python

Control Flow Statements in Python

Shouke Wei, Ph.D. Professor

Email: shouke.wei@gmail.com

Objective

« If Conditional Statement
« While Loop
« For Loop

1. Conditional Statement

e if..elif..else are conditional statements, which
» provide you with the particular conditions to execute code
» helps automate the decision making process

1.1 If condition

if condition:
expression

« the simplest form to make a decision based on whether the condition is true or not

In [3]: n = 296
if n % 2 == 0: # true
print('n is an even number')

n is an even number

1.2 if-else condition

if condition:
expression 1

else:
expression 2

» adds an additional step in the decision-making process
» The beginning of an if-else statement operates similar to a simple if statement; however,

« if the condition is false, instead of printing nothing, the indented expression under else will be printed
* An example:

In []: n = 287
if n% 2 = 0: # true
print('n is a even number') # true
else: # not true
print('n is a odd number')

1.3 if-elif-else condition

» The most complex of these three conditions
« there are several conditions

if condition:
expression 1
elif condition:
expression 2

else:
express n

« you can place as many elif conditions as necessary between the if condition and the else condition ™™

In []: saleFruit = ['Apple','Orange', 'Melon', 'Grape']
stockFruit = ['Apple', 'Orange’, 'Melon', 'Grape']

check 1if banana is on sale or in storehouse
if 'Banana' in saleFruit:
print('Banana is selling.')
elif 'Banana' in stockFruit:
print('Banana is in the storehouse')
else:
print('Banana is out of stock!")

2. The While Loops

2.1 while loop

while <condition>:
<statement(s)>

« Execute a set of statements as long as a condition is true, e.g.

In [5]: num = 10

while num > 0:
num -= 1 # num = num -1
print(num)

O R, NW,AUIO N OO

2.2 The while-else loops

while <condition>:
<statement(s)>

else:
<additional_statement(s)>

» The else statement will run a block of code once the condition is no longer true, e.g.

In[]J: n=1
while n < 7:
n+=1#n=n+1
print(n)
else:
print("n is no longer less than 7")

2.3 The while-if-else loops

In [6]: # guess the number

word = ' '
while word != 'big':
word = input('Please input a word with the first letter of b: ')
if word == 'big':
print('Great! You got it.')
else:

print('Sorry. It is not correct. Please guess it again.')
Please input a word with the first letter of b: yes
Sorry. It is not correct. Please guess it again.
Please input a word with the first letter of b: but
Sorry. It is not correct. Please guess it again.

Please input a word with the first letter of b: big
Great! You got it.

2.4 The break statement

» The break statement will stop the loop even if the while condition is still true, e.g.

In [1]: n =1

while n < 7:

n +=1
print(n)
if n == 4:
break
2
3
4

2.5 The Continue Statement

» The continue statement we can stop the current iteration, and continue with the next

In [2]:

In [7]:

In [8]:

n=1

while n < 7:
n +=1

if n ==
continue
print(n)

NOuviwiN

3. For Loops

3.1 For Loops
« Afor loop is used for iterating over a sequence (a list, a tuple, a dictionary, a set, or a string)

for iterating_var in sequence:
statements

fruitList = ['Apple', 'Cherry', 'Orange', 'Melon', 'Banana', 'Grape']

for items in fruitList:
print(items)

Apple
Cherry
Orange
Melon
Banana
Grape

3.2 The break Statement

» The break statement stops the loop before it would finish looping through all the items

fruitList = ['Apple’, 'Banana’, 'Cherry', 'Orange’, '"Melon', 'Grape']

for items in fruitList:
print(items)

if items == 'Orange':
break

Apple

Banana
Cherry
Orange

» Exit the loop when item is "Orange", which includes Orange
» The following example also exit the loop when item is "Orange", but "Orange" is not printed

In [9]:

In [10]:

In [12]:

In [13]:

fruitList = ['Apple’, 'Banana’, 'Cherry', 'Orange’, '"Melon', 'Grape']
for items in fruitlList:

if items == 'Orange':
break
print(items)

Apple
Banana
Cherry

3.3 The Continue Statement

« The continue statement stops the current iteration of the loop, and continue with the next
» It works as skiping an item

fruitList = ['Apple’, 'Banana’, 'Cherry', 'Orange’, '"Melon', 'Grape']

for items in fruitList:
if items == 'Orange':
continue
print(items)

Apple
Banana
Cherry
Melon
Grape

3.4 range() function

» returns a sequence of numbers, starting from 0 by default, and increments by 1 (by default), and ends at a specified
number

range(6) # not the values of © to 6, but the values @ to 5

for n in range(6):
print(n)

uuh wWNEO

« itis possible to specify the starting value by adding a parameter: range(2, 6), which means values from 2 to 6 (but not
including 6):

for n in range(2, 6):
print(n)

uih wnN

« itis possible to specify the increment value by adding a third parameter: range(2, 30, 3):

In [14]:

In [15]:

In [16]:

In [19]:

for n in range(2,10,2):
print(n)

0o ph~N

3.5 Else in for loops

» The else keyword in a for loop specifies a block of code to be executed when the loop is finished

fruitlList = ['Apple', 'Banana’, 'Cherry', 'Orange', '"Melon', 'Grape']

for items in fruitlList:
print(items)

else:
print("This is the end!")

Apple
Banana
Cherry
Orange
Melon
Grape
This is the end!

« If the loop breaks, the else block is not executed.

fruitList = ['Apple', 'Banana’, 'Cherry', 'Orange’, '"Melon', 'Grape']
for items in fruitlList:

if items == 'Orange':
break
print(items)

else:
print("This is the end!")

Apple
Banana
Cherry

3.6 Nested Loops

« A nested loop is a loop inside a loop
» The "inner loop" will be executed one time for each iteration of the "outer loop"

attributelList = ['Red', 'Big"', 'Sweet']
fruitlList = ['Apple', 'Banana’, 'Cherry']

for x in attributelList:
for y in fruitList:
print(x, y)

Red Apple
Red Banana
Red Cherry
Big Apple
Big Banana
Big Cherry
Sweet Apple
Sweet Banana
Sweet Cherry

