'hi deOl.i1r o— —
©CWL
yberWarFare Labs

CERTIFIED EXPLOIT DEVELOPMENT PROFESSIONAL

© AllRights Reserved CyberwarFare Labs

. ERECO H OOmmEm ’

. . R\
hi deQOl1.1r CWL
Labs
e Linux

o MicroHttpServer - CVE-2023-50965
m Vanilla Stack Overflow
m Stack Overflow + NX bypass (ret2libc)
m Stack Overflow + NX bypass (rop chain)
o Custom Binary
m Stack Overflow + Format String BUG
e Canary, NX, PIE, ASLR

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

Labs

e Windows (Win32)
o General Device Manager
m SEH Overflow - no DEP
o Easy File Share
m SEH Overflow + DEP Bypass + ASLR bypass

e Non-asir-enabled module

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

Lab Setup

hi deOl.1r

Intel x86 Insights

y —

CyberWarFare Labs

CPU Registers

e Small, high speed storage locations within the CPU

e Stores data temporarily and controls CPU operations

o Handling interrupts, memory operations

e Essential for storing and manipulating data and executing instructions

© AllRights Reserved CyberwarFare Labs

General Purpose Registers

32-Bit 31 16 15 87 0 16-Bit
EAX AH AL AX
EBX BH BL BX
ECX CH CL CX
EDX DH DL DX
ESP SP
EBP BP
ESI Sl
EDI DI

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

General Purpose Registers

e There are eight General purpose registers
o edx -> Accumulator
m Generally used in arithmetic and logical operations. Also, most
of the time it stores function return value.
o ebx -> Base Register
m Commonly holds base address of certain memory locations
such as base address of the array.

m Also helps calculate effective addresses for data access

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

General Purpose Registers

o ecx -> Counter
m Generally used as a counter, for instance counting number of
iteration is loop, counting length of the string.
o edx -> Data register
m Often use in conjunction with accumulator to store or handle
64-bit values in certain operations

e edxeax

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

General Purpose Registers

o esp -> Stack Pointer

m Always points at the top of the stack.

o ebp -> Stack Base Pointer
m It's a stack base pointer for current function stack frame. Also,

use in accessing local variables and parameters.

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

General Purpose Registers

o esi->source index
m Often used as the pointer to the source address when copying
a block of data.
o edi-> destination index
m Often used as the pointer to the destination address when

copying a block of data.

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Special Purpose Registers

e eip -> Instruction Pointer
o It serves as a program counter, indicating the memory address of

the next instruction to be executed by the CPU.

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Basic x86 Instructions set

e Data Movement Instructions

o Moy, leq, push, pop, xchg

mov eax, ebx -> register to register
mov eax, 0x10 -> immediate to register
mov [eax], 0x10 -> immediate to memory

mov eax, [eax+0x10] -> memory to register

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Basic x86 Instructions set

e Arithmetic Instructions
o add, sub, mul, imul, div, idiv, inc, dec, neg, cmp
m add eax, ebx -> adding 2 registers

m add eax, 0x10 -> adding immediate with register value

m mov eax, [ecx] -> adding memory value with register

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

Basic x86 Instructions set

e Logical Instructions

o and, or, xor

e Control Transfer Instructions

o jz,jnz,jl, jle, jmp, call, loop, ret

e Special Instructions

o int

© AllRights Reserved CyberwarFare Labs

Memory Layout

Typical memory Layout consist of

O

O

O

Stack

Heap

Uninitialized Data Segment
Initialized Data Segment

Text/Code Segment

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Low Address

Text Segment

zed Data Segmen:

Uninitialized Data Segment

High Address

CyberWarFare Labs

STACK

e Block of memory that holds temporary data
o Operates in LIFO (Last In, First Out) principal
e Grows and shrinks dynamically during program execution
o Grows towards the lower address (higher -> lower)
e Each function call creates the stack frame, containing parameters, local

variables and return address

© AllRights Reserved CyberwarFare Labs

hi deOl1.ir CWL

Low Address

esp mul) ccce

AAAA

ebp mml) Saved EBP

Return Address

Param A

Param B

High Address

© AllRights Reserved CyberwarFare Labs

. . Ul
hi deOl.ir CWL
STACK Operations
e PUSH

o Adds data onto the stack

e POP

o Removes data from the stack

© AllRights Reserved CyberwarFare Labs

A
hi deOl1.ir CWL

Low Address Low Address

|PUSH POP

o
o

c c
b b
a a
High Address High Address

© AllRights Reserved CyberwarFare Labs

y —

CyberWarFare Labs

Calling Conventions

e Defines how functions should be called in the program such as:
o how parameters are passed
m X86 architecture follows right-to-left parameter passing
scheme
o Handling return address
o Managing stack space

e cdeclis default calling convention for c and c++ for x86 architecture

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

Parameters -x86

e Parameters are passed from right-to-left into the stack
o intabc(1,2,3,4,5)

