45. What is the "“composition over
inheritance” principle?

Brief summary: “Composition over inheritance” is a design principle stating that
we should favor composition over inheritance. In other words, we should reuse
the code by rather containing objects within other objects, than inheriting one
from another.

“Composition over inheritance” is a design principle stating that we should favor
composition over inheritance. In other words, we should reuse the code by rather
containing objects within other objects, than inheriting one from another.

Let's see a practical example.

PersonalDataFormatter

Format()

people = ReadPeople();

return .Join("\n",
people.Select(p => $"{p.Name} born in" +
$" {p.Country} on {p.YearOfBirth}"));

IEnumerable<Person> ReadPeople()

Console.WriteLine("Reading from database™);

return List<Person>

{
Person("John", 1982, "USA"),
Person("Aja", 1992, "India"),
Person("Tom", 1954, "Australia™),




This class reads people’s data from a database and formats it as a single string. It's
obviously breaking the Single Responsibility Principle, but let's by now not focus on
that.

One day the business requirements change, and we are told that sometimes the
people's information will be read from the database, but sometimes from an Excel
file. We want to be able to make this decision at runtime.

We can solve it in two ways - by either using composition, and injecting an object
implementing some IPeopleDataReader interface with this class’s constructor, or

we can use inheritance.

First, let's solve this with inheritance. | will make the PersonalDataFormatter class
abstract:

PersonalDataFormatter

Format()

people = ReadPeople();
return .Join("\n",

people.Select(p => $"{p.Name} born in" +
$" {p.Country} on {p.YearOfBirth}"));

IEnumerable<Person> ReadPeople();

The ReadPeople method is also abstract, so it will have to be overridden in
inheritors:



lass DatabaseSourcedPersonalDataFormatter : PersonalDataFormatter

tected override IEnumerable<Person> ReadPeople()

Console.WritelLine("Reading from database");
return new List<Person>

{

i Person("John™, 1982, "USA"),

v Person("Aja", 1992, "India"),

v Person("Tom", 1954, "Australia"),

D0

PersonalDataFormatter

override IEnumerable<Person> ReadPeople()

Console.WritelLine("Reading from an Excel file");
return new List<Person>
{
new Person("Martin", 1972, "France"),
ew Person("Aiko™, 1995, "Japan"),
ew Person("Selene”, 1944, "Great Britain"),

Great. We achieved what we wanted - we can now format the personal data
sourced from both databases and Excel files. We don’t have any code duplications,
and we can decide the type at runtime, using some Factory.

var factory = new PersonalDataFormatterFactory();

var fromExcel = factory.Create(Source.Excel);
Console.WritelLine(fromExcel.Format());

Console.WriteLine();

var fromDatabase = factory.Create(Source.Database);
Console.WritelLine(fromDatabase.Format());




case Source.Database:

return new DatabaseSourcedPersonalDataFormatter();
case Source.Excel:

return new ExcelSourcedPersonalDataFormatter();
default:

throw new ArgumentException("Invalid source™);

Everything looks good, doesn’t it?

Well... not so fast. Let me tell you why using inheritance, in this case, wasn't our
brightest idea.

e The PersonalDataFormatter class is tightly coupled with its inheritors now.
Any change in the base class will affect the child classes. We can't really use
any of those types without the others provided, so if | wanted to use
ReadPeople method anywhere else, | would not be able without engaging
this entire hierarchy of classes. You can learn more about coupling in the
“What is coupling?” lecture.

e The relation between those particular classes is rigid - it is defined at
compile time. If I had some other mechanism that can read people’s
information from some source, | wouldn’t be able to use it here without
creating another derived type.

e Also, we have all the limitations of inheritance here, especially the fact that
we can only inherit from a single base class.

e This example is simple, but if we needed some other changes that would
make those classes different, we would have the inheritance hierarchy
growing really fast. For example, if the way of formatting the final string
would also need to be configurable, we would need to create even more
classes, like:

DatabaseSourcedPersonalDataShortFormatter,
DatabaseSourcedPersonalDataFullFormatter,
ExcelSourcedPersonalDataShortFormatter,
ExcelSourcedPersonalDataFullFormatter

Such hierarchy would soon become unmanageable.



e |f we wanted to create unit tests for those classes, it would be tricky, and
there are actually two approaches for testing abstract classes and their
inheritors, both with their own disadvantages:

o We can test both inheritors, but in both of them, we will also test the
common part belonging to the base class. Our tests will be partially
duplicated.

o We can test inheritors ignoring the logic belonging to the base type
as much as possible. Then, we can test the base abstract class logic by
creating for the testing purposes a special, dedicated concrete type
derived from it. In the tests of this class, we would focus on testing
the base class logic. This is even worse than the First point - if you
need to create special inheritors classes for testing purposes only, it
means you messed your design up badly.

e |tis often the case that we inherit more than we would actually want. The
base class is exposing the implementation details to inheritors.

e Thereis one more reason for avoiding inheritance that is not really related
to this example, but | want to mention it anyway: if we use inheritance in a
hierarchy of objects that we intend to store in a database using some
Object-Relational Mapping tools like Entity Framework, it may be a
challenge to store those objects properly. Databases don't easily
“understand” inheritance, so mapping the C#'s hierarchy of inheritance into
a Flat structure of tables is tricky, and often leads to overcomplicating the
model in the database.

So how to solve all of it?

