
Damn Vulnerable Web Application (DVWA)

Official Documentation

Revision Published

1.3  27.10.2010

Damn Vulnerable Web Application (DVWA) – Page 1



Contents

Introduction
 3

License
 3

Warning
 4

Installation
 4

Vulnerabilities
 5

DVWA Security
 8

User security
 9

Usage
 10

Troubleshooting
 15

Further information
 16

Credits
 16

Damn Vulnerable Web Application (DVWA) – Page 2



Introduction
Damn Vulnerable Web Application (DVWA) is a PHP/MySQL web application that is 
damn vulnerable. Its main goals are to be an aid for security professionals to test 
their skills and tools in a legal environment, help  web developers better understand 
the processes of securing web  applications and aid teachers/students to teach/learn 
web application security in a class room environment.

Damn Vulnerable Web Application (DVWA) is a RandomStorm OpenSource project. 
For further details about the services and products RandomStorm offer please visit; 
http://www.randomstorm.com.

The DVWA project started in December 2008 and has steadily grown in popularity. It 
is now used by thousands of security professionals, students and teachers world 
wide. DVWA is now included in popular penetration testing Linux distributions such 
as Samurai Web Testing Framework and many others.

License
This file is part of Damn Vulnerable Web Application (DVWA).

Damn Vulnerable Web  Application (DVWA) is free software: you can redistribute it 
and/or modify it under the terms of the GNU General Public License as published by 
the Free Software Foundation, either version 3 of the License, or (at your option) any 
later version.

Damn Vulnerable Web App (DVWA) is distributed in the hope that it will be useful, 
but WITHOUT ANY WARRANTY; without even the implied warranty of 
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU 
General Public License for more details.

You should have received a copy of the GNU General Public License along with 
Damn Vulnerable Web App (DVWA).  If not, see http://www.gnu.org/licenses/.

Damn Vulnerable Web Application (DVWA) – Page 3

http://www.randomstorm.com
http://www.randomstorm.com
http://www.gnu.org/licenses/
http://www.gnu.org/licenses/


Warning
Damn Vulnerable Web App is damn vulnerable! Do not upload it to your hosting 
provider's public html folder or any working web  server as it will be compromised. We 
recommend downloading and installing XAMPP onto a local machine inside your 
LAN which is used solely for testing. 

We do not take responsibility  for the way in which any one uses Damn Vulnerable 
Web App (DVWA). We have made the purposes of the application clear and it should 
not be used maliciously. We have given warnings and taken measures to prevent 
users from installing DVWA on to live web servers. If your web server is 
compromised via an installation of DVWA it is not our responsibility  it is the 
responsibility of the person/s that uploaded and installed it.

Installation
DVWA is a web  application coded in PHP that uses a MySQL back-end database. 
DVWA needs a web server, PHP and MySQL installed in order to run. The easiest 
way to install DVWA is to download and install 'XAMPP' if you do not already have a 
web server setup. 

XAMPP is a very easy to install Apache Distribution for Linux, Solaris, Windows and 
Mac OS X. The package includes the Apache web  server, MySQL, PHP, Perl, a FTP 
server and phpMyAdmin.

XAMPP can be downloaded from:

http://www.apachefriends.org/en/xampp.html

DVWA default username = admin

DVWA default password = password

Damn Vulnerable Web Application (DVWA) – Page 4

http://www.apachefriends.org/en/xampp.html
http://www.apachefriends.org/en/xampp.html


Windows

Once you have downloaded and installed XAMPP place the uncompressed DVWA 
folder in your Apache htdocs folder. Normally located at ʻC:\XAMPP\htdocsʼ. DVWA 
should now be accessible from your browser at http://127.0.0.1/dvwa.

Linux

Once you have downloaded and installed XAMPP place the uncompressed DVWA 
folder in your Apache htdocs folder. Normally located at ʻ/opt/lampp/htdocsʼ. Start 
Apache with the following command; ʻsudo /opt/lampp/lamp startʼ. DVWA should now 
be accessible from your browser at http://127.0.0.1/dvwa.