Low Address
1
2
3
4
5
High Address

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi deO1.ir CWL

Function Prologue

e Setup the stack frame
o Saves old base pointer & set new base pointer

e Allocate space for local variables

D0F21040 55 push ebp

00F21041 8BEC mov ebp,esp

00F21043 83EC 18 sub esp,18

00F21046 A1 0030F200 mov eax,dword ptr ds:[<___security_cookie>]
00F21048B 33C5 xor eax,ebp

00F2104D | 8945 FC mov dword ptr ss:|febp-4],eax_

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi deO1.ir CWL

Function epilogue

e Restores the stack frame
o Clean up the stack

e Returns to the caller

00F21098 33CD Xor ecx,ebp
00F2109A 33¢0 Xor eax,eax
00F2109cC E8 04000000 call
00F210A1 8BE5S
O0F210A3 5D
00F210A4 Cc3

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

Demo

© AllRights Reserved CyberwarFare Labs

Debuggers, Disassemblers & Debugging

4 AN CWL £ g
hi deO1.ir CWL

Debugger

e Tool used for examining the running program
o Allows to analyze & troubleshoot the program
o With features like:
m Breakpoints
m Visibility on variables, registers, stack etc.
m Controlling the flow of execution
m Memory dumps

m Registers

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

Debugger

e Common debuggers
o GDB
o X64dbg

o Immunity debugger

o windbg

© AllRights Reserved CyberwarFare Labs

y —

CyberWarFare Labs

Disassembler

e Tool that converts the machine code instructions into human readable

form (assembly)

e Helps in analyzing the compiled binary code

o Generadlly, provides the blueprint for the program

e Common disassemblers include IDA Pro, Ghidra, Binary Ninja, Hopper

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Debugging

e Process of analyzing the binary making use of both disassembler &

debugger
o aids in identifying, understanding & fixing the problems or bugs in the

software

e This process includes:

o Manual code inspection, dynamic analysis with both debugger &

disassemblers, also, automated testing

© AllRights Reserved CyberwarFare Labs

Introduction to Stack Overflow

CyberWarFare Labs

Stack Overflow

e A flaw in software that occurs when more data is written to a buffer on

the stack than it can hold,

o resulting in the overwriting of adjacent memory, including other variables

and the return address.

e If exploited correctly and all required conditions are met

o attacker can overwrite the EIP (Instruction Pointer) register

m potentially redirecting program execution to malicious code.

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

Stack Overflow

o If overflow doesn’'t meet all the required conditions for control flow
hijacking
o it often results in a program crash

m leading to a Denial of Service (DoS).

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Stack Overflow Condition

e Stack overflow occurs when certain condition meets
o Unchecked Buffer Size
o Buffer Copy without Checking Size of Input

o Insufficient Bound Checking

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi deO1.ir CWL

Unchecked Buffer Size

e Reads the user input into a fixed-size buffer

o doesn’t check if input exceeds the the buffer size

// Unchecked buffer size
void read input() {
char buffer[10];
gets(buffer); // does not check the length of input

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

Insufficient bound checking

e Copies data to buffer but doesn’t check if the buffer can hold the data

being copied

// Insufficient Bound Checking
void copy data(int *source, int length) {
int buffer[106];
for (int i = 0; i < length; i++) {
buffer[i] = source[i]; // No bounds checking on buffer

}

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Buffer Copy without Checking Size of Input

e Copies user input buffer without validating the input length

// Buffer Copy without Checking Size of Input
void copy user input(char *user input) {
char buffer[20];
strcpy(buffer, user input); // does not check the length of user input

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi de01.ir CWL

Stack Overflow

#include <stdlib.h>
#include <string.h>
#include <stdio.h>

int main(int argc, char** argv) {
char buffer[20];
memcpy (buffer, argv[l], strlen(argv([l]));
printf("[+] Printing buffer: %s \n", buffer);

