
Installation

Mac
URL - does not seem to require setting up the DB manually

- Install Java as a prerequisite

Sonar & Sonar Scanner

brew install sonar

brew install sonar-scanner

ENV Vars
In .zshrc, or .bashrc

export SONAR_HOME=/usr/local/Cellar/sonar-scanner/{version}/libexec

export SONAR=$SONAR_HOME/bin export PATH=$SONAR:$PATH

Create Project in SonarQube
Provide info and generate a token

Project Key & Display Name
1. http://localhost:9000
2. Click Create a new project button [in v9.6.1 it is a tile that looks like this]

Then enter:
a. Project Key
b. Display Name

[can be identical, but display name can have spaces for better viewing]
3. Click Setup button

https://techblost.com/how-to-setup-sonarqube-locally-on-mac/
http://localhost:9000

Generate Token
Under Provide a token

1. Select Generate a token
2. Give your token a name
3. Click the Generate button, and
4. Click Continue.

token_test1: sqp_021419b98f11c1e462354a63b221e33211c5579c

Get / Generate Sonar Commands for Running Analysis

1. Select your project’s main language under Run analysis on your project, and Operating
System.

2. Download Sonar Scanner commands to execute a Scanner on your code.

Here the example is for Mac OS.
cd <project_fodler>

sonar-scanner \

-Dsonar.projectKey=<project_key> \

-Dsonar.sources=. \

-Dsonar.host.url=http://localhost:9000 \

-Dsonar.login=<token>

mvn clean verify sonar:sonar \

-Dsonar.projectKey=test1_key \

-Dsonar.host.url=http://localhost:9000 \

-Dsonar.login=sqp_021419b98f11c1e462354a63b221e33211c5579c

Add a sonar-project.properties file in your project directory

sonar.python.coverage.reportPaths=../coverage.xml

unique project identifier (required)

sonar.projectKey=SalesProject

project metadata (used to be required, optional since SonarQube 6.1)

sonar.projectName=SalesProject

sonar.projectVersion=1.0

path to source directories (required)

sonar.sources=./src

sonar.sources=src

path to test source directories (optional)

#sonar.tests=tests

Ubuntu Linux

Install PostgreSQL
URL - on 20.04 but works on 22.04 as well
URL - How to List Databases and Tables in PostgreSQL Using psql

Install SonarQube
Download SonarQube - URL, for manual download.
Installed community edition: sonarqube-9.6.1.59531

Install SonarQube on Ubuntu 20.04 LTS
URL - problem is that after version 8 they removed sonar.sh and expect you to start sonar with
systemd.
Solution found here. Of course, you have to adjust the paths here to match your Java
installation and the location of the sonar-application-<OUR SONARQUBE VERSION> file:
ExecStart=/bin/nohup /opt/java/bin/java -Xms32m -Xmx32m

-Djava.net.preferIPv4Stack=true -jar

/opt/sonarqube/lib/sonar-application-<YOUR SONARQUBE VERSION>.jar

https://www.digitalocean.com/community/tutorials/how-to-install-postgresql-on-ubuntu-20-04-quickstart
https://chartio.com/resources/tutorials/how-to-list-databases-and-tables-in-postgresql-using-psql/
https://binaries.sonarsource.com/?prefix=Distribution/sonarqube/
https://www.vultr.com/docs/install-sonarqube-on-ubuntu-20-04-lts/
https://community.sonarsource.com/t/failed-to-start-sonar-service/51676/5

StandardOutput=journal

Don't use "syslog", it is deprecated.
This is for the Developer edition - switch home directory of user sonar
sudo usermod -d /opt/sonarqubedev sonar

How to Install SonarQube on Ubuntu 22.04 LTS
URL - similar issue; it does work with the version they are installing - SonarQube 8.9

I managed to get the latest SonarQube version, 9.6.1, to run with this sonar.service file (note
that ExecStart is all on one line):

[Unit]

Description=SonarQube service

After=syslog.target network.target

[Service]

Type=simple

User=sonar

Group=sonar

PermissionsStartOnly=true

ExecStart=/usr/bin/nohup /usr/lib/jvm/java-11-openjdk-amd64/bin/java

-Xms32m -Xmx4000m -Djava.net.preferIPv4Stack=true -jar

/opt/sonarqube/lib/sonar-application-9.6.1.59531.jar

StandardOutput=journal

LimitNOFILE=131072

LimitNPROC=8192

TimeoutStartSec=5

Restart=always

SuccessExitStatus=143

LimitNOFILE=65536

LimitNPROC=4096

[Install]

WantedBy=multi-user.target

Operating the Server
The real documentation is here.

https://www.fosstechnix.com/how-to-install-sonarqube-on-ubuntu-22-04-lts/
https://docs.sonarqube.org/latest/setup/operate-server/

- How to run it without SystemD
- How to run it with SystemD

Another section in the sidebar is the ENV Variables. That is also pretty extensive.

