

Wi-Fi Fundamental Principles

<u>ine.com</u>

CCIE #4923

 \bowtie

kbogart@ine.com

@keithbogart1

linkedin.com/in/keith-bogart-2a75042

CCIE Routing & Switching

Course Objectives

- + To help you gain familiarity with basic Wi-Fi concepts, terminology and functionality.
- + To provide an overview of how Radio Frequencies can be used to encode data, possible problems with Wi-Fi signal propagation, and how to effectively implement Wi-Fi channels when designing a WLAN.

Wi-Fi Defined

<u>ine.com</u>

Topic Overview

- + What Is Wi-Fi?
- + Wi-Fi Standardization

What Is Wi-Fi?

- Wi-Fi is not an acronym
- Manipulation of electromagnetic radiation to encode data
 - + Otherwise known as "Radio Frequencies"
- + Sometimes called "Wireless Ethernet"...but this is wrong:
 - + Totally different framing than Ethernet
 - Totally different method for detecting collisions

Wi-Fi Standardization

- + Wi-Fi standardization done by the IEEE 802.11 Working Group.
- + Wi-Fi standardization broken into two sub-categories
 - + PHY (Physical Layer)
 - + MAC (Media Access Control Layer)
- + Each letter after 802.11 represents an amendment to the original Wi-Fi standard:
 - + Original 802.11 = 1997
 - + 802.11b = 1999
 - + 802.11n = 2009

802.11 PHY Standards

802.11 Clause	Frequency (GHz)	Max Theoretical Data Rate	Date	Notes
802.11	2.4	2 Mbps	1997	
802.11a	5	54 Mbps	1999	
802.11b	2.4	11 Mbps	1999	
802.11g	2.4	54 Mbps	2003	
802.11n	2.4 / 5	600 Mbps	2009	
802.11ac	5	7 Gbps	2013	Also called "Wi-Fi5"
802.11ax	2.4 / 5	14 Gbps	January 2020 (estimate)	Also called, "Wi-Fi6"

Thanks for Watching!

Wi-Fi Components

Topic Overview

+ Wi-Fi Components

Wi-Fi Components - Clients

- + Clients (i.e. Stations)
 - + Endpoint for data
 - + Wi-Fi data does not pass through a client

- + Power source
 - + Battery
 - + AC
- + Quantity and types of antennas
 - + More antennas = faster Wi-Fi
- + Quantity of types of transceivers
 - + Some clients don't support newer 802.11 standards

Wi-Fi Components – Access Points

- + APs (i.e. Access Point)
 - + Consolidation point for Clients
 - + Bridges Wireless and Wired domains

- + AP differentiators
 - + Centrally Managed ("Lightweight")
 - + Individually Managed ("Autonomous" or "Standalone")
 - + Quantities and Types of transceivers (2.4GHz, 5GHz)
 - + Quantities and Types of antennas
 - + Indoor or Outdoor
 - + Enhanced and proprietary features

Wi-Fi Components - Controllers

- + Controllers
 - + Central point of management for groups of Access Points
 - + Control Wi-Fi access for Clients
- + Controller differentiators
 - + Quantity of Wi-Fi Clients supported
 - + Features available
 - + Appliance or Cloud-based
 - + Type & quantity of uplink interfaces

Thanks for Watching!

Wi-Fi Network Types & Terminology

<u>ine.com</u>

Topic Overview

- + Types of Wi-Fi Networks
- + Wi-Fi Definitions

Types Of Wi-Fi Networks

- + Ad-Hoc
 - + Wi-Fi Clients communicate directly, point-to-point
 - No Access Points involved
 - + Infrequently used

- + Infrastructure
 - + Integration of an Access Point to coordinate Wi-Fi usage among multiple Clients.

