
20. How does the binary number system
work?

Brief summary: The binary number system is used to represent numbers using
only two digits - 0 and 1. For example, the number 13 (in the decimal number
system) is 1101 in the binary number system. All data in a computer’s memory is
stored as sequences of bits, and so are all numbers.

The binary number system is used to represent numbers using only two digits - 0
and 1. For example, the number 13 (in the decimal number system) is 1101 in the
binary number system.

As you probably know, every piece of data is stored in the computer’s memory as a
series of bits. Bit is the smallest unit of information and it can only have two values:
0 or 1. That means, every information we want to store in the computer’s memory -
a number, string, a complex object, or an entire program - is, in the end, stored as a
series of zeros and ones. In this lecture, we will focus on numbers.

As we mentioned, the binary number system represents numbers as zeros and
ones, so it fits perfectly how data is stored in a computer’s memory. You may think
that the binary number system is not something you need to understand, as it all
happens under the hood. After all, there are programmers all around the world
who have no idea how the binary number system works and they are doing fine.

But there are a lot of aspects of programming that are affected by how binary
numbers work, and it’s not possible to understand some of the programming
caveats without knowing the binary system at all. If you are not convinced, let me
give you a little spoiler from the next lecture: we will talk about how a banking
application’s client can lose all protection granted by daily transaction limits and in
the end, have the account cleaned out by someone who accessed it illegally. It
could be avoided if the programmer understood how operations on binary
numbers work.

All right. Before we try to understand the binary number system, let’s do so with
the system we use on daily basis - the decimal number system. The base of this
system is number 10. Actually, you can build a valid number system based on any
number larger than 0, but 10 was probably most natural for the human race as we
have 10 fingers, and we started our journey of understanding mathematics by
counting them.



All right. Let’s consider the following decimal number:

You probably don’t need much explaining here - you simply know what this number
is. You can imagine what it means to have 831 dollars (or any other currency you
use), a folder with 831 pictures, or a book with 831 pages. We are so used to this
system that we don’t even think about the numbers - we simply see them and
know by instinct what they mean. But let’s break it down. Each digit has its place.
The further to the left it is, the more significant it is - it means, it carries more
“weight” of the number. 8 here means 800, 3 means 30 while 1 simply means 1. We
could mark each digit with an index, counting from right to left:

Now, for each of the digits, we want to calculate 10 to the power of the index
multiplied by the digit itself.

The sum of those numbers is the final number we want to represent. Let’s make
sure of that. 8*100 + 3*10 + 1*1 is 831. (Remember that any number to the power
of zero is 1).



Now it is clear why numbers most to the left are most significant - because we will
multiply them by 10 to the largest power.

Great. We now understand exactly how the decimal number system works. Let’s
move on to the binary number system. It actually works almost the same. The only
difference is the base of the system. It will not be 10, but 2.

Let’s consider this number:

This time you probably don’t “feel” what the number means, but don’t worry. We
will figure it out in a second. Let’s start the same as before - by marking each digit
with its index, starting from the right.

In the decimal number system, we calculated the powers of 10 and then multiplied
them by the digit itself. Here it’s the same, but we calculate the powers of 2.

Let’s calculate the sum. It’s 8 + 4 + 0 + 1, which gives 13. That means, 1101 in the
binary number system is 13 in the decimal number system.



Great. This gives us the basics that are needed to understand some operations
related to programming.

The important thing to realize is that on a limited number of bits we can store a
limited number (the same as in a decimal number system - for example the biggest
number represented with 3 digits is 999). For example, with 4 bits the largest
number that can be represented is 15 (because if each bit is set to one, then the
number is 8 + 4 + 2 + 1 = 15). Each numeric type in C# occupies a certain number of
bits in the memory. For example, an integer takes 32 bits. The largest number we
can represent with int is 2147483648, which is a little over two billion.

And here is something interesting - this number is actually 2 to the power of 31,
not 32! So what happened with one bit? Well, remember that with integers we can
also represent negative numbers. This one bit is saved to store information
whether the number is negative or not, which leaves us 31 bits for the actual
number.

Here are sizes and ranges of the integral numeric types used in C#:

All right. There is one more thing we must understand. Since each numeric type has
its size limit and it simply can’t represent a number that is larger, what happens
when some arithmetic operation exceeds this limit?



Well, in such situations, something quite interesting happens. For example, if I add
2 billion to two billion when operating on ints, I will get the result of -294967296.
In this lecture, I will only explain to you how it works. In the next one, we will learn
how to handle such situations when programming.

Before we can understand what happens, we must understand how adding binary
numbers work. But as before, let’s start with decimal numbers for simplicity:

You probably know this technique of adding numbers. If not, please read this
article first:
https://www.tutorialspoint.com/add_and_subtract_whole_numbers/addition_of_t
wo_2digit_numbers_with_carry.htm

With binary numbers, it works the same. Let’s add binary 13 to binary 15.
Remember, 13 is 1101 and 15 is 1111:

First, we add numbers from the first column from the right. 1+1 is 2, but we can’t
use 2 in the binary numbers system. That means, we need to carry it over to the
next column. We will write 0 in the first column of the result because the modulo
of the sum we calculated (2) and the base of the system (also 2) is 0.

https://www.tutorialspoint.com/add_and_subtract_whole_numbers/addition_of_two_2digit_numbers_with_carry.htm
https://www.tutorialspoint.com/add_and_subtract_whole_numbers/addition_of_two_2digit_numbers_with_carry.htm


Now the second column. Again, the sum is 2, so we carry over to the next column
again.

The third column. Now the sum is 3. We carry over 1 to the next column, and we
leave 1 in the result. This is because the modulo of the sum we calculated (3) and
the base of the system (2) is 1.



Finally, the fourth column. The sum is 3 again, so we carry over 1, and we leave 1 in
the result:

It turned out that we actually need the fifth column to fit the 1 that we carried
from the fourth column. This time it’s simple. The sum is 1 and we add it to the
result:



All right! We have our result. It’s 16+8+4+0+0 = 28. This is correct because 13 + 15 is
also 28.

But notice a very important thing - we needed to use one more digit to represent
this number. Now, let’s go back to thinking about computers. If we had a numeric
type that only has 4 bits, it would simply not be able to hold the result we had. So
what would happen? Well, the last, most significant bit would just be discarded.
And the actual result the computer could see would not be 11100 which is 28, but
1100 which is 12 - something completely different and simply wrong from the
arithmetics point of view.

Now you know why adding two billion to two billion gave some weird number
before. If you are curious why it was negative, remember that the most significant
bit represents a sign, so if it happens to be 1, then C# will interpret the whole
number as negative (0 means positive number, 1 means negative).

All right. That lecture was touching very low-level topics, but now you understand
the basics of the binary number system. In the next lecture, we will talk about how
it affects our everyday programming.

Bonus questions:

● "What is the decimal representation of number 101?"
It’s 5 because it’s 2 to the power of zero plus two to the power of 2, which
gives 1 + 4 = 5.

● "Why arithmetic operations in programming can give unexpected results,
like for example adding two large integers can give a negative number?"
Because there is a limited number of bits reserved for each numeric type, for
example for integer it’s 32 bits. If the result of the arithmetic operation is so
large that it doesn’t fit on this amount of bits, some of the bits of the result will
be trimmed, giving an unexpected result that is not valid.


