

Python String Formatting Methods

Shouke Wei, Ph.D. Professor

Email: shouke.wei@gmail.com

Objective
% formatting method
curly braces formatting method
f-strings formatting method

1. % formatting
an older method of string formatting that uses the % operator
the %s marker inserts a string, the %d marker inserts an integer,%f a float

1.1 One variable

In [19]:

1.2 More than one variable

In [18]:

1.3 A list

In [2]:

1.4 Format the number value
Format float decimal place

format a float with certain decimal places, such as 0.2, 0.22

Hello, Mike!

Jack is 20 years old.

A list: [5, 1, 8]

name = 'Mike'
print('Hello, %s!'% name)

name = 'Jack'
age = 20
​
print('%s is %d years old.' % (name,age))

alist = [5,1,8]
print("A list: %s" % alist)

In [3]:

2. Curly brace string formatting
You can insert more than one value.
The values can be numbers and other Python objects

2.1 Insert a string and number

In [1]:

2.2 Insert a complex data type
such as list, tuple, ect.

In [5]:

2.3 Format the number value

Format float decimal palce

format a float with certain decimal places, such as 0.2, 0.22

In [10]:

The result of 1 divided by 3 is 0.333333.

The result of 1 divided by 3 with one decimal place is 0.3.

The result of 1 divived by 3 with two decimal places is 0.33.

The result of 1 divided by 3 with three decimal places is 0.333.

Jack is 20 years old.

A list: [5, 1, 8].

The result of 1 dived by 3 is 0.3333333333333333.

The result of 1 dived by 3 with one decimalplace is 0.3.

The result of 1 dived by 3 withtwo decimal places is 0.33.

The result of 1 dived by 3 withthree decimal places is 0.333.

x = 1
y = 3
z = x/y
​
print('The result of %d divided by %d is %f.'%(x,y,z))
print('The result of %d divided by %d with one decimal '\
 'place is %.1f.'%(x,y,z))
print('The result of %d divived by %d with '\
 'two decimal places is %.2f.'%(x,y,z))
print('The result of %d divided by %d with '\
 'three decimal places is %.3f.'%(x,y,z))

name = 'Jack'
age = 20
​
print ('{} is {} years old.'.format(name, age))

alist = [5,1,8]
print("A list: {}.".format(alist))

x = 1
y = 3
z = x/y
​
print('The result of {} dived by {} is {}.'.format(x,y,z))
print('The result of {} dived by {} with one decimal'\
 'place is {:.1f}.'.format(x,y,z))
print('The result of {} dived by {} with'\
 'two decimal places is {:.2f}.'.format(x,y,z))
print('The result of {} dived by {} with'\
 'three decimal places is {:.3f}.'.format(x,y,z))

3. f-string method
a new method only after Python >= version 3.6
An f prefix at the beginning of the string tells Python to insert any currently valid variables into the string
The most practical one

3.1 One variable

In [6]:

3.2 More than one variable

In [74]:

3.3 f-string List

In [9]:

3.4 Formating floats

In [2]:

3.5 f-string Dictionaries

In [5]:

3.6 f-string expression

In [12]:

Hello, Jack.

Jack is 20 years old.

A list: [5, 1, 8]

1 is dived by 1 is 0.3333.

Apple is $3.0

Total cost of the apple is $15.0.

name = 'Jack'
​
print(f'Hello, {name}.')

name = 'Jack'
age = 20
​
print(f'{name} is {age} years old.')

alist = [5,1,8]
​
print(f"A list: {alist}")

x = 1
y = 3
z = x/y
​
print(f'{x} is dived by {x} is {z:.4f}.')

fruit = {
 'name': 'Apple',
 'price': '3.0'
}
​
print(f"{fruit['name']} is ${fruit['price']}")

apple_amount = 5 # kg
cost = 3.0 # Dollar per kg
​
print(f'Total cost of the apple is ${apple_amount * cost}.')

3.7 multiline f-string

In [14]:

3.8 f-string calling function

In [15]:

3.9 f-string objects
the objects must have either str() or repr() magic functions defined

In [16]:

3.10 f-string format width
The value may be filled with spaces or other characters if the value is shorter than the specified width
The example prints three columns. Each of the columns has a predefined width. The first column uses 0 to fill shorter
values.

In [4]:

Name: Jack Smith

Age: 25

Occupation: Professor

Sum of 5 and 7 is 12

John Doe is a gardener

01 1 1

02 4 8

03 9 27

04 16 64

05 25 125

06 36 216

07 49 343

08 64 512

09 81 729

10 100 1000

name = 'Jack Smith'
age = 25
occupation = 'Professor'
​
file = (
 f'Name: {name}\n'
 f'Age: {age}\n'
 f'Occupation: {occupation}'
)
print(file)

def additor(x, y):
​
 return x + y
​
a = 5
b = 7
​
print(f'Sum of {a} and {b} is {additor(a, b)}')

class User:
 def __init__(self, name, occupation):
 self.name = name
 self.occupation = occupation
​
 def __repr__(self):
 return f"{self.name} is a {self.occupation}"
​
u = User('John Doe', 'gardener')
​
print(f'{u}')

for x in range(1, 11):
 print(f'{x:02} {x*x:3} {x*x*x:4}')

In [9]:

 a

 ab

 abc

 abcd

s1 = 'a'
s2 = 'ab'
s3 = 'abc'
s4 = 'abcd'
​
print(f'{s1:>10}')
print(f'{s2:>10}')
print(f'{s3:>10}')
print(f'{s4:>10}')

