
X86/WIN32 REVERSE ENGINEERING CHEAT­SHEET

Registers Instructions

ADD <dest>, <source> Adds <source> to <dest>. <dest> may be a register or memory. <source> may GENERAL PURPOSE 32­BIT REGISTERS
EAX Contains the return value of a function call. Be a register, memory or immediate value.
ECX Used as a loop counter. "this" pointer in C++. CALL <loc> Call a function and return to the next instruction when finished. <proc>
EBX General Purpose may be a relative offset from the current location, a register or memory addr.
EDX General Purpose CMP <dest>, <source> Compare <source> with <dest>. Similar to SUB instruction but does not
ESI Source index pointer Modify the <dest> operand with the result of the subtraction.
EDI Destination index pointer DEC <dest> Subtract 1 from <dest>. <dest> may be a register or memory.
ESP Stack pointer DIV <divisor> Divide the EDX:EAX registers (64‐bit combo) by <divisor>. <divisor> may be
EBP Stack base pointer a register or memory.

SEGMENT REGISTERS INC <dest> Add 1 to <dest>. <dest> may be a register or memory.
CS Code segment JE <loc> Jump if Equal (ZF=1) to <loc>.
SS Stack segment JG <loc> Jump if Greater (ZF=0 and SF=OF) to <loc>.
DS Data segment JGE <loc> Jump if Greater or Equal (SF=OF) to <loc>.
ES Extra data segment JLE <loc> Jump is Less or Equal (SF<>OF) to <loc>.
FS Points to Thread Information Block (TIB) JMP <loc> Jump to <loc>. Unconditional.
GS Extra data segment JNE <loc> Jump if Not Equal (ZF=0) to <loc>.

MISC. REGISTERS JNZ <loc> Jump if Not Zero (ZF=0) to <loc>.
EIP Instruction pointer JZ <loc> Jump if Zero (ZF=1) to <loc>.

EFLAGS Processor status flags. LEA <dest>, <source> Load Effective Address. Gets a pointer to the memory expression <source>
STATUS FLAGS and stores it in <dest>.

ZF Zero: Operation resulted in Zero MOV <dest>, <source> Move data from <source> to <dest>. <source> may be an immediate value,
CF Carry: source > destination in subtract register, or a memory address. Dest may be either a memory address or a
SF Sign: Operation resulted in a negative # register. Both <source> and <dest> may not be memory addresses.
OF Overflow: result too large for destination MUL <source> Multiply the EDX:EAX registers (64‐bit combo) by <source>. <source> may

16­BIT AND 8­BIT REGISTERS be a register or memory.
The four primary general purpose registers (EAX, EBX, POP <dest> Take a 32‐bit value from the stack and store it in <dest>. ESP is incremented
ECX and EDX) have 16 and 8 bit overlapping aliases. by 4. <dest> may be a register, including segment registers, or memory.

EAX 32‐bit PUSH <value> Adds a 32‐bit value to the top of the stack. Decrements ESP by 4. <value>
AX 16‐bit may be a register, segment register, memory or immediate value.

AH AL 8‐bit ROL <dest>, <count> Bitwise Rotate Left the value in <dest> by <count> bits. <dest> may be a
register or memory address. <count> may be immediate or CL register.

ROR <dest>, <count> Bitwise Rotate Right the value in <dest> by <count> bits. <dest> may be a
The Stack

register or memory address. <count> may be immediate or CL register.

Low

 Empty

SHL <dest>, <count> Bitwise Shift Left the value in <dest> by <count> bits. Zero bits added to

Addresses

<‐ESP points here
the least significant bits. <dest> may be reg. or mem. <count> is imm. or CL.

 Local Variables SHR <dest>, <count> Bitwise Shift Left the value in <dest> by <count> bits. Zero bits added to

the least significant bits. <dest> may be reg. or mem. <count> is imm. or CL.

↑ EBP‐x
<‐EBP points here

SUB <dest>, <source> Subtract <source> from <dest>. <source> may be immediate, memory or a
↓ EBP+x Saved EBP register. <dest> may be memory or a register. (source = dest)‐>ZF=1,

 Return Pointer (source > dest)‐>CF=1, (source < dest)‐>CF=0 and ZF=0.
 Parameters TEST <dest>, <source> Performs a logical AND operation but does not modify the value in the <dest>
 Parent function's
 data

operand. (source = dest = 0)‐>ZF=1, SF = MSB(source AND dest).
XCHG <dest, <source> Exchange the contents of <source> and <dest>. Operands may be register

High Grand‐parent
 function's data

or memory. Both operands may not be memory.
Addresses XOR <dest>, <source> Bitwise XOR the value in <source> with the value in <dest>, storing the result

in <dest>. <dest> may be reg or mem and <source> may be reg, mem or imm.

Terminology and Formulas Assembly Language

Instruction listings contain at least a mnemonic, which Pointer to Raw Data Offset of section data within the executable file.
is the operation to be performed. Many instructions Size of Raw Data Amount of section data within the executable file.
will take operands. Instructions with multiple RVA Relative Virtual Address. Memory offset from the beginning of the executable.
operands list the destination operand first and the Virtual Address (VA) Absolute Memory Address (RVA + Base). The PE Header fields named
source operand second (<dest>, <source>). Assembler VirtualAddress actually contain Relative Virtual Addresses.
directives may also be listed which appear similar to Virtual Size Amount of section data in memory.
instructions. Base Address Offset in memory that the executable module is loaded.
ASSEMBLER DIRECTIVES ImageBase Base Address requested in the PE header of a module.
DB <byte> Define Byte. Reserves an explicit Module An PE formatted file loaded into memory. Typically EXE or DLL.

byte of memory at the current Pointer A memory address
location. Initialized to <byte> value. Entry Point The address of the first instruction to be executed when the module is loaded.

DW <word> Define Word. 2‐Bytes Import DLL functions required for use by an executable module.
DD <dword> Define DWord. 4‐Bytes Export Functions provided by a DLL which may be Imported by another module.
OPERAND TYPES RVA‐>Raw Conversion Raw = (RVA ‐ SectionStartRVA) + (SectionStartRVA ‐ SectionStartPtrToRaw)
Immediate A numeric operand, hard coded RVA‐>VA Conversion VA = RVA + BaseAddress
Register A general purpose register VA‐>RVA Conversion RVA = VA ‐ BaseAddress
Memory Memory address w/ brackets [] Raw‐>VA Conversion VA = (Raw ‐ SectionStartPtrToRaw) + (SectionStartRVA + ImageBase)

hi
de
01
.i
r

