Designing DevSecOps for Plan, Code,
and Build SDLC phases

Richard Harpur
' INFORMATION SECURITY PROFESSIONAL, CISM

@rharpur www.richardharpur.com

Continue Our DevSecOps Journey

Designhing
DevSecOps
(Plan, Code, Build)
DevSecOps
Concepts Adopting — — — — —

DevSecOps

DevSecOps P

Benefits 7~

~

-
-

—

a—

Overview

DevSecOps Requirements for:
Plan
Code
Build

Positioning DevSecOps in Your Lifecycle

Threat Model Compliance
Code Standards Validation

Static Code
Analysis

Code Signing
Validation

Monitor
N2
Q/Qy" Detect
OQ
Respond
Vulnerability Scan
Penetration Test Recover

Security Visibility and Control

“Threat modeling is a process by which potential threats,
such as structural vulnerabilities, can be identified,
enumerated, and prioritized - all from a hypothetical
attacker’s point of view”

Source: https://en.Wikipedia.org/wiki/Threat_model

Threat Modelling

S Spoofing
9 T Tampering
® R Repudiation

Information disclosure / leakage

O

Denial of service

Elevation of privilege

Source: en.wikipedia.org/wiki/STRIDE_(security)

Threat Modelling

Spoofing

Tampering

Repudiation

Information disclosure / leakage
Denial of service

Elevation of privilege

mQ— 04w

Microsoft Threat Modelling Tool

https://docs.microsoft.com/en-
us/azure/security/develop/threat-modeling-tool

Source: en.wikipedia.org/wiki/STRIDE_(security)

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool

Getting Started with Data Loss
Prevention

Richard Harpur
| INFORMATION SECURITY PROFESSIONAL, CISM

@rharpur www.richardharpur.com

https://www.pluralsight.com/library/courses/getting-started-data-loss-prevention/table-of-contents

Secure Code Standards

CMU SEI -Top 10 Secure Coding Practice
Validate input

Heed compiler warnings

Architect and design for security
Keep it simple

Default deny

Adhere to principle of least privilege
Sanitize data from other systems
Practice defense in depth

Practice effective quality assurance
10. Adopt a secure coding standard

© ® N O U A WN

https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices

Positioning DevSecOps in Your Lifecycle

Threat Model Compliance
Code Standards Validation

Static Code
Analysis

Code Signing
Validation

Monitor
N2
Q/Qy" Detect
OQ
Respond
Vulnerability Scan
Penetration Test Recover

Security Visibility and Control

SAST or SCA

Static Application
Security Testing
(SAST)

Examines source code to
identify weaknesses that can
lead to security vulnerabilities

Software Composition
Analysis (SCA)

Checks Open Source
components against known
vulnerabilties

Secure Code Analysis

Features of SAST
1. Reads source code

2. Language specific scanner
3. False positives

4. Fast and automated

5. Finds weaknesses early

NIST list of source code security analyzers
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html

Positioning DevSecOps in Your Lifecycle

Threat Model Compliance
Code Standards Validation

Static Code
Analysis

Code Signing
Validation

Monitor
N2
Q/Qy" Detect
OQ
Respond
Vulnerability Scan
Penetration Test Recover

Security Visibility and Control

Vulnerability Scanning

Software Composition Dynamic Application
Analysis (SCA) Security Testing
(DAST)

Checks Open Source

components against known Vulnerability scanners run on
vulnerabilities completed (compiled) code

Multiple checks to ensure secure code

Summa 'y Checks at design time
Checks at code time

Checks at code complete

Up Next

- Designing DevSecOps for Test,
Release, and Operate SDLC phases