Token on Mac: sqp_8205cf9e6ee0525db3c7fe1b5f83f6802a17fc07
Token name: test_security_with_sonar_1

Bugs

Elasticsearch Cannot Start and Keeps Crashing
You constantly see this message in sonar.log: Waiting for Elasticsearch to become ready.
Then you see how SonarQube stops and starts multiple times with the fans of the CPUs blowing
at max.

Solution
URL

Summarized version

#1. Increase Heap Size

Linux: /opt/sonarqube/conf/sonar.properties
sonar.web.javaAdditionalOpts=-Xmx2G
sonar.ce.javaAdditionalOpts=-Xmx6G -XX:+HeapDumpOnOutOfMemoryError
sonar.search.javaAdditionalOpts=-Xmx6G -Xms6G
-XX:+HeapDumpOnOutOfMemoryError -Dnode.store.allow_mmap=false

#2. Delete Data Directory

Also deleted elastic search data directory: /opt/sonarqube/data/es7
Sonar has rebuilt the index and everything works.
[There is a lock in that directory. You may try deleting it first and restarting SonarQube. If that
does not work, delete the entire directory as show above. If you succeed on the first try, then
SonarQube won't have to rebuild the Elasticsearch index and SonarQube will start faster.]

https://community.sonarsource.com/t/unable-to-start-sonarqube-elasticsearch-stuck-on-recovered-indices-into-cluster-state/62867

Downloads

Developer Edition
URL

Run SonarQube
URL

Installation Guide
URL

Paid Plugin - 450 Euro - Free Trial Available
URL - really nice; adds two menus under the More top level menu => you can do CWE or
OWASP type of reporting after a scan and export to PDF - using a button on the top right.

SONARSOURCE SONARQUBE UP TO 7.7 PROJECT LINK CROSS SITE
SCRIPTING
URL
… The attack technique deployed by this issue is T1059.007 according to MITRE
ATT&CK. [note this T-number; for the meta info, look at the right sidebar]

SOFTWARE SUPPLY CHAIN EXPLOITATION PART 1
URL

OWASP - SonarQube Website
URL

https://binaries.sonarsource.com/CommercialDistribution/sonarqube-developer/sonarqube-developer-9.6.1.59531.zip
https://docs.sonarqube.org/latest/setup/get-started-2-minutes/
https://docs.sonarqube.org/latest/setup/install-server/
https://www.bitegarden.com/sonarqube-security-trial-form
https://vuldb.com/?id.143463
https://vuldb.com/?vulnerability_attck.143463
https://obscuritylabs.com/blog/software-supply-chain-exploitation-part-1/
https://www.sonarqube.org/features/security/owasp/

Relevant but NOT Current

Attack and Defense Strategies with MITRE ATT&CK Framework
URL - 2021-04-15

● Quick and Dirty ATT&CK and Shield explanation

MITRE Shield Active Defense - How to Use Shield Techniques to Stop Targeted
Ransomware Attacks
URL - 2020;

Selected MITRE Enterprise Techniques
● T1190 - Exploit Public-Facing Application

https://attack.mitre.org/techniques/T1190/
Here search for "SQL Injection"; G0007 - APT28 (first listed procedure example)) has it
and many more procedures below, but this one fits the bill really well. This is definitely
detected by SonarQube - see your resources for a code snippet that has user input
that is not sanitized …

● T1189 - Drive-by Compromise - aka Cross-Site Scripting (one of the varieties)
https://attack.mitre.org/techniques/T1189/
Here search for "cross-site scripting"; under Drive-By Compromise (first bullet);

● T1078 - Valid Accounts
https://attack.mitre.org/techniques/T1078/004/
Here search for "identity"; Only the Cloud Accounts section has this word present. The
rest of them mostly deal with credentials (may have to update the word "identity" in
the outline above. Example: SonarQube detects credentials in configuration files -
either in clear text or just hashed; or in source code - hardcoded.