© AllRights Reserved CyberwarFare Labs

hi deOl1.ir CWL

Low Address

s md

ebp mud) Saved EBP
Return Address
Param A
Param B
High Address

© AllRights Reserved CyberwarFare Labs

hi deOl1.ir CWL

Low Address

esp 9

ebp mud
@ ret address

High Address

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

LAB

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi deO1.ir CWL

NX

e NXis short for Non-executable

o segregates region of memory either as data or executable (WAX)

o cpu won't execute any code or instructions resides in non-executable region

e Some important region of the memory that are marked as

non-executable are stack and heap

o This feature prevents buffer overflow attack to some extent

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

ret2libc

e It's a technique that reuse existing code from executable region (libc

functions)

o Certain functions like system(), execv() are used

o Bypass NX protection

e Instead of replacing return address with shellcode location located at

stack, it'll be overwritten by the address of function like system, execv

© AllRights Reserved CyberwarFare Labs

y —

CyberWarFare Labs

Low Address Libe
AAAA
AAAA
= [ot |
& Exit ()
eip 9
return address
for system () 9 & Exit ()
argument Q & “/bin/sh”
“/bin/sh"

High Address

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

LAB

© AllRights Reserved CyberwarFare Labs

Return-Oriented Programming (ROP)

e Similar to ret2libc in terms of reusing executable code.

e Sequence of small instructions ending with a “ret” instruction are used.

o The selected sequence of instructions is called “gadgets.”

o Chaining these gadgets is what they call a ROP chain.

e Conceptis very simple, but finding and designing gadgets could be
tricky.
o Gadgets can be selected from any modules or shared libraries however the

location of gadget should be in a executable region

ERECQO

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

Low Address

0x6cb01218
0x90909090
Next Eip mmsj) Ox7ffc4246 Ox7ffck246

High Address

ERECQO

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Making Stack Executable Again

e NX protection can be defeated and protected memory region can be

made re-executable again including stack
o mmap()
m Creates a new region of virtual memory in process address space
m New region can be created as executable
o mprotect()

m Change the memory protection of specific chunk of memory

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

ROP & mprotect()

e Even if we control the execution, if nx is enabled we can’t directly

execute our shellcode from stack
e We can craft a ROP chain that calls the mprotect() targeting stack

memory address

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

mprotect() - system call

e Mprotect function definition
o int mprotect(void *addr, size_t len, int prot);

e Accepts 3 parameters

o address
o Size
o prot

e Syscall number 0x7d

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

Syscall

CyberWarfare Labs

e Requests service from the kernel

e For syscall parameters has to be passed in a specific registers:

x86 (32-bit)
Compiled from Linux 4.14.0 headers.
NR syscall name references
0 restart_syscall man/ cs/
1 exit man/ cs/
2 fork man/ cs/
3 read man/ cs/
4 write man/ cs/

Y%eax
0x00
0x01
0x02
0x03
0x04

arg0 (%ebx) arg1 (%ecx) arg2 (%edx) arg3 (%esi) arg4 (%edi)
int error_code
unsigned int fd char *buf size_t count
unsigned int fd const char *buf size_t count

X86 (32-bit) syscall table [1]

arg5 (%ebp)

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

mprotect() - system call - ROPing

e Requires 3 parameters, however need to take care of return address
e According to syscall table, we need to find some gadgets that fulfills
following criteria:
o %edx -> syscall number
o %ebx -> stack address
o %ecx ->len

o %edx -> edx

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

LAB

© AllRights Reserved CyberwarFare Labs

y —

CyberWarFare Labs

Format String

e Special text contains special token known as format specifier

o In ¢, inbuilt function like printf, fprintf etc.

e Developers use this to build dynamic and stable output output
o Based on the specifier various type of data are formatted and

inserted into the string

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi deO1.ir CWL

Format Specifier

e Defines type of the variable that'll be feeded as input into the format

string
o Starts with “%"” sign
e Forinstance,
o %d ->integer
o %s -> string
o %f->float
o %X -> hexadecimal integer

o %p -> pointer address

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi de01.ir CWL

Example

int main() {

char team[20] = "cyberwarfarelabs";
printf("hello from %s\n", team);
return 0;

