
@rharpur www.richardharpur.com

INFORMATION SECURITY PROFESSIONAL, CISM
Richard Harpur

Designing DevSecOps for Plan, Code, 
and Build SDLC phases



DevSecOps
Concepts

DevSecOps
Benefits

Continue Our DevSecOps Journey

Adopting
DevSecOps

Designing 
DevSecOps
(Plan, Code, Build)



This bullet list 
with 

animations

DevSecOps Requirements for:
• Plan
• Code
• Build

Overview



Positioning DevSecOps in Your Lifecycle

Threat Model
Code Standards

Static Code 
Analysis

Vulnerability Scan
Penetration Test

Compliance 
Validation

Code Signing 
Validation

Monitor

Detect

Respond

Recover 

Security Visibility and Control

OP
ER

AT
E



“Threat modeling is a process by which potential threats, 
such as structural vulnerabilities, can be identified, 
enumerated, and prioritized – all from a hypothetical 
attacker’s point of view”

Threat Model

Source: https://en.Wikipedia.org/wiki/Threat_model



Threat Modelling

S Spoofing

T Tampering

R Repudiation

I Information disclosure / leakage

D Denial of service

E Elevation of privilege

Source: en.wikipedia.org/wiki/STRIDE_(security)



Threat Modelling

S Spoofing
T Tampering
R Repudiation
I Information disclosure / leakage
D Denial of service
E Elevation of privilege

Source: en.wikipedia.org/wiki/STRIDE_(security)

Microsoft Threat Modelling Tool

https://docs.microsoft.com/en-
us/azure/security/develop/threat-modeling-tool

https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool


https://www.pluralsight.com/library/courses/getting-started-data-loss-prevention/table-of-contents



Secure Code Standards

CMU SEI -Top 10 Secure Coding Practice
1. Validate input
2. Heed compiler warnings
3. Architect and design for security
4. Keep it simple
5. Default deny
6. Adhere to principle of least privilege
7. Sanitize data from other systems
8. Practice defense in depth
9. Practice effective quality assurance
10. Adopt a secure coding standard

https://wiki.sei.cmu.edu/confluence/display/seccode/Top+10+Secure+Coding+Practices



Positioning DevSecOps in Your Lifecycle

Threat Model
Code Standards

Static Code 
Analysis

Vulnerability Scan
Penetration Test

Compliance 
Validation

Code Signing 
Validation

Monitor

Detect

Respond

Recover 

Security Visibility and Control

OP
ER

AT
E



Software Composition 
Analysis (SCA)
Checks Open Source 

components against known 
vulnerabilties

Static Application 
Security Testing 

(SAST)
Examines source code to 

identify weaknesses that can 
lead to security vulnerabilities

SAST or SCA



Secure Code Analysis

Features of SAST
1. Reads source code
2. Language specific scanner
3. False positives
4. Fast and automated
5. Finds weaknesses early

NIST list of source code security analyzers
https://samate.nist.gov/index.php/Source_Code_Security_Analyzers.html



Positioning DevSecOps in Your Lifecycle

Threat Model
Code Standards

Static Code 
Analysis

Vulnerability Scan
Penetration Test

Compliance 
Validation

Code Signing 
Validation

Monitor

Detect

Respond

Recover 

Security Visibility and Control

OP
ER

AT
E



Dynamic Application 
Security Testing 

(DAST)
Vulnerability scanners run on 
completed (compiled) code

Software Composition 
Analysis (SCA)
Checks Open Source 

components against known 
vulnerabilities

Vulnerability Scanning



This bullet list 
with 

animations

Multiple checks to ensure secure code

Checks at design time

Checks at code time

Checks at code complete

Up Next
- Designing DevSecOps for Test, 

Release, and Operate SDLC phases

Summary