Vulnerabilities
DVWA as the name suggests is vulnerable to the most common types of web 
application vulnerabilities. DVWA incorporates most of the Open Web Application 
Security Project's (OWASP) top 10 web application security risks for 2010 as 
reported in the OWASP TOP 10 document. http://owasptop10.googlecode.com/files/
OWASP%20Top%2010%20-%202010.pdf

The OWASP Top 10 Web Application Security Risks for 2010 are:

• A1: Injection

• A2: Cross-Site Scripting (XSS)

• A3: Broken Authentication and Session Management

• A4: Insecure Direct Object References

• A5: Cross-Site Request Forgery (CSRF)

• A6: Security Misconfiguration

• A7: Insecure Cryptographic Storage

• A8: Failure to Restrict URL Access

• A9: Insufficient Transport Layer Protection

• A10: Unvalidated Redirects and Forwards

Damn Vulnerable Web Application (DVWA) – Page 5

http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf
http://owasptop10.googlecode.com/files/OWASP%20Top%2010%20-%202010.pdf


Some of the web application vulnerabilities which DVWA contains;

• Brute Force: HTTP Form Brute Force login page; used to test password 
brute force tools and show the insecurity of weak passwords. 

• Command Execution: Executes commands on the underlying operating 
system. 

• Cross Site Request Forgery (CSRF): Enables an ʻattackerʼ to change the 
applications admin password. 

• File Inclusion: Allows an ʻattackerʼ to include remote/local files into the web 
application. 

• SQL Injection: Enables an ʻattackerʼ to inject SQL statements into an HTTP 
form input box. DVWA includes Blind and Error based SQL injection.

• Insecure File Upload: Allows an ʻattackerʼ to upload malicious files on to the 
web server. 

• Cross Site Scripting (XSS): An  ʻattackerʼ can inject their own scripts into the 
web application/database. DVWA includes Reflected and Stored XSS.

• Easter eggs: Full path Disclosure, Authentication bypass and some others. 
(find them!)

Where they are:

Low security

Brute Force/Weak Passwords;

http://127.0.0.1/dvwa/login.php

http://127.0.0.1/dvwa/vulnerabilities/brute/

Command Execution;

http://127.0.0.1/dvwa/vulnerabilities/exec/

Damn Vulnerable Web Application (DVWA) – Page 6



Cross Site Request Forgery (CSRF);

http://127.0.0.1/dvwa/vulnerabilities/csrf/

File Inclusion;

http://127.0.0.1/dvwa/vulnerabilities/fi/?page=include.php

SQL Injection;

http://127.0.0.1/dvwa/vulnerabilities/sqli/

http://127.0.0.1/dvwa/vulnerabilities/brute/

Insecure File Upload;

http://127.0.0.1/dvwa/vulnerabilities/upload/

Reflected Cross Site Scripting;

http://127.0.0.1/dvwa/vulnerabilities/xss_r/

Stored Cross Site Scripting;

http://127.0.0.1/dvwa/vulnerabilities/xss_s/

Full path Disclosure;

Site wide. Set PHPSESSID to NULL. (Null Session Cookie) http://www.owasp.org/
index.php/Full_Path_Disclosure

Authentication bypass;

If the admin changes the default password (password) and the 'attacker' knows what 
the default password is. The 'attacker' may access http://127.0.0.1/dvwa/setup.php 
to reset the database including the default password.

Damn Vulnerable Web Application (DVWA) – Page 7



DVWA Security

As well as being vulnerable, DVWA has some other features which aid in the 
teaching or learning of web application security. DVWAs Security features can be 
divided into two parts, one is the security levels and the other is PHP-IDS.

The security  levels are named low, medium and high. Each level changes the 
vulnerability state of DVWA throughout the application. By default when DVWA is 
loaded the security level is set to High. Below is an explanation of each security level 
and its purpose.

• High – This level is to give an example to the user of good coding practises. 
This level should be secure against all vulnerabilities. It is used to compare 
the vulnerable source code to the secure source code.

• Medium – This security level is mainly to give an example to the user of bad 
security practices, where the developer has tried but failed to secure an 
application. It also acts as a challenge to users to refine their exploitation 
techniques.

• Low - This security level is completely vulnerable and has no security  at all. 
It's use is to be as an example of how web application vulnerabilities manifest 
through bad coding practices and to serve as a platform to teach or learn 
basic exploitation techniques.

Every vulnerability  page with in DVWA has a 'view source' button, this button is used 
to view and compare the source code of each vulnerability in respect to its security 
level. This allows the user easy access to the source code for comparison of secure 
and insecure coding practices.

