

Packet Tracer: configuración del switching de capa 3 y routing entre redes VLAN

Topología

Tabla de asignación de direcciones

Dispositivo	Interfaz	Dirección IP	Máscara de subred
MLS	VLAN 10	192.168.10.254	255.255.255.0
	VLAN 20	192.168.20.254	255.255.255.0
	VLAN 30	192.168.30.254	255.255.255.0
	VLAN 99	192.168.99.254	255.255.255.0
	G0/2	209.165.200.225	255.255.255.252
PC0	NIC	192.168.10.1	255.255.255.0
PC1	NIC	192.168.20.1	255.255.255.0
PC2	NIC	192.168.30.1	255.255.255.0
PC3	NIC	192.168.30.2	255.255.255.0
PC4	NIC	192.168.20.2	255.255.255.0
PC5	NIC	192.168.10.2	255.255.255.0
S1	VLAN 99	192.168.99.1	255.255.255.0
S2	VLAN 99	192.168.99.2	255.255.255.0
S3	VLAN 99	192.168.99.3	255.255.255.0

Objetivos

- Parte 1. Configurar el switching de capa 3
- Parte 2. Configurar el routing entre redes VLAN

Aspectos básicos/situación

Un switch de multicapa, como Cisco Catalyst 3560, es capaz de hacer switching de capa 2 y routing de capa 3. Una de las ventajas de utilizar un switch de multicapa es esta doble funcionalidad. Un beneficio para una pequeña o mediana empresa sería la posibilidad de comprar un solo switch de multicapa en lugar de dispositivos de red de switching y routing separados. Entre las capacidades de un switch de multicapa, se incluyen la capacidad de enrutarse de una red VLAN a otra mediante varias interfaces virtuales de switches (SVI, switched virtual interfaces), así como también la capacidad de convertir un puerto de switch de capa 2 a una interfaz de capa 3.

Nota: Los switches utilizados en esta práctica de laboratorio son un Cisco Catalyst 3560 con Cisco IOS versión 12.2(37) (advipservicesk9) y switches Cisco Catalyst 2960 con Cisco IOS versión 15.0(2) (imagen lanbasek9). Se pueden utilizar otros switches y otras versiones de Cisco IOS. Según el modelo y la versión de Cisco IOS, los comandos disponibles y los resultados que se obtienen pueden diferir de los que se muestran en las prácticas de laboratorio.

Nota: Asegúrese de que los switches se hayan borrado y no tengan configuraciones de inicio. Si no está seguro, consulte al instructor.

Parte 1: Configurar el switching de capa 3

En la parte 1, configurará el puerto Gigabit Ethernet 0/2 en el switch de multicapa (multilayer switch, MLS) como puerto enrutado y comprobará que puede hacer ping a otra dirección de la capa 3.

 a. En el MLS, configure G0/2 como puerto enrutado y asigne una dirección IP según la tabla de asignación de direcciones.

```
MLS(config) # interface g0/2
MLS(config-if) # no switchport
MLS(config-if) # ip address 209.165.200.225 255.255.255.252
```

b. Compruebe la conectividad a **Cloud** haciendo ping a 209.165.200.226.

```
MLS# ping 209.165.200.226

Type escape sequence to abort.

Sending 5, 100-byte ICMP Echos to 209.165.200.226, timeout is 2 seconds: !!!!!

Success rate is 100 percent (5/5), round-trip min/avg/max = 0/0/0 ms
```

Parte 2: Configurar el routing entre redes VLAN

Paso 1: Agregar redes VLAN.

Agregue redes VLAN al MLS según la siguiente tabla.

Número de VLAN	Nombre de la VLAN
10	Personal
20	Estudiante
30	Cuerpo docente

Paso 2: Configurar SVI en el MLS.

Configure y active la interfaz SVI para las redes VLAN 10, 20, 30 y 99 según la tabla de asignación de direcciones. A continuación, se muestra la configuración de la red VLAN 10.

```
MLS(config) # interface vlan 10
MLS(config-if) # ip address 192.168.10.254 255.255.255.0
```

Paso 3: Habilitar el routing.

- a. Utilice el comando **show ip route**. ¿Hay alguna ruta activa?
- b. Introduzca el comando ip routing para habilitar el routing en el modo de configuración global.

```
MLS(config) # ip routing
```

c. Use el comando show ip route para comprobar que el routing esté habilitado.

```
MLS# show ip route
```

```
Codes: C - connected, S - static, I - IGRP, R - RIP, M - mobile, B - BGP
D - EIGRP, EX - EIGRP external, O - OSPF, IA - OSPF inter area
N1 - OSPF NSSA external type 1, N2 - OSPF NSSA external type 2
E1 - OSPF external type 1, E2 - OSPF external type 2, E - EGP
i - IS-IS, L1 - IS-IS level-1, L2 - IS-IS level-2, ia - IS-IS inter area
* - candidate default, U - per-user static route, o - ODR
P - periodic downloaded static route
```

```
C 192.168.10.0/24 is directly connected, Vlan10
C 192.168.20.0/24 is directly connected, Vlan20
C 192.168.30.0/24 is directly connected, Vlan30
C 192.168.99.0/24 is directly connected, Vlan99
209.165.200.0/30 is subnetted, 1 subnets
C 209.165.200.224 is directly connected, GigabitEthernet0/2
```

Paso 4: Verificar la conectividad de extremo a extremo.

- a. En la PC0, haga ping a la PC3 o al MLS para comprobar la conectividad en la red VLAN 10.
- b. En la PC1, haga ping a la PC4 o al MLS para comprobar la conectividad en la red VLAN 20.
- c. En la PC2, haga ping a la PC5 o al MLS para comprobar la conectividad en la red VLAN 30.
- d. En el S1, haga ping al S2, S3 o MLS para comprobar la conectividad en la red VLAN 99.
- e. Para comprobar el routing entre redes VLAN, haga ping a los dispositivos fuera de la red VLAN del emisor.
- f. En cualquier dispositivo, haga ping a la dirección 209.165.200.226 en Cloud.