Inter-AS MPLS VPNs

VPLS and L3VPN using Carrier Supporting Carrier (CSC)

Topology:

MP-BGP AF/SAF: VPNv4 Unicast, L2VPN VPLS

PE-CE Routing Protocols:

- VPLS (Martini with BGP Auto-Discovery)
- L3VPN PE-CE routing protocol: EIGRP

Task 01:

- Provide L3VPN service for the CustA (Use EIGRP and the PE-CE Routing Protocol)
- Provide VPLS service for CustB (in SP side use Auto Discovery and LDP as the signaling protocol between PE devices)

Solution:

Please take a look at the topology, we have a service provider connected to the Customer Edge devices (SP Green), this service provider has two routing domain which is in separate from each other.

They are providing L3VPN and L2VPN (VPLS) service to the Customers.

The basic configuration is easy ans straight forward.

Just like MPLS Lab 01 and MPLS Lab 02 we will follow the same steps in each SP domain to configure the L3VPN and VPLS configuration, if you need more explanation about how to configure them, please refer to those two labs.

```
SPB-PEI:

vrf definition CustA

rd 64012:1

route-target export 169.254.2.1:1

route-target import 169.254.3.1:1

!

address-family ipv4

exit-address-family
!
!

interface GigabitEthernet1

vrf forwarding CustA

ip address 192.168.121.254 255.255.255.0

negotiation auto

no mop enabled

no mop sysid
!

router eigrp CustA
!
```

```
address-family ipv4 unicast vrf CustA autonomous-system 1
 topology base
  redistribute bgp 64001
 exit-af-topology
 network 192.168.121.0
exit-address-family
router bgp 64001
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor 169.254.2.55 remote-as 64001
address-family vpnv4
 neighbor 169.254.2.55 activate
 neighbor 169.254.2.55 send-community extended
 exit-address-family
address-family 12vpn vpls
 neighbor 169.254.2.55 activate
 neighbor 169.254.2.55 send-community extended
exit-address-family
address-family ipv4 vrf CustA
 redistribute eigrp 1
exit-address-family
interface GigabitEthernet2
no shutdown
service instance 2 ethernet
 encapsulation untagged
 12protocol forward cdp
```

```
l2vpn vfi context CustB-VPLS

vpn id 2

autodiscovery bgp signaling ldp

vpls-id 64012:2

rd 64012:2

route-target export 169.254.2.1:2

route-target import 169.254.3.1:2

route-target import 169.254.3.2:2

route-target export 169.254.2.2:2

!

bridge-domain 2

member GigabitEthernet2 service-instance 2

member vfi CustB-VPLS

!
```

This time, we are using Martini VPLS, LDP is going to be used as the signaling protocol in order to form pseudowires and distribute labels, LDP itself does not have any Auto-Discovery, so the original Martini does not have any Auto-Discovery mechanism in order to provide PE to PE discovery. Nowadays thanks to the MP-BGP we can have Auto-Discovery feature.

Take a look at the command: autodiscovery bgp signaling ldp

- ➤ The first part implies: Auto-Discovery is BGP
- ➤ The second part implies: Signaling is LDP

Let's configure the rest of the other PE devices as well:

```
SPB-PE2:

router bgp 64001

bgp log-neighbor-changes

no bgp default ipv4-unicast

neighbor 169.254.2.55 remote-as 64001

!

address-family ipv4

exit-address-family
!

address-family vpnv4

neighbor 169.254.2.55 activate
```

```
neighbor 169.254.2.55 send-community extended
 exit-address-family
 address-family 12vpn vpls
 neighbor 169.254.2.55 activate
 neighbor 169.254.2.55 send-community extended
 exit-address-family
12vpn vfi context CustB-VPLS
vpn id 2
 autodiscovery bgp signaling ldp
 vpls-id 64012:2
 rd 64012:2
 route-target import 169.254.2.1:2
 route-target export 169.254.2.2:2
 route-target import 169.254.3.1:2
  route-target import 169.254.3.2:2
interface GigabitEthernet3
 no shutdown
 service instance 2 ethernet
 encapsulation untagged
 12protocol forward cdp
bridge-domain 2
member GigabitEthernet3 service-instance 2
member vfi CustB-VPLS
```

We could use the Same RT import and export values, that is the recommended way for simplicity and ease of management and troubleshooting. But this is just a lab invironment and a training workbook, so we are free to play with RT values to understand what they are actually doing!

