
30. What are immutable types and what’s
their purpose?

Brief summary: Immutability of a type means that once an object of this type is
created none of its fields of properties can be updated. Using immutable types
over mutable ones gives a lot of benefits, like making the code simpler to
understand, maintain and test, as well as making it thread-safe.

Immutability of a type means that once an object of this type is created none of its
fields of properties can be updated.

Let’s see a simple immutable type:

The objects of this class are immutable because the X and Y properties do not have
setters. Once we create an object using the constructor (the only place where we
can assign values to X and Y) it will not be possible to modify it:



As you can see the concept of immutability is very simple. It can extend to more
complex types, for example, collections - once we create an immutable collection,
it can’t be changed, so no element can be added, removed, or altered.

The question is - why should we bother in creating immutable types?

Let’s see a couple of the most important benefits of having immutable types:
1) Clarity and simplicity of the code

First, let’s see a piece of code that seems simple:

What do you think will be printed from the fourth line? Well, it’s impossible
to say, because we don’t know what happens in SomeMethod and
SomeOtherMethod. Maybe they simply read the values of the point, but
maybe they alter it?

We won’t be sure what the code does and how it behaves until we follow the
flow of the code very carefully, checking what exactly every method does
with the Point object.
If the Point was immutable, we wouldn’t need to worry - we would be sure
that once created, its value remains the same.

2) Pure functions
Pure functions are functions whose results only depend on the input
parameters, and they do not have any side effects - they don’t alter any
state of the application, they don’t modify the input parameters. We can call
a pure function any time we want with the same set of parameters, in any
order, and it will always yield the same result. Because of that, we can cache
the result, making the parameters the key of the cache. Pure functions are
simple to understand, as we don’t need to be aware of the context in which
they are called. Testing them is extremely simple, as we only check if their
result is as expected. For testing purposes, we don’t need to set up any



context in which those functions work, as they only depend on the input
parameters, and not, for example, the state of the class they live in. Using
immutable types and creating pure functions work very well together, and
actually, they are two tenets of functional programming - a coding
paradigm that grows more and more popular for its clarity as well as
working great in multithreaded applications. This leads us to the next point:

3) Thread safety
When working with multithreaded applications we must always be very
cautious when it comes to making any assumptions about the state of an
object - because it can always be the case that another thread altered this
state without our knowledge. Using immutable objects wipes this problem
out. If an object can’t be altered, there is no need to worry that some other
thread altered it, right? This makes the creation of multithreaded
applications much simpler and less error-prone, and you must know that
finding bugs in multithreaded applications can be extremely hard, as they
often happen in a non-deterministic manner that can be extremely hard to
reproduce.

4) No invalid objects
Let’s consider the Person class and its constructor:

Someone clearly put up a lot of work to make sure that when an object of
the Person class is created, it is valid - its Id is correct, the name is not empty,
the year of birth is reasonable. If objects of the Person class could be
mutated, it would mean that at any time of the application execution they
can be rendered invalid:



If Person’s class objects can become invalid at any moment, that would mean
that our code would quickly fill up with lines like that:

This not only is a code duplication (because we already defined this checks in
the Person’s class constructor) but it also creates noise in the code, making
it harder to understand, maintain and test - because in each of those places
we must create tests that will handle both valid and invalid person objects.
The easier testing is another benefit of immutable objects, but before we
move on to this point, let’s consider another aspect of making objects
invalid:

5) Prevention of identity mutation.
Imagine we want to use the Person class object as a key in the dictionary. We
want to use the Person’s Id as the hash code that the dictionary will use.

If the Id is mutable, we will lose the object in the Dictionary:



First, we’ve used the person object as the key in the Dictionary, using its Id’s
hash code. Then the id changed. Because of that, the fourth line will throw
an exception, because there is no key with the hashcode built by the “new
id” string in the Dictionary - the only key there is the one built with the old
id. As a rule of thumb, if an object is meant to be a key in the dictionary, it
should be immutable.

6) Easier testing
Immutable objects make code easier to understand, and they also give us a
guarantee that once a valid object had been created, it will remain valid
forever. This makes testing much simpler because we have fewer paths of
code to test, as handling of invalid objects is simply not needed. Also, we
don’t need to test if a state of an object had been changed, which is
sometimes tricky especially if it’s the private state that changes. As
mentioned before, using immutable objects makes it easier to create pure
functions, and they are extremely simple to test.

All right. Seems like immutable objects can be really beneficial. But following this
“nothing ever changes” rule can be demanding. After all, we sometimes need to
change something. Let’s consider the DateTime type, which is immutable in C#. It
provides a method called AddDays:

Adding 7 days to January the 1st won’t make it a different date. It will produce
another date. It makes perfect sense - after all, a date never changes, and January
the 1st 2022 will always be January the 1st 2022.

Such “apparent modification” of immutable objects is called a non-destructive
mutation. It is an operation of creating a new object based on another immutable
object. The immutable object won’t be modified, but the result of “modification”
will become a new object. We will learn more about it in the next lecture “What
are records and record structs?”



All right. We learned what immutable types are and what are the most important
benefits of using them. But we must also be aware of the important disadvantage
they have: with the non-destructive mutation, each update of an object actually
creates a new object, allocating new memory. The old object must be cleaned up
by the Garbage Collector. It’s usually not an issue with small types, but remember,
even collections can be immutable. Imagine having a list of million elements, and
that adding a new item to it means actually building a whole new collection of size
million and one.

It may sound scary, but don’t be discouraged to use immutable types. First of all -
there are implementations of collections that actually make this quite efficient.
Second - not all applications suffer from performance loss when using immutable
types, and the benefits are often bigger than the costs. Garbage Collector is a
smart tool, and most often you won’t even notice the performance impact of
introducing immutable types. Nevertheless, there are cases when performance is
critical. For example, I wouldn’t recommend making every type immutable when
developing video games, as it would make the Garbage Collector kick off more
often, and remember that when Garbage Collector works, all other threads are
frozen until it finishes. In the case of video games, it could lead to a performance
decrease that would be noticed by the players, and we definitely don’t want that to
happen.

Bonus questions:

● "What are pure functions?"
Pure functions are functions whose results only depend on the input
parameters, and they do not have any side effects like changing the state of
the class they belong to or modifying the objects passed as an input.

● "What are the benefits of using immutable types?"
The code using immutable types is simple to understand. Immutable types
make it easy to create pure functions. Using immutable types makes it easier to
work with multithreaded applications, as there is no risk that one thread will
modify a value that the other thread is using. Immutable objects retain their
identity and validity. Mutable objects make testing problematic. Testing code
using immutable types is simpler.

● "What is the non-destructive mutation?"
The non-destructive mutation is an operation of creating a new object based
on another immutable object. The immutable object won’t be modified, but the
result of “modification” will become a new object. The real-life analogy could
be adding 7 days to a date of January the 1st. It will not change the date of
January the 1st, but it will produce a new date of January the 8th.


