
22. What is the difference between
double and decimal?

Brief summary: The difference between double and decimal is that double is a
floating-point binary number, while decimal is a floating-point decimal number.
Double is optimized for performance, while decimal is optimized for precision.
Doubles are much faster, they occupy less memory and they have a larger range,
but they are less precise than decimals.

This is a question that you can hear quite often during interviews, especially in the
financial sector. After this lecture, you will have a clear understanding of why.

The difference between double and decimal is that double is a floating-point
binary number, while decimal is a floating-point decimal number. Double is
optimized for performance, while decimal is optimized for precision.

First, let’s understand the “floating-point” part. Floating-point numbers can not
integers, but numbers like half, one-third, one-fourth, etc. We can actually
represent such numbers using integers if we use the concept of mantissa and
exponent. Mantissa gives some scaled representation of the number, while
exponent says what the scale is - in other words, where the decimal point will be
(that’s why they are called “floating-point” numbers, as the point is moving).

This again is mysterious, so let’s try to represent number 324.56 with mantissa and
exponent.

All right. The pattern is simple - we multiply the mantissa by the base of the system
raised to the power of the exponent. 10 to the power of -2 is 0.01, so the result is
324.56 as expected.

As you can see we managed to represent a floating-point number with integers
only.

We said that double is a binary floating-point number, which means the base of the
system it uses is two. For decimal, it is 10.

All right. Here comes the problem with floating-point numbers. If the mantissa has
a limited precision (and it does in computers, or even if we try to write it down on a
piece of paper) it means we can’t represent some numbers in a perfectly precise
way. For example, if you wanted to write ⅓ as a floating-point number on a piece
of paper, you would fill it with 0.33333333333… and so on, but finally, you would
run out of paper. Whatever number you would write, it would be some
approximation of the number that is actually ⅓.

The same as with the paper, you can run out of bits when representing such a
number in C#, which leads to representation that is not precise.

Double is a binary floating-point number occupying 64 bits. One bit is reserved for
the sign (to know whether the number is positive or negative), 52 bits are reserved
for mantissa and 11 bits are reserved for the exponent.

We know that numbers like ⅓ are impossible to be represented in the decimal
system with a finite number of digits. In the binary system, the example of an
unrepresentable number is 1/10. Let’s see some code that will show how this lack
of preciseness can be problematic:

From the point of view of real-world mathematics, this should evaluate to be true.
Let’s see what the computer’s mathematics has to say about that:

This shouldn’t be that surprising, given that we already established that
floating-point numbers are not represented precisely in the computer’s memory.

And here is the important note - since doubles are approximations of numbers and
are not very precise, we should avoid simply comparing them with the “==”

operator. Think of it like this: in real life, you are measuring boards to build
something. You want the boards to be of the same length. You measure them
carefully and you are happy to see that both have the length of exactly 273
centimeters and 0 millimeters you wanted. You can say to yourself “Yes, those
boards are equal” and move on to constructing a shed for your gardening tools.

But… are they truly equal? I bet if you measured them with some advanced
scientific machinery it would actually turn out that one of them is 273.01 while the
other is 273.04 centimeters long. So they are not exactly equal, but they are equal
enough for your needs.

It’s the same thing with doubles. When checking for their equality, we should
rather check if the difference between them is so small that we don’t actually care
about it. So the simplest implementation of a method checking doubles equality
could be this:

One more note about doubles. A variable of double type can have a specific value
called NaN - Not a Number. It is reserved for representing undefined mathematical
operations like for example dividing 0 by 0. Also, when checking if a number is NaN
make sure to use double.IsNaN(value) method, because surprisingly, the equality
operator for two NaNs gives false. I don’t want to dwell into too much detail about
it, as this lecture will be long enough already. Check out this article if you are
curious:
https://docs.microsoft.com/en-us/dotnet/api/system.double.nan?view=net-6.0

All right. That closes the topic of doubles. Before we move on to decimals, let’s
mention floats. Well, float acts exactly the same as double The only difference is
that float is stored on 32 bits while double is stored on 64.

All right. We learned that doubles are not very precise and we must be careful
when making assumptions about them - for example, the equality of two double
numbers may not be the same as it would be in real-life mathematics. For some
scenarios we need precision and we can’t make any compromises about that. For
example, imagine a banking system that cross-checks some transactions. It must be
sure that after the money transfer, the amount that was taken from your account is
exactly the same as the amount that was added to the receiver’s account. If we
used double for representing money, this could lead to errors. Both amounts

https://docs.microsoft.com/en-us/dotnet/api/system.double.nan?view=net-6.0

would be represented as some approximation and they could not be exactly equal.
That’s why for representing money we should always use decimal.

Decimal is optimized for precision. It occupies more memory than a double, has a
smaller range, and operations on it are slower, but it guarantees precision. Of
course, like any C# numeric type, it has its size limitations and can’t represent
numbers smaller or larger than this, but in this range, the operations will give
correct results, without any surprises.

First, let’s see the code we had before, but this time let’s use decimals:

At the top we have doubles and on the bottom decimals. And the result is:

We gained precision, but at what price? First, let’s measure the performance. I
created a simple program testing how long the same operations take when
operating on doubles and decimals:

There is also the second method, which does exactly the same but uses decimals.
Let’s see the test result:

Yikes. Calculating decimals took almost 7 times longer than doubles.

There is one more thing - doubles are not only faster, but they also have a much
larger range (while taking less memory!). Let’s see :

As you can see doubles have a ridiculously big range, which makes them perfect for
some scientific uses where one often operates on very small or very large
numbers.

In general, we should use doubles when representing some “natural” numbers, like
physical measurements which by definition are not perfectly precise. They are
great to represent things like length, speed, position on the map, and such. Due to
their great performance, they are widely used in some industrial applications,
games, etc. Decimals are much slower, they occupy more memory and have a
smaller range, but they guarantee precision. We should use them when we can’t
allow any approximations, so for example when representing money, points in
games, and other human-made concepts that we need to represent precisely.

All right. Let’s summarize the topic of double vs decimal:
● doubles are optimized for performance, decimals are optimized for

precision
● decimals have worse performance than doubles
● decimals have a smaller range than doubles - they can’t represent really tiny

or really large numbers
● because of all that, decimals shall be used when we care about precision, for

example, we want to compare two sums of money and tell if they are exactly
equal or not. For the same usage, doubles are less precise but faster. They
are perfect for representing numbers that are not human-made but rather
come from nature or physics, like the speed of a car or the length of a wave.
When checking two doubles for equality we should only check if they are
close to each other within some tolerance.

Bonus questions:

● "What is the difference between double and float?"
The only difference is that double occupies 64 bits of memory while float
occupies 32, giving double a larger range. Except for that, they work exactly
the same.

● "What is the NaN?"
NaN is a special value that double and float can be. It means Not a Number,
and it’s reserved for representing results of undefined mathematical
operations, like dividing infinity by infinity.

● "What numeric type should we use to represent money?"
When representing money we should always use decimals.

