
K r y s t y n a Ś l u s a r c z y k

C#/.NET
50 ESSENTIAL

INTERVIEW
QUESTIONS

M i d L e v e l

HELLO!
T h i s e - b o o k i s a p a r t o f m y c o u r s e
" C # / . N E T - 5 0 E s s e n t i a l I n t e r v i e w

Q u e s t i o n s (M i d L e v e l) " .

h t t p s : / / b i t . l y / 3 s C 7 F s W

Y o u c a n f i n d e v e r y l e c t u r e f r o m t h e
c o u r s e h e r e .

R e m e m b e r t h a t a n e - b o o k w i t h 1 5

e s s e n t i a l J u n i o r - L e v e l l e c t u r e s i s a l s o
p r o v i d e d w i t h t h e c o u r s e .

Y o u c a n a l s o c h e c k o u t f u l l c o u r s e
" C # / . N E T - 5 0 E s s e n t i a l I n t e r v i e w

Q u e s t i o n s (J u n i o r L e v e l) " w h i c h y o u
c a n f i n d u n d e r t h i s l i n k :

h t t p s : / / b i t . l y / 3 h S R p O q

https://bit.ly/3hSRpOq

INTRODUCTION
H e l l o , I ' m K r y s t y n a ! I ' m a p r o g r a m m e r

w h o l o v e s t o w r i t e e l e g a n t c o d e .
I ' v e b e e n w o r k i n g a s a s o f t w a r e

d e v e l o p e r s i n c e 2 0 1 3 . A b o u t h a l f o f t h i s
t i m e I ' v e b e e n e n g a g e d i n t e a c h i n g

p r o g r a m m i n g .
I b e l i e v e t h a t w i t h a p r o p e r

e x p l a n a t i o n , e v e r y o n e c a n u n d e r s t a n d
e v e n t h e m o s t a d v a n c e d t o p i c s r e l a t e d

t o p r o g r a m m i n g .
I h o p e I c a n s h o w y o u h o w m u c h f u n

p r o g r a m m i n g c a n b e , a n d t h a t y o u w i l l
e n j o y i t a s m u c h a s I d o !

CONTENTS
W h a t i s t h e d i f f e r e n c e b e t w e e n
T u p l e s a n d V a l u e T u p l e s ?
W h a t i s t h e d i f f e r e n c e b e t w e e n " i s "
a n d " a s " k e y w o r d s ?
W h a t i s t h e u s e o f t h e “ u s i n g ”
k e y w o r d ?
W h a t i s t h e p u r p o s e o f t h e
“ d y n a m i c ” k e y w o r d ?
W h a t a r e e x p r e s s i o n - b o d i e d
m e m b e r s ?
W h a t a r e F u n c s a n d l a m b d a
e x p r e s s i o n s ?
W h a t a r e d e l e g a t e s ?
H o w d o e s t h e G a r b a g e C o l l e c t o r
d e c i d e w h i c h o b j e c t s c a n b e
r e m o v e d f r o m m e m o r y ?
W h a t a r e g e n e r a t i o n s ?
W h a t i s t h e d i f f e r e n c e b e t w e e n
D i s p o s e a n d F i n a l i z e m e t h o d s ?
W h a t a r e d e f a u l t i m p l e m e n t a t i o n s
i n i n t e r f a c e s ?
W h a t i s d e c o n s t r u c t i o n ?
W h y i s “ c a t c h (E x c e p t i o n) ” a l m o s t
a l w a y s a b a d i d e a (a n d w h e n i t i s
n o t ?) ?
W h a t i s t h e d i f f e r e n c e b e t w e e n
“ t h r o w ” a n d “ t h r o w e x ” ?
W h a t i s t h e d i f f e r e n c e b e t w e e n
t y p e o f a n d G e t T y p e ?

1 .

2 .

3 .

4 .

5 .

6 .

7 .
8 .

9 .
1 0 .

1 1 .

1 2 .
1 3 .

1 4 .

1 5 .

1 6 . W h a t i s r e f l e c t i o n ?
1 7 . W h a t a r e a t t r i b u t e s ?
1 8 . W h a t i s s e r i a l i z a t i o n ?
1 9 . W h a t i s p a t t e r n m a t c h i n g ?
2 0 . H o w d o e s t h e b i n a r y n u m b e r
s y s t e m w o r k ?
2 1 . W h a t i s t h e p u r p o s e o f t h e
“ c h e c k e d ” k e y w o r d ?
2 2 . W h a t i s t h e d i f f e r e n c e b e t w e e n
d o u b l e a n d d e c i m a l ?
2 3 . W h a t i s a n A r r a y ?
2 4 . W h a t i s a L i s t ?
2 5 . W h a t i s a n A r r a y L i s t ?
2 6 . W h a t i s t h e p u r p o s e o f t h e
G e t H a s h C o d e m e t h o d ?
2 7 . W h a t i s a D i c t i o n a r y ?
2 8 . W h a t a r e i n d e x e r s ?
2 9 . W h a t i s c a c h i n g ?
3 0 . W h a t a r e i m m u t a b l e t y p e s a n d
w h a t ’ s t h e i r p u r p o s e ?
3 1 . W h a t a r e r e c o r d s a n d r e c o r d
s t r u c t s ?
3 2 . W h y d o e s s t r i n g b e h a v e l i k e a v a l u e
t y p e e v e n t h o u g h i t i s a r e f e r e n c e
t y p e ?
3 3 . W h a t i s t h e d i f f e r e n c e b e t w e e n
s t r i n g a n d S t r i n g B u i l d e r ?
3 4 . W h a t i s o p e r a t o r o v e r l o a d i n g ?
3 5 . W h a t a r e a n o n y m o u s t y p e s ?
3 6 . W h a t i s c o h e s i o n ?
3 7 . W h a t ‌ ‌i s ‌ ‌c o u p l i n g ? ‌

3 8 . W h a t i s t h e S t r a t e g y d e s i g n
p a t t e r n ?
3 9 . W h a t i s t h e D e p e n d e n c y I n j e c t i o n
d e s i g n p a t t e r n ?
4 0 . W h a t i s t h e T e m p l a t e M e t h o d
d e s i g n p a t t e r n ?
4 1 . W h a t i s t h e D e c o r a t o r d e s i g n
p a t t e r n ?
4 2 . W h a t i s t h e O b s e r v e r d e s i g n
p a t t e r n ?
4 3 . W h a t a r e e v e n t s ?
4 4 . W h a t i s I n v e r s i o n o f C o n t r o l ?
4 5 . W h a t ‌ ‌i s ‌ ‌t h e ‌ ‌“ c o m p o s i t i o n ‌ ‌o v e r ‌ ‌
i n h e r i t a n c e ” ‌ ‌p r i n c i p l e ? ‌
4 6 . W h a t a r e m o c k s ?
4 7 . W h a t ‌ ‌a r e ‌ ‌N u G e t ‌ ‌p a c k a g e s ? ‌
4 8 . W h a t i s t h e d i f f e r e n c e b e t w e e n
D e b u g a n d R e l e a s e b u i l d s ?
4 9 . W h a t ‌ ‌a r e ‌ ‌p r e p r o c e s s o r ‌ ‌d i r e c t i v e s ? ‌
5 0 . W h a t a r e n u l l a b l e r e f e r e n c e t y p e s ?

1. What is the difference between
Tuples and ValueTuples?

Brief summary: The differences between tuples and ValueTuples are that
tuples are reference types and ValueTuples are value types. Also, ValueTuples
fields can be named, while with tuples we are stuck with properties named
Item1, Item2, etc. Also, tuples are immutable while ValueTuples are mutable.

Before we dive into understanding the difference between System.Tuple and
System.ValueTuple, let’s make sure we understand what tuples are on a conceptual
level. Tuples are small data structures used to bundle a couple of pieces of
information together.

This can be useful when, for example, I want to create a method that needs to
return two pieces of information:

The problem is, I can’t return two values from a function. If I want to do it, I can
declare a special type that will bundle sum and count together:

I defined a dedicated struct to represent the data I need to return from the
method, but this is a bit awkward. I will probably never use this type again, and it
only exists so I can return two values from some method.

For such situations, tuples are the perfect solution. Tuple is a data structure that
bundles some data together. Let’s use it to make our code better:

This way I can remove this awkward SumAndCount type from my program.

Please note that tuples are not exclusive to C# and many programming languages
provide a similar mechanism.

In C#, we have two kinds of tuples: regular Tuples and ValueTuples. Before we
move on, let me clarify one thing. From now on, when I will be using the word
“tuple” I will be meaning the System.Tuple type. When I will have ValueTuple in
mind, I will use its full name.

All right. We already have seen a simple tuple in action. Let’s see another example,
but this time we will create the tuple object with the Tuple.Create method:

This is a tuple object holding two pieces of information in it - an int and a string. I
can access them by using the Item1 and Item2 properties:

The Tuple.Create method is an alternative for using the tuple’s constructor. It’s
more convenient because, unlike the constructor, it doesn’t require providing the
type parameters, as it infers them from the context.

Please be aware that we can hold more than 2 elements in a tuple. The maximum is
8, so calling the Create method or the constructor with more than 8 parameters
will not compile:

At the end of this lecture, we will talk about how to bypass this limitation.

All right. Moving on to the ValueTuples. On the conceptual level, they serve the
same purpose, so they bundle a couple of values together. I could create a
ValueTuple with a constructor call…

…but there is a much simpler way to do so:

As you can see the construction of a ValueTuple looks much nicer than the creation
of a tuple.

Let’s discuss other differences between tuples and ValueTuples.

First of all, tuple is a reference type while ValueTuple is a value type. This has a lot
of implications, for example, tuples are compared by reference while ValueTuples

are compared by value. This code will print False because both tuples are different
objects with different references. The == operator compares the references and
sees that they are not equal:

On the other hand, this will print True because ValueTuple is a value type. There
are no references to be compared, and the == operator simply checks if the fields
in both tuples have the same value:

Please note that we can compare tuples by value if we need to. To do so, we can
use the Equals method which Tuple overrides. That’s why this will print True:

Because tuple overrides both Equals and GetHashCode, we can safely use them as
Dictionary keys. We will talk more about Dictionaries later in the course.

Another implication of the fact that tuples are reference types and ValueTuples
are value types is that when used as parameters, are passed by copy while tuples
are passed by reference.

The fact that tuples are reference types can have negative performance
implications. Tuples are usually short-lived objects, and if we create a lot of them,
the process of allocating and freeing the memory might take considerable time.
This was one of the reasons why ValueTuples were created.

The next difference is that tuples are immutable, and ValueTuples are mutable. If
an object is immutable it means, it cannot be modified once it has been created.
We will learn more about immutable types later in the course.

Tuples are immutable, so this code will not compile:

But this will work fine:

The difference that probably matters most for us as the developers are that
ValueTuples provide a couple of interesting features that make our work much
easier. The first one is that we can name the fields of the ValueTuples as we like,
and we don’t need to use those awkward “Item1”, “Item2” names. However, we still
can, if we want to:

This matters most when the ValueTuple is a result of some calculation, and we
don’t see what the values are in the current scope. For example, this code is pretty
confusing, and to understand it we would need to look into the
SumCollectionTuple method.

If you are curious, this is what this method does:

With ValueTuples, it is quite clear without even looking into the method:

And this is the method using ValueTuples:

Also, as we have already seen before, ValueTuples have special syntax for
construction, which is much more convenient than the Create method or
constructor call for tuples:

Another difference is that data members of ValueTuple are fields. Data members
of tuple types are properties.

The last difference is that we can create ValueTuples with more than 8 elements:

This is quite interesting. If we looked at ValueTuple source code (you can see it
here
https://github.com/dotnet/roslyn/blob/main/src/Compilers/Test/Resources/Core/
NetFX/ValueTuple/ValueTuple.cs, scroll down to line 1929) we will see that the
ValueTuple that was created with more than 8 constructor parameters still has 8
fields only. The last one, called Rest, will hold the eighth, ninth, and all other
elements. So it’s basically a nested ValueTuple, in which the last element is also a
ValueTuple. What is interesting is that in the example above we can use the field
Item12. How is it possible if no such field is present in the source code? Well, it’s a
trick of the compiler. When calling “hugeValueTuple.Item12” the compiler actually
calls “hugeValueTuple.Rest.Item5”.

We can also create a regular tuple with this Rest property, but we must do it by
hand - no compiler magic happens there for us.

https://github.com/dotnet/roslyn/blob/main/src/Compilers/Test/Resources/Core/NetFX/ValueTuple/ValueTuple.cs
https://github.com/dotnet/roslyn/blob/main/src/Compilers/Test/Resources/Core/NetFX/ValueTuple/ValueTuple.cs

All right. Let’s summarize the differences between tuples and ValueTuples:
● tuples are reference types, ValueTuples are value types. When a lot of

short-lived tuples are created, it may decrease the performance of the
application as the memory management for reference types is more
demanding than for value types

● tuples are immutable, ValueTuples are mutable
● ValueTuples provide a convenient syntax for the creation
● In tuples, all properties are named Item1, Item2, etc. ValueTuples can have

named fields.
● tuples have properties, ValueTuples have fields
● ValueTuples can easily be declared with more than 8 elements, and the

compiler will translate them to ValueTuples with 8 elements with the last
element being the “Rest” field, holding the excess elements. We can do the
same with tuples but we must set the Rest property by hand

Bonus questions:

● "Is it possible to have a tuple with more than 8 elements?"
Tuples are limited to hold up to 8 elements, however, we can bypass this
limitation by storing the excessive data in the last property called (for example)
“Rest” which is also a tuple, making our tuple nested. This is quite awkward for
tuples, but for ValueTuples we get some help from the compiler - it allows us to
use the tuple like it really contained more than 8 elements, for example by
using Item12 field. Behind the scenes, the compiler will change this to the
usage of tuple.Rest.Item5.

2. What is the difference between "is"
and "as" keywords?

Brief summary: The "is" keyword checks if the object is of a given type. It returns
a boolean result. The "as" keyword casts an object to a given type (it’s applicable
only to casting to reference types or nullable types).

The “is” keyword is used to check if an object is of a given type. It returns a boolean
as a result.

In this case, the result will be true, because the text variable is a string.

We can use the “is” with value types and reference types as well:

In this case, the result will be false, because the text variable is not an int.

The is keyword is most often used to ensure that a type can be safely cast to some
other type. We can also have some business logic driven by the type of some
variable - in the case of type A we want to execute different logic than in the case
of type B.

The “as” keyword is used to cast a variable to a given type:

Here I’m casting an object to a string. The cast will be successful, and the result will
be the string “Hello!”.

If the cast would not be successful, the result would be null.

In this case, the list variable will be null, because it’s not possible to cast the text
variable to a List<int>.

The fact that in the case of invalid casting the result will be null is the crucial
difference between casting with “as” and regular casting with braces. Regular
casting throws an exception when the cast fails. Let’s consider the following code:

In this case, an InvalidCastException will be thrown.

Because casting with “as” can return null, it can only be used with nullable types -
so any reference types plus nullable value types. It’s not valid with non-nullable
value types:

This doesn’t work, because, in case of invalid casting, we would try to assign null to
non-nullable value type.

Let’s summarize:
● The "is" keyword checks if the object is of a given type. It returns a boolean

result.
● The "as" keyword casts an object to a given type. It can only be used for

casting to a reference type or nullable value type.

What is the difference between classic cast and casting with "as"?
● Casting with "as" can be only used for casting to reference types or nullable

types. It is because when the cast will not succeed the result will be null -
so the type we cast to must be nullable. For example, an integer can't be
null, so you can't use casting with "as" to cast to an int.

● Regular casting with parenthesis can be used to cast to all types. If the cast
will not succeed the InvalidCastException will be thrown.

Bonus questions:

● "What is the difference between regular casting and casting with "as"
keyword?"
When casting with "as" fails, it will return null. When regular casting fails, an
InvalidCastException will be thrown.

● "Why can we only use the "as" keyword to cast objects to nullable
types?"
Because if casting with "as" fails, null will be returned. Null can only be
assigned to nullable types.

3. What is the use of the “using”
keyword?

Brief summary: The “using” keyword has two main uses: the using directive,
which allows using types from other namespaces and to create aliases for
namespaces, and the using statement that defines the scope in which the
IDisposable object will be used, and that will be disposed at the scope's end.

The “using” keyword has two main uses:

1) The using directive
You are probably very familiar with code like this:

Those are using directives. They allow us to use types from the listed
namespaces. For example, if I don’t import the System namespace, I won’t
be able to use Console.WriteLine method:

Please note that I’m still able to use this method if I specify the full type
name:

Nevertheless, usually, the full type names are quite long and they obscure
the true meaning of the code, so it’s usually better to import the
namespaces we intend to use with the using directive.

The other use of the using directive is to create aliases for some types
names. This is particularly useful when we have conflicting type names and
we want to use them both in a single file. Let’s say we have two classes
named Person:

They look very similar, but nevertheless, they are two different types. If I
simply imported both the namespaces in a single file and tried to create an
object of the Person class, the compiler wouldn’t know which one I mean:

To solve this, I can create type aliases with the using directive:

Now I can refer to the Person type from DTOs namespace by its alias
PersonDTO.

There is also something called the using static directive. It is particularly
useful when in a file we use a lot of static methods from a particular type.
For example, in this code I use the Console type a lot:

I could shorten this code by importing all static methods from the Console
class with the using static directive:

Now, I can skip the “Console.” in my code:

The last thing worth mentioning is the global using directive. This feature
is available starting with C# 10. When a type is imported in any file with this
directive, it is like it was imported in all files in the project.

I’m going to globally import the System.Diagnostics namespace in the
Program file:

Now, in some other files, I can use types from this namespace as they were
imported there too.

As you can see the System.Diagnostics namespace seems to not be
imported here, but I can still declare a field of type Stopwatch, coming from
this namespace. This is because it was globally imported in the Program file.

When creating new projects in Visual Studio 2022, you will notice something
interesting:

In this file, I can use the Console class even if the System namespace is not
explicitly imported - I don’t have “using System;” at the top of the file. How
is it possible?
Let’s take a look at the project settings. There is an interesting entry there:

This setting means that global usings will be defined for a couple of the
most commonly used namespaces from C#, for example System or
System.Linq.

To find where those usings are actually defined, we must build the project
and go to the directory where it exists, and then to obj/Debug/net6.0 folder.
There we will find an auto-generated file:

If we open this file, this is what we will see:

Here are the global usings generated when building the project. Remember,
this is only available starting with C# 10.

2) The using statement
The second use of the “using” keyword is the using statement. It is used to
define the scope in which the IDisposable object will be used, and that will
be disposed of at the scope's end. We will learn more about the Dispose
method in the “What is the difference between Dispose and Finalize
methods?”

In simple terms, instead of writing this:

We can write this:

Logically this code is the same, but we don’t need to remember about calling
the Dispose method and making sure the “finally” clause is there, and

because of that the code is much shorter and there is a smaller chance of
making any mistake.

Starting with C# 8, we can write this code like this to reduce nesting:

Bonus questions:

● "What are the global using directives?"
When a type is imported in any file with the global using directive, it is like it
was imported in all files in the project. This is convenient when some
namespace (like, for example, System.Linq) is used in almost every file in the
project.

4. What is the purpose of the “dynamic”
keyword?

Brief summary: The “dynamic” keyword allows us to bypass static type checking
that is done by default by the C# compiler. We can call any operations on
dynamic variables and the code will still compile. Whether the operation is
available in this object or not will only be checked at runtime. The “dynamic”
keyword is most useful when working with types unknown in our codebase, like
types being the result of dynamically-typed languages scripts or COM objects.

Before we understand the meaning of the “dynamic” keyword, we must first
understand the difference between static and dynamic typing.

C# is a statically-typed and strongly-typed programming language.

The opposite of statically-typed is dynamically-typed. Let’s see the difference.

In Python, which is a dynamically-typed programming language, I can do
something like this:

In this short script, two things happen that could never happen in C#:
1) We change the type of the hello variable during the program execution - at

first, it is a string, then it becomes an int.
2) The parameter of the toUppercase method does not have the type defined,

even if the body of the method strongly indicates that it should be a string.
From the compiler point of view, it is perfectly fine to first call this method
with the string parameter, and then with the int parameter.

Let’s see the result of this program:

First of all, the program compiled correctly, which would not happen in C#. In C#
we would have to declare the type of the parameter of the toUppercase method.
We would set it to string, and then, if we tried to call this method with an int
parameter, the program would not compile.

As we can see in the first line of the output, the method call with the “Hello”
parameter worked correctly and the result was printed to the console. But the
second call caused a runtime error.

And this is the essence of the difference between statically-typed and
dynamically-typed programming languages. In statically-typed languages like C#,
all type checks happen at compilation time. In dynamically-typed languages like
Python, type checks happen at runtime.

There is no universal answer to which is better. Let’s see some advantages and
disadvantages of both of those typing methods:

Static typing Dynamic typing

Fewer runtime errors Risk of runtime errors

No code to handle type mismatch
required (also: no tests are needed to
test this code)

The necessity to handle runtime errors
(and adding tests to test this handling)

Ease of understanding what needs to
be passed to a method so it works
correctly

Confusion about what object exactly
needs to be used as parameter

The necessity to always be aware of
the variable type

Ability to pass variables around
without worrying about the type

Language is more rigid Language is elastic

Type declarations take space and
clutter the code

No declarations of types required

Longer compilation Faster compilation/interpretation

Methods are tied to specific types Methods are more reusable, as they
are less likely to be tied to specific
types

All right. We now know that C# is a statically-typed language and what are the
consequences of this fact. If you are used to working in C# you probably don’t ever
suffer from the lack of dynamic typing. But what if we really, really wanted to use
dynamic typing in C# for some reason? Well, in this case, the “dynamic” keyword
comes in handy.

A variable declared with the dynamic type will bypass the static type checking. In
other words, it will behave as it belonged to a dynamically-typed language. Let’s
see this in practice:

As you can see, I declared a variable of dynamic type and assigned it a string. Then,
I called a method on this object. This method does not exist in string type. If the
text variable was declared as a string, this code would not compile. But it’s
declared as dynamic, so the compiler doesn’t execute type checking.

I will be able to run this program, but naturally, it will fail during the runtime:

This is what we talked about when defining a difference between static and
dynamic typing. With dynamic typing, we exchange compile-time errors for runtime
errors.

The result of most of the operations involving dynamic type is also the dynamic
type:

In this case, the code will not fail in the runtime, because the ToUpper method
exists in the string type. As you can see, the textToUpper variable is also of
dynamic type.

There are only two cases when operations involving types do not result in dynamic
types:

1) Casting from dynamic type to another type. We can cast it either explicitly…

…or implicitly (so without specifying the type in the braces).

This would naturally fail if the dynamic text variable did not hold a string.

2) The constructor calls using dynamic types as parameters:

In this case, the someClass variable will not be dynamic, but rather
SomeClass type.

All right. Now we know how the dynamic types work. So what can be the use case
for them? Well, if you want to use them just to make C# more Python-y… please
don’t. Unless you do it for fun or out of curiosity in non-production code. Mixing
static typing which is used in C# with dynamic typing is a risky business, and it will
most likely result in code you can’t maintain for long. Unless you are 100% sure
what you are doing, and you have a rock-solid suite of unit tests, this is most likely a
bad idea.

But there are cases when a type we are given is simply unknown in our project, but
we as programmers actually know what it is. Sound weird, so let me give you an
example. As you probably know, C# can cooperate with other .NET-compatible
languages. And what if such a language is dynamically typed? An example can be
IronPython, which is a .NET-compatible implementation of Python. We can actually
execute IronPython code from C# code, but the result of this call will not be
something C# can understand. This way, we can assign such a result to a dynamic
variable. Let’s see this in practice:

In this code, we define an IronPython script, in which we define class PythonClass
with one method toUpper. This method simply takes a variable and makes it

uppercase. Please note that in the last line of this method we call the toUpper
method on the instance object. This is possible because the instance is dynamic. C#
doesn’t understand that the toUpper method exists in this object, but since it’s
dynamic the compiler doesn’t complain. We as programmers know this method is
there, and we take the risk of runtime error if we make a mistake and, for example,
make a typo and call “toUppper” instead.

The result of the RunPython method is also dynamic, because again - the C#
compiler doesn’t know what will be the result of a call of any Python method, since
Python is dynamically typed.

Another example of using the “dynamic” keyword to work with unknown types is
using COM objects. COM stands for “Component Object Model” and it’s a
binary-interface standard for Windows software components. In simple terms, a
COM object is something that can be understood by different Windows programs,
and for example, it can allow communication between Excel and C# programs. But
then, if we execute some method on a COM object from the C# code, its result’s
type will be unknown to the C# compiler. It will again be a case when declaring the
result as dynamic will be useful. I don’t want to get into too much detail on this
topic, because most of the most useful COM objects are related to the Microsoft
Office software, which is not free to use. If you are curious, I encourage you to read
this article:
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-
type-dynamic#com-interop

Before we wrap up, I want to explain one thing I mentioned in this lecture, but did
not go into details. I said that C# is a “statically-typed, strongly-typed programming
language”. I explained the difference between static and dynamic typing, but what
is strong and weak typing?

Let’s consider a simple operation like this (this is pseudocode, not any real
language):

result = “2” + 8

In strongly-typed languages, this would raise an error. For example, C# and Python
are strongly-typed languages. In weakly-typed languages like Perl, the result would
be 10.

In short: in weakly-typed languages, variables are automatically converted from
one type to another. In strongly-typed languages, this will not be the case.

Let’s summarize. The “dynamic” keyword allows us to bypass static type checking
that is done by default by the C# compiler. We can call any operations on dynamic

https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic#com-interop
https://docs.microsoft.com/en-us/dotnet/csharp/programming-guide/types/using-type-dynamic#com-interop

variables and the code will still compile. Whether the operation is available in this
object or not will only be checked at runtime. The “dynamic” keyword is most
useful when working with types unknown in our codebase, like types being the
result of dynamically-typed languages scripts or operations called on COM objects.

Bonus questions:

● "What is the difference between strongly-typed and weakly-typed
programming languages?"
In weakly-typed languages, variables are automatically converted from one
type to another. In strongly-typed languages, this will not be the case. For
example, in C#, which is a strongly-typed language, the “2”+8 expression will
not compile, while in weakly-typed Perl it will give 10 as a result.

● "What is the difference between statically-typed and dynamically-typed
programming languages?"
In statically-typed languages, the type checks are done at the compile time,
while in dynamically-typed languages they are done at runtime. For example, in
C# we can’t pass an integer to a method expecting a string. In Python, which is
dynamically typed, we can, but the execution would result in a runtime error if
in this method I would call some operation that is not available in int type.

● "What are COM objects?"
COM stands for “Component Object Model” and it’s a binary-interface standard
for Windows software components. In simple terms, a COM object is something
that can be understood by different Windows programs, and for example, it
can allow communication between Excel and C# programs.

5. What are expression-bodied members?

Brief summary: Expression-bodied members of a type are members defined
with expression body instead of the regular body with braces. Using them allows
us to shorten the code significantly.

Expression-bodied members of a type are members defined with expression body
instead of the regular body with braces. That sounds very cryptic, but in practice,
it's quite simple, and it allows us to write very concise and readable code.

Let's see expression-bodied members in practice. First, let's take a look at the
Person class.

Let’s focus on the ToString method. This is a regular method and its body is
contained in braces. Simple as it is, it takes quite a lot of space, while actually, only
this part is really defining the logic of this method:

This part contains a single expression. But first, what is an expression? An
expression is a piece of code that evaluates to some value. Here we can see a
single expression, that for the Person with name “John” and YearOfBirth 1972 it
will evaluate to ”John who was born in 1972”.

If a method only contains only a single expression it can be defined as an
expression-bodied method. Let's do this for the ToString method.

Let's see what happened. First of all, I removed the braces that typically surround
the body of the method. I also removed the "return" keyword and simply placed
what this method returns to the right side of the arrow operator. And that's it! This
method does exactly the same thing as before. And it only takes a single line of
code.

So the general blueprint for expression-bodied methods is this:

We define the return type and the name of the method on the left side of the
arrow. On the right side, we define an expression whose value will be returned.
Expression-bodied methods are short and readable. Their limitation is that they
must only contain a single expression. So, for example, this method could not be
changed to an expression-bodied method:

This method contains more than one expression, as well as several statements. A
statement is a piece of code that does something but does not evaluate to a value.
For example, the Console.Writeline calls are statements.

If a method contains a single statement, it can also be changed to a void
expression-body method. Let's see this in practice:

This method simply prints something to the console. It doesn’t return anything, as
its return type is void.

All right. We learned about the expression-bodied methods, but there are more
expression-bodied members we can have. One of the most common use cases for
them is a read-only property. Let's define an Age property, which will return the
current year minus the year of birth of the person.

Again, it’s extremely simple code, but it takes 7 lines! Let’s change it to an
expression-bodied read-only property.

Great! Now it only takes a single line of code.

The property doesn’t need to be read-only to be defined with expression body.
Let's add the LastName property to the Person class. Last names can be changed,
most often when someone gets married, so let's enable the modification of this
property.

This is how the properties looked like before C# 4.0 (FYI, we are using C# 10 in this
course, so you can guess it was quite some time ago). Starting with C# 4, the
auto-implemented properties were introduced, allowing us to write this code like
this.

This was a huge improvement and it still works great in 99% of the cases. But
sometimes we want to execute some additional operations during getting and
setting of the backing field - for example, we may want to trim the white-space
characters on setting the last name. This way, we won’t be able to use the
auto-implemented property, because it simply assigns the value on set, without
any additional operations. In this case, we are stuck with implementing the getter
and setter by ourselves. Let’s do it.

Great. This will work, but it still takes a tremendous amount of space. Let's change
this property to an expression-bodied property.

And here it is. Only 5 lines instead of 11.

Another thing I want to talk about is an expression-bodied constructor. The
problem with it is that it allows only a single operation to be executed, which in our
case is not the case - we assign both name and last name. But for the sake of the
example, let me define a second constructor, which only assigns the name.

As you can see it's also a nice one-liner, so it may still be a good idea to use it if we
only execute a single operation in the constructor.

We can also define expression-bodied destructors. Let’s add a destructor to this
class.

The last members that can be defined with an expression body are indexers, but
we will talk more about them later in the course.

Bonus questions:

● "What is an expression?"
An expression is a piece of code that evaluates to some value. For example “2 +
5” evaluates to 7.

● "What is a statement?"
A statement is a piece of code that does something but does not evaluate to a
value. For example, Console.Writeline(“abc”) is a statement. It does not
evaluate to any value, as the Console.Writeline is a void method.

6. What are Funcs and lambda
expressions?

Brief summary: In C#, we can treat functions like any other types - assign them
to variables or pass them as parameters to other functions. The Func and Action
types allow us to represent functions. Lambda expressions are a special way of
declaring anonymous functions. They allow us to define functions in a concise
way and are most useful when those functions will not be used in a different
context.