If you don't like to play with them just skip that step and use the same RT import/export values.

```
SPC-PE2:
router bgp 64001
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 169.254.3.66 remote-as 64001
 address-family ipv4
 exit-address-family
 address-family vpnv4
  neighbor 169.254.3.66 activate
  neighbor 169.254.3.66 send-community extended
 exit-address-family
 address-family 12vpn vpls
  neighbor 169.254.3.66 activate
  neighbor 169.254.3.66 send-community extended
 exit-address-family
interface GigabitEthernet2
 service instance 2 ethernet
  encapsulation untagged
 12protocol forward cdp
 !
12vpn vfi context CustB-VPLS
 vpn id 2
 autodiscovery bgp signaling ldp
  vpls-id 64012:2
  rd 64012:2
  route-target import 169.254.2.1:2
  route-target import 169.254.2.2:2
  route-target import 169.254.3.1:2
  route-target export 169.254.3.2:2
!
```



```
bridge-domain 2
 member GigabitEthernet2 service-instance 2
member vfi CustB-VPLS
SPC-PE1:
router bgp 64001
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 169.254.3.66 remote-as 64001
 address-family ipv4
 exit-address-family
 address-family vpnv4
  neighbor 169.254.3.66 activate
  neighbor 169.254.3.66 send-community extended
 exit-address-family
 address-family 12vpn vpls
  neighbor 169.254.3.66 activate
  neighbor 169.254.3.66 send-community extended
 exit-address-family
vrf definition CustA
 rd 64012:1
 route-target export 169.254.3.1:1
 route-target import 169.254.2.1:1
 address-family ipv4
 exit-address-family
interface GigabitEthernet1
 vrf forwarding CustA
```



```
ip address 192.168.122.254 255.255.255.0
 negotiation auto
 no mop enabled
 no mop sysid
router eigrp CustA
address-family ipv4 unicast vrf CustA autonomous-system 1
 !
 topology base
  redistribute bgp 64001
 exit-af-topology
 network 192.168.122.0
 exit-address-family
router bgp 64001
 address-family ipv4 vrf CustA
 redistribute eigrp 1
 exit-address-family
interface GigabitEthernet2
 no shutdown
 service instance 2 ethernet
 encapsulation untagged
 12protocol forward cdp
 !
12vpn vfi context CustB-VPLS
vpn id 2
 autodiscovery bgp signaling ldp
 vpls-id 64012:2
 rd 64012:2
 route-target import 169.254.2.1:2
```

```
route-target import 169.254.2.2:2

route-target export 169.254.3.1:2

route-target import 169.254.3.2:2

!

bridge-domain 2

member GigabitEthernet2 service-instance 2

member vfi CustB-VPLS

!
```

All Green SP PE devices configuration are done.

Before we continue configuring Green SP Route-Reflector configuration let's start the task two and configure The SP A (AS 20000) instead.

Task 02:

Customer sites connected to both Customer Carrier networks (Green SP) should have reachability (Use Carrier Supporting Carrier)

Solution:

If you are already familiar and comfortable with L3VPNs configuration, this step is going to be very easy to understand, if you are not good at L3VPN configuration please refer to the MPLS Lab 01 and complete all the tasks, then you can come back and configure this task!

The Blue SP (SP A, AS#20000) is going to be configured as a top level carrier for the SP Green domains (low level carrier that is connected to the customer, we call it customer carrier).

The Blue SP needs to provide L3VPN service to the SP Green. That simple!

We will configure a VRF for the Customer carrier (SP Green), we will enable VPNv4 unicast neghborship inside Blue SP between PEs and the Route-Reflector:

```
SPA-RR44:
router bgp 20000
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor 169.254.1.1 remote-as 20000
neighbor 169.254.1.1 update-source Loopback0
neighbor 169.254.1.2 remote-as 20000
 neighbor 169.254.1.2 update-source Loopback0
address-family ipv4
exit-address-family
 address-family vpnv4
  neighbor 169.254.1.1 activate
  neighbor 169.254.1.1 send-community extended
  neighbor 169.254.1.1 route-reflector-client
  neighbor 169.254.1.2 activate
  neighbor 169.254.1.2 send-community extended
  neighbor 169.254.1.2 route-reflector-client
 exit-address-family
```

```
SPA-PE1:
vrf definition SPB
 rd 20000:23
 route-target export 169.254.1.1:23
 route-target import 169.254.1.2:23
 address-family ipv4
 exit-address-family
interface Ethernet0/1
vrf forwarding SPB
 ip address 200.1.2.1 255.255.255.252
mpls bgp forwarding
router bgp 20000
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 169.254.1.44 remote-as 20000
 neighbor 169.254.1.44 update-source Loopback0
 neighbor 200.1.2.2 remote-as 64001
 !
 address-family ipv4
 exit-address-family
 address-family vpnv4
  neighbor 169.254.1.44 activate
  neighbor 169.254.1.44 send-community extended
 exit-address-family
 address-family ipv4 vrf SPB
  neighbor 200.1.2.2 remote-as 64001
  neighbor 200.1.2.2 activate
  neighbor 200.1.2.2 as-override
  neighbor 200.1.2.2 send-label
 exit-address-family
```

