Basic Static Analysis Lab Solution and Guide
level32.exe

SHORT ANSWERS

What compiler/packer was used?

"MS Visual C++ 8"

Is there anything interesting or unique about the structure of this binary?

The malware contains a resource named X86 which appears to be binary data.

How can you extract the embedded binary?

The resource can be extracted using "Resource Editor" in "CFF Explorer". The binary is XOR-encoded with the key
0x80. It can be decoded using CyberChef.

List any potential host-based indicators of this malware.

levell_payload.exe, “C:\helloworld_\FLARELABS\branches\MACC_Training\Materials\Basic Static
and Dynamic\Labs\levell\source\Level32Lab\Debug\level32.pdb”. The resource name of X86 can be
used to identify this sample.

List any potential network-based indicators of this malware.

A few of the initial NBIs are evil.mandiant.com as well as the unique URI /levell.mdt. Additionally, what
appears to be the User-Agent string "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;Trident/5.0)"
is also unique.

What might this program do?

level32.exe appears to be a launcher for an embedded encoded payload. The payload may be written to disk as
levell_payload.exe. The payload likely connects to a Command and Control (C2) server and sends information
about the infected host. It is possible the malware then downloads an additional payload, but more analysis is
needed to speculate further.

DETAILED ANALYSIS

What compiler/packer was used?
Open the file in "CFF Explorer". Observe "File Info" which indicates "Microsoft Visual C++ 8.0".

ey

Property Value
File Mame ChUsers\userDesktop'Labs\01_Basic Static and Dynamichlevel32.exe

File Type Portable Executable 32

File Info Microsoft Visual C++ 8.0 (Debug)

Figure 1: "CFF Explorer" "File Info" indicates compiler

Open PEID and DIE to check for packing. No packing is detected. The sample appears to have been compiled
using "Visual Studio".

& PEiD v0.95

Entrypoint: | 0002C53E

File Offset: |00002A3E

Linker Info: | 14.11

Microsoft Visual C++ &.0 [Debug]

File: |C:\Usersiuser\Desktop\Labs\01_Basic Static and Dynamiclevel32.exe | ...

EP Section:

Subsystem: |Win32 console ﬂ

text =]

First Bytes: [E9,A3,4D,00 | > |

IENERES

Multi Scan Task Viewer | Options About | Exit |
v Stay on top e | -=

Detect It Easy 2.05

File name:

C:/Usersfuser/Desktop/Labs/01_Basic Static and Dynamic/level32.exe

Scan Scripts Log

Type: PE Size: 970752 Entropy FLC = H
Export Import Resource Owerlay JMET PE
EntryPaint: 0002c63e = ImageBase: 00400000
MumberOfSections: Q0oa > SizeOfImage: 0011b000

linker Microsoft Linker (14, 11, Visual Studio 2017 15, 3*%)[EXE32,console] 57

Figure 2: PEID and DIE indicate no packing

Is there anything interesting or unique about the structure of this PE?

Observe the "Section Headers" in "CFF Explorer". The .rsrc (resource) section is disproportionally large
(0x81C00). The total size is 970752 bytes (0xEDOBO) — so by dividing the . rsrc size by the total (0x81C00/0xED00O),

it is confirmed that the .rsrc section comprises 55% of the entire unpacked binary.

Mame Virtual Size Virtual Address | Raw Size
Byte[8] Dword Dword Dword
texthss 00028458 00001000 00000000
Fext 00054606 00024000 00054800
Jrdata 0000B910 00085000 0000BADD
.data 0000234 00031000 00000EDD
Jadata 00000CFe 00034000 00000EDD
00cfyg 00000104 00035000 00000200
JSIC 00081BDO 00036000 00081 C00
Jeloc 00002FED 00118000 00003000

Figure 3: Section Headers shows large .rsrc section

Navigate to "Resource Editor", expand the RCData directory, and observe the resource X86. At first glance it appears
to be random binary data.

How can you extract the embedded binary?

There appear to be many repeating bytes ©x80. This could be key leakage — since any value XORed with zero is
itself, a single repeating byte can suggest a single-byte XOR key, in this case 9x80. Save the resource to disk so
the theory can be tested.

level3Z exe

=-C3) RCData .
L T [Ea Ry i o p =
-3 Conff Add Bitmap I
Add Icon '8 9 A B CT D E F A=cii
| 84 80 80 80 7F 7F 20 &0
Add Cursor | CO 80 80 280 280 230 20 &0
| 80 80 80 280 80 230 20 &0
| 80 80 80 20 280 21 20 &0
Add Custom Resource (Raw)) 21 38 81 CC 4D A1 D4 FB
Add Resource (Raw) ! E1 ED 40 E3 E1 EE EE EF
. A0 E9 EE A0 C4 CF D3 AD
Remove Resource (Raw) | A4 BO 80 20 80 80 &0 &0 izéé'@ =
B2 Ad Y6 76 62 Ad 7o 7o fedy T By by by
Replace Resource (Raw) | 0D CO 73 77 ED &4 76 76 | .huwoHyy. Aswibyy
Save Resource (Raw) v BB Ce 75 77 71 A4 76 76 CArwpOyysEuwgHyy
BB Ce Y2 77 Y0 A4 Te T6 wllswEEyyErypdyy
Properties B2 A4 77 TE 03 A4 7o TR Ay ibyyhbyy Loy
 CAR CT7 89 76 63 A4 Th 76 EC=wolyvEG | velyy
. D2 E9 E3 Ef 62 A4 76 76 ECtwcHrvlésshyy
Import Mew Resources Directory | 80 80 90 E& o0 80 80 oo Ii“i'“::i'%““
. | CA CD 74 80 80 80 80 BALIT TIEAtTDNINI
Import Mew Resources Directory (Delete Old One) | 58 51 SE 8B S0 30 85 30 L Inon
. | D4 96 80 80 80 90 20 20 IR
Find... | 80 90 80 80 80 82 80 &80 1 111
| 86 80 80 80 80 &80 &80 &80 i
Expand All | 80 80 80 80 83 &80 CO 01 T
| 80 80 90 80 80 90 80 &0 11 il
Collapse All | 80 80 80 80 80 20 20 &0 i
L R R N FRE] R R N L0 N R S R 0 I 5 I I AN ol O w N on TwT Oy N On AT s ml-mmm

Figure 4: Use "Resource Editor" to save resource binary to disk

Use CyberChef to decode the file. Remember to use the local instance of CyberChef so the data is not shared with
the public internet. Drag and drop the file into the Input pane within the CyberChef view. Select the operation XOR
and enter the key 80. Select BAKE!. Confirm the decoding is successful by observing PE artifact strings in the

Output window.

Recipe S BN Input lengen: 441,556 + [o] @ -
XOR Q n
x
geeu: HEX - Mame: level32_res
Size: 441,856 bytes
S'Chem; 4 Null Type: unknown
Standar -
presenving Loaded: 100%
time: 155ms
length: 441856 Im ra
DUtPUt lines: 278 B D m o
D A I e e e
............... = I! .LI!This program cannot
be run in DOS mode.
 JA {E
Ya$65a$66a%$60.@06+1965 . @6+m$ss . @0+89060; F6+A%60; F6+ES
603 Fo+0%00.@++6506068%+5.3060FG6+3%066FG
GAFOBFGEO+3F80R1Ichd%86. .. . v e e PE..L J@o[
STEP Pl M. Bevirrann °
Auto Bake, . .T........ A B et e et e

Figure 5: Using CyberChef to XOR-decode embedded binary

Open the repaired file in "CFF Explorer" and confirm that the file is a valid PE. If the file is a valid PE, "CFF
Explorer” will display the headers as well as file metadata such as "File Type", "File Info", and "PE Size". If not
valid, the "PE Size" entry will display "Not a Portable Executable".

FLARE

H shadyrabhbit.exe shady_res
2
Property Value
2 [File: shady
_ € = File Marme ChUsers\userDesktoptLabs\01_Basic Static and Dynamichshady_res
— =] Dos Header
=] Mt Headers File Type Portable Executable 32
j g;::;ds;a o File Info Microsoft Visual C++ 6.0 DLL
= Data Directories fx] File Size 95.53 KB (97827 bytes)
—— & Section Headers] PE Size 95.50 KB (97792 bytes)
—— |2 Export Directony
— | Import Directory Created Friday 23 October 2020, 08.54.23
— |0 Resource Directory Modified Friday 23 October 2020, 09.02.39
— |2 Relocation Directory
- '*Eﬁddm Converter Accessed Friday 23 October 2020, 08.54.23
—) Dependency Walker MD5 6BF28F3600CCDA73D02094E9BD0119A0
— %, Hex Editor
- -."l.r Identifier SHA-1 A351962DFCCFRFCA0TT6FFSFASCET237B909245CD
&, aas

Figure 6: "CFF Explorer" indicates PE is valid ("PE Size is populated”, and headers are displayed)

List any potential host-based indicators of this malware

Run FLOSS on level32.exe ("floss input_filename > output_filename"). Most of the strings are common,
including PE artifacts, imports, C++ runtime, and statically linked library strings. Learning which strings are common
is a practice that develops with practice. StringSifter can be helpful ("floss -q input_filename | rank_strings
> output_filename™") if the output is overwhelming. In this case, the only unique and/or relevant strings are:

XOR X86 failed!

explorer.exe

levell_payload.exe

C:\helloworld \FLARELABS\branches\MACC_Training\Materials\Basic Static and
Dynamic\Labs\levell\source\Level32Lab\Debug\level32.pdb

Now run FLOSS on the extracted payload. There are many strings — the most relevant are displayed here.

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;Trident/5.0)
evil.mandiant.com
/levell.mdt

POST

%s %d core %1lu MB
host=

net=

WinNT 3.51

WinNT 4.0
Workstation

Server Standard
Server Enterprise
Windows

2000

XP Professional x64
Home Server

Windows Server 2003 R2

Server 2003

Vista

Server 2008

Server 2008 R2

user=

Content-Type: application/x-www-form-urlencoded

There are three potential host-based indicators - explorer.exe, levell payload.exe, and

C:\helloworld_ \FLARELABS\branches\MACC_Training\Materials\Basic Static and
Dynamic\Labs\levell\source\Level32Lab\Debug\level32.pdb. There is not enough information at this point
to understand how explorer.exe is used since it is a common Windows process. levell payload.exe,
however, is relatively unique. It is possible the payload, once decoded, can be written to this filename. The . pdb
path represents a program database file that may have been created when the malware was compiled. Microsoft
compilers can store debugging information in this file. We do not have the file, but the path is a unique indicator.

List any potential network-based indicators of this malware

Looking at the strings listed previously, it seems the malware may connect to a C2 server at evil.mandiant.com
and request the file levell.mdt via HTTP POST request. It may use the HTTP User-Agent "Mozilla/4.0
(compatible; MSIE 7.0; Windows NT 6.0;Trident/5.0)". Speculating further, it seems possible the malware
may take a system survey, including information about the operating system version, hostname, network, and
username, and send the information within the HTTP query string. The User-Agent string is particularly interesting
because it includes a possible error/formatting inconsistency. The final semicolon is not followed by a space like
the previous instances. This is likely a typo by the malware author which renders this User-Agent to be unique,
making it a useful indicator of compromise.

What might this program do?

Run capa on the decoded payload.

C:sUserssusersDesktopsLabssBl_Basic Static and DynamicXcapa level3d2_res_decoded
2557 functions [B@:27, 22.95 functionsss]

i md5

| £252hbh2dabale5c57?ca?e54f AheblAdd
i path i leveld2 yes decoded

ATT&CK Tactic

ATT&CK Technigue

DEFENSE EUASION

UirtualizationsSandbox Evasion::System Checks [T1497.8611

DISCOUERY i File and Directory Discovery [T18831

i System Information Discovery [T18821]
EXECUTION ! Shared Modules [T112%1]
CAPABILITY i NAMESPACE

send data

connect to HITP server

create HTTP request

send HITP reguest

initialize Winsock library

contain a resource (.psprc) section
accept command line arguments

query environment variabhle (2 matches?
set environment variahbhle (3 matches?
enumerate files via kernel32 functions
write file (8 matches)

get memory capacity

print debugy messages (3 matches)
resolve DNS

get hostname (2 matches?

get system information {2 matches?

get 05 version

terminate process (3 matches?

link function at runtime

parse PE header (% matches)

execute anti—UM instructions <6 matches?

anti—analysisz/anti—vns/vm—detection
communication
communicationshttpsclient
communicationshttpsclient
communication~http-client
communicationssocket
executahlespessection/rsrc
host—interactionscli
host—interactionsenvironment—variable
host—interactionsenvironment—variable
hozt—interactionsfile—systemsfiles~1list
host—interactions/file—system/write
host—interactionshardware memory
host—interaction/log debug write—event
host—interactionsnetwork-/dnsz- resolue
hoszst—interactionsos hoztname
host—interactionsos/info
host—interactionsos/version
host—interactionsprocess- terminate
linking/runtime—linking

load—code/pe

Figure 7: capa output on decoded payload

level32.exe appears to be a launcher for an embedded encoded payload. The payload may be written to disk as
levell payload.exe. The payload likely connects to a C2 server and sends information about the infected host.
It is possible the malware then downloads an additional payload, but more analysis is needed to speculate further.

