
Attack Methods

Implementation Attacks

• Implementation attacks take on a different approach to the above for
discovering the secret key.

• Instead of attacking the mathematical properties of the algorithm these
form of attacks (also known as side channel attacks) take advantage of
the physical phenomena that occurs when a cryptographic algorithm is
implemented in hardware.

• Four side channel attacks are listed in the FIPS standard 140-2 “Security
Requirements for Cryptographic Modules”, Power Analysis, Timing
Analysis, Fault Induction and TEMPEST.

• Here we will be interested mainly in Differential Power Analysis (DPA)
as it applies to DES however we will have a brief look at Timing attacks.



Attack Methods

Differential Power Analysis

• Power Analysis is a relatively new concept but has proven to be quite
effective in attacking smartcards and similar devices.

• The smartcard is very susceptible to this form of attack mainly because
it applies little or no power filtering due to its small size.

• It was first demonstrated by Ernst Bovelander in 1997 but a specific
attack strategy was not given.

• A year later it was brought to the general public’s attention by Paul
Kocher and the Cryptographic Research team in San Francisco.

• Kocher et al. provided an attack strategy that would recover the secret
key from cryptographic systems running the DES algorithm.



Attack Methods

• This caused great concern amongst the smartcard community and a
search for an effective countermeasure began.

• To date a limited number of countermeasures have been proposed and
none are fully effective.

• The attacks work equally well on other cryptographic algorithms as shown
by Thomas Messerges et al. who presented a great deal of supplementary
research on the subject.

• Power analysis involves an analysis of the pattern of power consumed by
a cryptographic module as it performs its operations.

• The purpose of this pattern analysis is to acquire knowledge about causal
operations that is not readily available through other sources.



Attack Methods

• The power consumption will generally be different for each operation
performed (and even for the same operations with different data values).

• One of the causes of these variations is the transistor technology used to
implement the module.

• The transistors act as voltage controlled switches, and the power they
consume varies with the type of instructions being processed.

• For example, a conditional branch instruction appears to cause a lot
of noticeable fluctuations according to Kocher, and should therefore be
avoided if possible where secret keys are concerned.

• An example of a setup for a power analysis attack is shown in figure 3.



Attack Methods

• For smartcards and similar devices, the power can be measured across a
10− 50Ω resistor in series with the power or ground line of the specific
device.

• The resistor should be small enough so as not to interfere with the
operation of the circuit itself, but large enough to give easily observable
voltage fluctuations. It is better to put the resistor in series with the
ground of the device.

• If the power line is used then two scope probes would be needed and the
resultant waveforms substracted.



Attack Methods

Figure 3: An example setup for a Differential Power Analysis attack on a smartcard.



Attack Methods

• Although the setup in figure 3 will suffice for a smartcard it will generally
not be this simple for a complex cryptographic accelerator which probably
draws its power from the peripheral component interconnect (PCI)
backplane of a computer.

• Ideally, the attacker would wish to get as close as possible to the actual
chip performing the operations if a high signal to noise ratio (SNR) is to
be obtained.

• This might be more difficult than it first appears as information on which
of the boards numerous chips is actually running the algorithm may not
be readily available.

• Even if it were, the power pin of the chip would have to be physically
separated from the board to perform the attack and then reattached
once complete (if the attack were to go unnoticed).



Attack Methods

• Most tamper resistant devices would not permit this from happening.

• An example of a possible setup is shown in figure 4.

• In this case a PCI extender board is used to measure the power
fluctuations.

• The actual cryptographic board slots into the extender board and
therefore the power the cryptographic board draws from the PCI
backplane has to flow through the extender board which can be fitted
with some points that allow for measurement of the power.

• These can be home made or easily purchased.



Attack Methods

Figure 4: An example setup for a Differential Power Analysis attack on a high speed

cryptographic accelerator.



Attack Methods

• Assuming a setup such as those in figures 3 and 4 in which the algorithm
being executed is the Data Encryption Standard (DES) the attack can
proceed as follows.

• A method must be devised to produce a random set of J plaintext inputs
that can be sent to the cryptosystem for encryption.

• This method must be automated as the number of random plaintext
inputs will be quite large. Generally this will be the job of the PC
however on more complex cryptosystems it may be possible to upload
new firmware that will do the trick.

• On receiving these plaintext inputs, pij, 1 ≤ j ≤ J , the board will begin
to run its algorithm and draw varying amounts of power.



Attack Methods

• These power fluctuations can be sampled using a digital sampling
oscilloscope which should be capable of sampling at about 20-30 times
the clock frequency being used.

• There are two main reasons for this:

1. Possible that we might have multiple operations occuring in each clock
cycle. Also, operation of interest might only last a small fraction of
the clock cycle.

