
hide01.ir

Labs

● Linux

○ MicroHttpServer - CVE-2023-50965

■ Vanilla Stack Overflow

■ Stack Overflow + NX bypass (ret2libc)

■ Stack Overflow + NX bypass (rop chain)

○ Custom Binary

■ Stack Overflow + Format String BUG

● Canary, NX, PIE, ASLR

hide01.ir

Labs

● Windows (Win32)

○ General Device Manager

■ SEH Overflow - no DEP

○ Easy File Share

■ SEH Overflow + DEP Bypass + ASLR bypass

● Non-aslr-enabled module

hide01.ir

Lab Setup

hide01.ir

Intel x86 Insights

hide01.ir

CPU Registers

● Small, high speed storage locations within the CPU

● Stores data temporarily and controls CPU operations

○ Handling interrupts, memory operations

● Essential for storing and manipulating data and executing instructions

hide01.ir

General Purpose Registers

hide01.ir

General Purpose Registers

● There are eight General purpose registers

○ eax -> Accumulator

■ Generally used in arithmetic and logical operations. Also, most

of the time it stores function return value.

○ ebx -> Base Register

■ Commonly holds base address of certain memory locations

such as base address of the array.

■ Also helps calculate effective addresses for data access

hide01.ir

General Purpose Registers

● ..

○ ecx -> Counter

■ Generally used as a counter, for instance counting number of

iteration is loop, counting length of the string.

○ edx -> Data register

■ Often use in conjunction with accumulator to store or handle

64-bit values in certain operations

● edx:eax

hide01.ir

General Purpose Registers

● ..

○ esp -> Stack Pointer

■ Always points at the top of the stack.

○ ebp -> Stack Base Pointer

■ It’s a stack base pointer for current function stack frame. Also,

use in accessing local variables and parameters.

hide01.ir

General Purpose Registers

● ..

○ esi -> source index

■ Often used as the pointer to the source address when copying

a block of data.

○ edi -> destination index

■ Often used as the pointer to the destination address when

copying a block of data.

hide01.ir

Special Purpose Registers

● eip -> Instruction Pointer

○ It serves as a program counter, indicating the memory address of

the next instruction to be executed by the CPU.

hide01.ir

Basic x86 Instructions set

● Data Movement Instructions
○ Mov, lea, push, pop, xchg

■ mov eax, ebx -> register to register

■ mov eax, 0x10 -> immediate to register

■ mov [eax], 0x10 -> immediate to memory

■ mov eax, [eax+0x10] -> memory to register

hide01.ir

Basic x86 Instructions set

● Arithmetic Instructions

○ add, sub, mul, imul, div, idiv, inc, dec, neg, cmp
■ add eax, ebx -> adding 2 registers

■ add eax, 0x10 -> adding immediate with register value

■ mov eax, [ecx] -> adding memory value with register

hide01.ir

Basic x86 Instructions set

● Logical Instructions

○ and, or, xor

● Control Transfer Instructions

○ jz, jnz, jl, jle, jmp, call, loop, ret

● Special Instructions

○ int

hide01.ir

Memory Layout

● Typical memory Layout consist of

○ Stack

○ Heap

○ Uninitialized Data Segment

○ Initialized Data Segment

○ Text/Code Segment

hide01.ir

STACK

● Block of memory that holds temporary data

○ Operates in LIFO (Last In, First Out) principal

● Grows and shrinks dynamically during program execution

○ Grows towards the lower address (higher -> lower)

● Each function call creates the stack frame, containing parameters, local

variables and return address

hide01.ir

hide01.ir

STACK Operations

● PUSH

○ Adds data onto the stack

● POP

○ Removes data from the stack

hide01.ir

hide01.ir

Calling Conventions

● Defines how functions should be called in the program such as:

○ how parameters are passed

■ X86 architecture follows right-to-left parameter passing

scheme

○ Handling return address

○ Managing stack space

● cdecl is default calling convention for c and c++ for x86 architecture

hide01.ir

Parameters -x86

● Parameters are passed from right-to-left into the stack

○ int abc(1,2,3,4,5)

hide01.ir

Function Prologue

● Setup the stack frame

○ Saves old base pointer & set new base pointer

● Allocate space for local variables

hide01.ir

Function epilogue

● Restores the stack frame

○ Clean up the stack

● Returns to the caller

hide01.ir

Demo

hide01.ir

Debuggers, Disassemblers & Debugging

hide01.ir

Debugger

● Tool used for examining the running program
○ Allows to analyze & troubleshoot the program

○ With features like:

■ Breakpoints

■ Visibility on variables, registers, stack etc.

