
Liam Cleary
Microsoft MVP and Microsoft Certified Trainer at SharePlicity

@helloitsliam | www.helloitsliam.com

Performing a Network Discovery

Continuous Monitoring
with PowerShell

Goal: Use PowerShell for Network
Discovery
- Pinging individual networked devices
- Pinging multiple networked devices
- Identifying network devices
- Creating an asset list of networked

devices

Overview

Pinging Individual Networked Devices

PING, PATHPING, and PSPING Tools

.NET API "System.Net.NetworkInformation" Namespace

WMI Class "Win32_PingStatus"

Test-NetConnection and Test-Connection PowerShell Cmdlets

Ping Capabilities

Ping IP Address / Ping with 10 Requests
ping 192.168.1.72
ping /n 10 192.168.1.72

Ping IP Address / Ping with 10 Requests
pathping /n 192.168.1.72
pathping /q 10 /n 10 192.168.1.72

Using Ping and PathPing with PowerShell
$ip = "192.168.1.73"
echo (ping $ip)
echo (pathping $ip)

Using PING and PATHPING

Ping IP Address 10 Times
psping -n 10 192.168.1.73

Ping IP Address 10 Times, Then Test Port Connection
psping -n 10 -i 0 -q 192.168.1.73:80

Using PsPing with PowerShell
$ip = "192.168.1.73"
echo (.\psping $ip)

Using PSPING
PsPing Implements Ping, TCP Ping, Latency and Bandwidth Measurement

Examples

IP Status

Send

Using the .NET API Namespace

Ping Reply

Send Ping Async

Ping Options

Send Async

Ping Computer By Name
$computer = "TRAINER"
$ping = New-Object System.Net.NetworkInformation.Ping
$ping.Send($computer)

Ping Computer By IP Address
$ip = "192.168.1.73"
$ping = New-Object System.Net.NetworkInformation.Ping
$ping.Send($ip)

Ping Using the .NET API

Set Ping Options and then Ping Computer By IP Address
$ip = "192.168.1.73"
$bytes = 64
$ttl = 57
$timeout = 120

[byte[]]$buffer = [byte[]]::new($bytes);
$options = New-Object System.Net.NetworkInformation.PingOptions $ttl
$pinger = [System.Net.NetworkInformation.Ping]::new()
$pinger.send($ip, $timeout, $buffer, $options)

Using the .NET API with Ping Options

Win32_PingStatus
The Win32_PingStatus WMI class represents the values returned by the
standard ping command

https://learn.microsoft.com/en-us/previous-versions/windows/desktop/wmipicmp/win32-pingstatus

Test-Connection
Sends ICMP echo request packets, or pings,

to one or more computers

PowerShell Cmdlets

Test-NetConnection
Supports ping test, TCP test, route tracing,

and route selection diagnostics

WMI and PowerShell Cmdlets

$ip = "Address='192.168.1.73'"

Get-WmiObject Win32_PingStatus `
–filter $ip

$ping = Get-WmiObject Win32_PingStatus `
–filter $ip

$ping.StatusCode

Ping Using WMI Ping Using PowerShell

$ip = "192.168.1.73"

Test-Connection $ip

Test-NetConnection $ip

Pinging Multiple Networked Devices

Ping Multiple IP Address
$ips = @("192.168.1.71", "192.168.1.72", "192.168.1.73")
$ips | ForEach-Object { ping $_ }
$ips | ForEach-Object { pathping $_ }
$ips | ForEach-Object { .\psping $_ }

Ping IP Range
1..254 | ForEach-Object { ping "192.168.1.$_" }
1..254 | ForEach-Object { pathping "192.168.1.$_" }
1..254 | ForEach-Object { .\psping "192.168.1.$_" }

Ping Multiple Devices Using PING Tools

Ping Range of IP Addresses
$ping = New-Object System.Net.NetworkInformation.Ping;
1..254 | ForEach-Object { $ping.Send("192.168.1.$_") }

Ping Range of IP Addresses, Then Add Ping Completed Event
(

(1..254) | ForEach-Object {
$ping = New-Object System.Net.NetworkInformation.Ping;
[Void](Register-ObjectEvent $ping PingCompleted -Action {

param($s, $e);
Write-Host $e.Reply.Address, ($e.Reply.RoundtripTime.toString() + "ms")

})
$ping.SendPingAsync("192.168.1.$_")

}
).Wait()

Ping Multiple Devices Using the .NET API

Ping Individual and Multiple Networked
Devices
- Help to Identify Live Network Hosts
- Ping Specific IP Addresses
- Ping IP Address Ranges
- Create Reusable Ping Function

Demo

Identifying Network Devices

IP Address Vendor IdentificationName Resolution

Identifying Networked Devices

Resolve IP Address to Name Using "System.NET" Library
$ip = "192.168.1.73"
[System.Net.DNS]::GetHostEntry($ip)

Resolve Using PowerShell Command
Resolve-DNSname $ip

Performing Name Resolution

Use Nmap and PowerShell to Get MAC Address
$ip = "192.168.1.73"
$mac = nmap -sn $ip | Select-String "MAC Address"
Write-Host $mac

Identify Vendor from MAC Address
$mac = ($mac -replace "MAC Address:","").Substring(1,17)
$vendor = (Invoke-WebRequest -Uri "https://api.macvendors.com/$mac").Content
Write-Host $vendor

Identifying Device Vendor

Retrieve Further Details of Networked
Devices
- Perform Domain Name Service Name

Resolution
- Use an API to Lookup MAC Address to

Identify Manufacturer

Demo

Creating an Asset List of Networked
Devices

Query IP Range for Online Devices

Resolve Device Name

Retrieve Device MAC Address

Query Vendor Information using MAC Address

Generate CSV file of Retrieved Devices

Asset List Creation Tasks

Create an Asset List of Networked Devices

Demo

Goal: Use PowerShell for Network
Discovery
- Utilized various approaches to pinging

individual and multiple networked
devices

- Retrieved further details from identified
networked devices

- Created an asset list of networked
devices

Summary

Enumerating Services and Processes

Up Next:

