
Collect Data from Multiple 
Machines for Analysis

Liam Cleary
Microsoft MVP and Microsoft Certified Trainer at SharePlicity

@helloitsliam   |   www.helloitsliam.com



Goal: Collect Data from Machines for 
Analysis
- Understanding PowerShell remoting
- Using SSH for remoting to Windows and 

Linux
- Exporting log data from remote machines
- Create scheduled tasks using PowerShell

Overview



Understanding PowerShell Remoting



PowerShell Remoting isn't the same as using a cmdlet's 
"ComputerName" parameter to run it on a remote computer



Protocol that allows users to run PowerShell 
commands on remote computers

PowerShell supports remote computing by 
using various technologies

PowerShell supports WMI, WS-Management, 
and SSH remoting

PowerShell 7 and above support RPC remoting 
only within Windows

PowerShell Remoting



WinRM
Windows Remote Management (WinRM) is Microsoft's implementation of 
the WS-Management Protocol. WSMan is a standard Simple Object 
Access Protocol (SOAP) based protocol that allows hardware and 
operating systems, from different vendors to interoperate



HTTP
Windows 10 default option

PowerShell Remoting is primarily designed for connecting and managing 
remote devices within an Active Directory environment

PowerShell Remoting Connections

SSH
Available since PowerShell 
core. Allows cross-platform 

connecting

HTTPS
Requires IT to acquire, 
provision, and manage 

certificates



Connect Return OutputAuthenticate Execute 
Commands

PowerShell Remoting



To enable PowerShell remoting for non-
administrators
- Define Active Directory security group
- Add group to the remote management users' 

group locally

Group policy should be used for enabling 
remoting on multiple machines
- Use the computer configuration option
- Navigate to the Windows Remote 

Management (WinRM) settings
- Set the Allow option for the WinRM service

Enable PowerShell Remoting Using WS-MAN



# Enable over HTTP
Set-WSManQuickConfig

# Enable over HTTPS
Set-WSManQuickConfig –UseSSL

# Enable Remoting
Enable-PSRemoting –Force

# Enable Remoting with no Network Profile Check
Enable-PSRemoting -Force -SkipNetworkProfileCheck

Enable PowerShell Remoting Using WS-MAN



Enable PowerShell Remoting Using
WS-MAN
- Enable remoting within Windows
- Connect to Windows server using 

PowerShell remoting

Demo



Using SSH for Remoting to Windows and 
Linux



Multiplatform PowerShell remoting

Basic remoting between Windows, Linux, and macOS computers

No support for remote endpoint configuration and Just Enough Administration 
(JEA)

Creates a PowerShell host process on the target computer as an SSH subsystem

PowerShell Remoting over SSH



Install Latest 
version of 

PowerShell

Restart SSH 
Service

Install Latest 
OpenSSH

Define the SSH 
Configuration

Enable PowerShell Remoting Using SSH



Install Latest 
version of 

PowerShell

Restart SSH 
Service

Install Latest 
OpenSSH Server

Define the SSH 
Configuration

Enable PowerShell Remoting Using SSH (Linux)



# Install OpenSSH Client and Server
Add-WindowsCapability -Online -Name OpenSSH.Client
Add-WindowsCapability -Online -Name OpenSSH.Server

# Set the SSH Server Service to start Automatically
Set-Service -Name sshd -StartupType "Automatic"
Start-Service -Name sshd

# Install and Import Microsoft's PowerShell Remoting Module
Install-Module -Name Microsoft.PowerShell.RemotingTools
Import-Module -Name Microsoft.PowerShell.RemotingTools

# Enable SSH Remoting and Restart the Service
Enable-SSHRemoting –Verbose
Restart-Service -Name sshd

Prepare Windows for SSH Remoting



# Install OpenSSH Client and Server
sudo yum –y install openssh-server openssh-clients

# Start the SSH Server Service
sudo systemctl start sshd
sudo systemctl status sshd

# Enable the OPenSSH Service
sudo systemctl enable sshd

# Modify the SSH Server Configuration and Restart
sudo vim /etc/ssh/sshd_config
service sshd restart

Prepare Linux for SSH Remoting



Using SSH for Remoting to Windows and 
Linux
- Prepare Windows client for SSH
- Prepare Windows server for SSH
- Prepare Linux for SSH
- Connect to a Windows and Linux 

machine using PowerShell remoting over 
SSH

Demo



Exporting Log Data from Remote 
Machines



Get-EventLog
Deprecated command

Not recommended by Microsoft

Exporting Event Logs

Get-WinEvent
Latest command

Microsoft recommended
Supports modern Windows event log 

capabilities



Supports modern event 
logs and classic logs

Retrieve entries from 
selected logs

Filter support for XPath, 
XML, and hash table 
queries

Get-WinEvent

Returns event information 
sorted newest to oldest

Retrieve entries from 
selected log providers

Only available on the 
Windows Platform



# Retrieve All Event Logs
Get-WinEvent -ListLog *

# Retrieve Event Logs with Entries
Get-WinEvent -ListLog * | Where-Object -Property RecordCount -GT 0

# Retrieve Entries from the Security Event Log
Get-WinEvent -LogName Security
Get-WinEvent -LogName Security –MaxEvents 5 | Select-Object –Property *

Retrieve Windows Event Log Entries



# Retrieve Entries and Filter by ID
Get-WinEvent -LogName Security | Where-Object -Property Id -EQ 4624

# Retrieve Entries and Filter by ID using Hash Table
Get-WinEvent -FilterHashtable @{ LogName='Security'; ID=4624 }

# Retrieve Entries and Filter by ID using Hash Table with Variables
$logName = "Security"
$startDate = ""
$endDate = ""
Get-WinEvent -FilterHashtable @{

LogName = $logName;
StartTime = $startDate;
EndTime = $endDate

}

Filtering Windows Event Log Entries



Authorization Log (/var/log/auth.log)
Keeps track of authorization systems, such as password prompts, the sudo command and remote logins

Daemon Log (/var/log/daemon.log)
Daemons are programs that run in the background, usually without user interaction. For example, 
display server, SSH sessions, printing services, Bluetooth, and more

Debug Log (/var/log/debug)
Provides debugging information from the Ubuntu system and applications

Kernel Log (/var/log/kern.log)
Logs from the Linux kernel

System Log (/var/log/syslog)
Contains more information about the system

Linux Logs



# Retrieve Logs
Get-ChildItem /var/log

# Retrieve Entry from All Logs
Get-ChildItem -Path /var/log -File |

foreach { $_ | Get-Content | Select -First 1 -Skip 5 }

# Retrieve Entries from the Auth Log
Get-Content /var/log/auth.log

# Retrieve Entries from the Auth Log and Export to CSV
$path = "/home/trainer/auth.csv"
$results = Get-Content /var/log/auth.log | Select-String "trainer"
$results | Export-Csv -Path $path -NoTypeInformation

Retrieve Log Entries from Linux



Exporting Log Data from Remote Machines
- Connect to a Windows machine and 

export event log entries
- Connect to Linux machine and export log 

entries

Demo



Creating Scheduled Tasks Using 
PowerShell



New-ScheduledTaskAction

New-ScheduledTaskTrigger

New-ScheduledTaskPrincipal

New-ScheduledTaskSettingsSet

New-ScheduledTask

Register-ScheduledTask

Creating Scheduled Tasks Cmdlets



New-ScheduledTaskAction cmdlet creates an object that contains the definition 
of a scheduled task action. A scheduled task action represents a command that a 
task executes when Task Scheduler runs the task

New-ScheduledTaskTrigger cmdlet creates and returns a new scheduled task 
trigger object. You can use a time-based trigger or an event-based trigger to 
start a task

New-ScheduledTaskPrincipal cmdlet creates an object that contains a 
scheduled task principal. Use a scheduled task principal to run a task under the 
security context of a specified account.

Creating Scheduled Tasks Cmdlets



New-ScheduledTaskSettingsSet cmdlet creates an object that contains 
scheduled task settings. Each scheduled task has one set of task settings

New-ScheduledTask cmdlet creates an object that contains the definition of a 
scheduled task. Support for Win32 applications, Win16 applications, OS/2 
applications, MS-DOS applications, batch files, command files, or any properly 
registered file type

Register-ScheduledTask cmdlet registers a scheduled task definition on a local 
computer. You can register a task to run executable files, batch files, or any 
registered file type

Creating Scheduled Tasks Cmdlets



$action = (New-ScheduledTaskAction -Execute 'Query-Logs.ps1')
$trigger = New-ScheduledTaskTrigger -Daily -At '10:00 AM'

$principal = New-ScheduledTaskPrincipal `
-UserId 'TRAINING\trainer' `
-RunLevel Highest

$settings = New-ScheduledTaskSettingsSet `
-RunOnlyIfNetworkAvailable `
-WakeToRun

$task = New-ScheduledTask `
-Action $action `
-Principal $principal `
-Trigger $trigger `
-Settings $settings

Register-ScheduledTask 'TASK: Query Remote Server Logs' -InputObject $task

Creating Scheduled Tasks



Define variables Export as CSV 
files

Create remote 
sessions

Retrieve Logs 
using remote 

sessions

Query-Logs.ps1



Creating Scheduled Tasks Using 
PowerShell

Demo



Goal: Collect Data from Machines for 
Analysis
- Reviewed PowerShell remoting, and used 

WinRM for PowerShell remoting
- Remotely connected to Windows and 

Linux using SSH
- Created a Windows scheduled task to 

export log file data

Summary



Querying Exported Data for Process or 
Service Anomalies

Up Next:


