

1

Basic Static Analysis Lab Solution and Guide

level32.exe

SHORT ANSWERS

What compiler/packer was used?

"MS Visual C++ 8"

Is there anything interesting or unique about the structure of this binary?

The malware contains a resource named X86 which appears to be binary data.

How can you extract the embedded binary?

The resource can be extracted using "Resource Editor" in "CFF Explorer". The binary is XOR-encoded with the key

0x80. It can be decoded using CyberChef.

List any potential host-based indicators of this malware.

level1_payload.exe, “C:\helloworld_\FLARELABS\branches\MACC_Training\Materials\Basic Static

and Dynamic\Labs\level1\source\Level32Lab\Debug\level32.pdb”. The resource name of X86 can be

used to identify this sample.

List any potential network-based indicators of this malware.

A few of the initial NBIs are evil.mandiant.com as well as the unique URI /level1.mdt. Additionally, what

appears to be the User-Agent string "Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;Trident/5.0)"

is also unique.

What might this program do?

level32.exe appears to be a launcher for an embedded encoded payload. The payload may be written to disk as

level1_payload.exe. The payload likely connects to a Command and Control (C2) server and sends information

about the infected host. It is possible the malware then downloads an additional payload, but more analysis is

needed to speculate further.

hi
de
01
.i
r

2

DETAILED ANALYSIS

What compiler/packer was used?

Open the file in "CFF Explorer". Observe "File Info" which indicates "Microsoft Visual C++ 8.0".

Figure 1: "CFF Explorer" "File Info" indicates compiler

Open PEiD and DIE to check for packing. No packing is detected. The sample appears to have been compiled

using "Visual Studio".

hi
de
01
.i
r

3

Figure 2: PEiD and DIE indicate no packing

Is there anything interesting or unique about the structure of this PE?

Observe the "Section Headers" in "CFF Explorer". The .rsrc (resource) section is disproportionally large

(0x81C00). The total size is 970752 bytes (0xED000) – so by dividing the .rsrc size by the total (0x81C00/0xED000),

it is confirmed that the .rsrc section comprises 55% of the entire unpacked binary.

hi
de
01
.i
r

4

Figure 3: Section Headers shows large .rsrc section

Navigate to "Resource Editor", expand the RCData directory, and observe the resource X86. At first glance it appears

to be random binary data.

How can you extract the embedded binary?

There appear to be many repeating bytes 0x80. This could be key leakage – since any value XORed with zero is

itself, a single repeating byte can suggest a single-byte XOR key, in this case 0x80. Save the resource to disk so

the theory can be tested. hi
de
01
.i
r

5

Figure 4: Use "Resource Editor" to save resource binary to disk

Use CyberChef to decode the file. Remember to use the local instance of CyberChef so the data is not shared with

the public internet. Drag and drop the file into the Input pane within the CyberChef view. Select the operation XOR

and enter the key 80. Select BAKE!. Confirm the decoding is successful by observing PE artifact strings in the

Output window.

hi
de
01
.i
r

6

Figure 5: Using CyberChef to XOR-decode embedded binary

Open the repaired file in "CFF Explorer" and confirm that the file is a valid PE. If the file is a valid PE, "CFF

Explorer" will display the headers as well as file metadata such as "File Type", "File Info", and "PE Size". If not

valid, the "PE Size" entry will display "Not a Portable Executable".

hi
de
01
.i
r

7

Figure 6: "CFF Explorer" indicates PE is valid ("PE Size is populated", and headers are displayed)

List any potential host-based indicators of this malware

Run FLOSS on level32.exe ("floss input_filename > output_filename"). Most of the strings are common,

including PE artifacts, imports, C++ runtime, and statically linked library strings. Learning which strings are common

is a practice that develops with practice. StringSifter can be helpful ("floss -q input_filename | rank_strings

> output_filename") if the output is overwhelming. In this case, the only unique and/or relevant strings are:

XOR X86 failed!
explorer.exe
level1_payload.exe
C:\helloworld_\FLARELABS\branches\MACC_Training\Materials\Basic Static and
Dynamic\Labs\level1\source\Level32Lab\Debug\level32.pdb

Now run FLOSS on the extracted payload. There are many strings – the most relevant are displayed here.

Mozilla/4.0 (compatible; MSIE 7.0; Windows NT 6.0;Trident/5.0)
evil.mandiant.com
/level1.mdt
POST
%s %d core %llu MB
host=
net=
WinNT 3.51
WinNT 4.0
Workstation
Server Standard
Server Enterprise
Windows
2000
XP Professional x64
Home Server

hi
de
01
.i
r

8

Windows Server 2003 R2
Server 2003
Vista
Server 2008
Server 2008 R2
user=
Content-Type: application/x-www-form-urlencoded

There are three potential host-based indicators - explorer.exe, level1_payload.exe, and

C:\helloworld_\FLARELABS\branches\MACC_Training\Materials\Basic Static and

Dynamic\Labs\level1\source\Level32Lab\Debug\level32.pdb. There is not enough information at this point

to understand how explorer.exe is used since it is a common Windows process. level1_payload.exe,

however, is relatively unique. It is possible the payload, once decoded, can be written to this filename. The .pdb

path represents a program database file that may have been created when the malware was compiled. Microsoft

compilers can store debugging information in this file. We do not have the file, but the path is a unique indicator.

List any potential network-based indicators of this malware

Looking at the strings listed previously, it seems the malware may connect to a C2 server at evil.mandiant.com

and request the file level1.mdt via HTTP POST request. It may use the HTTP User-Agent "Mozilla/4.0

(compatible; MSIE 7.0; Windows NT 6.0;Trident/5.0)". Speculating further, it seems possible the malware

may take a system survey, including information about the operating system version, hostname, network, and

username, and send the information within the HTTP query string. The User-Agent string is particularly interesting

because it includes a possible error/formatting inconsistency. The final semicolon is not followed by a space like

the previous instances. This is likely a typo by the malware author which renders this User-Agent to be unique,

making it a useful indicator of compromise.

What might this program do?

Run capa on the decoded payload. hi
de
01
.i
r

9

Figure 7: capa output on decoded payload

level32.exe appears to be a launcher for an embedded encoded payload. The payload may be written to disk as

level1_payload.exe. The payload likely connects to a C2 server and sends information about the infected host.

It is possible the malware then downloads an additional payload, but more analysis is needed to speculate further.

hi
de
01
.i
r