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Format String Vulnerability

e Occurs when user input is improperly treated as a format string by
printf family functions (e.g., printf(), sprintf(), fprintf())..
o Leads to arbitrary memory read/write
m Allowing to read sensitive information or modify memory
contents
o printf(buffer)

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Format String Vulnerability

e Arbitrary Read

o %p -> print pointer address

o %2$p -> positional argument to be referenced that are passed into printf
e Arbitrary Write

o %nh -> write 4 byte

o %hn -> write 2 byte

o %hhn — write 1 byte

o %hum$n

© AllRights Reserved CyberwarFare Labs

. . n N CWL
hi deOl1.1r el
Mitigations
e NX bit
e Canary
e ASLR/PIE

e FORTIFY_SOURCE

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi deO1.ir CWL

NX Bit

e Makes memory region either writable or executable (WAX)
o cpuwon’t execute any code or instructions resides in
non-executable region
e Prevents execution in some memory region
o Stack
o Heap

e This feature prevents buffer overflow attack to some extent

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

NX Bit

vmmap
[Legend: | |]

0x08048000 ©0x08049000 0x00000000 r-- /home/cped-lin/webinar/lab/overflow/validator-nx

0x0804a000 0x0804b0OO O0x00002000 /home/cped-1lin/webinar/lab/overflow/validator-nx
0x0804b000 ©0x0804cO00 Ox00002000 /home/cped-1in/webinar/lab/overflow/validator-nx

OXT7dCooo € ie4000 Ox00000000 /usr/1ib32/1ibc-2.31.s0

0xf7f3d000 Oxf7fblOO0 0x00172000 /usr/1ib32/1ibc-2 .S0
0xf7fb2000 6x001e6000 /usr/1ib32/1ibc-2.31.s0
0xf7fb4000 0x001e6000 /usr/1ib32/1ibc-2.31.s0
0xf7fb5000 0x001e8000 /usr/1ib32/1ibc-2.31.s0

0xf7fb5000 0xf7fb80OO Ox0O000000

0xf7fc9000 Oxf7fcbOOO Ox0OEO0000

0xf7fcb00® Oxf7fcfOOO Ox00000000 [vvar]

0xf7fd1000 Oxf7fd2000 Ox00000000 /usr/1ib32/1d-2.31.
0xf7ff0000 Oxf7ffbOOO Ox0001fOOO /usr/1ib32/1d-2.31.

OxT7TfcO00 OxTf7ffdOOO Ox0002a000 /usr/1ib32/1d-2.31.
Axf7ffdOnn _Oxf7ffefdn OxAAA2hANA /usr/1ih32/1d-2.31.

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi de01.ir CWL

Canary

e Random value that stores before return address in stack
e Random value gets pushed into the stack at function prologue
e Detects the stack smashing

o While returning from the function
m Canary value gets checked if overwritten
e Program terminates and throw message:

o “Stack smashing detected”

© AllRights Reserved CyberwarFare Labs

checksec
checksec for '/home/cped-lin/webinar/lab/overflow/validator-canary'

canary
The canary of process 4298 is at OxffffdaOb, value is 0x64b8b900

© AllRights Reserved CyberwarFare Labs

Canary

CyberWarFare Labs

endbr32

push ebp

mov ebp,esp

push ebx

sub esp,0x94

call <

add ebx,0x20aa

mov eax,DWORD PTR [ebp+0x8]
moyv DWORD _PTR [ebn-0x8c] . eax
mov eax,gs:0x14

mov DWORD PTR [ebp-0xc],eax
Xor eax, eax

© AllRights Reserved CyberwarFare Labs

Canary

<+444>:
<+447>:
<+454>:
<+456>:
<+461>:
<+464>:
<+465>:

CyberWarFare Labs

mov eax,DWORD PTR [ebp-0xc]
Xor eax,DWORD PTR gs:0x14
je <

call < S »
mov ebx,DWORD PTR [ebp-0x4]
leave

ret

+461>

>

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

ASLR (Address Space Layout Randomization)

e ASLR randomizes the memory address layout

o stack, heap, shared libraries

e Makes difficult to find the accurate memory address

o Prevents from controlling the flow of the execution

e Position Independent Executable (PIE) randomizes the binary memory base

address

© AllRights Reserved CyberwarFare Labs

ASLR (Address Space Layout Randomization)

checksec for '/home/cped-lin/webinar/lab/overflow/validator-pie'