About CAPEC
URL - compared ATT&CK. CAPEC; it focuses on app security

https://www.youtube.com/watch?v=GVqnkkFBdyQ
https://www.youtube.com/watch?v=NLPmuoANKRY
https://attack.mitre.org/techniques/T1190
https://attack.mitre.org/techniques/T1190
https://attack.mitre.org/techniques/T1190/
https://attack.mitre.org/techniques/T1189
https://attack.mitre.org/techniques/T1189
https://attack.mitre.org/techniques/T1189/
https://attack.mitre.org/techniques/T1078
https://attack.mitre.org/techniques/T1078
https://attack.mitre.org/techniques/T1078/004/
https://capec.mitre.org/about/attack_comparison.html

Security Related Rules
These are the rules SonarQube 9.5 covers. The top sections of the page are very
important.

What to expect from security-related rules
The following should be more than sufficient for the purposes of the course.

Security Injection Rules - URL - SonarQube Docs

● CWE-89: SQL Injection; Improper Neutralization of Special Elements used in an SQL
Command ('SQL Injection')

● CWE-79: Cross-site Scripting
● CWE-94: Code Injection - maps to T1055 (parent) - Process Injection in MITRE

ATT&CK

Security Configuration Rules

● CWE-1004: Sensitive Cookie Without 'HttpOnly' Flag
● CWE-297: Improper Validation of Certificate with Host Mismatch
● CWE-327: Use of a Broken or Risky Cryptographic Algorithm

Which security-standards are covered?
Our security rules are classified according to well-established security-standards such as:

● CWE: SonarQube is a CWE compatible product since 2015.
● OWASP Top 10)
● SANS Top 25 - outdated

The standards to which a rule relates will be listed in the See section at the bottom of the
rule description. More generally, you can search for a rule on rules.sonarsource.com:

● Java-vulnerability-issue-type: all vulnerability rules for Java language.
● Java-hotspots-issue-type: all security-hotspot rules for Java language.
● Java-tag-injection: all security-injection rules for Java language.

https://docs.sonarqube.org/latest/user-guide/security-rules/
https://docs.sonarqube.org/latest/user-guide/security-rules/
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/89.html
https://cwe.mitre.org/data/definitions/79.html
https://cwe.mitre.org/data/definitions/94.html
https://attack.mitre.org/techniques/T1055/
https://attack.mitre.org/tactics/TA0004/
https://attack.mitre.org/techniques/T1055/
https://cwe.mitre.org/data/definitions/1004.html
https://cwe.mitre.org/data/definitions/297.html
https://cwe.mitre.org/data/definitions/327.html
https://cwe.mitre.org/
https://cwe.mitre.org/compatible/questionnaires/33.html
https://www.owasp.org/index.php/Top_10-2017_Top_10
https://www.sans.org/top25-software-errors/
https://rules.sonarsource.com/
https://rules.sonarsource.com/java/type/Vulnerability
https://rules.sonarsource.com/java/type/Security%20Hotspot
https://rules.sonarsource.com/java/tag/injection

Explanations
● CWE is MITRE's Common Weakness Enumeration. The references in the

format CWE-XXXX point to exploitation techniques. The trick here is to map
these references to ATT&CK techniques and very likely lower level explanations.
At this point I believe CWE-XXXX are too granular => dig into the ATT&ACK
references at lower levels to find the corresponding top-level techniques.

● The OOTB rules in the SonarQube security docs described above are covering
Java. Stick with those for the purposes of the course and just mention there
are plug-ins for other languages.

● OWASP maps fairly well to CWE
○ Cross Site Scripting A7 = CWE-79: Cross-site Scripting = T1189: Drive-by

Compromise (docs)

Plugin Version Matrix
URL

Malware Detection—Discovering Cross-Site Scripting Attacks
POSTED BY BRIAN LAING ON NOV 9, 2017
Nearly everyone has at some point had their web browser pop up a message that says
something like “Your PC is Infected . . . Click Here to remove the virus”. That message
is likely the result of a cross-site scripting (XSS) attack, and clicking on the link will
connect to a site that installs malware, or encourages the victim to pay for fraudulent
virus removal services.

https://cwe.mitre.org/
https://www.sonarqube.org/features/security/owasp/
https://cwe.mitre.org/data/definitions/79.html
https://attack.mitre.org/techniques/T1189
https://attack.mitre.org/tactics/TA0001/
https://docs.sonarqube.org/latest/instance-administration/plugin-version-matrix/
https://www.lastline.com/blog/cross-site-scripting-attack/

The above example is just one form of XSS attack. In reality, there are numerous types
of XSS attacks and cybercriminals frequently use them to commit their crimes. They
pose a major challenge for malware detection systems.