PHP-IDS is a popular PHP Intrusion Detection System (IDS) also known as a Web 
Application Firewall (WAF). PHP-IDS works by  filtering any user supplied input 
against a blacklist of potentially malicious code. PHP-IDS is used in DVWA to serve 
as a live example of how WAFs can help improve security in web  applications and in 

Damn Vulnerable Web Application (DVWA) – Page 8



some cases how WAFs can be circumvented. PHP-IDS can be enabled or disabled 
at the click of a button. DVWA has explicit written permission from the owner of PHP-
IDS Mario Heiderich for it to be included and distributed within DVWA as long as the 
licensing is left intact. For further information on PHP-IDS please visit; http://
www.php-ids.org

User security

DVWA does not emulate web application vulnerabilities, the vulnerabilities within 
DVWA are real and therefore great care should be taken on where it is installed. 
DVWA takes a proactive approach in protecting its users wherever possible. This is 
done by bold written warnings at the download of the application and within the 
application itself. DVWA can only be accessed from the localhost and not from 
remote machines, this is done by setting certain rules within the .htaccess file which 
is part of the application.

The warning messages state that DVWA should not be installed on live web servers 
or production machines. Instead it should be installed within a LAN on a machine 
that is solely  used for testing purposes. DVWA at no point should ever be uploaded 
to an internet facing web server.

DVWA also contains a robots.txt file, if the application was ever uploaded to an 
internet facing web  server this file ensures that the application will not be indexed by 
search engines. 

On each page that contains a vulnerability there are external links to resources 
which contain further information regarding that particular vulnerability. When 
external links are clicked it is possible for the remote server to gather information 
such as the 'Referer' HTTP header. This information contains the URL of where the 
application is installed, the server administrators could potentially view this 
information and compromise the sever on which DVWA is installed. For that reason 
all of DVWAs external links are passed through a trusted third party proxy which 
clears any sensitive information from the HTTP headers.

User security is of up  most importance to the DVWA project. If users do not disable 
any of these features and follow the advice given, installing and using DVWA will not 
compromise the security of the machine it is installed on.

Damn Vulnerable Web Application (DVWA) – Page 9

http://www.php-ids.org
http://www.php-ids.org
http://www.php-ids.org
http://www.php-ids.org


Usage

In this part of the documentation we will give examples of how DVWA can be used to 
teach and learn web application security in a legal environment. 

DVWA can be used in a variety of ways. It can be used to teach web application 
security by showing practical examples and setting challenges for the students. It 
can be used as just a learning aid, DVWA is designed as such to be as easy as 
possible to set up and use. There is plenty  of information within DVWA to help the 
beginner get started. DVWA can also be used as a reference to secure coding, if a 
developer is not quite sure if they have protected their application against XSS for 
example, they can view DVWAs source code as a reference. After all the DVWA 
source code has been peer reviewed by thousands of security professionals and 
students. 

Once the user has set up  a web server and the MySQL database, to begin they will 
need to point their browser to the 'localhost' web server. They will be greeted with 
instructions guiding them through the simple two button click installation process.

DVWA Welcome Page

Damn Vulnerable Web Application (DVWA) – Page 10



As an example we will show how a user might exploit the Stored (type-2) XSS low 
security level vulnerability.

This particular vulnerability has been placed in a guestbook type function. The idea 
is that a legitimate user leaves comments on a web page that includes their name. 
As the user supplied input is stored permanently  in the backend database, if there 
were no input sanitisation a malicious user could permanently store their payload 
within it. Output validation could work here to stop the malicious payload from being 
executed however as we will see this particular guestbook does not sanitise input 
nor output properly.

Let's take a closer look at the source code behind the guestbook; we do this by 
pressing the 'View Source' button on the bottom right hand corner. The source code 
is coloured within DVWA to help with its readability.

Damn Vulnerable Web Application (DVWA) – Page 11



<?php 

if(isset($_POST['btnSign'])) 

{ 

# $message = trim($_POST['mtxMessage']); 

# $name= trim($_POST['txtName']); 

 

# //Sanitize message input 

# $message = stripslashes($message); 

# $message = mysql_real_escape_string($message); 

# //Sanitize name input 

# $name = mysql_real_escape_string($name); 

# $query = "INSERT INTO guestbook (comment,name) VALUES 
('$message','$name');"; 

$result = mysql_query($query) or die('<pre>' . mysql_error() . '</pre>' ); 

} 

?> 

We have two variables passed from the form which contains user supplied input, 
these are $name and $message. The first thing we do is use the trim() PHP function 
to remove any  white space from the beginning or end of the strings. The $message 

Damn Vulnerable Web Application (DVWA) – Page 12



variable is passed through the stripslashes() PHP function to remove any slashes 
and then also passed through the mysql_real_escape_string() PHP function to 
escape any special characters; this prevents SQL Injection. The $name variable is 
only passed through the mysql_real_escape_string() function before being placed in 
the final query ($query). So as you can see there has been some input sanitisation, 
but is it enough?