Types Of Wi-Fi Networks

- + Mesh
 - + Access Points daisy-chained together
 - + Client connects to one Access Point
 - Client's data is relayed (via Wi-Fi) from one AP to another until it reaches the wired network
 - + Typically used:
 - + Outdoor environments
 - Environments lacking wired Ethernet connectivity

To wired network

Wi-Fi Definitions

- + BSS
 - + Basic Service Set
 - + A single Access Point and its coverage area
- + BSSID
 - + ID (MAC) of the Access Point
- + SSID
 - + Service Set Identifier
 - + Configurable name of the WLAN

Wi-Fi Definitions

- + Distribution System (DS): The wired network
- Extended Service Set (ESS): A collection of Access Points connected to the same DS and offering the same WLAN (SSID)
- + Extended Service Set ID (ESSID): Same as SSID

Thanks for Watching!

Radio Frequency Explained

<u>ine.com</u>

Topic Overview

- + What Is Frequency?
- + What Is Radio Frequency?
- + ISM Bands

What Is Frequency?

- Frequency = a measurement of how often something changes over a given time interval
- + Hertz
 - + No...not the car rental company
 - + A measurement of how frequently something changes over 1-second
 - + 1Hz = 1 change/cycle per second

What Is Radio Frequency?

- Electro Magnetic Radiation (EMR)
 - + Radiation that has both electrical and magnetic properties
 - + Requires no medium in order to propagate
 - + Even propagates through the vacuum of space!
 - + EMR has a detectable waveform (oscillates)
 - + The cycling of this waveform is measured in Hertz
 - + Radio Frequency = The measurement of the oscillation of EMR

ISM Bands

- EMR oscillates at certain frequencies
- All EMR frequency bands have been given labels
- ISM Bands (assigned by U.S. FCC)
 - + Unlicensed bands for Industrial, Scientific and Medical use

Thanks for Watching!

Wi-Fi Modulation Techniques

<u>ine.com</u>

Topic Overview

- + What Is Modulation?
- + RF Frequency
- + Wavelength
- + Amplitude
- + Phase

What Is Modulation?

- + Radio Frequency (i.e. Electro Magnetic Radiation) has several different, descriptive properties.
- + These properties can be artificially changed over time to encode data.
- + This process is called "Modulation"
- + So what are the aspects of RF that can be modulated?

RF Frequency

+ Frequency

+ The greater the frequency, the more data that can be encoded onto a Wi-Fi signal

+ Frequency modulation (FM) involves modifying the frequency of a signal to encode data

- + RF measures changes that occur in millions or billions of Hz
 - + 2.4GHz = 2,400,000,000 oscillations per second

Wavelength

+ Wavelength

- + Measured in meters
- Wavelength is related to frequency
- Inversely proportional to frequency
 - + The higher the frequency, the shorter the wavelength
 - + The longer the wavelength, the better a signal propagates through things

Amplitude

+ Amplitude

- + The strength of the signal, a measurement of power
- + Amplitude can be modulated to encode data

- + RF amplitude weakens greatly over distance and as it passes through objects
- This is called Attenuation

Phase

+ Phase

- + A comparison of the waveform between two RF signals
- At the moment of comparison, two waveforms that are identical are considered to be 100% in phase
- The phase of two RF waveforms can be intentionally modified to encode data

Thanks for Watching!

Radio Frequency Propagation

<u>ine.com</u>

Topic Overview

- + Overview Of RFPropagation Problems
- + Absorption
- + Reflection & Refraction
- + Diffraction & Scattering
- + Free Space Path Loss
- + Multipath

Propagation Problems

- + As RF propagates away from the transmitter, there are several situations which could cause it to:
 - + Severely attenuate
 - + Be completely blocked
 - + Be reflected to a different direction

Absorption

+ Absorption

- + Some materials can absorb RF energy
- Materials can either completely absorb RF energy, or severely attenuate it
 - Rock and stone
 - + Water
 - + Drywall
 - + Your body

RF Absorption Rates by Common Materials

Material	Absorption Rate
Plasterboard/drywall	3–5 dB
Glass wall and metal frame	6 dB
Metal door	6–10 dB
Window	3 dB
Concrete wall	6–15 dB
Block wall	4–6 dB

CWNA Certified Wireless Network Administrator Official Study Guide

Reflection & Refraction

Reflection

- + Materials that reflect RF energy into a different direction, or even back to the source
- + RF energy is not absorbed into the material at all
 - + Metal
 - + Bodies of water