When thinking about objects, we usually think about things that carry some data as
the payload, as well as operations that can be executed on this data. An integer
holds the value of 5, a Person object holds Name, LastName, and YearOfBirth, and
a method calculating the Age.

We can easily understand that we can have variables of such types, or that we can
pass objects of those types as parameters.

But could we have variables holding functions? Can we pass a function as a
parameter?

As it turns out, we can. And it is extremely useful. Let me show you an example. I
want to write a method that checks if any number in a collection is larger than 10.
This is how I could do it:

All right. This was pretty simple. But soon after I am asked to add another method,
that checks if any number in the collection is even. Let’s create such a method:

The problem is that this method is almost the same as the previous one. The only
place in which they differ is this:

This is the part that differs, so if we wanted to refactor those two methods into
one, we would need to make this part a parameter.

But what is this part exactly? At first glance, you may think it’s a boolean. But that
is not correct. I couldn’t pass this boolean to the IsAny method, as it may differ for
each of the elements of the numbers collection. So, it’s not a boolean. It’s a
function that takes a number and returns a boolean. If I want to refactor those
methods and make them a single method, it will need to take a function as a
parameter. And for this, we can use the Func type. Let me show you how it looks:

This Func can be assigned any function, that is taking a number and returning a
bool. As you can see, Func is generic, and by type parameters, we define what is
the return type of the function and what parameters it takes. The last type
parameter is always the return type, everything preceding it are the types of
parameters. For example, this variable can be assigned any function that takes an
int, a DateTime, and a string parameters, and returns a decimal.

For void functions, we must use the Action type. This variable can represent any
void function taking two strings and a bool:

All right. Let’s go back to refactoring. I want to have a single IsAny method, taking a
collection of numbers and a function that defines the predicate that will be
checked:

Now, instead of using “number > 10” or “number % 2 == 0” I will simply use the
predicate:

As you can see, we can call the Func object like any other method. Let’s use this
method. First of all, I will define IsLargerThan10 and IsEven methods:

Now I can use those methods as parameters of the IsAny method:

As you can see, we can simply assign methods to the variables of Func type.
Naturally, it wouldn’t compile if the signatures of the methods would not match
the signatures of Funcs.

I can of course skip declaring variables and simply pass the methods as parameters:

Great. We learned that in C# we can treat functions like any other objects - we can
assign them to variables or pass them as parameters. Func and Action are the types
that allow us to do this.

Now, let’s move on to the lambda expressions. Before I explain what they are
exactly, let me show you again those two methods:

Those methods are very specific. I’m not likely to reuse them anywhere else, yet I
needed to declare them in this class so I can pass them as parameters. Imagine you
have a class that does plenty of very specific checks on collections: like checking if
any number is divisible by 5, if any string is longer than 10 letters or if any Person is
named John. We would clutter our class with tiny, simple methods that check those
things, and are not used anywhere else. That’s not a good approach. It would be
better if we could have an easy, short way of defining small, simple, and specific
functions.

And that’s exactly what lambda expressions are for. First, let me show you how
they look, and then I will explain in detail:

In this code, I did not use the IsLargerThan10 and IsEven methods - I can now
safely remove them. I defined those methods in form of lambda expressions.
Lambda expression is a special way of defining anonymous function. This is the
general pattern of any lambda expression:

On the left side of the arrow, we declare a parameter or parameters of the
function. On the right side, we declare the expression whose result will be
returned from the function.

We can also have lambda expressions with more than one parameter. In this case,
we must put parameters in parenthesis:

This is much shorter than the traditional way of declaring functions. There is no
“return” keyword, as it is simply assumed that the result calculated on the right
side is returned. The result type is not declared because it is inferred from what
the expression evaluates to. For example, in this lambda expression, it is obvious
that the return type of the function is string:

The types of the parameters are also not formally defined, so how does the
compiler know what they are? Well, it also infers them from the context. Let’s see
this code again:

The IsAny method expects a very particular function as the parameter - a function
that takes a number and returns a bool:

Because we use the lambda expression as the parameter of the IsAny method, the
compiler infers, that the parameter of the lambda expression must be an integer,
because the IsAny method expects such a function as the parameter.

The fact that the type of parameters is inferred from context is the reason why we
can’t assign lambda expressions to implicitly-typed variables:

In this case, there is no context from which the compiler can infer the type of the
parameter. To fix it, we can make the variable explicitly typed:

All right. You may say that there is a lot of assumptions and inferring, but see how
little code we needed to write to declare a function checking if a number is even:

And this is how this function looks like when declared in the traditional way:

Lambda expressions are great when declaring short, specific functions that will
most likely not be used in any other context. For example, they are extremely
often used when working with LINQ. Actually, the IsAny method we declared is
almost identical to the Any method from LINQ.

Let’s summarize. In C#, we can treat functions like any other types - assign them to
variables or pass them as parameters to other functions. The Func and Action types
allow us to represent functions. Lambda expressions are a special way of declaring
anonymous functions. They allow us to define functions in a concise way and are
most useful when those functions will not be used in a different context.

Bonus questions:

● "What is the signature of a function that could be assigned to the
variable of type Func<int, int, bool>?"
It would be a function that takes two integers as parameters and returns a
bool.

● "What is an Action?"
Action is a type used to represent void functions. It works similarly to Func, but
Func can only represent non-void functions.

7. What are delegates?

Brief summary: A delegate is a type whose instances hold a reference to a
method with a particular parameter list and return type.

In C#, we can declare several kinds of types. We can declare a class or a struct to
represent data and methods. We can declare enums to represent some predefined,
discrete values. We can also declare delegates. A delegate is a type whose
instances hold a reference to a method with a particular parameter list and return
type.

Let’s define a simple delegate:

We declare delegates with the “delegate” keyword (similarly as we define classes
with the “class” keyword or structs with the “struct” keyword). Besides the
“delegate” keyword, a delegate declaration looks the same as a method
declaration - first the returned type, then the name, and finally the list of
parameters.

All right. We defined a delegate type, and any variable of this type can be assigned
a method that takes a string as a parameter, and also returns a string.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/reference-types
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/reference-types

Both those functions can be assigned to the variable of the ProcessString delegate
type:

We can now call the delegate, as a result, execute the function that is stored in it:

As you can see, the methods stored in the delegate variables have been invoked, as
expected.

The interesting feature of delegates is that we can store more than one function in
one variable of delegate type:

As you can see, the print3 variable holds references to two functions, not one. And
that’s why the result of the execution of the print3 delegate variable will be this:

We can also use the “+=” operator to chain another method to a delegate variable:

Now the result will be:

A delegate variable that holds references to more than one function is called a
multicast delegate.

All right. In the previous lecture, we learned about the Func and Action types.
What is interesting, both are simply generic delegates. For example, this is the
definition of the Func taking two parameters:

This delegate represents a function taking two parameters of any kind and
returning some result, so exactly what a Func with two parameters can represent:

Of course, instead of a lambda expression, we can also assign a pre-existing
function to a variable of Func type, as we can with any delegates:

During the interview, you might be asked a question “What is the difference
between a Func and a delegate?”. Well, Func is a delegate, simply defined by

Microsoft, not us. To be more precise, Func is a generic delegate used to represent
any function with given parameters and returned type. A delegate is a broader
concept than Func - we can define any delegate we want, and it doesn’t need to be
generic at all.

All right. So we know that Funcs and Actions are generic delegates. Because of
that, we can represent any function we want with Func or Actions, right? Let’s see
again the delegate variables we declared at the beginning of this lecture:

We don’t really need to define ProcessString delegate, we could use the Func
instead.

So, why bother declaring delegates, if we can use Funcs instead?

Well, first of all - delegates existed in C# before Funcs, Actions, and lambda
expressions. There was a time when they were simply the only way to represent
functions as objects, so you can still see some old code full of custom delegates
instead of Funcs and Actions for the simple reason that it was created a long time
ago.

Nowadays, from my practice, I would say that in 99% of the cases there is no point
in declaring customs delegates, and Funcs can be used instead. Personally, I very
rarely use other delegates than Funcs and Actions.

But there are scenarios where custom, non-generic delegates can be useful.

First of all, some people prefer well-named delegates to slightly cryptic Funcs:

In this interface, we have two methods doing the same thing, but one takes a Func
and the other a custom delegate. “RunCommand” is definitely more
human-readable than “Func<CommandType, bool>”. Some people think such a
named delegate is better.

Personally, I disagree, for a simple reason: when I look at the Func<CommandType,
bool> I know that the input to this function is CommandType, and I also know that
it returns a bool (and I can make an educated guess that this is probably a boolean
telling me if the command execution was successful or not). With “RunCommand” I
don’t have that information, and I need to go to RunCommand type to see what
actually are the parameters and returned type. Also, with “Func” I can see right off
the bat this is an executable method. “RunCommand” could be some ordinary
object as well, and I won’t know unless I go to this type and see the “delegate”
keyword.

But I want to underline that this is a matter of personal taste. If for you and your
team custom delegates are more readable, you should definitely use them
everywhere where you want.

Another use case where custom delegates can have an advantage over Funcs or
Actions is when a specific delegate is used all around the application. This way,
instead of declaring a (sometimes complex) Func everywhere, I can have a single
declaration of a custom delegate:

Also, there are some use cases when we simply must use custom delegates instead
of Funcs or Actions. One of the examples is when we want to use them with
methods with ref or out parameters. It’s not possible using Funcs:

But it works fine with custom delegates:

Similarly, Funcs can’t have optional parameters, while custom delegates can:

This doesn’t work for Funcs, but works fine for delegates:

Also, we can’t have Funcs with the params parameters, but we can have custom
delegates:

All right. We will revisit the topic of delegates in the lecture about events, as using
delegates is crucial when working with them.

Bonus questions:

● "What is the difference between a Func and a delegate?"
Func is a delegate, simply defined by Microsoft, not us. To be more precise,
Func is a generic delegate used to represent any function with given
parameters and returned type. A delegate is a broader concept than Func - we
can define any delegate we want, and it doesn’t need to be generic at all.

● "What is a multicast delegate?"
It’s a delegate holding references to more than one function.

8. How does the Garbage Collector
decide which objects can be removed
from memory?

Brief summary: Garbage collector removes those objects, to which no
references point. To decide whether a reference pointing to some object exists,
the Garbage Collector builds a graph of all objects reachable from root objects of
the application, which are things like references currently stored on the stack or
in static fields of classes. If an object will not be included in this graph, it means
it’s not needed and can be removed from memory. After the graph of
reachability is built, the Garbage Collector can continue its work and remove the
unreachable objects.

As you (hopefully) know, the Garbage Collector is the Common Language
Runtime’s mechanism that is responsible for memory management in .NET
applications. Its main role is to remove from the memory the objects that are no
longer needed. The algorithm it implements is called “mark-and-sweep” because it
first marks objects that can be removed, and then sweeps them from memory.

But, how can we tell if an object can be removed? Well, in simplest terms, when
there are no existing references that point to this object. But how can the Garbage
Collector know it?

Well, in the family of tools similar to the Garbage Collector (remember, this
concept is not exclusive to .NET alone) there are two most commonly used
algorithms.

The first is called reference counting, which, for example, is used in Swift.
According to this algorithm, the garbage collector keeps track of the count of
references pointing to some object. When the count reaches zero, it considers this
object unreferenced by any other object, and thus a candidate to be removed from
memory.

There is a problem with this algorithm, though. Imagine there are two objects, A
and B. There is a reference from A to B, and from B to A (such reference is called a
circular reference), but no other object in the application references A nor B.

A and B objects could be removed from memory because they cannot be reached
from any point in the application. But since for both of them, the reference count
is 1, not 0, a garbage collector using the reference counting algorithm would not
remove them.

Because of that, reference counting is not used in .NET. Instead, tracing is used.

Tracing will determine whether an object is reachable or not by tracing it from a
set of application roots. We will learn what application roots are in a minute, but
for now, let’s just say they are the objects that the Garbage Collector starts
building the graph of reachability from. If an object is reachable from a root object,
either directly or indirectly, then it will be considered alive. If it’s not reachable, it
means it can be removed from memory.

Let’s say that the Garbage Collector identifies 3 application roots. They, by
definition, are considered reachable:

Then, for each of them, the Garbage Collector checks what references they hold,
and it adds the objects pointed by those references to the graph of reachable
objects:

It repeats this step for each of the new objects:

It continues its work until there are no more objects having references to objects
that are not included in the graph.

The power of this algorithm is that the circular references will not be included in
the graph of reachable objects, because, well - they are not reachable:

All right. Let’s now see what application roots are exactly. Roots include static
fields and local variables on a thread's stack1. For us, the most important part is
“local variables on a thread's stack”. The first thing we need to clarify: each thread
has its own stack, so in multi-threaded applications, we will have more than one
stack. For simplicity, let’s focus on single-threaded applications.

The Garbage Collector will look at the stack and see what references are currently
stored on it. Remember - the reference itself is stored on the stack, and it points to
an object stored on the heap.

Let’s consider this code:

At the execution point marked by the green arrow, the following references are
stored on the stack:

1) the reference to the Person object stored in the person variable
2) the reference to the “bbb” string stored in the text variable

And the following references are not stored on the stack:
1) the reference to the “Tom” string - it’s stored in the person object

1 There are also couple more things that will be included to the application roots collection, but they
come from low-level mechanisms of C# which are beyond this course’s level. If you are curious, I
recommend reading this document:
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#:~:text=An%20app
lication's%20roots%20include%20static,the%20runtime%20for%20these%20roots.

https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#:~:text=An%20application's%20roots%20include%20static,the%20runtime%20for%20these%20roots
https://docs.microsoft.com/en-us/dotnet/standard/garbage-collection/fundamentals#:~:text=An%20application's%20roots%20include%20static,the%20runtime%20for%20these%20roots

2) the reference to the “aaa” string stored in the textInsideIf variable, as it
was removed from the stack once the code execution reached the end of
the if statement

If the Garbage Collector gets triggered once code execution reaches the point
marked by the green arrow, it will identify two references stored on the stack and
will include them in the application roots: the reference to the person object, and
the reference to the “bbb” string. It will start building the reachability graph from
those roots. The person object holds a reference to the “Tom” string, so it will also
get included in the graph. On the other hand, no object in the graph holds the
reference to the “aaa” string, so it will be considered a candidate for removal by
the Garbage Collector.

Let’s summarize. To decide whether a reference pointing to some object exists, the
Garbage Collector builds a graph of all objects reachable from root objects of the
application, which are things like references currently stored on the stack or in
static fields of classes. If an object will not be included in this graph, it means it’s
not needed and can be removed from memory. After the graph of reachability is
built, the Garbage Collector can continue its work and remove the unreachable
objects.

Bonus questions:

● "What is the Mark-and-sweep algorithm?"
It’s the algorithm that the Garbage Collector implements. According to this
algorithm, the GC first marks objects that can be removed (mark phase) and
then actually removes them (sweep phase).

● "How many stacks are there in a running .NET application?"
As many as threads. Each thread has its own stack.

● "What two main algorithms of identifying used and unused objects are
implemented by tools similar to .NET Garbage Collector?"
First is reference counting, which associates a count of references pointing to
an object with each object. An example of a language using it is Swift. Another
algorithm is tracing (this one is used in .NET) which builds a graph of
reachability starting from the application roots.

9. What are generations?

Brief summary: The Garbage Collector divides objects into three generations - 0,
1, and 2 - depending on their longevity. Short-lived objects belong to generation
0, and if they survive their first collection, they are moved to generation 1, and
after that - to generation 2. The Garbage Collector collects objects from
generation 0 most often, and from generation 2 least often. This feature is
introduced in order to improve Garbage Collector’s performance. Objects that
survived a couple of cycles of the GC’s work tend to be long-lived and they don’t
need to be checked upon so often. This way, the Garbage Collector has less work
to do, so it can do it faster.

Garbage Collector has a lot of work. It needs to identify objects to be removed,
which we learned about in the previous lecture. Then, it must actually remove
them. Finally, it must defragment the memory of the application.

As we know the Garbage Collector marks objects as reachable or unreachable and
removes the latter from the memory. Imagine there is some object - let’s call it
object A. During the first execution of the Garbage Collector, this object is marked
as reachable, and so are all objects reachable from object A. After some time the
Garbage Collector gets to work again, and again, it marks object A and its friends as
reachable. Then again, some time passes, and Garbage Collector gets triggered
again… and again it marks object A as reachable.

If I were the Garbage Collector, I would probably get a bit frustrated. This object is
obviously long-lived, and I don’t want to check if it’s still needed every time I get to
work! I have other things to do!

Well, that’s exactly the optimization the Garbage Collectors creators come up with
- to not make the Garbage Collector check each object every time. If some object
“survived” a couple of cycles of the Garbage Collector’s work, it’s most likely
long-lived, and we should check it only every once in a while.

This optimization introduced the concept of generations of objects. Once an
object is first created, it is assigned to generation 0. If it survives its first collection,
it advances to generation 1. If it survives the second, it advances to generation 2.

The Garbage Collector checks objects from Generation 0 most frequently. Less
frequently it checks objects from generation 1, and least frequently - from
generation 2. It makes sense. If the object survived two collections, it’s most likely

long-lived, and there is a big chance it will survive collections number 10, 20, or
100. We don’t need to check on it that often.

For example, think of some logger objects. Often there is one logger object
created at the start of the program execution, and it is passed around to any class
that needs it. Its life cycle is basically as long as the time the application runs.

As the opposite, we often create objects that last only for a very short time, like
anonymous objects created to temporarily carry some data between LINQ queries.
In this case, it is reasonable that the Garbage Collector will quickly remove them, so
they don’t occupy memory for too long.

In a well-tuned application, most objects die in generation 0.

Please note that during a collection of a generation, all previous generations are
also collected. So when generation 0 is collected, no other one is, but when
generation 2 is collected, generations 0 and 1 are too (that’s why collecting objects
from generation 2 is sometimes called “a full garbage collection”).

One more thing that needs to be mentioned is the LOH - the Large Objects Heap.
When a very large object (larger than 85 000 bytes) is initially created, it is stored in
a special area of memory called the Large Objects Heap, and it is assigned to
generation 2 right away. It gets this special treatment because it rarely happens
that very large objects are short-lived. Also, the objects in the Large Objects Heap
have one more special feature - they are pinned. It means, they will not be moved
in memory during the defragmentation step of the Garbage Collector’s work,
which happens after removing unreferenced objects from memory. This is because
the larger the object is, the more expensive is the operation of moving it (and the
harder it is to find the chunk of memory large enough to fit it). It’s better to “pin”
such large objects, and move smaller objects around them. (FYI, starting with .NET
4.5.1 we can change this default and “unpin” the pinned objects living in the LOH).

Let’s summarize. The Garbage Collector divides objects into three generations - 0,
1, and 2 - depending on their longevity. Short-lived objects belong to generation 0,
and if they survive their first collection, they are moved to generation 1, and after
that - to generation 2. The Garbage Collector collects objects from generation 0
most often, and from generation 2 least often. This feature is introduced in order
to improve Garbage Collector’s performance. Objects that survived a couple of
cycles of the GC’s work tend to be long-lived and they don’t need to be checked
upon so often. This way, the Garbage Collector has less work to do, so it can do it
faster.

Bonus questions:

● "What is the Large Objects Heap?"
It’s a special area of the heap reserved for objects larger than 85 000 bytes.
Such objects logically belong to generation 2 from the very beginning of their
existence and are pinned.

● "What does it mean that the object is pinned?"
It means it will not be moved during the memory defragmentation that the
Garbage Collector is executing. It is an optimization, as large objects are
expensive to move, and it’s hard to find a chunk of memory large enough for
them.

10. What is the difference between
Dispose and Finalize methods?

Brief summary: The Dispose method is used to free unmanaged resources. The
Finalize method is the same thing as the destructor, so it’s the method that is
called on an object when it is being cleaned up by the Garbage Collector.

The Dispose method is used to free unmanaged resources. The Finalize method is
the same thing as the destructor, so it’s the method that is called on an object
when it is being cleaned up by the Garbage Collector.

First, let’s focus on the Dispose method. This method comes from the IDisposable
interface and it is used to free up any unmanaged resources used by an object
when its work is finished.

First of all, let’s understand what managed and unmanaged resources are.

Managed resources, as their name suggests, are managed by the Common
Language Runtime. Any objects we create with C# are managed resources. The
Garbage Collector is aware of their existence, and once they are no longer needed
it will free up the memory they occupy. That means we don’t need to worry about
managed resources cleanup as it is done automatically for us.

Unmanaged resources are beyond the realm of the CLR. The Garbage Collector
doesn’t know about them, so it will not perform any cleanup on them. Examples of
unmanaged resources are database connections, file handlers, COM objects,
opened network connections, etc. We as developers are responsible to perform
the cleanup after we are done with those objects. If we don’t, bad things may
happen. For example, if we open a file to read it and we don’t close it, the next
attempt to open the same file will fail with an error saying that the file is currently
in use.

If we have a class that uses some unmanaged resources, it should implement the
IDisposable interface and provide an implementation of the Dispose method. The
Dispose method should contain the code that cleans the unmanaged resource, for
example, closes a file. Let’s see a simple class that does so:

This class is simply providing a way to read a file line-by-line. Please note that this
implementation is simplified for example’s sake so it doesn’t contain any error
handling. This class implements the IDisposable interface, and because of that, it is
forced to provide the implementation of the Dispose method. In this method, we
clean up any unmanaged resources. In this case, we simply call the Dispose method
of the StreamReader. This is a very common practice when implementing the
Dispose method because it rarely happens that we need to access unmanaged
resources that do not have any C# class meant to use them provided. Calling
Dispose method from a dependency of a class (or methods, if we have more
IDisposable dependencies) in the Dispose method o this class is called a cascade
Dispose.

All right. Let’s use the FileReader class:

At the first glance, it may seem ok - line1 and line2 are set to values coming from
the input.txt file. The problem here is that we do not actually call the Dispose
method, and the StreamReader is never closed. Let’s fix that. We could call the
Dispose method manually:

…but this is a bit awkward and easy to forget, not to mention that if the exception
will be thrown in this code, the Dispose method may never be called. It’s better to
use the using statement:

Starting with C# 8 we can use the following syntax without braces:

Remember, the using statement is just syntactic sugar for this:

The “finally” block is used to ensure that the Dispose method will be called no
matter if the exception will be thrown or not.

All right. One more thing before we move on to the Finalize method. Remember
that the Garbage Collector does not call the Dispose method. We must call it
ourselves, and the best way to do it is by using the using statement, which ensures
that the Dispose method will be called.

Now, let’s move to the Finalize method. This method is called on an object when it
is being cleaned up by the Garbage Collector. That means it can only be added to
reference types, so a struct or a record struct can’t have a finalizer defined. Please
notice that in C# the destructor, the finalizer, and the Finalize method are the same
things. We can’t even define the Finalize method in a class - we must do so by
defining a destructor. Let’s see this in practice.

I defined a Person class that contains a destructor. When an object of this class will
be cleaned up by the Garbage Collector this method will be executed. In my Main
method, I run the following code:

john object lives in the scope of SomeMethod, and after this method finishes it is
no longer needed. By running GC.Collect command I ask the Garbage Collector to
do its work. And this is the result of the program:

We said before that the Finalize method and the destructor are the same things. To
prove it, let me show you how the Person class looks after being compiled into the
Common Intermediate Language. I will use ildasm to read the dll.

As you can see the Finalize method is added. And this is how it looks in CIL:

As you can see it prints the same message as we defined in the destructor. In other
words, the destructor is changed into the Finalize method during the compilation.

If I tried to add the Finalize method manually, I would get an error “Do not override
object.Finalize. Instead, provide a destructor”:

All right. We now know how to define destructors, so it’s time to learn when to use
them.

Well, the answer is “almost never” and I’m quoting Eric Lippert, one of the
designers of C#. As we learned before, if a class is using some unmanaged
resources that must be cleaned up, it should implement the IDisposable interface.
Some people think that having a destructor that calls the Dispose method can be
an assurance that those resources will be cleaned up if someone forgets to call the
Dispose method manually or with the using statement. But this is solving an issue
that shouldn’t happen at all if developers know what they are doing, and in the
process, we may cause much more problems. Let me quote Mr. Lippert again:

“If you make a destructor be extremely careful and understand how the
garbage collector works. Destructors are really weird:

● They don't run on your thread; they run on their own thread.
Don't cause deadlocks!

● An unhandled exception thrown from a destructor is bad news.
It's on its own thread; who is going to catch it?

● A destructor may be called on an object after the constructor
starts but before the constructor finishes. A properly written

destructor will not rely on invariants established in the
constructor.

● A destructor can "resurrect" an object, making a dead object
alive again. That's really weird. Don't do it.

● A destructor might never run; you can't rely on the object ever
being scheduled for finalization. It probably will be, but that's
not a guarantee.

Almost nothing that is normally true is true in a destructor. Be really,
really careful.

Writing a correct destructor is very difficult.”

Then, he also states that this was the only scenario when he needed to actually
write destructors:

“When testing the part of the compiler that handles destructors. I've
never needed to do so in production code.“

The quote comes from this thread on Stack Overflow:
https://stackoverflow.com/questions/4898733/when-should-i-create-a-destructor/
4899622

If you want to learn more about the tricky beasts that destructors are, make sure
to read this article by Eric Lippert:
https://ericlippert.com/2015/05/18/when-everything-you-know-is-wrong-part-one/

So the bottom line here is: do not write destructors. If your objects must clean up
some resources after they finish their work, make them implement the IDisposable
interface.

Let’s summarize. The Dispose method is used to free unmanaged resources. The
Finalize method is the same thing as the destructor, so it’s the method that is
called on an object when it is being cleaned up by the Garbage Collector.

https://stackoverflow.com/questions/4898733/when-should-i-create-a-destructor/4899622
https://stackoverflow.com/questions/4898733/when-should-i-create-a-destructor/4899622
https://ericlippert.com/2015/05/18/when-everything-you-know-is-wrong-part-one/

Bonus questions:

● "What is the difference between a destructor, a finalizer, and the
Finalize method?"
There is no difference, as they are the same thing. During the compilation, the
destructor gets changed to the Finalize method which is commonly called a
finalizer.

● "Does the Garbage Collector call the Dispose method?"
No. The Garbage Collector is not aware of this method. We must call it
ourselves, usually by using the using statement.

● "When should we write our own destructors?"
The safest answer is “almost never”. Destructors are very tricky and we don’t
even have a guarantee that they will run. Use IDisposable instead.

● "What are managed and unmanaged resources?"
The managed resources are managed by the Common Language Runtime. Any
objects we create with C# are managed resources. The Garbage Collector is
aware of their existence, and once they are no longer needed it will free up the
memory they occupy. That means we don’t need to worry about managed
resources cleanup as it is done automatically for us. Unmanaged resources are
beyond the realm of the CLR. The Garbage Collector doesn’t know about them,
so it will not perform any cleanup on them. Examples of unmanaged resources
are database connections, file handlers, COM objects, opened network
connections, etc. We as developers are responsible to perform the cleanup
after we are done with those objects.

11. What are default implementations in
interfaces?

Brief summary: Starting with C# 8, we can provide methods implementations in
interfaces. This feature was mostly designed to make it easier to add new
methods to existing interfaces without breaking the existing code.

If I asked you “What are the characteristics of interfaces in C#?” you would
probably be able to list them pretty easily:

● they can only contain methods, properties, indexers, and events
declarations. They can’t have fields.

● the methods declared in the interface can’t have implementations. In other
words, they are methods with no bodies.

● the methods can’t be declared abstract or virtual (because they are
implicitly virtual).

● all its members are by default public and using any other access modifier
leads to a compilation error.

● they can’t have static methods.

This is all perfectly correct… or rather was, until C# 8 was introduced in 2019. With
this version of C# new feature was introduced: default implementations in
interfaces. In short, it means that interfaces can now contain methods with bodies.
Because of that a couple of other changes must have been introduced too - for
example, methods in the interface can be private now, it can contain fields, etc.

If you (like me) are used to the “old” interfaces, you are probably quite surprised
now. This change goes against everything we knew about them - that they are an
abstraction over behavior, or that they only define a contract a class must fulfill.
When I learned about this change my first thought was “so what will be the
difference between an interface and abstract class now?”. It seemed to me
(correctly) that they will be very similar concepts from now on, so I was asking
myself why did Microsoft decide to introduce this change.

So, before we dive into details, let’s understand why. I will explain it by showing
you an example. Let’s say we develop some library that other people or companies
will use. We will publish it as a NuGet package. Let’s say this is one of the interfaces
we define in our library, and we expect our customers to provide their own
implementations:

Our library is meant for e-commerce, and this interface defines what functionality
should the classes representing orders contain.

We finish our work and we release our library. The release is a roaring success, and
more and more people download the package with NuGet. It is widely used and
highly rated.

One year later we are almost ready to release version 2.0. There is one problem,
though. We would like to add “void Cancel();” method to the IOrder interface. But
if we do so, and our customers upgrade the version of the library, they all will
suddenly see compilation errors all-around their codebases. The classes they
defined to implement the IOrder interface do not provide the implementation of
the Cancel method. We will force our customers to adjust to this breaking change,
and this may not be easy. Some of them may be stuck with development for days,
and their business may be impacted by it.

One solution could be to extend the existing interface like this:

We will create a new interface extending the old one. Our customers can gradually
start using it in their codebase, and everyone is happy.

But there is a problem with this solution. As our library evolves, we may want to
add more and more methods to the IOrder interface. This will lead to creating new
interfaces, and soon it will become hard to maintain. No one will wrap their heads

around what is what in the application, as everywhere we will see things like
IOrder, ICancellableOrder, ICancellableOrderWithDeliveryDelay,
ICancellableOrderWithDeliveryDelayAndDiscout, etc.

And this is where default implementations in interfaces can help. We can add new
methods to an existing interface, and provide default implementations, so we
won’t break our customers’ code. If they want to, they can provide their own
implementation, but until then the default implementation will be used. Let’s see
this in code:

As you can see the DelayDeliveryByDays method has a body, which was impossible
before C# 8.

Now, let’s define a class implementing this interface:

And let’s see if we can call the DelayDeliveryByDays method on an object of this
class:

Well, that doesn’t compile. We can’t use the default interface implementations on
variables of a concrete type. We must use it via the interface:

Of course, if we provide the implementation of this method in the concrete class, it
will be used instead of the implementation from the interface. Let’s add another
class implementing the IOrder interface:

And now, let’s see what this code will print:

And the result is:

As you can see, if the non-default implementation is provided, it will be used.

All right. Since we now can define methods in interfaces, we may need some other
things that typically are used in methods, like:

● other, private methods that can enclose some piece of logic.
● static methods to do the same, if they don’t use any non-static members of

the interface.
● private fields.

Also, if an interface is derived from another interface, we may want to use the
members of the parent. This means we can declare interface methods or fields as
protected. The protected methods or fields are only available in derived interfaces,
not classes implementing the interface.