Fortunately, new technologies can identify XSS attacks and the infections they cause.

What is a Cross Site Scripting Attack?
Cross-Site Scripting (XSS) attacks are a type of injection attack where cybercriminals
deliver malicious script or code to a client browser, often via a vulnerable web
application. In this type of attack, cybercriminals trick users’ browsers into executing
malicious code. A classic example is causing a browser to display a popup with a link to
a website that installs malware. In other cases, an XSS attack will cause a victim’s
browser to send confidential data or cookies containing login credentials to the attacker.

An XSS attack can happen when a web application allows users to input information but
fails to validate that input. This vulnerability allows cybercriminals to enter malicious
code such as JavaScript into a form or search box, and the victim’s browser will execute
that code.

For example, imagine a scenario where a web application allows visitors to enter a
comment. Unless the application filters it out, an attacker can enter a comment that
includes malicious JavaScript. Any browser that subsequently loads that page will read
the comment and execute the embedded JavaScript. Because browsers don’t normally
display JavaScript, it will be invisible to users and administrators that are viewing the
page. The code will execute without their knowledge.

….
XSS attacks create the ideal environment for attackers to escalate an initial foothold to a
more extensive and damaging intrusion. With social engineering and the browser
capabilities listed above, cybercriminals can use an XSS attack to execute sophisticated
operations including cookie theft, keylogging, user impersonation, session hijacking,
data theft, and many other malicious activities.

My thoughts on using the MITRE ATT&CK framework for SIEM detection’s
URL

● Explains MITRE ATT&CK framework
● Advises on how it should be used as part of your SIEM detection strategy

https://blueteamblog.com/my-thoughts-on-using-the-mitre-attck-framework-for-siem-detections

The majority of SIEM platforms come with good out of the box use cases, such
as –

➢ Azure Sentinel Detections
➢ QRadar Use Case Manager
➢ Elastic Detection Rules

SonarQube Tutorial
Run a scan on Win
https://www.loginradius.com/blog/engineering/sonarqube/

Taking the angst out of SAST analysis
URL

Today most SAST (Static Application Security Testing) tools are still owned and run
outside the development team. Results are delivered intermittently, and if the past is a
guide, no one really owns code security. [use this in the What Is? clip]

● The security team can't own it because they can't impact it; they can't change the
code.

● And developers can't own it because they can't take ownership of it. They don't
own the rules, the timelines, or the reports, so they can't own the result.

Fortunately, you have the tools in hand today to break that pattern and shift code
security - like code quality and reliability - to developers. With the SonarSource model:

● SAST is integrated into the development workflow by making it part of the
tools developers already use: SonarQube and SonarCloud analysis.

● That means quick security feedback, and - because the code is still fresh in
mind - efficient, effective fixes.

● Giving developers control of SAST tooling lets them take ownership of code
security, so pushback turns into pride of workmanship.

https://github.com/Azure/Azure-Sentinel/tree/master/Detections
https://exchange.xforce.ibmcloud.com/hub/extension/bf01ee398bde8e5866fe51d0e1ee684a
https://github.com/elastic/detection-rules
https://www.loginradius.com/blog/engineering/sonarqube/
https://blog.sonarsource.com/in-2008-sonarsource-upended-the-static-analysis-market/

About SonarQube
URL - used this to create the slide with the description in their own words;

Scan Source Code
URL - use this for architecture and to describe what SonaQube does when it scans source code
Also shows the properties file and how to configure it

10 Most Common Java Vulnerabilities You Need to Prevent
URL

Sonarqube Download, Install, Configure and Scan Codes for Vulnerabilities
| Hacknikal
URL

- Sample setup
- DB setup - postgres
- Sample scan - does not show security issues but there are some detected
- With PHP, not Java

XSS Tutorial
URL - full explanation of XSS with examples that progress and become more malicious

Vulnerable Code Snippets

XSS In Java
URL - nice example, but do the same with Spring MVC instead of using Servlets
=> see if you can scan the code with SonarQube

