
THE SECURE SOCKETS LAYER (SSL)

The Secure Sockets Layer (SSL)

• Due to the fact that nearly all businesses have websites
(as well as government agencies and individuals) a large
enthusiasm exists for setting up facilities on the Web for
electronic commerce.

• Of course there are major security issues involved here
that need to be addressed.

• As businesses begin to see the threats of the Internet to
electronic commerce, the demand for secure web pages
grows.

• A number of approaches to providing Web security are
possible.

1

• The various approaches are similar in many ways but may
differ with respect to their scope of applicability and
relative location within the TCP/IP protocol stack.

• For example we can have security at the IP level making
it transparent to end users and applications.

• However another relatively general-purpose solution is to
implement security just above TCP.

• The foremost example of this approach is the Secure
Sockets Layer (SSL) and the follow-on Internet standard
known as Transport Layer Security (TLS).

• Here we look at SSL which was originated by Netscape.

2

Overview

• As mentioned, the Secure Sockets Layer (SSL) is a
method for providing security for web based applications.

• It is designed to make use of TCP to provide a reliable
end-to-end secure service.

• SSL is not a single protocol but rather two layers of
protocols as illustrated in figure 1.

• It can be seen that one layer makes use of TCP directly.
This layer is known as the SSL Record Protocol and
it provides basic security services to various higher layer
protocols.

3

• An independent protocol that makes use of the record
protocol is the Hypertext Transfer Protocol (HTTP)
protocol.

• Another three higher level protocols that also make use of
this layer are part of the SSL stack. They are used in the
management of SSL exchanges and are as follows:

1. Handshake Protocol.

2. Change Cipher Spec Protocol.

3. Alert Protocol.

4

Figure 1: SSL protocol stack.

5

SSL Record Protocol

• This protocol provides two services for SSL connections:

1. Confidentiality - using conventional encryption.

2. Message Integrity - using a Message Authentication
Code (MAC).

• In order to operate on data the protocol performs the
following actions (see figure 2):

• It takes an application message to be transmitted and
fragments it into manageable blocks. These block are
214 = 16, 384 bytes or less.

6

• These blocks are then optionally compressed which must
be lossless and may not increase the content length by
more than 1024 bytes.

• A message authentication code is then computed over the
compressed data using a shared secret key. This is then
appended to the compressed (or plaintext) block.

• The compressed message plus MAC are then encrypted
using symmetric encryption. Encryption may not increase
the content length by more than 1024 bytes, so that the
total length may not exceed 214 + 2048. A number of
different encryption algorithms are permitted.

• The final step is to prepend a header.

7

Figure 2: SSL Record Protocol Operation.

8

• The header consists of the following fields:

– Content type (8 bits) - The higher layer protocol used
to process the enclosed fragment.

– Major Version (8 bits) - Indicates major version of SSL
in use. For SSLv3, the value is 3.

– Minor Version (8 bits) - Indicates minor version in use.
For SSLv3, the value is 0.

– Compressed Length (16 bits) - The length in bytes of
the compressed (or plaintext) fragment.

9

• The overall format is shown in figure 3.

Figure 3: SSL record format.

• The “content type” above is one of four types; the three
higher level protocols given above that make use of the
SSL record, and a fourth known as “application data”.

10

Change Cipher Spec Protocol

• This consists of a single message which consists of a single
byte with the value 1.

• This is used to cause the pending state to be copied into
the current state which updates the cipher suite to be
used on this connection.

11

Alert Protocol

• This protocol is used to convey SSL-related alerts to the
peer entity.

• It consists of two bytes the first of which takes the values
1 (warning) or 2 (fatal).

• If the level is fatal SSL immediately terminates the
connection.

• The second byte contains a code that indicates the
specific alert.

12

Handshake Protocol

• This is the most complex part of SSL and allows the
server and client to authenticate each other and to
negotiate an encryption and MAC algorithm and
cryptographic keys to be used to protect data sent in an
SSL record.

• This protocol is used before any application data is sent.

• It consists of a series of messages exchanged by the client
and server, all of which have the format shown in figure 5.

13

• Each message has three fields:

1. Type (1 byte): Indicates one of 10 messages such as
“hello request” (see figure 4).

2. Length (3 bytes): The length of the message in bytes.

3. Content(≥ 0 byte): The parameters associated with
this message such version of SSL being used.

14

Figure 4: SSL Handshake protocol message types.

15

Figure 5: SSL record protocol payload.

16

Four Phases of Hanshake protocol

1. Establish security capabilities including protocol version,
session ID, cipher suite, compression method and initial
random numbers. This phase consists of the client hello
and server hello messages which contain the following
(for the client):

•Version: The highest SSL version understood by client

•Random: 32-bit timestamp and 28 byte nonce.

• Session ID: A variable length session identifier.

17

•CipherSuite: List of cryptoalgorithms supported by
client in decreasing order of preference. Both key
exchange and CipherSpec (this includes fields such as
CipherAlgorithm, MacAlgorithm, CipherType,
HashSize, Key Material and IV Size) are defined.

•Compression Method: List of methods supported by
client.

2. Server may send certificate, key exchange, and request
certificate it also signals end of hello message phase. The
certificate sent is one of a chain of X.509 certificates. The

18

server key exchange is sent only if required. A certificate
may be requested from the client if needs be by
certificate request.

3. Upon receipt of the server done message, the client
should verify that the server provided a valid certificate,
if required, and check that the server hello parameters
are acceptable. If all is satisfactory, the client sends one
or more messages back to the server. The client sends
certificate if requested (if none available then it sends a
no certificate alert instead). Next the client sends
client key exchange message . Finally, the client may

19

send certificate verification.

4. Change cipher suite and finish. The secure connection is
now setup and the client and server may begin to
exchange application layer data.

20

Figure 6: Handshake protocol action.

21

