel32.dll:
€ WhriteFile, CloseHandle
- Ntdll.dll:

€ NtOpenFile, NtSetInformationFile, NtCreateSection, NtCreateProcessEx,
NtCreateProcessParametersEx NtCreate ThreadEx

Why Process Doppelganging was detected?

3: kd> dt _FILE OBJECT ffffde84 d18ee450
ntdll! FILE OBJECT
Type : en5
002 Size

Flags 1 0x44042
FileName : _UNICODE_STRING "\temp\mynotes.txt"

IrplList : _LTST_FNTRY [ffdeR4” d18ee510 - f 4" d18ee510]
FileObjectExtension : fffde84™ d2cc8840 Void

3: kd> dc
ffffde84 d2cc8840
ffffde84™ d2cc8850

3: kd> dt _TXN_PARAMETER BLOCK [ffffde84 c8ffe7bo

ntd11l! TXN_PARAMETER BLOCK
Length
2 TxFsContext
TransactionObject : ce346730 Void

@: kd> dt _FILE_OBJECT
ntdll! FILE OBJECT

Type E

Size : On216

FileName : _UNICODE_STRING "\Users\STEALT~1\AppData\Local\Temp\PGB2BB.t

IrpList : _LIST_ENTRY [F d7084430 - Oxfi d7084430 |
@ FileObjectExtension : (null)

References

wn

®NO O A

https://learn.microsoft.com/en-us/windows-hardware/drivers/ke
rnel/section-ob jects-and-views

https://www.ired.team/
https://blog.f-secure.com/hiding-malicious-code-with-module-sto
mping/

https://github.com/m0OnOphl/Process-Hollowing
https://www.youtube.com/watch?2v=XmWO j-cfixs
https://github.com/hasherezade/transacted hollowing
https://jxy-s.github.io/herpaderping/

https://github.com/hasherezade/process ghosting

https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/section-objects-and-views
https://learn.microsoft.com/en-us/windows-hardware/drivers/kernel/section-objects-and-views
https://www.ired.team/
https://blog.f-secure.com/hiding-malicious-code-with-module-stomping/
https://blog.f-secure.com/hiding-malicious-code-with-module-stomping/
https://github.com/m0n0ph1/Process-Hollowing
https://www.youtube.com/watch?v=XmWOj-cfixs
https://github.com/hasherezade/transacted_hollowing
https://jxy-s.github.io/herpaderping/
https://github.com/hasherezade/process_ghosting