We can also have virtual methods in the interface, but they can only be overridden
by derived interfaces, not the classes implementing the interface. Also, if we
declare a virtual method in the interface, it must contain a body. So for example,
this method is defined in the base interface:

And we can override it in the derived interface like this:

All right. Let’s summarize the topic of default implementations in interfaces.

This feature was added in C# 8. It’s mostly designed to make it easier to add new
methods to interfaces without breaking the existing code. Also, they make it
possible for C# to work with APIs targeting Android (written in Java) and iOS
(written in Swift) as those languages support similar features. They also enable
using something called Traits, which is beyond this course’s level; if you are curious,
you can read about it here:
https://en.wikipedia.org/wiki/Trait_(computer_programming).
https://dlang.org/spec/traits.html
https://stackoverflow.com/questions/59547812/c-sharp-interface-with-default-me
thod-vs-traits

As you can see this was a huge change and it completely changed what was true
about interfaces in C#. This feature received a lot of criticism, and to be honest I
can see why. The line between interfaces and abstract classes is very blurry now. In
practice, it’s hard to provide a default implementation that brings any value. I
recommend this extensive article pointing out some problems with the default
implementations in interfaces:
https://jeremybytes.blogspot.com/2019/09/interfaces-in-c-8-are-bit-of-mess.html

My recommendation is as follows: be aware that something like the default
implementation in interfaces exists. Still, I think it’s best if you use interfaces as
they were meant to be used before C# 8 unless you are 100% sure you know what
you are doing and equally sure that this will bring value to your application.

Bonus questions:

● "What can be the reason for using default implementations in
interfaces?"
Default implementations in interfaces are mostly designed to make it easier to
add new methods to existing interfaces without breaking the existing code.
Without it, if we add a method to an interface we release it as a public library,
we will force everyone who updates this library to provide the implementation
immediately - otherwise, their code will not build.

https://en.wikipedia.org/wiki/Trait_(computer_programming)
https://dlang.org/spec/traits.html
https://stackoverflow.com/questions/59547812/c-sharp-interface-with-default-method-vs-traits
https://stackoverflow.com/questions/59547812/c-sharp-interface-with-default-method-vs-traits
https://jeremybytes.blogspot.com/2019/09/interfaces-in-c-8-are-bit-of-mess.html

12. What is deconstruction?

Brief summary: Deconstruction is a mechanism that allows breaking a tuple or a
positional record into individual variables. It is also possible to define how
deconstruction should work for user-defined types by implementing the
Deconstruct method.

Deconstruction is a mechanism that allows breaking a tuple or a positional record
into individual variables. It is also possible to define how deconstruction should
work for user-defined types by implementing the Deconstruct method.

Deconstruction was first introduced with C# 7.

First, let’s see some code.

This method takes a collection of integers and returns the sum, count, and
average as a three-element tuple. For simplicity, I skipped handling empty
collections. Now let’s see how this method could be used:

Since we use each of the tuple’s elements quite often, let’s store them in variables:

This works, but it’s a bit cumbersome. It would be better if we could create those
three variables in the same line the AnalyzeNumbers method is executed. And
that’s exactly what deconstruction is for. Let’s see this in code:

In the second line, we declared three variables and assigned the first element of
the tuple to the first one, the second to the second one, and the third to the third
one. The count of variables must be equal to the count of tuple elements. Because
of that, the following code will not compile:

But we don’t need to declare every variable if we don’t want to. Let’s say that for
some reason I don’t care about the second tuple’s element, which is the sum. I can
skip it by using the discard:

Discard is a special, write-only variable, and we can’t use it after it’s assigned. Its
only purpose is to be a placeholder for ignored elements of a tuple:

It is also possible to deconstruct tuples into variables that we already have. In this
case, we just need to skip the “var” keyword:

We can also mix using the existing variables with declaring new ones:

All right. So far we’ve been deconstructing ValueTuples. We can also deconstruct
ordinary tuples…

…as well as positional records:

Let’s define a new class:

Classes, by default, do not support being deconstructed:

But we can provide our own Deconstruct method to enable it. Such a method must
be void, and it must have one out parameter for each variable that will be created
as the result. Let’s add the Deconstruct method to the Pet class:

Now we can deconstruct the Pet object into three variables:

We can define as many Deconstruct methods in a class as we want. We can also add
the Deconstruct method to structs, records, and interfaces.

Even if we did not create some class and we don’t have access to its source code,
we can still “add” the Deconstruct method to it using extension methods. Let’s
see this in practice. Let’s say I wished I could deconstruct a DateTime object:

Unfortunately, this doesn’t work, because DateTime does not have the
Deconstruct method implemented. Let’s fix it by defining the Deconstruct
extension method:

Now the deconstruction works as expected:

Bonus questions:

● "What is the difference between the destructor and the Deconstruct
method?"
The destructor is a method that’s called on an object when this object is being
removed from memory by the Garbage Collector. The Deconstruct method
allows the object to be deconstructed into single variables. It is by default
generated for tuples, ValueTuples, and positional records, but we can also
define it in custom types.

● "How can we define deconstruction for types that we did not create and
we don’t have access to their source code?"
We can define the Deconstruct method as an extension method for this type.

13. Why is “catch(Exception)” almost
always a bad idea (and when it is not?)?

Brief summary: Using “catch(Exception)” should be avoided, because it catches
every kind of exception. When we decide to catch an exception, we should know
how to handle it, and it’s not feasible if the exception’s type is unknown. The
acceptable use cases for catching any type of exceptions are:

● The global catch block that is catching all exceptions not handled
elsewhere and shows them to the user.

● Any catch block in which we rethrow an exception without handling it.

Catching an object of System.Exception type, so the most general type of
exceptions in C#, is almost always considered a bad idea. This is because when you
catch an exception, you should handle it appropriately. But if you don’t know what
the exception type is exactly, how can you know how to handle it?

Let’s consider the following code:

This method works similarly to the parameterless FirstOrDefault method from
LINQ - it returns the first element from the collection, but if the collection is
empty, it returns the default value.

In the catch clause, we catch any exception and we print the information that the
collection is empty. But other exceptions, not related to the emptiness of the

collection, can be thrown in the try clause, like OutOfMemoryException or
StackOverflowException. For those two types, it is extremely hard to predict when
they will happen (of course, in a healthy application they shouldn’t happen at all,
but we don’t know how the rest of the application looks like). It may be the case
that the catch clause will catch OutOfMemoryException, and it will handle it with
the false message, saying that the collection is empty, even if it wasn’t. The true
problem - the lack of memory in the application - will be swept under the rug.

Because of that, we should always catch as specific exceptions as possible:

The First method throws InvalidOperationException, so handling it here is most
appropriate.

For the same reasons, we should throw as specific exceptions as possible from our
own code. Let’s consider this method:

Throwing an Exception here is not a good idea. We should be more precise when
choosing an exception type, so it fits the situation. When the first exception is
thrown, the problem lies in the null collection passed to the Average method, so
ArgumentNullException is a perfect fit. In the second case, when the collection is
not null, but empty, InvalidOperationException or ArgumentException seem most
appropriate:

Exceptions give us priceless insight into what problems do we have in our
application, and we should never mask them with some generic handling that will
hide the detailed information they carry.

So is it ever appropriate to have the catch(Exception) clause?

Well, it is, in two specific scenarios.

The first one is the global catch block in our application. This is the last resort of
exception handling. If something totally unexpected happens and there is no way
of continuing the application’s work after that, we should simply show the

exception to the user and/or store it in some logs. After the user reads the error,
the application will be stopped. Let’s add a global catch block to a console
application:

In applications with some proper GUI, such global catch block usually shows some
error popup.

Another case when catching any type of exception could be OK is when we don’t
intend to handle it - we only rethrow it, possibly log it, or add some additional
information to it. In such a tiny application as ours, it doesn’t make much sense, but
in big projects, it’s often the case that applications are multi-layered, and each
layer has its own way of reporting and organizing errors. This way, an exception
thrown in the lower layer will be logged in each layer it crosses, but finally, it will
be handled in some of the upper layers. Let’s consider the following architecture:

If the exception is thrown at the Data Access Layer, it can be intercepted in the
Business Layer, which logs it and then rethrows it. It is then handled in the GUI
Layer by showing some popup with an error message to the user:

We will talk more about how to rethrow exceptions in the next lecture. In a
simplified way, such code could look like this:

This is the lowest-level layer. If an exception is thrown on data access, it is logged
and rethrown. Later, it will be handled by the next layer - the Business Layer:

If Data Access Layer throws an exception here, or if the processing of the raw data
does, the exception will be logged and rethrown. It will be truly handled (by
showing some error to the user) in the upper-most layer - the GUI Layer:

This way, the exception thrown at the lowest layer of the application will be logged
at each layer, but it will only be handled at the GUI Layer. As you can see, at this
point it is not rethrown, as this is the last place where it can be handled. Of course,
if any of the lower layers could actually handle the exception and continue working
without problem, it should not rethrow the exception, and it would never be
shown in the error window.

Using “catch(Exception)” should be avoided, because it catches every kind of
exception. When we decide to catch an exception, we should know how to handle
it, and it’s not feasible if the exception’s type is unknown. We should be precise in
both catching exceptions, as well as in throwing them. The acceptable use cases for
catching any type of exceptions are:

● The global catch block that catches all exceptions not handled elsewhere,
and shows them to the user.

● Any catch block in which we rethrow an exception without handling it.

Bonus questions:

● "What are the acceptable cases of catching any type of exception?"
The acceptable use cases for catching any type of exceptions are:

○ The global catch block that is catching all exceptions not handled
elsewhere and shows them to the user.

○ Any catch block in which we rethrow an exception without handling it.

● "What is the global catch block?"
The global catch block is the catch block defined at the upper-most level of the
application, that is supposed to catch any exceptions that hadn’t been handled
elsewhere. It usually logs the exception and shows some information to the
user, before stopping the application.

14. What is the difference between
“throw” and “throw ex”?

Brief summary: The difference between “throw” and “throw ex” is that “throw”
preserves the stack trace (the stack trace will point to the method that caused
the exception in the first place) while ”throw ex” does not preserve the stack
trace (we will lose the information about the method that caused the exception
in the first place. It will seem like the exception was thrown from the place of its
catching and re-throwing)

When catching an exception we don’t always want to handle it and then let the
program execution continue. Sometimes we want the exception to move on and
perhaps be caught in the next catch clause, but we want to log something or do
any other action related to this exception occurrence. Such a thing is called
exception re-throwing. We can do it by either using “throw” or “throw ex”.

The difference between them is that:
● “throw” preserves the stack trace (the stack trace will point to the method

that caused the exception in the first place)
● “throw ex” does not preserve the stack trace (we will lose the information

about the method that caused the exception in the first place. It will seem
like the exception was thrown from the place of its catching and
re-throwing)

We will see this in the code in a second, but first, let’s be sure we understand what
the stack trace is. The stack trace is a trace of all methods that have been called,
that lead to a particular moment in code. Let’s consider the following code:

As you can see MethodA calls MethodB which calls MethodC. In the MethodC we
log the current state of the stack trace. Let’s see what will be printed to the
console if I call MethodA from the Main method of the program:

All right. At the top of the stack trace we have the method that has been called
most recently, and at the bottom - the one that has been called first. The stack
trace stores the information about all method calls that lead to the current
moment in the program execution. As you can see the getter of the

Environment.StackTrace property is at the very top because we read the stack
trace with this method exactly, so it’s the latest to be called. Please note that also
the numbers of lines of code where those methods have been called are stored in
the stack trace.

Stack trace has many uses, but for us as developers the most important value it
brings is that it helps us track where some exceptions happened. Imagine that you
have a huge app, and when it throws an exception all it says is “object is null!”. That
wouldn’t be very helpful. We want to know the exact method that caused the
problem, and even more - the exact line. This will help us to take a look at the right
place, place a breakpoint there, and overall solve the problem easier and faster.

All right. We said that “throw” preserves the stack trace while “throw ex” does not
- it’s sometimes called “resetting the stack trace”. Let’s see the code that will show
us the difference:

Here is the first method. As you can see it’s designed to throw an exception (it will
try to access the first number of an empty collection). And here is the second -
almost the same, but doing “throw ex” instead of throw:

As you can see Visual Studio underlines “throw ex” and it has good reasons to do
so. We will go back to it in a while. First, let’s see those methods in use. I will call
both similarly, so below I’m showing the code for MethodThrow only for brevity.

All right. Let’s see the output of the program.

For throw, the stack trace ends at Linq.ThrowHelper.ThrowNoElementsException.
The previous entry says about the First method, which already gives us some
information about the nature of the problem.

For throw ex, the stack trace ends at MethodThrowEx line 54, which is exactly this
line:

This means that all information that has been stored in the stack trace before
reaching the “throw ex” command is lost. This is not good for us, as we lose

valuable data about the origins of the exception. This is why earlier we saw that
Visual Studio suggested to us that using “throw ex” is not a very good idea. We
should stick to using “throw”, not “throw ex”.

One may wonder “So why is there a possibility to do it in C# at all if we should not
use it?”. Well, remember that “ex” is just an object of the Exception class. We throw
objects belonging to this class all the time and it’s perfectly fine, only that we
throw brand-new exceptions, not the ones that have been already thrown:

If the compiler allows us to use “throw (some exception here, should be
brand-new)” it can’t really prevent us from throwing an already-thrown exception
with “throw ex” even if it’s not a good idea.

Let’s summarize. The difference between “throw” and “throw ex” is that “throw”
preserves the stack trace (the stack trace will point to the method that caused the
exception in the first place) while ”throw ex” does not preserve the stack trace (we
will lose the information about the method that caused the exception in the first
place. It will seem like the exception was thrown from the place of its catching and
re-throwing).

Bonus questions:

● "What is the stack trace?"
The stack trace is a trace of all methods that have been called, that lead to the
current moment of the execution. At the top of the stack trace we have the
method that has been called most recently, and at the bottom - the one that
has been called first. Stack trace allows us to locate the exact line in code that
was the source of an exception.

● "Should we use “throw” or “throw ex”, and why?"
We should use “throw” as it preserves the stack trace and helps us find the
original source of the problem.

15. What is the difference between
typeof and GetType?

Brief summary: Both typeof keyword and the GetType method are used to get
the information about some type. The differences between them are:

● typeof takes the name of the type we want to inspect, so we must know
the type before. typeof is resolved at compile time.

● GetType is a method that must be executed on an object. Because of that,
it is resolved at runtime. This method comes from the System.Object base
class, so it is available in any object in C#

Both typeof keyword and the GetType method are used to get the information
about some type. The differences between them are:

● typeof takes the name of the type we want to inspect, so we must know the
type before. typeof is resolved at compile time.

● GetType is a method that must be executed on an object. Because of that, it
is resolved at runtime. This method comes from the System.Object base
class, so it is available in any object in C#

Let’s see this in practice. If I know the type already, and I only want to get the Type
object for some reason, typeof and the GetType method will give me the same
result:

In the first case, I use the typeof with the Base type. In the second, I execute the
GetType method on an object of this type. In both cases, the result is the Type
object containing full information about the Base type.

But I don’t always know the type at compile time. Let’s consider this code:

The obj may be anything, and it will only be known at runtime what it is exactly.
That’s why we can’t use typeof here. We should rather use GetType. Let’s see this
method in action:

The important thing to understand is that GetType always returns the actual type
of an object. Let’s consider this code:

Even if the variable derivedAsBase is of type Base, we assign an object of type
Derived to it. It is possible because Derived inherits from Base. The GetType
method will print the actual type:

We actually have seen this before, in the PrintTypeName method. Even if it took a
parameter of type System.Object, it printed the actual type of the given object.
Remember that the GetType method belongs to System.Object type, so it can be
called for any object in C#.

Let’s summarize. Both typeof and the GetType method return a Type object,
which holds the information about a type. typeof takes the name of the type, and
it gets resolved at compile time. The GetType method is called upon an object, so it
is resolved at runtime.

Both typeof and the GetType method are parts of the reflection mechanism,
which we will learn about in the next lecture.

Bonus questions:

● "What is the purpose of the GetType method?"
This method returns the Type object which holds all information about the type
of the object it was called on. For example, it contains the type name, list of the
constructors, attributes, the base type, etc.

● "Where is the GetType method defined?"
It is defined in the System.Object type, which is a base type for all types in C#.
This is why we can call the GetType method on objects of any type.

16. What is reflection?

Brief summary: Reflection is a mechanism that allows us to write code that can
inspect types used in the application. For example, using reflection, we can list all
fields and their values belonging to a given object, even if at compile time we
don’t know what type it is exactly.

Reflection is a mechanism that allows us to write code that can inspect types used
in the application. For example, using reflection, we can list all fields and their
values belonging to a given object, even if at compile time we don’t know what
type it is exactly.

This all probably sounds a bit mysterious to you, so let’s consider the following use
case: we want to write a class that can take various objects and save them to a text
file. There are already mechanisms that do it, and store objects are JSON or XMLs,
but let’s say we want some custom format so we must implement it ourselves. We
want this class to be completely generic, so it can take any type of object.

Let’s consider two sample types this class could convert to text. For brevity,
defined them as records, which we will learn about later in the course.

If a Pet object is being converted, I would like the result to be for example:
“Name is Taiga, PetType is Dog, Weight is 30.0”
Similarly, for a House I would like to have:

“Address is 123 Maple Road, Berrytown, Area is 170.6, Floors is 2”.

The problem is that in the Convert method, we have no idea what type we deal
with. We can’t cast “obj” to anything concrete, as the types may vary. Also, to
implement what we want we will not only need the values of the properties (which
we could access if we only had more concrete type than System.Object) but we will
also need the need their names, which is not available at runtime. In other words,
when calling house.Floors we can get the number 2, but we can’t get the “Floors”
string.

Well, actually, we can, but only if we use reflection. Reflection allows us to access
information about some type at runtime. We can not only access the values of
some fields but also their names. Moreover, we could access information about
methods, constructors, access modifiers, and so on. Let’s see this in practice. First
of all, we will use the GetType method on the obj object. It will return a Type
object, which provides all information about a type:

Let’s see the type object in the debugger:

As you can see there is quite a lot of data in here. We have some information about
constructors, methods, base type, and also properties which I highlighted. We can
see all properties we declared in the House type, and also an extra
EqualityContract property which is is autogenerated for records. We will ignore it
when converting the object to string.

All right. Let’s use this data to achieve what we want. First, I want to read all
properties from the given object, except the EqualityContract:

This gives me an IEnumerable<PropertyInfo>. Now I want to build a string for each
PropertyInfos, accessing the property name as well as its value, and then join the
strings together. I will use LINQ to do it:

The Select method comes from LINQ, and it simply maps every property to a string.

All right. This is the final method:

Let’s make sure it works:

The result of this code is:

Great! Seems everything is working. We used reflection to access the information
about some type at runtime and read the values and names of its properties.

Reflection gives us much more abilities. Here are some of them:
● loading dlls at runtime and using them
● instantiating a new instance of some object of a specific type at runtime. For

example, we can create an object of a type defined in a dll we loaded
reading private fields or properties, executing private methods (don’t
overuse it!)

● finding all classes derived from a specific base type or implementing a
specific interface

● reading the attributes. This is for example what NUnit does when it runs the
tests. It finds all methods with the [Test] attribute and executes them. We
will learn more about attributes in the next lecture

● running a method by its name, for example, if the user of the application
selected if from some dropdown

● debugging. For example, sometimes it is necessary to find out the list of
currently loaded assemblies

● creating new types at runtime (System.Reflection.Emit namespace is used
for that)

● and many more

As you can see reflection is a powerful tool, but as such should be used with
caution. The code that heavily relies on reflection is usually hard to maintain and
understand. It’s also prone to errors. For example, when you call a method by its
name, but someone changes the name without your knowledge, the code will crash
the next time it’s run because no method with the name exists anymore.

Also, Using reflection has a relatively big impact on performance. At one of the
projects I worked on I was asked to improve the performance of some process. This
application was using reflection a lot, mostly to load some types and attributes
from dlls at runtime. It turned out that the results of those loads can be cached,
and only this improvement made the process work twice as fast as before. We will
learn more about this mechanism in the “What is caching?” lecture.

Use reflection with caution. If there is a convenient way of implementing the same
logic without it, go for it. If not, reflection may be a lifesaver but keep an eye on
the performance.

Let’s summarize. Reflection is a mechanism that allows us to write code that can
inspect types used in the application. For example call a method with the name
equal to a given string, or list all fields and their values belonging to a given object.

Bonus questions:

● "What are the downsides of using reflection?"
Using reflection has a relatively big impact on performance. Also, it makes the
code hard to understand and maintain. It may also tempt some programmers
to “hack” some code, for example, to access private fields at runtime, which
may lead to unexpected results and hard-to-understand bugs.

17. What are attributes?

Brief summary: Attributes add metadata to a type. In other words, they are a
way to add information about a type or method to the metadata which describes
that type or method.

Attributes add metadata to a type. In other words, they are a way to add
information about a type or method to the existing metadata which describes that
type or method, which we can read from the Type object.

First, let’s understand what metadata is. Generally speaking, metadata is data
providing information about other data. For example, when working with
databases, the data stored inside the database is the actual data, while the
structure of tables and relations between them is metadata.

In programming, metadata describes types used in an application.

First, let’s consider this simple class:

There is a lot of metadata describing this class. For example, the metadata contains
the information that this class is named “Person”, it is public, non-static,
non-sealed, etc. It contains two get-only public properties called Name and
YearOfBirth. It has one public constructor taking two string parameters, and one
taking one parameter. The actual data stored in an instance of this class would be
the string representing the name, and int representing the year of birth.

We can access all the class’s metadata at runtime using reflection, which we
learned about in the previous lecture.

Sometimes we want to add extra metadata to a type or member, and this is what
attributes are for.

Let’s consider the following example. We want to have a common way of validating
some data in the application. No matter the type, we want to be able to specify
that its members of the string type must have a certain length. This is how it would
look like:

I want the Validator class to be able to take objects of any class and check if for
any of their properties this validation is required. If so, it should check if the values
of those properties are valid.

All right. So what we want to do is to add some metadata to the Name properties
in both Person and Dog types defining their minimal and maximal lengths. This is
some “extra” metadata and to define it we must use a custom attribute. This is how
it should look like:

As you can see, to add an attribute to a member or type, we simply must write its
name in the brackets above the type or member we want to add it to. As you can
see, the attribute we have requires two parameters - minimal and maximal length.
Now, let’s define the StringLengthValidateAttribute class.

All attributes must derive from the Attribute base class. Also, typically their names
end with “Attribute”. As you saw before, this postfix is omitted when we actually
use the attribute:

One more thing. We can also define what the attribute can be applied to. In our
case we want it to be applied to properties. To enforce that, we must actually use a
built-in attribute called AttributeUsage:

Great. Now all left to do is to define the Validator class.

This class will simply contain Validate method which can take any object. For this
object, we will look for its properties with the StringLengthValidateAttribute
defined.

As you can see we selected the properties for which this attribute is defined using
the LINQ’s Where method along with Attribute.IsDefined method. Now, we can
iterate those properties and check if their lengths are correct. But first, we must
make sure that the property is a string. If not, we want to throw an exception,
because it means that a developer added this attribute to a different type by
mistake:

Otherwise, we can validate the value:

And this is the whole method:

All right. Let’s make sure it works:

Great! That’s what we wanted.

As you can see attributes can be quite powerful. They are widely used in native
.NET classes, as well as external libraries. For example, if you ever used NUnit, you
must have used some of its attributes:

Let’s summarize. Attributes add metadata to a type. In other words, are a way to
add information about a type or method to the metadata which describes that
type or method. To add an attribute to a member or type, we simply must write its
name in the brackets above the type or member we want to add it to. There are
plenty of built-in Attributes in C# standard library, but we can also create
attributes of our own, simply by creating classes derived from the Attribute base
class.

Bonus questions:

● "What is metadata?"
Generally speaking, metadata is data providing information about other data.
For example, when working with databases, the data stored inside the
database is the actual data, while the structure of tables and relations
between them is metadata. In programming, metadata describes types used in
an application. We can access it in the runtime using reflection, to get the
information about some type, for example, what methods or what constructors
it contains.

● "How to define a custom attribute?"
To define a custom attribute we must define a class that is derived from the
Attribute base class.

18. What is serialization?

Brief summary: Serialization is the process of converting an object into a format
that can be stored in memory or transmitted over a network. For example, the
object can be converted into a text file containing JSON or XML, or a binary file.

Serialization is the process of converting an object into a format that can be
stored in memory or transmitted over a network. For example, the object can be
converted into a text file containing JSON or XML, or a binary file.

Deserialization is the opposite process - using the content of a file to recreate
objects.

Let's write a program that reads personal data from the console, and then
serializes it as an XML file. If the user restarts the program, this data can be
reconstructed using the XML file stored in the computer's memory. Also, we could
transfer this file to another computer, where it could also be used to recreate the
object containing personal data. Let's see this in the code:

For brevity, I skipped the code that does actual serialization and file writing. I used
the built-in XmlSerializer class for serialization. Full code can be found in the
solution published to Github.

I've run this code and entered some personal data. The file that was produced
looks as follows:

As you can see, all the information that was stored in the Person object is saved to
the XML file. We should now be able to read it in the program. Let's change the
code so if the "personalData.xml" file exists, it reads its content instead of asking
the user to enter the data.

The code checks if the file already exists - if so, it reads its content and deserializes
it to recreate the Person object.

Not only XML can be used as the format to store objects. One of the most common
formats is JSON. The name comes from JavaScript Object Notation because it
derives from JavaScript objects format. JSON is typically used for communication
over a network. For example, when you fill a form on a website, most likely the
data from the form is wrapped in JSON format and sent to the server, which then
reads it and (in the case of the C# backend) translates it to C# objects.

This is how the data showed previously as XML would look in JSON format:

Probably the most popular library used for JSON serialization and deserialization is
JSON.Net developed by Newtonsoft. It allows us to serialize and deserialize
objects to/from JSON format very easily:

One more thing that we should mention on this topic. The interviewer can ask you
“What does the Serializable attribute do?”.

This attribute indicates that instances of a class can be serialized with
BinaryFormatter or SoapFormatter. It is not required for XML or JSON serialization.
The BinaryFormatter serializes objects to a binary format (so, simply speaking, a
chain of zeros and ones) and the SoapFormatter to the SOAP format, which is a
little similar to XML. If you are curious, check out this article:
https://pl.wikipedia.org/wiki/SOAP

Let’s summarize. Serialization is a process of translating objects and other data
structures into a format that can be stored as a file or binary data, and potentially
transmitted over a network. Serialized objects can later be reconstructed.

Bonus questions:

● "What are the uses of serialization?"
It can be used to send objects over a network, or to store objects in a file for
later reconstruction, or even to store them in a database - for example to save
a "snapshot" of an object every time a user makes some changes to it, so we
can log the history of the changes.

https://pl.wikipedia.org/wiki/SOAP

● "What does the Serializable attribute do?"
This attribute indicates that instances of a class can be serialized with
BinaryFormatter or SoapFormatter. It is not required for XML or JSON
serialization.

● "What is deserialization?"
Deserialization is the opposite of serialization: it’s using the content of a file to
recreate objects.

19. What is pattern matching?

Brief summary: Pattern matching is a technique where you test an expression to
determine if it has certain characteristics.

Pattern matching is a technique where you test an expression to determine if it has
certain characteristics.

The easiest way to understand pattern matching is with an example. Let’s say I
want to run some code if some value is null, and other if it isn’t:

This code is pretty straightforward. There is only one problem - if I wouldn’t know
exactly what type the obj variable is, it might turn out that it has the == operator
overloaded and that it actually does something else than simply checking if the
value is null. To avoid this problem we can use null check pattern matching.

All right. So far pattern matching seems very simple. It allowed us to check if an
object is null. But it can give us many, many more abilities. Let’s walk through some
examples.

One of the most commonly used patterns is the type test. I want to run some code
if a variable is of some type. Moreover, if it is, I want to cast it to this type. Without
pattern matching, I would need to write something like this:

With pattern matching, I can check if an object is a string and cast it in one line:

This is quite convenient. Please note that the asString variable will be available
only if the obj is a string, so I would not be able to use it anywhere else than inside
the if statement.

We can also check some particular properties of the checked object:

Here we checked if an object is a Pet with Weight larger than 10000 and PetType
equal to Fish.

All right. The next type of pattern matching is comparing discrete values. This is
very similar to using a plain old switch statement. Let’s say I have a method taking a
string that should represent a number, and another string saying what type of
number it is (int, decimal, or float). Depending on the second parameter I want to
convert the first parameter to the given type:

Please notice the special “_” case. This is a discard pattern and it works similarly as
default in the switch statement. It will be executed if the type parameter is not
equal to any of the specified values.

Let’s get to more complex types of pattern matching. The next one is a relational
pattern. It allows us to check how a given value compares to constants:

The cool thing about pattern matching is that it has very good IDE and compiler
support, and we get an error when we do something silly. For example, let me add
some more cases here:

This code doesn’t compile, because the last two cases are unreachable. The cases
are executed from top to bottom, so when the age parameter is 10, we will hit the
“less than 20” case. We will never reach the “less than 11” case. Let’s fix the order
of the cases:

Great. Now, this should work as expected. This code actually demonstrates one
more pattern - a logical pattern. We used it when we checked if the age is less
than 20 and more than 60.

We can also use pattern matching with deconstruction. Check out the “What is
deconstruction?” lecture to learn more.

We could omit the parameter names (but personally I would rather leave them for
readability).

We can also mix deconstruction with checking particular properties:

All right. We learned some of the most basic usages of pattern matching. There is
also a question when to use them, and when to use plain old if and switch
statements. In my opinion, you should simply use those that you find more
readable. You can mix both to get what’s best in any of them.

To summarize: pattern matching is a technique where you test an expression to
determine if it has certain characteristics.

Bonus questions:

● "How can we check if an object is of a given type, and cast to it this type
in the same statement?"
We can use pattern matching for that. For example, we could write “if obj is
string text”. This way, we will cast the object to the string variable called text,
but only if this object is of type string.

20. How does the binary number system
work?

Brief summary: The binary number system is used to represent numbers using
only two digits - 0 and 1. For example, the number 13 (in the decimal number
system) is 1101 in the binary number system. All data in a computer’s memory is
stored as sequences of bits, and so are all numbers.

The binary number system is used to represent numbers using only two digits - 0
and 1. For example, the number 13 (in the decimal number system) is 1101 in the
binary number system.

As you probably know, every piece of data is stored in the computer’s memory as a
series of bits. Bit is the smallest unit of information and it can only have two values:
0 or 1. That means, every information we want to store in the computer’s memory -
a number, string, a complex object, or an entire program - is, in the end, stored as a
series of zeros and ones. In this lecture, we will focus on numbers.