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

ASLR (Address Space Layout Randomization)

info proc map
Mapped address spac

Start Addr
0x5656c000
0x5656d000
0x5656e000
0x5656T000
0xf7d86000
0xf7d9f000
Oxf7ef8000
Oxf7f6c000
Oxf7f6d000
Oxf7f6T000
Oxf7f8c000
Oxf7t8d00O
Oxf7fab000
Oxf7fb7000

es:

End Addr
0x5656d000
0x5656e000
0x5656T000
0x56570000
0xf7d9f000
0xf7ef8000
Oxf7f6c000
0xf7t6d000
Oxf7f61000
0xf7f70000
Oxf7f8d000O
0xf7fab00oo
0xf7fb6000
0xf7fb800O0O

Size
0x1000
0x1000
0x1000
0x1000

0x19000
0x159000
0x74000
0x1600
0x2000
0x1600
0x1000
0x1e000
0xb00OO
0x1000

Offset
0x0
0x16000
0x2000
0x2000
0x0
0x19000
0x172000
0x1e6000
0x1e6000
0x1e8000
Ox0
0x1000
0x1f000
0x2a000

objfile
/home/cped-1lin/webinar/lab/overflow/validator-pie
/home/cped-1lin/webinar/lab/overflow/validator-pie
/home/cped-1lin/webinar/lab/overflow/validator-pie
/home/cped-lin/webinar/lab/overflow/validator-pie
/usr/1ib32/1ibc-2.31.s0

/usr/1ib32/1ibc-2.31.s0

/usr/1ib32/1ibc-2.31.s0

/usr/1ib32/1ibc-2.31.s0

/usr/1ib32/1ibc-2.31.s0

/usr/1ib32/1ibc-2.31.s0

/usr/1ib32/1d-2.31.s0

/usr/1ib32/1d-2.31.s0

/usr/1ib32/1d-2.31.s0

/usr/1ib32/1d-2.31.s0

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

ASLR (Address Space Layout Randomization)

info proc map
Mapped address spaces:

Start Addr End Addr Size Offset objfile

0x5664b000 0x5664c000 0x1000 0x0 /home/cped-lin/webinar/lab/overflow/validator-pie
0x5664c000 0x5664d000 0x1000 0x1000 /home/cped-lin/webinar/lab/overflow/validator-pie
0x5664d000 0x5664e000 0x1000 0x2000 /home/cped-lin/webinar/lab/overflow/validator-pie
0x5664e000 0x5664f000 0x1000 0x2000 /home/cped-lin/webinar/lab/overflow/validator-pie
0xf7d5c000 0xf7d75000 0x19000 0x0 /usr/1ib32/1libc-2.31.s0

0xf7d75000 0xf7ece@d® 0x159000 0x19000 /usr/1ib32/1ibc-2.31.s0

Oxf7ece000 Oxf7142000 0x74000 0x172000 /usr/1ib32/libc-2.31.so0

0xT7f42000 0xf7f43000 0x1000 0x1e6000 /usr/1ib32/libc-2.31.so

0xf7f43000 O0xf7f45000 0x2000 0x1e6000 /usr/l1ib32/1ibc-2.31.s0

0xf7f45000 0xf7f46000 0x1000 0x1e8000 /usr/1ib32/1ibc-2.31.so0

OxT7f62000 OxT7T63000 0x1000 0x0 /usr/1ib32/1d-2.31.

Oxf7f63000 0xf7f81000 0x1e000 0x1000 /usr/1ib32/1d-2.31.

Oxf7f81000 Oxf7f8cO0O0 0xb000 0x1f000 /usr/lib32/1d-2.31.

Oxf7f8d000 Oxf7f8e000 0x1000 0x2a000 /usr/1ib32/1d-2.31.

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi de01.ir CWL

FORTIFY_SOURCE

e Compile-time security feature in the GNU C Library (glibc)
e Provides runtime protection for detecting buffer overflow
e Certain buffer manipulation related functions are protected with additional
wrapper function:
o strcpy, gets, memcpy, memmove, etc. [2]

e Wrapper function ends with _chk.