SPA-PE1 is providing an L3VPN service to the Customer carrier (SP Green) and it is forming eBGP session with the SPB-RR-55.

But there is an additional step needed in this situation compared to the simple L3VPN service. That is enabling Labeled Unicast between SPA-PE1 and SPB-RR-55, because label-switching needed between those two routers.

SPA-PE1 is going to take the routes from SPB-RR-55 (RR and PE devices Loopback IP addresses) and advertise them to the SPA-PE2, so SPA-PE2 will advertise them t the SPC-RR-66.

Just like Inter-AS MPLS VPNs using Option C.

NOTE: If you are not familiar with Option A, B and C, please go back and complete those labsfirst! Otherwise you cannot understand what is happening in CSC.

The high level overview:

- > SPB-RR-55 is an eBGP IPv4 Unicast (Labeled unicast) neighbor with SPA-PE1
- ➤ SPB-RR-55 is going to advertise it's own loopback IP address along with the othe two PE Loopback IP addresses to the SPA-PE1
- > SPA-PE1 takes those routes and advertises them to the SPA-RR-44
- > SPA-RR-44 advertises those routes to the SPA-PE2
- > SPA-PE2 advertises the routes to the SPC-RR-66

Now, two RRs and even 4 SP Green PE devices have end to end (Loopback to Loopback) LSPs to each other.

RRs (Green SP RRs) can form VPNv4 Unicast with each other (Just like Option C).

Let's configure the remaining devices:

```
SPA-PE2:
vrf definition SPB

rd 20000:23
route-target export 169.254.1.2:23
route-target import 169.254.1.1:23
!
 address-family ipv4
  exit-address-family
!
!
interface Ethernet1/1
```

```
vrf forwarding SPB
 ip address 200.1.3.1 255.255.255.252
mpls bgp forwarding
router bgp 20000
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 169.254.1.44 remote-as 20000
 neighbor 169.254.1.44 update-source Loopback0
 neighbor 200.1.3.2 remote-as 64002
 address-family ipv4
 exit-address-family
 address-family vpnv4
  neighbor 169.254.1.44 activate
  neighbor 169.254.1.44 send-community extended
 exit-address-family
 address-family ipv4 vrf SPB
  neighbor 200.1.3.2 remote-as 64001
  neighbor 200.1.3.2 activate
  neighbor 200.1.3.2 as-override
  neighbor 200.1.3.2 send-label
 exit-address-family
```

Why we even need as-override command? It is because of the same AS number of SP Green.