As we mentioned, the binary number system represents numbers as zeros and
ones, so it fits perfectly how data is stored in a computer’s memory. You may think
that the binary number system is not something you need to understand, as it all
happens under the hood. After all, there are programmers all around the world
who have no idea how the binary number system works and they are doing fine.

But there are a lot of aspects of programming that are affected by how binary
numbers work, and it’s not possible to understand some of the programming
caveats without knowing the binary system at all. If you are not convinced, let me
give you a little spoiler from the next lecture: we will talk about how a banking
application’s client can lose all protection granted by daily transaction limits and in
the end, have the account cleaned out by someone who accessed it illegally. It
could be avoided if the programmer understood how operations on binary
numbers work.

All right. Before we try to understand the binary number system, let’s do so with
the system we use on daily basis - the decimal number system. The base of this
system is number 10. Actually, you can build a valid number system based on any
number larger than 0, but 10 was probably most natural for the human race as we
have 10 fingers, and we started our journey of understanding mathematics by
counting them.

All right. Let’s consider the following decimal number:

You probably don’t need much explaining here - you simply know what this number
is. You can imagine what it means to have 831 dollars (or any other currency you
use), a folder with 831 pictures, or a book with 831 pages. We are so used to this
system that we don’t even think about the numbers - we simply see them and
know by instinct what they mean. But let’s break it down. Each digit has its place.
The further to the left it is, the more significant it is - it means, it carries more
“weight” of the number. 8 here means 800, 3 means 30 while 1 simply means 1. We
could mark each digit with an index, counting from right to left:

Now, for each of the digits, we want to calculate 10 to the power of the index
multiplied by the digit itself.

The sum of those numbers is the final number we want to represent. Let’s make
sure of that. 8*100 + 3*10 + 1*1 is 831. (Remember that any number to the power
of zero is 1).

Now it is clear why numbers most to the left are most significant - because we will
multiply them by 10 to the largest power.

Great. We now understand exactly how the decimal number system works. Let’s
move on to the binary number system. It actually works almost the same. The only
difference is the base of the system. It will not be 10, but 2.

Let’s consider this number:

This time you probably don’t “feel” what the number means, but don’t worry. We
will figure it out in a second. Let’s start the same as before - by marking each digit
with its index, starting from the right.

In the decimal number system, we calculated the powers of 10 and then multiplied
them by the digit itself. Here it’s the same, but we calculate the powers of 2.

Let’s calculate the sum. It’s 8 + 4 + 0 + 1, which gives 13. That means, 1101 in the
binary number system is 13 in the decimal number system.

Great. This gives us the basics that are needed to understand some operations
related to programming.

The important thing to realize is that on a limited number of bits we can store a
limited number (the same as in a decimal number system - for example the biggest
number represented with 3 digits is 999). For example, with 4 bits the largest
number that can be represented is 15 (because if each bit is set to one, then the
number is 8 + 4 + 2 + 1 = 15). Each numeric type in C# occupies a certain number of
bits in the memory. For example, an integer takes 32 bits. The largest number we
can represent with int is 2147483648, which is a little over two billion.

And here is something interesting - this number is actually 2 to the power of 31,
not 32! So what happened with one bit? Well, remember that with integers we can
also represent negative numbers. This one bit is saved to store information
whether the number is negative or not, which leaves us 31 bits for the actual
number.

Here are sizes and ranges of the integral numeric types used in C#:

All right. There is one more thing we must understand. Since each numeric type has
its size limit and it simply can’t represent a number that is larger, what happens
when some arithmetic operation exceeds this limit?

Well, in such situations, something quite interesting happens. For example, if I add
2 billion to two billion when operating on ints, I will get the result of -294967296.
In this lecture, I will only explain to you how it works. In the next one, we will learn
how to handle such situations when programming.

Before we can understand what happens, we must understand how adding binary
numbers work. But as before, let’s start with decimal numbers for simplicity:

You probably know this technique of adding numbers. If not, please read this
article first:
https://www.tutorialspoint.com/add_and_subtract_whole_numbers/addition_of_t
wo_2digit_numbers_with_carry.htm

With binary numbers, it works the same. Let’s add binary 13 to binary 15.
Remember, 13 is 1101 and 15 is 1111:

First, we add numbers from the first column from the right. 1+1 is 2, but we can’t
use 2 in the binary numbers system. That means, we need to carry it over to the
next column. We will write 0 in the first column of the result because the modulo
of the sum we calculated (2) and the base of the system (also 2) is 0.

https://www.tutorialspoint.com/add_and_subtract_whole_numbers/addition_of_two_2digit_numbers_with_carry.htm
https://www.tutorialspoint.com/add_and_subtract_whole_numbers/addition_of_two_2digit_numbers_with_carry.htm

Now the second column. Again, the sum is 2, so we carry over to the next column
again.

The third column. Now the sum is 3. We carry over 1 to the next column, and we
leave 1 in the result. This is because the modulo of the sum we calculated (3) and
the base of the system (2) is 1.

Finally, the fourth column. The sum is 3 again, so we carry over 1, and we leave 1 in
the result:

It turned out that we actually need the fifth column to fit the 1 that we carried
from the fourth column. This time it’s simple. The sum is 1 and we add it to the
result:

All right! We have our result. It’s 16+8+4+0+0 = 28. This is correct because 13 + 15 is
also 28.

But notice a very important thing - we needed to use one more digit to represent
this number. Now, let’s go back to thinking about computers. If we had a numeric
type that only has 4 bits, it would simply not be able to hold the result we had. So
what would happen? Well, the last, most significant bit would just be discarded.
And the actual result the computer could see would not be 11100 which is 28, but
1100 which is 12 - something completely different and simply wrong from the
arithmetics point of view.

Now you know why adding two billion to two billion gave some weird number
before. If you are curious why it was negative, remember that the most significant
bit represents a sign, so if it happens to be 1, then C# will interpret the whole
number as negative (0 means positive number, 1 means negative).

All right. That lecture was touching very low-level topics, but now you understand
the basics of the binary number system. In the next lecture, we will talk about how
it affects our everyday programming.

Bonus questions:

● "What is the decimal representation of number 101?"
It’s 5 because it’s 2 to the power of zero plus two to the power of 2, which
gives 1 + 4 = 5.

● "Why arithmetic operations in programming can give unexpected results,
like for example adding two large integers can give a negative number?"
Because there is a limited number of bits reserved for each numeric type, for
example for integer it’s 32 bits. If the result of the arithmetic operation is so
large that it doesn’t fit on this amount of bits, some of the bits of the result will
be trimmed, giving an unexpected result that is not valid.

21. What is the purpose of the “checked”
keyword?

Brief summary: The “checked” keyword is used to define a scope in which
arithmetic operations will be checked for overflow.

The “checked” keyword is used to define a scope in which arithmetic operations
will be checked for overflow.

To understand this slightly mysterious sentence we must first understand how
arithmetic operations work in C# in general. In everyday programming, we don’t
think too much about it, and perhaps we even assume the “programming
arithmetics” is exactly the same as arithmetics we learned about in school. For
example, we assume that the sum of two positive numbers must be a positive
number. This is perfectly valid in real life, but not necessarily in programming.

For example, if I add two billion to two billion in C#, I will not get four billion.
Instead, I will get this:

The result is -294967296. I added two positive numbers, and I got a negative
number as a result.

To understand why this happened it is crucial to understand binary numbers, and
how are they represented in the computer’s memory. Revisit the “How does the
binary number system work?” lecture to find out.

I assume that by now you know that every number we use when programming is
simply a sequence of bits. The important thing to realize is that on a limited
number of bits we can store a limited number (the same as in a decimal number
system - the biggest number represented with 3 digits is 999). For example, with 4
bits the largest number that can be represented is 15 (because if each bit is set to
one, then the number is 1 + 2 + 4 + 8 = 15.

If we want to represent a bigger number, we simply need more bits of memory.
Every basic numeric type in C# has a certain number of bits that it occupies in
memory. For example, for integer, it’s 32 bits (which FYI is 4 bytes - one byte is 8
bits). This means, the largest number an integer can be is 2147483647, which is a
little more than two billion. So what happens when we add two billion to two
billion? In “real” mathematics it would give 4 billion, but such a huge number is
simply impossible to represent with integer type in C#. In this case, so-called
“number overflow” happens, resulting in an unexpected result. This number is not
random, and it's determined by how the addition of binary numbers works. You can
read more about it here:
https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=
Addition%20is%20said%20to%20overflow,in%20the%20remaining%20four%20bi
ts.

It is crucial to understand that when number overflow happens no exception is
thrown - the program continues to work normally. You may be a bit surprised by it -
usually when we do something invalid, like accessing a nonexistent index in an
array or dividing by zero - an exception is thrown, informing us what happened.
Exceptions are a good thing, actually. It’s better to be clearly informed that
something went wrong.

The number overflow is a “silent failure” - the program doesn’t work correctly, but
it continues to work without exception. This can have disastrous effects. Invalid
data may be stored in databases, overwriting old, valid data. Also, the program may
continue and allow further invalid operations.

For example, imagine a banking system, which stores a sum of daily transactions
and blocks any further payments if some limit has been exceeded. Let’s imagine a
very rich customer who is allowed to pay up to two billion of some currency daily. If
the sum of daily payments exceeds two billion, the next payments will be blocked.
Let’s see a sample code:

https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=Addition%20is%20said%20to%20overflow,in%20the%20remaining%20four%20bits
https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=Addition%20is%20said%20to%20overflow,in%20the%20remaining%20four%20bits
https://www.sciencedirect.com/topics/computer-science/binary-addition#:~:text=Addition%20is%20said%20to%20overflow,in%20the%20remaining%20four%20bits

Now let’s say the client makes a payment of 1 900 000 000 (almost two billion), and
then tries to make the next one of 1 000 000 000 (one billion).

The second transaction should be blocked because the sum is over the limit of two
billion, but actually, it will be allowed, because a daily sum becomes a negative
number due to arithmetic overflow. And of course, any negative number is less
than two billion.

We will allow the client to make more and more payments. And what if those
payments are actually done by someone who hacked the client’s account? Now the
client may lose all the money instead of some limited sum.

I hope I convinced you that arithmetic overflows are dangerous. So how to deal
with them? Well, this is where the “checked” keyword comes in handy. The
“checked” keyword defines a scope in which arithmetic operations will be checked
for overflow. If it happens, an exception will be thrown.

In this scope, any overflow will throw an exception instead of failing silently.

You may wonder “why isn’t this done by default?” Well, the reason is simple - it’s
performance. Computers are very good at doing arithmetic operations and they
do them extremely fast. On the other hand, checking for overflow is actually a
relatively complex operation, and it takes some time. If we have a lot of arithmetic
operations in the application, the performance impact may be noticeable.

I’ve created a quick little program that measures the performance difference for
checked and unchecked operations. You can find it in the repository attached to
the course. In short, this loop is executed and measured in both checked and
unchecked context:

On my computer, for setSize set to one billion, it takes on average 3257
milliseconds for checked context and 2431 for unchecked. That means the
checked operations took 33% more time. As you can see the difference is not
huge, but it is noticeable.

All right. We now have the basics of theory about the checked keyword. Let’s think
about how to apply it in practice. Here is a couple of tips:

● be aware of the limitations of the types you are using.
● choose proper numeric types for given usages. Do you need a counter of

elements the user selected from the list that by design shows no more than
100 elements? Feel free to use byte - it’s tiny, but the limitation to 255 is
enough. On the other hand, what if you need a number representing the
total number of financial transactions ever made in your banking
application? Int sounds good, but what if your application becomes a roaring
success and soon the number slightly over two billion is not enough? In this
case, long may be a better choice - its max value is over 4 billion times larger
than the max value of int.

● in case your number must be unlimited (for example you are an astronomer
and you want to measure the galaxy size in millimeters) don’t forget about
BigInteger type. BigIntiger is only limited by the size of the memory of your
computer, so you can represent gigantic numbers with it.

● remember that an overflow is not always a problem. For example, they are
perfectly fine to happen when calculating a hash code of some object.

● if you have even the slightest concern that an undesired overflow may
happen, you have two choices:

○ put this code in the checked context so an exception is thrown in case
of an overflow

○ check for overflow before an actual operation, for example like this:

In my test application, it turned out that checking the overflow like
this is actually better from the performance point of view than using
the checked keyword (the test took 3257 milliseconds for checked
scope and 3017 for manual checking for overflow). Please note that
which one is performance-wise better depends a lot on a particular
situation. If you are in doubt, it’s best to run some benchmarks on
your own.

● if you really need to, you can set the project setting to check arithmetic
operations by default. In this case, if you want some code to be unchecked,
you can use the “unchecked” keyword to define a scope in which the
arithmetic operations are not checked.

Before we move on, there is an important caveat you must know about: the
overflow check only applies to the immediate code block, not to any function calls
inside the block. To understand this, let’s consider the following code:

What do you think will happen? At the first glance, you might think that the
OverflowException will be thrown. After all, we call the Add method in the checked
scope, so adding two billion to two billion shall cause an overflow.
Well, actually it’s not true. The “checked” keyword doesn’t affect any methods that are
called within it. If we want this code to actually be checked, we must add the “checked”
keyword inside the Add method.

Let’s summarize. The “checked” keyword is used to define a scope in which
arithmetic operations will be checked for overflow. If this keyword will not be used
(or overflow checking will not be enabled on the project level) the arithmetic
overflow will not cause an exception, but will simply result in an invalid value.

Bonus questions:

● "What is the purpose of the "unchecked" keyword?"
This keyword defines a scope in which check of arithmetic overflow is disabled.
It makes sense to use it in projects in which the checking for overflow is
enabled for an entire project (can be set on the project level settings).

● "What is a silent failure?"
It’s a kind of failure that happens without any notification to the users or
developers - they are not informed that something went wrong, and the
application moves on, possibly in an invalid state.

● "What is the BigInteger type?"
It’s a numeric type that can represent an integer of any size - it is limited only
by the application’s memory. It should be used to represent gigantic numbers
(remember that max long is over 4 billion times larger than max int, which is a
bit more than two billion, so BigInteger should be used instead of long only to
represent unthinkably large numbers).

22. What is the difference between
double and decimal?

Brief summary: The difference between double and decimal is that double is a
floating-point binary number, while decimal is a floating-point decimal number.
Double is optimized for performance, while decimal is optimized for precision.
Doubles are much faster, they occupy less memory and they have a larger range,
but they are less precise than decimals.

This is a question that you can hear quite often during interviews, especially in the
financial sector. After this lecture, you will have a clear understanding of why.

The difference between double and decimal is that double is a floating-point
binary number, while decimal is a floating-point decimal number. Double is
optimized for performance, while decimal is optimized for precision.

First, let’s understand the “floating-point” part. Floating-point numbers can not
integers, but numbers like half, one-third, one-fourth, etc. We can actually
represent such numbers using integers if we use the concept of mantissa and
exponent. Mantissa gives some scaled representation of the number, while
exponent says what the scale is - in other words, where the decimal point will be
(that’s why they are called “floating-point” numbers, as the point is moving).

This again is mysterious, so let’s try to represent number 324.56 with mantissa and
exponent.

All right. The pattern is simple - we multiply the mantissa by the base of the system
raised to the power of the exponent. 10 to the power of -2 is 0.01, so the result is
324.56 as expected.

As you can see we managed to represent a floating-point number with integers
only.

We said that double is a binary floating-point number, which means the base of the
system it uses is two. For decimal, it is 10.

All right. Here comes the problem with floating-point numbers. If the mantissa has
a limited precision (and it does in computers, or even if we try to write it down on a
piece of paper) it means we can’t represent some numbers in a perfectly precise
way. For example, if you wanted to write ⅓ as a floating-point number on a piece
of paper, you would fill it with 0.33333333333… and so on, but finally, you would
run out of paper. Whatever number you would write, it would be some
approximation of the number that is actually ⅓.

The same as with the paper, you can run out of bits when representing such a
number in C#, which leads to representation that is not precise.

Double is a binary floating-point number occupying 64 bits. One bit is reserved for
the sign (to know whether the number is positive or negative), 52 bits are reserved
for mantissa and 11 bits are reserved for the exponent.

We know that numbers like ⅓ are impossible to be represented in the decimal
system with a finite number of digits. In the binary system, the example of an
unrepresentable number is 1/10. Let’s see some code that will show how this lack
of preciseness can be problematic:

From the point of view of real-world mathematics, this should evaluate to be true.
Let’s see what the computer’s mathematics has to say about that:

This shouldn’t be that surprising, given that we already established that
floating-point numbers are not represented precisely in the computer’s memory.

And here is the important note - since doubles are approximations of numbers and
are not very precise, we should avoid simply comparing them with the “==”

operator. Think of it like this: in real life, you are measuring boards to build
something. You want the boards to be of the same length. You measure them
carefully and you are happy to see that both have the length of exactly 273
centimeters and 0 millimeters you wanted. You can say to yourself “Yes, those
boards are equal” and move on to constructing a shed for your gardening tools.

But… are they truly equal? I bet if you measured them with some advanced
scientific machinery it would actually turn out that one of them is 273.01 while the
other is 273.04 centimeters long. So they are not exactly equal, but they are equal
enough for your needs.

It’s the same thing with doubles. When checking for their equality, we should
rather check if the difference between them is so small that we don’t actually care
about it. So the simplest implementation of a method checking doubles equality
could be this:

One more note about doubles. A variable of double type can have a specific value
called NaN - Not a Number. It is reserved for representing undefined mathematical
operations like for example dividing 0 by 0. Also, when checking if a number is NaN
make sure to use double.IsNaN(value) method, because surprisingly, the equality
operator for two NaNs gives false. I don’t want to dwell into too much detail about
it, as this lecture will be long enough already. Check out this article if you are
curious:
https://docs.microsoft.com/en-us/dotnet/api/system.double.nan?view=net-6.0

All right. That closes the topic of doubles. Before we move on to decimals, let’s
mention floats. Well, float acts exactly the same as double The only difference is
that float is stored on 32 bits while double is stored on 64.

All right. We learned that doubles are not very precise and we must be careful
when making assumptions about them - for example, the equality of two double
numbers may not be the same as it would be in real-life mathematics. For some
scenarios we need precision and we can’t make any compromises about that. For
example, imagine a banking system that cross-checks some transactions. It must be
sure that after the money transfer, the amount that was taken from your account is
exactly the same as the amount that was added to the receiver’s account. If we
used double for representing money, this could lead to errors. Both amounts

https://docs.microsoft.com/en-us/dotnet/api/system.double.nan?view=net-6.0

would be represented as some approximation and they could not be exactly equal.
That’s why for representing money we should always use decimal.

Decimal is optimized for precision. It occupies more memory than a double, has a
smaller range, and operations on it are slower, but it guarantees precision. Of
course, like any C# numeric type, it has its size limitations and can’t represent
numbers smaller or larger than this, but in this range, the operations will give
correct results, without any surprises.

First, let’s see the code we had before, but this time let’s use decimals:

At the top we have doubles and on the bottom decimals. And the result is:

We gained precision, but at what price? First, let’s measure the performance. I
created a simple program testing how long the same operations take when
operating on doubles and decimals:

There is also the second method, which does exactly the same but uses decimals.
Let’s see the test result:

Yikes. Calculating decimals took almost 7 times longer than doubles.

There is one more thing - doubles are not only faster, but they also have a much
larger range (while taking less memory!). Let’s see :

As you can see doubles have a ridiculously big range, which makes them perfect for
some scientific uses where one often operates on very small or very large
numbers.

In general, we should use doubles when representing some “natural” numbers, like
physical measurements which by definition are not perfectly precise. They are
great to represent things like length, speed, position on the map, and such. Due to
their great performance, they are widely used in some industrial applications,
games, etc. Decimals are much slower, they occupy more memory and have a
smaller range, but they guarantee precision. We should use them when we can’t
allow any approximations, so for example when representing money, points in
games, and other human-made concepts that we need to represent precisely.

All right. Let’s summarize the topic of double vs decimal:
● doubles are optimized for performance, decimals are optimized for

precision
● decimals have worse performance than doubles
● decimals have a smaller range than doubles - they can’t represent really tiny

or really large numbers
● because of all that, decimals shall be used when we care about precision, for

example, we want to compare two sums of money and tell if they are exactly
equal or not. For the same usage, doubles are less precise but faster. They
are perfect for representing numbers that are not human-made but rather
come from nature or physics, like the speed of a car or the length of a wave.
When checking two doubles for equality we should only check if they are
close to each other within some tolerance.

Bonus questions:

● "What is the difference between double and float?"
The only difference is that double occupies 64 bits of memory while float
occupies 32, giving double a larger range. Except for that, they work exactly
the same.

● "What is the NaN?"
NaN is a special value that double and float can be. It means Not a Number,
and it’s reserved for representing results of undefined mathematical
operations, like dividing infinity by infinity.

● "What numeric type should we use to represent money?"
When representing money we should always use decimals.

23. What is an Array?

Brief summary: Array is the basic collection type in C#, storing elements in an
indexed structure of fixed size. Arrays can be single-dimensional,
multi-dimensional, or jagged.

With this lecture, we start a series about collection data structures in C#. We will
begin with the simple but common question from the interviews: What is an array?

Array is the most basic collection in C#. You can think of an array as a collection of
boxes, each one holding a single value. Each box has its index, starting at zero and
ending at array length minus 1.

The important thing to understand is that once an array has been created, its size
cannot be changed. Because of that arrays are not the best choice if the collection
that we need is going to grow or shrink over time.

If we try to get or set the value at an index that’s not in the array, we will get
IndexOutOfRangeException. In the below code, we declare an array of size 5, so
its last index is 4, but we try to access the element at index 10.

When an array is created, it is filled with the default values for the given type. For
example, an array of ints will be filled with zeros, and an array of strings will be
filled with nulls.

We can set the values of the array right at the moment of initialization using the
collection initializer. In this case, we don’t need to specify the array’s size, as it will
be set to the count of provided elements:

The above code will naturally create an array of size 3.

Arrays can store any objects of the same type. Arrays can be single-dimensional,
multidimensional, or jagged. For example, this is a single-dimensional array that
holds 5 ints.

:

We can also define multidimensional arrays that resemble matrices we know from
mathematics. For example, this array can hold up to 15 elements:

The data held in this array can be visualized like this:

We can think of a multidimensional array as an array of arrays, which all have the
same length. In this case, we have an array of size 3, and at each index, there is an
array of size 5.

To get or set an element of a multidimensional array, we must simply use two
indexes instead of one, separated by a comma:

We can also define jagged arrays. A jagged array is an array of arrays, which don’t
need to be of the same length. Let's define a jagged array of integers.

Here we defined an array of size 3, for which each element will be an array of ints.
Let’s set those elements:

It means the structure of this jagged array looks like this:

At index 0 we have an array of length 2, at index 1 of length 1, and at index 2 of
length 3.

Please notice the difference in accessing the elements of a jagged array, in
opposite to a multidimensional array. We must use two sets of brackets:

Before we continue, quick information for people with a background in languages
like C or C++. Remember that in C# an array is just an object as any others. It’s
not an addressable region of memory like in those other languages. Arrays are
reference types in C#.

All right. Let’s see what arrays are best for, and when we should rather consider
using other collection types.

First of all, arrays are the most basic and native collection type - they represent
the data in a way that is very close to how the data is stored in the computer’s
memory. Many other collections, like for example Lists we will learn about in the
next lecture, use arrays as their underlying data structures.

Arrays, as the most native collection type, have the advantage of being fast. We
can get or set an element at the given index in a constant time (so “super-fast” in
less technical terms). When we care about the performance, arrays are often the
best choice.

Also, multidimensional arrays are commonly used in mathematical operations, as
they represent matrices very well. They are also very useful wherever we need to
represent any multidimensional structure - think of a 2D game with a tiled map,
like chess or snake. The two-dimensional array of tiles would probably be the most
natural and performance-efficient way to represent the game area:

The disadvantage of using arrays is that their size is fixed. In other words, it’s not
a dynamic collection - we can’t really add or remove elements from it.

We could assume that some size of an array is large enough for our needs. Let’s say
we work on an e-commerce platform, and we want to store the items held in the
shopping cart in an array. We can declare an array of size 100 and hope no one will
need more space. But such assumptions are dangerous. What if someone is in a
shopping rage and they really want to buy more things? Okay, so let’s set it to
1000. But then, in 99% of the cases, we will allocate the memory for 1000 items,
while actually only 2 or 3 will be added. This is a huge waste.

In short, arrays are great if we know the count of elements upfront, but not so
much if we do not.

Bonus questions:

● "What is a jagged array?"
A jagged array is an array of arrays, which can be all of the different lengths.

● "What are the advantages of using arrays?"
They are fast when it comes to accessing an element at the given index. They
are basic and easy to use and great for representing simple data of size that is
known upfront.

● "What are the disadvantages of using arrays?"
Arrays are of fixed size, which means once created, they can’t be resized. It
means that are not good for representing dynamic collections that grow or
shrink over time. If we want to allocate the memory for all elements that may
be stored, there is a chance we will allocate too much and waste it. We can
also underestimate and not declare the array big enough for some edge cases.

● "How to resize an array?"
It’s not possible. An array is a collection of a fixed size and once created, it can’t
be resized.

24. What is a List?

Brief summary: List<T> is a strongly-typed, generic collection of objects. Lists
are dynamic, which means we can add or remove the elements from them. It uses
an array as the underlying collection type. As it grows, it may copy the existing
array of elements to a new, larger array.

“What is a List?” may seem like a trivial question for you, and maybe you even
rolled your eyes a little. You’ve probably used Lists thousands of times.
Nevertheless, I think it’s worth taking a while to understand how Lists work exactly,
and what is going on under their hood.

List<T> is a strongly-typed, generic collection of objects. Lists are dynamic, which
means we can add or remove the elements from them.

We can access List’s element using an indexer, just like we do with an array:

Lists provide a wide selection of built-in methods, which make them much more
convenient than plain arrays. Let me show you some, but certainly not all of them:

Because of the dynamic nature of Lists and their convenience, they are probably
the most often used collection type in C#.

All right. Let’s take a look under the hood of the List. It turns out that the List is
actually a fancy wrapper over an array, and all the List’s data is held in a private
array. Let me show you a short fragment of the List class source code:

List exposes a property called Capacity. This property says what is the size of this
private array held by the List. Let’s see it in practice.

Let’s see what will be printed to the console:

Interesting. After a new list is created, its internal array’s size is 0. Then, after the
element is added, the size is “changed” to 4. I’ve put the “changed” into quotes
because, as we learned in the previous lecture, the size of an array cannot change. I
will explain what happens here in a minute, but first, let’s add a couple of more
elements to exceed the 4 elements limit:

It seems the size grew twice. Before explaining, let me just clear the list:

Even if the List has been emptied, its Capacity remained as it was.

All right. Let’s see what is going on.

When we insert the first element to the List, it cautiously assumes that maybe the
underlying array does not need to be very large. It creates an array of size 4 and
assigns it to the private _items field, which we have seen in the snippet from the
source code. This array is used as long as the count of elements in the List remains
smaller or equal to 4.

But once this count is exceeded, the List can no longer fit elements in the
underlying array - it’s simply too small. So what it needs to do is this: first, it
creates a new array, double the size of the old one. Then, it copies all elements
from the old array to the new array. Then it can add the new element, that
previously didn’t fit into the smaller array.

So as you can see, it’s not like the “size of the underlying array changes”. It does
not, as it’s not possible to resize an array in C#. A brand-new array is created, and
the old array is replaced by it.

On one hand, this is pretty clever, as it allows us to use a fixed-size underlying
collection to actually represent dynamic data. On the other hand, it’s not great
from the performance point of view. Once the resizing is needed, the List must
perform this quite complex operation of allocating a new array and copying the old
one into it. That’s why it’s quite “generous” when allocating a new array, and it

makes it double the size of the old one. If the new array would be too small it could
soon need to be resized again, and we want to avoid that.

On the other hand, it may of course happen that more memory than needed is
allocated. For example, if we exceed the count of 1024 elements, the List will
create a new array of size 2048. But it may be the case that in our business case
1025 is the absolute limitation above which the list will never grow.

In this case, we can “help” the list a little, add tell it what count of elements it
should be ready for by using the constructor parameter:

We should definitely consider doing that if we know upfront what is the expected
size of the List. Remember that it’s not set in stone, and once it’s exceeded the List
will resize as normal. But we will still avoid all the resizing operations that would
normally happen between 0 and 1050 elements.

Because the operation of resizing is so heavy, the List doesn’t reduce its size once
elements are removed. It rather wants to assume that the allocated space will be
needed sooner or later since it has already been needed once.

If we have good reasons to think that the larger space needed was a one-time
thing, we can either set the Capacity to smaller manually or call the TrimExcess
method, which will set the Capacity to the actual count of elements in the List.

Remember that when setting the Capacity manually we can’t make it smaller than
the actual count of elements in the List. Otherwise, an exception will be thrown:

All right. We now know how things work under the hood of the List, and that in the
end all data is held in an array. We must be aware that this has more implications
than only resizing the array once its capacity is exceeded. Let’s consider the
following line:

The Insert method takes two parameters - the index at which the new value will be
placed in the List, and the value to be inserted. In this case, 4 will be inserted
between 3 and 5.

Innocent as this operation seems, we must consider what happens with the array
that is used underneath. Before the Insert operation, the array looks like this:

Please be aware that the last 3 elements are actually zeros (the default for int type
that this Lists stores). The List knows they are not part of the represented data,
because it remembers the count of elements it stores, and knows that anything

after the index Count-1 is not the actual data but the spare space that can be
occupied by some new values later.

All right, back to the Insert method. We can’t simply set the element at index 3 to
value 4, because we would overwrite the 5. We must move all elements after the
given index one index forward, to make room for the new value:

This is again impacting the performance. Worst case, we may need to move each
element in the list (if we insert at index 0). This means the performance of the
Insert operation is O(n), which means the count of operations will linearly grow
with the collection’s size.

The Insert method was just an example to show you that an operation that does
something that the underlying array does not support - like in this case, inserting
the element in the middle of the data - will always impact the performance, as the
data in the array must be rearranged. This is something to be aware of when
working with Lists, especially large ones, as the performance impact may be
noticeable.

To summarize - Lists are great when it comes to representing collections that are
dynamic. They give us a lot of useful methods, making working with them simple
and efficient. But we must be aware that adding a feature of dynamic size to the
fixed-sized collection like array comes with a cost, and this cost is performance.

Bonus questions:

● "Why it is a good idea to set the Capacity of the List in the constructor if
we know the expected count of elements upfront?"
Because this way we will avoid the performance-costly operation of copying
the underlying array into a new, larger one, which happens when we exceed
the count of 4, 8, 16… elements.

● "What’s the time complexity of the Insert method from the List class?"
The Insert method needs to move some of the elements of the underlying array
forward, to make room for the new element. In the worst-case scenario, when
we insert an element at the beginning of the List, we will need to move all
existing elements. This means the complexity of this operation is O(N).