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

FORTIFY_SOURCE

1-1in@ubuntu >
: In function ‘main’:
ain.c:70:5: ignoring return value of ‘fgets’, declared with attribute warn_unused result [
70 | ;
|
In file included from /usr/include/string.h:495,
from main.c:3:
In function ‘strncpy’,
inlined from ‘check_candidate’ at main.c:51:9:
/usr/include/bits/string_fortified.h:106:10: ‘__builtin__ strncpy_chk’ specified bound depends on the length of the source argument [
1
106 | return
|

: In function ‘check_candidate’:
main.c:51:9: length computed here
51|
|

© AllRights Reserved CyberwarFare Labs

y —

CyberWarfFare Labs

FORTIFY_SOURCE

checksec
checksec for '/home/cped-lin/webinar/lab/overflow/validator-fortify'

© AllRights Reserved CyberwarFare Labs

—————— A

CyberWarFare Labs

FORTIFY_SOURCE

- 0x00000000
: 0x00000025 ("%"?)
: 0x0000001e
: Oxf7fc9110 - 0Oxf7dcb0O0 - 0x464c457f

-

- 0x00000000

0x8049120 < strncpy chk@plt+0000> endbr32

0x8049124 < strncpy chk@plt+0004> jmp DWORD PTR ds:0x804b454
0x804912a < strncpy chk@plt+000a> nop WORD PTR [eax+eax*1+0x0]
0x8049130 < strcpy chk@plt+0000> endbr32

0x8049134 < strcpy chk@plt+0004> jmp DWORD PTR ds:0x804b458
0x804913a < strcpy chk@plt+000a> nop WORD PTR [eax+eax*1+0x0]

strncpy chk@plt (
= OxTfffd6d6 - Ox00000000,
oxffffd76c - AAAAAA/
0x00000025,
0x0000001e

y —

CyberWarFare Labs

FORTIFY_SOURCE

cped-lin@ubuntu s
[+] Are you a selected candidate?

[+] Enter your name: AA
k*x* puffer overflow detected ***: terminated

fish: Job 1, './validator-fortify' terminated by signal SIGABRT (Abort)
cped- lin@ubuntu >

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

LAB

© AllRights Reserved CyberwarFare Labs

Windows - Win32 Exploit Development

CyberWarFare Labs

Win32 Structured Exception Handling (SEH)

e Windows OS mechanism for handling hardware or software faults
e Per-thread basis
o Each thread has its own exception handler callback
e It also provides the extensions to the Microsoft visual c++ compiler
o Allowing developer to handle faults in their program

o try & _ _except keywords are used to guard the code

© AllRights Reserved CyberwarFare Labs

_NT_TIB

Exceptionlist (FS:[0])

Low Address

CyberWarFare Labs

ﬂ

_EXCEPTION_REGISTRATION_RECORD

NextSEH —
Handler _
)

_EXCEPTION_REGISTRATION_RECORD | «fud

NextSEH —

Handler
_EXCEPTION_REGISTRATION_RECORD

Oxfffffftf &

Handler

High Address

© AllRights Reserved CyberwarFare Labs

pt_handler (
EXCEPTION_Record
EXCEPTION_REGISTRATION
CONTEXT
EXCEPTION_REGISTRATION

4 AN CWL £ g
hi deO1.ir CWL

Structured Exception Handling (SEH)

typedef struct EXCEPTION REGISTRATION RECORD {
struct EXCEPTION REGISTRATION RECORD *Next;
PEXCEPTION ROUTINE Handler;
} EXCEPTION REGISTRATION RECORD, *PEXCEPTION REGISTRATION RECORD;

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi deO1.ir CWL

Structured Exception Handling (SEH)

EXCEPTION DISPOSITION
__cdecl _except_handler(
struct EXCEPTION RECORD *ExceptionRecord,
oid EstablisherFrame,
struct CONTEXT *ContextRecord,
void * DispatcherContext

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Structured Exception Handling (SEH)

typedef struct EXCEPTION RECORD {

DWORD ExceptionCode;

DWORD ExceptionFlags;

struct EXCEPTION RECORD *ExceptionRecord;

PVOID ExceptionAddress;

DWORD NumberParameters;

DWORD ExceptionInformation[EXCEPTION MAXIMUM PARAMETERS];
} EXCEPTION RECORD;