+ Refraction

- + The bending of a wave as it passes through objects of different density (i.e. from air into glass)
- + RF energy is emitted in a different direction once it has passed through
- + Different materials have different refractive indexes

Diffraction & Scattering

Diffraction

- + The bending and spreading around of an RF signal when it encounters an obstruction
- + Hills or buildings can cause this for Wi-Fi
- + Creates RF shadows on the other side of the object, which cause dead coverage zones or degraded signals

+ Scattering

- + Similar to refraction, but on a larger scale
- + Unpredictable and causes Wi-Fi signal to scatter in all directions
- + Can be caused by smog, dust, tree foliage and humidity

Free Space Path Loss

- FSPL = The amount of RF energy lost as a signal travels through the air
- + Can be calculated

$$\text{FSPL}(dB) = 20 \log_{10}(d) + 20 \log_{10}(f) + 92.45$$

Loss is relative to frequency and distance

Multipath

- + As an RF signal (wave) is transmitted away from a transmitter, it will expand and encounter multiple objects on its way to the receiver
 - + When an RF signal is reflected off an object, multiple wavefronts are created
 - + As a result of these new duplicate wavefronts, there are multiple wavefronts that reach the receiver, each taking a different path
 - + Copies of the original signal are delayed as they reach the receiver
- + The more metal that is in your environment, the more multipath you will experience

Multipath

- Effects of multipath
 - + Data corruption
 - + Signal nulling
 - + Increased signal amplitude
 - + Decreased signal amplitude
- Utilizing multiple antennas on the receiver can reduce the negative effects of multipath

Thanks for Watching!

RF Channels

<u>ine.com</u>

Topic Overview

- + What Is A Wi-Fi Channel?
- + Wi-Fi Channel Bandwidth
- + Wi-Fi Bandwidth Example

What Is A Wi-Fi Channel?

- + A Wi-Fi channel number is actually a collection of different frequencies working together
- + For example:
 - + Channel-1 in the 2.4GHz space consists of all frequencies from:
 - + 2.401 GHz through...
 - + 2.423 Ghz
 - + All of these frequencies can be modulated differently (at the same time) to encode data

Wi-Fi Channel Bandwidth

Unlicensed Wi-Fi operates within the FCC ISM Bands

- + Within each band a single Wi-Fi channel can consume:
 - + 20MHz of band width (802.11b)
 - + 40MHz of band width (802.11n)
 - + 80MHz of band width (802.11ac)
 - + 160MHz of band width (802.11ax)

Wi-Fi Bandwidth Example

+ A Wi-Fi channel number is allocated at the center-point of each 22MHz bandwidth spread

Thanks for Watching!

Planning For RF Channel Implementation

ine.com

Topic Overview

- + Non-Overlapping Channels
- + Wi-Fi Channel Design
- + What About 40MHz?
- + U-NII
- Utilizing U-NII For Wider
 Bandwidth

Non-Overlapping Channels

+ In an environment with multiple BSS's, channels must be selected that don't overlap

Wi-Fi Channel Design

- + Given the following graphic/topology...what Wi-Fi channel should be implemented for:
 - + BSS-A?
 - + BSS-B?
 - + BSS-C?

What About 40MHz?

- + 802.11n (and subsequent 802.11 protocols) made it possible to select channels that were 40MHz wide
- + This allowed for faster speeds/datarates
- + Channel overlap becomes a problem in the 2.4GHz space

+ The solution? 5GHz U-NII bands!

U-NII

- Unlicensed National Information Infrastructure
- Divides the 5GHz spectrum into four ranges (U.S.):
 - + Each range contains several 20MHz-wide channels

Utilizing U-NII For Wider Bandwidth

- Newer Wi-Fi Standards (since 802.11n) have supported wider channels for faster datarates
 - + 802.11n supports up to 40MHz channels
 - + 802.11ac supports up to 160MHz channels (these would cross

U-NII boundaries)

U-NII(Low)

U-N I-2A
(M d)
40
MHz

3
6
4
4
4
8
5
5
6
6
6
4
80
MHz

Thanks for Watching!

RF Channel Implementation - Demonstration

ine.com

Topic Overview

+ RF Channel Implementation Demonstration

Thanks for Watching!