25. What is an ArrayList?

Brief summary: An ArrayList is a collection that can store elements of any type,
as it considers them all instances of the System.Object. ArrayLists were widely
used in older versions of C#, where the generics were not yet available.
Nowadays they should not be used, as their performance is impacted by the fact
that they need to box value types.

Let me take you on a journey back in time. A long, long time ago (before 2006)
.NET was still at version 1. It was still a pretty new framework (its initial release was
in 2002). The C# language itself did not look much as it does now.

At this version of .NET, there was no such thing as generics. If you wanted to have
a collection of numbers and a collection of strings, arrays were your best choice.
You couldn’t count on things like the generic List<T> that can hold any type of
items.

But as we learned in the lecture “What is an Array?”, arrays can be pretty awkward.
They have fixed sizes, they also don’t provide any convenient methods like Add or
Remove. In other words, with arrays only, creating a complete, efficient application
that met some real business needs could have been a pain in the neck.

Luckily, there was another way than using plain arrays. The ArrayList type. An
ArrayList is dynamic a collection, so a collection we can resize, that can hold any
type of items. And just to be clear - at the same time. Single ArrayList can hold ints,
strings, objects, DateTimes, and anything we want.

In statically typed languages like C# this is at least weird. But how does it work?
Well, the ArrayList simply treats everything it holds as instances of System.Object
type. After all, everything in C# can be considered an Object, because every type is
derived from the Object class. But there is a problem: if the item we want to store
in ArrayList is of a value type, it must be boxed to be treated as Object, which is a
reference type. Boxing is not a cheap operation - it requires moving the value from
the stack to the heap and creating a reference for it. Also, at some point, we will
need to unbox this item to access the underlying value.

We will talk more about the performance of the Array list later in this lecture.

Since ArrayList can hold any type of elements, we don’t really know what they are
and how can we use them. If I have a List<int>, I know I can, for example, calculate
the sum of them. If I have a List<string> I know I can concatenate them. But what
can I do with elements of an ArrayList?

The truth is, ArrayList was almost never used like this:

In most practical cases, it was holding elements of the same type.

That looks “almost” like generic Lists, which again, were not present in .NET before
version 2. But those variables are very problematic. Let’s say I want to create a
method that calculates the sum of elements in a collection of numbers:

This doesn’t compile. Each element of the ArrayList is an Object, so I can’t simply
add it to the result. I must first cast it and hope that it will succeed:

Just to be sure, let’s handle the InvalidCastException in this method:

As you can see, we were forced to create a lot of code that would not be needed if
we knew what types exactly do we deal with. In other words, if we were given a
List<int> instead of an ArrayList.

So we know the first big disadvantage of ArrayList - we don’t know what is stored
inside, so we must be ready for a lot of casting and error handling. The other
disadvantage is the performance that I mentioned before - when storing value
types in ArrayList, they must all be boxed which can impact the performance very
much.

So in this case, the natural question is “When to use ArrayLists over Lists?”. Well,
the answer is - never. Unless for some reason you must work in applications written
in .NET 1, but I honestly hope that you don’t. Even if you do, consider upgrading the
version of .NET rather than working in this ancient technology.

You may then ask, why do we learn about this, if it’s not a big deal since 2006. First
of all, the questions about ArrayLists are quite liked by interviewers, as they can be
a prelude to a discussion about static and dynamic typing, which we learned more
about in the lecture about the “dynamic” keyword.

Secondly, as much as I hope you don’t need to work with ArrayLists, it may turn out
that you’ll have to work with some legacy code that still uses them, and then it’s
important that you know what you are dealing with. Also, only recently (in 2022)
I’ve been working on a brand-new application where someone was using ArrayLists
for reasons they couldn’t explain, and as it turned out, it was mostly storing value
types. Changing them to Lists not only made the development process much
easier, as the neverending casts and error handling could be omitted, but it also
made the application over 25% faster.

There is one more case when using ArrayLists may seem tempting - when you
actually need to store elements of different types in a single collection. But even
then, it’s better to use a List<object> as it provides more functionality than
ArrayList and will most likely be more consistent with the rest of the application.

Bonus questions:

● "What is the difference between an array, a List, and an ArrayList?"
An array is a basic collection of fixed size that can store any declared type of
elements. The List is a dynamic collection (it means, its size can change over
time) that is generic, so it can also store any declared type of elements. An
ArrayList is a dynamic collection that can store various types of elements at the
same time, as it treats everything it stores as instances of the System.Object
type.

● "When to use ArrayList over a generic List<T>?"
Never, unless you work with a very old version of C#, which did not support
generics. Even if you do, you should rather upgrade .NET to a higher version
than work with ArrayLists.

26. What is the purpose of the
GetHashCode method?

Brief summary: The GetHashCode method generates an integer for an object,
based on this object’s fields and properties. This integer, called hash, is most
often used in hashed collections like HashSet or Dictionary.

We are not yet quite done with collections. In the next lecture, we will discuss
Dictionaries. But to understand Dictionaries we must first understand the
GetHashCode method, so let’s do it in this lecture.

GetHashCode is one of the few methods that belong to the System.Object type. In
other words, we can call it on any object in C#. Before we understand what it does,
let’s see it in action:

For now, those values look enigmatic, but hopefully, we will understand them
better later in the lecture.

The GetHashCode method is a hash function implementation for an object. Let’s
see the definition of a hash function:

“A hash function is a one-way cryptographic algorithm that maps an input of any
size to a unique output of a fixed length of bits. “

At least for me this sounds completely vague. First, let’s understand what the
result of this hash function is. In C# is an integer. In simple terms, hash is a number

calculated for some object from its components. Here is an object of Person class
and some hash calculated for it.

We will take a closer look at how hash is actually calculated a bit later, but for now,
let’s just say that it’s a function of the values of fields and properties belonging to
the object. In this case, we could for example associate each letter with some
number, which would allow us to translate words “John” and “Smith” to integers.
Then, we would somehow combine those integers with the integer representing
the year of birth, and as a result, we would have the hash code of the person.
According to that, if we created another object of the Person class with name John,
LastName Smith, and YearOfBirth 1987, the hash should be the same. On the other
hand, if this other object had a different year of birth, its hash would be different.

Also, if we calculate the hash for the second time, the result should be the same as
it was for the first time, assuming the object was not modified. Also, if we have two
objects that are different instances, but we consider them equal (for example, two
instances of the Point class, both having X=10 and Y=20) the hash code for both of
them should be the same.

At this point you probably wonder “okay, but what is the use for hash codes?”.
Well, their main use is that they work as keys in hashed collections. This may
sound cryptic by now but don’t worry - we will soon learn about one of the most
useful C#’s hashed collections - the Dictionary. If you used Dictionaries before you
know that each value is stored under a key. The key can be any object, even a
complex one, but the Dicionary needs to be able to translate it to an integer, and
that’s exactly where the GetHashCode method comes in handy. We will learn more
about it in the lecture about the Dictionaries.

Back to the hash functions, that “map” complex objects into integers. The very
important trait of the hash function is that it should uniformly distribute its
values. That means, if I call GetHashCode methods for 100000 different objects of
the Point type, I should get very little or no duplicated hashcodes.

But it is possible to have duplicated hash codes. This situation is called “hash
code conflict” and it’s perfectly normal. Many people consider hash codes the be
the “identifiers” of objects and think that two different objects of the same type
can’t have the same hashcodes. But this is not true, and it cannot be. Let me prove
it to you.

Consider a Point type. It contains two fields: X and Y. Both X and Y are ints, so each
of them can have a value between int.MinValue to int.MaxValue, so in other words
- the range of the integer. For simplicity, let’s say that the minimal value of the
integer is -2 000 000 000 and maximal is 2 000 000 000. This means, we can have 4
billion different X coordinates and 4 billion Y coordinates, which in total gives 4
billion*4 billion different Points, which is 16 quintillions! On the other hand, the
hash itself is an integer, so we can only have 4 billion different values, so much,
much less than different Points. So when creating different Points, we will sooner
or later simply run out of different hashes. It’s sometimes referred to as the “balls
into bins problem”. If we have more balls than bins, and each ball is stored in some
bin, it must mean that in some bins there is more than one ball.

Let’s summarize the hash function. If I have two different objects of some type,
ideally their hash codes should be different. If I have plenty of different objects of
the same type, there should be as few duplicated hash codes as possible. Finally, if
I have two objects I consider equal, their hash code should be the same.

Let’s see some implementations of the GetHashCode method for some types. Here
is the implementation for the int type:

For integers, the implementation is as simple as it can ever be. The integer value
itself is a perfect hashcode. It will be the same for two equal integers, and it will be
different for two different integers. There will be no duplicates at all because for
each integer possible the hash code will be different.

Now, let’s consider the Point type:

Before we think of our own implementation of the GetHashCode method, let’s see
what is the default. As we said, the GetHashCode method is defined in the
System.Object class, so I can call it on any object even if I did not override it. Let’s
see some Points:

As you can see point1 and point2 are the same, so I would like them to have the
same hash code. point3 is different, so it should have a different hash code. Let’s
see the result:

Well, that’s not what we wanted. The two first hash codes should be the same. To
understand why is that so, we must understand what’s the default implementation
of the GetHashCode method:

● for reference types, it bases on the reference itself, so the “address” of the
object in memory

● for value types it is calculated based on the values stored in the object

That explains why two Points, even with the same X and Y, have different hash
codes. We declared the Point as a class, so a reference type. point1 and point2 are
two different objects with two different references. The hash code is built based
on the reference, so it’s different for both of them.

So if we want to have the same hashcodes for the Points with the same X and Y, we
can simply change the Point class to a struct:

And now, we can re-run the application:

Now we have what we wanted - the first two Points have the same hash codes.

But let’s change it back to a class, and let’s try to implement the GetHashCode
method ourselves:

Most of the base types in C# already provide a good implementation of the
GetHashCode method. Those methods are usually strongly based on pure math
and also pretty low-level, and because of that, I don’t want to get into details on
how they work. Just so you have an idea, here is a fragment of the GetHashCode
implementation for string:

As you can see this is pretty low-level stuff. Luckily for us, the hard work has
already been done by others. When defining custom types, we can simply combine
the hashcodes of the values stored in the object into a single hashcode. For the
Point class, it would look like this:

HashCode.Combine takes any objects as parameters, so for example for a person
class we could easily use it like this:

Also remember, that we do not always need to combine all properties and fields of
a type to get a valid hash code. For example, if we had SocialSecurityNumber in the
Person class, which by definition identifies a person, it would be perfectly fine to
use it as the only component of the hash code. We always consider two Person
objects equal if they have the same social security number, and we can ignore
other fields (if they were different, it would most likely mean there is some error in
data itself, as two different people should never have the same social security
number).

We know how to implement the GetHashCode method now, but the question that
we need to answer is this: when should do it?

The answer is simple - if the type is going to be used as a key of any hashed
collection, like a Dictionary or the Hashtable, and the default implementation is
not working for us.

For reference types, we usually don’t want the default GetHashCode, as it
compares objects by reference. As with the Point class - we had two Point objects
with the same X and Y, yet their hash codes were different, so when used as keys in
the Dictionary, they would be considered two different keys. In this case, we
usually want to override the GetHashCode method and HashCode.Combine can be
a great help (of course, in some situations hashes based on the reference itself are
fine. It all depends on the context).

Later in the course, we will learn about records. Records are reference types that
provide their own, value-based GetHashCode method.

For value types, it is a bit tricky. There is a default implementation that works fine
and uses the values stored in the fields or properties of the type to calculate the
hash code. The problem is that this default implementation uses reflection, and as
we learned in the “What is reflection?” lecture, it’s painfully slow. Because of that,
it’s a good idea to provide a custom implementation of the GetHashCode method

in value types we create, especially if they are going to be used as hashed
collection keys a lot.

When overriding the GetHashCode method it is important to also override the
Equals method. We will explain the reason for that in the lecture about the
Dictionaries.

Let’s summarize. The GetHashCode method generates an integer for an object,
based on this object’s fields and properties. This integer, called hash, is most often
used in hashed collections like HashSet or Dictionary.

Bonus questions:

● "Can two objects of the same type, different by value, have the same
hash codes?"
Yes. Hash code duplications (or “hash code conflicts”) can happen, simply
because the count of distinct hash codes is equal to the range of the integer,
and there are many types that can have much more distinct objects than this
count.

● "Why it may be a good idea to provide a custom implementation of the
GetHashCode method for structs?"
Because the default implementation uses reflection, and because of that is
slow. A custom implementation may be significantly faster, and if we use this
struct as a key in hashed collections extensively, it may improve the
performance very much.

27. What is a Dictionary?

Brief summary: A Dictionary is a data structure representing a collection of
key-value pairs. Each key in the Dictionary must be unique.

A Dictionary is a data structure representing a collection of key-value pairs. Each
key in the Dictionary must be unique.

Here is a Dictionary representing the mapping from the country name to its
currency:

The key and the value in a dictionary don’t need to be of the same type. Below we
have a Dictionary mapping from string to decimal. You can also see the Add
method, which is an alternative for setting a value under each key with the indexer:

We can use the collection initializer instead of adding the key-value pairs to the
Dictionary one by one:

Remember that Dictionary’s keys must be unique. That means, an attempt to add a
new value under the same key will throw an exception:

When using an indexer, the old value under the given key will simply be replaced
with the new:

The use cases for Dictionaries are endless. Whenever we need any kind of mapping,
they are most likely the best choice. Let me give you a very simple example. We
have a collection of Employees. Each Employee has a Department he or she works
in and the Salary property. We want to create a method that calculates what is the
average salary in each Department.

The result of this method should be a mapping from Department to the average
salary. A mapping is best represented with a Dictionary. I will use LINQ’s GroupBy
method to group the Employees by department, and then calculate the average
salary for each group. I will transform the result into a Dictionary using the
ToDictionary method.

Let’s see if the result is as expected:

The result looks good, and Dictionary is a perfect data structure to represent it.

Now, let’s take a look under the hood of Dictionaries. The underlying data
structure of a Dictionary is a hash table. A hash table is basically an array of linked
lists. We can imagine it like this:

Each element in the list has a value and the key object for which the hash code is
calculated. The placing of the key-value pair is not random in the array. The index is
calculated like this:

hash code % array size

This, naturally, gives a number from 0 to array size minus one, which is a valid
index.

When an item is inserted into the hash table, its hash code is calculated (we
learned about hash codes in the “What is the purpose of the GetHashCode
method?”). Then, the index in the array is calculated using the above formula.
Finally, the key-value pair is added to the list stored under the given index. This
means, under a certain index objects with different hash codes can be stored.

But what happens if we add a new key-value pair to the Dictionary, and the key has
the same hash code as some other key that is already stored in it? Well, the
Dictionary must ask this: is this actually the same key, or is it a different key that
accidentally has the same hash code? There is one method that can answer this
question: the Equals method.

If two keys have the same hash codes, and the Equals method returns true for
them, it means it’s actually the same key. Then the dictionary will either throw an
exception (if the key-value pair was added with the Add method, which expects
that this key is not yet present in the Dictionary) or, if it was set with the indexer, it
will simply update the value under the key.

But if the new and the old key have the same hash codes, but the Equals method
returns false for them, it means there are actually two different keys, that have
the same hashcode by accident. In this case, the Dictionary stores the new
key-value pair under the same index, and it adds it at the end of the linked list that
is stored under this index. When we try to retrieve the value under this key again,
the Dictionary will quickly calculate the hash code, and based on this hash, the
index in the array of linked lists. Then, it will iterate the list, looking for an object
with the same key - so the key for which the Equals method returns true if
compared with the key for which we try to retrieve the value.

Because the Equals method is needed in case of hashcode conflicts to properly
identify the key, we should always override it when overriding the GetHashCode
method, so their implementations are consistent. For example, if GetHashCode
returns the social security number for a Person object, it means we consider this

number the Person’s identifier. The Equals method should also only compare the
social security numbers.

Calculating the hashcode is (or at least should be) very fast. Accessing the array
element at a given index is extremely fast. This means, as long as the list under
each index is small, accessing the Dictionary value under a given key should be
super fast, and this is the main power of Dictionaries.

So, how big are the lists stored under each index? Well, it depends on two factors:
● what is the size of the array that represents the hash table (this is something

we don’t control, the Dictionary itself adjusts the size similarly as List did)
● how often the hash codes for different objects are the same. If, for example,

we implemented the GetHashCode method for some type as “return 1”, it
would mean that all hashcodes will be duplicated. There will be only one
element in the array representing the hash table, and this element will be a
very long list of key-value pairs. In other words, in this particular case, the
performance of the Dictionary will be similar to the performance of a List.
This is the reason for which the hash functions should be uniformly
distributed. The fewer hash code conflicts, the better the Dictionary’s
performance.

Let’s summarize. A Dictionary is a data structure representing a collection of
key-value pairs. Each key in the Dictionary must be unique. When a key is added to
the Dictionary, it calculates its hash code using the GetHashCode method. It uses
this hashcode to properly place the value for the given key in the hash table that is
the underlying data structure of a Dictionary.

Bonus questions:

● "What is a hash table?"
A hash table is a data structure that stores values in an array of collections. The
index in the array is calculated using the hash code. It allows quick retrieval of
objects with given hashcode. A hash table is the underlying data structure of
Dictionary.

● "Will the Dictionary work correctly if we have hash code conflict for two
of its keys?"
Yes. The Dictionary still can tell which key is which using the Equals method, so
it will not mistake them only because they have the same hash codes.

● "Why should we override the Equals method when we override the
GetHashCode method?"
Because the Equals method is needed for the Dictionary to distinguish two keys
in case of the hash code conflict, and because of that its implementation

should be in line with the implementation of the GetHashCode method. For
example, if GetHashCode returns the social security number for a Person
object, it means we consider this number the Person’s identifier. The Equals
method should also only compare the social security numbers.

28. What are indexers?

Brief summary: Indexers allow instances of a type to be indexed just like arrays.
In this way, they resemble properties except that they take parameters. For
example, a Dictionary<string, int> has an indexer that allows calling
“dictionaryVariable[“some key”]” to access the value under some key.

Indexers are something we use all the time, usually without giving it much thought.
Whenever accessing an element under a specific index of a list, we are actually
calling the List’s indexer:

This is exactly the same as accessing the third element of an array. This code may
seem simple, but there is a lot going on in the List class whenever we use its
indexer. Let’s take a look into List’s source code:

We can recognize the definition of the indexer by the “this[someType
paramName]” code. For the case of a List, the indexer is quite complex, but in the
end, its main job is to get or set the value of an internal array called “_items”. In the
lecture “What is a List?” we learned that they use an array as the underlying
collection, and this is exactly what we see here.

Indexers don’t necessarily use integers as parameters. For example, when using
Dictionaries we use indexers to access an element under a given key - and a key of
a Dictionary can be whatever we want. For example, if the key of the Dictionary is a
string, then the parameter of the indexer will also be a string:

We can define our own indexers in the types we created. Let’s define a simple class
that works as a wrapper for an array:

For now, when trying to use an indexer on an object of this class, we will get a
compilation error, because this class does not support it:

To make it work, we must define an indexer accepting an int in the MyList class:

On get, this indexer simply retrieves the value from the array, and on set it
overwrites it with the provided value.

We can define as many indexers as we want if they only differ by types or count of
parameters. For example, I can add an indexer accepting a string to this class:

Indexers with multiple parameters are also allowed:

Please note that it is possible to have an indexer with getter only (or with setter
only, but this is more unusual).

In this case, we will be able to access an element at a given index, but we won’t be
able to overwrite it.

Let’s sum up. Indexers allow instances of a type to be indexed just like arrays. In
this way, they resemble properties except that they take parameters. For example,
a Dictionary<string, int> has an indexer that allows calling
“dictionaryVariable[“some key”]” to access the value under some key.

Indexers are most often used with types representing collections, but we can add
them to any type. Indexers are simple and natural to use for developers, and we
should consider adding them to our types, especially if we already have some
methods like “GetValueAtIndex”. In this case, we should definitely consider
refactoring and introducing an indexer.

Bonus questions:

● "Is it possible to have a class with an indexer accepting a string as a
parameter?"
Yes. We can define indexers with any parameters. An example of such a class
can be a Dictionary<string, int> as we access its elements like “dict[“abc”]”.

● "Can we have more than one indexer defined in a class?"
Yes. Just like with method overloading, we can have as many indexers as we
want, as long as they differ by the type, count, or order of parameters.

29. What is caching?

Brief summary: Caching is a mechanism that allows storing some data in
memory, so next time it is needed, it can be served faster.

Caching is a mechanism that allows storing some data in memory, so next time it is
needed, it can be served faster. To understand it better, let’s consider this class:

This class is responsible for retrieving a Person object from some repository using
a person’s first and last name. This code is very simple, but we must be aware of
one thing - in a real-life project, accessing data from an external source may be
slow. Maybe the class implementing the IRepository interface connects to some
bulky database, or retrieves data from some API? It may be the case that every call
to this external data source takes some considerable time, and if many calls are
executed, the application may start to work slowly. We don't want that.

How can we make it better? Well, one solution could be this: if we already accessed
the data for some particular first and last name - for example, John Smith - we
could store it in the application memory and next time when we want to find John
Smith, we will access his data immediately, instead of asking the external system to
provide it again. This mechanism is called caching. We store some data in a cache,
so a piece of memory of the application, making it available immediately. Let’s

implement a very simple caching mechanism. We will start with defining a cache
class.

I made this class generic, so it can store any type. In our case, it will store objects of
type Person.

Now we need some kind of container to store the cached Person objects. What
data structure would be the best for us? We will want to retrieve them by providing
first and last names. So perhaps the best choice would be a Dictionary in which a
tuple of two strings (for both names) would be the key, and the Person object
would be the value.

As you can see I used a ValueTuple for the key because for Dictionary keys we want
to have a value-based equality comparison (If I used regular tuple, which is a
reference type, two tuples holding the same first and last name would not be
considered the same key by the Dictionary).

We want to keep the Cache generic, so the Dictionary key type should also be
parameterized:

As you can see I also added the notnull constraint. The Dictionary keys should
never be null.

Now about the Get method. First of all, it should take a key as a parameter:

If the Dictionary already stores the value with a given key, it should simply be
returned:

But if not, it means the value is not yet cached and we need to access it somehow.
In the case of the PeopleController, it would be read from the repository. But we
can’t do it like this:

The Cache class is generic and it must work not only for People read from some
specific repository but for anything else too. In other words, we must also provide
some generic mechanism for reading the values that will be then stored in the
cache. The simplest solution is to pass a Func to the Get method. This Func will
return an object of the TValue type. It will be up to the caller of the Get method to
provide a specific method of retrieval. In our case, the PeopleController will be
using the cache, and it will pass a function reading the Person object from the
database to the Get method.

We can now simplify this code:

Great. This is exactly what we wanted. The value is being read only once. It is
stored in the Dictionary, and next time it will be needed it will be retrieved from it.
Let’s now use the Cache class in the PeopleController. First of all, I will declare and
initialize the private Cache field in this class:

Now I can use it in the GetByName method. As a reminder: this is how this method
looks without using caching:

And this is how it changes when the Cache is used:

The first parameter of the Get method is the key, in our case a ValueTuple holding
first and last name. The second parameter is a function that retrieves the Person
with those names from the repository.

Let’s test if it works as expected. If it does, the GetByName method from the
repository should be called only once when I try to access the John Smith object
two times.

I’ve set a breakpoint in the GetByName method:

Now, when I run this program, I will see that we only hit this breakpoint once. In a
real-world application, we could ask for John Smith hundreds of times and instead
of asking the database or some API for his data this many times, we will only ask
once.

All right. We implemented a super simple cache ourselves. Of course, we could
make this cache much more complex. For example, we don’t actually remove
anything from the cache now, and it may happen that during the execution of the
program it will grow extremely big and will finally drain our application of free
memory. Usually, some kind of cleanup mechanism is added, that removes the data
that is older than some specified time. Also, this cache is not thread-safe, so it
shouldn’t be used in multithreaded applications.

There are of course some existing libraries that provide the caching mechanisms.
For example, we can use NuGet to install Microsoft.Extensions.Caching.Memory.
It works very similarly to the cache we implemented. This is how the
PeopleController would look like if we used Microsoft’s implementation of the
cache:

As you can see it’s almost exactly the same as our code, and I highly recommend
using this package. Nevertheless, I wanted to show you how to implement a cache
on our own, so you understand how it works under the hood.

From other caching tools you should be aware of, one of the most commonly used
third-party tools is called Redis. It provides more functionality than a regular cache
and it’s known for its excellent performance.

All right. Before we wrap up a word of caution. Caching is great, but for some
scenarios only. If we don’t retrieve the data identified by the same key repeatedly,
but we keep using different keys all the time, it doesn’t really give us anything. You
can always check the cache success rate by adding a simple field to your cache:

This counter will be incremented each time we use the cached data instead of
retrieving it from the data source. You can check its value during debugging and

see if your cache is successful. The higher the counter goes, the better your cache
is performing in your application.

So, use caching when it really makes sense.

Caching is most often used to retrieve data from some external sources, but
remember that even the data calculated locally can be cached. For example, if your
program does some performance-costly mathematical operations that take a lot of
time, you could consider caching the results too.

Also, remember that the underlying data can change after it has been first
retrieved by the cache. It means the cache will be providing us with stale data.
That’s why caching is best when the underlying data doesn’t change often. In this
case, it’s enough to have some mechanism that removes the piece of data from the
cache after some specific time has passed.

Bonus questions:

● "What are the benefits of using caching?"
Caching can give us a performance boost if we repeatedly retrieve data
identified by the same key. It can help not only with data retrieved from an
external data source but even calculated locally if the calculation itself is heavy
(for example some complex mathematical operations).

● "What are the downsides of using caching?"
Cache occupies the application’s memory. It may grow over time, and some
kind of cleanup mechanism should be introduced to avoid
OutOfMemoryExceptions. Such mechanisms are usually based on the
expiration time of the data. Also, the data in the cache may become stale,
which means it changed at the source but the old version is cached and used in
the application. Because of that, caching is most useful when retrieving data
that doesn’t change often.

30. What are immutable types and what’s
their purpose?

Brief summary: Immutability of a type means that once an object of this type is
created none of its fields of properties can be updated. Using immutable types
over mutable ones gives a lot of benefits, like making the code simpler to
understand, maintain and test, as well as making it thread-safe.

Immutability of a type means that once an object of this type is created none of its
fields of properties can be updated.

Let’s see a simple immutable type:

The objects of this class are immutable because the X and Y properties do not have
setters. Once we create an object using the constructor (the only place where we
can assign values to X and Y) it will not be possible to modify it:

As you can see the concept of immutability is very simple. It can extend to more
complex types, for example, collections - once we create an immutable collection,
it can’t be changed, so no element can be added, removed, or altered.

The question is - why should we bother in creating immutable types?

Let’s see a couple of the most important benefits of having immutable types:
1) Clarity and simplicity of the code

First, let’s see a piece of code that seems simple:

What do you think will be printed from the fourth line? Well, it’s impossible
to say, because we don’t know what happens in SomeMethod and
SomeOtherMethod. Maybe they simply read the values of the point, but
maybe they alter it?

We won’t be sure what the code does and how it behaves until we follow the
flow of the code very carefully, checking what exactly every method does
with the Point object.
If the Point was immutable, we wouldn’t need to worry - we would be sure
that once created, its value remains the same.

2) Pure functions
Pure functions are functions whose results only depend on the input
parameters, and they do not have any side effects - they don’t alter any
state of the application, they don’t modify the input parameters. We can call
a pure function any time we want with the same set of parameters, in any
order, and it will always yield the same result. Because of that, we can cache
the result, making the parameters the key of the cache. Pure functions are
simple to understand, as we don’t need to be aware of the context in which
they are called. Testing them is extremely simple, as we only check if their
result is as expected. For testing purposes, we don’t need to set up any

context in which those functions work, as they only depend on the input
parameters, and not, for example, the state of the class they live in. Using
immutable types and creating pure functions work very well together, and
actually, they are two tenets of functional programming - a coding
paradigm that grows more and more popular for its clarity as well as
working great in multithreaded applications. This leads us to the next point:

3) Thread safety
When working with multithreaded applications we must always be very
cautious when it comes to making any assumptions about the state of an
object - because it can always be the case that another thread altered this
state without our knowledge. Using immutable objects wipes this problem
out. If an object can’t be altered, there is no need to worry that some other
thread altered it, right? This makes the creation of multithreaded
applications much simpler and less error-prone, and you must know that
finding bugs in multithreaded applications can be extremely hard, as they
often happen in a non-deterministic manner that can be extremely hard to
reproduce.

4) No invalid objects
Let’s consider the Person class and its constructor:

Someone clearly put up a lot of work to make sure that when an object of
the Person class is created, it is valid - its Id is correct, the name is not empty,
the year of birth is reasonable. If objects of the Person class could be
mutated, it would mean that at any time of the application execution they
can be rendered invalid:

If Person’s class objects can become invalid at any moment, that would mean
that our code would quickly fill up with lines like that:

This not only is a code duplication (because we already defined this checks in
the Person’s class constructor) but it also creates noise in the code, making
it harder to understand, maintain and test - because in each of those places
we must create tests that will handle both valid and invalid person objects.
The easier testing is another benefit of immutable objects, but before we
move on to this point, let’s consider another aspect of making objects
invalid:

5) Prevention of identity mutation.
Imagine we want to use the Person class object as a key in the dictionary. We
want to use the Person’s Id as the hash code that the dictionary will use.

If the Id is mutable, we will lose the object in the Dictionary:

First, we’ve used the person object as the key in the Dictionary, using its Id’s
hash code. Then the id changed. Because of that, the fourth line will throw
an exception, because there is no key with the hashcode built by the “new
id” string in the Dictionary - the only key there is the one built with the old
id. As a rule of thumb, if an object is meant to be a key in the dictionary, it
should be immutable.

6) Easier testing
Immutable objects make code easier to understand, and they also give us a
guarantee that once a valid object had been created, it will remain valid
forever. This makes testing much simpler because we have fewer paths of
code to test, as handling of invalid objects is simply not needed. Also, we
don’t need to test if a state of an object had been changed, which is
sometimes tricky especially if it’s the private state that changes. As
mentioned before, using immutable objects makes it easier to create pure
functions, and they are extremely simple to test.

All right. Seems like immutable objects can be really beneficial. But following this
“nothing ever changes” rule can be demanding. After all, we sometimes need to
change something. Let’s consider the DateTime type, which is immutable in C#. It
provides a method called AddDays:

Adding 7 days to January the 1st won’t make it a different date. It will produce
another date. It makes perfect sense - after all, a date never changes, and January
the 1st 2022 will always be January the 1st 2022.

Such “apparent modification” of immutable objects is called a non-destructive
mutation. It is an operation of creating a new object based on another immutable
object. The immutable object won’t be modified, but the result of “modification”
will become a new object. We will learn more about it in the next lecture “What
are records and record structs?”