2. The more samples you have per cycle the less chance of noise caused
by a misalignment of samples.

• The waveforms observed for each pij can be represented as a matrix
wfjk, where 1 ≤ k ≤ K.

• The subscripts j and k are used to identify the plaintext number causing



Attack Methods

the waveform and the time sample point within that particular waveform,
respectively.

• A second column matrix, coj, can also be used to represent the ciphertext
output.

• In practice, each row of wfjk would probably be stored as a separate file
for ease of processing.

• Having captured each power waveform and ciphertext output, a function
known as a partitioning function, D(.), must now be defined.

• This function will allow division of the matrix wfjk into two sub-matrices
wf0pk and wf1qk containing P and Q rows respectively, with 1 ≤ p ≤ P
and 1 ≤ q ≤ Q where P + Q = J .



Attack Methods

• Provided that the inputs pij were randomly produced, then P = Q = J/2
as J → ∞ (i.e. the waveforms will be divided equally between the two
sets).

• The partitioning function allows the division of wfjk because it calculates
the value of a particular bit, at particular times, during the operation of
the algorithm.

• If the value of this bit is known, then it will also be known whether or
not a power bias should have occurred in the captured waveform.

• For a 1, a bias should occur, and for a 0 it shouldn’t.

• Separating the waveforms into two separate matrices (one in which the
bias occurred and another in which it didn’t) will allow averaging to
reduce the noise and enhance the bias (if it occurred).



Attack Methods

• For randomly chosen plaintexts, the output of the D(.) function will
equal either a 1 or 0 with probability 1

2 (this is just another statement of
the fact that P = Q = J/2 as J →∞).

• An example of a partitioning function is:

D(C1, C6,K16) = C1 ⊕ SBOX1(C6 ⊕K16) (8)

• Where SBOX1(.) is a function that outputs the target bit of S-box 1 in
the last round of DES (in this case it’s the first bit), C1 is the one bit of
coj that is exclusive OR’ed with this bit, C6 is the 6 bits of coj that is
exclusive OR’ed with the last rounds subkey and K16 is the 6 bits of the
last round’s subkey that is input into S-box 1.

• The value of this partitioning function must be calculated at some point
throughout the algorithm.



Attack Methods

• So, if the values C1, C6 and K16 can be determined, it will be known
whether or not a power bias occurred in each waveform.

• It is assumed that the values C1 and C6 can be determined and the value
of the subkey K16 is the information sought.

• To find this, an exhaustive search needs to be carried out. As it is 6 bits
long, a total of 26 = 64 subkeys will need to be tested.

• The right one will produce the correct value of the partitioning bit for
every plaintext input.

• However, the incorrect one will only produce the correct result with
probability 1

2.

• In this case, the two sets wf0pk and wf1qk will contain a randomly



Attack Methods

distributed collection of waveforms which will average out to the same
result (Provided the plaintext inputs are randomly chosen).

• The differential trace (discussed below) will thus show a power bias for
the correct key only.

• Of course it means that 64 differential traces are needed but this is a
vast improvement over a brute force search of the entire 56 bit key.

• Mathematically, the partitioning of wfjk can be represented as

wf0pk = {wfjk|D(.) = 0} (9)

and
wf1qk = {wfjk|D(.) = 1} (10)



Attack Methods

• Once the matrices wf0pk and wf1qk have been set up, the average of
each is then taken producing two waveforms awf0k and awf1k both
consisting of K samples.

• By taking the averages of each, the noise gets reduced to very small
levels but the power spikes in wf1pk will be reinforced.

• However, averaging will not reduce any periodic noise contained within
the power waveforms and inherent to the operations on the cryptographic
board.

• This can largely be eliminated by subtracting awf0pk from awf1qk (this
can be thought of as demodulating a modulated signal to reveal the
“baseband”, where the periodic noise is the “carrier”).

• The only waveform remaining will be the one with a number of bias



Attack Methods

points identifying the positions where the target bit was manipulated.

• This trace is known as a differential trace, ∆Dk.

• Again, in mathematical terms, the above can be stated as

awf0k =
1
P

∑
wfjk∈wf1

wfjk =
1
P

P∑
p=1

wf0pk (11)

and

awf1k =
1
Q

∑
wfjk∈wf0

wfjk =
1
Q

Q∑
q=1

wf1qk (12)



Attack Methods

• The differential trace ∆Dk is then obtained as

∆Dk = awf1k − awf0k (13)

• The last five equations can now be condensed into one:

∆Dk =

∑J
j=1 D(.)wfjk∑J

j=1 D(.)
−

∑J
j=1(1−D(.))wfjk∑J

j=1(1−D(.))
(14)

• As J → ∞, the power biases will average out to a value ε which will
occur at times kD - each time the target bit D was manipulated.