The Customer Carrier in both domains is using the same AS#64001, the as-override command is needed to replace the Carrier Carrier AS# with the Customer Carrier AS# when it is advertised to the Customer Carrier CE devices. We discussed about this stuff previously on MPLS Lab 01, you can refer to that lab for more information.

```
SPB-RR-55:
router bgp 64001
bgp log-neighbor-changes
no bgp default ipv4-unicast
neighbor 169.254.2.1 remote-as 64001
```



```
neighbor 169.254.2.1 update-source Loopback0
neighbor 169.254.2.2 remote-as 64001
neighbor 169.254.2.2 update-source Loopback0
neighbor 169.254.3.66 remote-as 64001
neighbor 169.254.3.66 ebgp-multihop 255
neighbor 169.254.3.66 update-source Loopback0
neighbor 200.1.2.1 remote-as 20000
address-family ipv4
network 169.254.2.1 mask 255.255.255.255
network 169.254.2.2 mask 255.255.255.255
network 169.254.2.55 mask 255.255.255.255
neighbor 200.1.2.1 activate
neighbor 200.1.2.1 send-label
exit-address-family
address-family vpnv4
neighbor 169.254.2.1 activate
neighbor 169.254.2.1 send-community extended
neighbor 169.254.2.1 route-reflector-client
neighbor 169.254.2.2 activate
neighbor 169.254.2.2 send-community extended
neighbor 169.254.2.2 route-reflector-client
neighbor 169.254.3.66 activate
neighbor 169.254.3.66 send-community extended
exit-address-family
address-family 12vpn vpls
neighbor 169.254.2.1 activate
neighbor 169.254.2.1 send-community extended
neighbor 169.254.2.1 route-reflector-client
neighbor 169.254.2.2 activate
neighbor 169.254.2.2 send-community extended
neighbor 169.254.2.2 route-reflector-client
```



```
neighbor 169.254.3.66 activate
 neighbor 169.254.3.66 send-community extended
 exit-address-family
interface GigabitEthernet1
 ip address 200.1.2.2 255.255.255.252
 negotiation auto
mpls bgp forwarding
SPC-RR-66:
interface GigabitEthernet5
 ip address 200.1.3.2 255.255.255.252
mpls bgp forwarding
router bgp 64001
 bgp log-neighbor-changes
 no bgp default ipv4-unicast
 neighbor 169.254.2.55 remote-as 64001
 neighbor 169.254.2.55 ebgp-multihop 255
 neighbor 169.254.2.55 update-source Loopback0
 neighbor 169.254.3.1 remote-as 64001
 neighbor 169.254.3.1 update-source Loopback0
 neighbor 169.254.3.2 remote-as 64001
 neighbor 169.254.3.2 update-source Loopback0
 neighbor 200.1.2.1 remote-as 20000
 neighbor 200.1.3.1 remote-as 20000
 address-family ipv4
 network 169.254.2.55 mask 255.255.255.255
 network 169.254.3.1 mask 255.255.255.255
 network 169.254.3.2 mask 255.255.255.255
 network 169.254.3.66 mask 255.255.255.255
  neighbor 200.1.2.1 activate
```

```
neighbor 200.1.3.1 activate
neighbor 200.1.3.1 send-label
exit-address-family
address-family vpnv4
neighbor 169.254.2.55 activate
neighbor 169.254.2.55 send-community extended
neighbor 169.254.3.1 activate
neighbor 169.254.3.1 send-community extended
neighbor 169.254.3.1 route-reflector-client
neighbor 169.254.3.2 activate
neighbor 169.254.3.2 send-community extended
neighbor 169.254.3.2 route-reflector-client
exit-address-family
address-family 12vpn vpls
neighbor 169.254.2.55 activate
neighbor 169.254.2.55 send-community extended
neighbor 169.254.3.1 activate
neighbor 169.254.3.1 send-community extended
neighbor 169.254.3.1 route-reflector-client
neighbor 169.254.3.2 activate
neighbor 169.254.3.2 send-community extended
neighbor 169.254.3.2 route-reflector-client
exit-address-family
```

The configuration is done.

All RRs and PE devices in Customer Carrier domains (SP Green) have loopback to loopback LSP (Label Switched Path) reachability. Also they are not aware that is something happening in the underlay! SP A takes care of them transparently.