All right. We learned what immutable types are and what are the most important
benefits of using them. But we must also be aware of the important disadvantage
they have: with the non-destructive mutation, each update of an object actually
creates a new object, allocating new memory. The old object must be cleaned up
by the Garbage Collector. It’s usually not an issue with small types, but remember,
even collections can be immutable. Imagine having a list of million elements, and
that adding a new item to it means actually building a whole new collection of size
million and one.

It may sound scary, but don’t be discouraged to use immutable types. First of all -
there are implementations of collections that actually make this quite efficient.
Second - not all applications suffer from performance loss when using immutable
types, and the benefits are often bigger than the costs. Garbage Collector is a
smart tool, and most often you won’t even notice the performance impact of
introducing immutable types. Nevertheless, there are cases when performance is
critical. For example, I wouldn’t recommend making every type immutable when
developing video games, as it would make the Garbage Collector kick off more
often, and remember that when Garbage Collector works, all other threads are
frozen until it finishes. In the case of video games, it could lead to a performance
decrease that would be noticed by the players, and we definitely don’t want that to
happen.

Bonus questions:

● "What are pure functions?"
Pure functions are functions whose results only depend on the input
parameters, and they do not have any side effects like changing the state of
the class they belong to or modifying the objects passed as an input.

● "What are the benefits of using immutable types?"
The code using immutable types is simple to understand. Immutable types
make it easy to create pure functions. Using immutable types makes it easier to
work with multithreaded applications, as there is no risk that one thread will
modify a value that the other thread is using. Immutable objects retain their
identity and validity. Mutable objects make testing problematic. Testing code
using immutable types is simpler.

● "What is the non-destructive mutation?"
The non-destructive mutation is an operation of creating a new object based
on another immutable object. The immutable object won’t be modified, but the
result of “modification” will become a new object. The real-life analogy could
be adding 7 days to a date of January the 1st. It will not change the date of
January the 1st, but it will produce a new date of January the 8th.

31. What are records and record structs?

Brief summary: Records and record structs are new types introduced in C# 9 and
10. They are mostly used to define simple types representing data. They support
value-based equality. They make it easy to create immutable types.

Important: records are available since C# 9. Record structs are available since c#
10.

When programming, we often need to define simple data structures, that don’t
really hold any business logic - they simply store data. Let’s define a Point class.

This class only holds two integers X and Y. I want objects of this class to be
immutable, so once set, they will not be updated. That’s why I only added getters
to the X and Y properties. Setters are not available.

I would like the objects of this class to be nicely printed. Now, if I call
Console.WriteLine(somePoint) I will get the full type name printed to the console,
so “Namespace.PointClass”. This is not very convenient. Let’s override the ToString
method:

Now, something like “X:10, Y:5” will be printed.

Next, I would like to use objects of the Point class to as keys in the Dictionary.
Currently, since Point is a class, its objects are compared by reference. That means,
even if I have two points equal by value, they will be considered two different keys
in a Dictionary:

After this code is executed, the Dictionary will have a size of two, because each
point is considered a different key, as they differ by reference. I would like other
behavior - if two points are equal by value, they are considered the same key by the
Dictionary. To achieve this, I must overwrite the GetHashCode and Equals methods:

Now I also must provide the Equals method that accepts a PointClass object, not
an object. That means, my PointClass shall implement the IEquatable<PointClass>
interface:

Let’s see the whole class:

Well… it works, but it’s a lot of code, and all of it only to implement a simple data
structure that:

● prints itself nicely

● is compared by value
● provides custom GetHashCode and Equals methods implementations so it

can safely be used in hashed collections

At some point, the creators of C# realized that this is a common issue. As a
solution, they introduced records. Before I explain exactly what records are, let me
show you how exactly the same behavior as we defined in the type above can be
achieved with records:

That’s it. Only one line of code, and it does the same thing as 31 lines of code we
needed to define the PointClass.

Records are new types, joining classes and structs. They are available starting with
C# 9. Let’s list the most important information about records:

● records are reference types
● …but they base on value-type equality, which means, two records with

identical values of properties will be considered equal even if they differ by
reference

● like classes, they support inheritance
● the compiler generates the following methods for records:

○ an override of Equals(object?) method
○ a virtual Equals(ThisRecord?) method (this method comes from the

IEquatable<ThisRecord> interface which records implement)
○ and override for the GetHashCode method
○ overloads of == and != operators
○ an override of the ToString method, which prints the names of the

properties with their values

The record we defined above is even more special: it’s a so-called positional
record, so a record that doesn’t even have a body. Later in the article, we will learn
how to define non-positional records. For now let’s just note that for positional
records, the compiler also generates:

● a primary constructor whose parameters match the positional
parameters on the record declaration

● public properties for each parameter of a primary constructor. Those
properties are read-only (but they are not for record structs, which
we will learn about a bit later)

● a Deconstruct method to extract properties from the record

All right. Let’s see a regular, non-positional record now:

As you can see we need to write a little more code (like explicitly defining the
properties and the constructor) but as a reward, we can add methods or make the
properties writable. Remember that methods like GetHashCode, Equals, or
ToString are still generated by the compiler and we don’t need to worry about
them.

As we learned in the last lecture, the immutability of types is a desired trait.
Records are perfect for representing immutable types. To make things even easier,
they provide non-destructive mutation implemented with the with keyword. This
may sound cryptic, so let’s see an example. Let’s say I have some point, and I want
to update its Y property:

With the with keyword, I created a new Point equal to the old one, but with Y set
to the new value of 6. The old point is immutable, so it cannot be changed. I can
change as many properties as I want with the “with” keyword.

Starting with C# 10, record structs were introduced. They are similar to records,
with some differences:

● they are value types
● positional record structs are read-write by default, which means their

properties are mutable
● record structs can be declared as readonly, making them immutable

● For record structs, the compiler also generates a parameterless constructor
which sets all its properties to the default values

When deciding whether to use records or record structs, you should take the same
things into consideration as when deciding whether to use classes or structs. In
general - if the type is simple and you want value-type behavior like passing
parameters by value, you should go for the record structs.

Also, records and record structs support deconstruction. We learned more about it
in the “What is deconstruction?” lecture.

Let’s summarize. Records and record structs are new types introduced in C# 9 and
10. They are mostly used to define simple types representing data. They support
value-based equality. They make it easy to create immutable types.

Bonus questions:

● "What is the purpose of the "with" keyword?"
The “with” keyword is used to create a copy of a record object with some
properties set to new values. In other words, it’s used to perform a
non-destructive mutation of records.

● "What are positional records?"
Positional records are records with no bodies. The compiler generates
properties, constructor, and the Deconstruct method for them. They are a
shorter way of defining records, but we can’t add custom methods or writable
properties to a positional record.

32. Why does string behave like a value
type even though it is a reference type?

Brief summary: String is a reference type with the value type semantics. All
strings are immutable, which means when they seem to be modified, actually, a
new, altered string is created. String has value-type semantics as this is more
convenient for developers, but it can’t be a value type because string objects can
be large, and value types are stored on the stack which has a limited size.

In C#, there is a big difference in how value types and reference types behave.
Let’s see this difference in code:

In this example, we have a variable of type int, which is a value type. It is passed to
a method that increments it. Because integers are value types, when they are
passed as parameters to methods, a copy of the value is created. That’s why after
this method is executed, the value of the original variable will not be changed.

Let’s consider a similar example now, but with reference types:

A List<int> is a reference type. It is passed to a method by reference, which means
inside the method we add an element to the original List<int> object. That’s why
after the method is executed, the count of elements in the list is 2:

Now, let’s see the last example. This time we will deal with strings:

And now, let’s see the result:

The string has not been modified. It’s the same behavior we’ve seen for value
types. But here is the plot twist: string is a reference type in C#! So what is going
on?

To understand it, we must first realize, that under the hood string is an array of
chars. As we learned in the “What is an Array?” lecture, arrays are collections of
fixed size. Once an array is created, its size never changes. If we want to add an
element to an array, we must declare a new, bigger array, copy the old array to it,
and set the value under the last index to the new element. And that’s exactly what
happens when we modify a string. It’s not really changing the original string. It is
creating a new string which then gets assigned to the variable:

In this case, a new string gets created, containing the original string with “1” added
to the end.

This means strings in C# are immutable. A string object is never modified. Even if it
seems like it, a new object is actually created under the hood.

As we already know, when passed as a parameter to a method, the string behaves
like a value type. But this is not the end of similarities of string to value types. Also,
its == operator is overloaded, so it compares strings by value, not by reference. For
reference types, equality is compared by reference, so those two Lists will not be
equal, because they are two different objects pointed to by two different
references:

On the other hand, this equality comparison will return true, because strings are
compared by value, even though they are reference types:

Technical reasons aside, it is actually desired for strings to behave more like value
types. I think most programmers would be surprised if for the above strings the
equality check with the == operator would return false as it should for regular
reference types. Also, it would be pretty challenging if the modification of a string
in a method to which it was passed as a parameter would affect the original string
object. In general, people tend to think of strings in a similar way as they think of
value types, and learning to use them as other reference types would most likely
make C# quite disliked in the programming community.

You may wonder: since string behaves like a value type, why isn’t it one? Maybe
another design than using the array of characters would be possible, and string
could be a value type like numbers or DateTime?

Well, the answer is (as so often) related to performance. Value types are stored on
the stack, which has a limited size (1 MB for 32-bit processes and 4MB for 64-bit
processes). Strings can be quite huge, and they could simply not fit on the stack.
They are stored on the heap instead, along with other reference types.

One more thing before we wrap up. Because strings are immutable, if we have
multiple strings of the same value, we can use the optimization called Interning.
Interning means that if multiple string variables hold strings that are known to be
equal, the runtime actually points their references to a single string object, thereby
saving memory. This optimization wouldn’t work if strings were mutable, because
then changing one string variable would have unpredictable results on other string
variables.

Let’s summarize. String is a reference type with the value type semantics. All
strings are immutable, which means when they seem to be modified, actually, a
new, altered string is created. String has value-type semantics as this is more
convenient for developers, but it can’t be a value type because string objects can
be large, and value types are stored on the stack which has a limited size.

Because this copy-and-alter way of modifying strings can be performance-costly, it
is recommended to use the StringBuilder class when building strings incrementally.
We will learn more about it in the next lecture.

Bonus questions:

● "What is interning of strings?"
Interning means that if multiple strings are known to be equal, the runtime can
just use a single string, thereby saving memory. This optimization wouldn’t
work if strings were mutable, because then changing one string would have
unpredictable results on other strings.

● "What is the size of the stack in megabytes?"
It’s 1 MB for 32-bit processes and 4 MB for 64-bit processes.

● "What is the underlying data structure for strings?"
It’s an array of chars. Arrays by definition have fixed size, which is a reason why
strings are immutable - we couldn’t modify a string by adding new characters
to it, because they wouldn’t fit in the underlying array.

33. What is the difference between string
and StringBuilder?

Brief summary: String is a type used for representing textual data.
StringBuilder is a utility class created for optimal concatenation of strings.

String is a type used for representing textual data. StringBuilder is a utility class
created for optimal concatenation of strings.

We all know strings. We use them all the time to represent some text. What some
people don’t know is that all strings are immutable, which means once created
they can’t be modified.

You may now be surprised. You probably mutated strings plenty of times by now.
For example, this code is perfectly valid:

Ta-dah. We modified a string. First, we changed the value from “abc” to “def” and
then we added “g” to it, which resulted in the final value of “defg”. So what’s the
fuss about the immutability?

Well, we actually didn’t modify the “abc” string. We created a brand new “def”
string and we simply pointed the reference stored in someString to this new
string. A similar thing happened in the next line. We created a new string by
concatenating “def” with “g” and then pointed the reference to this new string. At
some point in time, the Garbage Collector will see those old strings as objects to
whom no reference points, and will remove them from memory.

All right. So we now know that when we “modify” a value of string the following
things need to happen:

● a new object needs to be created, which involves allocating memory for it
● the variable that was pointing to the original string must be pointed to the

new string

● at some point, the Garbage Collector must clean out the old string

That’s relatively a lot of work. In many cases it’s ok and we don’t notice any
performance impact when we add “Mr. ” to the “John Smith” string. But a need to
build strings gradually from parts is pretty common. For example, imagine your
application is downloading some data from the web, and it does it in chunks, as the
data is pretty large. You need to create some kind of extract from this data.

For each chunk read (and it can be thousands of them) you need to build some
pretty complex string, and then append this string to the string representing the
final result. It can involve millions of concatenation operations. As the process
continues the final result is growing. At some point, it can be a huge string, and
still, every concatenation keeps copying it to a new (huge!) part of memory, adding
some tiny part, and then replacing the reference stored in the original variable. Not
to mention that behind the scenes the Garbage Collector is struggling to clean up
all those large, but unused strings from memory.

And for such use cases, the StringBuilder class has been created.

The StringBuilder can add or remove pieces from the final result, but without this
laborious copying of the old string, adding a part, and removing the old string.
StringBuilder object maintains a buffer to accommodate expansions to the string.
New data is appended to the buffer if there is any space in it left. Otherwise, a
new, larger buffer is allocated, data from the original buffer is copied to the new
buffer, and the new data is then appended to the new buffer. As you can see the
only scenario when the entire result is being copied is when the buffer needs to be
enlarged.

All right. Let’s see a simple program that will measure the performance of string
and StringBuilder:

As you can see both methods simply build a string of letters “a” of the length given
in the parameter. Let’s see how they will handle 100000 iterations:

Wow. StringBuilder built the result string over 7000 times faster than string.

I hope I convinced you that when you implement some process of incremental
building of strings, the StringBuilder should be your choice.

Of course, for simple uses like concatenating a couple of strings, using the
StringBuilder is an overkill and it only complicates the code. And if you wanted to
have at least a tiny performance boost, I must disappoint you. If the string is not

built incrementally but is composed in a single instruction, plain old string addition
actually works faster:

The above is faster than the below, not to mention how much simpler it looks:

The performance of the first code is better because behind the scenes this code is
translated into:

Which is actually quite efficient. Remember, this can only be done if concatenation
happens in a single instruction, so it would not work if, for example, we used a loop
to build a string from pieces.

All right. The most important thing you need to remember from this lecture is to
use StringBuilder when incrementally building large strings, as it gives much better
performance than using a simple string.

Bonus questions:

● "What does it mean that strings are immutable?"
It means once a string is created, it can’t be modified. When we modify a string,
actually a brand-new string is created and the variable that stored it simply has
a new reference to this new object.

34. What is operator overloading?

Brief summary: Operator overloading is a mechanism that allows us to provide
custom behavior when objects of the type we defined are used as operands for
some operators. For example, we can define what will “obj1+obj2” do.

C# provides many operators, for example +, -, ++, ?: etc. The important thing to
understand about operators is that their behavior differs depending on what types
they are used with. For example, adding two numbers with the + operator will
simply calculate the sum of numbers, while adding two strings with the same
operator will concatenate those two strings.

When defining our own types, we would often like to provide a custom
implementation for some of the operators. Let’s consider a simple Point type:

We would like to define the operation of adding two points - it should work by
adding their X and Y coordinates, for example adding (10,5) point to (3, -2) shall
give a new Point with coordinates (13, 3). We can achieve it by defining the Add
method in the Point record struct:

This is correct, but it’s a bit awkward to use. To add two Points we will need to
write something like this:

It would be more natural to perform the addition with the + operator: it is, after all,
the addition operator. Unfortunately, this doesn’t work:

The compiler doesn’t know how to add two points yet. To enable the addition of
two objects of this type we must overload the addition operator:

As you can see to overload the operator we must define a static method using the
“operator” keyword. We must define the parameters and the return type just like
in regular methods. In the case of an addition, there are two operands, so we have
two parameters. Remember - the operand is the thing to which the operator is
applied, for example when adding 3+5 we have two operands: 3 and 5.

Please note that they are operators taking less or more operands. For example, the
++ operator that increases the number by one only takes one operand.

On the other hand, the ternary conditional operator takes three operands: the
condition, value if true, and value if false:

All right. We overloaded the addition operator for Point type, and now we can
safely write this:

We can overload most of the C# operators, but not all of them. For example, we
can’t overload lambda operator =>, member access operator (a dot, like in
obj.Property), or “new” operator. You can find the full list of overloadable
operators here, and at the bottom of the table all non-overloadable operators are
listed:
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/o
perator-overloading

I don’t want to show you the overloads for all operators because the code would
mostly be the same. But let me show you two interesting and commonly used
operators: the explicit and implicit conversion operators. First, let me show you
some examples of their usage for built-in types.

This code looks innocent, but there is more going on here than it seems. After all,
we assign an integer to a double. They are two different types, so how does it
work? Well, it works because implicit conversion happens. The “a” integer is
implicitly converted to a double. Now, let’s see the opposite assignment:

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/operator-overloading
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/operators/operator-overloading

As you can see, this doesn’t work. You might be asking, why did it work when
assigning an int to a double, but it doesn’t work for the opposite operation? The
reason for that is simple: the conversion of an int to a double is lossless. The
double type can represent the value of 5 that was stored in an int variable. On the
other hand, the integer can’t represent the number 5.5. When converting 5.5 to int,
we will lose some accuracy of the data. The result will be trimmed to a full 5. That’s
why we must perform such conversion explicitly, so there is no chance we will do it
by accident. When using explicit cast we say “I know what I’m doing and I’m aware
that the value might actually change during the conversion - I’m ready to take this
risk and handle it”.

By adding “(int)” I performed the explicit conversion from 5.5 double to int. The
result will be 5.

It is quite a common use case that we want to overload the conversion operators.
Let’s go back to the Point type example. Let’s say that our application is getting
the points data from some external source and that the points are delivered to us
as tuples. We would like to be able to simply assign a tuple of two floats to a
variable of Point type, thus performing implicit conversion:

Well, it doesn’t work. The compiler doesn’t know how to cast a tuple of two
numbers to the Point type. We must implement our own implicit conversion
operator:

We can also overload the explicit conversion operator. If only the explicit
conversion operator is implemented, we will have to cast the tuple to Point
explicitly:

To overload the explicit cast operator we must write this:

As you can see, for conversion operators overloading the “explicit” or “implicit”
keyword is needed.

Before we wrap up, let’s think about when we should use the implicit, and when
the explicit casting operator overloading. We can safely use implicit casting when
the cast is lossless, so it won’t change the underlying data - for example, it won’t
change its precision. In all other cases, we should use explicit casting, so no
data-losing operations are executed behind the scenes, without the programmer’s
intention.

Let’s summarize. We can provide custom behavior for operators use in our own
types by using operators overloading. We can overload most, but not all C#
operators. We can also overload the implicit and explicit conversion operators.

Bonus questions:

● "What is the purpose of the "operator" keyword?"
It is used when overloading an operator for a type.

● "What is the difference between explicit and implicit conversion?"
Implicit conversion happens when we assign a value of one type to a variable of
another type, without specifying the target type in the parenthesis. For
example, it happens when assigning an int to a double. Explicit conversion
requires specifying the type in parenthesis, for example when assigning a
double to an int.

35. What are anonymous types?

Brief summary: Anonymous types are types without names. They provide a
convenient way of encapsulating a set of read-only properties into a single
object without having to explicitly define a type first.

Anonymous types are types without names. Anonymous types provide a
convenient way of encapsulating a set of read-only properties into a single object
without having to explicitly define a type first.

As you can see, to create an object of an anonymous type we simply use the “new”
keyword and then put any properties we want in the curly braces. Here we created
an anonymous type with three properties - Name of type string, City of type string,
and Age of type int.

The properties of anonymous types are read-only, so code modifying them will not
compile:

To understand better what may be the use case for anonymous types, let’s
consider a simple coding challenge. First, let’s define a collection of Pets:

Each Pet has a name, type, and weight. What we want to do is to build a collection
of strings that will contain data about each pet type and average weight for pets of
this type. The result should be sorted by weight ascending. In other words, it
should look like this:

We will use LINQ to do it. If you don’t know LINQ, check out my other course “LINQ
tutorial: Master the Key C# Library”. In the last lecture of this course, you can find a
discount coupon.

All right. We need to group those pets by type:

For each of the groups, I want to calculate the average weight:

This is what I want, but there is one problem. I only selected the average weights
of each group now, but I lost the information about the name of each of those

groups. I must change this code to not select floats (as the average weight is a
float) but pairs of PetTypes-floats.

But how should I represent those pairs? I could define a class, struct, or a record for
it:

…but this seems like a relatively big effort. I created a whole separate type for this
very specific piece of data. I will probably never use it in a different context. Not to
mention that its name is a bit awkward, but how else should we call it? There is
really no good name for this very specific set of data.

The solution is to use an anonymous type. An anonymous type is a type defined
right where it’s needed, without even giving it a name. It’s perfect for use cases like
ours - where the type is small and temporary, and we don’t intend to use it
anywhere else:

The final code would look like this:

Because the anonymous type we declared doesn’t even have a name, we will not
be able to use it anywhere else - because how could we refer to it if we don’t know
its name?

Actually, the compiler gives it a name that can be seen in the Common
Intermediate Language, but even if we use the decompiler to find it, it won’t be
possible to use it. Just to satisfy your curiosity, I checked how the compiler named
this particular type:

The name of the anonymous type is at the top. As you can see it’s not very
readable. Please note that from the perspective of Common Language Runtime
anonymous types are no different than any other types.

Let’s list the most important information about anonymous types:
● they contain only read-only properties
● no other kinds of class members, such as methods or events, are valid
● if no names are given to the properties of the anonymous type, the compiler

will use the name of the property that was used to set the value of the
anonymous type’s property. For example, if instead of this:

…we would have this:

…the name of the first property would be “Key”, the same as the name of
the property we assigned to it. When the value is not a property or a field, it

must be given a name. So in the case of WeightAverage, whose value is
calculated, we must give it a name - otherwise, it will not compile, which we
can see here:

● Anonymous types are class objects, derived directly from System.Object.
They can’t be cast to any other type.

● They override the Equals and GetHashCode methods to support value-based
equality. Two anonymous objects with the same values will have the same
hashcodes, and the Equals method will return true for them. Please note
that the == operator is not overloaded, so it will return false (because they
differ by reference).

● They support non-destructive mutation with the “with” keyword.
Remember: non-destructive mutation is not changing the original object,
but rather creating a new one with changed values.

Bonus questions:

● "Can we modify the value of an anonymous type property?"
No. All properties of anonymous types are read-only.

● "When should we, and when should we not use anonymous types?"
The best use case for anonymous types is when the type we want to use is
simple and local to some specific context and it will not be used anywhere else.
It’s very often used as a temporary object in complex LINQ queries. If the type is
complex or we want to reuse it, it should not be anonymous. Also, anonymous
types can only provide read-only properties; they can’t have methods, fields,
events, etc, so if we need any of those features the anonymous types will not
work for us.

● "Are anonymous types value or reference types?"
They are reference types since they are classes, but they support value-based
Equality with the Equals method. In other words, two anonymous objects with
the same values of properties will be considered equal by the Equals method
even if their references are different.

36. What is cohesion?

Brief summary: Cohesion is the degree to which elements of a module belong
together. In simpler words, it measures how strong the relationship is between
members of a class. High cohesion is a desirable trait of the classes and modules.

Cohesion is the degree to which elements of a module belong together. In simpler
words, it measures how strong the relationship is between members of this class
or module. The closer related the members of a class are, the better.

High cohesion is a desirable trait of classes and modules.

This illustrates a highly cohesive class or module:

As you can see no piece seems to be “lonely”. There is a lot of connections
between them, and it would be hard to draw any line in which this module could be
split.

Now, let’s see a module that’s not cohesive:

In this case, there are some pieces that seem to have very little or nothing to do
with others. We can easily see how this module could be divided into
highly-cohesive modules:

As you can see I’ve kept the connection between the green and red parts, but I
made it go through some abstraction - in C# this would most likely be an interface.

Let’s see some code now:

This class is characterized by high cohesion. All those methods use the underlying
collection called _pets. The Contains method uses the GetCurrentlyStoredTypes
method. None of those methods could be easily moved away from this class. There
is no easy way to split this class into separate classes, nor it would make much
sense, as those methods naturally belong together.

Now, let’s consider a different class:

This class is not cohesive. It has two quite separate responsibilities. First, it
evaluates a price of a house, and second, it notifies the owner about the calculated
price. The only point where those two responsibilities meet is that the
SendPriceToOwner method needs the information about the price, but this is
something that can be easily refactored.

Let’s create two highly-cohesive classes:

Now we can simply use them one after another:

By now you may probably be thinking “Oh, so high cohesion and Single
Responsibility Principle are the same things?”. Well, no, but it’s common that a
highly cohesive class meets the SRP and vice versa.

High cohesion means that the data and methods that belong together, are kept
together. If following only the SRP, we could (but it doesn’t mean we should!) keep
splitting classes into smaller pieces until every class would have only one public
method. Each of those tiny classes would definitely meet the SRP, as they would
only have a single responsibility and single reason to change. But they wouldn’t be
cohesive, as they should belong together.

But, does it mean we should do it?

Well, no! Imagine what would happen if the List class was split into tiny classes, like
ListAdder, ListRemover, ListClearer, ListCountGetter, etc. That would be
unmaintainable and hard to understand. Now all those methods - Add, Remove,
Clear and the Count property belong to a highly-cohesive List class. This class is
focused on providing a generic, dynamic collection, and this is its responsibility. It
still meets the SRP, because it has one reason to change - it will change if the idea
of how such collection structure should be represented in C# changes.

If you want to read more about the relation between the SRP and high cohesion, I
recommend this thread on Stack Overflow:
https://stackoverflow.com/questions/11215141/is-high-cohesion-a-synonym-for-th
e-single-responsibility-principle

High cohesion is not something we should create. It’s something we observe and
our job is not to break it. So how to recognize high cohesion?

High cohesion Low cohesion

most or all members use the same
private data and they reuse member
methods

some private members are used by a
group of members only; other
members are used by a different group

the functionalities of a class have much
in common

the functionalities of a class are
unrelated

the class would be hard to split - if we
did it, a lot of private data would need
to be passed from one part to another

the class is easy to split and the line of
splitting is natural and obvious

class is easy to name and its name is
accurate

class is hard to name precisely or its
name lies about what it does

https://stackoverflow.com/questions/11215141/is-high-cohesion-a-synonym-for-the-single-responsibility-principle
https://stackoverflow.com/questions/11215141/is-high-cohesion-a-synonym-for-the-single-responsibility-principle

If you see high cohesion - don’t break it. High cohesion gives us a lot of benefits:
● Highly cohesive classes are easier to understand and use. They provide a

highly-focused set of operations instead of more functionality than we
need. Think of our OwnerNotifier class - it could easily be reused to send
some other information to the person living at some address.

● When a change is needed, it’s easier to introduce, as it affects fewer
modules.

● Cohesive classes are easy to test.
● They are reusable.

On the other hand, when you see a class that is not highly cohesive, consider
refactoring it and splitting it into highly-cohesive pieces.

Let’s summarize. Cohesion is the degree to which elements of a module belong
together. In simpler words, it measures how strong the relationship is between
members of a class. High cohesion is a desirable trait of the classes and modules.

Bonus questions:

● "Is following the Single Responsibility Principle and keeping high
cohesion the same thing?"
No, but it’s common that a highly cohesive class meets the SRP and vice versa.
High cohesion means that the data and methods that belong together, are kept
together. If following only the SRP, we could (but it doesn’t mean we should!)
keep splitting classes into smaller pieces until every class would have only one
public method. Each of those tiny classes would definitely meet the SRP, as
they would only have a single responsibility and single reason to change. But
they wouldn’t be cohesive, as they should belong together.

37. What is coupling?

Brief summary: Coupling is the degree to which one module depends on
another module. In other words, it’s a level of “intimacy” between modules. If a
module is very close to another, knows a lot about its details, and will be
affected if the other changes, it means they are strongly coupled.

Coupling is the degree to which one module depends on another module. In other
words, it’s a level of “intimacy” between modules. If a module is very close to
another, knows a lot about its details, and will be affected if the other changes, it
means they are strongly coupled.

Have you ever needed to introduce a small change in a class, but it actually forced
you to also introduce changes in many other classes? Well, it seems like those
classes were highly coupled with each other. It made them brittle - they got broken
and needed to be fixed when a change was introduced somewhere else.

The high (or “strong”) coupling means that one class knows too much about what is
going on under the hood of another class.

Low (or “loose”) coupling is a desirable trait of classes.

This illustration shows the strong coupling between two classes:

Those classes, although separate, know way too much about each other, and they
communicate directly between themselves. To reduce coupling, we should

introduce a simple, well-defined, and abstract interface, that will be the channel
through which they communicate.

This way, if something changes in one of the classes, the other will not be affected,
as long as the interface doesn’t change. And remember, the implementation
details change much more frequently than interfaces.

Let’s see some strongly-coupled classes.

At first glance, it may look all right. But notice how the SendTo method (and thus
the whole NewsletterSender class) depends on implementation details of the
Subscribers class. It is not only aware that it holds a very concrete type of
collection (an array) but it could even modify its elements. Let’s see what would
happen if I wanted to change the collection that the Subscribers class use from an
array to HashSet:

The SendTo method breaks:

I changed an implementation detail in the Subscribers class and it shouldn’t
affect any other classes. It did, which proves that our code is brittle.

Let’s fix it. The Subscribers class should only expose an abstract collection of items
- let’s make it IEnumerable. The consumers of this class don’t need to know
whether is an array, a HashSet, or anything else:

Now, let’s adjust the code in the NewsletterSender class:

Great. Now the NewsletterSender class is not aware of any implementation details
of other classes. As far as it’s concerned, the Subscribers class only provides a
collection that can be enumerated. Whether it’s an array, a List, or anything else is
irrelevant, and can change without the NewsletterSender class even knowing.

You can recognize high coupling by observing the following:
● One type uses another type directly, without having any abstraction in

between.
● Even a small change in a class leads to a cascade of changes all around the

project.
● Classes are not independent. To make some object work, we need to set up

some state in other objects. This is particularly visible in testing - when
setting up a test, you must do a lot of work on other objects than the one
that you actually want to test.

The question is, what can we do when we observe that our code is tightly coupled?
The best solution is to simply reduce the direct connections between concrete
types.

Let me illustrate it like this: let’s say I want to go for a trip by the sea. If I am tightly
coupled with the Car class and I only accept it as the mean of transportation. It may
mean that my weekend will be ruined if my car breaks down or, for example, my
driving license expires. On the other hand, if I would only depend on some
IMeanOfTransport service, it would mean that I am not coupled with any concrete
type implementing it, and I could easily switch whatever I use to a plane or a train.
And my weekend would be saved. I wouldn’t depend on the technical details of the
mean of transport. I would only need to be provided with something I can use to
travel, and what it is or how it works under the hood, I don’t really care as long as it
takes me to the beach.