■ Controlling the flow of execution

■ Memory dumps

■ Registers

hide01.ir

Debugger

● Common debuggers
○ GDB

○ X64dbg

○ Immunity debugger

○ windbg

hide01.ir

Disassembler

● Tool that converts the machine code instructions into human readable

form (assembly)

● Helps in analyzing the compiled binary code
○ Generally, provides the blueprint for the program

● Common disassemblers include IDA Pro, Ghidra, Binary Ninja, Hopper

hide01.ir

Debugging

● Process of analyzing the binary making use of both disassembler &

debugger
○ aids in identifying, understanding & fixing the problems or bugs in the

software

● This process includes:
○ Manual code inspection, dynamic analysis with both debugger &

disassemblers, also, automated testing

hide01.ir

Introduction to Stack Overflow

hide01.ir

Stack Overflow

● A flaw in software that occurs when more data is written to a buffer on

the stack than it can hold,
○ resulting in the overwriting of adjacent memory, including other variables

and the return address.

● If exploited correctly and all required conditions are met
○ attacker can overwrite the EIP (Instruction Pointer) register

■ potentially redirecting program execution to malicious code.

hide01.ir

Stack Overflow

● If overflow doesn’t meet all the required conditions for control flow

hijacking
○ it often results in a program crash

■ leading to a Denial of Service (DoS).

hide01.ir

Stack Overflow Condition

● Stack overflow occurs when certain condition meets
○ Unchecked Buffer Size

○ Buffer Copy without Checking Size of Input

○ Insufficient Bound Checking

hide01.ir

Unchecked Buffer Size

● Reads the user input into a fixed-size buffer
○ doesn’t check if input exceeds the the buffer size

hide01.ir

Insufficient bound checking

● Copies data to buffer but doesn’t check if the buffer can hold the data

being copied

hide01.ir

Buffer Copy without Checking Size of Input

● Copies user input buffer without validating the input length

hide01.ir

Stack Overflow

hide01.ir

hide01.ir

hide01.ir

LAB

hide01.ir

NX

● NX is short for Non-executable
○ segregates region of memory either as data or executable (W^X)

○ cpu won’t execute any code or instructions resides in non-executable region

● Some important region of the memory that are marked as

non-executable are stack and heap
○ This feature prevents buffer overflow attack to some extent

hide01.ir

ret2libc

● It’s a technique that reuse existing code from executable region (libc

functions)
○ Certain functions like system(), execv() are used

○ Bypass NX protection

● Instead of replacing return address with shellcode location located at

stack, it’ll be overwritten by the address of function like system, execv

hide01.ir

hide01.ir

LAB

hide01.ir

Return-Oriented Programming (ROP)

● Similar to ret2libc in terms of reusing executable code.

● Sequence of small instructions ending with a “ret” instruction are used.
○ The selected sequence of instructions is called “gadgets.”

○ Chaining these gadgets is what they call a ROP chain.

● Concept is very simple, but finding and designing gadgets could be

tricky.
○ Gadgets can be selected from any modules or shared libraries however the

location of gadget should be in a executable region

hide01.ir

hide01.ir

Making Stack Executable Again

● NX protection can be defeated and protected memory region can be

made re-executable again including stack
○ mmap()

■ Creates a new region of virtual memory in process address space

■ New region can be created as executable

○ mprotect()

■ Change the memory protection of specific chunk of memory

hide01.ir

ROP & mprotect()

● Even if we control the execution, if nx is enabled we can’t directly

execute our shellcode from stack

● We can craft a ROP chain that calls the mprotect() targeting stack

memory address

hide01.ir

mprotect() - system call

● Mprotect function definition

○ int mprotect(void *addr, size_t len, int prot);

● Accepts 3 parameters

○ address

○ Size

○ prot

● Syscall number 0x7d

hide01.ir

Syscall

● Requests service from the kernel

● For syscall parameters has to be passed in a specific registers:

X86 (32-bit) syscall table [1]

hide01.ir

mprotect() - system call - ROPing

● Requires 3 parameters, however need to take care of return address

● According to syscall table, we need to find some gadgets that fulfills

following criteria:

○ %eax -> syscall number

○ %ebx -> stack address

○ %ecx -> len

○ %edx -> edx

hide01.ir

LAB

hide01.ir

Format String

● Special text contains special token known as format specifier

○ In c, inbuilt function like printf, fprintf etc.

● Developers use this to build dynamic and stable output output

○ Based on the specifier various type of data are formatted and

inserted into the string

hide01.ir

Format Specifier

● Defines type of the variable that’ll be feeded as input into the format

string
○ Starts with “%” sign

● For instance,
○ %d -> integer

○ %s -> string

○ %f -> float

○ %x -> hexadecimal integer

○ %p -> pointer address

hide01.ir

Example

hide01.ir

Format String Vulnerability

● Occurs when user input is improperly treated as a format string by

printf family functions (e.g., printf(), sprintf(), fprintf())..