• In this limit, the averages awf0k and awf1k will tend toward the
expectation E{wf0k} and E{wf1k}, and equations 13 and 14 will



Attack Methods

converge to

E{wf1k} − E{wf0k} = ε, at times k = kD (15)

and
E{wf1k} − E{wf0k} = 0, at times k 6= kD (16)

• Therefore, at times k = kD, there will be a power bias ε visible in the
differential trace. At all other times, the power will be independent of
the target bit and the differential trace will tend towards 0.

• The above will only work if the subkey guess was correct. For all other
guesses the partitioning function will separate the waveforms randomly,
and equations 15 and 16 will condense to

E{wf1k} − E{wf0k} = 0, ∀k (17)



Attack Methods

• As mentioned above, 64 differential traces are needed to determine which
key is the correct one.

• Theoretically, the one containing bias spikes will allow determination of
the correct key however, in reality the other waveforms will contain small
spikes due to factors such as non-random choices of plaintext inputs,
statistical biases in the S-boxes and a non-infinite number of waveforms
collected.

• Generally however, the correct key will show the largest bias spikes and
can still be determined quite easily.

• The other 42 bits from the last round’s subkey can be determined by
applying the same method to the other 7 S-boxes.



Attack Methods

• A brute force search can then be used to obtain the remaining 8 bits of
the 56 bit key.

• NOTE: The same J power signals can be used for each S-box as the
different D functions re-order them accordingly.



Attack Methods

Timing Attacks

• A timing attack is somewhat analogous to a burglar guessing the
combination of a safe by observing how long it takes for someone
to turn the dial from number to number.

• We can explain the attack using the modular exponentiation algorithm
shown in figure 5, but the attack can be adapted to work with any
implementation that does not run in fixed time.

• In this algorithm, modular exponentiation is accomplished bit by bit, with
one modular multiplication performed at each iteration and an additional
modular multiplication performed for each 1 bit.



Attack Methods

square and mul(b, e, m)

{

d = 1;
for (k = N-1 downto 0)

{

d = (d × d) mod m;
if (e[k] == 1)

{

d = (d × b) mod m;

}

Return d;

}

Figure 5: Square and Multiply algorithm for Computing be mod (m) where e is N bits

long.



Attack Methods

• As Kocher points out in his paper, the attack is simplest to understand
in an extreme case.

• Suppose the target system uses a modular multiplication function that is
very fast in almost all cases but in a few cases takes musch more time
than an entire average modular exponentiation.

• The attack proceeds bit by bit starting with the leftmost bit e[N − 1].
Suppose that the first j bits are known (to obtain the entire exponent,
start with j = 0 and repeat the attack until the entire exponent is
known).

• For a given ciphertext, the attacker can complete the first j iterations of
the for loop.

• Operation of subsequent steps depends on the unkown exponent bit.



Attack Methods

• If the bit is set d = (d × b) mod m will be executed.

• For a few values of b and d, the modular multiplication will be extremely
slow, and the attacker knows which these are.

• Therefore, if the observed time to execute the decryption algorithm is
always slow when this particular iteration is slow with a 1 bit, then this
bit is assumed to be 1.

• If a number of observed execution times for the entire algorithm are fast,
then this bit is assumed to be 0.

• In practice, modular exponentiation implementations do not have such
extreme timing variations, in which the execution time of a single iteration
can exceed the mean execution time of the entire algorithm.



Attack Methods

• Nevertheless, there is enough variation to make this attack practical.

• Although the timing attack is a serious threat, there are simple counter
measures that can be used including the following:

– Constant exponentiation time: Ensure that all exponentiations take
the same amount of time before returning a result. This is a simple
fix but does degrade performance.

– Random delay: Better performance could be achieved by adding a
random delay to the exponentiation algorithm to confuse the timing
attack. Kocher point out that if defenders don’t add enough noise,
attackers could still succeed by collecting additional measurements to
compensate for the random delays.

– Blinding: Multiply the ciphertext by a random number before
performing exponentiation. This process prevents the attacker from
knowing what ciphertext bits are being processed inside the computer
and therefore prevents the bit-by-bit analsys essential to the timing



Attack Methods

attack.

• RSA Data Security incorportates a blinding feature into some of its
products. The private-key operation M = Cd mod n is implemented as
follows:

1. Generate a secret random number r between 0 and n− 1.
2. Compute C ′ = C(re) mod n, where e is the public exponent.
3. Comput M ′ = (C ′)d mod n with the ordinary RSA implementation.
4. Compute M = M ′r−1 mod n (where r−1 is the multiplicative inverse

of r mod n). It can be demonstrated that this is the correct result by
observing that red mod n = r mod n.

• RSA Data Security reports a 2 to 10% performance penalty for blinding.