As you can see, to reduce coupling we should have different types communicate
over interfaces, not directly. If you know the Dependency Inversion Principle from
the SOLID principles, you can see that its main purpose is reducing coupling:
according to this principle, types should not depend on concrete implementations,
but rather on abstractions. By following this principle, we remove the direct way of
communication between classes, making them more independent from each other.

The perfect classes and modules should be highly cohesive and loosely
coupled.

Let’s summarize. Coupling is the degree to which one module depends on another
module. In other words, it’s a level of “intimacy” between modules. If a module is
very close to another, knows a lot about its details, and will be affected if the other
changes, it means they are strongly coupled.

Bonus questions:

● "How to recognize strongly couples types?"
One type uses another type directly, without having any abstraction in
between. We often recognize strong coupling the hard way: when we see that
even a small change in a class leads to a cascade of changes all around the
project. It proves that the types are not independent.

● "Which of the SOLID principles allow us to reduce coupling?"
The Dependency Inversion Principle, which says that classes shouldn’t depend
on concrete implementations, but rather on abstractions. When following this
principle we remove the direct way of communication between classes, making
them more independent from each other.

38. What is the Strategy design pattern?

Brief summary: The Strategy Design pattern is a pattern that allows us to define
a family of algorithms to perform some tasks. The concrete strategy can be
chosen at runtime.

The Strategy design pattern is a pattern that allows us to define a family of
algorithms that perform some tasks. The concrete strategy can be chosen at
runtime.

Let’s imagine we implement a platform selling video games. Here is the Game type
and some games we currently have in our database:

At the first version of the platform, the user can only search for games by their
title. By definition, we don’t want to show games that are not available. The code
to implement this behavior could look like this:

Great. After some time our platform evolves, and we are asked to add some
pre-defined filters to the search options. The first one is “Best games” which
returns games with a rating of 95 or more:

All right. This method is quite similar to the one that we had before, but let’s not
jump to refactoring yet - we perhaps have better things to do. But soon after, we
are asked to add other predefined filters: “Games of this year” showing games
released in the current year, and “Best deals” finding games with prices below 25$.

Well… this starts to look unmanageable. All those methods are almost identical,
and the code is duplicated. Before we start refactoring, let’s see how this code
could be used:

All right. This doesn’t look good. It’s high time to introduce the Strategy design
pattern. According to this pattern, we should be able to define a family of
algorithms that can be injected into some other code at runtime. In our case, the

family of algorithms will contain all predicate methods, that decide whether a
game should be included in filtered results or not:

Each strategy is an algorithm enclosed in executable code. In this case, I return it as
a Func, but returning it as an object implementing an interface would also be valid
and in line with this design pattern. Remember, after all, a Func is like an interface
with a single method.

We can now plug this strategy into code doing actual filtering:

And this is how it all can be used together:

As you can see, this is quite simple. You probably used this pattern before, even if
you did not know it. Everywhere where you pass some interchangeable code as a
parameter - especially a Func or various objects representing a single interface -
you were using the Strategy design pattern.

Using this pattern allowed us to remove code duplications. We have now one clear
place where the algorithms are defined. Adding a new way of filtering would now
only mean that we must add another case to the switch in which we define
methods of filtering. The generic filtering algorithm (defined in the FindBy
method) and specific subfilters are now separated. This makes the code simpler
and more easily testable.

So, to summarize: the Strategy design pattern is a pattern that allows us to define
a family of algorithms that perform some tasks. The concrete strategy can be
chosen at runtime.

Bonus questions:

● "What are the benefits of using the Strategy design pattern?"
It helps to reduce code duplications, makes the code cleaner and more easily
testable. It separates the code that needs to be changed often (the particular
strategy) from the code that doesn’t change that much (the code using the
strategy).

39. What is the Dependency Injection
design pattern?

Brief summary: Dependency Injection is providing the objects some class needs
(its dependencies) from the outside, instead of having it construct them itself.

Dependency Injection means providing the objects that some class needs (its
dependencies) from the outside, instead of having it construct them itself.

Let’s see this in practice. First, the code that does not use the Dependency
Injection:

The PersonalDataFormatter needs to use the PepleDataReader - it means, the
PeopleDataReader is its dependency. In this code, the PersonalDataFormatter
creates the PepleDataReader object itself using the new operator.

There are a couple of issues with this design:
● PersonalDataFormatter depends on a very particular implementation of

people’s data reading logic. What if we wanted to use a different data
source? We would not have any way of doing this, as this class commits to
using the specific PeopleDataReader object by creating it with the new
operator. Now those two classes are tightly coupled.

● This is particularly problematic when we want to unit test this code. Let’s
assume the PeopleDataReader connects to a real database and sources

people's information from there. If we created the PersonalDataFormatter
in tests, it would instantiate the PeopleDataReader, which would try to
access the database. This is not acceptable in unit tests. We must have a way
of providing a mock implementation instead. With the current design, it’s
not possible. We will learn more about mocks in the “What are mocks?”
lecture.

● We are breaking the Single Responsibility Principle here. The
PersonalDataFormatter should only be responsible for formatting personal
data, but now it is also responsible for creating a PeopleDataReader object.
In this simple code this may not seem like an issue, but keep in mind that in
real-life applications it’s often much more complicated to create an object,
as it may have many dependencies of its own.

All right. Let’s refactor this code to use Dependency Injection. First of all, let’s
make the PeopleDataReader implement an interface:

And now, let’s inject this dependency to the PersonalDataFormatter, instead of
creating it right in it:

This solves all problems mentioned before:
● The classes are now loosely coupled. We can easily switch the object we

pass to the PersonalDataFormatter’s constructor to any other object
implementing IPeopleDataReader interface. We can also do it at runtime.
PersonalDataFormatter doesn’t know anything about the concrete
PeopleDataReader class. All it cares about is that it’s being provided a
dependency that can retrieve people’s data - it doesn’t care how it is done
exactly.

● Because of that, we can easily provide a mock of the IPeopleDataReader in
tests, to avoid connecting to a real database.

● The PersonalDataFormatter is no longer responsible for creating
PeopleDataReader object. The creation of this object and using it are
separated. The Single Responsiblilty Principle is not broken and we maintain
the separation of concerns.

As you can see, the Dependency Injection is a straightforward pattern, yet it solves
a lot of problems.

In C#, we most typically use the constructor injection - so the dependency is
injected to a class via its constructor. It is also possible to inject dependency via a
setter, but this is much less popular (as, in general, having a public setter is a risky
business):

Before we mentioned that classes should not be responsible for creating their
dependencies. Well, who should be responsible for it, then? Most typically we have
two places where we construct objects, depending on our needs:

● if we need objects that can be constructed right at the program start (for
example a logger that will be reused throughout the application) we can
create them at the entry point of the application, like the Main method, and
then pass them down to whatever class that need them:

Please notice that in many real-life projects the creation of objects is not
done manually, but with Dependency Injection frameworks. They are
mechanisms that automatically create dependencies and inject them into
objects that need them. Dependency Injection frameworks are configurable,
so we can decide what concrete types will be injected into objects. They can
also be configured to reuse one instance of some type or to create separate

instances for each object that needs them. Some of the popular
Dependency Injection frameworks in C# are Autofac or Ninject.

● If we are not sure what objects exactly we need (a concrete type may
depend on some parameter or configuration provided at runtime), or
whether we will need them at all, we can use a factory. Let’s say that in
PersonalDataFormatter we can either use the default formatting or
formatting provided from the outside. The decision which one will be used is
done at runtime, and it depends on the value of a parameter of the Format
method:

If the isDefaultFormatting parameter is set to true, we don’t need to create
a Formatter object at all. In other words, the action of creating an object
must happen right in this class, so this object can’t be injected. But we don’t
want to lose the benefits of dependency injection.

A factory allows us to achieve this. Please note that the factory returns an
interface, so for testing purposes, we can provide a mock of the factory, that
will create a mock of an actual Formatter.

This way we don’t need to create the Formatter object upfront. Maybe it will
not be created at all if the Format method is never called with the
isDefaultFormatting parameter set to false. Of course, in this sample code it
wouldn’t matter that much, but again: in a real-life application the creation
of an object might be more complicated and performance-costly.

All right. We learned that Dependency Injection is a design pattern, according to
which we should provide the dependencies that an object needs instead of having
it construct them itself.

Dependency Injection is a specific kind of Inversion of Control, which we will learn
about in the next lecture.

Bonus questions:

● "What are Dependency Injection frameworks?"
Dependency Injection frameworks are mechanisms that automatically create
dependencies and inject them into objects that need them. They are
configurable, so we can decide what concrete types will be injected into objects
depending on some abstractions. They can also be configured to reuse one
instance of some type or to create separate instances for each object that
needs them. Some of the popular Dependency Injection frameworks in C# are
Autofac or Ninject.

● "What are the benefits of using Dependency Injection?"
Dependency Injection decouples a class from its dependencies. The class
doesn’t make the decision of what concrete type it will use, it only declares in
the constructor what interfaces it will need. Thanks to that, we can easily
switch the dependencies according to our needs, which is particularly useful
when injecting mock implementations for testing purposes.

40. What is the Template Method design
pattern?

Brief summary: Template Method is a design pattern that defines the skeleton
of an algorithm in the base class. Specific steps of this algorithm are
implemented in derived classes.

Template Method is a design pattern that defines the skeleton of an algorithm in
the base class. Specific steps of this algorithm are implemented in derived classes.

Let’s consider the following example: we are developing a platform that allows
users to play board games online. The first board game we deliver is Settlers of
Catan. Here is the (slightly simplified) implementation:

All right. Soon after we are asked to implement another game - this time it’s
Terraforming Mars:

Huh. This is quite similar to the code we had before. After implementing couple
more board games, we come to a revelation: all bords games follow a similar
template! We first set up the board, then we play turns until the game is finished,
and finally, we select the winner.

Instead of repeating this logic in each class, we could define it once in the base
class, and ask the subclasses to only provide the details of the implementation of
each step. This way, if the template changes for some reason, we will only have one
place to fix.

Let’s use the Template Method design pattern in this code. First, let’s define the
template itself. It will be done by using an abstract class:

Now we can implement the concrete games:

Great. Now the thing that those classes had in common - so the general template
of each game - is enclosed in the base type. If this template changes, we will only
need to adjust the base class. The derived classes only define what makes each
board game special, and they don’t replicate what they have in common.

The Template Method design pattern is useful everywhere where some base
algorithm is needed, but the specific parts of it vary. A practical example could be
the execution flow of tests in the unit tests framework. Typically such execution
looks like this:

Foreach test:
1) Run the SetUpMethod
2) Execute test
3) Run the TearDown method

This could easily be achieved with the Template Method design pattern. First, let’s
define the base class for all test fixtures:

And now, let’s define some actual tests. We will be testing this super-complicated
class:

When we run those tests, we will see that the SetUp and TearDown methods are
executed before and after each test, as expected:

All right! As you can see, the Template Method design pattern can be quite handy
everywhere where a generic algorithm shall be defined once, but the
implementations of the particular steps of this algorithm may vary.

Bonus questions:

● "What is the difference between the Template Method design pattern
and the Strategy design pattern?"
Both patterns allow specifying what concrete algorithm or a piece of the
algorithm will be used. The main difference is that with the Template Method,
it is selected at compile-time, as this pattern uses the inheritance. With the
Strategy pattern, the decision is made at runtime, as this pattern uses
composition.

41. What is the Decorator design pattern?

Brief summary: Decorator is a design pattern that dynamically adds extra
functionality to an existing object, without affecting the behavior of other
objects from the same class.

Decorator is a design pattern that dynamically adds extra functionality to an
existing object, without affecting the behavior of other objects from the same
class.

Let’s start with something simple. We have a class that reads information about
people from some data source:

This class is nice, simple, and focused. For now.

At some point, we are asked to add an optional feature of logging how many
elements have been read. Let’s add this feature to the class:

Ouch. It was such a pretty class, and now it grew large and ugly. Well, never mind…
at least it does what it’s supposed to.

Soon after that change, we are asked to add one more optional feature: to be able
to limit data to some given count of People. Let’s try to add this:

This code is terrible. This class has big chunks of logic which will or will not be
executed depending on the flags. Its logic, so simple before, is now messy and
complex. It takes more parameters than it may need (we don’t need a logger if
logging is not enabled, and we don’t need countLimit if limiting is not enabled). It
will be a nightmare to test it.

As more and more extra features are required to be added to this class, it will keep
growing, becoming an unmanageable mess that no one wants to work with.

It’s time to introduce the Decorator design pattern. This pattern allows adding
some behavior to an object dynamically, without touching its code. If you know the
Open-Closed Principle from SOLID, you know this is a good thing. It also allows us
to keep the Single Responsibility Principle happy.

First, let’s revert this class to how it was before changes:

Beautiful in its simplicity. Now, let’s add LoggingDecorator class. It will “decorate”
the PeopleDataReader with the ability of logging.

Implementing the Decorator design pattern boils down to two steps:
● making the Decorator implement the same interface as the decorated

object
● making the Decorator own an object implementing this interface. It will be

the decorated class itself or another Decorator, which allows us to compose
many Decorators together

Let’s see how it looks in code:

As you can see, the Decorator owns an object that it wants to decorate. It
implements the same interface. In the Read method that comes from the interface,
it calls whatever implementation is provided, but it adds a little something from
itself - in this case, it writes to a log.

Remember that the _decoratedReader doesn’t need to be the plain
PeopleDataReader object - it can be anything implementing the
IPeopleDataReader interface, including another Decorator. Of course, at some
point one of the Decorators in this structure must own the basic decorated object
of PeopleDataReader type.

Let’s now add the Decorator that will be limiting the count of returned Person
objects:

Great. We can now compose those Decorators to our liking. Let’s create an object
that reads people data, logs the original count, and then limits it:

Here the real magic happens. Each Decorator takes any object implementing the
IPeopleDataReader interface as a parameter but also implements this interface
itself. It means, we can pass a Decorator as a parameter to other Decorator,
stacking their functionalities. That’s why the final object will be able to both log
and limit the count of elements:

Please be aware that the order of the Decorators creation matters. If we change
this code to this…

…the result will be different because the limiting Decorator’s Read method will be
executed before the logging Decorator’s Read method. From the point of view of
the LoggingDecorator the count of data will be 3, not 5.

The features of logging and limiting are optional, but with the Decorator pattern,
it’s easy to choose what we need. Let’s create a PeopleDataReader that only logs
some information, but does not limit the count:

In the result we will see all 5 elements:

And now, let’s create an object that does not log, but it does limit the data:

As you can see, there is no “[LOG]” string in this result.

All right. As you can see the Decorator pattern allows us to easily add functionality
to objects, without touching the original classes, so it’s very much in line with the
Open-Closed Principle. It allows us to keep classes simple. It also helps us to be in
line with the Single Responsibility Principle, as each class now has a very focused
responsibility. They would be easy to test, maintain, and generally pleasant to
works with.

Bonus questions:

● "What are the benefits of using the Decorator design pattern?"
The Decorator pattern allows us to easily add functionality to objects, without
touching the original classes, so it’s very much in line with the Open-Closed
Principle. It allows us to keep classes simple. It makes it easy to stack
functionalities together, building complex objects from simple classes. It also
helps us to be in line with the Single Responsibility Principle, as each class now
has a very focused responsibility. They would be easy to test, maintain, and
generally pleasant to works with.

42. What is the Observer design pattern?

Brief summary: The Observer design pattern allows objects to notify other
objects about changes in their state.

Observer design pattern allows objects to notify other objects about changes in
their state.

Let’s consider the following example. We have some class that is able to read the
current Bitcoin price. In a real-life application it would read it from some public API,
but for the example’s sake let’s make it return a random number from 0 to 50000
(looking at cryptocurrencies prices fluctuations, I would say it’s not that far away
from the truth).

Now, let’s say we want to create a couple of mechanisms that will notify the
application’s users if the price has grown over a certain threshold. Let’s say we
want to be able to send users emails and/or push notifications.

The class for sending push notifications would be almost the same, except that the
message would be different. Please notice that this is a simplification, and in a real
project, those classes would actually send emails or push notifications. We could
also implement more classes to perform other types of notifications.

All right, so here is the big picture: we have the BitcoinPriceReader that reads the
price, and two classes that wait to be notified about the price change -
EmailPriceChangeNotifier and PushPriceChangeNotifier. When the price is read
from the BitcoinPriceReader, we want it to execute the Update method from both
the classes that wait for the information about the new price:

Well.. this is awkward, at least. First of all, it tightly couples the
BitcoinPriceReader with the other two classes. Secondly, this way we will only
notify a single EmailPriceChangeNotifier object and a single
PushPriceChangeNotifier object. What if we wanted to notify a whole group of
them? Lastly, what if some of those objects will no longer be interested in listening
about the price changes (for example the user of the application decides to sell all
his or her crypto and move to live in the Bahamas?). We won’t have any control over
what objects we notify.

It’s time to introduce the Observer design pattern. Let’s do it step by step.

First of all, we want to decouple the BitcoinPriceReader (the Observable) from the
EmailPriceChangeNotifier and PushPriceChangeNotifier (the Observers). We will
need to define interfaces over which they can communicate. The first question we
need to ask is “what data will be sent from the Observable to the Observers?”. In
our case, it will be the current Bitcoin price, so a decimal, but let’s make the
interfaces generic, so they can work with any payload. First, let’s define the
IObserver interface, which will be implemented by EmailPriceChangeNotifier and
PushPriceChangeNotifier. This interface will contain a single Update method, which
will be called by the Observable to send the data to the Observers:

Let’s use this interface before we move on to IObservable:

In this case, the method was already implemented, so not much to do here. In
general, the Update method is the one that receives the notification from the
Observable and decides what to do about it. I also added the interface
implementation to the PushPriceChangeNotifier.

Let’s now define the IObservable interface.

The first two methods are used to attach (or “subscribe”) the observer to the
observable. This way we will have control over who is notified. We can detach (or
“unsubscribe”) the observers at any time if they are no longer interested in
receiving the notifications from the Observable.

The last method will be executed to send the notification to all subscribed
observers.

Let’s implement this interface in the BitcoinPriceReader class. First, we need to
define a collection of Observers:

The NotifyObservers method will simply iterate the List of Observers and execute
the Update method on them with the _currentBitcoinPrice:

The only thing left to do is to call the NotifyObservers method after the latest
Bitcoin price has been read:

As you can see the NotifyObservers method could be private, but I’ll leave it public
as this is the most typical implementation of the Observer design pattern.

All right, let’s put it all together. First, let’s create the Observers and attach them
to the Observable. Let’s say the email should be sent if the price exceeds 25000,
and push notification - when it exceeds 40000.

Now, let’s execute the ReadCurrentPrice method couple of times:

And here is the result:

It seems like one of the calls triggered both email and push notifications, and the
other did not trigger any of them (so the price must have been below 25000).

Now, let’s detach the PushPriceChangeNotifier:

And call the ReadCurrentPrice method again:

As you can see, after the push notifications have been unsubscribed, they are not
sent even if the price exceeded 40000.

Remember that this code bases on random numbers, so when you execute it, you
will have different results. Run it a couple of times and see what happens!

All right. We implemented the basic Observer design patterns.

Please note that there is an existing Microsoft’s implementation of this pattern,
but it’s a bit more complex. I wanted to show you custom implementation so you

see exactly what is going on. If you are curious about Microsoft’s implementation,
make sure to read this article:
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-patter
n

We will revisit the topic of the Observer design pattern in the next lecture, where
we will talk about events, as they have very much in common.

Bonus questions:

● "In the Observer design pattern, what is the Observable and what is the
Observer?"
The Observable is the object that’s being observed by Observers. The
Observable notifies the Observers about the change in its state.

https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern
https://docs.microsoft.com/en-us/dotnet/standard/events/observer-design-pattern

43. What are events?

Brief summary: Events are the .NET way of implementing the Observer design
pattern. They are used to send a notification from an object to all objects
subscribed.

An event is a message sent by an object to signal the occurrence of an action.
Events are the .NET implementation of the Observer design pattern.

Let’s implement the same logic we had in the lecture about the Observer design
pattern. We want the BitcoinPriceReader object to notify other objects about the
reading of the Bitcoin price.

This time, we will do so using events. We will start by defining a delegate that will
represent the function or functions that will be executed once the price reading
event has been raised:

The BitcoinPriceReader will own an event of this delegate’s type:

Let’s take a moment to stop and think about what happened here. We declared an
event belonging to the BitcoinPriceReader class. An event is always of a delegate
type. Remember, a delegate is a type whose instances hold a reference to a
method with a particular parameter list and return type.

So what is the difference between an event, and a regular field of delegate type?
In other words, what will be the difference between those two?

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/builtin-types/reference-types

I will try to attach some method to both of them.

So far, an event and a field of delegate type act exactly the same. But here is the
difference:

As you can see, I can’t invoke the event from outside the class it belongs to. I can
invoke the non-event delegate without a problem.

This is a critical difference. Only the class that owns an event can raise it. Events
are used to send notifications about some action, so imagine what would happen if
any class could raise them: any code could raise the PriceRead event with any price
they want, triggering invalid notifications all around the system. The event
delegate must be public so the subscribers can subscribe to it, but it must only be
invokable from within the class that owns it. And this is what the “event” keyword
enforces.

All right. Let’s move on with the implementation. We defined an event in the
BitcoinPriceReader class.

As you can see I declared it as nullable because before any subscriber subscribes to
it, it will be null.

All right. When the Bitcoin price is read, we want to “raise” the event, so simply
invoke all methods stored in the event delegate. That means, all subscribers will be
notified that the event occurred:

As you can see I execute the event delegate by the Invoke method. This is because
the “normal” execution does not allow using the null-conditional operator, and as
we said, the PriceRead event might be null:

As you can see, the above code doesn’t compile. I don’t want to simply call
“PriceRead(price)” because I would be at risk of causing the
NullReferenceException.

All right. Let’s summarize what happened in this class. We declared an event, which
is of a delegate type. When the Bitcoin price is read, we want to raise the event so
all subscribers are notified.

Let’s move on to the subscribers. Each subscriber must contain a method that is
compatible with the event delegate (in our case, a void method accepting a
decimal).

Let’s see such a method in the PushPriceChangeNotifier class:

A very similar method exists in EmailPriceChangeNotifier class. We can now
subscribe those two classes to be notified when the event is raised:

And that’s it! All that’s left is to call the ReadCurrentPrice method:

And the result is:

It seems like everything is working. Let’s see again what happened. When the
ReadCurrentPrice method is executed, it raises the PriceRead event.

The PriceRead event is invoked, and since the Update methods from
EmailPriceChangeNotifier and PushPriceChangeNotifier are attached to the event
delegate, they get executed.

All right. This works as expected. There is one improvement we can make, though.
Instead of using our own PriceRead delegate for the event, we can use the
EventHandler delegate that is predefined in C#:

This is the signature of this delegate:

As you can see it carries the information about the object that raised the event
(sender) and event arguments. EventArgs is a base class for any event arguments
we want. In our case, the argument of an event is the Bitcoin price that has been
read. Let’s create our own type derived from EventArgs:

To make sure this type of event argument will be used, we must use the generic
EventHandler:

We must now change the code that raises the event, to match the
EventHandler<PriceReadEventArgs> delegate type:

As you can see, as the first argument we pass “this” so the sender of the event. The
second argument is the PriceReadEventArgs object holding the price.

The last thing left to do is to change the Update method in
EmailPriceChangeNotifier and PushPriceChangeNotifier classes:

All right. Now everything works as expected.

You may think that this is more complicated than the code that we had before, and
this is true. Nevertheless, I wanted to show you this EventHandler type, as it is used
in many Microsoft’s frameworks based on events. For example, in Windows Forms
or Windows Presentation Foundation desktop applications. All user actions like
clicking a button or closing a window trigger events and those events are defined
with the EventHandler delegate. In those use cases, the sender argument is used
by the subscribers, which we did not need to do in our code.

One last thing before we wrap up. This is generally a good practice to unsubscribe
from the event handler before the object getting notified about the event is
discarded:

I don’t want to get into details about why is it important (as this lecture is quite
long already), so let me just give you a very quick overview. When a subscriber
subscribes to be notified about a state change in some object, a hidden reference
is created between them. It is needed because the EventHandler holds a reference
to a method stored in the object that will be notified about the event, so a
reference to this object is necessary. It may happen that we think an object is no
longer in use, while the Garbage Collector still sees a reference to it, and will not
remove it from memory. For example, consider a desktop application with some
MainWindow, and a ChildWindow that opens when we click some button. The
ChildWindow is subscribed to an event of the MainWindow, so the reference from
the MainWindow to ChildWindow exists. When we close the ChildWindow it should
be removed from memory, but the Garbage Collector will see this reference and
will decide this object should not be removed. As the application’s user keeps
opening and closing ChildWindows, more and more memory is being used, but
none of it is being freed. This situation is called a “memory leak”. Over time, it may
slow the application down, or even cause it to crash due to
OutOfMemoryException. Unsubscribing from events when it’s possible (for
example, when the ChildWindow is being closed) is a way of preventing that.

Let’s summarize. Events are .NET way of implementing the Observer design
pattern. They are used to send a notification from an object to all objects
subscribed. The pattern of using events is as follows:

● the class that will be sending notifications owns an event, which is a
delegate

● objects that want to be notified about an event can attach their own
methods to this delegate

● when the observable class raises the event, it does so by invoking the
methods stored in the delegate. This way, all methods from the observers
will be executed

Bonus questions:

● "What is the difference between an event and a field of the delegate
type?"
A public field of a delegate type can be invoked from anywhere in the code.
Events can only be invoked from the class they belong to.

● "Why is it a good practice to unsubscribe from events when a subscribed
object is no longer needed?"
Because as long as it is subscribed, a hidden reference between the observable
and the observer exists, and it will prevent the Garbage Collector from
removing the observer object from memory.

44. What is Inversion of Control?

Brief summary: Inversion of Control is the design approach according to which
the control flow of a program is inverted: instead of the programmer controlling
the flow of a program, the external sources (framework, services, other
components) take control of it.

Inversion of Control is the design approach according to which the control flow of a
program is inverted: instead of the programmer controlling the flow of a program,
the external sources (framework, services, other components) take control of it.

Let’s consider two simple examples. First is a simple console application interacting
with the user.

In this program, the code is in control - it decides when the user answers the
questions shown in the console. Here is the implementation of this program:

Now, let’s see a different approach:

In this application, the code doesn't control when exactly the user will fill in the
form, and when the final message will be printed. The action of the user (clicking
on the Submit button) will trigger an event that will handle printing the output:

The control flow of the program is inverted compared to the “traditional” flow,
where the code decides when exactly some action happens. Here, the framework
(in this case, Windows Forms) is in charge, and it executes particular pieces of code
based on the user actions that trigger events.

Inversion of Control is sometimes referred to as “the Hollywood Principle” which
says “don’t call us, we will call you”. In this case, we don’t call a method. The
framework calls us, letting us know via an event that some code needs to be
executed.

According to Martin Fowler (author of the great book “Refactoring” and in general
authority in topics of software development, design, etc.) the Inversion of Control
is what makes the difference between a framework and library:

“A library is essentially a set of functions that you can call, these days
usually organized into classes. Each call does some work and returns
control to the client.

A framework embodies some abstract design, with more behavior built
in. In order to use it, you need to insert your behavior into various
places in the framework either by subclassing or by plugging in your
own classes. The framework's code then calls your code at these points.“

There are many ways in which the control can be inverted. In the example we’ve
seen, this was implemented by using events. Events were triggered by the user’s
actions on the GUI, thus executing some particular methods in code.

Speaking more generally, the Inversion of Control happens whenever some kind of
a callback is defined. A callback is an executable code (a method in C#) that gets
passed as an argument to some other code. Let’s consider this simple example:

The ReadLineByLine method uses a callback - an Action passed as a parameter.
Once the entire input has been read, the callback will be executed. In real-life
projects it often happens that after some data is read (from a database, API, or
anything else that takes time to execute) a callback is invoked, informing some
other piece of the code that it can start its work, as the data it requires is ready to
be used.

Another example of Inversion of Control could be the Template Method. In the
lecture about it, we mentioned the example of SetUp and TearDown methods from
NUnit framework. It’s another case when the framework calls the methods we
defined. The template is defined in NUnit itself, where it is decided that first the
SetUp must be called, then the actual test, and then the TearDown. But the actual
implementation of those steps is defined by the programmer.

Dependency Injection is another example of Inversion of Control. The code that
some class needs to execute is injected from the outside. We don’t have control
over what method exactly will be called. This decision is made for us by someone
who provides the concrete type as the constructor parameter. We only declare that
we need some dependency.

Using an interface is similar to having a callback. After all, an interface is like a
bundle of methods. It would actually be possible to have Dependency Injection
without interfaces, but by simply providing a class with Funcs that will be executed,
similarly as the Action that we saw in an example above.

Let’s summarize. Inversion of Control is the design approach according to which
the control flow of a program is inverted: instead of the programmer controlling
the flow of a program, the external sources (framework, services, other
components) take control of it.

Bonus questions:

● "What is a callback?"
A callback is an executable code (a method in C#) that gets passed as an
argument to some other code.

● "What is the difference between a framework and a library?"
According to Martin Fowler: “A library is essentially a set of functions that you
can call, these days usually organized into classes. Each call does some work
and returns control to the client. A framework embodies some abstract design,
with more behavior built in. In order to use it, you need to insert your behavior
into various places in the framework either by subclassing or by plugging in
your own classes. The framework's code then calls your code at these points.”
So in short, the framework relies on Inversion of Control, but the library does
not.

45. What is the “composition over
inheritance” principle?

Brief summary: “Composition over inheritance” is a design principle stating that
we should favor composition over inheritance. In other words, we should reuse
the code by rather containing objects within other objects, than inheriting one
from another.

“Composition over inheritance” is a design principle stating that we should favor
composition over inheritance. In other words, we should reuse the code by rather
containing objects within other objects, than inheriting one from another.
Let’s see a practical example.

This class reads people’s data from a database and formats it as a single string. It’s
obviously breaking the Single Responsibility Principle, but let’s by now not focus on
that.

One day the business requirements change, and we are told that sometimes the
people's information will be read from the database, but sometimes from an Excel
file. We want to be able to make this decision at runtime.

We can solve it in two ways - by either using composition, and injecting an object
implementing some IPeopleDataReader interface with this class’s constructor, or
we can use inheritance.

First, let’s solve this with inheritance. I will make the PersonalDataFormatter class
abstract:

The ReadPeople method is also abstract, so it will have to be overridden in
inheritors:

Great. We achieved what we wanted - we can now format the personal data
sourced from both databases and Excel files. We don’t have any code duplications,
and we can decide the type at runtime, using some Factory.

Everything looks good, doesn’t it?

Well… not so fast. Let me tell you why using inheritance, in this case, wasn’t our
brightest idea.