Well, in this case, we should definitely apply the “composition over inheritance”
principle. Let's refactor this code:

First of all, I will introduce an interface:

interface IPeopleDataReader

{

ifﬁﬂmerable(Person> ReadPeople();

| will have two classes implementing it:



DatabasePeopleDataReader : IPeopleDataReader

IEnumerable<Person> ReadPeople()

Console.WriteLine("Reading from database");

return List<Person>

{
Person("John", 1982, "USA"),
Person("Aja"™, 1992, "India"),
Person("Tom™, 1954, "Australia®),

ExcelPeopleDataReader : IPeopleDataReader

IEnumerable<Person> ReadPeople()

Console.WritelLine("Reading from an Excel file");

return List<Person>

{
Person("Martin™, 1972, "France"),
Person("Aiko", 1995, "Japan"),
Person("Selene"”, 1944, "Great Britain"),

Instead of using inheritance, | will compose The PersonalDataFormatter with a type
implementing the IPeopleDataReader interface:



lass PersonalDataFormatter

private readonly IPeopleDataReader _peopleDataReader;

ublic PersonalDataFormatter(IPeopleDataReader peopleDataReader)

_peopleDataReader = peopleDataReader;

ublic string Format()

var people = _peopleDataReader.ReadPeople();
return string.Join("\n",
people.Select(p => $"{p.Name} born in" +
$" {p.Country} on {p.YearOfBirth}"));

case Source.Database:
return new PersonalDataFormatter(
new DatabasePeopleDataReader());
case Source.Excel:
return new PersonalDataFormatter(
new ExcelPeopleDataReader());
default:
throw new ArgumentException("Invalid source");

Great. Everything works as before, but no problems mentioned above occur now:
e The classes are loosely coupled. They live in complete separation, and they
only communicate by an interface
e The relationship between classes is not rigid anymore. It is defined at
runtime when we actually inject a concrete PeopleDataReader to



PersonalDataFormatter object with the constructor. Before, the relation was
defined at compile time.

e |f we needed to add more changes, the inheritance hierarchy wouldn't grow.
We would only add a new interface and classes implementing it, for
example, an IPersonFormatter implemented by PersonShortFormatter and
PersonFullFormatter.

e Testing would be simple. We would test each class in separation, and no
tests would be duplicated.

e No class exposes any implementation details to another class.

All right. | hope you see now that in this case “composition over inheritance” was a
rule worth following. | would say it is in the majority of cases, and when in doubt,
you should follow the composition design rather than inheritance. To be honest, at
my everyday work | use inheritance extremely rarely.

One more thing before we move on. If you know the Bridge design pattern, this all
may sound very familiar to you. This is because the Bridge pattern is simply a way
of implementing the composition over inheritance principle. You can read more
about the Junior e-book.

All right. We said that having composition instead of inheritance has a lot of
benefits. But it doesn’t mean that inheritance should be avoided at any cost. Let's
take a look at the Person type:

string LastName {

bublic int YearOfBirth { ;

bﬁbiic Person(string firstName, string lastName, int yearOfBirth)

{

FirstName = firstName;
LastName = lastName;
YearOfBirth = yearOfBirth;

Now, let’s say we want to introduce an Employee type to the project. An Employee
is still a Person, and it should have FirstName, LastName, and YearOfBirth
properties. Besides that, this type should have a “Position” property.



Let’'s say we are so excited about using the “composition over inheritance” that we
decide not to use inheritance ever again. And this is the code we create:

Employee

FirstName => person.FirstName;
LastName => _person.LastName;
YearOfBirth => _person.YearOfBirth;

Position { .

Employee(Person person, position)

_person = person;
Position = position;

Is this design good? Well, | wouldn’t say so. What looks a bit fishy are the
Forwarding methods - so the methods that only exist to call methods from some
inner object. In our case, those methods are the FirstName, LastName, and
YearOfBirth properties (remember that properties are like special kinds of
methods).

Let's see what this code would look like if we used inheritance:



Employee : Person

Employee(
firstName,
lastName,

yearOfBirth,
position)

(firstName, lastName, yearOfBirth)

Position = position;

Position { I

Well, I think it looks much simpler. The forwarding methods are not there, as the
properties we want to have in the Employee class are simply inherited from the
Person class. All we need to define is the new Position property that actually
makes the Employee different from a Person.

How to decide whether to use composition over inheritance? Well, first of all, you
need to answer this question: when thinking about your types, can you say that
one of them IS the other one? Do they have the same structure and similar
functionality, with only some extended behavior in the derived type? If so,
inheritance can be the right choice. Otherwise, you should rather opt for
composition. When in doubt, go for composition and in the worst case, you will
adjust your design if it turns out it's not working out.

You can read more about the details of making the “composition or inheritance”
decision in this article:
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-ch
oose

Let's summarize. “Composition over inheritance” is a design principle stating that
we should favor composition over inheritance. In other words, we should reuse the
code by rather containing objects within different objects, than inheriting one from
another.


https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

Bonus questions:

"What is the problem with using composition only?"

If we decide not to use inheritance at all, we make it harder for ourselves to
define types that are indeed in an “IS-A” relation - so when one type IS the
other one. For example, a Dog IS an Animal, or an Employee IS a person. When
implementing such hierarchy with the composition we create very similar types
that wrap other types only adding a bit of new functionality, and they mostly
contain forwarding methods.

"What are forwarding methods?"

They are methods that don’t do anything else than calling almost identical
methods from some other type. Forwarding methods indicate a very close
relationship between types, which may mean that one type should be inherited
from another.