© AllRights Reserved CyberwarFare Labs

y —

CyberWarFare Labs

__try/__except

ey EXCEPTION_CONTINUE_EXECUTION = -1

__try{
//guarded block
//of code i » EXCEPTION_CONTINUE_SEARCH =0

}__except (filter-expression) {

//exception-handler block

m—p EXCEPTION_EXECUTE_HANDLER =1

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

__try/__except

int exception handler(long exception code, EXCEPTION POINTERS *ep) {
printf("Exception Code: 0x%x \n", exception code);
printf("Exception Address: 0x%x", ep->ExceptionRecord->ExceptionAddress);
return EXCEPTION CONTINUE SEARCH;

}

int main() {

printf("Attach to Debugger \n");

system("pause");

_try 4
void* p = 0x00000000;
char str[10] = "mydata";
memcpy (p, str, strlen(str));

3

__except (exception handler(GetExceptionCode(), GetExceptionInformation())) {
printf("Exception Called \n");

}

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

CyberWarfare Labs

Low Address
esp 9
ebp-0x18 =) old_esp
ebp-0x14 —>) ExceptionPointer
ebp-0x10 =) Next (FS:[0])
ebp-0x0c % __except_handle4
ebp-0x08 =) scopetable —> _EH4_SCOPE_TABLE
ebp-0x04 =) try_level GSCookieOffset;
GSCookieXOROffset;
ebp —) old_ebp
EHCookieOffset;
EHCookieXOROffset;
High Address
ScopeRecord _EH4_SCOPETABLE_RECORDS

© AllRights Reserved CyberwarFare Labs

EnclosingLevel

FilterFunc

HandlerFunc

hi deOl.1r

SEH - DEMO

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

SEH Overflow

e Overflowing the buffer past its limit to reach SEH records
o placing controlled address in the handler
e Next time when exception occurs

o code from the controlled address will get executed

© AllRights Reserved CyberwarFare Labs

4 AN CWL £ g
hi de01.ir CWL

SEH Overflow

Low Address

Pointer to NextSEH Record

Handler

High Address

© AllRights Reserved CyberwarFare Labs

S\
hi deOl1.ir CWL

SEH Overflow - Exploitation

Low Address

—

High Address

© AllRights Reserved CyberwarFare Labs

y —

CyberWarFare Labs

Bad Characters

e Bytes that could be misinterpreted by the application leading to
o Truncation during buffer copy
o Byte modification
o crashing shellcode
e Common bad characters:
o 0x00, Ox0A, 0x20, Ox2c, 0x2b, 0x2f, Oxbc

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Identifying Bad Characters

e Creating buffer containing all possible byte values from 0x00 to Oxff

e Sending the buffer to the program

e Analyzing the buffer in memory vs buffer in disk, Generally looking for
o Truncation

o Alteration

© AllRights Reserved CyberwarFare Labs

CyberWarFare Labs

Identifying Bad Characters

Disk >

In Memory —

Ox0a

OxOc

Ox43

Ox5F

Ox1b

OxOc

Ox43

Ox60

© AllRights Reserved CyberwarFare Labs

hi deOl.1r

Conclusion

4 AN CWL £ g
hi de01.ir CWL

References

1. https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x8
6-32 Dbit
2. https:/[cwe.mitre.org/data/definitions/121.html

w

https://limbioliong.wordpress.com/2022/01/09/understanding-windows-structur

ed-exception-handling-part-1/

https://www.gnu.org/software/libc/manual/html node/Source-Fortification.html

https: ithub.com/starnight/MicroHttpServer/issues/5b
https: ithub.com/advisories/ GHSA-p7xp-hgxr-fpg2

N o o &

https:/ /www.exploit-db.com/exploits /44522

© AllRights Reserved CyberwarFare Labs

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://cwe.mitre.org/data/definitions/121.html
https://limbioliong.wordpress.com/2022/01/09/understanding-windows-structured-exception-handling-part-1/
https://limbioliong.wordpress.com/2022/01/09/understanding-windows-structured-exception-handling-part-1/
https://www.gnu.org/software/libc/manual/html_node/Source-Fortification.html
https://github.com/starnight/MicroHttpServer/issues/5
https://github.com/advisories/GHSA-p7xp-hqxr-fpq2
https://www.exploit-db.com/exploits/44522

4 AN CWL £ g
hi de01.ir CWL

Image References

1. https://chromium.qgooglesource.com/chromiumos/docs/+/master/constants/syscalls.md#x8
6-32 bit

© AllRights Reserved CyberwarFare Labs

https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit
https://chromium.googlesource.com/chromiumos/docs/+/master/constants/syscalls.md#x86-32_bit