As you can see from the above screen shot we have successfully injected a XSS 
payload into the database. In this example we used the '<script>alert('XSS');</
script>' payload within the $message variable. If we take a look at the high security 
level source code for the same vulnerability it should give us some clues as to why 
the low security level is insecure.

<?php 

if(isset($_POST['btnSign'])) 

{ 

Damn Vulnerable Web Application (DVWA) – Page 13



# $message = trim($_POST['mtxMessage']); 

# $name = trim($_POST['txtName']); 

 

# //Sanitize message input 

# $message = stripslashes($message); 

# $message = mysql_real_escape_string($message); 

# $message = htmlspecialchars($message); 

# //Sanitize name input 

# $name = stripslashes($name); 

# $name = mysql_real_escape_string($name); 

# $name = htmlspecialchars($name); 

# $query = "INSERT INTO guestbook (comment,name) VALUES 
('$message','$name');"; 

# $result = mysql_query($query) or die('<pre>' . mysql_error() . '</pre>'); 

} 

?> 

If you compare the low security level source code to the high security level one you 
will notice that the high security  level source code has some extra input sanitisation. 
Both the $name and $message variables are passed through the htmlspecialchars() 
PHP function. The htmlspecialchars() function converts special characters to HTML 
entities, therefore the user input is HTML encoded meaning that it is just displayed 
as normal HTML rather than being executed.

Damn Vulnerable Web Application (DVWA) – Page 14



In this example we used a very simple JavaScript alert box to show the vulnerability 
existed. It could have easily been a complex AJAX script stored on a remote web 
server that stole your session cookies, installed malware onto your computer or 
tricked you into supplying your bank accounts username and password.

Troubleshooting
Q. SQL Injection wonʼt work on PHP version 5.2.6.

A. If you are using PHP version 5.2.6 you will need to do the following in order for 
SQL injection and other vulnerabilities to work.

In the file .htaccess:

Replace:

<IfModule mod_php5.c>

php_flag magic_quotes_gpc off

#php_flag allow_url_fopen on

#php_flag allow_url_include on

</IfModule>

With:

<IfModule mod_php5.c>

magic_quotes_gpc = Off

allow_url_fopen = On

allow_url_include = On

</IfModule>

Q. Command execution won't work.

Damn Vulnerable Web Application (DVWA) – Page 15



A. Apache may not have high enough privileges to run commands on the web server. 
If you are running DVWA under Linux make sure you are logged in as root in 
Windows log in as Administrator.

#

Q. My XSS payload won't run in x browser.

A. Many modern browsers have XSS protection measures built in and enabled by 
default. Check to see if your browser and version has any XSS protection, if so, 
disable it.

Further information
Homepage: http://www.dvwa.co.uk/

Forum: http://www.dvwa.co.uk/forum

SVN: http://dvwa.svn.sourceforge.net/svnroot/dvwa

Credits
Trenton Ivey - http://www.hackyeah.com/

Jamesr - http://www.creativenucleus.com/ & http://www.designnewcastle.co.uk/

Ryan Dewhurst - http://www.ethicalhack3r.co.uk/

Tedi Heriyanto - http://tedi.heriyanto.net/

Tom Mackenzie - http://tmacuk.co.uk/

For a complete list of contributors please see the about page within DVWA as it is 
updated more regularly than the documentation.

Damn Vulnerable Web Application (DVWA) – Page 16

http://www.dvwa.co.uk
http://www.dvwa.co.uk
http://www.dvwa.co.uk/forum
http://www.dvwa.co.uk/forum
http://dvwa.svn.sourceforge.net/svnroot/dvwa
http://dvwa.svn.sourceforge.net/svnroot/dvwa
http://www.hackyeah.com
http://www.hackyeah.com
http://www.creativenucleus.com
http://www.creativenucleus.com
http://www.designnewcastle.co.uk
http://www.designnewcastle.co.uk
http://www.ethicalhack3r.co.uk
http://www.ethicalhack3r.co.uk
http://tedi.heriyanto.net
http://tedi.heriyanto.net
http://tmacuk.co.uk
http://tmacuk.co.uk