○ Leads to arbitrary memory read/write

■ Allowing to read sensitive information or modify memory

contents

● printf(buffer)

hide01.ir

Format String Vulnerability

● Arbitrary Read
○ %p -> print pointer address

○ %2$p -> positional argument to be referenced that are passed into printf

● Arbitrary Write
○ %n -> write 4 byte

○ %hn -> write 2 byte

○ %hhn → write 1 byte

○ %num$n

hide01.ir

Mitigations

● NX bit

● Canary

● ASLR / PIE

● FORTIFY_SOURCE

hide01.ir

NX Bit

● Makes memory region either writable or executable (W^X)

○ cpu won’t execute any code or instructions resides in

non-executable region

● Prevents execution in some memory region

○ Stack

○ Heap

● This feature prevents buffer overflow attack to some extent

hide01.ir

NX Bit

hide01.ir

Canary

● Random value that stores before return address in stack

● Random value gets pushed into the stack at function prologue

● Detects the stack smashing

○ While returning from the function

■ Canary value gets checked if overwritten

● Program terminates and throw message:

○ “Stack smashing detected”

hide01.ir

Canary

hide01.ir

Canary

hide01.ir

Canary

hide01.ir

ASLR (Address Space Layout Randomization)

● ASLR randomizes the memory address layout

○ stack, heap, shared libraries

● Makes difficult to find the accurate memory address

○ Prevents from controlling the flow of the execution

● Position Independent Executable (PIE) randomizes the binary memory base

address

hide01.ir

ASLR (Address Space Layout Randomization)

hide01.ir

ASLR (Address Space Layout Randomization)

hide01.ir

ASLR (Address Space Layout Randomization)

hide01.ir

FORTIFY_SOURCE

● Compile-time security feature in the GNU C Library (glibc)

● Provides runtime protection for detecting buffer overflow

● Certain buffer manipulation related functions are protected with additional

wrapper function:

○ strcpy, gets, memcpy, memmove, etc. [2]

● Wrapper function ends with _chk.

hide01.ir

FORTIFY_SOURCE

hide01.ir

FORTIFY_SOURCE

hide01.ir

FORTIFY_SOURCE

hide01.ir

FORTIFY_SOURCE

hide01.ir

LAB

hide01.ir

Windows - Win32 Exploit Development

hide01.ir

Win32 Structured Exception Handling (SEH)

● Windows OS mechanism for handling hardware or software faults

● Per-thread basis

○ Each thread has its own exception handler callback

● It also provides the extensions to the Microsoft visual c++ compiler

○ Allowing developer to handle faults in their program

○ __try & __except keywords are used to guard the code

hide01.ir

hide01.ir

Structured Exception Handling (SEH)

hide01.ir

Structured Exception Handling (SEH)

hide01.ir

Structured Exception Handling (SEH)

hide01.ir

__try/__except

hide01.ir

__try/__except

hide01.ir

hide01.ir

SEH - DEMO

hide01.ir

SEH Overflow

● Overflowing the buffer past its limit to reach SEH records

○ placing controlled address in the handler

● Next time when exception occurs

○ code from the controlled address will get executed

hide01.ir

SEH Overflow

hide01.ir

SEH Overflow - Exploitation

hide01.ir

Bad Characters

● Bytes that could be misinterpreted by the application leading to

○ Truncation during buffer copy

○ Byte modification

○ crashing shellcode

● Common bad characters:

○ 0x00, 0x0A, 0x20, 0x2c, 0x2b, 0x2f, 0x5c

hide01.ir

Identifying Bad Characters

● Creating buffer containing all possible byte values from 0x00 to 0xff

● Sending the buffer to the program

● Analyzing the buffer in memory vs buffer in disk, Generally looking for

○ Truncation

○ Alteration

hide01.ir

Identifying Bad Characters

hide01.ir

Conclusion

hide01.ir

References

1. https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x8

6-32_bit

2. https://cwe.mitre.org/data/definitions/121.html

3. https://limbioliong.wordpress.com/2022/01/09/understanding-windows-structur

ed-exception-handling-part-1/

4. https://www.gnu.org/software/libc/manual/html_node/Source-Fortification.html
5. https://github.com/starnight/MicroHttpServer/issues/5

6. https://github.com/advisories/GHSA-p7xp-hqxr-fpq2

7. https://www.exploit-db.com/exploits/44522

hide01.ir

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://cwe.mitre.org/data/definitions/121.html
https://limbioliong.wordpress.com/2022/01/09/understanding-windows-structured-exception-handling-part-1/
https://limbioliong.wordpress.com/2022/01/09/understanding-windows-structured-exception-handling-part-1/
https://www.gnu.org/software/libc/manual/html_node/Source-Fortification.html
https://github.com/starnight/MicroHttpServer/issues/5
https://github.com/advisories/GHSA-p7xp-hqxr-fpq2
https://www.exploit-db.com/exploits/44522

Image References

1. https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x8

6-32_bit

hide01.ir

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