● The PersonalDataFormatter class is tightly coupled with its inheritors now.
Any change in the base class will affect the child classes. We can’t really use
any of those types without the others provided, so if I wanted to use
ReadPeople method anywhere else, I would not be able without engaging
this entire hierarchy of classes. You can learn more about coupling in the
“What is coupling?” lecture.

● The relation between those particular classes is rigid - it is defined at
compile time. If I had some other mechanism that can read people’s
information from some source, I wouldn’t be able to use it here without
creating another derived type.

● Also, we have all the limitations of inheritance here, especially the fact that
we can only inherit from a single base class.

● This example is simple, but if we needed some other changes that would
make those classes different, we would have the inheritance hierarchy
growing really fast. For example, if the way of formatting the final string
would also need to be configurable, we would need to create even more
classes, like:
DatabaseSourcedPersonalDataShortFormatter,
DatabaseSourcedPersonalDataFullFormatter,
ExcelSourcedPersonalDataShortFormatter,
ExcelSourcedPersonalDataFullFormatter
Such hierarchy would soon become unmanageable.

● If we wanted to create unit tests for those classes, it would be tricky, and
there are actually two approaches for testing abstract classes and their
inheritors, both with their own disadvantages:

○ We can test both inheritors, but in both of them, we will also test the
common part belonging to the base class. Our tests will be partially
duplicated.

○ We can test inheritors ignoring the logic belonging to the base type
as much as possible. Then, we can test the base abstract class logic by
creating for the testing purposes a special, dedicated concrete type
derived from it. In the tests of this class, we would focus on testing
the base class logic. This is even worse than the first point - if you
need to create special inheritors classes for testing purposes only, it
means you messed your design up badly.

● It is often the case that we inherit more than we would actually want. The
base class is exposing the implementation details to inheritors.

● There is one more reason for avoiding inheritance that is not really related
to this example, but I want to mention it anyway: if we use inheritance in a
hierarchy of objects that we intend to store in a database using some
Object-Relational Mapping tools like Entity Framework, it may be a
challenge to store those objects properly. Databases don’t easily
“understand” inheritance, so mapping the C#’s hierarchy of inheritance into
a flat structure of tables is tricky, and often leads to overcomplicating the
model in the database.

So how to solve all of it?

Well, in this case, we should definitely apply the “composition over inheritance”
principle. Let’s refactor this code:

First of all, I will introduce an interface:

I will have two classes implementing it:

Instead of using inheritance, I will compose The PersonalDataFormatter with a type
implementing the IPeopleDataReader interface:

Finally, I will adjust the Factory:

Great. Everything works as before, but no problems mentioned above occur now:
● The classes are loosely coupled. They live in complete separation, and they

only communicate by an interface
● The relationship between classes is not rigid anymore. It is defined at

runtime when we actually inject a concrete PeopleDataReader to

PersonalDataFormatter object with the constructor. Before, the relation was
defined at compile time.

● If we needed to add more changes, the inheritance hierarchy wouldn’t grow.
We would only add a new interface and classes implementing it, for
example, an IPersonFormatter implemented by PersonShortFormatter and
PersonFullFormatter.

● Testing would be simple. We would test each class in separation, and no
tests would be duplicated.

● No class exposes any implementation details to another class.

All right. I hope you see now that in this case “composition over inheritance” was a
rule worth following. I would say it is in the majority of cases, and when in doubt,
you should follow the composition design rather than inheritance. To be honest, at
my everyday work I use inheritance extremely rarely.

One more thing before we move on. If you know the Bridge design pattern, this all
may sound very familiar to you. This is because the Bridge pattern is simply a way
of implementing the composition over inheritance principle. You can read more
about the Junior e-book.

All right. We said that having composition instead of inheritance has a lot of
benefits. But it doesn’t mean that inheritance should be avoided at any cost. Let’s
take a look at the Person type:

Now, let’s say we want to introduce an Employee type to the project. An Employee
is still a Person, and it should have FirstName, LastName, and YearOfBirth
properties. Besides that, this type should have a “Position” property.

Let’s say we are so excited about using the “composition over inheritance” that we
decide not to use inheritance ever again. And this is the code we create:

Is this design good? Well, I wouldn’t say so. What looks a bit fishy are the
forwarding methods - so the methods that only exist to call methods from some
inner object. In our case, those methods are the FirstName, LastName, and
YearOfBirth properties (remember that properties are like special kinds of
methods).

Let’s see what this code would look like if we used inheritance:

Well, I think it looks much simpler. The forwarding methods are not there, as the
properties we want to have in the Employee class are simply inherited from the
Person class. All we need to define is the new Position property that actually
makes the Employee different from a Person.

How to decide whether to use composition over inheritance? Well, first of all, you
need to answer this question: when thinking about your types, can you say that
one of them IS the other one? Do they have the same structure and similar
functionality, with only some extended behavior in the derived type? If so,
inheritance can be the right choice. Otherwise, you should rather opt for
composition. When in doubt, go for composition and in the worst case, you will
adjust your design if it turns out it’s not working out.

You can read more about the details of making the “composition or inheritance”
decision in this article:
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-ch
oose

Let’s summarize. “Composition over inheritance” is a design principle stating that
we should favor composition over inheritance. In other words, we should reuse the
code by rather containing objects within different objects, than inheriting one from
another.

https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose
https://www.thoughtworks.com/insights/blog/composition-vs-inheritance-how-choose

Bonus questions:

● "What is the problem with using composition only?"
If we decide not to use inheritance at all, we make it harder for ourselves to
define types that are indeed in an “IS-A” relation - so when one type IS the
other one. For example, a Dog IS an Animal, or an Employee IS a person. When
implementing such hierarchy with the composition we create very similar types
that wrap other types only adding a bit of new functionality, and they mostly
contain forwarding methods.

● "What are forwarding methods?"
They are methods that don’t do anything else than calling almost identical
methods from some other type. Forwarding methods indicate a very close
relationship between types, which may mean that one type should be inherited
from another.

46. What are mocks?

Brief summary: Mocks are objects that can be used to substitute real
dependencies for testing purposes. For example, we don’t want to use a real
database connection in unit tests. Instead, we will replace the object connecting
to a database with a mock that provides the same interface, but returns test
data. We can set up what will be the results of the methods called on mocks, as
well as verify if a particular method has been called. Mocks are an essential part
of unit testing, and it’s nearly impossible to test a real-life application without
them.

Mocks are objects that “pretend” to be other objects and are used mostly for
testing purposes. For example, we don’t want to use a real database connection in
unit tests, and we will explain why in a minute. Instead, we will replace the object
connecting to a database with a mock that provides the same interface, but returns
test data.

Let’s say we want to unit test this class:

Imagine the ReadPeople method connects to a real database, performing all
necessary steps like opening the database connection, executing some SQL
queries, etc.

The tests of the PersonalDataFormatter class could look like this:

This may even work under some circumstances, but there are numerous problems
with this approach:

● A test that connects to a database is not a unit test. A unit test should test
only one piece of functionality. Here we test the class, the database
connection, and the database itself.

● Also, unit tests should be fast, and connecting to a database takes time.
● This test only reads from the database, but what if other tests would also

write to it? If some other test would add a new person to the database, this
test would start to fail, as the result would contain one more line. As tests
would run, the database state would change constantly, affecting the
results. Because of that, we would be forced to reset the database to some
desired state before each test, which would again take significant time.

● What if the database is not set up on the computer of another developer?
This test may work for us, but it may not work for others.

● What if the database contains millions of entries? Then the expected value
in this test would be an enormous string, which would obviously be
problematic, especially if the test failed and in this huge string we would try
to find the exact part that doesn’t match the expected result.

To solve all those issues, we need a mechanism that will allow us to mock the
database connection. Instead of using an object connecting to a real database, we
will use a fake one, that will return a predefined set of data used for testing
purposes only.

But first, we must refactor this code to use Dependency Injection, so we are not
tightly coupled with the implementation that connects to a real database:

Great. Now, in the production code, we can inject the implementation that
connects to a real database:

But for unit tests, we will use a mock. I will be using the Moq library for that, which
is one of the most popular mocking libraries for C#. To create a mock of some
interface, we can simply use the Mock<T> class:

As you can see I moved the creation of the _cut object to the SetUp method. This is
because I want a brand-new mock for each test, which is a good practice since the
mocks have their own state (they can track what methods had been called upon
them, which is used for validating mock behavior. We will talk more about it later in
the lecture).

Let’s now use the mock in the test. I will set it up to return some predefined People
objects when the ReadPeople method is called:

Great. Now when the _cut object uses the ReadPeople method from the
IPeopleDataReader interface that is its dependency, the mock will be used. It will
return the predefined collection of people.

This solves all problems mentioned before:
● This test is now a real unit test. It tests the PersonalDataFormatter class in

isolation.
● It is fast because it doesn’t connect to a database.
● It has no way of affecting other tests, as it doesn’t modify any shared state

(with the test not using mocks, if the test would write to a database, it
would modify its content for all other tests).

● The test will work on any machine, no matter if some database is present on
it or not.

● We have full control over the data. We can define a small set of people that
is enough for testing the PersonalDataFormatter. We won’t be affected by
the fact that there are millions of people in the database.

All right. Please notice that mocks have one more powerful ability - we can verify if
some methods have been called upon them as part of the test verification. Let’s
consider this class.

This class is quite simple, but unfortunately, it is not easy to test. The
PrintHelloNTimes method is void, so there is no result to be compared with the
expected result.

The test that validates this class should basically have a way of checking if the
“Hello!” was printed to the console given count of times. It could possibly be done
by actually running the program (which would make this test non-unit) and

somehow intercepting the output printed to the console. But this would be
complex, tricky, and non-unitary. After all, we would be testing the Console class as
much as the EnthusiasticGreeter class.

The solution is again, to use mock. But what to mock here, exactly? Well, ideally it
would be to mock the Console class, but this is impossible since it’s static. In most
frameworks, including Moq, the mocking mechanism is based on inheritance or
interface implementations, so a mock object is basically a derived type from the
type we want to mock or it implements the mocked interface. We can’t have
classes derived from static classes. Again, we will need to use Dependency
Injection:

In the production code, we will simply inject an action that uses Console.Writeline:

But for testing purposes, we will use a mock of the Action object:

We can now write a test that checks that “Hello!” has been printed as many times
as the number provided with the parameter:

As you can see, using mocks allowed us to test code that doesn’t return a value.
Instead, we tested that a specific method was called with a given parameter and a
given number of times.

Let’s summarize. Mocks are objects that can be used to substitute real
dependencies for testing purposes. For example, we don’t want to use a real
database connection in unit tests. Instead, we will replace the object connecting to
a database with a mock that provides the same interface, but returns test data. We
can set up what will be the results of the methods called on mocks, as well as verify
if a particular method has been called. Mocks are an essential part of unit testing,
and it’s nearly impossible to test a real-life application without them.

Bonus questions:

● "What is Moq?"
Moq is a popular mocking library for C#. It allows us to easily create mocks of
interfaces, classes, Funcs, or Actions. It gives us the ability to decide what result

will be returned from the mocked functions, as well as validate if some
function has been called, how many times, and with what parameters.

● "What is the relation between mocking and Dependency Injection?"
Mocking is hard to implement without the Dependency Injection. Dependency
Injection allows us to inject some dependencies to a class, so we can choose
whether we inject real implementations or mocks. If the dependency of the
class would not be injected but rather created right in the class, we could not
switch it to a mock implementation for testing purposes.

47. What are NuGet packages?

Brief summary: NuGet packages contain compiled code that someone else
created, that we can reuse in our projects. The tool used to install and manage
them is called NuGet Package Manager.

NuGet is a Microsoft-supported package manager, so a tool through which
developers can create, share, and consume useful code.

There are tons of libraries that other developers created, which we can use in our
own projects. NuGet Package Manager is the tool that allows us to access them.
Each package contains the dlls built from the code that someone else developed.

For instance, let’s add NUnit and Moq to a project. NUnit is one of the most
popular unit testing frameworks for C#, and Moq is a mocking library. Together
they are two essential tools that we can use to create unit tests for our code.

The easiest way to install a NuGet package is by right-clicking on the project and
selecting “Manage NuGet Packages”. On the screen that opens we can search for
the package that we want to install:

After selecting it, we can choose the version we want to install. Let’s select the
latest one.

After installing the package, we can start using it:

There is another, sometimes even more convenient way of installing NuGet
packages. We can simply start using the types from the package, and once Visual
Studio complains that it doesn’t know them, we can choose to install the package
from the context menu:

In this case, I’m trying to use Mock type from the Moq framework, which is not
currently installed. I can click on the suggestion button to see that Visual Studio
kindly offers to install this NuGet package for me:

After doing so, the code compiles correctly:

Let’s take a look at how the *.csproj file changed after installing those two
packages. To see the *.csproj file of the project we must first unload it. Right-click
on it and select “unload”. After, you can right-click on the unloaded project again
and select “Edit Project File”.

In the *.csproj file that will open we will see the entries that have been added by
NuGet:

The question is: where exactly did the packages get installed? Well, this evolved
with the versions of .NET, but in .NET 6 which we use in this course, it by default
gets installed in your Windows’s user folder, for example in a path like this:

C:\Users\Krystyna\.nuget\packages

And here we can see the nunit folder:

Don’t worry if for you it looks different. I have dozens of different coding projects
on my computer and overall 344 NuGet packages installed.

Thanks to the fact that the package gets installed in the user folder, it can be
reused between different projects. I have multiple projects using NUnit, but it only
exists in a single copy on my machine. Let’s take a look at what’s inside such a
NuGet package:

In the lib folder, we can find the actual dlls that get referenced from our project.

Now, I’ll do something mean. I will remove the entire nunit folder from the
.nuget\packages directory.

Let’s see if the project will build correctly. After all, the dlls it needs have been
deleted.

That’s a bit surprising. The build was successful. Let’s take a look into
.nuget\packages directory again.

It seems like the nunit folder has “magically” reappeared.

Actually, it’s no magic. The *.csproj file now clearly declares what packages it
needs. Visual Studio knows that if the package is missing from the packages folder,
it must simply reinstall it. This is quite convenient, especially if we share the code
via some kind of repository. We only commit the code and package references to
the repository, not the packages themselves. Once another programmer
downloads the code and builds it, the packages get installed on his or her machine
automatically.

One more thing. Sometimes Visual Studio messes something up and is not able to
restore the packages. If this happens, you can always run Tools-> NuGet Package
Manager -> Package Manager Console…

…and from this console, run “dotnet restore” command, which will restore all
packages referenced in the solution.

All right. We now know how to use the packages that someone else created. I
highly recommend you use this beautiful concept, and not reinvent the wheel each
time you need something done. In general, when you think of something not
specific to your project, but rather something that could likely be used by other
developers, there is a 99% chance there is a NuGet package that already does that.

If you have some nice ideas of your own, you can always create and publish your
own NuGet packages. Here is a series of articles about it:
https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

https://docs.microsoft.com/en-us/nuget/create-packages/overview-and-workflow

48. What is the difference between
Debug and Release builds?

Brief summary: During the Release build, the compiler applies optimizations it
finds appropriate. Because of that, the result of the build is often smaller and it
works faster. On the other hand, it’s harder to debug because the compiled
result doesn’t match the source code exactly.

When using Visual Studio, it’s hard not to notice this little option in the top menu:

When developing the code, we most likely use the Debug mode and don’t really
think much about the other option - the Release mode. As their names suggest, the
Debug mode is most appropriate when debugging the application, so mostly
during the development, and the Release mode should be used when we intend to
release the application so it can be used by users or other programs.

But what is the difference between them, exactly?

The main difference is that in the Release build, the compiler introduces some
optimizations it finds appropriate. They can be things like removing unused
variables or simplifying method calls. It helps to make the final CIL code smaller,
simpler, and often faster. Remember, CIL stands for the Common Intermediate
Language, which is the language to which the compiler compiles C# code. Those
optimizations may make debugging harder because the compiled result doesn’t
match exactly the source code.

Let’s see the simple compiler optimizations in practice. First, let me show you some
code that is not optimal:

As you can see, we have an unused variable here. Let me build this project in
Debug mode. The build output will end up in the Debug folder:

Here we can see the dll being the result of the program compilation. What I’m
going to do now is to first see the CIL code using ildasm, and then I will use
SharpLab.io to translate it back to C#, to see how the compilation affected the
structure of the code:

Well, it’s not very exciting. We can see that the unused variable has been renamed
to something shorter and that the const strings have been inlined. Now, let’s do

http://sharplab.io

the same thing but in the Release build. First of all, we will see it ends up in a
different folder:

As you can see, the Release folder is used now. I will again take the CIL code that
has been created by the compiler and will paste it to SharpLab to see what C# it
translates to:

This time, the unused variable has been removed completely.

This was just an extremely simple example of what the compiler can optimize in
the Release mode, but be aware that those optimizations can be much more
serious. The compiler can simplify or inline method calls, remove whole pieces of
code that it doesn’t find useful, and so on. The algorithm behind that is quite
complex and it depends on the compiler version, as well as such low-level details
like how big the methods are. We can configure some of the optimizations settings
with attributes like MethodImplOptions.NoInlining. You can read more about it
here:
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.me
thodimploptions?view=net-6.0

The code optimization done by the compiler is the main difference between the
Debug and Release modes. Please note that if we want some code to be executed

https://docs.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.methodimploptions?view=net-6.0
https://docs.microsoft.com/en-us/dotnet/api/system.runtime.compilerservices.methodimploptions?view=net-6.0

only in one of those modes, we can put it in #if DEBUG or #if RELEASE
conditional preprocessor directives:

Let’s summarize. During the Release build, the compiler applies optimizations it
finds appropriate. Because of that, the result of the build is often smaller and it
works faster. On the other hand, it’s harder to debug because the compiled result
doesn’t match the source code exactly.

Bonus questions:

● "How can we execute some piece of code only in the Debug, or only in
the Release mode?"
By placing it inside a #if DEBUG or #if RELEASE conditional preprocessor
directives.

49. What are preprocessor directives?

Brief summary: Preprocessor directives help us control the compilation process
from the level of the code itself. We can choose if some part of the code will be
compiled or not, we can disable or enable some compilation warnings, or we can
even check for the .NET version and execute different code depending on it.

Preprocessor directives help us control the compilation process from the level of
the code itself. We can choose if some part of the code will be compiled or not, we
can disable or enable some compilation warnings, or we can even check for the
.NET version and execute different code depending on it.

A preprocessor (also known as the “precompiler”) is a program that runs before
the actual compiler, that can apply some operations on code before it’s compiled.
Although the C# compiler doesn't have a separate preprocessor, the directives
described in this lecture are processed as if there were one.

We can recognize preprocessor directives by the fact that they start with the #
symbol. Preprocessor directive must be the only code in a line.

Let’s see some of the most useful preprocessor directives in C#.

In the last lecture, we mentioned the #if DEBUG and #if RELEASE directives,
which allow us to include some code into compilation only if we are in Debug or
Release mode:

We can use #if, #elif, and #else directives to control what we want to compile.
Besides checking for Debug or Release mode, we can also check things like the
version of .NET or the app target, like iOS or Android. Let’s see this in code:

Those directives are very useful when we build an application that targets more
than one .NET version or is meant to work on different platforms.

Another commonly used preprocessor directive is #region. #region allows us to
define a region of code that can be collapsed in Visual Studio, so it doesn’t affect
the actual compilation process:

The above region can be collapsed into this:

Regions are often used with autogenerated code, that we don’t really want to read
that often. Some developers define regions in large files, so some parts of them
can be collapsed, making the file seem smaller and easier to read. I wouldn’t
recommend that, as this is simply sweeping the problem under the rug.
Refactoring is definitely a better approach.

We can also use #error and #warning preprocessor directives to explicitly create a
compiler’s warning or error:

After adding the #warning, we will see it in the build output:

Speaking of warnings - we can disable some of them in a file, using another
preprocessor directive: #pragma warning disable. Let’s consider this simple code:

As we learned in the “What is the difference between throw and throw ex?”
lecture, we should rather use “throw” instead of “throw ex”. The compiler actually
warns us if we do this mistake:

If we are 100% sure what we are doing, we can disable this warning in the code
using #pragma warning disable:

As you can see, we must specify the type of warning by its code. In this case, it is
CA2200, which we saw in the compilation output next to the yellow triangle.

#pragma warning disable disables the warning till the end of the file, so it’s a
good practice to restore it after the last line it should affect.

In the lecture “What are nullable reference types?” we will learn that enabling
nullability checks for reference types may cause an enormous count of warnings in
the project. We can disable those warnings for some files or code blocks using the
#nullable disable directive:

This can be pretty handy if we want to fix the nullability warnings file by file. We
can then disable them for the entire project, and enable them gradually in the files
we fix one by one.

All right. We learned about some (but not all!) preprocessor directives in C#. As
you can see they can be pretty useful when it comes to controlling what code is
compiled under given circumstances, or what warnings are shown. If you want to
read about all available preprocessor directives, make sure to check out this article
from .NET documentation:
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocesso
r-directives

Bonus questions:

● "What is the preprocessor?"
The preprocessor (also known as the “precompiler”) is a program that runs
before the actual compiler, that can apply some operations on code before it’s
compiled.

● "How to disable selected warning in a file?"
By using the #pragma warning disable preprocessor directive. It takes the
warning code as the parameter, so for example to disable the “Don’t use throw
ex” warning we can do “#pragma warning disable CA2200”.

https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives
https://docs.microsoft.com/en-us/dotnet/csharp/language-reference/preprocessor-directives

50. What are nullable reference types?

Brief summary: Nullable reference types is a feature introduced with C# 8, that
enables explicit declaration of a reference type as nullable or not. The compiler
will issue a warning when it recognizes the code in which a non-nullable object
has a chance of being null, or when we use nullable reference types without null
check, risking the NullReferenceException. This feature doesn’t change the
actual way of executing C# code; it only changes the generated warnings.

“What are nullable reference types?” At first glance, you may think this question is
silly. After all, all reference types are nullable in C#, right? Well, yes, this is true
and did not change with introducing the feature called “nullable reference types”
with C# 8.

First, let me show you this code:

Let’s say we work on an application that manages houses data. We use those two
types - House and Address - all around it. Let’s see a tiny fragment of this
application, but keep in mind that the entire application can be huge.

All right. We submit this code for code review and wait for the feedback. Soon
after we see a new comment:

“Looking good, but if house.Address is null, NullReferenceException will be thrown.
You can see Visual Studio warning you about that with the green underline”.

It is true. After a short discussion with the reviewer, we make a decision - the
owner of the house should never be a null string. Also, the Address can’t be null,
and both Street and Number can’t be null either.

See what happened here: we made a decision that in this particular case, the
nullable type that is string and Address, should actually not be nullable.

All right. We have work to do. If those properties should not be nullable, we must
add some logic to the constructors:

Great. Now it will simply be impossible to create a House in which the OwnerName
is null, nor an Address with null Street or Number. We made them practically not
nullable, even if as reference types technically they are nullable.

The problem is, Visual Studio (before it was updated to support C# 8) was not
smart enough to know that we actually ensure that the Address is not null, and it
would keep giving us the warning about possible NullReferenceException.

We could ignore those warnings, but it’s not really a solution. Other developers,
who are not aware that the constructor is enforcing values not to be null, may still
be suspicious and will feel more comfortable with filling their code with endless
checks for null values.

I guess you probably have seen such code quite often:

Such code sometimes takes a significant part of the entire codebase, making it
bulky, hard to read, and unmaintainable.

Wouldn’t it be just simpler if we could agree that the Address and its components
can’t be null and that we promise to enforce it at the constructor level?

Well, the need for such an agreement was exactly the reason for introducing
nullable reference types.

This feature gives us the ability to declare a reference type as nullable or not
nullable. If a type is declared as not nullable, the compiler will give us warnings in
any context in which there is a risk that the value may actually be null. If a type is
nullable, the compiler will give us a warning where a NullReferenceException
could happen.

With C# 8 and newer, the “old” way of declaring reference types will make them
not nullable:

As you can see, the compiler gives us a warning. We declared the variable as a
non-nullable string, but we assigned null to it. This doesn’t make much sense,
hence the compiler warning. We can fix it by declaring the variable as nullable, the
same way as we would declare nullable value types - by adding a question mark:

Now there is no warning. This variable is a nullable string, so assigning null to it is
fine.

A very important note: nullable reference types feature does not change
anything in how the program is executed. Even non-nullable values will still throw
NullReferenceExceptions when null. This feature only changes how compiler
warnings are issued.

All right. Now that we know the essence of nullable reference types, let’s take
another look at this type:

There are no compiler warnings here because the constructor parameters are
non-nullable strings. But let me change something:

I made the street parameter nullable, and now we see warnings. They are here
because we assign a nullable parameter to a non-nullable property, which
obviously doesn’t make much sense, and it may make this seemingly non-nullable
property null.

Let me show you one more case:

Now I removed the assignment to the Street property completely. The warning at
the constructor makes sense - the Street property should not be null, but it will be
because it’s not assigned anything.

And this actually answers quite a tricky question - what is the default value for
non-nullable reference types? Well, ironically, it’s null (because what else could it
be?)

The great thing about the nullable reference types feature is that it has good
support from Visual Studio and other modern IDEs. Let me show you some code:

Here the warning is expected, because nullableText may be null. But let me add a
null check:

The warning is gone because Visual Studio knows that in the last line of this
method we can be sure that the parameter is not null, as this has already been
checked.

Please notice that this IDE support is not infallible, and sometimes it can be
tricked:

As you can see here I do something silly - I declare an array of non-nullable strings,
yet by default, it is filled with nulls. No compiler warning appears, though, even if
the “array[0].Length” will throw NullReferenceException.

It doesn’t mean this feature is useless. Let me quote Jon Skeet on that: “Being able
to know when things might or might not be null, even when it’s only to 90%
confidence, is a lot better than 0% confidence.”

If you are curious what else Jon Skeet has to say about nullable reference types,
check out his lecture about this feature from GOTO Copenhagen 2019 Conference:
https://www.youtube.com/watch?v=1tpyAQZFlZY

All right. There are use cases when we actually know better than the compiler if
something is or is not null. One of the outstanding examples is when some field is
set with the SetUp method in unit tests:

https://www.youtube.com/watch?v=1tpyAQZFlZY

If you don’t know NUnit, let me give you a very quick introduction. The method
with the SetUp attribute will be executed before each test, so it gives us the same
guarantee as the constructor, that the _cut (Class Under Test) field will not be null.
Yet, the compiler warns us that the _cut field may be null before exiting the
constructor. C# compiler doesn’t know how NUnit works, so it’s not aware this field
will never be null when the test is executed.

To get rid of the compiler warning, let’s declare this field as nullable:

Ugh… one warning disappeared, but another showed up. Now the compiler warns
us that the _cut may be null when calling the Add method on it. Making the code
compliant with the compiler’s requirements about the nullable reference types is a
bit like playing Whack-A-Mole. One warning disappears, but another pops out.

But in this case, I know better. I know the SetUp method will be executed first. I
want to say “Quiet, compiler! I know it’s not null!”. And exactly for such situations,
the null-forgiving operator was introduced:

As you can see, I can simply put “!” after a nullable reference type object which I
know is not null to suppress the warning.

It can actually add it even if I know it’s null, which is sometimes needed in unit
tests. Let me show you an example.

First, let’s take another look at the House class. Even if the ownerName and
address parameters are non-nullable, I want to perform a null check here. This is a
good practice - after all, one still can pass nulls there, because as we said, this

feature doesn’t change how the code works - it only issues new warnings. Of
course, the person that calls this constructor will see a warning when passing null
as a parameter, but what if he or she will ignore it? After the House object is
created, we want to be sure that we can really trust what was declared - that the
OwnerName and Address properties are not null. That’s why it’s best to enforce it
once and for all in the constructor.

This looks good. After this validation, we can be sure the OwnerName and Address
will not be null anywhere in our code. We can forget about the neverending
null-checks. The only thing left to do is to add unit tests for this constructor:

This test checks if an ArgumentNullException will be thrown if OwnerName is null.
But even in this test scenario, the compiler gives me a warning. But I know what I’m
doing. I want this null here, so I kindly ask the compiler to give me a break:

Again, the null-forgiving operator proved to be useful.

Now we understand how the nullable reference types work. The question that
remains is when should we use them.

Well, my advice is this: think about the types in your code, their fields, and
properties, as well as local variables and parameters. Can they ever be null, or do
you always ensure that they are not? If they can be null, make them nullable
explicitly. This will clearly show what your intention was, and anyone working with
your code will know that this thing may be null and needs to be checked for it.

Also, a word of caution about migration. Since the “old” type declarations are made
non-nullable starting with C# 8, it may mean that after updating your .NET and C#
version you will suddenly get an overwhelming number of warnings. Don’t worry -
they are a good thing and will help you migrate to this new feature. But if you
really don’t want to see them, you can disable this feature in project properties:

The migration process itself can be a bit tiring (remember the Whack-A-Mole
metaphor?) but having nullable reference types can really save you a lot of pain,
errors and null checks, making the code cleaner, more expressive, and easier to
maintain.

Even if you don’t decide to introduce this feature in an existing project due to
complex migration, I highly recommend using it in new code. You can disable or

enable this feature per file or even a code fragment. This way, you can improve
your code step by step, and not drown in an ocean of warnings.

As you can see there is no warning here, even if we assign null to a non-nullable
string.

Let’s summarize. Nullable reference types is a feature introduced with C# 8, that
enables explicit declaration of a reference type as nullable or not. The compiler will
issue a warning when it recognizes the code in which a non-nullable object has a
chance of being null, or when we use nullable reference types without null check,
risking the NullReferenceException. This feature doesn’t change the actual way of
executing C# code; it only changes the generated warnings.

Bonus questions:

● "What is the default value of non-nullable reference types?"
It is null.

● "What is the purpose of the null-forgiving operator?"
It allows us to suppress a compiler warning related to nullability.

● "Is it possible to enable or disable compiler warnings related to nullable
reference types on the file level? If so, how to do it?"
It is possible. We can do it by using #nullable enable and #nullable disable
preprocessor directives.

FINAL WORD

T h a n k s f o r r e a d i n g t h i s e b o o k ! I h o p e i t w i l l
h e l p y o u d u r i n g y o u r n e x t i n t e r v i e w .

C h e c k o u t m y U d e m y c o u r s e s :

C # / . N E T - 5 0 E s s e n t i a l I n t e r v i e w
Q u e s t i o n s (J u n i o r L e v e l)

L i n k : h t t p s : / / b i t . l y / 3 h S R p O q

C # / . N E T - 5 0 E s s e n t i a l I n t e r v i e w
Q u e s t i o n s (M i d L e v e l)

L i n k : h t t p s : / / b i t . l y / 3 s C 7 F s W

L I N Q T u t o r i a l : M a s t e r t h e K e y C #
L i b r a r y

L i n k : h t t p s : / / b i t . l y / 3 H q G R 3 3

https://bit.ly/3hSRpOq