Verification:

```
SPB-RR-55#show bgp vpnv4 uni all summary | begin Neigh
Neighbor
                          AS MsgRcvd MsgSent
                                              TblVer InQ OutQ Up/Down State/PfxRcd
169.254.2.1
                       64001
                                 106
                                        111
                                                   5
                                                            0 01:30:46
169.254.2.2
             4
                      64001
                                105
                                        111
                                                  5
                                                            0 01:30:44
                                                                             0
                                                       0
                                                  5 0
169.254.3.66
                      64001
                                107
                                                            0 01:29:58
                                                                             2
                                        107
SPB-RR-55#show bgp 12vpn vpls all summary | begin Ne
Neighbor
                          AS MsgRcvd MsgSent
                                              TblVer InQ OutQ Up/Down State/PfxRcd
169.254.2.1
                       64001
                                 107
                                        112
                                                   5
                                                            0 01:31:16
169.254.2.2
             4
                      64001
                                 105
                                        112
                                                  5
                                                       0
                                                            0 01:31:15
169.254.3.66 4
                      64001
                                108
                                                 5 0 0 01:30:28
                                                                             2
                                        108
SPB-PE1#show bgp l2vpn vpls all summary | begin Neigh
Neighbor
                          AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
169.254.2.55
             4
                       64001
                                 112
                                        107
                                                   5
                                                       0
                                                            0 01:31:38
SPB-PE1#show bgp vpnv4 uni all summary | begin Neigh
Neighbor
                          AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
169.254.2.55
                      64001
                                                                             2
                                 113
                                        108
                                                   7
                                                            0 01:32:20
SPC-PE1#show bgp l2vpn vpls all summary | begin Neigh
Neighbor
                          AS MsgRcvd MsgSent TblVer InQ OutQ Up/Down State/PfxRcd
                                                                             3
169.254.3.66 4
                     64001
                                 113
                                        107
                                                   5
                                                       0
                                                            0 01:32:12
SPB-PE1#ping 169.254.3.1 source lo 0
Type escape sequence to abort.
Sending 5, 100-byte ICMP Echos to 169.254.3.1, timeout is 2 seconds:
Packet sent with a source address of 169.254.2.1
!!!!!
Success rate is 100 percent (5/5), round-trip min/avg/max = 1/1/3 ms
```



```
SPB-PE1#traceroute 169.254.3.1 source lo 0 probe 1
Type escape sequence to abort.
Tracing the route to 169.254.3.1
VRF info: (vrf in name/id, vrf out name/id)
 1 10.1.55.55 [MPLS: Label 645003 Exp 0] 12 msec
 2 200.1.2.1 [MPLS: Label 21006 Exp 0] 2 msec
 3 10.1.88.88 [MPLS: Labels 16/22006 Exp 0] 2 msec
 4 200.1.3.1 [MPLS: Label 22006 Exp 0] 1 msec
 5 200.1.3.2 [MPLS: Label 642601 Exp 0] 2 msec
 6 10.1.66.1 3 msec
CustA-CE1#show ip route eigrp | begin Gate
Gateway of last resort is not set
      192.168.122.0/24 [90/1029120] via 192.168.121.254, 01:32:34, Ethernet0/0
D
      192.168.255.0/32 is subnetted, 2 subnets
         192.168.255.2 [90/1029760] via 192.168.121.254, 01:32:34, Ethernet0/0
CustA-CE1#trace 192.168.122.2 source lo 0 probe 1
Type escape sequence to abort.
Tracing the route to 192.168.122.2
VRF info: (vrf in name/id, vrf out name/id)
 1 192.168.121.254 5 msec
 2 10.1.55.55 [MPLS: Labels 645003/642105 Exp 0] 7 msec
 3 200.1.2.1 [MPLS: Labels 21006/642105 Exp 0] 2 msec
 4 10.1.44.44 [MPLS: Labels 24001/22006/642105 Exp 0] 2 msec
 5 10.2.44.2 [MPLS: Labels 22006/642105 Exp 0] 2 msec
 6 200.1.3.2 [MPLS: Labels 642601/642105 Exp 0] 2 msec
 7 192.168.122.254 3 msec
  8 192.168.122.2 3 msec
```

Customer packets are label switched end to end (From SPB-PE1 to the SPC-PE1) and there are 3 labels in the label stack at the middle of the path (Step 4) (when packet is traversing SP A).

An interresting thing about this type of implementation is the VPN label (642105) stays the same along the path until it reaches to the egress PE.


```
CustB-CE1#show ip int br | ex unas
Interface
                                          OK? Method Status
                                                                           Protocol
Ethernet0/2
                          192.168.180.1 YES NVRAM up
                                                                           up
CustB-CE1#ping 192.168.180.255 re 1
Type escape sequence to abort.
Sending 1, 100-byte ICMP Echos to 192.168.180.255, timeout is 2 seconds:
Reply to request 0 from 192.168.180.2, 1 ms
Reply to request 0 from 192.168.180.4, 2 ms
Reply to request 0 from 192.168.180.3, 2 ms
SPB-PE1#show bridge-domain
Bridge-domain 2 (4 ports in all)
State: UP
                            Mac learning: Enabled
Aging-Timer: 300 second(s)
Maximum address limit: 65536
   GigabitEthernet2 service instance 2
   vfi CustB-VPLS neighbor 169.254.2.2 2
   vfi CustB-VPLS neighbor 169.254.3.1 2
   vfi CustB-VPLS neighbor 169.254.3.2 2
  AED MAC address
                     Policy Tag Age Pseudoport
     AABB.CC00.0C20 forward dynamic 293 GigabitEthernet2.EFP2
  0 AABB.CC00.1020 forward dynamic 274 CustB-VPLS.404012
      AABB.CC00.0B30 forward dynamic
                                       294 CustB-VPLS.404011
      AABB.CC00.0F20 forward dynamic
                                       274 CustB-VPLS.404013
```

VPLS service also works fine! We have the MAC addresses in the bridge-domain output and BUM traffic is being sent from a CE device to all of the other CE devices.