XSS in Java - GiHub
URL - very simple REST controller that exemplifies XSS
NOT DETECTED by SonarQybe

https://www.sonarqube.org/about/
https://github.com/SonarOpenCommunity/sonar-cxx/wiki/Scan-Source-Code
https://spectralops.io/blog/top-10-most-common-java-vulnerabilities-you-need-to-prevent/
https://www.youtube.com/watch?v=MVApkY1bu8s
https://www.youtube.com/watch?v=M_nIIcKTxGk&list=PL1A2CSdiySGIRec2pvDMkYNi3iRO89Zot
https://www.youtube.com/watch?v=VBSmeyDQRfM
https://github.com/snoopysecurity/Vulnerable-Code-Snippets/blob/master/XSS/Spring.java

Authentication Bypass - probably = Broken Authentication (A2)
URL - same repo as above; the example is partial; shows some sort of Spring Security Filter
Code
TODO: Try to to find a better example of Authentication Bypass

SQL Injection - Java
URL - the example is also partial - just instructions;
TODO: Wrap in method within a class, e.g., a Spring MVC Controller
https://www.sonarqube.org/features/multi-languages/java/index/Java-security-vulnerability-RSP
EC-2278.png
Go to Security / Vulnerability tab:
https://www.sonarqube.org/features/multi-languages/java/#vulnerability - the png above is from
there.
Also, check this URL - Database queries should not be vulnerable to injection attacks

Broken Authentication
URL - great Java examples; Spring based, with explanations.

XSS Cross Site Scripting Java Demo
URL
Blog with Source code; search for "expand" on the page to find where the code is.
URL - NOT detected by SonarQube

URL - RSPEC-5131, XSS
Endpoints should not be vulnerable to reflected cross-site scripting (XSS) attacks

OWASP
URL - example queries; categorization of vulnerability

Source Samples

Insecure Algorithm 1
https://raw.githubusercontent.com/JetBrains/jdk8u_jdk/master/src/share/classes/com/sun/securit
y/ntlm/NTLM.java
Repo URL

https://github.com/snoopysecurity/Vulnerable-Code-Snippets/blob/master/Authentication%20Bypass/CVE-2019-1937
https://github.com/snoopysecurity/Vulnerable-Code-Snippets/blob/master/SQL%20Injection/example.java
https://www.sonarqube.org/features/multi-languages/java/index/Java-security-vulnerability-RSPEC-2278.png
https://www.sonarqube.org/features/multi-languages/java/index/Java-security-vulnerability-RSPEC-2278.png
https://www.sonarqube.org/features/multi-languages/java/#vulnerability
https://rules.sonarsource.com/java/type/Vulnerability/RSPEC-3649
https://www.stackhawk.com/blog/java-broken-authentication-guide-examples-and-prevention/
https://www.youtube.com/watch?v=VBSmeyDQRfM
https://lurninghut.com/xss-cross-site-scripting-java-demo/
https://rules.sonarsource.com/java/type/Vulnerability?search=XSS
https://owasp.org/www-project-top-ten/2017/A1_2017-Injection
https://raw.githubusercontent.com/JetBrains/jdk8u_jdk/master/src/share/classes/com/sun/security/ntlm/NTLM.java
https://raw.githubusercontent.com/JetBrains/jdk8u_jdk/master/src/share/classes/com/sun/security/ntlm/NTLM.java
https://github.com/JetBrains/jdk8u_jdk/blob/master/src/share/classes/com/sun/security/ntlm/NTLM.java

A small portion of this JDK * code is on the SonarQube website in screenshot that shows
Security Analysis in action.

- https://www.sonarqube.org/features/security/ - main page
- https://www.sonarqube.org/features/security/index/lightbox/Java-security-vulnerability-R

SPEC-2278.png - image on page

https://github.com/JetBrains/jdk8u_jdk/blob/master/src/share/classes/com/sun/security/ntlm/NTL
M.java

Glossary

CWE - Common Weaknesses Enumeration (MITRE)

SAST - Static Application Security Testing

OWASP - Open Web Application Security Project

CVE - Common Vulnerabilities and Exposures

https://www.sonarqube.org/features/security/
https://www.sonarqube.org/features/security/index/lightbox/Java-security-vulnerability-RSPEC-2278.png
https://www.sonarqube.org/features/security/index/lightbox/Java-security-vulnerability-RSPEC-2278.png
https://github.com/JetBrains/jdk8u_jdk/blob/master/src/share/classes/com/sun/security/ntlm/NTLM.java
https://github.com/JetBrains/jdk8u_jdk/blob/master/src/share/classes/com/sun/security/ntlm/NTLM.java

